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Abstract

The slope variety of a graph G is an algebraic variety whose points correspond to the

slopes arising from point-line configurations of G. We start by reviewing the back-

ground material necessary to understand the theory of slope varieties. We then move

on to slope varieties over finite fields and determine the size of this set. We show that

points in this variety correspond to graphs without an induced path on four vertices. We

then establish a bijection between graphs without an induced path on four vertices and

series-parallel networks. Next, we study the defining polynomials of the slope variety

in more detail. The polynomials defining the slope variety are understood but we show

that those of minimal degree suffice to define the slope variety set theoretically. We

conclude with some remarks on how we would define the slope variety for point-line

configurations in higher dimensions.
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Chapter 1

Introduction

The main object of study in this dissertation is the slope variety S (G) associated with

a graph G. A graph can be realized as a point-line configuration in the plane; each

edge is a line and contains the two points corresponding to its vertices. The slope

vector of such a realization is the ordered list of the edge slopes. The slope variety

of a graph is the set of edge slopes arising from these realizations. In [11] explicit

polynomials are constructed for each graph that define its slope variety. First, we study

these polynomials over finite fields and count the number of common zeroes. Second,

we show that a certain subset of these polynomials are sufficient to define the slope

variety for the complete graph over an algebraically closed field. Finally, we consider

point-line configurations of graphs in arbitrary-dimensional space and give some of the

defining polynomials.

Chapter 2 builds up the background needed to study slope varieties. We begin by

reviewing basic definitions from graph theory and matroid theory. From there we may

discuss combinatorial rigidity [8, 17]. We think of constructing a graph G using rods of

fixed lengths for the edges and ball joints for the vertices. Then, G is rigid if it cannot

change shape when constructed this way. For example, a 3-cycle is rigid (this is the

side-side-side rule) but a 4-cycle is not (because we can pull apart two non-adjacent
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vertices while keeping all edge lengths fixed). An important result of combinatorial

rigidity is Laman’s Theorem [10], which says that (generic) planar rigidity is a graph

invariant. One consequence of Laman’s Theorem is that the geometric constraints on

edge lengths correspond to certain graphs called rigidity circuits which can be described

combinatorially in terms of their spanning trees.

Combinatorial rigidity plays a role in describing the defining polynomials of the

slope variety [11]. We walk through their construction. Start with the equations in the

coordinates of points and lines describing the point-line configurations of G. Eliminat-

ing the coordinates of the vertices gives a matrix in the slopes. The defining polynomi-

als τC of the slope variety are given by certain minors of this matrix, which correspond

to the rigidity circuits C. The polynomial τC is called a tree polynomial because it is

a generating function for certain spanning trees of the rigidity circuit C. We need the

determinant and generating function descriptions throughout the following chapters.

Previous work on tree polynomials was done over an algebraically closed field [11,

12]. In Chapter 3 we work instead over the finite field Fq with q elements. The set

of common zeroes Sq(G) is a finite analogue of the slope variety of G, raising the

question of determining its cardinality. The main result of this chapter is a bijection

between points of S2(Kn) and combinatorial objects known as series-parallel networks

(for which see [14, Exercise 5.40], [4]). A natural question is whether or not there are

combinatorial interpretations for other values of q. We give some data for larger q but

the question remains open.

Finally, in Chapter 4 we study the tree polynomials for slope variety of Kn in more

detail. Recall that the tree polynomials correspond to rigidity circuits. The most impor-

tant rigidity circuits are the wheels. A k-wheel is a k-cycle together with a vertex that

is adjacent to every vertex in the cycle. In [12] it is shown that the ideal In generated

by the tree polynomials of the wheels in Kn is prime and its zero set is exactly the slope

2



variety S (Kn). Experimental evidence shows that in fact In = Jn for n≤ 9, where Jn is

the ideal generated by the tree polynomials of the 3-wheels (that is, copies of K4) in Kn.

The main result in this chapter is Theorem 4.1.2, which shows that
√

Jn = In for all n,

that is, the zero set of Jn is the slope variety S (Kn). In the last section we sketch how to

generalize the slope variety to higher dimensions by mimicking the techniques used in

the plane, and explain why the tree polynomials alone do not determine all constraints

on the edge directions.
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Chapter 2

Background

2.1 Graph theory

We list some necessary notation here; for a general background on graph theory see [2]

or [16]. A graph G is an ordered pair (V,E) of vertices and edges i.e., V is a finite set,

and E is a set of 2-subsets of V . Two vertices u,v ∈ V are adjacent if there is an edge

uv ∈ E between them. We use the notation V (G) for the vertex set of G and E(G) for

the edge set. Throughout, we will assume graphs are connected unless otherwise stated,

i.e., there is a path between any two vertices, and simple, i.e., no loops or parallel edges.

For U ⊆V , the induced subgraph G|U of G on U , is the graph with vertex set U and

edge set {uv ∈ E(G) | u,v ∈U}. The intersection G∩H of two graphs G and H is the

graph with vertex set V (G)∩V (H) and edge set E(G)∩E(H). The complement G of

G is the graph on the same set of vertices as G whose edges are exactly the non-edges

of G.

Though we will define the slope variety for any graph G, the main graph we are

concerned with is the complete graph on n vertices Kn. An important set of graphs

is the set of wheels in Kn. The k-wheel W (v0;v1, . . . ,vk) is the graph on the vertices

{v0, . . . ,vk} and whose edges are v0v1, . . . ,v0vk, v1v2, . . . ,vk−1vk,vkv1, where k≥ 3. The
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wheel W (v0;v1, . . . ,vk) is invariant up to dihedral permutations of v1, . . . ,vk. The vertex

v0 is called the center; the other vertices are called the spokes. The edges incident to

the center are called the radii, and the other edges are chords. Note that a 3-wheel is

the complete graph on four vertices and the designation of center is arbitrary.

Let Pn denote the path on n vertices, also called the n-path. A complement-reducible

graph, or cograph, has no induced P4. An important fact that we will need is that G is

complement-reducible if and only if for every induced subgraph H ⊆G, either H or the

complement H is disconnected; see [5].

2.2 Matroids

There are many mathematical structures in which there is a notion of independence.

Matroids are defined to give precise meaning to what it means to be independent.

Definition 2.2.1. A matroid M is a finite set E, together with a collection of subsets I ,

called the independent sets, that satisfies the following conditions:

M1: /0 ∈I ;

M2: if A⊆ B and B ∈I , then A ∈I ;

M3: if A,B ∈I and |A|> |B|, then there is some x ∈ A\B such that B∪{x} ∈I .

Definition 2.2.2. Let M be a matroid on E with independence system I .

• A maximal independent set A ∈I , with respect to set containment, is a basis.

• A set A⊆ E that is not in I is a dependent set.

• A minimal dependent set C is a circuit.

• The rank function r : 2E → N is r(A) = max{|A∩B| | B ∈I }.
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A matroid can be described by any one of the following: its circuits, its bases, or

its rank function. There are several other equivalent ways to describe a matroid see [1]

but we are not concerned with those descriptions here. Much of the terminology used

in matroid theory is motivated by the two basic examples given below: a finite set of

vectors, and a graphic matroid.

Example 1. Consider a finite set of vectors E = {v1, . . . ,vn} in a vector space V . Then

I := {A⊆ E | A is linearly independent} is a matroid, called the vector matroid on E.

Example 2. A graphic matroid is the set of edges E in a graph G, together with the

collection of acyclic subsets I of E. It is not hard to check that I satisfies (M1) and

(M2).

We need to prove condition (M3) holds. Let A,B∈I be acyclic sets with |A|> |B|.

By way of contradiction, suppose B∪{e} contains a cycle for every edge e ∈ A \B.

Then, it must be the case that V (A) ⊆ V (B) (the vertices of A are contained in the

vertices of B) and hence |V (A)| ≤ |V (B)|. It is a well known fact in graph theory that

if cA is the number of components in A and cB is the number of components in B, then

|A| = |V (A)| − cA and |B| = |V (B)| − cB. Therefore, B must have more components

than A since we are assuming |A| > |B|. Therefore, by the pigeonhole principle, there

must be an edge uv∈ A whose vertices u and v are in different components in B. Hence,

B∪{uv} is acyclic, contradicting our assumption that every edge in A\B completes a

cycle in B.

The graphic matroid is the best known matroid on the edge set of a graph. However,

there are several different ways to define an independence system. In particular, the next

section will develop the rigidity matroid. We will assign a row vector to each edge in Kn

that corresponds to the edge length. Then, obtain a vector matroid where a collection

of edges is linearly independent if and only if their lengths are independent.
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2.3 Combinatorial rigidity

The motivation for much of the work in this thesis comes from the study of combinato-

rial rigidity. The basic problem is to determine when the drawing of a graph G = (V,E)

is rigid in Rd . Informally, suppose we construct G using rods of fixed length for the

edges and ball joints for the vertices. If the edges are allowed to pivot about the vertices,

will G keep its shape? Before making the notion of rigidity precise, we demonstrate

that a graph may be constructed in a rigid or non-rigid fashion.

Example 3. Let V = {1,2,3,4,5,6}, E = {12,13,14,23,24,35,46,56} be drawn, in

R2, as shown in Figure 2.1. Triangles are rigid, therefore, the distance between vertices

3 and 4 is fixed in both frameworks. Since the vertices 3,4,5 and 6 are colinear in the

first framework, it is impossible to keep the edge lengths fixed and have them pivot

about the vertices. Informally, in the second framework vertices 5 and 6 can move

without changing any edge length.
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Figure 2.1: Rigid and non-rigid frameworks for the same graph

We introduce some terminology from [8] so that we can make the notion of rigidity

more precise. Let p : V → Rd be a map and let pi denote the image of vertex i ∈ V .

The collection (V,E,p) is called a framework, which is a geometric realization of G in

Rd (the edges are line segments between the appropriate vertices). Any movement of a
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vertex pi in Rd is assumed to be along a differentiable curve. A motion of the framework

(V,E,p) is given by a differentiable function q : [0,1]→ (Rd)|V | where qi(0) = pi for

all i ∈ V and all edge-lengths are constant. The square of the distance between qi(t)

and q j(t) is given by the dot product (qi(t)−q j(t)) · (qi(t)−q j(t)). So if i j ∈ E is an

edge, then differentiating gives

(q′i(t)−q′j(t)) · (qi(t)−q j(t)) = 0. (2.1)

An infinitesimal motion of a framework is the initial velocity q′(0). That is, assign

a vector q′i(0), to each vertex i ∈V , so that equation (2.1) is satisfied for each edge. We

then express the system of equations (2.1) in the form of a matrix. Define the rigidity

matrix R(p) to be the
(|V |

2

)
×|V | matrix whose entry in row i j column k is


pi−p j if i = k

p j−pi if j = k

0 otherwise .

The rigidity matrix is really an
(|V |

2

)
×d|V | matrix. For example, let p : {1,2,3} → R2

be a map and let ({1,2,3},{12,13,23},p) be the corresponding framework of K3 in
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the plane R2, with pi = (xi,yi). The rigidity matrix is

R(p) =


p1−p2 p2−p1 0

p1−p3 0 p3−p1

0 p2−p3 p3−p2



=


x1− x2 y1− y2 x2− x1 y2− y1 0 0

x1− x3 y1− y3 0 0 x3− x1 y3− y1

0 0 x2− x3 y2− y3 x3− x2 y3− y2

 .

Let U ∈ (Rd)|V | be a column vector. Then U is an infinitesimal motion of the

framework (V,E,p) if the i j entry of R(p)U is 0 for all edges i j ∈ E. An infinitesimal

motion U is rigid if R(p)U = 0, i.e., every distance between two vertices is constant.

Definition 2.3.1. A framework (V,E,p) is infinitesimally rigid if R(p)U = 0 for each

infinitesimal motion U.

Definition 2.3.2. A general embedding of a graph is a framework in which the vertices

are in general position. A graph is generically rigid if there is a general embedding that

is infinitesimally rigid.

Lemma 2.3.3. If a framework (V,E,p) is infinitesimally rigid for some general embed-

ding p in Rd , then (V,E,q) is infinitesimally rigid for every general embedding q.

We will now only be concerned with generic rigidity, which is a combinatorial

property. Pick a general framework (V,E,p) in Rd . It is not hard to check that a

framework is infinitesimally rigid if and only if each row in R(p) is a linear combination

of the rows e1, . . . ,er ∈ E. The set of rows in R(p) is a finite set of vectors, hence they

form a vector matroid, called the d-rigidity matroid. The matroid’s ground set is the

9



set of edges E(KV ) in the complete graph on V . A graph G⊆ Kn is rigid if the rank of

E(G) equals the rank of E(KV ).

There are no known conditions on a graph that determine rigidity in arbitrary di-

mensional space Rd . The case d = 2 was solved by Laman [10].

Theorem 2.3.4. A graph G = (V,E) is rigid in the plane if and only if there is a subset

F ⊆ E such that

1. |F |= 2|V |−3,

2. for any nonempty F ′ ⊆ F, |F ′| ≤ 2|V (F ′)|−3.

The idea of Laman’s Theorem is that in order for a graph to be rigid, it needs

“enough” edges and they have to be evenly distributed throughout the graph. Theo-

rem 2.3.4 gives the independence system, for the 2-rigidity matroid, in terms of the

number of edges. A set E is rigidity independent if |F | ≤ 2|V (F)|−3 for all F ⊆ E. A

rigidity circuit F has |F |= 2|V (F)|−2 and |F ′| ≤ 2|V (F ′)|−3 for all F ′ ⊆ F . We get

the following useful proposition from [8].

Proposition 2.3.5. An edge set E is a rigidity circuit if and only if E is the disjoint

union of two spanning trees, and no proper subset of E has this property.

The edge set E is a rigidity pseudocircuit if it can be partitioned into two disjoint

spanning trees. We define these spanning trees to be coupled spanning trees.

2.4 Grassmannians and algebraic geometry

As stated earlier, the goal of this chapter is to define the slope variety of a graph. We

need Grassmann varieties to describe them. First, we list necessary definitions and facts
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from algebraic geometry. Fix a field F. Given a set of polynomials S ⊆ F[x1, . . . ,xn],

the set of common zeroes is denoted as

Z(S) := {a = (a1, . . . ,an) ∈ Fn | f (a) = 0 ∀ f ∈ S}.

Let I = 〈 f1, . . . , fs〉 be the ideal generated by f1, . . . , fs. Then, Z(I) = Z( f1, . . . , fs).

Given a set T ⊆ Fn, the set of polynomials that vanish on T is denoted as

I(T ) := { f ∈ F[x1, . . . ,xn] | f (a) = 0 ∀a ∈ T}.

This set I(T ) is in fact an ideal.

Definition 2.4.1. A set T ⊆ Fn is called an algebraic set if there is an ideal I such that

T = Z(I).

It is not necessarily the case that I(Z(I)) = I. For example, let I = 〈x2〉 ∈ F[x]. Then

Z(I) = {0}, so x ∈ I(Z(I))\ I.

Definition 2.4.2. For an ideal I ⊆ R in a commutative ring R, the radical ideal
√

I is

√
I := {a ∈ R | at ∈ I for some positive t ∈ Z}.

Equivalently, the radical of I is the intersection of all prime ideals containing I.

Proposition 2.4.3. Let I be an ideal. Then the following hold:

1. I ⊆
√

I,

2. Z(I) = Z(
√

I),

3. I(Z(I)) =
√

I.
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Definition 2.4.4. The Zariski topology on Fn is the topology where the basic closed

sets are of the form Z(I), for some ideal I ⊆ F[x1, . . . ,xn]. The Zariski closure of a set

T ⊆ Fn is T := Z(I(T )).

Definition 2.4.5. An algebraic set Z is reducible if there are proper algebraic subsets X

and Y with Z = X ∪Y . It is irreducible if it is not reducible.

x=y=0

z=0

Figure 2.2: The algebraic set Z(xz,yz) = Z(x,y)∪Z(z) is reducible.

Definition 2.4.6. Let I,J be ideals in a commutative ring R. The ideal quotient, or

colon ideal is

I : J := {r ∈ R | rJ ⊆ I}.

The colon ideal is an ideal. We can think of the colon ideal I : J as the ideal I divided

by the ideal J. In the special case that I = 〈 f g〉 and J = 〈g〉, then the colon I : J = 〈 f 〉

is f g divided by g. On the geometric level, this amounts to removing the algebraic set

defined by J from Z(I).
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Theorem 2.4.7. If F is algebraically closed and I =
√

I, then

Z(I : J) = Z(I)\Z(J).

Proposition 2.4.8. If I, J and K are ideals, then I : (J+K) = (I : J)∩ (I : J).

See [6].

2.4.1 Grassmannians

Given a field F, the Grassmannian Gr(k,n) is the set of k-dimensional subspaces of Fn.

The set of lines through the origin Gr(1,n) is projective (n−1)-space, the set of planes

through the origin Gr(2,n) is the set of lines in projective (n−1)-space, etc. For a more

extensive coverage of Grassmannians and Plücker relations, see [3] or [7].

We now walk through the construction of the Plücker relations. A point W ∈

Gr(k,n) can be represented as a full-rank n× k matrix M whose column vectors form

a basis of W (in the previous section we were concerned with the row vectors of a

matrix not the column vectors). This matrix is not unique. However, for any other

representation M′, there is an invertible k× k matrix U such that M = M′U . Define the

notation Ma1,...,ak be the submatrix with rows a1, . . . ,ak, let λ := det(U) 6= 0 and, fol-

lowing the notation of [3], define M[a1, . . . ,ak] := det(Ma1,...,ak). Then M[a1, . . . ,ak] =

λM′[a1, . . . ,ak] for each k-element subset {a1, . . . ,ak} ⊆ [n]. If the matrix M is under-

stood, we use [a1, . . . ,ak] = M[a1, . . . ,ak]. Each W ∈ Gr(k,n) is realized, not uniquely,

as a point in F(
n
k), with coordinates indexed by k-element subsets of [n]; the entry in

the {a1, . . . ,ak}-coordinate is [a1, . . . ,ak]. Two of these representations are equivalent

if and only if one is a scalar multiple of the other. Therefore, Gr(k,n)⊆ P(
n
k)−1.
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Not every point in P(
n
k)−1 is in Gr(k,n); its coordinates must satisfy the Plücker re-

lations. This is the complete set of polynomial relations among the coordinates. There-

fore, Grassmannians are algebraic sets.

Let Sn be the permutation group on [n] and define

S(t,n) := {σ ∈Sn | σ1 < σ2 < · · ·< σt , σt+1 < · · ·< σn}.

Lemma 2.4.9 (Plücker Relations). Let M be an n× k matrix, k ≤ n, of indeterminates

over Z, let 1 ≤ t ≤ k and let a1, . . . ,am, c1, . . . ,cs, b1, . . . ,b` ∈ [n] with t +m = k and

s− t + `= k. Then

∑
σ∈S(t,s)

sgn(σ)[a1, . . . ,am,cσ1, . . . ,cσt ][cσt+1 , . . . ,cσs,b1, . . . ,b`] = 0. (2.2)

The first nontrivial example is a 4×2 matrix, say

M =



x11 x12

x21 x22

x31 x32

x41 x42


.

The only Plücker relation with a1 = 1,c1 = 2,c2 = 3,c3 = 4 s = 3 and t = 1 is

[1,2][3,4]− [1,3][2,4]+ [1,4][2,3] = 0,
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i.e.,

∣∣∣∣∣∣∣
x11 x12

x21 x22

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

x31 x32

x41 x42

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣

x11 x12

x31 x32

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

x21 x22

x41 x42

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

x11 x12

x41 x42

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

x21 x22

x31 x32

∣∣∣∣∣∣∣= 0

2.4.2 Schubert cells

We can partition Gr(k,n) into Schubert Cells. Given W ∈ Gr(k,n), there is a unique

matrix representation, after reducing W by only performing column operations. For

example, every element of Gr(3,4) is represented by a matrix in one of the following

forms:



1 0 0

0 1 0

0 0 1

0 0 0


,



1 0 0

0 1 0

0 0 ∗

0 0 1


,



1 0 0

0 ∗ ∗

0 1 0

0 0 1


,



∗ ∗ ∗

1 0 0

0 1 0

0 0 1


.

Let M be the unique matrix representation for W ∈Gr(k,n). Let pi be the row in which

column i has a 1 with only 0’s below it. Then, µ = (pk− k, pk−1− (k−1), . . . , p1−1)

is an integer partition of |µ|= pk+ · · ·+ p1−
(k+1

2

)
. The value pi− i equals the number

of ∗’s in column i. Say that µ is its type. Let µ = (µ1, . . . ,µt) ` m≤ n be a partition of

m with t ≤ k and µ1 ≤ n− k. Define the Schubert cell

Xµ := {W ∈ Gr(k,n) |W has type µ}.

Proposition 2.4.10. Let Gr(k,n) be given. We have the following:

1. The set of all Xµ forms a partition of Gr(k,n).

2. Xµ is a |µ|-dimensional affine space.
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3.
⋃

µ<ν

Xµ = Xν .

Proposition 2.4.10 shows that Schubert cells decompose the complicated Grass-

mannian space Gr(k,n) into much nicer spaces (specifically CW-complexes) and shows

how they fit together.

2.5 Graph varieties

2.5.1 Picture space

We return to the topic of graph drawings, but consider them in a different light than

in Section 2.3. Fix a field F and a graph G with V (G) = {v1, . . . ,vn} and E(G) =

{e1, . . . ,er}. Draw G in the projective plane P2 = Gr(1,3). Each vertex is an element

of Gr(1,3) and each edge is an element of Gr(2,3). A picture of G is a point

P = (p(v1), . . . , p(vn), p(e1), . . . , p(er)) ∈∏
v∈V

Gr(1,3)×∏
e∈E

Gr(2,3) (2.3)

such that if vi ∈ e j, then p(vi)∈ p(e j). The picture space X (G) is the set of all pictures

of G.

Analogous to the partition of Grassmannians into Schubert cells, the picture space

can be partitioned into cellules. Instead of integer partitions, cellules are indexed by set

partitions. Let π be a partition of [n] and ∼π the corresponding equivalence relation.

Define the cellules as the sets

Xπ(G) = {P ∈X (G) | p(vi) = p(v j) ⇐⇒ vi ∼π v j}

Each picture belongs to exactly one cellule, so the cellules partition the picture space.

The most natural cellule is the discrete cellule XD(G) where D is the discrete partition;

16



every block has one element. How these cellules fit together was studied by Martin,

[11, Theorem 6.3].

Theorem 2.5.1. Let G = (V,E) be a graph, and let π,σ be partitions of V . Then

Xσ (G)⊆Xπ(G) if and only if the following conditions hold:

1. π ≤ σ (every block of π is in a block of σ );

2. no rigidity circuit of G/π is collapsed by σ/π (i.e., if C is a rigidity circuit in

G/π , then not all the vertices of C are in the same block of σ );

3. If Ai and A j are distinct blocks of π contained in the same block of σ , then E

contains at most one edge between Ai and A j.

Consider the picture space for the complete graph on two vertices K2. There are

only two partitions of [2]: π = {{1},{2}} and σ = {{12}}. Let P ∈Xσ (K2) be a
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Figure 2.3: Two ways to draw K2

picture in which the two vertices coincide. Define Y ⊆Xπ(K2) to be the set of pictures

Q with P(12) = Q(12) and P(1) = Q(1). Then, P is an accumulation point of Y . We

can find pictures in Y arbitrarily close to P by taking Q(2) arbitrarily close to Q(1). It

would be nice to generalize this result to any graph G and get that if a partition π , on

[n] is a refinement of a partition σ , then Xσ (G)⊆Xπ(G). However, we cannot do this

for arbitrary graphs because we need to worry about rigidity circuits.
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In general, the space X (G) is not irreducible. The cellule that we are most con-

cerned with is the discrete cellule. The partition is the discrete partition, so no two

vertices have the same coordinates. Call a picture in the discrete cellule generic.

2.5.2 Defining ideal for the slope variety

We now consider combinatorial rigidity in a different light. Suppose we construct the

graph G in R2 using lines with fixed slopes, instead of line segments with fixed lengths,

for the edges. We allow the vertices to move in the plane, as long as the edge slopes

remain constant. This point-line configuration of G is rigid if it keeps its shape under

these movements of the vertices. That is, for any two vertices, the slope of the line

through them remains constant. Define a matroid on E(Kn) by taking the independent

sets to be the sets A ⊆ E(Kn) such that no line slope in A depends on any other slope.

This matroid is equivalent to the length rigidity matroid of Section 2.3, see [11] [17].

Though length rigidity is a more natural construction, the equivalence of these two

matroids justifies the study of point-line configurations in rigidity theory.

In this section, we work in affine space instead of projective space. For a field F and

graph G, let XD(G) be the set of generic pictures in F2 and let X̃D(G) be such that no

edge is parallel to the y-axis. Define the slope variety S (G) := S(G) to be the Zariski

closure of the set

S(G) := {(me)e∈E ∈ F|E| | ∃P ∈XD(G) with edge slopes me ∀e ∈ E}.

We will see that the only relations among the coordinates of slope vectors are deter-

mined by the rigidity circuits, and given by tree polynomials. Since much of the work

in the following chapters deals with these polynomials, we will walk through their con-

struction.
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Fix a graph G = (V,E) with |E| = 2|V | − 2. Label the coordinates of vi ∈ V as

(xi,yi) and the coordinates of the edge-slope for vivi+1 as mi,i+1. Let C be a cycle in

G. To make notation easier, relabel the vertices so that C = v0,v1, . . . ,vk,v0. For each

i = 0,1, . . . ,k, the point-slope formula gives

yi− yi+1 = mi,i+1(xi− xi+1) (2.4)

so

k

∑
i=0

mi,i+1(xi− xi+1) = 0. (2.5)

take i+1 (mod k+1) and assume that no two vertices have the same x-coordinate. By

substituting the identity (xk− x0) =−∑
k−1
i=0 (xi− xi+1), equation (2.5) can be expressed

as

k−1

∑
i=0

mi,i+1(xi− xi+1)−mk,0

k−1

∑
i=0

(xi− xi+1) = 0 (2.6)

so

k−1

∑
i=0

(mi,i+1−mk,0)(xi− xi+1) = 0. (2.7)

We get a system of equations from (2.7), one for each cycle in G. Fix a spanning

tree T of G. Let me be the slope of edge e and let xe = xv− xu for e = uv. For any edge

f 6∈ T , there is a unique cycle CT ( f ) in T ∪{ f}. These cycles form a cycle basis for

the graph. So we only need the equations (2.7) for these cycles. Rewrite (2.7), for each
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edge f 6∈ T :

∑
e∈E(T )

ce, f (me−m f )xe = 0, (2.8)

ce, f =

 ±1 if e is in the cycle of T ∪{ f}

0 otherwise
. (2.9)

Let MT be the matrix with columns indexed by the edges of T , the rows indexed by the

edges of G\T and the entry in row f column e is c f ,e(me−m f ). Let XT be the column

vector whose entries xe are indexed by the edges of T . The equations arising from (2.8)

can be rewritten as MT XT = 0. The matrix MT depends on the choice of spanning tree

T . However, the determinant |det(MT )| is independent of T .

Definition 2.5.2. Let G = (V,E) be a graph with |E| = 2|V |−2. The tree polynomial

is τG := det(MG) (this is a polynomial in the slopes me).

Recall from Proposition 2.3.5 that rigidity circuits can be partitioned into two dis-

joint spanning trees.

Proposition 2.5.3. Let G = (V,E) be a graph with |E|= 2|V |−2. The following hold:

1. τG vanishes on the slope variety S (G).

2. If G does not contain a rigidity circuit, then τG = 0.

3. If H ⊆ G is a rigidity circuit, then τH
∣∣τG.

4. If G is a rigidity circuit, then deg(τG) = |V |−1.

5. For A⊆ E, let mA = ∏e∈A mE . Then

τG = ∑
T∈Cpl(G)

sgn(T )mT .
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where Cpl(G) is the set of coupled spanning trees of G, and sgn(T ) ∈ {+1,−1}

coming from the determinant.

Remark 2.5.4. Let G = (V,E) be a graph with |E| = 2|V |− 2 and suppose there is a

vertex v of degree 2. If e and f are the two edges containing v, then every coupled

spanning tree has exactly one of those two edges and the tree polynomial factors:

τG =±(me−m f )τG\{e, f}.

Theorem 2.5.5. Let G be a graph. The slope variety S (G) is defined by the prime

ideal

I(G) := 〈τH | H ⊆ G is a rigidity circuit〉.

Theorem 2.5.6. The slope variety S (Kn) of the complete graph Kn is defined by the

ideal

I(Kn) := 〈τW |W ⊆ Kn is a wheel〉.

2.5.3 Gröbner bases

Before we say more about the tree polynomials we must give some background on

Gröbner bases. Fix a polynomial ring F[x1, . . . ,xn] over a field F. It is notationally

convenient to use the abbreviation xa = xa1
1 · · ·xan

n , where a = (a1, . . . ,an) ∈ Zn.

Definition 2.5.7. A term order on F[x] is an ordering > of the monomials xa ∈ F[x]

satisfying:

1. > is a total ordering.
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2. If xa > xb and xc is a monomial, then xa+c > xb+c.

3. > is a well ordering.

A natural term order on F[x] is the lexicographical term order, denoted >lex. Order

the variables x1 > x2 > · · · > xn and declare xa > xb if ai > bi for the first i in which

ai 6= bi. A problem with this order is that it does not take into account the total degree

of a monomial. For example, take x > y in F[x,y], then x2y > xy6.

It is often convenient to use term orders that refine the total degree partial order.

One particular example we use is the reverse lexicographical (revlex) term order. This

is denoted >revlex. Order the variables x1 > x2 > · · ·> xn and declare xa > xb if

1. a1 + · · ·+an > b1 + · · ·+bn, or

2. a1 + · · ·+an = b1 + · · ·+bn and ai < bi for the largest i for which ai 6= bi.

Definition 2.5.8. Fix a term order > on F[x]. The initial term in>( f ) of a polynomial

f ∈ F[x] is the largest term of f with respect to >. The initial ideal of an ideal I ⊆ F[x]

is the ideal

in>(I) := 〈in>( f ) | f ∈ I〉.

When it is understood what the order is, we simply write in( f ) and in(I). Suppose

the ideal I ⊆ F[x] is generated by polynomials f1, . . . , ft ∈ F[x]. Then,

〈in( f1), . . . , in( ft)〉 ⊆ in(I).

These ideals are not equal, in general.

22



Definition 2.5.9. A set of polynomials {g1, . . . ,gt} ⊆ F[x] is a Gröbner basis if

〈in(g1), . . . , in(gt)〉= in〈g1, . . . ,gt〉.

Proposition 2.5.10. If I ⊆ J and in(I) = in(J), then I = J.

We now tie in Gröbner bases with slope varieties. We work in the polynomial ring

F[mi, j | 1≤ i < j ≤ n] where the variables correspond to the slopes of the edges of Kn.

Order the variables m1,2 > m1,3 > · · · > mn−1,n and take the revlex term order on the

monomials. As stated earlier, the defining ideal for the slope variety S (Kn) of Kn is

generated by the set

{τW |W is a wheel in Kn}.

It was shown in [12] that this set is a Gröbner basis with respect to this term order.

Since the terms of the tree polynomials correspond to spanning trees, we will de-

scribe initial terms via the corresponding spanning trees. Say that a tree T is the initial

tree of W if mT = in(τW ).

Theorem 2.5.11. [12, Theorem 4.3] Let T be a tree with V (T )⊆ [n]. Then the following

are equivalent:

1. There exists a wheel W ⊆ Kn such that mT = in(τW ).
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2. T contains a path (v1, . . . ,vk) satisfying the conditions

k ≥ 4,

max(v1, . . . ,vk) = v1,

max(v2, . . . ,vk) = vk,

v2 > vk−1.

(2.10)

Remark 2.5.12. Fix a path T = (v1, . . . ,vk) satisfying conditions (2.10). In the proof

of Theorem 2.5.11, Martin shows that the wheel W (vk;v1, . . . ,vk−1) has T as its initial

tree.

The tree polynomials for wheels have another representation that we will need

throughout. Let T be the spanning tree, of W := W (v0;v1, . . . ,vk), consisting of the

edges {v0v1,v0v2, . . . ,v0vk}. Construct the matrix M with columns indexed by the edges

in T and rows indexed by the remaining edges as above:

M =



m0,1−m1,2 m1,2−m0,2 0 · · · 0

0 m0,2−m2,3 m2,3−m0,3 · · · 0

0 0 m0,3−m3,4 · · · 0
...

...
... . . . ...

m1,k−m0,1 0 0 · · · m0,k−m1,k


Take the determinant to get

τW =
k

∏
i=1

(m0,i−mi,i+1)︸ ︷︷ ︸
τ1

−
k

∏
i=1

(m0,i−mi−1,i)︸ ︷︷ ︸
τ2

(2.11)

where mk,k+1 = m1,k [12, eqn. (6)]. We note that each factor in the first term τ1 is

a radius minus an adjacent chord pointing in the clockwise direction (assuming that
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W is drawn so that the vertices of the cycle (v1,v2, . . . ,vk) increase in the clockwise

direction) and the factors in the term τ2 are a radius minus an adjacent chord in the

counter-clockwise direction. This form of the tree polynomial for wheels will be useful

in Chapter 3.
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Chapter 3

Slope varieties over finite fields

The tree polynomials have integer coefficients, which raises the question of counting

their solutions over a finite field. Let Fq be the field with q elements. In this chapter, we

count the solutions of the tree polynomials over F2 and give some generalizations for

q > 2. When the slope variety is considered over Fq, the points correspond to drawings

in Fq
2 whose slopes are in Fq. These drawings need not be in F2

q. If q = 2, then there

is no way to draw Kn, for n≥ 3, so that the vertices have distinct x-coordinates. When

considered over Z, the tree polynomials are in the kernel of the map from Z[{mi, j}]→

Q[{xi,yi,
1

xi−x j
}] defined by mi, j 7→

yi−y j
xi−x j

. The main result of this chapter is the following

theorem:

Theorem 3.0.13. Let n be a positive integer and let F2[Kn] := F2[m1,2, . . . ,mn−1,n]. Let

In denote the ideal of F2[Kn] generated by the tree polynomials of wheel subgraphs of

Kn, and let Jn denote the ideal generated by the tree polynomials of K4-subgraphs of Kn

(so Jn ⊆ In).

Then the following sets are equinumerous:

1. the zeroes of In, i.e., the points in F(
n
2)

2 on which all tree polynomials vanish;
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2. the zeroes of Jn, i.e., the points in F(
n
2)

2 on which all tree polynomials of 3-wheels

vanish;

3. complement-reducible graphs (or “cographs”) on vertex set [n] = {1,2, . . . ,n},

that is, graphs on [n] having no induced subgraph isomorphic to a four-vertex

path;

4. switching-equivalence classes of graphs on vertex set [n+1] such that no member

of the class contains an induced 5-cycle.

We will explain all these combinatorial interpretations below. The following Theo-

rem appears in [15, Exercise 5.40] and is credited to Cameron [4].

Theorem 3.0.14. The following sets are equinumerous:

1. switching-equivalence classes of graphs on vertex set [n+1] such that no member

of the class contains an induced 5-cycle;

2. series-parallel posets with n labeled vertices;

3. series-parallel networks with n labeled edges.

In this chapter, we use the special structure of tree polynomials to prove first the

equality of (1), (2) and (3) of Theorem 3.0.13 (Proposition 3.4.3), and then a bijection

between (3) and (4) of Theorem 3.0.13 (Proposition 3.5.1).

We note that a bijection between unlabeled complement-reducible graphs and un-

labeled series-parallel networks was given by Sloane, see sequence A000084 [13]. We

have not found in the literature an explicit bijection for the corresponding labeled ob-

jects. Let S2(Kn) be the zero set of In. The numbers of points in S2(K1), S2(K2), . . . ,

are

1, 2, 8, 52, 472, 5504, 78416, . . .
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which is sequence A006351 in [13].

3.1 Series-parallel networks

A network is a graph G with two vertices sG, tG designated as the source and sink,

respectively. Two networks G and H can be connected in series or parallel. The series

connection G⊕H is defined by identifying tG with sH , and designating sG as the source

and tH as the sink. The parallel connection G+H is defined by identifying sG with sH

and tG with tH .

A series-parallel network is a graph obtained from the following rules:

1. a graph with one edge st is a series-parallel network;

2. if G and H are series-parallel networks, then G⊕H and G+H are series-parallel

networks.

One can define series and parallel connections for posets in a similar fashion; see

[14, Section 3.2]. Two posets P and Q are connected in series by taking their ordinal

sum P⊕Q: declaring that all elements of Q are larger than all elements of P (or vice

versa) leaving all other relations unchanged. The two posets are connected in parallel

by taking the disjoint union. A series-parallel poset is a poset built up from single-

element posets by series and parallel extensions.

Let s(n) be the number of labeled series-parallel networks on n vertices. The se-

quence begins

s(1) = 1, s(2) = 2, s(3) = 8, s(4) = 52, s(5) = 472, s(6) = 5504, . . .

This is sequence A006351 in the On-Line Encyclopedia of Integer Sequences [13].
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3.2 Switching equivalence

Let G be a graph on [n+ 1] and let X ⊆ [n]. The switch of G with respect to X is the

graph sX(G) on [n+1] whose edges e satisfy one of two conditions:

1. e ∈ E(G) and either both vertices of e belong to X or neither do;

2. e 6∈ E(G) and exactly one vertex of e belongs to X .

This operation is also referred to as graph switching or Seidel switching [18]. Let Gn+1

be the set of graphs on [n+ 1]. Then switching defines an action of Zn
2 on Gn+1. For

x = (x1, . . . ,xn) ∈ Zn
2, let X = {i | xi = 1} ⊂ [n]. Then the group action is xG = sX(G).

This action is free because sX(G) = G if and only if X = /0. The orbits are called

switching classes, denoted by [G]. To see that each orbit contains exactly one graph

in which the vertex n+ 1 is isolated, let G ∈ Gn+1 and let X = N(n+ 1) be the set of

neighbors of n+1. Then the graph sX(G) has n+1 as an isolated vertex. On the other

hand if X is any other subset of [n], then n+1 will be adjacent to some vertex of sX(G).

The number of switching classes on [n+1] is s(n), the number of labeled series-parallel

networks [15, Exercise 5.40(b)], [4].

3.3 Tree polynomials

We revisit the tree polynomials constructed in Section 2.5.3. A (rigidity) pseudocircuit

is a graph H whose edge set can be partitioned into two spanning trees. A coupled

spanning tree of H is a tree whose complement is also a spanning tree; the set of all

coupled spanning trees of H is denoted Cpl(H). For each pseudocircuit H ⊆ G, there
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is a polynomial

τH = ∑
T∈Cpl(H)

ε(H,T )mT (3.1)

that vanishes on the slope variety of G; where each ε(H,T ) ∈ {1,−1}. Because the

tree polynomials have integer coefficients, it makes sense to consider these polynomials

inside the polynomial ring

Fq[G] := Fq[me | e ∈ E(G)].

Define the q-slope variety Sq(G) to be the zero set of the ideal generated by the tree

polynomials of all pseudocircuit subgraphs of G. The main concern of this chapter is

S2(Kn), the set of zeroes of the complete graph over F2.

Suppose we draw the wheel W (v0;v1, . . . ,vk) with v0 in the center and the indices

of the spokes increasing as we travel clockwise around the perimeter. Each binomial

factor in τ1 is a radius minus the adjacent chord pointing in the clockwise direction,

whereas each binomial factor in τ2 is a radius minus the adjacent chord pointing in the

counter-clockwise direction. Therefore, if we expand the expression (2.11) for τW , then

the claw subgraph (i.e., the graph consisting of three edges that meet at a point) and the

cycle of all the chords each occur twice, and with opposite signs. The only remaining

terms are coupled spanning trees, which are obtained by picking a nontrivial subset of

radii along with all chords pointing clockwise or counterclockwise, but not both. See

Figure 3.1.
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Figure 3.1: Two complementary spanning trees of a 5-wheel

The tree polynomials of all the wheels in Kn generate the ideal of tree polynomials

of all rigidity pseudocircuits in Kn [12]. Define ideals In,Jn ⊆ F2[G] as follows:

In = 〈τW |W is a wheel in Kn〉, (3.2)

Jn = 〈τQ | Q⊆ Kn is isomorphic to K4〉. (3.3)

It was conjectured in [12] that In = Jn when considered as ideals over C. Using the

computer algebra system Macaulay [9] this conjecture has been verified for n≤ 9.

3.4 A bijection between slope vectors and complement-

reducible graphs

In this section we count the points of S2(Kn), the slope variety of Kn over F2. The points

of F(
n
2)

2 have their coordinates indexed by the edges of Kn and have value either 0 or 1,

which motivates the following notation:

Definition 3.4.1. Let a = (a1,2,a1,3, . . . ,an−1,n) ∈ F(
n
2)

2 . We define the graph Ga to be

the graph on [n] with edge set E(Ga) = {i j | ai, j = 1}.

31



Proposition 3.4.2. Let W =W (v0;v1, . . . ,vk) be a wheel and a ∈ F(
n
2)

2 . Then τW (a) 6= 0

if and only if Ha := Ga∩W is a coupled spanning tree of W.

Proof. (⇐) Suppose that Ha is a coupled spanning tree of W . When τW is written in

the form of equation (3.1), over F2, it is the sum of all coupled spanning trees of W .

Evaluating τW at a gives exactly one non-zero term, hence τW (a) 6= 0.

(⇒) Suppose τW (a) 6= 0. First we show that Ha is a spanning tree of W . Over F2

exactly one of τ1(a) or τ2(a) has value 1, say τ1(a) = 1. Each binomial factor of τ1(a)

must contain exactly one variable with value 1. Therefore, Ha contains exactly k edges,

which is the number of edges of a spanning tree of W . In order to show that Ha is a

spanning tree it is enough to show that it is acyclic. If Ha contains a cycle C, then either

there exist i and j, 1≤ i < j ≤ k, such that v0vi,vivi+1,v j−1v j,v0v j ∈ E(C), or C is the

set of chords of W . In the first case, both terms τ1(a) and τ2(a) have value 0 because

m0i−mi(i+1) is a factor of τ1 and m0 j−m( j−1) j is a factor of τ2. In the second case,

formula (2.11) will be

τW (a) =
k

∏
i=1

(a0i−1)−
k

∏
i=1

(a0i−1) = 0.

Now we show that Ha is in fact a coupled spanning tree of W . Define a ∈ F(
n
2)

2 by

ai j = 1− ai j for all 1 ≤ i < j ≤ n. Therefore, Ga = Ga is the complement of Ga. If

τW (a) 6= 0 then τW (a) 6= 0 because each binomial factor of τi(a) will have the same

value as in τi(a), for i = 1,2. Therefore Ha = Ha∩W is a spanning tree of W , hence Ha

is a coupled spanning tree of W .

The following proposition gives additional evidence to suggest that In and Jn are

equal over C, but whether or not they are equal is still unknown.

Proposition 3.4.3. Let a ∈ F(
n
2)

2 . The following are equivalent:
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1. a is a zero of In;

2. a is a zero of Jn;

3. Ga is a complement-reducible graph.

Proof. (1⇒ 2) This implication follows from the containment Jn ⊆ In.

(2⇒ 3) Suppose a ∈ F(
n
2)

2 is a zero of Jn. By Proposition 3.4.2, if W ⊆ Kn is any

3-wheel (and hence isomorphic to K4), then Ga∩W is not a coupled spanning tree of

W . Since every coupled spanning tree of K4 is isomorphic to P4 (the only spanning trees

of K4 are isomorphic to P4 or the three edge claw), Ga does not contain an induced P4.

(3⇒ 1) Let a ∈ F(
n
2)

2 be such that Ga is a complement-reducible graph. Let W ⊆ Kn

be a wheel with V = V (W ). Either Ga|V or Ga|V is disconnected, because Ga is a

complement-reducible graph. Therefore either Ga∩W or Ga∩W is disconnected. Since

these two graphs are complementary subgraphs of W , neither one is a coupled spanning

tree. Therefore, by Proposition 3.4.2, τW (a) = 0 for every wheel W ⊆ Kn.

3.5 A bijection between complement-reducible graphs

and switching classes

In this section, we establish a bijection (Proposition 3.5.1) between the set of graphs on

n labeled vertices with an induced P4, and the switching classes on n+1 labeled vertices

containing a graph with an induced 5-cycle. Recall from Section 3.2 that each switching

class contains exactly one graph in which the vertex n+ 1 is isolated. Therefore the

bijection from the set of graphs on [n] to the switching classes on [n+ 1] is given by

sending G⊆ Kn to [G], the orbit containing G with isolated vertex n+1.
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Figure 3.2: The action with X = {v3,v4}

Proposition 3.5.1. Let the additive group Zn
2 act on Gn+1 by switching as described in

Section 3.2. Then:

1. If G ∈ Gn+1 has an induced 5-cycle, then every H ∈ [G] has an induced 4-path.

2. If G ∈ Gn has an induced 4-path, then, regarding G as a graph on [n+ 1] by

introducing n+ 1 as an isolated vertex, there is an H ∈ Gn+1 such that G ∈ [H]

and H has an induced 5-cycle.

Proof. (1) Let G ∈ Gn+1 have an induced 5-cycle C = {v1, . . . ,v5}, and let X ⊆ [n].

If |V (C)∩ X | < 2, then four of the vertices, say U = {v1,v2,v3,v4}, are in [n] \ X .

Switching by X does not affect the induced subgraph on U . Similarly, if |V (C)∩X |> 3,

then (sX(G) | U)∼= P4.

Suppose |V (C)∩X | = 2. Without loss of generality we may assume either X =

{v2,v5} or X = {v3,v4}. In both cases v5v3v4v2 is an induced 4-path in sX(G), as

shown in the figure. If |V (C)∩X | = 3, then |V (C)∩ ([n+ 1] \X)| = 2. The same

results as above will hold for this case, therefore sX(G) has an induced P4.

(2) Suppose v5v3v4v2 is an induced P4 in G⊆ Kn and X = {v2,v5}. Then sX(G) has

the induced 5-cycle C = {v1, . . . ,v5} with v1 = n+1.
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Figure 3.3: The action with X = {v2,v5}

3.6 Counting points over other finite fields

It is natural to ask whether these techniques can be extended to enumerate points of the

slope variety Sq(Kn) over Fq. This problem appears to be difficult, because the zeroes of

a tree polynomial over an arbitrary field do not seem to admit a uniform graph-theoretic

description as they do over F2. In this section, we describe some partial progress in this

direction, and explicitly work out the simplest nontrivial case (n = 4, q = 3) to illustrate

the kinds of difficulties involved.

A point in F(
n
2)

q corresponds to an Fq-weighted Kn, that is, a copy of Kn whose edges

are assigned weights in Fq. For a ∈ F(
n
2)

q define Ga to be the Fq-weighted Kn where

edge i j is given weight ai j. We say that Ga has a weight-induced subgraph H if there

is some value α ∈ Fq such that

E(H) = {e ∈ E(Kn) | ae = α}.

One possible approach to generalizing the previous results would be to define a

q-analogue to switching. Let the additive group Fn
q act on F(

n
2)

q by

((x1, . . . ,xn) ·a))i j = (ai j + xi + x j).
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If q = 2, then this is exactly the switching action described in Section 3.2. Note that

this is not the same definition of q-switching given by Zaslavsky [18]. One would hope

to generalize the q = 2 case by describing the points of Sq(Kn) in terms of forbidden

weight-induced subgraphs. It is not clear how to generalize the definition over an arbi-

trary field, or what the forbidden weight-induced subgraphs should be. However, some

facts do carry over to the setting of an arbitrary finite field.

Proposition 3.6.1. Let W =W (v0;v1,v2,v3) be a 3-wheel, and let a ∈ F(
4
2)

q be a point

whose coordinates correspond to assigning weights to the edges of W. Then:

1. If Ga has a weight-induced P4, then a is not a zero of τW .

2. If Ga has a weight-induced claw (that is, a star with three edges), then a is a zero

of τW .

3. If Ga has a weight-induced cycle, then a is a zero of τW .

Proof. (1) Suppose that Ga has a weight-induced P4. The induced subgraph on the

vertices of that P4 can be drawn as in Figure 3.4. where α,β ,γ,δ ∈ Fq, and α does not

equal any of the other values. Then,

τW (a) = (α−α)(β −α)(γ−δ )− (α−δ )(β −α)(γ−α) 6= 0.
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(2) Suppose that Ga has a weight-induced claw, whose edges have the weight α ∈

Fq. If we draw W so that the center of the claw is the center of the wheel, then

τW (a) = (α−β )(α− γ)(α−δ )− (α− γ)(α−δ )(α−β ) = 0,

for some β ,γ,δ ∈ Fq.

(3) Suppose that Ga has a weight-induced cycle C. The graph W can be drawn so

that C contains the vertex v0. Then, for some 1≤ i < j ≤ 3, the edges v0vi, vivi+1, v0v j,

v jv j−1 all have the same weight α . (Note that if the cycle is a 3-cycle then v j−1 = vi.)

Then both τ1(a) and τ2(a) contain the factor α−α , so τW (a) = 0.

Corollary 3.6.2. Let a ∈ F(
n
2)

q . If Ga contains a weight-induced P4, then a is not a zero

of In over Fq. On the other hand, if every 4-clique of Ga contains a weight-induced

cycle or a weight-induced claw, then a is a zero of Jn over Fq.

Example 4. Let W =W (v0;v1,v2,v3) be a 3-wheel. We use Proposition 3.6.1 to count

the number of zeroes of τW over F3.

If some value occurs at least four times in a, then τW (a) = 0 because Ga has a

weight-induced cycle. If some value α occurs exactly three times in a, then τW (a) 6= 0

if and only if the weight-induced graph on α is a 4-path. The cases where each value

of a occurs two times are not covered by Proposition 3.6.1, so we must consider them

separately. For distinct α,β ,γ ∈ F3 there are three possibilities, up to a relabeling of

the vertices; see Figure 3.5.

Define the type of a ∈ Fd
q to be the partition whose parts are the numbers of occur-

rences of each element of Fq among the entries of a. Some simple counting gives the

following table:
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Type Number of zeroes Number of non-zeroes

(6) 3 0

(5,1) 36 0

(4,2) 90 0

(4,1,1) 90 0

(3,3) 24 36

(3,2,1) 144 216

(2,2,2) 36 54

Total 423 306

If q > 3, then there are more cases to check which are not covered by Proposi-

tion 3.6.1. Using the computer algebra software Maple, one can check that over F3 the

number of zeroes of I4 and I5 are 423 and 9243, respectively. Over F5 the numbers are

4909, 262645, respectively. It is not clear what combinatorial structure (analogous to

complement-reducible graphs) might count these points; for instance, these numbers

do not appear in the Encyclopedia of Integer Sequences [13].
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Chapter 4

The defining ideal for slope variety

4.1 The ideal generated by tree polynomials of 3-wheels

The goal of this section is to better understand the slope variety S (Kn) of the com-

plete graph Kn. The defining ideal I(S (Kn)) is generated by the set {τW | W ⊆

Kn is a wheel} [12] (recall τG denotes the tree polynomial of G, see Section 2.5.3).

More precisely, let R = F[m1,2,m1,3, . . . ,mn−1,n] be the polynomial ring in
(n

2

)
variables

over an algebraically closed field F. Define a class of ideals generated by wheel tree

polynomials:

Ik,n := 〈τW |W ⊆ Kn is a wheel with |V (W )| ≤ k〉 (4.1)

Then, In,n is the defining ideal of the slope variety S (Kn) and I4,n ⊆ I5,n ⊆ ·· · ⊆ In,n.

(In the notation from Chapter 3, I4,n = Jn and In,n = In.) The motivating problem for

this chapter is the following conjecture from [12]:

Conjecture 4.1.1. For all n≥ 4, I4,n = In,n.

Though we do not prove Conjecture 4.1.1, we give evidence to suggest it is true.

If n = 4, then it is trivially true. The case for n = 5 is more involved. Consider the
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4-wheel W = W (1;2,3,4,5) and let τi, j,k,` denote the tree polynomial of the complete

graph on vertices i, j,k, `. The computer algebra software Macaulay 2 gives

2τW = (m1,2−m1,3 +m1,4−m1,5)τ2,3,4,5

+(−m1,2 +m2,3−m2,4 +m2,5)τ1,3,4,5

+(−m1,3 +m2,3 +m3,4−m3,5)τ1,2,4,5

+(−m1,4−m2,4 +m3,4 +m4,5)τ1,2,3,5

+(−m1,5 +m2,5−m3,5 +m4,5)τ1,2,3,4 ∈ I4,5,

(4.2)

(see Appendix A for the source code). Relabeling the vertices, we see that every 4-

wheel tree polynomial is in I4,n. Hence, I4,n = I5,n for all n. We would like a similar

expression for any k-wheel, k ≥ 5. Using Macaulay 2, we can check that any 5-wheel

tree polynomial is in I4,n. However, it is not clear how equation (4.2) generalizes to

k-wheels for k ≥ 5. The hope is that there is a representation with a combinatorial

interpretation.

Theorem 4.1.2. For all n≥ 4,
√

I4,n = In,n.

The algebraic set Z(In,n) is the slope variety of the complete graph Kn. Theo-

rem 4.1.2 says that the slope variety is defined, set-theoretically, by the tree polyno-

mials of the 3-wheels. This section is devoted to proving this theorem. To do this, we

need several lemmata and we may assume throughout that n≥ 6.

Lemma 4.1.3. Let W ⊆ Kn be a wheel on n vertices. Let i, j and ` be vertices of W

such that ` is the center and i j is a non-edge of W. Then there are wheels A,B⊆ Kn, on

fewer than n vertices, such that (m`,i−mi, j)τW ∈ 〈τA,τB〉.

Proof. We will construct a matrix M, as we did in Section 2.5.3, whose maximal minors

are tree polynomials. The Plücker relations, Lemma 2.4.9, on these maximal minors
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will give the desired relations on the tree polynomials. We will now construct M. Fix

the wheel W = W (1;2,3, . . . ,n) on [n], let k be an integer, 3 ≤ k ≤ n− 2, and take

G= ([n],E) to be the graph W with the two edges 2(n−1) and kn adjoined. To simplify

notation, relabel the edges e1 = (n−1)n, e2 = 2n, e3 = 2(n−1) and e4 = kn.

��
��
��
��

��
��
��
��

���� ��������

n 2

k
1n−1

Figure 4.1: The graph G with E(G) = E(W )∪{2(n−1),kn}

Let T be the spanning tree of W in which every edge contains vertex 1. For each

edge e 6∈ T , there is a unique cycle C(e) in T ∪{e}. Construct an (n+ 1)× (n− 1)

matrix M, as we did in Section 2.5.1: the columns are indexed by the edges of T and

the rows are indexed by the edges of G\T . The (e, f )-coordinate of M is

Me, f =


±1(me−m f ) if f ∈C(e),

0 otherwise.

Let Mi j denote the the maximal square submatrix where rows ei and e j are deleted

and define Xi j := det(Mi j). Let Gi j be the graph obtained from G by deleting edges ei

and e j. Then Xi j is the tree polynomial of Gi j. By the Plücker relations, we have
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Figure 4.2: The graphs corresponding to the maximal submatrices

X12X34−X13X24 +X14X23 = 0. (4.3)

Each graph Gi j contains one of the following wheels as a proper subgraph:

A :=W (1;2,3, . . . ,k,n),

B :=W (1;k,k+1, . . . ,n),

C :=W (1;2,3, . . . ,n−1).
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By repeated iterations of Remark 2.5.4, factor the tree polynomials:

X12 = (m1,n−mk,n)τC

X13 = (m1,k+1−mk,k+1)(m1,k+2−mk+1,k+2) · · ·(m1,n−1−mn−2,n−1)τA

X14 = (m1,n−m2,n)τC

X23 = (m1,2−m2,3) · · ·(m1,k−1−mk−1,k)τB

X24 = (m1,n−mn−1,n)τC

X34 = τW

Each term of (4.3) has τC as a factor. Cancel it to get

(m1,n−mk,n)τW = (m1,n−mn−1,n)X13− (m1,n−m2,n)X23.

Therefore, (m1,n−mk,n)τW ∈ 〈X13,X23〉 ⊆ 〈τA,τB〉. The lemma follows, because vertex

k can be any spoke not adjacent to n.

We will generalize Lemma 4.1.3 so that (me−m f )τW ∈ In−1,n for any edges e and

f . To do so, break the problem into cases, depending on the edges e and f .

Proposition 4.1.4. If W is a wheel on n vertices and neither e nor f are chords of W,

then

(me−m f )τW ∈ In−1,n.

Proof. Say W = W (1;2, . . . ,n). Let F be the set of edges f ∈ Kn that are non-chords

of W . Let U be the vector space spanned by {m f −m f ′ | f , f ′ ∈ F}. The proposition is

equivalent to the statement that uτW ∈ In−1,n for all u ∈U . Fix a radius r = 1i. Then the
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set {mr−m f | f ∈ F} spans U . Hence, it suffices to prove that (mr−m f )τW ∈ In−1,n

for every f ∈ F . There are four cases to consider:

1. f = 1 j is a radius and i j ∈ E(W );

2. f = 1 j is a radius and i j 6∈ E(W );

3. f = i j 6∈ E(W ) where i and j are distinct spokes;

4. f = jk 6∈ E(W ) where i, j and k are distinct spokes.

We have already proven Case 3 in Lemma 4.1.3. We will prove the remaining cases

in order.

Case 1: Since n≥ 6, there is a spoke k such that ik, jk ∈ F . Case 3 gives

m1,i−m1, j = (m1,i−mi,k)+(mi,k−m1,k)+(m1,k−m j,k)+(m j,k−m1, j).

Case 2: Take a sequence of adjacent spokes i = i0, i1, . . . , is = j. Then

m1,i−m1, j = (m1,i−m1,i1)+(m1,i1−m1,i2)+ · · ·+(m1,is−1−m1, j).

Each binomial is of the form covered in Case 1.

Case 4: We have

m1,i−m j,k = (m1,i−m1, j)+(m1, j−m j,k).

The two binomials on the right are covered by Case 2 and Case 3, respectively.

Lemma 4.1.5. Let e and f be edges in Kn that share an endpoint. Then

In−1,n : (me−m f ) = In,n.
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Proof. Each of the ideals Ik,n is fixed by the action of permuting the labels of the ver-

tices. Therefore, it suffices to prove this lemma for a particular pair of edges e and f :

e = 1(n−1) and f = 2(n−1).

Define the ideal

J := 〈τW |W ⊆ Kn is a wheel and neither e nor f are chords in W 〉.

We have

In−1,n + J ⊆ In−1,n : (me−m f )⊆ In,n : (me−m f ) = In,n (4.4)

where the first containment follows from Proposition 4.1.4 and the final equality comes

from the fact that In,n is prime [12, Theorem 1.1] (see also Section 2.5.3). We will show

that in(In−1,n + J)⊇ in(In,n). By Proposition 2.5.10, the ideals in equation (4.4) are all

equal, and the result will follow.

Let W be a wheel with V (W ) = [n] and let T be the initial tree of W . Let P :=

(v1, . . . ,vk) be the path in T satisfying conditions (2.10) in Theorem 2.5.11. If k < n,

then there is a wheel W ′ on {v1, . . . ,vk} with initial tree P. The tree polynomial τW ′ is

in In−1,n and in(τW ′)
∣∣in(τW ), so we are done. If P contains a proper subpath P′ such

that either P′ or its reverse satisfies (2.10), then there is a wheel W ′ whose initial tree is

P′. Again, τW ′ is in In−1,n and in(τW ′)
∣∣in(τW ). The only wheels left are the ones whose

initial trees are paths on the full vertex set, and no proper subpath satisfies (2.10).

Let W be a wheel with initial tree T = (v1, . . . ,vn). Suppose T satisfies (2.10)

but no proper subpath does. In particular v1 = n and vn = n− 1. In the proof of

Theorem 2.5.11, a wheel W ′ with center n− 1 and initial tree T is constructed; see
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2.5.12. The edges e and f are not chords of W ′. Therefore, by Proposition 4.1.4,

mT = in(τW ) = in(τW ′) ∈ in(J).

Thus, in(In,n)⊆ in(In−1,n + J) as desired.

Lemma 4.1.6. Define the ideal L := 〈me−m f | e, f ∈ E(Kn)〉. Then, In−1,n : L = In,n.

Proof. For any edges e, f ,g ∈ E(Kn), the equality me−m f = (me−mg)+ (mg−m f )

holds. Therefore, L is generated by all the linear forms me−m f such that e and f share

an endpoint. Proposition 2.4.8 gives

In−1,n : L = In−1,n : ∑
1≤i< j<k≤n

〈mi, j−m j,k〉

=
⋂

1≤i< j<k≤n

In−1,n : 〈mi, j−m j,k〉

=
⋂

1≤i< j<k≤n

In,n = In,n.

Each ideal in the first intersection equals In,n, by Lemma 4.1.5.

Lemma 4.1.7.
√

In−1,n = In,n.

Proof. Recall from Section 2.4.2 that
√

In−1,n is the intersection of all prime ideals

containing In−1,n. To prove this lemma, it suffices to show that In,n is contained in each

such prime. Suppose P is a prime containing In−1,n and let a ∈ In,n. Then (me−m f )a ∈

In−1,n for all edges e and f , by Lemma 4.1.6. Therefore, either a ∈ P or L ⊆ P. But

In,n ⊆ L. Thus, In,n ⊆ P.

Let A⊆ [n] and take KA to be the complete graph on vertex set A. Define the ideal

Ik,A := 〈τW |W ⊆ KA is a wheel with |V (W )| ≤ k〉.
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Let
([n]

k

)
denote the set of subsets of [n] of cardinality k. By restricting the vertex set,

Lemma 4.1.7 generalizes:

Corollary 4.1.8. For any A ∈
([n]

k

)
, 4 < k ≤ n,

√
Ik−1,A = Ik,A.

Lemma 4.1.9. For all 4 < k ≤ n,
√

Ik−1,n =
√

Ik,n.

Proof. We have the containment
√

Ik−1,n ⊆
√

Ik,n because Ik−1,n ⊆ Ik,n. To prove this

lemma we must show the reverse containment
√

Ik,n ⊆
√

Ik−1,n. For each A ∈
([n]

k

)
,√

Ik−1,A ⊆
√

Ik−1,n because Ik−1,A ⊆ Ik−1,n. Therefore,

∑
A∈([n]k )

√
Ik−1,A ⊆

√
Ik−1,n.

Hence, by Corollary 4.1.8 ∑
A∈([n]k )

Ik,A ⊆
√

Ik−1,n. By definition,

∑
A∈([n]k )

Ik,A = Ik,n

Thus, Ik,n ⊆
√

Ik−1,n.

Thus, we have finally proven Theorem 4.1.2.

4.2 Higher-dimensional analogue of the slope variety

We conclude with some observations about generalizing slope varieties to higher di-

mensions. That is, consider the point-line configurations for graphs in Fd for d ≥ 3. As

in the d = 2 case, we would like to eliminate the coordinates of the vertices in order to

obtain the relations on the directions of the edges. If we project the point-line configu-

ration for G onto any plane in Fd , then the tree polynomial relations hold. The relations
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on the lines include the pullbacks of these tree polynomials. However, there are other

relations that are not obtained from the tree polynomials.

For example, consider the case G = K3. For a picture of G in the plane, there are no

constraints on the edge slopes. However, in 3-dimensional space there is the non-trivial

constraint that the lines must be coplanar. Since the graph K3 does not contain a rigidity

circuit, this constraint cannot come from any tree polynomial. In general, the edges of

an r-cycle must lie in a common (r−1)-dimensional space.

Fix a field F and graph G. Let X̃ d
D (G) be the set of generic pictures in Fd such

that no two vertices have the same x1-coordinate. Let ae ∈ Fd be a direction vector

of edge e. Since the first coordinate is nonzero, we can take ae ∈ Fd to be the unique

direction vector with 1 in the first coordinate. Let me be the (d−1) vector consisting of

the last d−1 coordinates of ae. For a picture P ∈X d
D (G) of G, define the slope-vector

m = (me)e∈E ∈ Fd|E| to be the concatenation of its edge direction vectors. Let

Sd(G) := {(me)e∈E ∈ F|E|(d−1) | ∃P ∈X d
D (G)with edge slopes me∀e ∈ E}.

Define the d-slope variety S d(G) := Sd(G) to be the Zariski closure of the set Sd(G).

The goal is to determine the defining ideal for S d(G) in any dimension d. Label

the coordinates of vertex vi by (x1
i ,x

2
i , . . . ,x

d
i ) and label the unique direction vector for

the edge viv j by [1,a2
i j, . . . ,a

d
i j]. For each edge viv j there is a scalar λi j such that

[x1
i − x1

j ,x
2
i − x2

j , . . . ,x
d
i − xd

j ] = λi j[1,a2
i j, . . . ,a

d
i j.

For each coordinate we get the equations

xk
i − xk

j = ak
i j(x

1
i − x1

j).
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We mimic the construction in Section 2.5.3. Let G = (V,E) be a graph with |E| =

2|V | − 2 and let T be a spanning tree. Then, for any scalars α2, . . . ,αd ∈ F, and any

edge f 6∈ T there is a unique cycle C( f ) in T ∪{ f} and

∑
e=i j∈C( f )

(α2a2
e + · · ·+αdad

e )(x
1
i − x1

j) = 0. (4.5)

This is exactly Equation (2.5), but with α2a2
e + · · ·+αdad

e substituted in for mi j. Set up

matrices, as in Section 2.5.3, and take their determinants to get the corresponding tree

polynomial

τG(α2, . . . ,αd) = ∑
T∈Cpl(G)

sgn(T )∏
e∈T

(α2a2
e + · · ·+αdad

e ). (4.6)

The same results from Proposition 2.5.3 will hold. Therefore, if G is a graph, then the

defining ideal for S 3(G) must contain τG(α2, . . . ,αd) for every rigidity circuit H ⊆ G

and every α2, . . . ,αd ∈ F.

We now generalize the previous to any graph in higher dimension d. Fix a graph

G on n vertices. Let R = F[ak
e | e ∈ E, 1 ≤ k ≤ d− 1] be a polynomial ring in (d−

1)|E| variables. Let α2, . . . ,αd ∈ F, and let H ⊆ G be a rigidity circuit. Then the tree

polynomial

τH(α2, . . . ,αd) = ∑
T∈Cpl(H)

sgn(T )∏
e∈T

(r1a1
e + · · ·rd−1ad−1

e )

vanishes on the slope variety S d(G). If we set ri = 1 and r j = 0, for j 6= i, then this

generalized tree polynomial

τH = ∑
T∈Cpl(H)

sgn(T )ai
T
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is the tree polynomial in the plane. This amounts to projecting the graph onto the xixd-

plane.

These generalized tree polynomials are not all of the generators for the ideal defin-

ing S d(G). Suppose G = C3 is the 3-cycle, with vertices 1, 2 and 3. When drawn in

F2, the slopes can be anything and there is a generic picture of C3. However, in F3,

there is another constraint: the edge direction vectors must be coplanar. Therefore, the

matrix of direction vectors 
1 1 1

a12 a23 a34

b12 b23 b34


does not have full rank. Therefore, the polynomial

a12b23−a12b34−a23b12 +a23b34 +a23b12−a34b23

vanishes on S 3(C3). This is a degree-2 polynomial, hence it is not in the ideal gener-

ated by the tree polynomials. In general, the edge-vectors of an n-cycle cannot span a

d-dimensional space if d ≥ n.

Let C = (v1,v2, . . . ,vt) ⊆ G be a cycle (in particular t ≥ 3) and define the d × t

matrix of edge direction vectors

MC :=



1 1 · · · 1

a2
12 a2

23 · · · a2
t1

a3
12 a3

23 · · · a3
t1

...
... . . . ...

ad
12 ad

23 · · · ad
t1
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Then, every t× t minor of MC vanishes on the slope variety S d(G). Note that if d = 2,

then there are no such t × t. Therefore, for each cycle C in G there are
( d
|C|
)

such

polynomials that vanish on S d(G).
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Appendix A

Source code for tree polynomials

This appendix provides the code used to test ideal containment in Chapter 4. We define

the polynomial ring in
(5

2

)
variables over the rationals Q and construct the ideal of all

3-wheel tree polynomials in K5. Call this ideal I, and we construct the matrix M of

3-wheel tree polynomials. The code given is in the Macaulay 2 format.

R = QQ[m {1,2},m {1,3},m {1,4},m {1,5},

m {2,3},m {2,4},m {2,5},m {3,4},m {3,5},m {4,5}];

I = ideal(0 R); --initialize the ideal of all 3-wheels

M = matrix{{0 R}}; --initialize the matrix of all 3-wheels

--the following will pick 4 vertices from 1 to 5

i = 1;

j = 2;

k = 3;

l = 4;
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while i < j do(

j = i+1;

while j < k do(

k = j+1;

while k < l do(

l = k+1;

while l < 6 do(

--this is the tree polynomial for the wheel on verticesi, j,k, l

T {i, j,k, l}= (m {i, j}−m { j,k})∗ (m {i,k}−m {k, l})∗

(m {i, l}−m { j, l})− (m {i,k}−m { j,k})∗

(m {i, l}−m {k, l})∗ (m {i, j}−m { j, l});

--add this tree polynomial to the ideal I

I = I +({T {i, j,k, l}});

--add this tree polynomial to the matrix M

M = M|matrix{{T {i, j,k, l}}};

l = l +1);

k = k+1);

j = j+1);

i = i+1);

We test to see if the tree polynomial for a 4-wheel is in the ideal generated by the

3-wheel tree polynomials, then get the relations:
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--Input the tree polynomial for the wheel W(1;2,3,4,5)

W = (m {1,2}−m {2,3})∗ (m {1,3}−m {3,4})∗ (m {1,4}−m {4,5})

∗ (m {1,5}−m {2,5})− (m {1,2}−m {2,5})∗ (m {1,3}−m {2,3})

∗ (m {1,4}−m {3,4})∗ (m {1,5}−m {4,5});

I : ideal(W ); --Test for containment

W//M; --Obtain the coefficients

The output is given in Chapter 4.

The following code is the same as above, but shows that the tree polynomial for a

5-wheel in K6 is in the ideal of all 3-wheel polynomials.

R = QQ[m {1,2},m {1,3},m {1,4},m {1,5},m {1,6},m {2,3},m {2,4},m {2,5},

m {2,6},m {3,4},m {3,5},m {3,6},m {4,5},m {4,6},m {5,6}];

I = ideal(0 R); --initialize the ideal of all 3-wheels

M = matrix{{0 R}}; --initialize the matrix of all 3-wheels

--the following will pick 4 vertices from 1 to 6

i = 1;

j = 2;

k = 3;

l = 4;
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while i < j do(

j = i+1;

while j < k do(

k = j+1;

while k < l do(

l = k+1;

while l < 7 do(

--this is the tree polynomial for the wheel on verticesi, j,k, l

T {i, j,k, l}= (m {i, j}−m { j,k})∗ (m {i,k}−m {k, l})∗

(m {i, l}−m { j, l})− (m {i,k}−m { j,k})∗

(m {i, l}−m {k, l})∗ (m {i, j}−m { j, l});

--add a new column to M this polynomial in that coordinate

M = M|matrix{{T {i, j,k, l}}};

l = l +1);

k = k+1);

j = j+1);

i = i+1);
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--Input the tree polynomial for the wheel W(1;2,3,4,5,6)

W = (m {1,2}−m {2,3})∗ (m {1,3}−m {3,4})∗ (m {1,4}−m {4,5})

∗ (m {1,5}−m {5,6})∗ (m {1,6}−m {2,6})

− (m {1,2}−m {2,5})∗ (m {1,3}−m {2,3})

∗ (m {1,4}−m {3,4})∗ (m {1,5}−m {4,5})∗ (m {1,6}−m {5,6})

I : ideal(W ); --Test for containment

W//M; --Obtain the coefficients

We can explicitly write the 5-wheel tree polynomial in terms of all the 3-wheel tree

polynomials:

4τW (1;2,3,4,5,6) = (−2m1,2m1,5 +2m1,2m1,6−2m1,2m2,3 +2m1,2m2,4 +m1,3m2,3

−m1,3m2,4 +m1,4m2,3−m1,4m2,4−m1,5m2,3 +m1,5m2,4

+2m1,5m2,6 +m1,6m2,3−m1,6m2,4−2m1,6m2,6)τ3,4,5,6

+(−m1,2m2,3−m1,2m3,4 +m1,2m3,5 +m1,2m3,6 +m1,4m2,3

+m1,4m3,4−m1,4m3,5−m1,4m3,6−m1,5m2,3−m1,5m3,4

+m1,5m3,5 +m1,5m3,6 +m1,6m2,3 +m1,6m3,4−m1,6m3,5

−m1,6m3,6)τ2,4,5,6

+(m1,2m2,4−m1,2m3,4−m1,2m4,5 +m1,2m4,6−m1,3m2,4

+m1,3m3,4 +m1,3m4,5−m1,3m4,6 +m1,5m2,4−m1,5m3,4

−m1,5m4,5 +m1,5m4,6−m1,6m2,4 +m1,6m3,4 +m1,6m4,5

−m1,6m4,6)τ2,3,5,6
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+(−2m1,2m1,5 +m1,2m3,5−m1,2m4,5 +2m1,2m5,6−m1,3m3,5

+m1,3m4,5−m1,4m3,5 +m1,4m4,5 +2m1,5m1,6 +2m1,5m3,5

−2m1,5m4,5−m1,6m3,5 +m1,6m4,5−2m1,6m5,6)τ2,3,4,6

+(2m1,2m1,6−m1,2m3,6 +m1,2m4,6−2m1,2m5,6 +m1,3m3,6

−m1,3m4,6 +m1,4m3,6−m1,4m4,6−2m1,5m1,6 +2m1,5m2,6

−m1,5m3,6 +m1,5m4,6−2m1,6m2,6 +2m1,6m5,6)τ2,3,4,5

+(−m1,2m2,3−m1,2m3,4 +m1,2m3,5 +m1,2m3,6−m1,3m2,3

+m1,3m2,4−m2,3m2,4 +m2,3m2,5 +m2,3m2,6−m2,3m3,4

+m2,3m3,5 +m2,3m3,6 +m2,5m3,4−m2,5m3,5−m2,5m3,6

+m2,6m3,4−m2,6m3,5−m2,6m3,6)τ1,4,5,6

+(m1,2m2,4−m1,2m3,4−m1,2m4,5 +m1,2m4,6 +m1,4m2,3

−m1,4m2,4 +m2,3m2,4−2m2,3m4,5−m2,4m2,5−m2,4m2,6

−m2,4m3,4 +m2,4m4,5 +m2,4m4,6 +m2,5m3,4 +m2,5m4,5

−m2,5m4,6 +m2,6m3,4 +m2,6m4,5−m2,6m4,6)τ1,3,5,6

+(m1,2m3,5−m1,2m4,5−m1,5m2,3 +m1,5m2,4 +m2,3m5,6

−m2,4m5,6−m2,6m3,5 +m2,6m4,5)τ1,3,4,6

+(−m1,2m3,6 +m1,2m4,6 +m1,6m2,3−m1,6m2,4−m2,3m5,6

+m2,4m5,6 +m2,5m3,6−m2,5m4,6)τ1,3,4,5
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+(−m1,3m2,4 +m1,3m3,4 +m1,3m4,5−m1,3m4,6 +m1,4m2,3

+m1,4m3,4−m1,4m3,5−m1,4m3,6−3m2,3m3,4 +2m2,3m4,6

+m2,4m3,4 +m3,4m3,5 +m3,4m3,6−3m3,4m4,5 +m3,4m4,6

+2m3,6m4,5−2m3,6m4,6)τ1,2,5,6

+(−m1,3m3,5 +m1,3m4,5−m1,5m2,3−m1,5m3,4 +m1,5m3,5

+m1,5m3,6 +m2,3m2,5 +m2,3m3,5−2m2,3m4,5 +m2,3m5,6

+m2,5m3,4−m2,5m3,5−m2,5m3,6−m3,4m3,5 +m3,4m5,6

+m3,5m3,6 +m3,5m4,5−m3,5m5,6−m3,6m5,6)τ1,2,4,6

+(m1,3m3,6−m1,3m4,6 +m1,6m2,3 +m1,6m3,4−m1,6m3,5

−m1,6m3,6−m2,3m2,6−m2,3m3,6 +2m2,3m4,6−m2,3m5,6

−m2,6m3,4 +m2,6m3,5 +m2,6m3,6 +m3,4m3,6−m3,4m5,6

−m3,5m3,6 +m3,5m5,6−m3,6m4,6 +m3,6m5,6)τ1,2,4,5

+(m1,4m3,5−m1,4m4,5 +m1,5m2,4−m1,5m3,4−m1,5m4,5

+m1,5m4,6−m2,4m2,5 +m2,4m4,5−m2,4m5,6 +m2,5m3,4

+m2,5m4,5−m2,5m4,6−m3,4m4,5 +m3,4m5,6−m3,5m4,5

+m4,5m4,6 +m4,5m5,6−m4,6m5,6)τ1,2,3,6
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+(−m1,4m3,6 +m1,4m4,6−m1,6m2,4 +m1,6m3,4 +m1,6m4,5

−m1,6m4,6 +m2,4m2,6−m2,4m4,6 +m2,4m5,6−m2,6m3,4

−m2,6m4,5 +m2,6m4,6 +m3,4m4,6−m3,4m5,6 +2m3,6m4,5

−m3,6m4,6−m4,5m4,6−m4,5m5,6 +m4,6m5,6)τ1,2,3,5

+(m1,5m3,6−m1,5m4,6−m1,6m3,5 +m1,6m4,5−m2,5m3,6

+m2,5m4,6 +m2,6m3,5−m2,6m4,5)τ1,2,3,4
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