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ABSTRACT 

 The diversity of angiosperms in floral form and development has been an area of interest 

for biologists.  A multitude of studies investigating the evolution of flowering plants have 

attempted to determine why angiosperms are so diverse.  One possible major contributor to 

flower form diversity is pollinator pressure.  The interactions between flowers and their 

pollinators have important ecological and evolutionary consequences, with co-evolution often 

occuring.  Many studies have looked at suites of floral traits that affect pollinator visitation, 

which have been coined pollination syndromes (Fenster et al., 2004).  These traits include but are 

not limited to, flower color, flower orientation, landing platforms, and nectar guides. 

 With the increase in genetic tools, and the utilization of model species such as 

Antirrhinum majus(Plantaginaceae) and Arabidopsis thaliana (Brassicaeae), many studies are 

looking at the geneitc architecture of floral traits.  Studies have determined the genetic blueprint 

for floral oragn identity, as well as in traits asociated with pollination syndromes including 

flower color and symmetry.  Using members of the Antirrhineae tribe (Plantaginaceae) makes it 

easier to effectively use the resources from A. majus, or snapdragon.     

 Chapter 1 investigates the applicability of the sliding boundary model for petaloid sepal 

formation in Rhodochiton atrosanguineum, a close relative of snapdragon.  We were interested 

in determing if the petaloid sepals of R. atrosanguineum had true petal identity, or were merely 

just colorful sepals.  Chapter 2 focuses on possible petal function, and not merely petal identity.  

Conical cells are found on roughly 80% of angiosperms (Kay et al., 1981) and are thought to be a 

marker for petal identity.  However, conical cells are thought to be absent mostly in 

hummingbird pollinated flowers, though no studies have looked at this in depth (Christensen and 

Hansen, 1998).  For this chapter, we investigated possible correlated evolution between petal 

epidermal cell shape and pollination system. 



2 

ACKNOWLEDGEMENTS 

There are many people, institutions, and groups that I would I like to thank for making this all 

possible.  First I would like to thank my Masters advisor Lena Hileman.  She has been a major 

influence in allowing me to gain the experience and skills, as well as supplying the tools and 

equipment, that have gotten me to where I am today.  I would also like to thank Mark Mort and 

Paulyn Cartwright for being on my committee and helping me make sure I stayed on the path in 

order to get things accomplished.  Past and current members of the Hileman lab deserve thanks 

for helping with lab work, especially Jill Preston, Laryssa Barnett, Kima Scott, and Bethany 

Wright.   

 I would not have been able to complete this work without help from outside the lab 

including David Moore and the imaging facility at KU for helping obtain images of my plants 

and to figure out what to do with them, as well as Katie Sadler and the rest of the greenhouse for 

helping keep plants alive and flowering for the last several years.  I would like to thank the 

Botany Endowment and the Department of Ecology and Evolutionary Biology for funding 

opportunities for both research and the ability to attend national conferences to present my work. 

 Lastly, I would like to thank my friends and family for being supportive through this 

process.  Many of you have given great advice through the difficulties, as well as lending a 

sympathetic ear when things weren't going right.  For all of which I am greatly thankful. 



3 

TABLE OF CONTENTS 

Title Page .......................................................................................................................................  i 

Acceptance page............................................................................................................................  ii 

Abstract  ........................................................................................................................................  1 

Acknowledgements  ......................................................................................................................  2 

Table of Contents  .........................................................................................................................  3 

Chapter 1. A test of the sliding boundary model in petaloid sepals of Rhodochiton 

 atrosanguineum (Plantaginaceae), a close relative of snapdragon 

  Abstract .................................................................................................................  5 

  Introduction ...........................................................................................................  6 

  Methods .................................................................................................................  9 

  Results .................................................................................................................  13 

  Discussion ...........................................................................................................  16 

Chapter 2. The birds and the bees: testing for correlated evolution between petal cell shape and  

 pollinators. 

  Abstract ...............................................................................................................  21 

  Introduction .........................................................................................................  22 

  Methods ...............................................................................................................  25 

  Results .................................................................................................................  31 

  Discussion ...........................................................................................................  37 

List of Figures   

Figure 1.  Phylogeny of Antirrhineae ...........................................................................................  9 

Figure 2.  Scanning Electron Microscope images of sepals and petals ......................................  14 

Figure 3.  Gene tree of DEFICIENS and GLOBOSA ..................................................................  15 



4 

Figure 4.  RT-PCR expression patterns of DEFICIENS and GLOBOSA ...................................  17 

Figure 5.  in situ hybridization images of DEFICIENS and GLOBOSA ....................................  17 

Figure 6.  ITS Phylogeny of Antirrhineae ..................................................................................  32 

Figure 7.  Phylogenetic mapping of pollinator system and petal cell shape ...............................  33 

Figure 8.  Height/width ratios of cells on dorsal and ventral petal lobes ....................................  34   

Figure 9.  Examples of conical and non-conical cells ................................................................  35 

Figure 10.  Transition rates between pollinator types and cell shape .........................................  36 

Figure 11.  Gene tree of four orthologs of MIXTA-LIKE genes .................................................  38 

List of Tables 

Table 1.  Taxa included in study, seed stocks, GenBank accession numbers and accession 

 numbers to Herbarium ....................................................................................................  25 

Table 2.  Taxa included, inferred pollination system, and references ........................................  28 

References ...................................................................................................................................  44 

List of Appendices 

Appendix 1.  GenBank accession numbers for B-class genes ....................................................  60 

Appendix 2. GenBank accession numbers for MIXTA-LIKE genes ...........................................  61 



5 

A test of the sliding boundary model in petaloid sepals of Rhodochiton 

atrosanguineum (Plantaginaceae), a close relative of snapdragon 

 

ABSTRACT 

This study investigates whether the outer whorl organs of Rhodochiton atrosanguineum flowers, 

which superficially appear petaloid, exhibit characteristics of petals at both the 

micromorphological and developmental genetic level.  The hypothesized ABC genetic model 

explains organ identity development for most core eudicot flowers, while for those with multiple 

petaloid organs the hypothesized sliding boundary model is often more appropriate.  The sliding 

boundary model states expansion of B-function in the outer whorl perianth will specify petaloid 

sepals.  This study tests whether the sliding boundary model applies in R. atrosanguineum.  

Scanning electron micrographs were generated to determine whether petaloid sepals exhibit 

micromorphological characteristics of petals.  To test the applicability of the sliding boundary 

model hypothesis, we examined the expression of B-class MADS box genes during flower 

development using both reverse-transcriptase PCR and in situ mRNA hybridization.  We show 

that epidermal cell shape of outer whorl petaloid sepals is inconsistent with petal identity in these 

organs.  In addition, we establish that B-class gene expression is restricted to the second and 

third floral whorls, consistent with the original formulation of the ABC model, not the sliding 

boundary model.  From our data, we conclude that petaloid sepals of R. atrosanguineum lack 

both petal epidermal cell identity and petal identity resulting from B-class gene function, leaving 

other candidate genes likely responsible for their petaloid appearance.  This study, in conjunction 

with other studies not supporting the sliding boundary model, suggests multiple convergent 

pathways in the evolution of showy sepals. 
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INTRODUCTION 

 Angiosperm flowers show a wide range of diversity, much of which can be attributed to 

evolutionary changes in the size, shape, number and color of petal or petaloid organs, which 

function to attract pollinators.  Petal evolution has been suggested to involve multiple 

originations (Zanis et al., 2003; De Craene, 2007; Rasmussen et al., 2009; Soltis et al., 2009,) as 

well as multiple losses of petals also being documented (Jaramillo and Kramer, 2007; Wu et al., 

2007).  Indeed, in some cases, such as, but not limited to, the genus Cornus, other floral and 

extrafloral organs, including bracts, have evolved petal identity (Geuten, 2006; Maturen, 2008; 

Zhang et al., 2008; Brockington, 2009; Rasmussen et al. 2009).  

 The typical core eudicot flower consists of four concentric whorls of floral organs.  The 

two outer-most whorls of organs develop into a differentiated perianth surrounding the 

reproductive organs.  In this typical flower, leaf-like sepals develop in the outer perianth whorl, 

and petals occupy the inner perianth whorl.  Petals are often highly complex and are 

morphologically separate from leaves and sepals due to several characteristics, including the 

presence of colored pigmentation, conical or elongated epidermal cell shapes, lack of stomata, 

and lack of palisade mesophyll (reviewed in Glover, 2007; De Craene, 2008; Irish, 2009).  

Another characteristic that distinguishes petals from sepals and leaves is the necessary gene 

products for petal specification (reviewed in Irish, 2009).  Interestingly, many angiosperms 

develop flowers which do not conform to the typical form described above – most notably, those 

in which all perianth organs exhibit a petaloid appearance (e.g., orchids, lilies, columbines, 

magnolias; reviewed in Kramer, 2007; Litt and Kramer, 2010), and the extent to which outer 

whorl perianth organs adopt petal identity has been studied in multiple taxa (Kanno et al., 2003; 

Park, 2004; Nakamura et al., 2005; Geuten et al., 2006; Maturen, 2008).   
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 For the typical flower with a differentiated perianth, the ABC model posits that the 

combination of three classes of genes, termed A, B, and C, function in overlapping domains to 

specify the formation of the different floral organ identities (Schwarz-Sommer et al. 1990; 

Bowman et al. 1991; Coen et al. 1991; Coen and Meyerowitz 1991; Trobner et al. 1992).  

Presence of A-class function determines sepals in the outer whorl, with co-occurrence of A- and 

B-class function determining petal identity in the second whorl.  Stamens are determined in the 

third whorl by co-occurrence of B- and C-class function, and in the fourth whorl, occurrence of 

C-class function determines the identity of carpels.  Therefore, based on the ABC model, B-class 

proteins play a critical developmental role in establishing petal identity, and in the differentiation 

of petal from sepal identity within the perianth. 

B-class genes comprise two lineages: the APETALA3/DEFICIENS lineage (Sommer et 

al., 1990; Jack et al., 1992) and the PISTILATA/GLOBOSA lineage (Trobner et al. 1992; Goto 

and Meyerowitz 1994).  Since their original characterization in Arabidopsis thaliana L. 

(Brassicaceae) and Antirrhinum majus L. (Plantaginaceae) (Bowman et al., 1989; Carpenter and 

Coen, 1990; Schwarz-Sommer et al., 1990; Sommer et al., 1990; Krizek and Meyerowitz, 1996) 

many additional studies have demonstrated that B-class function in establishing petal identity is 

conserved in the angiosperms including flowering tobacco (Nicotiana benthamiana Domin, 

Solanaceae; Liu et al. 2004), tomato (Solanum lycopersicum L., Solanaceae; de Martino et al. 

2006), petunia (Petunia hybrida Juss., Solanaceae; Rijpkema et al. 2006; Vandenbussche et al., 

2004), poppy (Papaver somniferum L., Papaveraceae; Drea et al., 2007), rice (Oryza sativa L., 

Poaceae; Kang et al. 1998; Prasad and Vijayraghavan 2003; Xiao et al. 2003), and maize (Zea 

mays L., Poaceae; Ambrose et al. 2000; Whipple et al., 2004). 

 As mentioned earlier, many core eudicot species develop perianths that are 

undifferentiated or exhibit reduced differentiation.  Phenotypically in these species, the ABC 
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model does not appear to be fully applicable.  To explain the developmental genetic program 

underlying these types of flowers, the sliding boundary model was developed (Bowman, 1997; 

Kramer et al., 2003).  According to this model, A- and B-class function in both the inner and 

outer whorl perianth organs leads to an expansion of petal identity across the entire perianth.  

Data from multiple species, including columbine (Aquilegia vulgaris L., Ranunculaceae; Kramer 

et al., 2007), tulip (Tulipa gesneriana L., Liliaceae; Kanno et al., 2003), lily (Lilium longiflorum 

Thunb., Liliaceae; Tzeng and Yang, 2001), lily of the nile (Agapanthus praecox Willd., 

Alliaceae; Nakamura et al., 2005) and water lilies (Cabomba caroliniana Gray, Cabombaceae; 

Yoo et al., 2010) support the sliding boundary model as an explanation for the presence of an 

entirely petaloid perianth.  However, in other species the sliding boundary model does not 

explain petal identity in outer whorl perianth organs as documented in common heather (Calluna 

vulgaris (L.) Hull, Ericaceae; Borchert et al., 2009), gerbera (Gerbera hybrida L., Asteraceae; 

Broholm et al., 2010), orchids (Habenaria radiata (Thunb.) Spreng., Orchidaceae; Kim et al., 

2007), impatiens (Impatiens hawkeri W. Bull, Balsaminaceae; Geuten et al., 2006), and garden 

asparagus (Asparagus officinalis L., Asparagaceae; Park et al., 2003; Park et al., 2004). 

 The focus of this study is Rhodochiton atrosanguineum L. (Plantaginaceae), a close 

relative of the model species snapdragon (Fig 1a).  Rhodochiton atrosanguineum flowers do not 

phenotypically adhere to the ABC model in the same fashion as snapdragon flowers with their 

distinct sepals and petals (Fig. 1b).  Rhodochiton atrosanguineum flowers have outer and inner 

whorl perianth organs that are morphologically distinct, but unlike snapdragon flowers both 

whorls of organs exhibit a petaloid appearance (Fig 1c).  In this study we aim to determine the 

extent to which outer whorl perianth organs of R. atrosanguineum exhibit petal identity beyond 

pigmentation of their sepals.  Therefore, we investigate perianth micromorphology with the 

specific hypothesis that R. atrosanguineum outer whorl perianth organs will exhibit 
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characteristics of epidermal cell shape resembling inner whorl petals.  We also test the 

applicability of the sliding boundary model, with the specific prediction that expression of B-

class orthologs DEF and GLO will be detected in R. atrosanguineum outer whorl perianth organs 

if they have adopted petal identity. 

 

 Figure 1.  Phylogenetic context of study 
species.  a) ITS phylogeny adapted from 
Vargas et al. (2004) showing relationships 
within the tribe Antirrhineae (Plantaginaceae).  
Focal genera Rhodochiton and Antirrhinum are 
bold faced to exemplify their relationship to 
each other.  b) Antirrhinum majus 
(snapdragon) with showy pink petals and leaf-
like sepals.  c) Rhodochiton atrosanguineum 
with petaloid sepals. 
 

 
 

 

 

 

METHODS 

 Plant material- Seeds of R. atrosanguineum were obtained from B and T World Seeds 

(http://www.b-and-t-world-seeds.com) and A. majus seeds, accession number ANTI 11 (D2836), 

were obtained from the Gatersleben collection (Leibniz Institute of Plant Genetics and Crop 

Research, http://www.ipk-gaterlseben.de).  Voucher specimens of R. atrosanguineum (JL001 and 

JL002) and A. majus (JL004) have been placed in the R. L. McGregor Herbarium (KANU), 

University of Kansas.  Flower material for both species was collected from plants grown in the 

greenhouse at the University of Kansas. 

 Scanning electron microscopy- Mature flowers of A. majus and R. atrosanguineum 

were fixed in glutaraldehyde (5% glutaraldehyde solution in 0.1 M phosphate buffer) overnight 
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and then dehydrated through an ethanol series.  Dehydrated flowers were critical point dried 

using a Tousimis critical point dryer and then dissected into sepals, base of petal tube, and petal 

lobe.  Tissue was collected for imaging both adaxial and abaxial surfaces.  Specimens were 

mounted on stubs, sputter-coated with gold, and viewed with a D. Leo field emission scanning 

electron microscope. 

 Isolation of RaDEF and RaGLO orthologs- Total RNA was isolated from immature R. 

atrosanguineum flowers using Trizol following the manufacturer instructions (Ambion, Austin, 

Texas, USA) and DNAse treated using TurboDNA (Ambion, Austin, Texas, USA).  cDNA was 

generated using 1 µg of  total RNA in a 15 µl cDNA synthesis reaction using iScript Synthesis 

Kit following the manufacturer instructions (BioRad, Hercules, California, USA).  Orthologs of 

DEF and GLO were isolated from floral cDNA by reverse-transcriptase PCR (RT-PCR) using 

the degenerative forward primer (5'-AACAGGCARCTIACITAYTC-3’) and the reverse PolyT-

QT primer (5'-GACTCGAGTCGACATGGA(T)18-3’) (Hileman et al. 2006).  This primer 

combination yields full length gene sequences minus 21 amino acids on the 5' end.  RT-PCR 

reactions contained 2 ul of 1:10 diluted cDNA, 1.25 units Taq (Sigma-Aldrich, St. Louis, 

Missouri, USA), 10X PCR buffer, 0.5 µM of each primer, and 0.8 mM dNTPs.  PCR reactions 

were run for 40 cycles with an annealing temperature of 47°C.  PCR products were subjected to 

gel electrophoresis using a 1.5% agarose gel and gel-purified using the Wizard SV Gel and PCR 

Clean Up System Kit (Promega, Madison, Wisconsin, USA) before being cloned.  Gel-purified 

PCR products were cloned into the pGEM -T vector system (Promega, Madison, Wisconsin, 

USA) following the manufacturer instructions.  Twenty clones were sequenced using M13 

forward and M13 reverse primers in order to identify multiple gene copies amplified by our RT-

PCR approach (Howarth and Baum, 2005).   
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 Phylogenetic Analysis- Putative orthologs of RaDEF and RaGLO were aligned to 

additional B-class (DEF/GLO-like) genes downloaded from Genbank (Appendix 1) using 

MUSCLE (Edgar, 2004), followed by manual adjustment in MacClade v4.08 (Maddison and 

Maddison, 2005). Nucleotide sequence alignments were used to generate estimates of the gene 

phylogeny under Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian criteria.  

Maximum likelihood was implemented in Garli (Zwickl, 2006) using the GTR + I + Γ model of 

molecular evolution.  Support values using ML were generated with 1000 bootstrap replicates in 

Garli as described above.  Support values were also generated using MP in Paup* 4.0 (Swofford 

2002) with 1000 heuristic bootstrap replicates and the TBR branch swapping algorithm. 

Bayesian criterion was implemented using MrBayes (Huelsenbeck and Ronquist, 2001; Ronquist 

and Huelsenbeck, 2003) and the GTR + I + Γ model of molecular evolution with two Markov 

chains running for 1,000,000 generations sampling every 100th generation.  At completion of 

runs, the two chains were checked for convergence and the first 25% of saved trees were 

discarded as initial burn-in.  Remaining trees were used to calculate posterior probabilities of 

node support in a 50% majority-rule consensus tree. 

 Expression of RaDEF and RaGLO by Reverse Transcriptase (RT)-PCR- 

Rhodochiton atrosanguineum RNA was extracted and cDNA generated from the four floral 

organs of multiple flowers: outer-whorl petaloid sepals, petals, stamens and carpels, in three 

distinct floral size classes as described above.  The small size class included the earliest stage 

flower buds that could be hand-dissected, and corolla length in this size class ranged from 4.0 to 

7.0 mm.  Corolla length in the medium size class ranged from 15.0 to 18.0 mm.  The large size 

class included flowers just pre-anthesis, and corolla length in this size class ranged from 39.5 to 

40.5 mm.  Expression patterns were characterized using gene specific primers designed to 

amplify fragments of RaDEF and RaGLO of ca. 150-200 bp of the open reading frame.  Gene 
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specific primers for amplifying RaDEF were RaDEF-F (5'-AGCTTGAACGATCTGGGCTA-3') 

and RaDEF-R (5'-GTGCGGATCCTCTCTTCTTG-3'), and primers for amplifying RaGLO were 

RaGLO-F (5'-GGGACGTCAGCTCTCAAAA-3') and RaGLO-R (5'-

ATCGTATACCCCCTGGCTTT-3').  ACTIN was used a loading control as described in Prasad 

et al. (2001).  RT-PCR reactions included 2 µl of 1:10 diluted cDNA, 1.25 units Taq (Sigma-

Aldrich, St. Louis, Missouri, USA), 10X PCR buffer, 0.5 µM of each primer, and 0.8 mM 

dNTPs.  PCR conditions consisted of 26 cycles with an annealing temperature of 55°C for all 

genes tested.  The number of cycles was determined as that representing the linear range of 

amplification from a PCR product curve including reactions run for 22-40 cycles.  Triplicate RT-

PCR reactions for each cDNA, including RT-PCR negative control cDNAs (-RT), were 

conducted to ensure consistency. 

 Expression of RaDEF and RaGLO by in situ mRNA hybridization- Flower buds of R. 

atrosanguineum were fixed in FAA (47.5% ethanol, 5% acetic acid, 3.7% formaldehyde) for 8 

hours, stained with eosin Y, dehydrated and wax embedded as described in Jackson (1991) and 

Preston and Kellogg (2007).  Gene specific probe templates of RaDEF and RaGLO were 

generated using primers RaDEF-F (5'-AATACATCAGTCCCACCACAGC-3'), RaDEF-R (5'-

GCAAAGCAAATGTGGTAAGGTC-3'), RaGLO-F (5'-TCATCATCTTTGCTAGTTCTG-3'), 

and RaGLO-R (5'-TCCTGAAGATTAGGCTGCATTG-3').  Probes were 520 bp and 488 bp long 

for RaDEF and RaGLO respectively, with forward primers in the I domain and reverse primers 

in the C-terminal coding region of each gene (Yang et al. 2003), to exclude amplification of the 

highly conserved MADS domain.  All PCR products for probe generation were cloned into the 

pGEM -T vector (Promega, Madison, Wisconsin, USA) and confirmed by sequencing. Sense and 

antisense riboprobes for RaDEF and RaGLO were generated using T7 and SP6 RNA polymerase 

(Roche, Indianapolis, Indiana, USA) incorporating digoxygenin dNTPs (Roche, Indianapolis, 
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Indiana, USA) according to the manufacturers instructions.  Probe hydrolysis followed Jackson 

(1991) to yield fragments c. 150 bp long.  In situ hybridization was performed on longitudinal 

sections of multiple inflorescences as in Jackson (1991).  Images were documented using a Leica 

DM5000B microscope attached to a Leica DFC300FX camera.  Images were imported into 

Adobe Photoshop and adjusted for contrast, brightness and color balance.  

RESULTS 

 Micromorphological analysis of petaloid sepals- To determine whether R. 

atrosanguineum petaloid sepals exhibit micromorphological cell shape characteristics found in 

R. atrosanguineum petals, SEM analyses were undertaken.  Figure 2 shows image comparisons 

of epidermal cell shape from both the abaxial and adaxial surface of snapdragon (Fig. 2a-h) and 

R. atrosanguineum (Fig. 2i-p) leaves, sepals or petaloid sepals, and petals.  Leaves (Fig. 

2a,e,i,m), sepals and petaloid sepals (Fig. 2b,f,j,n) of both species show a consistent jigsaw-

shaped cellular pattern on both the abaxial and adaxial surfaces, with stomata found 

predominantly on the abaxial surface of these organs (Fig. 2a,b,i,j).  Jigsaw-shaped cells are also 

observed on the abaxial surface of both snapdragon and R. atrosanguineum petal lobes (Fig. 2d, 

l); interestingly, stomata are also found on the abaxial surface of R. atrosanguineum petal lobes 

(Fig. 2l), but not the abaxial surface of snapdragon petal lobes (Fig. 2d).  Rhodochiton 

atrosanguineum abaxial petal lobe epidermal cells not only develop stomata but also appear 

more domed, or lenticular, than corresponding snapdragon epidermal cells (Fig. 2d,l).  In both 

species, elongated cells were found on both adaxial and abaxial surfaces at the base of the corolla 

tube (Fig. 2c,g,k,o).  The major difference between the two species is found on the surface of 

adaxial petal lobes.  The adaxial surface of A. majus petal lobes (Fig. 2h) exhibit papillose 

conical cells as previously documented (Noda et al., 1994; Perez-Rodriguez et al., 2005), while 

the adaxial petal lobes of R. atrosanguineum (Fig 2p) lack conical cells.  Rhodochiton 
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atrosanguineum adaxial petal lobe epidermal cells are more domed than the papillose conical 

epidermal cells found in snapdragon, and are referred to as lenticular (Kay, 1981).  SEM images 

show no distinct micromorphological differences between petaloid sepals and leaf like sepals of 

R. atrosanguineum and snapdragon, respectively, and R. atrosanguineum petaloid sepals do not 

resemble R. atrosanguineum petals at the micromorphological scale. 

 
Figure 2.  Scanning electron microscope (SEM) images from Antirrhinum majus (snapdragon; a-h) and    
Rhodochiton atrosanguineum (i-p).  Individual SEM images of A. majus are a) abaxial leaf, b) abaxial sepal, c) 
abaxial base of petal tube, d) abaxial petal lobe, e) adaxial leaf, f) adaxial sepal, g) adaxial base of petal tube|, h) 
adaxial petal lobe.  Individual SEM images of R. atrosanguineum are i) abaxial leaf, j) abaxial sepal, k) abaxial base 
of petal tube, l) abaxial petal lobe, m) adaxial leaf, n) adaxial sepal, o) adaxial base of petal tube, p) adaxial petal 
lobe.  Images show conserved jig-saw shaped patterns of cell shape in leaves and sepals of the two species, and 
conserved elongated tubular cells at the base of the petal tube between both species.  Rhodochiton atrosanguineum 
lacks conical cells on the adaxial surface of the petal lobe as seen in snapdragon, where as the abaxial petal lobe of 
R. atrosanguineum has a more defined cell shape than those seen in snapdragon.  Scale bars in c, g, o are 30 µm, all 
others are 20 µm. 
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 Isolation and phylogenetic assessment of RaDEF and RaGLO- Two B-class genes 

were isolated from floral cDNA of R. atrosanguineum.  ML, MP and Bayesian phylogenetic 

estimates place one of these two genes (RaDEF) in a well-supported clade with A. majus DEF, 

and the other gene (RaGLO) in a clade with A. majus GLO (Fig. 3).  RaDEF is nested within a 

clade of orthologs from snapdragon and Misopates orontium (L.) Raf. (Plantaginaceae), all of 

which are members of the Antirrhineae.  This clade has bootstrap support values of 97% (MP) 

and 98% (ML), and a posterior probability of 1.0 (Fig. 3).  The placement of RaGLO is also in a 

well-supported clade with GLO-like genes from snapdragon and M. orontium with bootstrap 

values of 100% (MP) and 90% (ML) and a posterior probability of 1.0  (Fig. 3).  The sister 

relationship between snapdragon and M. orontium is highly supported and reflects species 

relationships based on other molecular markers (Vargas et al., 2004).  

Figure 3. 
Phylogeny of 
DEFICIENS (DEF) and 
GLOBOSA (GLO) 
orthologs showing 
placement of newly 
sequenced Rhodochiton 
atrosanguineum DEF 
and GLO.  Shown is the 
maximum-likelihood 
(ML) tree with support 
values from 1000 
replicate Maximum 
Parsimony bootstrap 
analysis/1000 replicate 
ML bootstrap 
analysis/Bayesian 
posterior probabilities.  
Only support values of 
>75% for bootstrap and 
>0.95 Bayesian 
posterior probabilities 
are shown on the 
phylogeny.  
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 Expression of RaDEF and RaGLO- Scoring of RT-PCR gene expression was 

dichotomous – presence or absence of RaDEF or RaGLO transcripts in sampled tissues.  RaDEF 

and RaGLO transcripts were detected by RT-PCR in petals and stamens, but not in petaloid 

sepals or carpels, for the three size classes of flowers (Fig. 4).  Expression of ACTIN was 

detected by RT-PCR in all sampled tissues at levels similar to RaDEF and RaGLO in petals and 

stamens, establishing that the absence of PCR product in R. atrosanguineum petaloid sepals and 

carpels was not due to insufficient template cDNA.  These results demonstrate that, at least in 

later stages of flower development, the B-class genes, RaDEF and RaGLO, are not expressed in 

R. atrosanguineum petaloid sepals.  

 RaDEF and RaGLO expression was determined in earlier stage flowers by in situ mRNA 

hybridization. Anti-sense gene-specific probes for RaDEF (Fig. 5a) and RaGLO (Fig. 5c) show 

dark blue staining in the early forming petals and stamens.  RaDEF (Fig. 5b) and RaGLO (Fig. 

5d) gene-specific sense probes show no dark blue staining anywhere on the flower bud and serve 

as negative controls by establishing the amount of background staining that occurred during the 

in situ protocol.  Multiple floral sections hybridized with antisense or sense probe were 

visualized to ensure consistent assessment of gene expression.  Hybridization with antisense 

probes demonstrates that even at very early stages of flower development, RaDEF and RaGLO 

expression is restricted to the petal and stamen whorls. 

DISCUSSION 

 Rhodochiton atrosanguineum sepals are brightly pigmented giving them a superficial 

petaloid appearance (Fig. 1c).  The objective of this study was to determine to what extent R. 

atrosanguineum petaloid sepals have adopted petal characteristics at the micromorphological and 

molecular level.  Specifically, we used SEM and gene expression studies to test the following 

hypotheses: 1) R. atrosanguineum petaloid sepals exhibit micromorphological characteristics 
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found in adjacent petals, and 2) the sliding boundary model applies to the development of 

petaloid sepals in R. atrosanguineum.  We found that petaloid sepals of R. atrosanguineum do 

not morphologically resemble the petals of R. atrosanguineum, similar to what was found in 

impatiens (Geuten et al., 2006).  Secondly, we found that the sliding boundary model does not 

apply to the development of petaloid sepals in R. atrosanguineum.   

 

 

 If, in R. atrosanguineum, the sepals are petaloid in appearance due to an expansion of 

petal identity, then we expect epidermal cell shape in these outer whorl organs to resemble 

epidermal cell shapes found in petals. Rhodochiton atrosanguineum petaloid sepals develop 

Figure 4.  RT-PCR conducted on cDNA generated 
from three size classes of R. atrosanguineum flowers 
separated into their four floral organs.  Small class 
flowers had a corolla length ranging from 4-7 mm, 
medium class flowers had a corolla length ranging 
from 15-18 mm, with large class flowers having corolla 
lengths of 39.5-40.5 mm.  For all size classes, 
DEFICIENS and GLOBOSA were only expressed in 
the petals and stamens as seen by presence of bands in 
these organs.  ACTIN was used as a loading control 
during RT-PCR analysis to insure the integrity cDNA.  
-RT samples served as negative controls, and no bands 
were visible in these reactions.  ACTIN was also tested 
to show integrity of cDNA. 

Figure 5.  In situ hybridization conducted on early stage 
flower buds of R. atrosanguineum.  a) Expression of 
RaDEF using antisense probe.  b) Sense probe control for 
RaDEF.  c) Expression of RaGLO using antisense probe. 
d) Sense probe control for RaGLO.  Dark blue staining 
using antisense probes for RaDEF and RaGLO show that 
expression of these genes is limited to the developing 
petals and stamens of R. atrosanguineum.  Petaloid sepals 
= sep, petals = pet, stamens = sta, and carpels = car. 
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jigsaw shaped cells, very similar to the cells found in sepals of snapdragon (Figs. 2b and 2j).  

These jigsaw shaped cells are distinct from the adaxial epidermal cells of R. atrosanguineum 

petals (Figs. 2h and 2p), which are dome-shaped and distinguish petals at the 

micromorphological level from R. atrosanguineum petaloid sepals and leaves.   

 It is noteworthy that conical or papillose cell shape is found on the adaxial surface of 

many flowering plant species (Kay, 1981; Christensen and Hansen, 1998; Whitney and Glover, 

2007; De Craene, 2008), but these predicted papillose cells were found only on the adaxial 

epidermis of snapdragon petals as previously described (Noda et al., 1994; Perez-Rodriguez et 

al., 2005) (Fig. 2h).  Cell micromorphology of R. atrosanguineum petal lobes is drastically 

different than snapdragon (Figs. 2h and 2p).  Not only are stomata found on the abaxial surface 

of R. atrosanguineum petals (Fig. 2l), which is rarely observed in flowering plants (De Craene, 

2008), but also R. atrosanguineum adaxial petal surfaces lack the distinctive papillose conical 

cells found in snapdragon and many other species (Noda et al., 1994; Perez-Rodriguez et al., 

2005).  The ultimate cause of differences between R. atrosanguineum and snapdragon petals is 

unknown, but may reflect differences in pollination syndrome between the two species.  

Snapdragon is bee pollinated (Glover and Martin, 1998; Whitney et al., 2009) while R. 

atrosanguineum is pollinated by hummingbirds (Sutton, 1988).  Differences in petal 

micromorphological characteristics may reflect evolutionary shifts in biotic or abiotic pollination 

mechanisms (Cronk and Ojeda, 2008; Di Stilio, 2010).   

 A single copy of DEF and GLO were identified in R. atrosanguineum and, based on our 

phylogenetic estimates (Fig. 3), are considered orthologous to DEF and GLO from snapdragon. 

RT-PCR analyses show that both RaDEF and RaGLO expression is restricted to the petals and 

stamens in mid to late-stage flower buds of R. atrosanguineum (Fig. 4).  Similarly, at very early 

stages of flower development, in situ hybridization experiments show that RaDEF and RaGLO 
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expression is restricted to the petal and stamen whorls (Fig. 5).  In conjunction, both approaches 

demonstrate that expansion of B-class gene expression to outer whorl perianth organs, as 

predicted by the sliding boundary model (Kramer et al., 2003), is not responsible for the petaloid 

appearance of R. atrosanguineum sepals.  This study joins other studies showing that in some 

cases the sliding boundary model does not explain the development of petaloid sepals (Park et 

al., 2004; Geuten et al., 2006; Kim et al., 2007; Borchert et al., 2009; Broholm et al., 2010).  

Although R. atrosanguineum outer whorl organs are petaloid in appearance, they are 

morphologically quite distinct from the inner whorl petals (Fig. 1c), suggesting that changes in 

the anthocyanin pathway (Weiss, 2000; Whittall et al., 2006) may underlie the evolution of petal-

like sepals in R. atrosanguineum.   

 Clearly convergent mechanisms are present leading to the formation of petaloid sepals, 

and may involve evolutionary changes at the level of B-class gene expression, upstream or 

downstream of B-class genes, or parallel pathways (Jaramillo and Kramer, 2004; Kramer et al., 

2007; Litt and Kramer, 2010).  Interestingly R. atrosanguineum exhibits a bipartite perianth (Fig. 

1c) common to core eudicots, lacks duplicates of DEF and GLO, and gene expression data from 

this species does not support the sliding boundary model.  Because B-class genes play a critical 

role in establishing a bipartite perianth, constraints are likely present for the evolution of petaloid 

sepals by mechanisms involving B-class genes (Kramer et al., 2003; reviewed in Hileman and 

Irish, 2009).  Strikingly, when the sliding boundary model is supported it is restricted to species 

that have a history of gene duplications in DEF and/or GLO lineages, or lack a differentiated 

perianth (Tzeng and Yang, 2001; Kanno et al., 2003; Nakamura et al., 2005; Kramer et al., 2007; 

Litt and Kramer, 2010; Yoo et al., 2010).  This study provides support for the emerging pattern 

that there are multiple, convergent developmental genetic mechanisms underlying independent 

transitions to petaloidy in the outer whorl perianth, and that constraint lies, at least in part, in 
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whether there is morphological differentiation within the perianth, and whether there is a history 

of duplication in the B-class gene lineage. 
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The birds and the bees: testing for correlated evolution between petal cell shape 
and pollinators 

 

ABSTRACT 

The interactions between flowers and their pollinators have important ecological and 

evolutionary consequences.  Many studies have looked at suites of floral traits that affect 

pollinator visitation, which have been coined pollination syndromes.  These traits include but are 

not limited to, flower color, flower orientation, landing platforms, and nectar guides.  One trait 

that has not been looked at in great detail is petal epidermal cell shape.  For this study we tested 

the hypothesis of correlated evolution between pollinators and petal epidermal cell shape.  To 

accomplish this we focused on the tribe Antirrhineae, which contains 28 genera and roughly 300 

species, most notably Antirrhinum majus, commonly known as snapdragon.   For 17 species 

representing 15 genera, pollinators and presence/absence of conical cells on the dorsal and 

ventral petal lobes were coded as binary characters and mapped on to a phylogeny.  We 

identified three independent transitions from bee pollination to hummingbird pollination.  Also 

observed were three independent transitions of conical to non-conical cells in dorsal petal lobes, 

and two similar transitions in ventral petal lobes. For cells on the dorsal and ventral petal lobes 

there is significant correlation between cell shape and pollinators.  Additionally, sequences of 

MIXTA-LIKE genes were isolated from each of the study species.  These genes have been 

determined to be necessary for formation of conical cells in snapdragon.  Understanding the 

history of cell shape evolution provides a strong foundation for determing the genetic framework 

for shifts between conical and non-conical cells which may result from changes in the expression 

and/or function of MIXTA-LIKE genes. 
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INTRODUCTION 

 Angiosperms contain an enormous amount of diversity, including morphological, 

ecological and physiological functions (Wikstrom et al., 2001).  This diversity has been 

examined on a macroscopic level, as well as a developmental and structural level, finding major 

differences across all of the angiosperms (Magallon et al., 1999; Ferrario et al., 2004; Kim et al., 

2005; Soltis et al., 2009; Endress, 2011).  A critical factor contributing to the success of the 

angiosperms are the interactions between flowers and the insect pollinators that are attracted to a 

particular flower (Crepet, 1984).  The fitness of insect pollinated flowers relies on the presence 

and efficiency of its pollinator, which a plant must attract using cues such as visual and/or odor 

stimuli to which the insect is sensitive, especially in the presence of conspecifics and other 

species that may be competing for pollinators (Chittka and Raine, 2006).  Animal pollinated 

flowers are often considered to be in one of two major groups, having either generalist 

pollinators or specialized pollinators.  Flowers with specialist pollinators have been seen to have 

certain adaptations for a specific pollinator or pollinator group, showing a significance of 

character syndromes (Stebbins, 1970).  These syndromes, which have been observed in roughly 

75% of flowering plants, are called pollination syndromes, and are defined to include all of the 

floral traits that are associated with the attraction of a certain group of biotic (animal) or abiotic 

pollinators (Fenster et al., 2004).  Many floral traits have been summarized that place flowers 

into certain pollination syndromes (Waser, 2006), with many studies showing the selection 

pressures that certain pollinators place on these floral traits (Bruneau, 1997; Johnson et al., 1998; 

Fulton and Hodges, 1999; Schemeske and Bradshaw, 1999; Cronk and Ojeda, 2008; Brunet, 

2009).  Some of these traits, especially flower color, have been debated as to how well they place 

flowers into certain syndromes or whether they can evolve as a result of alternative selection 

pressures (Rausher, 2008).   
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 To understand better the interactions between flowers and their pollinators, phylogenetic 

data are being applied to studies of flowers and pollinators.  This allows for inference of the 

history of the relationship between the flower and pollinators, as well as the ability to detect 

parallelism and reversals, of which there are many inferred (Armbruster, 1992; Armbruster, 

1993; Fenster et al., 2004; Tripp and Manos, 2008; Smith, 2010).  Recently, many studies have 

documented the vast number of times that pollinator transitions have occurred in a given clade 

(reviewed in Tripp and Manos, 2008), including Penstemon (Plantaginaceae) with up to 21 shifts 

from bee to hummingbird pollination (Wilson et al., 2007), Cayaponia (Cucurbitaceae) with 

multiple repeated shifts from bat to bee pollination (Duchen and Renner, 2010), Disa 

(Orchidaceae) with many transitions occurring to allow up to 19 unique specialized pollination 

systems (Johnson et al., 1998), and Costus (Costaceae) with 7 transitions from bee pollination to 

hummingbird pollination (Kay et al., 2005).   

 Many studies go beyond inferring number of pollinator transitions and also investigate 

traits that are selected upon when subjected to different pollinators including flower orientation, 

flower color, presence of nectar spurs, landing platforms, nectar guides, and scent (Bruneau, 

1997; Johnson et al., 2002; Perez et al., 2006; Goldblatt, 2001; Whittall and Hodges, 2007; Tripp 

and Manos, 2008; Cronk and Ojeda, 2008; Friedman and Barret, 2008; Lara and Ornelas, 2008; 

Smith et al., 2008; Schlumpberger et al., 2009; Alcantra and Lohman, 2010; Sletvold et al., 2010, 

Smith, 2010).  Several more studies have gone even further to show that pollination syndromes 

in sympatric species may maintain species limits (Fulton and Hodges, 1999; Schemeske and 

Bradshaw, 1999; Kay and Schemeske, 2003).  Species delimitations though, may have 

contributions of factors such as flowering time and not floral traits (Martin et al., 2008).   

 Of the many traits associated with particular pollination syndromes that have been 

studied in depth, one trait that is less well characterized, but may contribute to pollination 
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syndromes, is petal epidermal cell shape.  Multiple studies have looked at petal cell shape on a 

broad, family by family basis, and found that between 60 and 80% of flowers investigated 

contained conical cells on the petal epidermis (Kay et al., 1981; Christensen and Hansen, 1998).  

One study looked at petal epidermis cell shape in a single family, Leguminosae, and found that 

conical cells were prevalent but not always present, usually on the dorsal and lateral petal lobes 

(Ojeda et al., 2009).  Conical cells are considered to be a marker for petal identity (Ronse De 

Craene, 2008) and have multiple functions.  Some of the documented functions of petal conical 

cells include flower color by light refraction (Noda et al., 1994; Whitney and Glover, 2007), 

reflectance and transmittance of UV light (Gorton and Vogelman, 1996), tactile cues for 

guidance toward nectar reward (Kevan and Lane, 1985), and climate of the flower which may 

affect nectar, as well as scent of flower (Comba et al., 2010).  Conical cells play a major role in 

bee pollinated flowers, where flowers with flat cells receive fewer pollinators than do those with 

conical cells (Glover and Martin, 1998).  Also, even when bees are attracted to flowers with flat 

cells, they expend much more energy trying to obtain the nectar reward than would that same bee 

trying to obtain a reward from a flower with conical cells since the conical cells allow grips for 

the bee to land on (Whitney et al., 2009).   

 The developmental framework for conical cells has been worked out in detail for 

Antirrhinum majus, commonly referred to as snapdragon.  In snapdragon there are 4 paralogs 

located in the MYB R2R3 subfamily 9 domain that are responsible for the development of 

conical cells and trichomes on the petal epidermis.  Expression patterns and functional tests of 

these four genes: MIXTA, MIXTA-LIKE 1, MIXTA-LIKE 2, and MIXTA-LIKE 3 have determined 

their role in creating features of the petal epidermis (Noda et al., 1994; Glover et al., 1998; 

Martin et al., 2002; Perez-Rodriguez et al., 2005; Baumann et al., 2007; Jaffe et al., 2007).  

Orthologs of these genes have been found to have similar functions in other core eudicots 
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including Petunia x hybrida (Solanaceae; van Houwelingen et al., 1998), Arabidopsis thaliana 

(Brassicaceae; Baumann et al., 2007), and Gossypium hirsutum (Malvaceae; Machado et al., 

2009), as well as in the early diverging eudicot lineage, Thalictrum (Ranunculaceae; di Stilio et 

al., 2009). 

 This study focuses on character evolution within the tribe Antirrhineae (Plantaginaceae), 

to which the model species snapdragon belongs.   Here in we test the hypothesis that the 

evolution of pollinators and petal epidermal cell shape are correlated.   Tribe Antirrhineae is an 

excellent system to address this question because there are three reported transitions from bee 

pollination to hummingbird pollination within the tribe (Ghebrehiwet et al., 2000).  In addition 

we isolated and identified all copies of MIXTA-LIKE genes in the target species, since the 

MIXTA-LIKE genes are responsible for conical cell shape in snapdragon.  The initial goal for 

identifying all copies of MIXTA-LIKE genes is to determine if both species with conical cells and 

those species without conical cells retain all four paralogs of MIXTA-LIKE genes. 

METHODS 

 Taxon sampling - A total of 27 taxa were utilized for this study, which are listed in Table 

1.  The table includes species, seed stocks, GenBank accession numbers for ITS sequences, and 

accession numbers of vouchers located in the R. L. McGregor Herbarium (KANU), University of 

Kansas.   

Table 1.  Table of taxa used in this study.  Information includes species name, location seeds were obtained, 
GenBank accession numbers for ITS, and accession numbers for vouchers placed in the R. L. McGregor Herbarium 
(KANU).  XX-XXXXX for GenBank accession numbers are for sequences that were generated in this study, but not 
yet deposited in GenBank.  Dashes in the seeds and herbarium accession columns indicate that those species were 
not grown for this study.   

Species Seeds GenBank 
Accession # 

Herbarium 
accession # Acanthorrhinum ramosissimum -- AY731261 -- 

Albraunia foveopilosa -- AY731250 -- 

Annarhinum bellidifolium Millennium seed bank project AY731263 JL010 

Antirrhinum majus  AY731280 JL004 
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Asarina procumbens B & T World Seeds AF513879 JL006 

Chaenorrhinum minus -- AF513875 -- 

Cymbalaria muralis B & T World Seeds AF513883 -- 

Galvezia fruticosa Wayne Elisens, University of 
Oklahoma 

XX-XXXXXX JL009 

Gambelia speciosa Rancho Santa Ana Botanical 
Garden 

AY731252 JL012 

Holzneria spicata -- AY731258 -- 

Howelliella ovata -- AF513899 -- 

Kickxia elatine Rancho Santa Ana Botanical 
Garden 

AY731265 JL005 

Linaria vulgaris B & T World Seeds AF513874 JL015 

Lophospermum erubescens B & T World Seeds AY731249 JL008 

Lophospermum purpusii B & T World Seeds XX-XXXXXX JL007 

Mabrya acerifolia Wayne Elisens, University of 
Oklahoma 

XX-XXXXXX -- 

Mabrya rosei Wayne Elisens, University of 
Oklahoma 

XX-XXXXXX JL014 

Maurandella antirrhiniflora B & T World Seeds AF513878 JL013 

Maurandya scandens B & T World Seeds XX-XXXXXX JL003 

Misopates orontium Millennium seed bank project AY731260 JL011 

Mohavea confertiflora -- AF513891 -- 

Neogaerrhinum strictum -- AF513904 -- 

Pseudomisopates rivas 
mertinezii 

-- AY731262 -- 

Pseudorontium cyathiferum -- AF513884 -- 

Rhodochiton atrosanguineum B & T World Seeds XX-XXXXXX JL001 

Sairocarpus coulterianum Rancho Santa Ana Botanical 
Garden 

AY878117 -- 

Schweinfurthia pedicellata -- AY731256 -- 

 
 Phylogenetic analysis - Sequences of Internal Transcriber Spacer (ITS) 1 and 2 from 

Vargas et al. (2004) were downloaded from GenBank.  Additional sequences for Galvezia 

fruticosa, Lophospermum purpusii, Mabrya acerifolia, M. rosei, Maurandya scandens, and 

Rhodochiton atrosanguineum were added to analysis using the same primers (ITS 1 and 4) as in 

Vargas et al. (2004).  DNA was extracted from these additional taxa using Promega Wizard kit 

(Promega, Madison, Wisconsin, USA) and then treated with RNase.  PCR conditions using ITS 
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primers 1 and 4 contained 2 µL of DNA, 5X PCR buffer, 2mM MgCl2, 0.5 µM of each primer, 

0.8 mM dNTPs, and 1.25 unit of GoTaq (Promega, Madison, Wisconsin, USA).  Sequencing was 

carried out on ExoSap cleaned PCR products and sequenced in both forward and reverse 

directions.  Sequences were aligned using MUSCLE (Edgar, 2004), followed by manual 

adjustment in MacClade v4.08 (Maddison and Maddison, 2005). Nucleotide sequence 

alignments were used to generate estimates of the species phylogeny under Maximum Parsimony 

(MP), Maximum Likelihood (ML) and Bayesian criteria.  Maximum likelihood was 

implemented in Garli (Zwickl, 2006) using the GTR + I + Γ model of molecular evolution as 

specified by jModeltest (Posada, 2008).  Support values were generated using MP in Paup* 4.0 

(Swofford, 2002) with 1000 heuristic bootstrap replicates and the TBR branch swapping 

algorithm.  Support values were also generated using ML with 1000 bootstrap replicates in Garli 

as described above. Bayesian criterion was implemented using MrBayes (Huelsenbeck and 

Ronquist, 2001; Ronquist and Huelsenbeck, 2003) and the GTR + I + Γ model of molecular 

evolution with two Markov chains running for 1,000,000 generations sampling every 1,000th 

generation.  At completion of runs, the two chains were checked for convergence and the first 

25% of saved trees were discarded as initial burn-in.  Remaining trees were used to calculate 

posterior probabilities of node support in a 50% majority-rule consensus tree. 

 Pollinators - Using the maximum likelihood tree, we traced pollinators on to the tree 

using parsimony criteria in MacClade v4.08 (Maddison and Maddison, 2005).  Pollinators were 

coded as binary characters.  According to Ghebrehiwet et al. (2000), we expected to see three 

independent shifts.  Anomalies for coding of pollination system occurred in the genus 

Lophospermum.  Lophospermum erubescens is reported to be hummingbird pollinated (Elisens, 

1986), where as L. purpusii has an unknown pollinator (Elisens and Freeman, 1988).  However, 

the phenotype of these two species appears to fit better with a bee pollination syndrome, rather 
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than a hummingbird pollinated syndrome.  The flowers are pink in color, with a wide corolla 

tube, horizontal orientation and presence of nectar guides.  Table 2 shows the inferred pollinator 

for each species, as well as the reference for this inference. 

Table 2  Species included in this study, with inferred pollinators from the literature with 
appropriate references. 

Species Inferred pollinator Reference 
Acanthorrhinum ramosissimum bee Sutton, 1988 

Albraunia foveopilosa bee Sutton, 1988 
Annarhinum bellidifolium bee Sutton, 1988 

Antirrhinum majus bee Sutton, 1988 
Asarina procumbens bee Sutton, 1988 

Chaenorrhinum minus bee Sutton, 1988 
Cymbalaria muralis bee Sutton, 1988 
Galvezia fruticosa hummingbird Elisens, 1986; Elisens, 1992 
Gambelia speciosa hummingbird Elisens, 1986 
Holzneria spicata bee Sutton, 1988 
Howelliella ovata bee Thompson, 1988 

Kickxia elatine bee Sutton, 1988 
Linaria vulgaris bee Sutton, 1988 

Lophospermum erubescens hummingbird Elisens, 1986 
Lophospermum purpusii unknown Elisens & Freeman, 1988 

Mabrya acerifolia hummingbird Elisens & Crawford, 1988 
Mabrya rosei hummingbird Elisens, 1986 

Maurandella antirrhiniflora bee Elisens, 1986 
Maurandya scandens bee Elisens, 1986 
Misopates orontium bee Sutton, 1988 

Mohavea confertiflora bee Little, 1983 
Neogaerrhinum strictum bee Sutton, 1988 

Pseudomisopates rivas mertinezii bee Sutton, 1988 
Pseudorontium cyathiferum bee Elisens, 1986; Elisens & Freeman, 1988 

Rhodochiton atrosanguineum hummingbird Elisens, 1986 
Sairocarpus coulterianum bee Elisens & Freeman, 1988 
Schweinfurthia pedicellata bee Sutton, 1988 

 

 Cell shape - Shape of cells on the adaxial (inner) epidermal surface of petals was 

measured by sectioning petals from both the dorsal (adaxial) and ventral (abaxial) sides of 

flowers.  Fresh petal material was fixed using glutaraldehyde (5% glutaraldehyde solution in 0.1 

M phosphate buffer) overnight and then dehydrated through an ethanol series.  Tissue was then 

wax embedded as described in Jackson (1991) and Preston and Kellogg (2007).  Sections were 
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then stained with Toulidine blue and slide images were documented using a Leica DM5000B 

microscope attached to a Leica DFC300FX camera.  Images were then imported in ImageJ 

where height and width at half height were taken for 18 to 30 cells for each species.  The ratios 

of these numbers were then taken to arbitrarily separate conical from non-conical cells.  Species 

with an average ratio over 0.9 were classified as conical, where as non-conical cells had a ratio 

of 0.9 or lower.  SEM images were taken of the petal epidermis to give corroboration with the 

wax sectioning.  Mature flowers of tested species were fixed in glutaraldehyde (5% 

glutaraldehyde solution in 0.1 M phosphate buffer) overnight and then dehydrated through an 

ethanol series.  Dehydrated flowers were critical point dried using a Tousimis critical point dryer 

and then dissected into sepals, base of petal tube, and petal lobe.  Tissue was collected for 

imaging the adaxial surface of dorsal petals.  Specimens were mounted on stubs, sputter-coated 

with gold, and viewed with a D. Leo field emission scanning electron microscope.   

 Once cell shape was determined for target species, the trait was mapped on to the 

maximum likelihood tree to determine number of transitions. First, cell shape was coded as a 

binary character, with 0 being conical (ratio above 0.9) and 1 for non-conical (ratio under 0.9).  

This trait was then traced on to the maximum likelihood tree using MacClade v4.08 (Maddison 

and Maddison, 2005). 

 Correlation test - Using the Discrete function in BayesTraits we tested for correlation 

between petal epidermal cell shape (conical vs. non-conical) and pollination system (bee vs. bird 

pollinated flowers) using the maximum likelihood tree with branch lengths representing time, as 

well as the binary coded traits pollinator type and cell shape.  After coding pollinator type as 0 

for bee pollinated and 1 for hummingbird pollinated, and cell shape as 0 for conical and 1 for 

non-conical we were able to test two separate models of trait evolution on the data.  The first 

model allowed the two parameters, pollinator type and cell shape, to vary independently from 
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each other, and the second model restricted pollinator type and cell shape to vary dependently.  

Both models were conducted with 1000 optimization attempts.  A log likelihood ratio test was 

then conducted using a chi-square distribution with degrees of freedom of 4. 

 Isolation of MIXTA-LIKE genes - Total RNA was isolated from three stages of 

development from target species' flowers using Trizol following the manufacturer instructions 

(Ambion, Austin, Texas, USA) and DNAse treated using TurboDNA (Ambion, Austin, Texas, 

USA).  cDNA was generated using 1 µg of  total RNA in a 15 µl cDNA synthesis reaction using 

iScript Synthesis Kit following the manufacturer instructions (BioRad, Hercules, California, 

USA).  Orthologs of MIXTA, MIXTA-LIKE 1, MIXTA-LIKE 2, and MIXTA-LIKE 3 were isolated 

from floral cDNA by reverse-transcriptase PCR (RT-PCR) using a degenerative forward and 

reverse primer to amplify roughly 350 bases of conserved region of each gene.  MIXTA genes 

were isolated using forward primer (5'-GTGAAAAAAGGGCCATGGAC-3') and reverse primer 

(5'-CCCAGGATGTTATGAKTST-3').  MIXTA-LIKE 1 was amplified using forward primer (5-

CCATGGACACCWGAMGAAG-3') and reverse primer (5'-GYTGGCCACAACCWAGGAC-

3').  MIXTA-LIKE 2 was amplified using forward primer (5-CTGAAGAAGATCAGAAGC-3') 

and reverse primer (5'-GCCATGTGGCTSAGATTKC-3').  MIXTA-LIKE 3 was amplified using 

forward primer (5'-CTGAAGAAGACCARAAGC-3') and reverse primer (5'-

TGCCGAGCGCTCTCCCA-3').  RT-PCR reactions contained 2 ul of 1:10 diluted cDNA, 1.25 

units GoTaq (Promega, Madison, Wisconsin, USA), 5X PCR buffer, 2mM MgCl2 0.5 µM of 

each primer, and 0.8 mM dNTPs.  PCR reactions were run for 40 cycles with a gradient 

annealing temperature of 47°C - 60°C.  PCR products were subjected to gel electrophoresis using 

a 1.5% agarose gel and samples with appropriate sized product were gel-purified using the 

Wizard SV Gel and PCR Clean Up System Kit (Promega, Madison, Wisconsin, USA) before 

being cloned.  Gel-purified PCR products were cloned into the pGEM -T vector system 



31 

(Promega, Madison, Wisconsin, USA) following the manufacturer instructions.  Eight clones 

were sequenced using M13 forward and M13 reverse primers in order to identify multiple gene 

copies amplified by our RT-PCR approach (Howarth and Baum, 2005).   

 Sequences of MIXTA-LIKE genes were imported to MacClade v4.08 (Maddison and 

Maddison, 2005) and aligned by eye.  Maximum likelihood analysis was implemented in Garli 

(Zwickl, 2006) using the GTR + I + Γ model of molecular evolution to determine the maximum 

likelihood tree.  Maximum likelihood bootstrap support with 500 replicates, and bayesian 

posterior probablity with 5,000,000 generations sampled every 1000 was conducted as described 

above to assess orthology of gene sequences.  GenBank accession numbers of MIXTA-LIKE 

genes used can be found in Appendix 2. 

RESULTS 

 Phylogenetic analysis - The phylogeny generated in this study using ITS sequences 

closely matches that of Vargas et al. (2004).  Figure 6 shows the maximum likelihood tree, with 

bootstrap support values of recovered clades shown.  High support values appear for the major 

clades of the tribe.  The clade containing Gambelia has bootstrap support values of 100% (MP) 

and 99% (ML) as well as a posterior probability of 1.0.  The Maurandya clade containing 

Asarina, Cymbalaria, Lophospermum, Mabrya, Maurandya, and Rhodochiton is also well 

supported with bootstrap values of 91% (MP) and 100% (ML) and a posterior probability of 1.0.  

The clade containing the Galvezia genus has support values of 98% (MP) and 96% (ML) and a 

posterior probability of 1.0.  Even though some of the species level relationships are not well 

resolved, having the major clades with high support values provides more confidence in 

pollinator transitions. 
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Figure 6.  Phylogeny of ITS with sequences downloaded from GenBank (Vargas et al. 2004) and augmented with 
additional sequences using ITS primers 1 and 4.  Shown is maximum likelihood tree, with support values from 
bootstrap replicates of MP/ML/BI. 

 
 Tracing character history: pollinator type and cell shape - Tracing pollinator types 

using MP onto the maximum likelihood tree revealed three independent transitions from the 

ancestral state of bee pollination to a derived state of hummingbird pollination (Fig. 7).  These 

three transitions occur in the Maurandya clade, with R. atrosanguineum, M. rosei, M. acerifolia, 

and L. erubescens, reported to be hummingbird pollinated (Elisens, 1986; Elisens & Crawford, 

1988; Elisens & Freeman, 1988), as well as in Gambelia and Galvezia both of which are reported 

to be hummingbird pollinated (Elisens, 1986; Elisens, 1992) (Table 2).  There also appears to be 

a possible reversal to bee pollination within Lophospermum.  Ghebriwet et al. (2000) also 

inferred three independent transitions from bee to hummingbird pollination, though their 
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transitions differ from ours.  In their study, the three transitions to hummingbird pollination 

occur within Rhodochiton, a clade containing Gambelia and Galvezia, and the Howelliella which 

was reported to be both bee and hummingbird pollinated.  In the present study, Gambelia and 

Galvezia are not resolved as a monophyletic lineage, and Howelliella is coded as a bee pollinated 

species.   

 

 

Figure 7.  MP reconstruction ofpollinator 
system and cell shape on to the ML 
phylogeny.  a) pollinator system and cell 
shape on dorsal petal lobes.  Three 
independent shifts appear from bee 
pollination to hummingbird pollination 
(left side) with three corresponding shifts 
from conical to non-conical cells (right 
side). b) same mapping except for ventral 
petal lobe cells.  Again there are three 
shifts from bee pollination to 
hummingbird pollination, but this time 
only two transitions from conical to non-
conical. 

  

 After measuring cell shape for the dorsal and ventral petals of 17 species we were able to 

separate species into either having conical or non-conical cells (Fig. 8).  Cells with a 

height/width at half height ratio greater than 0.9 were classified as conical, and cells with a ratio 



34 

of less than 0.9 were classified as non-conical.  Figure 9 shows examples of both classifications 

of cell shape.  Five of 17 species had non-conical cells on the dorsal petal epidermal surface, 

with the other 12 species exhibiting conical cells on dorsal petals (Fig. 8).  Species possessing 

non-conical cells include G. fruticosa, G. speciosa, M. acerifolia, M. rosei, and R. 

atrosanguineum.  Cell shape on the ventral petal lobes showed a slightly different pattern.  Four 

of 17 species exhibited non-conical cells and the remaining 13 species had conical cells on 

ventral petal lobes.  The non-conical species for the ventral petal lobe cells include G. speciosa, 

M. acerifolia, M. rosei, and R. atrosanguineum.  Transitions in cell shape for the dorsal and 

ventral petal lobes were traced separately on to the maximum likelihood tree using parsimony.  

Figure 7a shows that for dorsal petals there appear three independent transitions from conical 

cells to non-conical cells, with one reversal from non-conical cells to conical cells.  Figure 7b 

shows a similar pattern for transitions in cell shape on the ventral petal lobe, but with only two 

independent transitions from conical to non-conical cells, and one reversal to conical cell shape. 
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Figure 8.  Height/width ratios of petal epidermal cells from a) dorsal petal lobes and b) ventral petal lobes.  The red 
line is the cut off between conical and non-conical cells, with a ratio of 0.9.  For the dorsal petal lobes (a), there are 
five species that possess non-conical cells, while for the ventral petal lobes (b) there are four species that posses 
non-conical cells.  Above each bar is the number of cells measured. 
 

 
Figure 9.  Visual representation of conical and non-conical cells.  Each example consists of SEM images and wax 
sections of cells to give a good representation of each.  a & b) Antirrhinum majus dorsal petal lobes, c & d) 
Lophospermum purpusii dorsal petal lobes, e & f) Misopates orontium dorsal petal lobes, g & h) Kickxia elatine 
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dorsal petal lobes, i & j) Mabrya acerifolia dorsal petal lobes, Rhodochiton atrosanguineum dorsal petal lobes, and 
m & n) Galvezia fruticosa dorsal petal lobes.  Scale bars on the SEM images correspond to 20 µm. 
 

 Correlation analysis - The correlation analysis was conducted running two models in a 

likelihood framework.  The first model allowed both traits, cell shape and pollinator type to vary 

independently of each other.  The second model constrained the two traits to depend on each 

other while evolving across our input phylogeny.  Comparing these two models for data on 

pollinators and cell shape from dorsal petals gave a likelihood ratio test statistic of 13.39, which 

when compared to a chi-square distribution with four degrees of freedom, resulted in a p-value of 

0.0095. Analysis of data on pollinators and cell shape from ventral petals yielded a likelihood 

ratio test statistic of 9.49, p-value of 0.0499.  Results from our correlation analyses indicate that 

both dorsal and ventral cells show a significant correlation of cell shape with pollinator type.  

The dependent models for each test calculated transition rates for each combination of traits.  

Although transition rates varied from zero to 526.5, for data from both dorsal petal lobe and 

ventral petal lobe cells, the highest estimated transition rate was from bee pollinated flowers with 

non-conical cells to hummingbird pollinated flowers with non-conical cells (Fig 10).  

  

Figure 10. Reported transitions from the dependent model in the correlation analysis.  a) represents cells on the 
dorsal petal lobe and b) represents cells on the ventral petal lobes.  For both cases the highest transition rate was 
from a bee pollinated flower with non-conical cells to a hummingbird pollinated flower with non-conical cells. 
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 Isolation of MIXTA-LIKE genes - Partial sequences from four orthologs of MIXTA-

LIKE genes were isolated and identified from each of the 17 species investigated in this study, 

shown in Fig. 11. Copies of MIXTA-LIKE 2 from Kickxia elatine and Misopates orontium, as 

well as MIXTA-LIKE 1 from Anarrhinum bellidifolium, could not be amplified.  Gene sequences 

range in size from 331 to 390 bp, with MIXTA and MIXTA-LIKE 1 having 331 bp, MIXTA-LIKE 

2 with 358 bp, and MIXTA-LIKE 3 with 390 bp.  Phylogenetic analysis of the gene sequences 

yield two distinct clades, MIXTA/MIXTA-LIKE 1 and MIXTA-LIKE 2/MIXTA-LIKE 3.  These 

clades have support values of 100/1.0.  Within these two larger clades, the MIXTA/MIXTA-LIKE 

1 clade is separated into two unique clades, each containing one ortholog from each sampled 

species.  Support values for these clades are 91/1.0 and 75/1.0 respectfully.  The clade consisting 

of MIXTA-LIKE 2/MIXTA-LIKE 3 does not form two unique clades, with some orthologs 

grouping with different genes from closely related species, than with other orthologs of the same 

gene.  Support values within this clade are weak. 

DISCUSSION 

 The evolution of petal cell shape is correlated with pollinators - This study was 

designed to test for a correlation between pollinator types and petal epidermal cell shape.  Two 

studies have suggested that 60-80% of all angiosperms have conical cells on the petal epidermis 

(Kay et al., 1981; Christensen and Hansen, 1998); a recent study investigating a single family 

showed similar results (Ojeda et al., 2009).  Using a phylogeny with well-resolved, highly 

supported clades for tribe Anitrrhineae (Fig. 6), we identified three independent transitions from 

bee pollination to hummingbird pollination, and similar transitions from conical to non-conical 

petal epidermal cell shape (Fig. 7).  Additional analyses showed a significant correlation between 

pollinator type and cell shape for both dorsal and ventral petal lobes. This correlation is 

noteworthy because this the first time that presence or absence of conical cells has been 
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Figure 11.  Gene tree containing the four orthologs of MIXTA-LIKE genes isolated from target species.  Shown is the 
ML tree, with support values of ML bootstrap and Bayesian posterior probability.  There is high support for two 
distinct clades that constitute mainly MIXTA/MIXTA-LIKE 1 and MIXTA-LIKE 2/MIXTA-LIKE 3.  Fairly strong 
support for two clades each containing primarily MIXTA and MIXTA-LIKE 1.  No such support for individual clades 
of MIXTA-LIKE 2 and MIXTA-LIKE 3 exists.  Bootstrap support values less than 70 are not shown.  MIXTA-LIKE 
genes from snapdragon are bolded for reference. 
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associated with pollination system.  Christensen and Hansen (1998) speculated on a large scale 

that presence of conical cells is primarily associated with bee pollination, where as loss of 

conical cells may be associated with bird pollination.  However, that study investigated many 

families from across angiosperm diversity and failed to account for phylogenetic history.  This 

study gives strong support to the assertion that there is an association between pollination system 

and petal epidermal cell shape.  

 Most studies that investigate pollinator mediated selection measure floral traits from one 

species along with female or male fitness to determine if particular traits confer a significant 

fitness improvement, primarily through pollinator attraction and pollinator efficiency (Sletvold et 

al., 2010). Examples include longer flower tubes in Gladiolus (Alexandersson and Johnson, 

2002), wider corollas in Ipomopsis (Campbell et al., 1996), experimental flower color in 

snapdragons (Jones and Reithel, 2001), larger petals and altered flowering in Arabidposis 

(Sandring and Agren, 2009), and nectar reward and larger displays in Iochroma (Smith et al., 

2009).  Additionally, many intraspecific studies investigate multiple selective traits, since by 

definition pollination syndromes are suites of traits that affect pollination, presuming that a 

single trait may not be affected at all or as expected by the pressures of pollinators (Castelanos et 

al., 2004; Fenster et al., 2004; Dudash et al., 2011).  Finally, there is evidence that intraspecific 

variation in floral form, such as seen in Gorteria, can arise in the absence of pollinator shifts 

(Ellis and Johnson, 2009).  In addition to intraspecific approaches, which provide evidence for 

the adaptive significance of floral traits, macroevolutionary studies using phylogeny-based 

comparative methods that identify correlated trait evolution provide evidence for adaptation 

(Harvey and Pagel, 1991).  The significant correlation found in this study between petal 

epidermal cell shape and pollinators can be added to the many comparative-method based studies 

that have found evidence that pollinators exert selective pressures on floral traits (Bruneau, 1997; 
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Johnson et al., 2002; Perez et al., 2006; Whittall and Hodges, 2007; Tripp and Manos, 2008; 

Friedman and Barret, 2008; Smith et al., 2008; Alcantra and Lohman, 2010; Smith, 2010).   

 A high rate of transition to hummingbird pollinators in the context of non-conical cells  

Given that there is significant correlation between changes in petal epidermal cell shape and 

pollinators, one might expect that the highest rate of evolutionary transition in this system would 

be from hummingbird pollination with conical cells to hummingbird pollination with non-conical 

cells – essentially that evolutionary loss of conical cells occurs by genetic drift after transitions to 

hummingbird pollination. This hypothesis is consistent with evidence suggesting that conical 

cells are important for both attracting bees and increasing efficiency during bee visitation 

(Glover and Martin, 1998; Noda et al., 1994; Whitney and Glover, 2007; Whitney et al., 2009), 

and a lack of evidence implicating non-conical cells in the attraction and/or pollination efficiency 

of hummingbirds.  For data from both the dorsal and ventral petal lobes, the transition rate from 

hummingbird/conical cells to hummingbird/non-conical cells was quite low (Fig. 10).  Instead, 

for data on epidermal cell shape from both dorsal and ventral petal lobes, the character state 

transition with the highest associated rate was from bee pollinated flowers with non-conical cells 

to hummingbird pollinated flowers with non-conical cells (Fig. 10).  These data suggest that 

shifts to hummingbird pollination are facilitated in a background of non-conical petal epidermal 

cells.  This result is inconsistent with the hypothesis that conical cells are lost by drift when 

selection pressures to maintain them in the context of bee pollination are relaxed.  However, this 

result may be consistent with views that flowers undergo adaptive evolution of traits that 

discourage certain pollinators instead of attracting others during the evolution of pollinator 

switching (Castelanos et al., 2004).  During a transition period, when flowers might be capable 

of pollination by both bees and hummingbirds (a polymorphic state not represented in our 

analyses), transitions to complete hummingbird pollination may be facilitated by the presence of 
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non-conical cells, not because non-conical cells facilitate hummingbird pollination, per se, but 

because non-conical cells discourage bee visitation.   

 The theory that loss of conical cells evolved to discourage bee pollination during 

transition from bee to hummingbird pollination adds to a growing body of evidence where 

selection of certain floral traits discourages a group of pollinators.  Other examples include floral 

color with two explicit examples.  The first is the role that flower color plays between Mimulus 

cardinalis and M. lewisii (Phrymaceae).  These two species can be found in sympatry, but remain 

distinct species predominately by the red flowers of M. cardinalis discriminating against the bees 

that pollinate the pink M. lewisii (Schemeske and Bradshaw, 1999; Bradshaw and Schemske, 

2003).  A second example of flower color is in Petnuia where altered pink flowers are less 

attractive to their normal hawkmoth pollinators than wildtype white flowers (Hoballah et al., 

2007).  Other floral traits that discourage pollinators can be found in Penstemon where stigma 

exersetion, corolla constriction, and pendent flowers discourage bee pollination (Castelanos et 

al., 2004).  Corolla constriction has also been documented in discouraging bee pollinators in 

Polemoniaceae (Grant and Grant, 1965).  Pollen presentation patterns have been documented to 

discourage pollinators based on the presence or absence of what are termed good and bad 

pollinators (Thomson and Thomson, 2002).  Another trait that can deter certain pollinators is the 

scent of the flower determined by the release of volatiles that are found to be unpleasant to some 

pollinators (Schiestl et al., 2011).  Petal epidermal cell shape may fit into this list of floral traits 

that evolved to discourage one type of pollinator, instead of attracting a different pollinator type. 

 Loss of conical cells can be variable across the flower - For the vast majority of the 

species examined in this study, petal epidermal cell shape is relatively consistent across all of the 

petal lobes of the flower.  In most species, if the dorsal petal lobe cells are non-conical, then the 

ventral petal lobe cells are also non-conical (Figs. 8a & 8b).  Even though the ratios of 
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height/width are not exactly the same for both petal lobes, the ratios usually differ by less than 

0.3, and stay in the same categories of conical or non-concial (Fig. 8).  However, one species, 

Galvezia fruticosa differs from this usual pattern.  Cells of the dorsal petal lobes of G. fruticosa 

are determined to be non-conical (ratio of 0.6), whereas on the ventral petal lobe cells are conical 

(ratio of 1.0).  This is suggestive that unique changes in developmental pathways may be 

responsible. 

 Evidence suggests that G. fruticosa conical cell formation is not controlled identically 

across the dorsal and ventral regions of the flower.  Differing development pathways involving 

conical cell formation within a singe flower has been previously documented (Noda et al., 1994).  

An ortholog of MIXTA-LIKE 2, termed PhMYB1, has been isolated from Petunia x hybrida.  

Mutants of phmyb1 show loss of conical cells, similar to snapdragon mixta mutants (Baumann et 

al., 2007).  However, phmyb1 mutants develop non-conical, relatively flat cells on the outer 

(abaxial) petal epidermis, whereas the inner (adaxial) petal epidermis is comprised of conical 

cells (Baumann et al., 2007).  This work demonstrates that the cellular developmental control of 

conical cell formation does not have to be identical throughout the flower. 

 A role for MIXTA genes cell shape evolution - Pioneering studies in snapdragon have 

determined the necessity of four orthologs MIXTA, MIXTA-LIKE 1, MIXTA-LIKE 2 and MIXTA-

LIKE 3 for conical cell formation (Noda et al., 1994; Glover et al., 1998; Martin et al., 2002; 

Perez-Rodriguez et al., 2005; Baumann et al., 2007; Jaffe et al., 2007).  Orthologs of these genes 

have been found to have similar functions in other core eudicots including Petunia x hybrida 

(van Houwelingen et al., 1998), Arabidopsis thaliana (Baumann et al., 2007), and Gossypium 

hirusutum (cotton, Machado et al., 2009), as well as in the early diverging eudicot lineage, 

Thalictrum (di Stilio et al., 2009).  These studies make the MIXTA-LIKE genes strong candidates 

for determining the developmental genetic basis for shifts in cell shape seen in this study.   
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 In addition to finding a significant correlation between pollinator types and petal 

epidermal cell shape, partial sequence of the four MIXTA-LIKE othrologs were identified from 

most species in this study.  With the exception of MIXTA-LIKE 2 in Kickxia elatine and 

Misopates orontium, and MIXTA-LIKE 1 in Anarrhinum bellidifolium, all four orthologs have 

been identified from all study species.  Additional data are required to determine if lack of 

isolation of these paralogs is due to gene divergence or genes loss.  Finding all four MIXTA-

LIKE paralogs from the Antirrhineae taxa sampled, suggests that three duplication events, giving 

rise to four MIXTA-LIKE paralogous lineages, occurred before the diversification of 

Antirrhineae.  The implications for the presence of all four paralogs in each species is that if the 

MIXTA-LIKE genes are contributing to loss of conical cells, it is not by gene loss (K. elatine, M. 

orontium and A. bellidifolium all have conical petal epidermal cells).  Rather, these genes may 

have altered expression patterns or functions.  A future direction of this project is to investigate 

the expression patterns of each paralog in a given species, and across transitions in pollination 

type and loss of conical cells.  
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Appendix 1. GenBank Accession numbers 

Table of downloaded GenBank gene sequences of DEFICIENS and GLOBOSA from a wide 

range of taxa used for phylogenetic analyses. 

Taxon; DEF/GLO GenBank accession. 

Antirrhinum majus L.; AmDEF X52023, AmGLO AB516403.  Arabidopsis thaliana L.; 

AtAP3 NM_115294, AtPI NM_122031.  Brassica napus L.; BnAP3 DQ372719.  Camellia 

japonica L.; GQ141126.  Chelone glabra L.; CgDEF AY524008.  Diospyros digyna Jacq.; 

DdGLO GQ141136.  Lycopersicon esculentum L.; LeTAP3 DQ674532, LeTPI DQ674531.  

Mimulus guttatus DC.; MgDEFA AY524012, MgDEFB AY524020.  Mimulus kelloggi (Curran 

ex Greene) Curran ex A. Gray; MkDEF AY530545.  Misopates orontium (L.) Raf.; MoDEF 

AM162207, MoGLO Am162211.  Napoleona vogelii Hook. & Planch; NvGLO GQ141117.  

Papaver somniferum L.; PsAP3-1 EF071993, PsAP3-2 EF071992, PsPI-1 EF071994, PsPI-2 

EF071995.  Paulownia tomentosa (Thunb.) Steud.; PtDEF AY524018.  Petunia hybrida Juss.; 

PhDEF DQ539416.  Phlox paniculata L.; PpDEF GQ141172, GQ141129.  Rhodochiton 

atrosanguineum L.; RaDEF XXXXXXX, RaGLO XXXXXX.  Saxifraga caryana L.; ScAP3 

DQ479367.  Syringa vulgaris L.; SvAP3 DQ479367, SvPI-1 AF052861.  Torenia fournieri L.; 

TfGLO AB359952. 
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Appendix 2.  GenBank accession numbers for MIXTA-LIKE genes 

Table of downloaded and newly sequenced GenBank gene sequences of MIXTA, MIXTA-LIKE 1, 

MIXTA-LIKE 2, and MIXTA-LIKE 3 genes in members of Antirrhineae (Plantaginaceae). 

Taxon; MIX/ML1/ML2/ML3 GenBank accession. 

Anarrhinum bellidifolium L.; AbMIX XXXXXXXX, AbML2 XXXXXXXX, AbML3 

XXXXXXXX. Antirrhinum majus L.; AmMIX X79108, AmML1 AJ006292, AmML2 

AY821655, AmML3 AY661654.  Asarina procumbens Miller; ApMIX XXXXXXXX, ApML1 

XXXXXXXX, ApML2 XXXXXXXX, ApML3 XXXXXXXX. Cymbalaria muralis P. Gaertner, 

B. Meyer & Scherb.; CmMIX XXXXXXXX, CmML1 XXXXXXXX, CmML2 XXXXXXXX, 

CmML3 XXXXXXXX. Galvezia fruticosa J.F. Gmelin; GfMIX XXXXXXXX, GfML1 

XXXXXXXX, GfML2 XXXXXXXX, GfML3. Gambelia speciosa Nutt.; GsMIX 

XXXXXXXX, GsML1 XXXXXXXX, GsML2 XXXXXXXX, GsML3 XXXXXXXX. Kickxia 

elatine (L.) Dumort.; KeMix XXXXXXXX, KeML1 XXXXXXXX, KeML3 XXXXXXXX. 

Linaria vulgaris Miller; LvMIX XXXXXXXX, LvML1 XXXXXXXX, LvML2 XXXXXXXX, 

LvML3 XXXXXXXX. Lophospermum erubescens D. Don in Sweet; LeMIX XXXXXXXX, 

LeML1 XXXXXXXX, LeML2 XXXXXXXX, LeML3 XXXXXXXX. Lophospermum purpusii 

(T.S. Brandegee) Rothm.; LpMIX XXXXXXXX, LpML1 XXXXXXXX, LpML2 

XXXXXXXX, LpML3 XXXXXXXX. Mabrya acerifolia (Pennell) Elisens; MaMIX 

XXXXXXXX, MaML1 XXXXXXXX, MaML2 XXXXXXXX, MaML3 XXXXXXXX. Mabrya 

rosei (Munz) Elisens; MrMIX XXXXXXXX, MrML1 XXXXXXXX, MrML2 XXXXXXXX, 

MrML3 XXXXXXXX. Maurandella antirrhiniflora (Willd.) Rothm.; MaMIX XXXXXXXX, 

MaML1 XXXXXXXX, MaML2 XXXXXXXX, MaML3 XXXXXXXX. Maurandya scandens 

(Cav.) Pers.; MsMIX XXXXXXXX, MsML1 XXXXXXXX, MsML2 XXXXXXXX, MsML3 

XXXXXXXX. Misopates orontium (L.) Rafin.; MoMIX XXXXXXXX, MoML1 XXXXXXXX, 
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MoML3 XXXXXXXX. Rhodochiton atrosanguineum (Zucc.) Rothm.; RaMIX XXXXXXXX, 

RaML1 XXXXXXXX, RaML2 XXXXXXXX, RaML3 XXXXXXXX. Sairocarpus 

coulterianum (A. DC.) D. A. Sutton; ScMIX XXXXXXXX, ScML1 XXXXXXXX, ScML2 

XXXXXXXX, ScML3 XXXXXXXX. 

 

 

 


