
Type-Directed Specification Refinement
By

c© 2011
Mark Huntington Snyder

Submitted to the graduate degree program in Electrical Engineering and Computer Science and
the Graudate Faculty of the University of Kansas in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Dr. Perry Alexander, Chairperson

Dr. Andrew Gill

Dr. Nancy Kinnersley

Dr. Prasad Kulkarni

Dr. Jeremy Martin

Date Defended:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213394682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Mark Huntington Snyder

certifies that this is the approved version of the following dissertation:

Type-Directed Specification Refinement

Dr. Perry Alexander, Chairperson

Dr. Andrew Gill

Dr. Nancy Kinnersley

Dr. Prasad Kulkarni

Dr. Jeremy Martin

Date Approved:

ii

Abstract

Specification languages serve a fundamentally different purpose than general-purpose programming lan-

guages, and their type systems reflect these needs. Specification type systems must record and track more

information for us to reason about a system adequately, and this added expressiveness may lead to an un-

decidable typing analysis. System level design begins with a high-level specification that is continually

refined and expanded with implementation details, constraints, and typing information, down to a concrete

specification. During this refinement process, the system is underspecified, and many static analyses aren’t

applicable until the system is fully specified. However, partial specifications contain valuable information

that can inform the refinement process—we can locally inspect parts of the specification from a typing per-

spective to look for inferrable information or inconsistencies early on to aid the refinement process. This

work defines a typing analysis that gathers constraints and typing information to inform the specification

refinement process. It explores localized techniques such as local type inference and tracking of values as a

means of influencing the specification refinement process.

iii

Acknowledgements

I’d like to thank my advisor Dr. Perry Alexander for the years of guidance and seeing me through to the

very end. Whether I needed another round of edits on some paper or a life lesson, he found the time and the

words I sought. I’d also like to thank my committee for giving the considerable time and attention required

for the lengthy process. I also am indebted to my family for being a lifeline across the thousand-plus miles,

keeping me grounded and positive. I’ve also been fortunate to have found friendship with many people

throughout my stay in Lawrence, Kansas – this has truly become a place I will miss, and remember fondly.

I’d especially like to thank my labmates for all their help and camaraderie — Garrin Kimmell, Nicolas

Frisby, Philip Weaver, Jennifer Lohoefener, Evan Austin, Megan and Wesley Peck, Kevin Matlage, Andrew

Farmer, Michael Jantz, and everyone else who has shared deskspace in 145 Nichols over the past seven

years. I’ve received exceptional support from the faculty as well – I received wonderful teaching guidance

from Dr. Nancy Kinnersley, and I spent most of my class and research time around Dr. Andrew Gill and

Dr. Prasad Kulkarni when I ventured beyond my research group and classes under Perry. I wouldn’t have

succeeded how I did without being surrounded by all these wonderful, supportive people.

iv

Contents

Acceptance Page ii

Abstract iii

1 Introduction 1
1.1 Thesis Experimentation and Evaluation . 2

1.2 Summary . 5

2 Related Work 6
2.1 Type Systems . 6

2.1.1 The Lambda Cube . 6

2.1.2 Simply Typed Lambda Calculus . 7

2.1.3 System F2 . 10

2.1.4 System λω . 12

2.1.5 System Fω . 14

2.1.6 LF , the Logical Framework . 16

2.1.7 System λP . 20

2.1.8 Calculus of Constructions . 20

2.1.9 Pure Type Systems . 21

2.1.10 System FC(χ) . 25

2.1.11 System F<: . 26

2.1.12 Relation to Current Work . 27

2.2 Type Inference . 27

2.2.1 Algorithm W . 28

2.2.2 Local Type Inference . 29

2.2.3 Definitions and Typing Rules for Local Type Inference 30

2.2.4 Type Inference of System F2 . 32

2.3 Dependent Types . 33

2.4 Refinement . 34

2.5 Summary . 37

v

3 Background Work 38
3.1 The Rosetta Type System . 38

3.1.1 Standard Types and Operators . 38

3.1.2 Composite Types, Constructed Types . 41

3.1.3 First-Class Types . 42

3.1.4 Building Blocks - Facets . 43

3.1.5 Reflection and Interactions . 44

3.1.6 Rosetta Type System Summary . 46

3.2 Rosetta Alpha Type Checker . 46

3.3 Preparatory Typing Work . 49

3.3.1 Local Type Inference on ASG’s . 49

3.3.2 Error Reporting . 50

3.4 Summary . 50

4 Methodology 51
4.1 Introduction . 51

4.2 Defining Rosetta Typing Rules . 52

4.2.1 A Note on Lists . 54

4.2.2 Qualified Names . 55

4.2.3 Design Units . 56

4.2.4 Use Clauses . 57

4.2.5 Quantified Parameters . 57

4.2.6 Applications . 58

4.2.7 Variables . 59

4.2.8 Functions . 60

4.2.9 Direct Functions . 60

4.2.10 Anonymous Functions . 61

4.2.11 Further Binding Sites: Functions and Lets . 61

4.2.12 Sequence Predicates and Operators . 62

4.2.13 Control-Flow Expressions . 63

4.2.14 Ascriptions . 64

4.2.15 Constructed Types . 64

4.2.16 Mathematical Operators . 65

4.2.17 Top and Bottom Literals . 66

4.3 Subtyping Relationship . 66

4.3.1 Subtyping for Primitive Types . 67

4.3.2 Subtyping for Composite (Structural) Types . 68

vi

4.3.3 Subtyping for Functions . 69

4.3.4 Subtyping for User-Defined Datatypes . 70

4.3.5 Explicit Subtype Definitions . 70

4.4 Developing the Typing Analysis . 71

4.4.1 Reference Algebras . 71

4.4.2 Tasks for Basic Type Checking . 79

4.5 Partial Information Approaches . 82

4.5.1 Witnesses . 83

4.5.2 Nodes as Types . 84

4.5.3 Substitutions . 85

4.5.4 Size control . 87

4.5.5 Presburger Arithmetic . 87

4.5.6 Local Type Inference . 90

4.6 Error Reporting . 93

4.7 Summary of Methodology . 97

5 Evaluation 100
5.1 The Type System . 101

5.2 Basic Typing . 102

5.3 Partial Typing . 107

5.3.1 Local Type Inference . 107

5.3.2 Witnesses . 108

5.3.3 Tracking Sizes . 108

5.3.4 Error Reporting and Graph Annotations . 109

5.4 Driving Specification Refinement . 110

A Rosetta Typing Rules 112
A.1 Design Units . 112

A.2 Use Clauses . 115

A.3 Quantified Parameters . 116

A.4 Qualified Names . 117

A.5 Variables . 117

A.6 Applications . 117

A.7 Functions . 118

A.7.1 Direct Functions . 119

A.7.2 Anonymous Functions . 120

A.8 Let-expressions . 120

A.9 Sequence Predicates . 121

vii

A.10 Control-Flow Expressions . 121

A.11 Ascriptions . 122

A.12 Constructed Types . 123

A.13 Rosetta-Standard Operators . 123

A.13.1 Composite Types . 123

A.14 Set Operations . 124

A.15 Multiset Operations . 125

A.16 Sequence Operations . 127

A.17 Bitvector Operations . 130

A.18 Mathematical Operators . 131

A.19 Addition . 131

A.20 Subtraction . 132

A.21 Multiplication . 132

A.22 Division . 133

A.23 Exponentiation . 133

A.24 Exponentials . 134

A.25 Negation and Identity for Numbers . 134

A.26 Bit and Boolean Operators . 134

A.27 Functions over Complex Numbers . 135

A.28 Trigonometry and More with Complex Numbers . 136

A.29 Mathematical Constants . 136

A.30 Real, Imaginary Math Ops . 137

A.31 Rational Number Operations . 138

A.32 Integer and Natural Number Operations . 138

A.33 Character Operations . 139

A.34 Top and Bottom Literals . 140

viii

Chapter 1

Introduction

Complex languages often provide features that make typing analysis or type inference over them undecid-

able. Whether the language combines subtyping with inferred polymorphism, dependent types, or existential

types, these languages still have a place in the programming and specification communities—we can express

more in our programs and specifications, at the expense of interpretability. Specification languages in par-

ticular benefit from these advanced features, as the work itself is more invested in formality and provable

correctness of properties than executability. If we cannot simply perform a complete typing analysis for

type safety, what rôle should the type system have? It is still beneficial to provide partial typing information,

and this is especially true in partially-defined specifications. Writing a top-level specification and refining

towards a concrete representation is at the the heart of system-level design, and providing partial typing

information early in the design process is worth the effort. Features that are decidably typable should still be

type-checked, and restrictions of features that introduce typing undecidability ought to be explored to pro-

vide as much information as is practical. In particular, we look to techniques that are localized, techniques

that meaningfully interpret the information available from a limited vantage point, especially techniques

that do not assume completeness of information and that do not operate globally. The purpose is to interpret

the information as it becomes available in order to find more concrete information and constraints on the

under-constrained specification.

1

Thesis Statement:

Using localized type analyses, we can gather and report information from partial, incomplete

specifications that will guide the specification refinement process.

In order to test this thesis, we explore the type system for the Rosetta specification language [5, 6].

Rosetta has a non-trivial type system that has not been fully formally defined. This work formally defines

elements of the Rosetta type system, and implements a typing analysis over Rosetta. A key goal of this

research is to complement the specification process with partial typing information; specifications written in

top-down fashion often lack enough information to perform traditional type checks, and so the nature of the

specification refinement process will guide the typing implementation efforts.

The Rosetta type system is quite expressive; from simple expressions, functions, components and facets

to meta-programming facilities, universally quantified parameters and dependent typing, there are many

cross-cutting concerns to address. We discuss the foundations of formal type system definitions and lay out

an approach to defining the type system of a language such as Rosetta. This work also implements a partial

typing analysis for Rosetta, to test the effects of local type inference on the specification refinement process.

1.1 Thesis Experimentation and Evaluation

In order to test the thesis statement, this work provides a formal definition of the Rosetta type system a

typing analysis over Rosetta specifications. The formal definition of Rosetta’s type system gives a solid

foundation for reasoning, and the type information analysis provides the actual hints and cues expected to

motivate the thesis statement itself.

In this work, we create a set of type rules that allow deriving a Rosetta expression’s type judgement.

As with any type system, this is not required to be an algorithmic presentation of how to find the types, but

presents a set of rules that can be applied in some appropriate order to arrive at a typing conclusion. It is a

separate effort to provide algorithmic rules to perform typing in Rosetta. Rosetta allows dependently typed

entities, and dependent typing leads to non-decidable type analysis unless usage is sufficiently restricted.

This means that there may not be such a set of rules for Rosetta in its entirety. For this reason, this proposal

does not claim it can provide an algorithmic set of typing rules for Rosetta. We define appropriate restrictions

2

for Rosetta and for the typing analysis performed to retain decidability in typing. The Rosetta language in

general does not yet have a fully formally defined type system, however, and so this type system definition

will provide opportunities to clarify the language’s type system.

There are pre-existing partial definitions of the Rosetta type system. This proposal will rely on all exist-

ing documents on the Rosetta language in defining the Rosetta type system, as long as they are collectively

coherent. This proposal will focus these efforts by collecting and extending definitions of the language’s

type system. It can function as a single source of typing semantics for the language, rather than typing being

an implication of definitions strewn throughout the language documents.

This work also provides a typing analysis capability for Rosetta. As mentioned above, simply adding

dependent typing to a language can make typing analysis undecidable; in implementing a typing analysis for

Rosetta, there of course must be limitations on what the typing analysis can guarantee to test, or limitations

to what the Rosetta language should allow. The focus is towards analyses that can utilize partial results,

such as local type inference or collection of constraints and tracking values.

Typing is one of the few analyses that makes sense to apply over the entirety of Rosetta. Since Rosetta

provides for a confluence of domains, any analysis that is defined in terms of one domain in particular

cannot, by definition, be defined for all of Rosetta. For instance, timing concerns are non-sensical in the

static domain; integrity over non-security domains is a meaningless concept. What really separates these

different analyses from typing is a trade-off between generality and specificity. While typing Rosetta must

interact with all features of the language in some fashion, the very fact that it must be defined over the entire

language sometimes means that it will be a simple analysis. Recursively defined let-bindings in Rosetta

are simpler to type using the required ascription than to evaluate in other analyses. Typing analysis must

interact with all features of the language, yes, but at the same time typing Rosetta almost exclusively needs

to consider the types.

In implementing typing as a Rosetta analysis, this work must address the usage of dependent types com-

mon to Rosetta specifications. Rosetta types are first-class values, without a common separation between the

world of term values and the world of type values. Type checking cannot devolve into a Rosetta “evaluator”

in order to calculate these uses of dependent types, so finding an appropriate cut-off to its usage will be key

to achieving an actual implementation.

3

The Rosetta typing analysis targets the specification refinement process. Therefore, the focus is in

collecting any type-related information and presenting it to the specifier. Some typing information will be

available in traditional ways, but other means of inference expects and accepts partial specifications. Even

on under-specified systems, this typing analysis will collect information and check for any inconsistencies

it can recognize. The expectation is that this information can somehow be organized and presented to

the specifier to indicate areas of underspecification or inconsistent specifications, in the form of warning

and error messages. For example, local type inference can help infer omitted type parameters, even when

other parts of a specification are incomplete. If a specification defines a type with no information about

the type, then uses of the type will constrain the actual semantics of the type; this information can be

collected and presented to the specifier. Overall, the purpose of the analysis is not just a correctness check,

but a source of inferred and collected knowledge about the specification’s types that further informs the

refinement procedure.

This work yields two artifacts — a type system definition in the form of a set of typing rules, and a

typing analysis implementation for Rosetta in the form of an executable analysis that plugs into the current

architecture and framework of Rosetta tools. The purpose of the Rosetta typing analysis is to facilitate

the specification refinement process. Therefore, the focus of the typing analysis is in what ways typing

information aids the refinement process. As for the type system definition, if it is consistent with itself and

covers all the typing features expressed and checked by the analysis, then it is by construction a definition of

the Rosetta type system. To what degree we need qualifications and assumptions to provide a type system

will be as good an indication as any that the work is faithfully defining the Rosetta type system. Similarly,

the degree to which actual specifications are covered by the typing analysis tool will dictate how successful

the implementation is, and how successfully this work achieves its goals. We look for common situations

in refinement that the typing analysis can address as a source of its effectiveness. Some possible sources of

those situations are described later, but some examples are local type inference,tightly controlled evaluation

for dependent types, and tracking of values. These situations are the topics that allow testing the thesis

statement.

4

1.2 Summary

This work formally defines the type system of the Rosetta specification language, a much needed reference

for a language as complex as Rosetta is. Accompanying this formal definition will be a typing analysis over

Rosetta specifications. Typing is an analysis that naturally ranges over all of the language definition, which

by Rosetta’s inclusion of dependent typing will not actually be able to decidably cover all of Rosetta’s

features. Rosetta is a specification language, so typing will focus on aiding the specification refinement

process through partial analysis, constraints collection, and traditional typing analysis where applicable.

This implementation must be faithful to the formal definition of the language while covering the language as

fully and decidably as it can. The typing analysis focuses on applying typing concepts to partially specified

specifications, in order to test the thesis statement that such information can aid the specification refinement

process.

5

Chapter 2

Related Work

2.1 Type Systems

Languages are mixes of representation and meaning. They are normally represented as syntax in the form

of grammars and given meaning through sets of rules that define typing, evaluation, and any other semantics

inherent in the language. We often study languages by adding features to simple existing languages that are

theoretically well-understood, incrementally expanding our understanding of the impact that individual fea-

tures have on the expressiveness of languages. In this section, we survey a number of languages, exploring

the significance of their prominent features. We must have an understanding of these implications in order

to adequately address a language such as Rosetta that admits such features, and consequently to discuss a

typing analysis over such a language.

These languages are only presented to introduce specific features such as type level computation, so we

do not include definitions such as Booleans, numerical types, lists or records. Even more complex additions

such as abstract data types (ADTs) and references do cross-cut the concerns of these languages, but we

omit them in order to discuss these languages’ features in their simplest form. We adopt syntax for these

languages as is found in Pierce’s invaluable book [38].

2.1.1 The Lambda Cube

Henk Barendregt formalized a group of well-studied languages [8], placing them all into a single framework

called the lambda cube (fig. 2.1) or alternatively the Barendregt cube. In this survey of common theoretical

6

Figure 2.1: The Lambda Cube.

languages, we analyze this cube by investigating the languages comprising its corners. The lambda cube

codifies four basic abstractions1 – terms abstracted over terms, terms abstracted over types, types abstracted

over types, and types abstracted over terms. At the ‘base’ of the cube is the simply typed lambda calculus,

where terms may abstract over terms. The other three abstractions correlate to the three axes of the lambda

cube. Combinations of features account for the remaining corners. Using the lambda cube as a road map

for this discussion, we discuss the simply typed lambda calculus, the three other axes, as well as a few other

languages. This will incrementally expand the discussion up to the level of languages involved in the thesis

and the implementation.

2.1.2 Simply Typed Lambda Calculus

The simply typed lambda calculus is the simplest typed language definition. Define terms t and types T as

simple grammars:

t = x | λx:T.t | (t t)

T = T→T

1An abstraction represents an expression with a free variable we may later substitute a supplied value for throughout the expres-
sion. What kind of expression we represent in an abstraction and what kind of value for the free variable we may supply determine
properties of the language. A function with one argument is a simple example of an abstraction.

7

x represents a variable. λ -abstractions allow us to create functions – the input parameter is to be named

some variable x, it must have the annotated type T, and the output is the resulting body t of the λ -expression.

To supply expressions as arguments to λ -abstractions, we construct applications with parentheses – first the

function, then the argument. This simple mechanism of abstractions and applications with term variables

to utilize the abstracted values gives us a simple language definition that strongly normalizes, meaning that

evaluating a well-typed term in the language always terminates. It is therefore not Turing-complete, though

the untyped lambda calculus is. Our types reflect the ability to constrain values to particular sets of values

and to create functions that map elements of one type to elements of another type. If we were to add

Booleans to our language, we could simply add to the term and type grammars:

t = ... | true | false | if t then t else t

T = ... | Bool

Now we have a type other than T → T ; by itself, the type grammar couldn’t actually represent any finite or

useful type, only infinitely substituting T with T → T . Now we can create a function λx:Bool.x, whose

type is Bool→Bool, indicating that when applied to a Bool value it will return a Bool value. This is

the identity function for booleans. The simply typed lambda calculus does not allow for any recursion;

we cannot represent a function that calls itself recursively, we cannot create any non-terminating behavior.

Furthermore, we cannot reuse the identity function for any non-boolean values; if we want an identity

function for numbers, or for functions or anything else, we must create a separate definition. This behavior

is true for any function definition; for instance, if we wanted to provide a library of list functions, we would

have to duplicate the entire library for lists of booleans, lists of naturals, lists of a particular function type,

and so on. We will see ways to relax these concerns in the languages discussed below.

We now turn our attention to the typing rules for the simply typed lambda calculus. We define an

environment, Γ, which we use to keep track of the names that are in scope.

Γ = /0 | x:T,Γ

Variables are added to this environment by lambda abstractions to link occurrence of the newly-bound

variable to its type. Below are the typing rules for the three syntactic forms in the simply typed lambda

calculus.

8

x : T ∈ Γ (Var)

Γ ` x : T

Γ,x : TD ` tr : TR (Abs)

Γ ` λx : TD.tR : TD→ TR

Γ ` t1 : TD→ TR Γ ` t2 : TD (App)

Γ ` t1t2 : TR

We see that variables are simply looked up in the environment; indeed, there is no other way to un-

derstand the meaning of the variable, and this is the only place in this language where we inspect the

environment. For abstractions, we consider the domain type (TD) and range type (TR). We check that bind-

ing the variable (x) to the domain type can inform the context sufficiently to guarantee that tr:TR, and

conclude that the lambda abstraction is a mapping from TD to TR. The bound variable must be added to the

environment in order to derive the body’s type — this is the only way in which the environment is extended

in this language. Last, consider applications, in which we must see a mapping type (→) and an argument

of the correct type. The subscripts are again fashioned in terms of the domain and range of the abstraction

function, and the argument must be of the domain type. If these constraints are met, the overall resulting

type is the range type.

These rules do not tell us directly how to apply them to a particular term. Instead, they tell us that if

we can find an appropriate application of these rules to our term, we can find a type for the term. These

typing rules also dictate nothing of the evaluation of the language; there is no notion of call-by-value ver-

sus call-by-name implied by these typing rules, either of which could be supported by a similar set of

rules for the semantics of evaluation. Consider applying the boolean identity function to a boolean value:

((λx:Bool.x) true). We can build up a ‘derivation tree’ [38] that shows how the above rules apply

to our term in Fig. 2.2.

At the bottom of this derivation tree is the application term and found type for it, while the derivation trees

for its sub-terms show above the line with their own reasonings. This chains together the rules of the type

9

x :Bool ∈ (/0,x :Bool)
(Var)

/0,x :Bool ` x :Bool

/0 ` λx :Bool.x : Bool→ Bool
(Abs)

/0 ` true : Bool
(T−true)

(App)
/0 ` ((λx :Bool.x) true) : Bool

Figure 2.2: Example derivation tree.

system, with only the unconditional axioms at the tops (leaves) of the derivation. This language is simple

enough that there will be just one derivation possible; later on, we will see that this is not always the case.

Syntax-directed ‘algorithmic’ typing rules will preserve this property of there being exactly one rule that

we can apply in any particular situation. Just as parsers need unambiguous grammars to ensure they yield

predictable and meaningful results, a typing implementation needs an unambiguous set of typing rules to

reliably yield the same correct types.

2.1.3 System F2

System F2 [41], also called the polymorphic lambda calculus, expands on the simply typed lambda calcu-

lus by adding type abstractions and type applications to the term-space, and by adding type variables and

universal types to type-space. This introduces abstractions of terms that depend on types, which may be

understood as functions that accept a type parameter and result in a term. We expand on the definitions for

terms t, types T, and environment Γ from the simply typed lambda calculus. X refers to a type variable.

t = ... | λX.t | (t [T])

T = ... | X | ∀X.T

Γ = ... | X,Γ

We consider the new typing rules for System F2’s new constructs below. A type abstraction’s body

results in the ∀ universal type. For type applications we ensure that a universal-typed term is applied to a

type, and the resulting substitution with that type argument is our resulting type.

10

Γ,X ` tr : TR (Ty-Abs)

Γ ` λX .tr : ∀X .TR

Γ ` t f : ∀X .T (Ty-App)

Γ ` t f [Targ] : [X 7→Targ]T

These additions allow us to relax the identity function to solve our previous problem. Instead of creating

separate functions at every type we’d use them, we could create functions like these:

id :: ∀X.X→X

id = λX. λx:X.x

flip::∀A. ∀B. ∀C. (A→B→C) → B → A → C

flip = λA. λB. λC. λf:A→B→C. λb:B. λa:A. ((f a) b)

We see the new ∀ universal type constructs as well. We can use our new identity function with the

new application. Though we’ve avoided defining evaluation’s own set of derivation rules, we inspect the

normalization (evaluation) of the polymorphic identity function id to understand how these features behave.

((id [Bool]) true)

⇒

(((λX. λx:X.x) [Bool]) true)

⇒

((λx:Bool.x) true)

⇒

true

System F2 is impredicative, in that a quantified type may quantify over itself. For example, ((id

[∀X.X→X]) id)::∀X.X→X. Much like the value application and substitution of the simply typed

11

lambda calculus that we see in the third line, we can now apply type values to type abstractions to sub-

stitute for all occurrences of that type argument throughout the type abstraction’s body. This is the only

change that System F2 introduces, but it is powerful. Assuming we have lists defined in our language as

well, we can now write parametrically polymorphic list operations that will work on lists containing any

particular type of values:

cons :: ∀A. A → List A → List A

head :: ∀A. List A → A

map :: ∀A. ∀B. (A → B) → List A → List B

It is often the case that new language features such as the type abstraction and type application of System

F2 best showcase their abilities with the addition of other features such as Lists and other structured data.

Notice that we could have defined map’s type as ∀B. ∀A. (A→B)→List A→List B, and it would

have the same effect, but since we apply the types explicitly, usage would have to then supply the type

arguments in this new order.

The explicit application of type arguments is System F2’s Achilles’ Heel. When we rely heavily on

polymorphic code, we find that type abstractions and type argument applications litter the code to the point

of distraction and obfuscation. The requirement to write all these typing ascriptions ultimately turns pro-

grammers away from purely System F2-based languages. It still can find use as the internal representation

of languages. However, translation from an external language that does not require all the ascriptions to an

internal language that explicitly maintains the ascriptions can be problematic, especially in the presence of

sub-typing and other features.

2.1.4 System λω

Although the simply typed lambda calculus provides types to organize our terms, there is nothing to organize

our types. System λω
2 extends the simply typed lambda calculus by providing kinds to group our types

2Barendregt [8] identifies System λω as essentially the System F of Girard [19] (which is in French), but Pierce [38] offers a
more accessible and modern introduction.

12

in much the same way that types group our terms. With kinds available, System λω also provides type op-

erators, type abstractions, and type applications. This provides, in effect, a copy of the simply typed lambda

calculus at the type level instead of at the term level. We can create type-abstractions, type-applications, and

we consider the ‘type of a type’, called a kind.

We re-define terms, types, and Γ, and introduce kinds:

t = x | λx:T.t | (t t)

T = T→T | X | λX::K.T | (T T)

Γ = /0 | Γ,x:T | Γ,X::K

K = * | K ⇒ K

Now that we have an extra layer of classifications for our language via kinds, we need not just typing

rules, but kinding rules also. We normally think of types as sets of values, but types that ‘contain’ values are

actually called proper types, always of kind *. Types whose kind involves the ⇒ operator are called type

operators, needing additional type arguments of particular kinds before they produce proper types. This

implies that there are no terms whose type’s kind is *⇒*. Following are the basic kinding rules for System

λω . Just as we have type rules to address all forms of terms, we have kinding rules for all forms of types.

X :: K ∈ Γ (K-TVar)

Γ ` X :: K

Γ,X :: KD ` TR :: KR (K-Abs)

Γ ` λX :: KD.TR :: KD⇒ KR

Γ ` TF :: KD⇒ KR Γ ` TD :: KD (K-App)

Γ ` TFTD :: KR

13

Γ ` TA :: ∗ Γ ` TB :: ∗ (K-Arrow)

Γ ` TA→ TB :: ∗

These rules truly look like the simply typed lambda calculus at the type level. The only addition is

K-Arrow, ensuring that any types used in types of term-level abstractions truly are proper types with kind *.

This does introduce an issue of type equivalence–just as terms must be normalized to check for equivalence,

our ‘computable’ type expressions must now be normalized prior to checking type equivalence. The type

equivalence check is really just a closure of reflexive, symmetric, transitive, and eta-expanded equivalence

over the structure of the types. The lack of a sub-typing relation also keeps this equivalence relation simple.

System λω does not extend System F2, so universal types (∀) are not present. What System λω provides

is somewhat limited by itself: we can have terms depend on terms with basic term-level λ abstractions, and

we can have types depend on types with type-level λ abstractions, but we cannot mix the two levels in any

way. Any type ascriptions we have for terms will invariably be of kind *. Our types are still islands of

abstracted computation that may make things easier to phrase, but in the end we cannot link different terms’

types together in any meaningful fashion, and certainly not with any parametrically polymorphic types in

System λω . The term-level type abstraction of System F2 allows us to create terms that depend on types. But

just as the addition of primitive list definitions aids in showcasing System F2’s power, System λω becomes

useful in confluence with other features, namely System F2’s universal types. The combination of System

F2 and System λω is called System Fω , and we look at it next.

2.1.5 System Fω

System Fω [19, 38, 41] combines the term-level type abstractions and applications of System F2 with the

type-level type-abstractions and applications of System λω . This marriage of type-level type abstractions

and term-level type abstractions allows for parametrization of types in type abstractions. Furthermore,

term-level type abstractions provide kind information for the abstracted type (λA::K.t), meaning that we

can create term-level type abstractions over any valid type-level syntax, including over type operators.

14

t = x | λx:T.t | (t t) | λT::K.t | (t [T])

T = T→T | X | λX::K.T | (T T) | ∀X::K.T

K = * | K⇒K

Γ = /0 | Γ,x:T | Γ,X::K

This language introduces the ability to parametrize a term over type operators (kinds including⇒), not

just over proper types of kind *.

idty−op ::∀A::(*⇒*).∀X::*.A X→A X

idty−op = λA::(*⇒*).λX::*.λx:(A X). x

We can now introduce concepts such as pairs to the language without having to make them primitive lan-

guage constructs. A language unable to parameterize a term over a type would need to implement the pair

type’s polymorphism directly. If we assume the encoding for pairs as in the definition below, we can then

define the pair constructor and the observers fst and snd (see [38] exercise 23.4.8, also §30.2).

Pair (X::*) (Y::*)
de f
= ∀R::*. (X→Y→R) →R

pair :: ∀A::*. ∀B::*. A → B → Pair A B

pair = λA::*. λB::*. λa:A.λb:B.λR::*.λf:(A→B→R). f a b

fst :: ∀A::*. ∀B::*. Pair A B → A

fst = λA::*. λB::*. λp:(∀R::*.(A→B→R)→R). p [A] (λf:A. λs:B. f)

snd :: ∀A::*. ∀B::*. Pair A B → B

snd = λA::*. λB::*. λp:(∀R::*.(A→B→R)→R). p [B] (λf:A. λs:B. s)

15

The addition of existential types would allow even better enforcement by allowing us to package all

the list operations together and abstract the interface. This could remove the motivation to create a type

synonym for Pair, as the type would be brought into scope via the packaging of the existential type and

scoped body.

If we introduce existentials and a direct way to create abstract data types3, this type operator abstraction

becomes much more powerful: we can then create polymorphic data structures such as lists, tuples, and

trees directly within the language without primitive support for them by packaging all the constructors and

observers of an ADT and abstracting the interface. In our pair example, we would no longer need a type

synonym for pair, as the type would be brought into scope via the packaging of the existential type and

scoped body.

Haskell’s type classes can be seen as an extension of these features including existentials. A type class

may be viewed as an abstraction over some type variables that provides a tuple of functions. Type class

constraints such as (Num t)=> reduce down to an actual parameter that is implicitly applied, specifically a

‘dictionary’ of known implementations of the type class to cover the correct actual types where the functions

of the type class are used. An instance of a type class is really a term that abstracts over the same

types as the type class definition. This is strongly akin to the use of existentials to represent ADT’s ([38],

chapter 24). The same type class / existential type may be applied to different instances/existentially-typed

implementations that may be viewed at that abstraction.

We have already seen all of the typing and kinding rules involved in System Fω through the previous two

sections. Even System Fω has decidable typing, in its purest form. As with simpler languages, the addition

of features such as sub-typing (System Fω
:>) can break this property.

2.1.6 LF , the Logical Framework

The last axis of the lambda cube introduces expressions where types depend on terms. These so-called

dependent types can introduce undecidability in the typing relation. We will see the abilities and constraints

of such languages and their type systems.
3often just a ‘pack’ and ‘unpack’ scheme – see §30.2 of [38]

16

The Edinburgh Logical Framework [7, 20] is a system that transforms a logical system definition into

an editor and proof checker. We focus on the underlying language, where these logical systems are defined.

It extends the simply typed lambda calculus with the dependent product Π, allowing type-level abstractions

over terms. LF is predicative, meaning types cannot contain themselves or refer to themselves via type

variables. This gives us some normalization properties vital to the usability of the language. The language

defines terms, types, and kinds as follows, with syntax aligned to our other examples.

t = x | λx:T.t | (t t)

T = λx:T.T | (T T) | Πx:T.T

K = * | Πx:T.K

Γ = /0 | Γ,x:T | Γ,x:K

The language is usually defined with term and type level constants, and a signature Σ separate from the

environment Γ to hold the constants’ typing and kinding information, but we’ll ignore them and focus on

the core language. The terms, types, and kinds are type checked (`t), kind checked (`k), and sort checked

(`s), respectively. The following rules are adapted from Harper et al. [20].

S-Star and S-Pi are well-formedness checks over kinds, similar to checking for kind * in System

λω . Sorts are the ‘types of kinds.’

`s Γ (S-Star)

Γ `s ∗

Γ,x :: A `s K (S-Pi)

Γ `s Πx : A.K

The kind-checking rules check for well-kindedness of types in LF . K-Const allows access to Γ, and

K-Conv determines kind equality; the three other rules are more interesting. K-Abs and K-App are

17

straightforward, in that a type-lambda-abstraction is kinded with a Π kind, and a type application requires a

substitution, just as term applications require substitution. Lastly, K-Pi indicates that the body B of the Π-

abstraction may depend upon x:A, but still must be of kind *. The Π abstraction at the type level indicates

that one type is dependent on some element of Γ, but it is overall a representation of a proper type. The body

of the Π abstraction is the meaning of the abstraction, but its meaning may depend upon x:A. Type-lambda

abstractions expect an actual parameter to be passed, and have the corresponding type application that is

missing from Π abstractions.

`k Γ c : K ∈ Γ (K-Const)

Γ `k c : K

Γ,x : A `k B : ∗ (K-Pi)

Γ `k Πx : A.B : ∗

Γ,x : A `k B : K (K-Abs)

Γ `k λx : A.B : Πx : A.K

Γ `k A : Πx : B.K Γ `k M : B (K-App)

Γ `k AM : [M/x]K

Γ `k A : K Γ `k K′ Γ `k K ≡ K′ (K-Conv)

Γ `k A : K′

Type checking in LF is just as in λ→. There is a rule for looking up constants in the environment and

a rule for type-conversion between equal types, as in kind-checking. Departing from λ→, instead of using

arrow-types for functions such as A → B, we see Π x:A.B, allowing for B’s dependence on x. Some

presentations will include the→ type as well, indicating a type that cannot be dependent. Application is just

substitution.

18

`t Γ c : A ∈ Γ (Ty-Const)

Γ `t c : A

`t Γ x : A ∈ Γ (Ty-Var)

Γ `t x : A

Γ,x : A `t M : B (Ty-Abs)

Γ `t λx : A.M : Πx : A.B

Γ `t M : Πx : A.B Γ `t N : A (Ty-App)

Γ `t M N : [N/x]B

Γ `t M : A Γ `t A′ : ∗ Γ `t A≡ A′ (Ty-Conv)

Γ `t M : A′

A type of the form Πx:TD.TR describes a function from elements of type TD (meaning TD is a proper type

and x is a term) and, allowing reference to x via the environment Γ, results in a type TR (not in a term of type

TR). This allows a type function whose range depends on the value of the element of the domain. The typing

rules rely on β -reduction in determining equality, meaning we must perform reduction-style evaluation of

types or kinds in determining equality.

There is no notion of a quantifier in LF , so any term must have a monomorphic type, and any type must

have a monomorphic kind. This lends to strong normalization, and so the language enjoys decidable typing.

The introduction of a fix operator or some means of non-primitive recursion would of course break this, as

would pollution of the normalization-as-equality check, e.g. via sub-typing. Even further, well-typed terms

can undergo type erasure and their typing can be inferred in LF .

19

2.1.7 System λP

In Henk Barendregt’s original formulation of the lambda cube [8], he used a simple syntax to encompass

all the different languages. Instead of presenting LF for dependent typing, the language that extended the

simply typed lambda calculus was called λP. The syntax Barendregt used for all the corners of the cube for

term, type, and kinds merged into one expression grammar for λP:

e = x | λx:e.e | Πx:e.e | (e e)

and didn’t include the striations into three levels as we see in LF . Nevertheless, the extension to allow

type-level term abstractions via the dependent product Π is the key to the language’s expressiveness, which

Barendregt achieves through restrictions on the sorts allowed in the Π product’s sub-expressions. This was

the basis of a prototypical “Generalized Type System”, the precursor to Pure Type Systems discussed in

§2.1.9. System λP behaves essentially as System LF , so we do not discuss it in further detail.

2.1.8 Calculus of Constructions

The Calculus of Constructions [14] sits at the pinnacle of the lambda cube, combining the simply typed

lambda calculus with the features of System F2, System λω , and System λP. Thus we have all four variations

of abstraction that we’ve discussed — term-level abstractions over terms (simply typed lambda calculus),

term-level abstractions over types (system F2), type-level abstractions over types (system λω), and type-level

abstractions over terms (system λP).

Similar in nature to Pure Type Systems [43] (as we shall see next in §sec:pts), the language is typically

defined in one grammar, instead of splitting it into terms, types, kinds, and sorts.

t = x | (t t) | λx:t.t | Πx:t.t | * | 2

* and 2 were called Prop and Type, respectively. Beyond the rules we’d expect according to the previously

discussed languages, the calculus of constructions includes the axiom that ` ∗ : 2. We have no universal

quantifiers — although being the capstone of the lambda cube, the individual languages on the corners of

20

the lambda cube are really just examples of languages that exhibit the properties. So it is not quite correct to

simply consider the calculus of constructions as the merging of system F2, System λω , and System λP. Since

we do not have quantifiers, subtypes or other compromising features, we know that the language is strongly

normalizing, impredicative, and must be written in the Church style (contain explicit type annotations).

The calculus of constructions has been at the center of many proof assistants, including Coq [15], LEGO

[40], and NuPRL [23]. Coq is based on the Calculus of Inductive Constructions (CIC), meaning that induc-

tive definitions are added as a language feature for ease in programming. LEGO implements various type

systems, including System LF and the calculus of constructions. MetaPRL [22] is an updated implementa-

tion of NuPRL that allows for modularity. The requirement for so many ascriptions is apparently worth the

effort in a proof environment, as opposed to a general purpose programming language such as ML [29] or

Haskell [36], which opt out of many advanced features in the face of mandatory program-wide ascriptions.

2.1.9 Pure Type Systems

The lambda cube presents three key extensions to the simply typed lambda calculus. System F2 adds term-

level type abstractions and parametric polymorphism; System λω adds type-level type abstractions, ne-

cessitating a kinding system to ensure ‘type safety’ of our types; lastly, System LF adds type-level term

abstractions, introducing dependent types into the language. All of these different extensions can be gener-

alized under one framework, itself able to generalize over more language features. This framework defines

Pure Type Systems [43].

Pure Type Systems collapse the sense of layers in our languages: there is one grammar that defines

terms, types, kinds, and sorts. We rely on Roorda and Jeuring [43], but maintain syntax closer to the

previous languages that follow Pierce [38].

t = x | (t t) | λx:t.t | Πx:t.t | * | 2

Γ = /0 | Γ,x:t

21

One major change in this is to realize that, since types and terms all inhabit the same termspace, we

see ‘terms’ where we might expect only types. For instance, the λ abstraction allows any t after the colon,

where we would previously expect to find a type in the simply typed lambda calculus, or a kind in a type-

level λ abstraction. * and 2 are both sorts, the type of kinds. The phrase ‘type’ is now a bit more flexible

— we use it to mean ‘type’ when we say the type of terms, meaning ‘kind’ when we say the type of types,

and meaning ‘sort’ when we say the type of kinds.

Roorda and Jeuring [43] define the following rules:

(axiom) [] ` ∗ : 2

(start) Γ ` A : s

Γ,x : A ` x : A

(weak) Γ ` A : B Γ `C : s

Γ,x : C ` A : B

(abs) Γ,x : A ` b : B Γ ` (Πx : A.B) : s

Γ ` (λx : A.b) : (Πx : A.B)

(pi) Γ ` A : s Γ,x : A ` B : t, (s, t) ∈ R

Γ ` (Πx : A.B) : t

(app) Γ ` f : (Πx : A.B) Γ ` a : A

Γ ` f a : B[x := a]

(conv) Γ ` a : A Γ ` B : s A =β B

Γ ` a : B

22

Given these simple rules, we can restrict the language to any point of the lambda cube by restricting the

set R in rule (pi). R is defined as the relation (*,*) ⊆ R ⊆ {*,2}×{*,2}. Consider the (pi) rule

for Πx:A.B, defining the dependent product type for a term in the simply typed lambda calculus. We see

that s is the type of our argument x’s type A, and that t is the resulting type of our dependent product’s

body B. If s = *, then A is a type whose type (kind) is *, implying that x is a term whose type is A. If

t = *, then B’s type (kind) is *, and so an abstraction with this product as its type has a body of type B,

meaning that the body of the abstraction is a term. By including (*,*) in R, we are allowing abstractions

over terms (left *) at the term level (right *), because the Π product representing such abstractions require

exactly those sorts of kinds of types.

We can include the features of System F2, System λω , and System LF by adding the other three possible

pairs to R. In order to allow System F2 style expressions, we need term-level type abstractions; this corre-

sponds to including (2,*) in R. Again inspecting the (pi) rule defining the semantics for Π products, if

s=2, then A is of type (sort) 2, so x is of type (kind) *, implying that x is a type; similarly, if t=*, then just

as before, this product characterizes an abstraction that yields a term. This is because B is of type *, so an

abstraction represented by this product must contain a body that is a term. In order to allow System λω -style

expressions, we need type-level type abstractions. We gain these by adding (2,2) to R. Lastly, we allow

System LF-style expressions — allowing type-level abstractions over terms — by including (*,2) in R.

This provides a very convenient means of parametrizing a general structure to define different aspects

of the lambda cube — there are eight corners to the cube, corresponding to the 23 elements in the power set

of {(2,*),(2,2),(*,2)} (recall that (*,*) is always in R).

Pure Type Systems do more than just catalogue the lambda cube. By further parameterizing over the

sorts rather than including * and 2 once and for all, we can allow more complex expressions. We must

provide the set of axioms over these sorts in place of the single (axiom) rule above; lastly, we re-define

our relation R in terms of these new sorts. A simple case is the identity function over types of any kind:

λk:2.λt:k : (Πk:2.k→k)

23

In the lambda cube, this would be illegal, because 2 is not given a type in any axiom — only sort * had

a type. In a Pure Type System, we could extend our sorts and axioms to rectify this:

S = * | 2 | 2′

A = {(*,2),(2,2′)}

(axiom): ` s1 : s2,(s1,s2) ∈ A

R = {(*,*), (2,*), (2,2), (2′,2)}

Pure Type Systems introduce a further relaxation — R is a ternary relation S × S × S, reflecting that a

Π product may result in a sort other than the sort of the body B:

(pi) Γ ` A : s1 γ,x : A ` B : s2, (s1,s2,s3) ∈ R

Γ ` (Πx : A.B) : s3

Of course to implement this, R should maintain the injective property that s1 and s2 uniquely define

s3. Roorda and Jeuring [43] suggest allowing (s1,s2) as shorthand for (s1,s2,s2). They further extend

this general framework of Pure Type Systems with a few key features to form the basis of a functional

programming language. They add declarations via let-expressions, abstract data types of a more powerful

form than those found in Haskell 98 due to their dependent nature involving parameters, and a case construct

while maintaining decidability in typing. They adapt Barthe’s Algorithm [10] for typing injective PTS’s,

which modifies the (abs) rule to use a classification over terms t and distributes the (conv) rule to

achieve an algorithmic presentation of the type system.

Pure type systems collapse the hierarchy of terms, types, kinds, and sorts, and allow parameterization

over the type system itself, though we study instances (given specific sorts, axioms, and allowed relations of

sorts in the dependent product Π). The collapse both blurs the distinctions between levels of specification

and allows for more flexible definitions. We see in general that pure type systems will need explicit type

ascriptions, other than in degenerate cases such as representing the simply typed lambda calculus.

24

2.1.10 System FC(χ)

Haskell [36] is at its core a System F2 language with extensions. Upon adding generalized abstract data types

(GADT’s), compiler implementers were finding transformations difficult or unavailable on these GADT’s.

Sulzmann et al. [46] introduced a language, System FC(χ), which extends the functionality of System F2

with type equality witnesses and open non-parametric type functions. Top-level axioms over types and

equality must be checked for consistency via some decision procedure (called χ). This language allows

for direct encoding of a host of features, including GADT’s, functional dependencies, and associated types.

Their goal was to update Haskell’s core language to support these features, and in the end the language is

now more expressive (in terms of what GADT’s it can accept).

As a language definition for System FC(χ), we see terms, types, kinds, and sorts. There are two sorts,

types TY and coercions CO. Type equalities, represented as σ1 ∼ σ2, are kinds. In order to support defini-

tions used in execution of an expression, System FC(χ) provides for defining programs as both declarations

and an expression. In checking type safety for the language, there are many separate analyses that refer to

each other. Kinds are checked to be of specific sorts. Types and coercions are kind-checked. Expressions

are type-checked. Declarations are checked for consistency, and quite interestingly, result in a Γ describing

the environment the declaration introduces. Programs collect these Γ’s and use them in checking the type of

the expression. Using separate analyses to define the environment Γ for a syntactic structure of a language

to be used in other analyses seems like a way to separate these concerns the language definition. The authors

of System FC(χ) go on to show the operational semantics and soundness of the language and show some

translations from a supposed source language to System FC(χ). After type-erasure, System FC(χ) programs

should run the same, ensuring there is no run-time overhead.

We see in this language how explicitly dictating the sorts of a language can yield features such as

GADT’s. Directly adding features such as type coercions, providing separate analyses for them, and plug-

ging them into the term-type-kind-sort hierarchy appropriately can help inject the complexity of a new

feature such as open type functions and GADT’s without sacrificing properties such as soundness and de-

cidability of typing. System FC(χ) is more than just a theoretical language, it is the basis of GHC [1], the

most widely used Haskell implementation. It overcomes real issues in a manner that can participate in a full

solution for a language, it is not just a prototype that showcases a new idea.

25

2.1.11 System F<:

One feature that cross-cuts the concerns of all of the above languages is sub-typing. Whether we strictly

refer to a hierarchy of base types that exhibit sub-typing such as naturals, integers, and reals, or instead refer

to functions, parametrically polymorphic functions, record types and so on, adding the notion of subtypes

to a language means re-examining every part of the language definition to see where sub-typing affects the

definition.

System F<: extends System F2 with sub-typing. In order to mix the term-level type abstractions with

sub-typing, we add bounds to the quantifiers:

t = ...| λX<:T.t

T = ...| ∀X<:T.T

Γ = ...| X<:T

We introduce a sub-typing relation, including the rule for ∀ terms’ sub-typing relation:

Γ,X<:U ` S2 <: T2

Γ ` (∀X <: U.S2) <: (∀X <: U.T2)

This simple version is based on the KERNEL FUN language of Cardelli and Wegner [11]. It restricts

both types’ ∀X to be restricted by the same type U. This restriction is a bit severe — we can only use a

polymorphic type when we supply a value quantified under the exact same bound, disallowing the use of

terms with tighter bounds. However, if we adopt a more relaxed definition of sub-typing between these

terms:

Γ ` T1 <:S1 Γ,X <:T1 ` S2 <:T2

Γ ` (∀X <:S1.S2) <: (∀X <:T1.T2)

we lose decidability of type checking. There does not seem to be a succinct way to show this, however

Pierce [37] goes into detail, defining ‘positive’ and ‘negative’ positions, relating typing to a two-counter

Turing machine, and showing that there is a derivable sub-typing statement iff the Turing machine halts.

Thus sub-typing owes its undecidability to logic along the lines of the halting problem’s undecidability.

26

2.1.12 Relation to Current Work

How do all of these languages relate to the current work? We see how the simply typed lambda calculus

is the basis for all of these languages, and that the addition of constructs to the language makes them

more complex and able to express more programs. Rosetta is a language encompassing the lambda cube

and Pure Type Systems. Understanding how these features interact, especially their implications on the

decidability of typing those languages and the need for type ascriptions versus inferencability, is crucial

in defining Rosetta’s type system. Furthermore, we learn from them in identifying what can and cannot be

done to present useful information to the programmer if we have certain features in the Rosetta language and

implementations of Rosetta. More generally, to show that partial information can be realistically generated

and presented for partial specifications, we must consider many of the same properties these languages

provide, and the mechanisms by which they maintain properties sufficiently for a static typing analysis.

2.2 Type Inference

Type inference is the process of deriving types for terms inhabiting a language. Type inference allows us to

omit the typing annotations that would otherwise be needed, but the expressions still have types — it allows

for the absence of type ascriptions without degrading into an absence of types themselves. The inferred

types must be the ‘best’ type; if there is not one best type, then this ambiguity cannot be resolved with type

inference. The best type is often called the principal type.

Type inference has the key benefits of stronger type systems without the need to annotate types every-

where, being is both tedious and obfuscating. Unfortunately the requirement that best types exist is often

denied by adding certain features. The classic example is subtyping, which can be a partial ordering. This

means that, for instance, Int→Int and Real→Real may both be legitimate types for a function, but

neither is a subtype of the other. This is due to contravariance in sub-typing the arguments and covariance

in sub-typing the ranges of functions. When we add parametric polymorphism to a language, inference can

be extended to supplement the type arguments as well, creating implicit parameters. Since inferring types

is so valuable to users of a language, language designers go to great lengths, and avoid great features, to

27

maintain type inferencability. In this section, we explore some type inference capabilities and limitations,

and the language features that support or deny the property.

2.2.1 Algorithm W

An early type inference algorithm, called Algorithm W [16], operates over a language called “mini-ML”

[12] defined by extending Curry-style lambda calculus terms4 with let-expressions. The algorithm works

in bottom-up fashion to construct type schemes for all declarations. A type scheme may use universal

quantifiers (∀) to describe the declaration’s type, but each usage of the declared item results in instantiations

of those universally quantified variables, essentially requiring a monomorphic type for each parameter. This

is not as powerful as System F2. Algorithm W also manages α-conversions while constructing the set

of constraints that must be met to unify the type variables and produce a principal type scheme. These

constraints are solved via the ‘most general unifier’ algorithm from Robinson [42].

Damas and Milner [16] show it to be as expressive as the let-style polymorphism of ML. Let-style

polymorphism allows us to instantiate a parametrically polymorphic type (one with a ∀ quantifier at its

leftmost) in multiple places separately, so that we do not force the quantified variable to unify with each

instance’s usage. A naive implementation can just substitute during typing, but this mechanism finds the

principal type scheme at the let binding site, manages names, and supplies fresh type variables at each usage

to differentiate between the various uses.

There is a similar approach to Algorithm W that Lee and Yi [26] call ‘Algorithm M’, that is very similar

in approach yet addresses the problem in top-down fashion, maintaining an environment. They show that it

finds errors sooner than Algorithm W, specifically at the application of mismatched function and argument

types rather than where the function or arguments are defined. They also argue that mixing the two directions

can yield better implementations and error messages.

Nazareth and Nipkow [32] have formally verified Algorithm W’s soundness and completeness mechan-

ically, using Isabelle/HOL [34]. They restrict themselves to the monomorphic case, disallowing let con-

structs and polymorphic types. They show that maintaining the namespace, specifically managing new

4Curry-style lambda calculus terms contain no type annotations.

28

variables, is non-trivial. Naraschewski and Nipkow [31] extend the work to remove the previous work’s

restrictions, covering the entire mini-ML language.

2.2.2 Local Type Inference

Extending System F2 with sub-typing creates a language where sub-typing is undecidable. However, this

full System F2 extension is called impredicative, meaning that a quantified type can be quantified over itself.

Defining a parametrically polymorphic identity function, we can apply it to itself legally:

id :: ∀X.X→X

id = λX.λx:X.x

(id [∀X.X→X] id) :: ∀X.X→X

There are restrictions on System F2 extended with sub-typing that can recover type checking decidabil-

ity; the most common is ML-style let-polymorphism. This predicative parametric polymorphism dis-allows

quantified types applying over other quantified types. This is achieved by only allowing quantified types

to occur at let-bindings, and only allowing application of these quantified types with non-quantified types

(called monotypes). The above identity function defined in a let-construct could not be applied to itself,

though it could be applied to numerous monotypes in its let-body (for instance, a map function could be

applied to lists with two different contained types).

Without discarding any of the power of System F2, we can still infer some types. Pierce and Turner [39]

show a system of type inference that allows for type parameters to be omitted when a best (principal) type

exists. This inference occurs locally, in the sense that all the information needed to constrain and solve for

the type is gathered from adjacent nodes in the abstract syntax tree (AST).

The procedures and operations they define for using this style of type inference are as follows:

• Define the internal and external language. The difference is simply that all type arguments must be

supplied in the internal language, but the external language may omit them. The goal is to translate the

external language (with omitted arguments) into the internal language (with all arguments present).

29

• Define the subtype relation. This is only defined over concrete types, and not over type variables.

• Define the least upper bound ∨ and greatest lower bound ∧ between types. This relies on the subtype

relation.

• Define typing over the internal language. Type arguments are present, so this is straightforward.

• Define the least super-type ⇑ and greatest subtype ⇓ relations. These operations push type variables

out to the necessary extremes, giving the best type approximation while those type variables are

unconstrained.

• Define constraint generation. Constraints are only generated where type arguments are missing, i.e.

at the application of a parametrically polymorphic function without the type arguments. These con-

straints place upper and lower bounds on each type variable.

• Define position. Position relates an occurrence of a type variable to its location within a specific

type expression R (the range of the applied polymorphic function), and is either constant, covariant,

contravariant, or invariant.

• Define elaboration from the external to internal language. At omitted type arguments, elaboration

elaborates sub-terms, types them, and uses that typing information to perform constraints generation

and solving, based on the positions of each omitted type argument’s locations.

2.2.3 Definitions and Typing Rules for Local Type Inference

We reproduce the rules found in Pierce and Turner [39], so that we can relate to them in the rules for Rosetta.

1. Internal Language

T ::= X | Top | Bot | All(X).T→T

e ::= x | λ[X](x : T).e | e[T]→T

Γ ::= {} | x:T,Γ | X,Γ

30

2. Subtyping Relation

X <: X Sub-Refl

X <: Top Sub-Top

Bot <: X Sub-Bot

T <: R S <: U Sub-Fun

All(X).R→ S <: All(X).T →U

3. Least Upper Bound, Greatest Lower Bound

S∨T:

T if S <: T
S if T <: S
All(X)M→J if S = All(X)V →P

T = All(X)W →Q
V ∧W = M
P ∨ Q = J

Top otherwise

S∧T:

S if S <: T
T if T <: S
All(X)J→M if S = All(X)V →P

T = All(X)W →Q
V ∨W = J
P ∧ Q = M

Bot otherwise

4. Typing the Internal Language

Γ ` x ∈ Γ(x) T-Var

Γ,X ,x : S ` e : T T-Lam
Γ ` λ [X]x : S.e : All(X)S→ T

Γ ` f : All(X)S→ R
Γ ` e <: [T/X]S T-App
Γ ` f [T](e) : [T X]R

Γ ` f : Bot Γ ` e : S
Γ ` f [T](e) : Bot T-AppBot

Γ ` f : All(X)T → R Γ ` e : S
|X |> 0 /0 `X S <: T ⇒ D
C = ∧D σ = σCR T-App-InfAlg
Γ ` f (e) : σR⇒ f [σX](e)

31

5. Constraints Generation

V `X T <: Top⇒ /0 CG-Top

V `X Bot <: T ⇒ /0 CG-Bot

Y ∈ X S ⇓V T FV (S)∩X = /0
V `X Y <: S⇒{Bot <: Y <: T} CG-Upper

Y ∈ X S ⇑V T FV (S)∩X = /0
V `X S <: Y ⇒{T <: Y <: Top} CG-Lower

Y /∈ X
V `X Y <: Y ⇒ /0 CG-Refl

V ∪{Y} `X T <: R⇒C
V ∪{Y} `X S <: U ⇒ D CG-Fun
Y ∩ (V ∪X) = /0
V `X All(Y)R→ S <: All(Y)T →U

⇒ (∧C)∧D

6. Positions

R is constant in X, if: [S/X]R <: [T/X]R, for every S and T.

R is covariant in X, if: Γ ` [S/X]R <: [T/X]R ⇔ Γ ` S <: T.

R is contravariant in X, if: Γ ` [T/X]R <: [S/X]R ⇔ Γ ` S <: T.

R is invariant in X, if: Γ ` [S/X]R <: [T/X]R ⇔ S = T.

This procedure will not always be successful, but failure will occur at exactly the application where a

most informative type, a principal type, is not available. This pinpoints the exact place where type arguments

will have to be supplied. Thus this approach omits a specific group of ascriptions (inferrable type arguments)

without losing decidability of type checking.

For our own rules in Rosetta, we will make claims that Γ can infer that a best choice for quantified

parameters Q of a function f are I when given parameters p : P, range R, and arguments a : A, which we

will represent with infer(Q, p : P,R,a : A)⇒ I.

2.2.4 Type Inference of System F2

Type inference implies that we are omitting type ascriptions, but that specific types still define each expres-

sion in the terms of the language. In the lambda cube, Curry-style terms that can be typed belong to the

simply typed lambda calculus, System F2, or System Fω . While it is known that the simply typed lambda

calculus’ typability was decidable, and that System Fω ’s typability was not typable, System F2 lies between

the two and its typability was unknown.

32

Wells [48] put this open problem to rest, showing that System F2 was not decidably typable after all.

The basic sketch of the proof starts by showing that semi-unification SUP (known to be undecidable [25])

reduces to the type-checking TC problem. Next, type-checking TC is shown to be reducible to the is-typable

problem TYP. It was already known that TYP was reducible to the problem of TC [9]. Thus typability and

type checking are equivalent, and undecidable for Curry-style terms of System F2. Typability only refers to

the existence of a type that describes the term, but type inference — the task of assigning a type to a term

without type ascriptions — clearly falls into this category, and is also an undecidable procedure.

Beyond answering the open problem, this work influences language design in a number of ways. As

popular as System F2 is as a core language, Wells’ result indicates that full inference over this language

will never be fully available, and thus efforts must focus on acceptable limitations on the language, on

ascription requirements, or on another core language altogether. Along the lines of required ascriptions, if

powers of further expression can be added to the language that direct type inferencing sufficiently, this extra

expressiveness may be enough to regain decidable typing.

2.3 Dependent Types

In some of the languages of the previous section, we saw that types may depend on the values of terms.

We’ve hinted at how dependent types lead to undecidability in a type system. When is this feature actually

useful? Dependent types allow us to encode more information about a program into its types. We can create

sized lists and matrices, or we can even encode properties such as sortedness directly into the type of a

definition.

Vector Int a = Nil::Vector 0 a | Cons a (Vector n a) :: Vector (n+1) a
vhead :: Vector (n+1) a → a
vhead (Cons x xs) = x
vtail :: Vector (n+1) a → Vector n a
vtail (Cons x xs) = xs

matrixMult :: Matrix a b → Matrix b c → Matrix a c

Figure 2.3: Examples of dependent types.

33

Dependent types introduce the need to perform computation when determining types. Performing static

type analysis is generally a decidable calculation, relying on the ability to compare types without evaluating

a diverging computation. Types in languages are simple enough that divergent computations do not exist at

the type level. But in allowing types to depend on values, any divergent value-expression can now cause type

checking to also diverge. Completely separating evaluation from static analysis greatly simplifies the task,

but precludes many interesting checks of code properties. Including lengths in list definitions or allowing

predicate subtypes such as in SAL [4] allows for far more specification of the behavior of a program at

the type-level. The cost for this expressiveness is a loss in ability to infer types, or indeed to even check

given type ascriptions. SAL’s type checker is incomplete – there are types in the language complex enough

that the type checker will not be able to give an answer to type safety. Navigating the extra information of

dependent types while still being able to answer the basic typing questions is at the forefront of implementing

dependently-typed languages.

Coming back to pragmatic concerns from the viewpoint of type theory, a practical example arises in

that systems level design is often ultimately interested in hardware. We would like design parameters that

relate the bit-widths of different parameters. If we introduce a type such as bitvector(n)5 and the type

system is to ensure that two different bitvectors are of the same size, then we will inevitably end up requiring

some basic operations to combine these bitvectors. Rather than allow arbitrary computation at the argument

n, we are more likely to find a restriction such as Presburger arithmetic [21, 30], where we introduce the

constants 0 and 1, the + operation, and equality =. This sufficiently hobbles the arithmetic so that we can

still define relationships between the size of things while maintaining decidability, were we to normalize a

few and check for equality. Knowing what uses of dependent types are useful in systems design, and how to

carefully introduce those uses, is a side goal of this work.

2.4 Refinement

A specification records the constraints and intentions of a system, but the process is not one large step – just

as programming a large system is never a single edit-compile-run cycle. Specifications are written in high-

5 or equivalently, word(n)

34

level abstract terms initially, and then more facts, constraints, and behaviors are added. The inclusion of

information may simply respect the previous representation and simply give a more specific representation,

or it may make decisions that introduce further constraints, choosing implementation paths and therefore

excluding others. This process of adding information and narrowing down the possibilities of the specified

system is the refinement process. Ideally, the specification can refine all the way down to an implementation.

Just as hardware design must eventually bridge the gap between simulation and synthesis, refinement of a

specification must bridge a similar gap between abstract system specification and eventual implementation.

Accordingly, we refine a specification as close to implementation as possible or as needed, closing that gap

and gaining the confidence that the specification matches the eventual implementation.

Throughout the refinement process, we are adding information to the specification, and we are using

information in the specification. We expect the specification to infer what it can from the specification, but

analysis is often defined over complete systems. Typing analysis is often phrased in terms of preservation

of types — meaning that replacements of suitably typed elements will not change the typing information

initially found. A function that accepts a real number and returns a boolean should work just fine if we

instead supply an integer, due to the relation integer ⊂ real. What if we don’t know anything about

the type supplied to this function? Is it okay for another type to be used in its place? It may be that an

unspecified sub-typing relation would answer in the affirmative, but the specification may only say that we

have two undefined types. A type left entirely abstract is nothing more than a type variable, used to link the

different uses. Typing analysis can then collect information about a type variable based on all these uses

to create a composite picture of the type, checking for inconsistencies or ambiguity. Typing is generally

used to answer with finality if given typing ascriptions are accurate, and similarly to answer what is “the”

appropriate type of any expression. When there is no best answer, type inference and type checking will

simply have to fail. Programming languages cannot usefully say that no errors were found if there are

areas of incompleteness. Executable code cannot suffer such an ignorance and claim type safety, but in

specification refinement, this ignorance is at least initially inherent.

Type checking in programming languages often cannot infer enough information to satisfy the compiler.

This leads to the obligatory error message(s) along with compilation failure. Suppose instead of failure,

we instead see some sort of flag marking unfulfilled obligations to guarantee type safety. The iterative

35

process of attempting compilation in a programming language implementation such as GHC [1] already

gives instructive error messages, suggesting that certain language pragmas must be turned on to use certain

features, or e.g. a type is “too polymorphic” and will inevitably require a (different) type ascription as

used. In this way, the task of writing an executable program achieves its own partial specification refinement

procedure, using the partial information available to guide the programmers’ subsequent refinements.

PVS [35, 44] is a mature formal specification language with an integrated theorem prover. The language

is based on higher order logic, and is often used for formal proofs of properties of systems. It includes

predicate subtypes as a form of dependent types, allowing for very expressive specifications. This leads

to type-correctness conditions (TCC’s) that must be proven, though many are automatically discharged.

PVS theorem proving is a user-guided process of inference and many tactics that are applied manually to

discharge the TCC’s and proof tasks. If one can get an appropriate model of a system in PVS, it can be a

powerful tool for proving properties over a system. But the assumption is that you have enough of a system

description in order to prove the properties needed over that system. The proposed work is focused on aiding

the refinement process, not proving properties over a specified system.

Epigram [3, 47] is a dependently-typed programming language. The IDE introduces sheds encompass-

ing undefined areas of the program in an interactive process where programmer and system both contribute

to the codebase, based on type information available. The task in Epigram is to create a program, a different

task than specification refinement, where we are more interested in the provable properties of a well-defined

system than the eventual implementation, although obtaining a system specification that is or closely resem-

bles an implementation is another goal.

In general, any time that typing inference fails, we have an opportunity to provide partial typing analysis.

When there is not enough information to account for complete typing information, instead of failing to

compile, we instead have reportable and recordable information to report that may be more than the specifier

intended or understood, thereby increasing understanding about the specified system. In particular, type

variables that arise from abstract or incomplete type definitions can be an organizational tool for relating

information to the specification. We might report everything we know about a given type, and indicate

pieces of information about it that contradict each other, or else state that needed/stated properties are not

36

known, and need further details or refinements. The point is to expect incomplete specifications and provide

as much feedback as the analysis can.

Refinement is sometimes understood as the process of removing non-determinism from a system [49].

Here, non-determinism refers to multiple values being possible, and not to an instruction to select one

of some set of actions or choices in order to introduce some variability. Non-determinism of systems is

often contained ‘below’ the type level, such as by avoiding selection of specific values within a type, but

nonetheless restricting possibilities to within a type. Again, partial analysis (beyond simple typing analysis)

may further explicitly recover options within the non-determinism, pointing towards the possible further

refinement and concretization of the specification.

2.5 Summary

Types systems formally define what terms are present in a language, and in conjunction with evaluation

sufficiently define the syntax and semantics of a language. We’ve seen a series of languages, the different

features they provide, and the different mechanisms by which they introduced and enforced those features.

There is a constant strain between expressiveness and computability, between succinctness and decidable

typing. In order to provide useful static analysis over partial specifications, there must be careful deliber-

ation over the features that are useful to the Rosetta language, and the extent to which those features are

implementable at this level of partial specification, so that this work provides a useful analysis that actually

helps guide the specification process with useful information.

37

Chapter 3

Background Work

In order to provide the typing rules and typing analysis implementation, we discuss the Rosetta type system

and earlier work towards a typing analysis. We first discuss the Rosetta language with a focus on features that

concern the typing analysis, to understand the semantics we must address with typing rules. We then discuss

previous work on a Rosetta typing analysis, showing the limitations that hindered the implementation. We

last consider groundwork for the current imlementation, where the local type inference technique is applied

to a reference graph-representation language prior to the Rosetta implementation.

3.1 The Rosetta Type System

This work provides formal typing rules for Rosetta’s type system. To understand the type system we con-

sider various features of Rosetta, discussing the issues each introduces for the type system. We saw in the

related works how seemingly independent features can affect each other. The Rosetta type system itself is a

static realization of Rosetta’s semantics; any type system definition needs to successfully reconcile all these

features. To that end, we explore some of Rosetta’s features that are anticipated as the most pertinent in both

language behavior and cross-cutting concerns in formally defining the type system.

3.1.1 Standard Types and Operators

In order to discuss the types of Rosetta, we need to first consider the ways in which basic values can be

constructed and combined in Rosetta. Rosetta provides a rich set of primitive types, composite types, and a

38

standard library of functionality that operates over these basic types. Rosetta provides a semi-lattice of base

types that encompasses numeric types and others (Fig. 3.1).

Figure 3.1: Rosetta Primitive Types

Rosetta provides many functions that operate over these base types. Functions themselves are first-class

values. Combined with sub-typing, this complicates the typing analysis — the sub-typing relation is con-

travariant in function arguments, and covariant in its range, so strict type equality is no longer sufficient in

admitting one function type as a subtype of another function type. Most numerical functions are defined

at one point in the lattice of base types. For instance, +, -, floor, and ceiling are all defined over

complex numbers. But their types are more complicated — if the arguments are sufficiently within sub-

type bounds, the result type is accordingly more constrained. For instance, addition (+) of two complex

numbers yields a complex number, addition of two real numbers yields a real number, and addition of two

integers yields an integer. This is a version of overloading that is baked into Rosetta’s provided definitions,

though users cannot create more overloaded functions themselves. Some functions can offer even tighter

restrictions: if either argument to max is posreal, so is the resulting type.

These behaviors are particular to the basic numerical types, as well as to the function itself. Division (/)

is not a closed operation as addition was — while dividing two real numbers yields a real number, dividing

39

two integers does not necessarily yield an integer. At least, since these types mirror actual mathematical

numerical sets, we do not consider multiplication to be open due to some overflow criteria. There are

separate functions, div, rem, and mod, for integer division. This behavior is inherent in these basic numeric

types, but is not directly representable in the functions’ types. Other languages such as Java [24] provide for

explicit casting between types, provide overloading of functions at all possible signatures, or simply return

less information in situations such as the max function’s intelligent range considerations. Other languages

provide for type-level representations of the behavior. Haskell provides type classes, giving a means for

ad-hoc polymorphism by providing the implementation of a function at various types. If we define the Ord

type class to include the lessEq function declaration, we can then create an instance of the Ord class

for Strings:

class Ord a where

lessEq :: a -> a -> Bool

...

instance Ord String where

lessEq a b = a<=b

sort :: (Ord a) => [a] -> [a]

It is then possible to use the sort function on lists of strings, because the compiler finds the Ord String

instance and uses that implementation for lessEq. A type class constraint is semantically equivalent to

passing a dictionary value of all available implementations of the type class as an argument and dispatching

the correct version based on the types involved at each use of a function from the type class. The logic

of the sort function’s behavior is abstracted over the type class, and this gives a logical problem for the

type system to solve in determining type safety and inferring types. The type system itself is not concerned

with what addition over integers and reals means, it is concerned with type class requirements and finding

the appropriate instance for the given types. Rosetta does not have a mechanism directly analogous to type

40

classes to describe constraints on the particular types in a function. Indeed, we could simulate something

similar with subtype type declarations in Rosetta that we ascribe to different implementations fitting the

desired function shapes, but this is both awkward, not an intended use in Rosetta, and ultimately is not a part

of the typing of primitive numerical types and the provided functions over those types. The Rosetta type

system itself will have to deal with these base types and the Prelude functions over them directly, or else

their definitions will have to be refined appropriately.

3.1.2 Composite Types, Constructed Types

Rosetta provides some common mechanisms for building up the basic types into structured, larger values

including sets, sequences, and multisets; for example:

� �
1 se tExample : : s e t (i n t e g e r) i s {1 , 3 , 5} ;

2 m u l t i s e t E x a m p l e : : m u l t i s e t (i n t e g e r) i s {∗ 0 , 1 , 3 , 3 , 1 ∗} ;

3 sequenceExample : : sequence (n a t u r a l) i s [1 , 1 , 2 , 3 , 5 , 8 , 1 3] ;�
These composite types allow us to collect values in the manner their names indicate. We can also create a

constructed type definition, to generate constructor, observer, and recognizer functions over the new struc-

ture. For example,

� �
1 Tree (a : : type) : : type i s data

2 l e a f () : : empty

3 | node (l e f t : : Tree (a) ; v : : a ; r i g h t : : Tree (a)) : : nonempty

4 end data ;�
introduces the constructors leaf and node; the observers left, v, and right; and the recognizers

empty and nonEmpty. This mechanism introduces abstract data types, which create sums across the

constructors and products across the recognizers. This is a powerful way to construct values out of others.

We can furthermore define types as subtypes of others by manually constructing new types, as below.

41

3.1.3 First-Class Types

Rosetta has first-class types — types can be constructed, passed as arguments, and can depend on other

values in their construction. There is no semantic wall separating the world of values and the world of types.

Instead of special type operators for defining functions over types, any Rosetta function may return a value

or a type. The distinction is actually somewhat meaningless, since types are values in Rosetta. Thus there

are no constraints on what parts of the language may be used to represent a type, and no limitation on the

evaluation necessary to discover the type. We can create new types by constraining existing types, applying

type functions such as the composite type operators, and we can also create new types without more infor-

mation:

� �
1 T e e n s I n t : : subtype (i n t e g e r) i s {1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9} ;

2 S t r i n g : : type i s sequence (c h a r a c t e r) ;

3 Key : : type ;�

the subtype type function creates a type that is known to be a subtype of the argument; when we ac-

tually supply a type value as above, we describe the type as a set. Key::type could have been written

Key::subtype (top), which is equivalent. This sets-as-types notation is useful for specifying new

types explicitly, but may make for troublesome typing analysis. Consider the following Rosetta function

definition:� �
1 addTI (x , y : : T e e n s I n t) : : T e e n s I n t i s x+y ;�
clearly x+y will not return a TeensInt — addition is not closed over TeensInts. But for a type

system to confirm this would require evaluating the expression. Beyond the point that ‘evaluation’ of a

specification is generally not available (by virtue of being a specification, not an implementation), a typ-

ing analysis should shy away from performing possibly unbounded computation in providing type safety.

This issue of value computation in typing also arises in our example from 2.3. In Rosetta, the package

rosetta.lang.prelude provides the following definitions:

42

� �
1 array (N : : n a t u r a l ; T : : type) : : type ;

2 sequence [N : : n a t u r a l] (T : : type) : : type i s array (N, T) ;

3 b i t v e c t o r : : subtype (sequence) i s sequence (b i t) ;

4 word (n : : n a t u r a l) : : subtype (b i t v e c t o r) i s

5 s e l (b : : b i t v e c t o r | #b = n) ;�
Arrays are sized compositions of T-typed values. sequence allows the size parameter N to be quan-

tified/inferred. bitvector narrows down to sequences of bits, and word goes further, restricting the

values to bitvectors of a particular size. Literal sequences may be simple enough to check their contained

type T and length N, but results of functions and operators that yield a word(n) can quickly require calcu-

lation and synthesis of our modeled system in order to check that we actually get the word result of length

n indicated. We must declare what properties the typing analysis can guarantee, and what proof-obligations

it might be able to provide. Typing analysis can provide a theorem in some proof assistant that can be

discharged manually, and recorded as evidence to the overall specification’s correctness. In general since

the typing analysis is a Rosetta-wide analysis, any dependent definition that is not built into the Rosetta

language and default libraries cannot be checked. It may be possible for a typing implementation to provide

some sort of hook into the typing mechanism to aid typing these dependent items, but they cannot be directly

handled without some assistance.

3.1.4 Building Blocks - Facets

The basic unit of a specification is called a facet. A facet typically represents a structural or logical com-

ponent of a system. In Fig. 3.2, we see the halfAdder facet definition instantiated twice in defining the

fullAdder facet. The facets contain parameter lists, a declarative region before the begin keyword, and

a section for instantiating units and for behavioral boolean statements that must be true. Beyond facets, we

can define components — essentially facets with explicit sections for assumptions and implications, to

guide constraints on combined components.

On the whole, Rosetta specifications may largely be a collection of facets and components that instantiate

each other to build up the overall structure of a system, and to record, collect, and propagate constraints on

43

� �
1 f a c e t h a l f A d d e r (x , y : : input b i t ; s , c : : output b i t) : : s t a t e b a s e d i s
2 begin
3 s ’ = x xor y ;
4 c ’ = x and y ;
5 end f a c e t h a l f A d d e r ;
6

7 f a c e t f u l l A d d e r (x , y , c i : : input b i t ; s , co : : output b i t) : : s t a t e b a s e d i s
8 s1 , c1 , c2 : : b i t ;
9 begin

10 ha1 : h a l f A d d e r (x , y , s1 , c1) ;
11 ha2 : h a l f A d d e r (s1 , c i , s , c2) ;
12 co = c1 or c2 ;
13 end f a c e t f u l l A d d e r ;�

Figure 3.2: Sample Rosetta facets.

behavior through the behavioral statements in assumptions and implications. Equality(=) is true Liebniz

equality.

In the above specification, we also see the domain ascription, state-based. This indicates that state-

based models of computation are available, in particular the tick operator to indicate the value in the next

state. s’ = x xor y means that s in the next state must be equivalent to current the value of x xor y.

Rosetta contains far more than just the state based domain, providing a lattice of domains (Fig. 3.3).

The language allows for extensions of this domain hierarchy in the form of sub-domains that offer more

concrete and specific semantics, facet-extensions of domains that crystallize usage of a particular domain,

and even simple engineering domains that provide a set of common idioms within a domain specific to an

engineering discipline.

3.1.5 Reflection and Interactions

Rosetta provides reflection capabilities. We can manipulate the Rosetta language as data in Rosetta itself.

This provides a meta-programming environment in which we can write a specification that defines a specifi-

cation. This of course will complicate the typing analysis — reflection can break strong typing by defining

badly-typed expressions that cannot be spotted until evaluation. We’ve already discussed how mixing eval-

uation and typing is a dicey affair, and reflection directly forces any analysis to interleave with evaluation,

44

Figure 3.3: Rosetta Domain Lattice.

via the denotes function. While we can analyze the reflective terms themselves for type safety, we cannot

provide guarantees of type safety in the code ‘generated’ by the reflective Rosetta code.

One of the primary goals of Rosetta is to semantically define how specifications in different domains

interact. When a system is specified utilizing multiple domains, decisions in one domain affect the design in

other domains. Rosetta allows for defining these inter-domain interactions via projection functions, functors,

and combinators. Projection functions allow us to ‘cast’ a facet into a value of another domain, essentially

defining what the view of one domain’s definitions looks like from another domain. These projections are

defined pair-wise between domains. Functors are projections that transform a facet of one domain into a facet

of another domain, a sort of higher-order transformation between domains, perhaps to bring two domains

to a common super-domain for analysis. Combinators provide means for combining multiple facets into

one, usually by product or sum operations defining the sharing that should be evident between the combined

facets. Combinators are defined in terms of projection functions and functors. Interactions are an advanced

Rosetta feature that have not been extensively used at present. Accordingly, this work does not specifically

address interactions.

45

3.1.6 Rosetta Type System Summary

Having seen the majority of the most interesting features of Rosetta from a typing perspective, it is clear

that writing specifications in Rosetta may begin in, and for some time occupy, a design space that cannot

by fully analyzed for type safety. And yet the earlier we can find a problem the better; we still need typing

information at these early stages. This work provides a partial typing analysis of Rosetta to alleviate this

lack of information for high-level, partial specifications.

3.2 Rosetta Alpha Type Checker

There has already been substantial effort in developing a typing analysis for Rosetta. The first analysis

implementation employed modular monadic semantics [27], along with InterpreterLib [45], to break up the

process into a series of sequenced algebras that collectively teased out a global set of constraints that it

would attempt to unify. While some real progress was made, this codebase highlighted some of the issues

in typing the Rosetta language. Some of those issues made the implementation fatally flawed. We turn our

attention to the implementation in greater detail, pointing out the strengths and weaknesses along the way.

This initial typing work and its overall approach is heavily based upon InterpreterLib[45], a Haskell

library aiding in defining interpreters and analyses. With InterpreterLib we can modularly define the syntax

and semantics of a language. It uses many generic programming techniques to provide a modular monadic

semantics. InterpreterLib provides modularity of syntax by supporting the use of sum types and injection-

s/projections into and out of those sums. In this way, different pieces of syntax can be combined to define

the language. InterpreterLib is used to define semantics via algebras and the catamorphism (a general fold),

allowing us to inject the recursion of the analysis at the last moment, further modularizing the process. Se-

mantics are modularized both in utilizing the same functor-sum structures as the underlying syntax, but also

by composing entire algebra-analyses in various ways. Monads are used to simulate side effects in the pure

language Haskell.

I briefly summarize InterpreterLib usage, as it pertains to the first Rosetta type checker. An intermediate

representation for the Rosetta language constitutes the Rosetta AST, being a set of functors each representing

different features of the language such as facets, expressions, types, and functions. By creating the sum of all

46

of these functors, we have a representation of the Rosetta language that is extensible by simply adding more

functors. We next write algebras, defining the results of an analysis. These algebras are written per-functor,

further maintaining the modularity of the design. We split the entire typing analysis into a series of algebras,

much like the separate passes of a compiler. We connect these analyses together by sequencing the algebras,

providing results of prior algebras to any further-sequenced algebras that want to use the information. The

algebras are as follows:

• The identity algebra paramorphically allows us to inspect the original AST’s structure; normally al-

gebras only see their sub-terms’ results.

• We generate type variables for each node in the AST, report all scope-items created per-node.

• We propagate scope-items’ definitions, build (and result in) a symbol table for each node.

• We use that symbol table information to generate constraints on the node’s type, return representation

of the node’s type

• We unify constraints to solve for type variables, generating a set of substitutions for all the type

variables.

• substitute for all type variables (with a generic traversal) in symbol tables, which can be serialized on

a per-design-unit basis.

• substitute for type variables (with a generic traversal) in nodes’ type results, yielding a fully type-

annotated abstract syntax tree.

Notice that almost half of the typing analysis is concerned with name management, in propagating the

original structure and constructing symbol tables. Rosetta has a rich library, package, and facet structure

where names arise from many places. All of the original tools over Rosetta had to duplicate this name-

chasing, which was both an error-prone and redundant effort. Mutually recursive elements also proved

difficult — while defining values in terms of each other may seem perfectly suited to Haskell, we still must

be able to terminate the calculations based on this dependency. Using the mdo notation in Haskell provided

a workable but highly brittle and unsatisfactory work-around to the issue.

47

The unification of the constraints was arguably the weakest link in the process. It was based on a

unification algorithm [16] that did not account for sub-typing, trying to adapt it to sub-typing. Rosetta is

more expressive than System F2 in that we can have type parameters that are inferred. As we saw [48], this

is equivalent to semi-unification and is undecidable. Different iterations of the unification process were at

times a flawed greedy algorithm, at other times a non-terminating process but for a hard limit to the iterations

of the algorithm’s tactics.

Added to this difficulty is the typing for elements of Rosetta’s prelude such as the + and = operators.

As mentioned in §3.1.1, Rosetta does not use types to indicate the overloaded nature of these operators.

In determining a best type for these operators, the typing analysis would create a series of bookkeeping

constraints that turned out to be semantically similar to the type schemes of Algorithm W [16] – there would

be a series of universally quantified parameters and a series of constraints to be added, all of which would

be instantiated at each usage of the offending operator. In this way, the typing analysis could handle uses of

the equality operator = for booleans, integers, and any other types, as long as they all obeyed the constraints

over some new type variable α that (=)::α → α → α . More complex constraints and bookkeeping

would be necessary for operators such as +. We can reduce the possible typings of + to a few closed

versions, such as (+)::integer→integer→integer or (+)::real→real→real, but not just

any type is acceptable as it was in (=)’s case. Constraints could be strict equalities, subtype restrictions,

set-membership for a given type, even a disjunction of further constraint sets. In this way, we could require

e.g. that division (/) either satisfy one set of constraints or some other, without the various legitimate

typings all being enforced at once. Using set-membership, = was actually only allowed over the base types

by including the constraints that (=)::α→ α→ α , but also that α ∈{boolean, character, bit,

natural, integer,...complex }. Overall, while this expanded the portion of Rosetta that could

be type-checked, it introduced some very expensive backtracking.

Global unification in this way also makes for poorer error messages. Bad typings can propagate far

away from their original locations, and at best the typing analysis could say, “I couldn’t combine these two

constraints that came from here and here”, or more frustratingly, “I had to give up on unification, here are

the remaining constraints.” The former is at least targeting what might be the location of the problem, but

the latter simply exposes the lack-of-progress check required to halt the undecidable cases of typing. More

48

localized constraints and unification could much more precisely pinpoint the exact location of an error, as

well as what the error truly is.

Overall, names management got in the way of the typing analysis; global unification was not quite

the right approach to ferret out needed ascriptions and the backtracking efforts were sound but horribly

inefficient. There was no sound basis for the decisions made in this implementation — no formal system to

answer questions of proper behavior.

3.3 Preparatory Typing Work

Resuming typing analysis efforts that learn from the previous implementation’s experience, names manage-

ment in Rosetta has now become its own analysis [33], and we’ve implemented approaches similar to local

type inference as in §2.2.2.

The naming analysis turns the original Rosetta syntax into the same AST, but further resolves all names,

constructing an abstract syntax graph (ASG) with all names resolved. This involved process even β -reduces

facet instantiations to create nodes representing named items exposed in that instantiation, among many

other operations to provide a graph with no more need for a naming environment. The end result is that any

analysis — not just type-checking — can operate on a scopeless abstract syntax [33], reaping the benefits

without duplicating the work as our original tools did. The graph presents the nodes as strongly-connected

components (SCC’s). Instead of the algebras of InterpreterLib, we instead can write node decorators for

the acyclic and cyclic components. This maintains the synthetic information flow from sub-terms upwards,

but cuts off the inheritance information flow from the top of the AST downwards, as the graph may have

multiple paths from the focus or ‘root’ of the graph to a particular node.

3.3.1 Local Type Inference on ASG’s

The generated graphs originally began as AST’s, but some reference nodes were pointed back into the tree,

creating the graph. For this reason, it makes sense to view the graph as a tree with back-edges. If we maintain

annotations of which sub-term edges are references, we can regain the top-down flow of information, which

is the way researchers often think about type systems and typing environments. In doing so, we no longer

49

have the identity of cycles automatically detected (to be handled via separate cyclic and acyclic definitions

of node decoration), but we can still manually handle these situations. Overall, this modified approach to

ASG’s places slightly more responsibility on the programmer (identifying cycles and satisfying them), but

provides more information than was available in InterpreterLib (the ‘was-a-reference’ annotations) and does

not restrict the flow of information either up or down the structure.

We explored local type inference such as in §2.2.2 on an example language utilizing a graph structure,

demonstrating that it is still amenable to a graph-based structure. The tree-with-back-edges approach allows

us to enjoy the benefits of naming analysis performed by the graphing analysis, while still performing an

analysis defined in top-down fashion such as local type inference.

3.3.2 Error Reporting

One deficiency of the original typing analysis was poor support for error reporting. In the Haskell code

of this iteration of typing analysis, a Writer monad is used to collect errors. An error type is reported at

the failing node, and analysis can continue, with the possibility that the error will not spread too far away.

The original typing analysis would quit at the first sign of a problem, which occurred at the stage of global

constraints unification. One hard-to-parse error message would sometimes be all that was reported. Now,

we can report a series of typing errors. Some of these may of course be the result of a propagated error, but

more information is generally a good thing. This approach is much better suited to the intent of providing

type information in the face of missing or wrong typing information in a specification.

3.4 Summary

Overall, the previous work and related work guide the way forward for this work. The type system is

formally defined relying on the insight into features’ interactions; splitting the typing rules into various

phases such as in System FC(X) simplifies the rules. We know where sources of undecidability are likely

to come from (such as the System F2 expressibility, unhindered dependent typing), indicating what partial

analyses are possible in an implementation. We have practical issues such as naming conventions handled

in the graph representation, and tactics such as local type inference that are viable in this approach.

50

Chapter 4

Methodology

4.1 Introduction

We discuss the specific tasks and approaches used in developing the typing analysis for Rosetta. This typing

analysis is defined to operate over partial Rosetta specifications. The analysis attempts to infer types, collect

constraints, and check for properties and information that would be useful to the specification refinement

process.

In order to implement the analysis, I use the graph analysis techniques discussed in order to handle

naming conventions in Rosetta. By leveraging the scopeless abstract syntax work, the typing analysis gets

name resolution ‘for free’, which also keeps the tool aligned with other research efforts into the Rosetta

language in the SLDG laboratory.

Given the output graph of the naming analysis, I use the Reference Algebra work to treat this graph

structure as a tree with identified back-edges. This approach recovers the top-down traversal strategy of

many typing analyses, departing from the topologically-sorted traversals of scopeless abstract syntax in

favor of the more familiar top-down traversals common to many type analyses. This traversal is essential

for both identifying and handling cycles as well as mutual recursion that arises in specifications. This trades

for the ability to order the traversal over nodes, at the expense of manually ensuring that typing information

is available for particular nodes when needed.

Within this reference algebra, I first apply a basic typing analysis, and then scale up to analysis em-

phasizing multiple-error recovery, partial typing analysis, and local type inference. The goal is to provide

51

analysis over under-specified specifications, and so all the techniques should cater to (or at least deal with)

the expected lack of information in the specifications. There should be opportunities related to abstract types

in Rosetta, types that are defined but not given a specific set of values. The analysis should result in either

complete concrete typing information, specific typing errors, or all typing information observed and inferred

for given types in the specification, indicating what constraints must be met or what conflicts may arise.

The tree-with-back-edges view will expand on the graph structure to allow implementation of features

such as local type inference, indicating that the graph structure will not create further problems ‘down-

stream’. The graph structure has already been tested with a tree-with-back-edges style catamorphism on a

toy language, yielding positive results in a narrower scope. This approach also yields more localized and bet-

ter error reporting than previous typing efforts in Rosetta. In this way, the reference algebra approach stays

in the familiar top-down and bottom-up flow of information while benefiting from the scopeless abstract

syntax work at the same time.

4.2 Defining Rosetta Typing Rules

I use the formalisms as in the language definitions above in providing a formal definition of the Rosetta

type system. In particular, splitting the rules into various phases such as type-checking and kind-checking

further serves to codify the semantics of the Rosetta language. Similar to System FC(X), we can separate

environment extension from typing analysis with separate rules for generating the Γ related to a Rosetta

construct such as a facet or package.

We now formalize rules to define the Rosetta typing semantics embodied by the typing analysis. It

is important to realize that this is not intended to fully define the semantics of the Rosetta language, nor

prove any properties ove the type system. That would be a separate dissertation unto itself. The point of

these rules is to formalize the semantics that the typing analysis utilizes, providing a basis for discussing

the typing semantics of the analysis. Furthermore, we are not trying to present these rules as being an

algorithmic set of rules. Again, we are just formalizing the logic inherent in the typing analysis.

In order to define rules of the typing system, we define the notion of an environment Γ. An environment

is a relation between names and types that gives meaning to some expression in the language. As we define

52

typing rules over constructs that introduce names through parameters and definitions, we would then need to

extend Γ to include this new name and ascribed type in order to reason about the body within the construct.

Γ is simple: it contains labels with types, a label with a Γ and list of parameter types and another Γ, or

it contains more Γ’s via concatenation.

Γ = {}

| label : T,Γ

| <label :(p : P)|Γ>,Γ

| Γ,Γ

A label is just a name, possibly qualified (e.g., x.y.f). Since the typing analysis is defined after the

graph analysis and names resolution, we can assume that all labels are fully qualified, with no chance for

name shadowing.

In order to understand how we use Γ, we need to think of type analysis as a mix of two phases–defining

γ̀ through rules that generate the Γ associated with some design unit (e.g. facet, component, package,

domain), and defining τ̀ through rules that find a typing for any expression in the language. The two are

mutually recursive: when finding Γ for a facet, we may need to reason via τ̀ to decide what Γ to generate.

Likewise, when finding something’s type, we may need to find Γ for a used package or something else via

γ̀ to add to the context when typing it. They are intermingled, utilizing each other. This practice is seen in

other language definitions, notably System Fc(X).

In an effort to make these rules somewhat more algorithmic (though not provably so), I am assuming

that γ̀ does not perform type checking except where necessary to find Γ. Rather, it assumes the unit is

type-safe, and it is the burden of other rules to enforce this type-safety. This is exactly how letrec is often

handled: accept its ascribed type, put that in Γ, type check to find out if it was valid. This lends to the

reasoning that the two analyses (γ̀ , τ̀) achieve termination. Even though both may refer to each other, γ̀

usually does not need to refer to τ̀ , instead it just records named entities such as parameters and definitions

with their types.

53

We adopt certain syntactic conventions and make certain organizational choices to make the rules more

compact and readable. The syntax for function types is written not as types in Rosetta, instead favoring the

style found in many functional languages; thus, we prefer p→ r to <∗(p) : r∗>. We present the γ̀ and

τ̀ relations together for each construct in turn, rather than all γ̀ relations followed by all τ̀ relations.

We also make another simplification in types representation: normally, representations of non-dependent

types use→ while dependent types use Π. But in Rosetta, there is no restriction on the value-dependence of

types, and therefore little to be gained in making the distinction beyond perhaps duplicating rules for purely

syntactic reasons. Therefore, we just use→, understanding that a type on the left of an arrow is likely to be

a type-ascribed name where that name may show up on the right side of the arrow in a dependent fashion.

We similarly allow for a multi-parameter situation to be represented in uncurried tuple fashion, much like

the signatures of Rosetta themselves.

We organize the analysis as a top-down tree walk, so we can consider an environment to exist as the set

of node type annotations that must be present in the results graph. It is the task of the analysis to ensure that

some type annotation is present for each node that corresponds to a label in the environments of these rules.

In this way, although we do not explicitly generate the environments described in these rules, those very

environments are embedded in our results graph. At the same time, the names analysis has already checked

that each named entity is a legal reference to a name, so we are guaranteed that our typing analyis should

not be looking anywhere outside of the actual allowed scope at any time. This provides an upper bound (all

accessible nodes post-names resolution) and a lower bound (all previously visited nodes) on what may be

in the environment. As long as the analysis actually visits all nodes named in an environment (or records

a delayed type), we can informally argue that the environment is present, complete, and will not incur any

interference from ‘outside’ information akin to arbitrary extensions to the environment from extraneous

results that have been recorded in the results graph.

4.2.1 A Note on Lists

Throughout these rules, we use the familiar vector notation p to represent a list of items p1, p2, ...pn. Param-

eters are ordered, meaning that a specific parameter is visible in all subsequent parameters. This fact is not

readily representable in the rules, and is therefore assumed, for parameters only. When we see Γ τ̀ p : P,

54

the assumption is that we actually mean the chain of claims:

Γ τ̀ p1 : P1

Γ, p1 :P1 τ̀ p2 :P2

...

Γ,(p1 :P1), ...(Pn−1 :Pn−1) τ̀ pn :Pn

Γ τ̀ p : P

where the final claim is all that we normally show, assuming the interplay between parameters and their

environments.

Other vector representations, such as declarations and definitions, are mutually defined, and do not have

these orderings. Fortunately, Rosetta in general requires type ascriptions for these batches of items, and so

we can instead record the name-ascription pairs in bulk in order to then check for the type of them, regardless

of order.

4.2.2 Qualified Names

Although the graph analysis resolves all names, we can reason about the name resolution it performs. When

we construct the environment Γa.b for a qualified name a.b in some Γ, we must reason in terms of extending

that local environment Γ with the environment Γa of a in order to construct the environment for a.b.

• G-Qualified.

Γ γ̀ a : Γa

Γa,Γ γ̀ b : Γb

Γ γ̀ a.b : Γb

• T-Qualified.

Γ γ̀ a : Γa

Γa τ̀ b : Tb

Γ τ̀ a.b : Tb

55

4.2.3 Design Units

A facet definition has a domain, parameters, definitions, and declarations. The facet is an extension of

that domain, so all domain definitions are present and visible all throughout the facet. Declarations are not

ordered: they are mutually defined. All parameters are visible in the declarations. Definitions (the ‘body’ of

the facet) are also mutually defined between themselves; all parameters and declarations are visible.

• G-Facet

Γ γ̀ dom : Γdom

Γ,Γdom, p : P τ̀ decl : Decl

Γ,Γdom, p : P,decl : Decl τ̀ de f n : De f n

Γd = Γdom∪{p : P,de f : De f ,decl : Decl}

Γ γ̀ f acet f (p :: P) :: dom is decl begin de f n end f acet f : Γd

• T-Facet

Γ γ̀ dom : Γdom

Γ,Γdom, p : P τ̀ decl : Decl

Γ,Γdom, p : P,decl : Decl τ̀ de f n : De f n

Γ τ̀ f acet f (p :: P) :: dom is decl begin de f n end f acet f : dom

A facet instantiation is a fully-applied facet definition, meaning that all parameters are supplied. (A

partially-applied facet definition may be considered a function from the arguments to a facet instance).

These parameters must be substituted all throughout the facet. The resulting type of a facet instantiation is

this substituted version of the facet definition’s type, which will be the domain specified.

• G-FacetInstantiation

Γ τ̀ a : P

< f :(p : P)|Γf >∈ Γ

Γ γ̀ f (a) :: [p 7→ a]Γ f

56

• T-FacetInstantiation

Γ τ̀ a : P

< f :(p : P)|Γf >∈ Γ

Γ τ̀ f (a) :: [p 7→ a] f

We define packages, components, and domains with similar typing rules. We leave the actual rules to

the appendix (A.1).

4.2.4 Use Clauses

A use clause allows a package to be imported, such that all definitions within it are visible for a given design

unit such as as facet, domain, component, or other package. It behaves just like a giant, special let binding.

• G-Use

Γ γ̀ p : Γp

Γ,Γp γ̀ decl : Γdecl

Γ γ̀ use p in decl : Γdecl

• T-Use

Γ γ̀ p : Γp

Γ,Γp τ̀ decl : Tdecl

Γ τ̀ use p in decl : Tdecl

4.2.5 Quantified Parameters

As mentioned in §2.2.3, when local type inference is capable of identifying a principal type for a type

parameter, we will capture the claim that local type inference can find a principal type for a particular omitted

type parameter, through the infer relation. The required information is an application of a function with

inferrable parameters Q and explicit parameters p, and supplied arguments a. We can then represent the

T-App-InfAlg rule’s applicability thus:

57

Γ τ̀ f : [Q](p : P) : R

Γ τ̀ a : A

{} τ̀ A <: P⇒C

I = σCR

infer(Q, p : P,R,a : A)⇒ I

If we’re given the function signature f[Q](p:P):R, and arguments a:A, and if ensuring that A <:

P implies the constraint set C upon the inferrable parameters Q, then we can define I as the best set of

substitutions for inferrable types Q when solving the constraint set C with respect to the type R). infer

doesn’t refer to f directly, instead relating its quantified parameters, explicit parameters, range type, and

arguments to the best set of type substitutions for the inferrable quantified parameters.

Because this infer relation only shows up in a few places in the Rosetta rules, we do not re-write all

of the typing rules from local type inference for Rosetta directly. They would be identical up to the lan-

guage syntax differences. Lambdas and applications become any parameterizable definitions and function

calls/instantiations; Top and Bottom also exist in Rosetta; and Rosetta also defines the subtyping relation

<:.

Of course, in Rosetta we are only allowed to infer quantified parameters; explicit parameters must

be supplied, even if they are inferrable. Quantified parameters may seem to be conflated with inferrable

parameters, but the distinction between the two is made by the specifier by choosing whether to place a type

parameter in the quantified parameters list of the explicit parameters list.

4.2.6 Applications

Applications occur whenever we supply parameters. This can apply to facet definitions, functions, any-

thing with parameters. The dependent nature of Rosetta means that we must perform substitutions for our

parameters. As the orderedness of parameters affects their environments, so too does the orderdness af-

fect the substitution of parameters. Since a parameter is visible in all subsequent parameters, we substitute

parameters one at a time, through both the remaining parameters and the range of the function.

58

• G-Application

Γ τ̀ f : (p : P)→ R

Γ τ̀ a : P

Γ, p : P γ̀ R : ΓR

Γ γ̀ f (a) : ΓR

• T-Application

Γ τ̀ f : p : P→ T

Γ τ̀ a : P

Γ τ̀ f (a) : T

• G-Application-Infer

Γ τ̀ f : [Q](p : P)→ R

Γ τ̀ a : A

infer(Q, p : P,R,a : A)⇒ I

Γ, p : P γ̀ [Q 7→ I]R : ΓR

Γ γ̀ f (a) : ΓR

• T-Application-Infer

Γ τ̀ f : [Q](p : P)→ R

Γ τ̀ a : A

infer(Q, p : P,R,a : A)⇒ I

Γ τ̀ f (a) : [Q 7→ I, p 7→ a]R

4.2.7 Variables

A variable’s type is just a lookup into the environment: the variable must be in the environment for any well

formed expression, and thus the lookup will not fail if the scope-introducing construct correctly extended

the environment as we require.

59

• T-Var

t : T ∈ Γ

Γ τ̀ t : T

4.2.8 Functions

Rosetta provides multiple ways of defining functions. The body of a function may be omitted, may be

defined, or may be declared as constant without giving a specific value. A function definition also may

include a where clause, placing constraints upon the values via boolean expressions that must be true,

without directly specifying the value of the function. These various syntactic forms all obey the same typing

rules: the body of the function must be of the type of the range of the function, and where-clauses must

contain a boolean expression.

• T-Function-Anonymous

Γ, p : P τ̀ t : T

Γ τ̀ <∗(p :: P) :: T is t∗> : (p :: P)→ T

• T-FunctionApplication

Γ τ̀ a : P < f (p : P) :: T >∈ Γ

Γ τ̀ f (a) : (p : P)→ T

4.2.9 Direct Functions

• T-FunctionInterpretable

Γ, p : P τ̀ t : T

Γ τ̀ f (p :: P) :: T is t; : (p : P)→ T

• T-FunctionUninterpretable

Γ τ̀ f (p :: P) :: T is constant; : (p : P)→ T

• T-FunctionQualifiedInterpretable

Γ, p : P τ̀ t : T Γ, p : P τ̀ tw : boolean

Γ τ̀ f (p :: P) :: T is t where tw; : (p : P)→ T

60

• T-FunctionQualifiedUninterpretable

Γ, p : P τ̀ tw : boolean

Γ τ̀ f (p :: P) :: T is constant where tw; : (p : P)→ T

• T-FunctionVariable

Γ τ̀ f (p :: P) :: T ; : (p : P)→ T

• T-FunctionQualifiedVariable

Γ, p : P τ̀ tw : boolean

Γ τ̀ f (p :: P) :: T where tw; : (p :: P)→ T

4.2.10 Anonymous Functions

• T-FunctionFormer

Γ, p : P τ̀ t : T

Γ τ̀ <∗p :: P∗> is t : (p : P)→ T

• T-FunctionValue

Γ, p : P τ̀ tis : T Γ, p : P τ̀ tW : boolean

Γ τ̀ <∗(p :: P) :: T is tis∗> where tw; : (p : P)→ T

4.2.11 Further Binding Sites: Functions and Lets

We consider some other locations where names may be bound. The main consideration is that parameters are

in the environment of the body of the defined scope. Let-expressions do not have ascriptions on them, and

so we do not see quantified parameters in this rule itself; a function definition bound by a let-expression

may itself introduce quantified parameters, but that would therefore concern the function typing rules

instead.

• G-Function

Γ,q : Q, p : P τ̀ v : T Γ γ̀ v : Γv

Γ,q : Q, p : P τ̀ b : boolean

Γ γ̀ f [q :: Q](p :: P) : T is v where b; : { f : [q : Q]((p : P)→ T)|Γv}

61

• T-Function

Γ,q : Q, p : P τ̀ v : T

Γ,q : Q, p : P τ̀ b : boolean

Γ τ̀ f [q :: Q](p :: P) :: T is v where b; : [q : Q](p : P)→ T

• G-Let

Γ,x : X τ̀ t : X

Γ,x : X γ̀ e : Γe

Γ γ̀ let x :: X be t in e end let; : Γe

• T-Let

Γ,x : X τ̀ t : X

Γ,x : X τ̀ e : Te

Γ τ̀ let x :: X be t in e end let; : Te

4.2.12 Sequence Predicates and Operators

Rosetta provides some predicate functionality that can be applied across sequences. forall allows us

to express as a boolean expression that all elements of a set, and therefore all elements of a type, obey

some predicate pred. Of course, this boolean expression may turn out to be false – this does not make an

assertion, it is an encoding of the ∀ symbol.

• G-Forall

Γ γ̀ forall(x : T | pred) : {}

• T-Forall

Γ,x : T τ̀ pred : T → boolean

Γ τ̀ forall(x : T | pred) : boolean

filter allows us to filter a sequence with a predicate, resulting in the previous sequence with only

elements that upheld the predicate.

62

• G-Filter

Γ γ̀ seq : Γs

Γ γ̀ filter(pred,seq) : Γs \{x : T |pred(x) = false}

• T-Filter

Γ τ̀ pred : T → boolean

Γ τ̀ s : sequence(T)

Γ τ̀ filter(pred,s) : sequence(T)

4.2.13 Control-Flow Expressions

• G-If

Γ γ̀ t : Γt

Γ γ̀ f : Γ f

ΓR = Γt ∩Γ f

Γ γ̀ if b then t else f end if; : ΓR

• T-If

Γ τ̀ b : boolean

Γ τ̀ t : T

Γ τ̀ f : F

R = T uF

Γ τ̀ if b then t else f end if; : R

• G-Case

Γ τ̀ p : P

Γ, p : P γ̀ e : Γe

ΓR =
⋂

Γe

Γ γ̀ case e of p→ e end case; : ΓR

63

• T-Case

Γ τ̀ e : E uP = E

Γ, p : P τ̀ e : Te T = uTe

Γ τ̀ case e of p→ e end case; : T

4.2.14 Ascriptions

Ascriptions do not introduce new scoped items, so the G-Ascription rule only passes the generated

environment through. Also, note that we do not perform any type checking that is not required to formulate

the resulting environment in a γ̀ rule. That check is performed in the τ̀ rule. The syntax for a Rosetta

ascription is expr :: typeexpr.

• G-Ascription

Γ γ̀ t : ΓT

Γ γ̀ t :: T : ΓT

• T-Ascription

Γ τ̀ t : S

S <: T

Γ τ̀ t :: T : T

4.2.15 Constructed Types

User-defined constructed types allow for a parameterized definition of a collection of constructors, ob-

servers, and recognizers. The parameters play an important role in the typing rules: although explicit in

a fully instantiated representation of the constructed type, these type parameters become quantified (in-

ferrable) parameters for all of the constructors, observers, and recognizers.

64

• G-Constructed-Type

Γconstr = ∪constructor : [p : P](obsp : Obs)→ adt(p : P)

Γobser = ∪obs : [p : P](obsp : Obs)→ Obs

Γrecog = ∪recog : [p : P](adt(p : P))→ boolean

Γd = {adt : (p :: P)→ type}∪Γconstr ∪Γobser ∪Γrecog

Γ γ̀ adt (p :: P) :: type is data constructor(obsp :: Obs) :: recognizer end data; : Γd

The Rosetta typing analysis relies on well-formedness checking through the graph analysis. Since a

constructed type is just a signature, there is no typechecking to be done beyond requiring types at type

locations in the signature structure.

• T-Constructed-Type

Γ τ̀ p :: P :: type

Γ, p : P τ̀ Obs :: type

Γ τ̀ adt (p :: P) :: type is data constructor(obsp : Obs) :: recognizer end data; : (p : P)→ type

4.2.16 Mathematical Operators

Rosetta provides many built-in mathematical operators. They are not surprising in their semantics, but we

nonetheless provide the related typing rules, primarily in the appendix (§ A.18). Given the rich set of nu-

merical types in Rosetta, there is a lot of ad-hoc polymorphism in the typing behavior of an operation such

as addition. We could simply claim a type for addition such as +::complex→complex→complex,

but this loses a lot of information. We’d much prefer 4+5 to be of type posint, instead of complex.

And some operations such as division are not even conveniently closed for a type representation such as

(/)::a→a→a for a∈{natural, posint, negint, integer, rational, real, posreal,

negreal, imaginary, complex}, which we could try to reason for an operation like addition. We

present a small number of rules here to grasp the feel of these rules, but leave the exhaustive set of rules for

the appendix (§ A.18).

For operators such as addition, we define a relation R that captures the three types in an valid statement

“a value of type A plus a value of type B yields a value of typer C”, and then state the rule generally.

65

Let the relation R be {

(complex,complex,complex), (imaginary,real,complex), (imaginary,imaginary,imaginary),

(real,real,real), (posreal,posreal,posreal), (negreal,negreal,negreal),

(rational,rational,rational), (integer,integer,integer), (posint,natural,posint),

(posint,posint,posint), (negint,negint,negint), (natural,natural,natural)
}. Then:

T-Addition
(A,B,C) ∈ R or (B,A,C) ∈ R Γ τ̀ x : A Γ τ̀ y : B

Γ τ̀ x+ y : C

We capture the commutativity of addition with the or clause. We define other operators such as subtraction,

multiplication, division, and exponentiation in similar fashion in the appendix (§ A.18).

4.2.17 Top and Bottom Literals

• T-Top

Γ` top : top

• T-Bottom

Γ` bottom : bottom

4.3 Subtyping Relationship

The subtype relation <: in Rosetta is defined between types, indicating that all values of the subtype are

also values of the supertype. It is reflexive, transitive, and antisymmetric. The relation shows up in a few

places. The basic numeric types such as integer, posint, and real exhibit the expected subtype re-

lationships. Composite types, such as sequences and sets, exhibit a subtyping relationship when the type

parameters exhibit the appropriate subtyping relationship. Functions have a more interesting subtype rela-

tionship, being contravariant in the parameters’ types and covariant in the range. User defined types can also

be parameterized over types, and can offer some subtyping relations accordingly. Lastly, Rosetta allows for

defining types specifically as subtypes of other types with the subtype keyword. We explore all of these

subtype relations as rules.

66

4.3.1 Subtyping for Primitive Types

We revisit the lattice of primitives in Rosetta:

Figure 4.1: Lattice of primitive types in Rosetta.

Each linkage in the graph (Fig. 4.3.1) relates the lower and higher nodes with the subtype relation, as

lower <: higher. For instance, we realise the following axioms:

posint <: integer integer <: rational rational <: real

and we could then chain these together to show that posint <: real. Rosetta provides basic mathemat-

ical operators that are themselves cognizant of these subtype relations, returning the most specific types al-

lowed by the relations. For instance, the addition operator + can be typed as integer→integer→integer

or real→real→real. All of the other rules are implicitly defined rather than listed out manually. These

operators have their own specialized typing rules (in § A.18).

67

In practice, the typing analysis wants to find the most specific type available. When seeking the most

specific type when this lattice of base types is involved (with the bottom type occupying the, er, bottom),

this means finding the least upper bound, or meet u. By tracing upwards from any two types along all

possible paths, and finding the ‘lowest’ path collision, we can find the most specific (i.e., constrained) type

that is a supertype of both types. It is quite normal for one of those supertype relations to be the reflexive

subtyping relation. As the lattice of base types does not change, it is easily implemented as a recursive

function.

As a simplification to the typing rules, we include the following subtyping rule:

Γ ` x : S Γ ` S <: T
Γ ` x : T

This allows the subtyping relation to dictate when a subtype relationship leads to the more general typing

claim. This allows the majority of the rules to use the type-of operator : instead of inserting the subtype

operator <: in rules where subtyping is not the major concern.

4.3.2 Subtyping for Composite (Structural) Types

The three composite container types provided in Rosetta enforce the subtyping relation through their con-

tained types.

• Sub-Set

Γ τ̀ t : set(S) S <: T

set(S) <: set(T)

• Sub-Multiset

Γ τ̀ t : multiset(S) S <: T

multiset(S) <: multiset(T)

• Sub-Sequence

Γ τ̀ t : sequence(S) S <: T

sequence(S) <: sequence(T)

68

Some common types are defined via these container types, and thus do not require their own rules.� �
1 s t r i n g : : type i s sequence (c h a r a c t e r) ;

2 b i t v e c t o r : : type i s sequence (b i t) ;�
Values of type word(n) are defined slightly differently, as word is a type function that requires the

bitvector values that inhabit it to have length n.

4.3.3 Subtyping for Functions

Functions are mappings from types of parameters to a range type. In order for one function to be a sub-

type of another function, we cannot simply check for subtyping between the parameters and the ranges

as we did for the contained types with the structural types above. Given fi:integer→integer and

fr:real→real, we might ask if fi<: fr. We are asking more specific questions than twice asking whether

integer<:real. Since we want to use fi where fr is expected, can fi accept as its arguments all of the

values that fr would have accepted? No, because that would require fi to accept any real value, and it only

accepts integers. But we also can’t flip the relation around to claim that fr<: fi. Since that would be asking

to use fr where fi was expected, we can only allow fr to result in values that would be possible for fi to

result in, and yet all the non-integer real values that fr may return will not ‘fit’ in the integer return type

of fi. This shows us that the subtyping relationship is a partial ordering.

Here is the subtyping rule for functions.

Γ τ̀ fs : Ps→ Rs

Γ τ̀ ft : Pt → Rt

Γ τ̀ Pt <: Ps Γ τ̀ Rs <: Rt

Γ τ̀ fs <: ft

69

4.3.4 Subtyping for User-Defined Datatypes

Is Tree(integer) a subtype of Tree(real)? When dealing with user defined datatypes, it is tempting

to treat them as structural entities and just check the subtyping relationship between their type arguments.

And in cases where the type arguments are only used structurally, that would admit a logical meaning of a

subtyping relationship between the two. But consider the following datatype and two uses of it:

� �
1 Func t ionMaker (a : : type ; b : : type) : : type i s

2 data MakeFun (func : : a −> b) : : i s F u n ? end data ;

3

4 f u n c I n t : : Func t ionMaker (i n t e g e r , i n t e g e r) ;

5 f u n c R e a l : : Func t ionMaker (rea l , r e a l) ;�
This clearly represents the same issue of subtyping functions. While a tree of integers can safely be

used where a tree of reals was expected, the same does not hold in general. In order to properly check a

subtyping relationship between two instances of type-parameterized datatype definition requires inspecting

the definition itself, identifying all uses of the type parameters with regards to their positions. It’s common

to consider positions as positive or negative, corresponding to the contravariance/covariance at the site of

usage.

4.3.5 Explicit Subtype Definitions

In Rosetta, we can explicitly define a subtype. These subtypes rely on the sets-as-types view, allowing us to

create a new type as a further restriction on the values of some other type. As with the rest of the language,

we can choose to provide or not provide a value.� �
1 Evens : : subtype (i n t e g e r) ;

2 Odds : : subtype (i n t e g e r) i s s e l (x : : i n t e g e r | x mod 2 = 1) ;�
The Evens definition does not tell us what restrictions on the integer set are additionally implied,

whereas the Odds definition uses the sel function to explicitly construct the set-value to use. The set

expression that defines the value of the type can use any Rosetta features. The typing analysis does not

70

attempt to perform any and all evaluation, so initially we do not support any reasoning about the values

of the subtype. But there may be future work in finding useful evaluations to incorporate into the typing

analysis to give better results. We can only check that values are members of the supertype, which is of

course insufficient. This will still exclude cases where values do not belong to the supertype, which is

the most appropriate approximation. We generate a warning for the user that the tool is only checking for

membership in the supertype.

4.4 Developing the Typing Analysis

The typing analysis obtains a naming analysis via the scopeless abstract syntax [33] work. This naming

analysis turns the original Rosetta syntax into the same Rosetta AST as previous type checking efforts,

but further resolves all names, constructing an abstract syntax graph (ASG) with all names resolved. This

involved process even β -reduces facet instantiations to create nodes representing named items exposed

in that instantiation, among many other operations to provide a graph with no more need for a naming

environment. The end result is that any analysis — not just type-checking — can operate on a ‘scopeless

abstract syntax’ [33], reaping the benefits without duplicating the work as our original tools did. The graph

presents the nodes as strongly-connected components (SCC’s). Instead of the algebras of InterpreterLib,

we could instead write node decorators for the acyclic and cyclic components. This maintains the synthetic

information flow from sub-terms upwards, but cuts off the inheritance information flow from the top of the

AST downwards.

Local type inference such as in §2.2.2 has been explored on an example language utilizing a graph struc-

ture, demonstrating that it is still amenable to a graph-based structure. The tree-with-back-edges approach

allows us to enjoy the benefits of naming analysis performed by the graphing analysis, while still performing

an analysis defined in top-down fashion such as local type inference.

4.4.1 Reference Algebras

We must address an issue that arises when using the scopeless abstract syntax work: we are forced to visit

the nodes in a topologically sorted order, and there is no means to pass information such as an environment

71

from a term to its subterms. Typing analyses are concerned with relating sub-terms and their parent terms

in order to calculate types, so such a restriction would cause some significant redesign of algorithms that

do not lend towards accomplishing our goals. In order to recapture this behavior of downward information

flow, I’ve created Reference Algebras, allowing the graph to be viewed as a tree with back-edges occuring

at variable references.

Typing Over Graphs

When we describe our computation over a graph in terms of the acyclic and cyclic portions of the graph,

there is no ‘best’ way to model information flow downwards. Typically we structure our analysis code in

top-down fashion over the AST, monadically tracking the environment, counters, results, and so on, with the

recursive calls to subterms inheriting this information and synthesizing more information in their returned

values. But by losing the notion of ‘top-down’ when we switch to the topological sort of nodes to order our

analysis, we cannot reason about the path to our node from the root. We can still synthesize information

upwards, because topological sorting preserves this ordering for acyclic units, but in both directions the

cyclic components cause problems.

There is no restriction on the size of a cyclic portion of a Rosetta specification. Therefore, any arbitrary

size of a specification may be in a cyclic strongly connected component. All nodes that are dependent upon

these cyclic nodes may also be pulled into the strongly connected component. The user must break up the

cycle in some fashion, at which point we have the chance to remove an edge and topologically sort the

now-acyclic nodes. Identifying the ‘breakpoint’ of the cycle is challenging. Each way of introducing a cycle

in the graph must be identified, with no indication from the subgraph of nodes in the cycle where to look.

If we must explicitly handle each source of cycles in the graph, the benefit of topologically sorting the

nodes is lost while adding the issue of finding and breaking cycles. A typing analysis necessarily defines

the type of one node by reasoning about the types of the nodes around it, so a cycle in the graph cannot

be ignored. These sources of cycles are directly comparable to the points in an AST where new definitions

are brought into scope, raising the possibility that their types will be referenced before we have a chance to

calculate the type itself. One simple approach often available is to create some sort of placeholder for the

type, and then allow the actual type to be figured out afterwards, in delayed fashion. Knowing which name

72

or node we are referring to does not remove the problem of mutually recursively defined types, and so the

ability to traverse the graph in a top-down fashion is still valuable.

The graphing analysis creates the graph through the following process: It transforms an abstract syntax

tree’s nodes into graph nodes, and then resolves names to replace edges to variable references with edges

to the appropriate node of the item to which the reference referred. These reference replacements may

introduce cycles, causing the result to be a graph. For this reason, it makes sense to view the graph as a

tree with added back-edges to references. If we maintain annotations of which sub-terms are references, we

can regain the top-down flow of information, which is how we typically reason about type systems, typing

environments, and so on. In doing so, we no longer have the identity of cycles automatically detected, but

we can still manually handle these situations. Overall, this modified approach to ASG’s places slightly more

responsibility on the programmer, but provides more information than was available in InterpreterLib and

does not restrict the flow of information either up or down the structure. In short, the task of breaking down

cycles is replaced with the task of ‘priming’ the set of node-type answers with placeholders for all entities

whose values could be used before calculation.

The Solution

By viewing a graph as a tree with back-edges to references, we can recover the usual tree-walking structure.

Since the underlying representation is still a graph, we can store our answer for each subterm by annotating

each node in the graph. The only special case is to track and identify references so that we look up the result

rather than calculating it. Only the ‘parent’ of a node is allowed to evaluate it, ensuring that only the parent

may determine the environment in which it is evaluated. This is the Reference Algebra approach.

For our purposes, the reference algebra will be used to construct a catamorphism that operates over

the graph representation of a tree with reference back edges, while respecting the lookup-only status of

references. Each node in the graph is labeled with a unique identifier (just an integer), and contains a

functor constructor where each hole refers to the unique identifier of the intended subterm. Each hole also

is annotated with a boolean value representing whether it is a reference or not.

The state we maintain for a reference algebra is minimal – a graph of the results (represented by an

IntMap). We can then define a type for a reference algebra, called RefAlg below:

73

� �
1 data RefS t a = RefS t { r e s u l t s : : IntMap . IntMap a }

2

3 type RefAlg f m a = (MonadStateX RC (RefS t a) m) =>

4 I n t −> f (m a , I n t , Bool) −> m a�
A RefAlg type relates some functor f, some monad m, and some type a. For our purposes, f is our

language in functor form, m can be extended with whatever monadic properties the target analysis uses.

RefAlg only constrains m to include stateful properties embodied by MonadStateX RC (RefSt a)

[28], which means that we can access and update the RefSt a state. lastly, a will be our representation

of types. Reference algebras could be defined for other analyses than typing, so the definition is not typing

specific.

The signature of RefAlg indicates that, given an Int representing the unique identifier of the current

node and the functor of that node where each hole consists of a triplet of the computation to perform for

that node, the unique identifier of the subterm as an Int, and a boolean representing whether this subterm

is a reference instead of an owned subterm, it will give back m a, a monadic computation representing the

a value for this node.

A RefAlg is analogous to an algebra of InterpreterLib, in that we are defining a large-step semantics,

where the recursion is left to be explicitly constructed from the algebra itself with a catamorphism or other

appropriate fold. All subterms already contain (a monadic computation for) their own results of the analysis,

and we do not perform the recursion ourselves. This occurs when we construct a catamorphism over such

an algebra:

Implementing Reference Algebras

In Figure 4.4.1, we define a catamorphism for RefAlg. To understand what is happening, we compare it to

a simpler catamorphism, such as found in InterpreterLib:� �
1 −− I n t e r p r e t e r L i b −s t y l e ca tamorph i sm :

2 c a t a p h i tm = p h i . fmap c a t a $ tm�

74

� �
1 r e f c a t a : : (MonadReader I n t m, MonadStateX RC (RefS t a) m,
2 F u n c t o r f , F u n c t o r Z i p f
3)
4 => [(I n t , f I n t)] {− f u n c t o r s −}
5 −> [(I n t , f Bool)] {− was−a−r e f e r e n c e i n f o −}
6 −> RefAlg f m a {− p h i −}
7 −> I n t {− key −}
8 −> m a {−− monadic r e s u l t . −−}
9 r e f c a t a f u n c t o r s wars p h i key =

10 l e t J u s t f u n c t o r A t K e y = lookup key f u n c t o r s
11 J u s t warsAtKey = lookup key wars
12 withSubtermsDone = fmap (r e f c a t a f u n c t o r s wars p h i) f u n c t o r A t K e y
13 wsd ’ = fmap (r e c o r d R e s u l t) $
14 f z i p f u n c t o r A t K e y wi thSubtermsDone
15 in
16 p h i key (f z i p 3 wsd ’ f u n c t o r A t K e y warsAtKey)
17

18 where r e c o r d R e s u l t : : (MonadStateX RC (RefS t a) m) => (I n t ,m a) −> m a
19 r e c o r d R e s u l t (i , ma) = do
20 a <− ma
21 p u t A l s o [(i , a)]
22 r e t u r n a�

Figure 4.2: catamorphism defined for RefAlg algebras.

We first map cata over all subterms. This recursively ‘walks’ down the abstract syntax tree’s nodes all

the way down to the leaves. We then call phi on the nodes in the tree, first on the leaves, then up one level at

a time, all the way to the root. phi operates over the functors with some particular type of value in the holes.

In a term, the holes would be filled with the fixed point of the terms as well; in a phi for type checking, the

types of the subterms would be in the holes; in a phi for evaluation, the values of the subterms would be

in the holes rather than the terms themselves. The cata function embodies the recursion style and means

of ‘folding’ the phi function over the term tm, in order to perform the analysis and collapse the term down

to a specific value. The operational semantics of this mean that we are first building up our recursive calls

to cata, and then working our way up from the leaves of the AST with the calls to phi that were laced at

each node through the cata calls.

Now we can consider refcata from Figure 4.4.1 above, beginning with the function signature. The

functors parameter is a graph representation of just the nodes and their subterms. wars, meaning

“Was-A-Reference” list, is the graph again, with boolean values instead of the unique identifiers. The third

75

argument is the phi function itself, the RefAlg. The last argument is just the unique identifier for the

‘root’ node. The result is (a monadic computation of) the value of the algebra at the ‘root’ node.

The implementation of refcata first uses a let block to first look up the functor and was-a-reference

information at the current key. withSubtermsDone performs the recursive calls to refcata, while

wsd’ records the results to our RefSt state. The body of the let calls the phi algebra on this recursion-

completed result-recording functor filled with triplets of the subterms’ (result, identifier,was-a-reference)

values.

Defining refcata is more natural in terms of the graph structure; therefore, we also provide a graph-

based version, refcataGraph, accepting the RefAlg and the graph.� �
1 r e f c a t a G r a p h : : (MonadStateX RC (RefS t a) m, F u n c t o r f , F u n c t o r Z i p f)

2 => RefAlg f m a −> Focus (FCompose f WasRef) −> m a

3

4 data WasRef x = WR Bool x�
The details of this function delve more into the graph representation and are not germane to the current

work, so we include only its type signature. The type Focus (FCompose f WasRef) repersents a

graph with a root (a ‘focus’) annotated with ‘was-reference’ annotations by composing the WasRef functor,

allowing it to wrap a WR constructor around each hole of the f functor.

Reference Algebra Usage

Since the decision of whether to look up a reference’s result or to compute a node’s result directly is based on

the information that is exposed by a reference algebra, it would be possible for a user to abuse this and still

disobey by trying to evaluate a node’s expression despite not being the parent node. The handle function

embodies the logic of deciding whether to look up a reference’s result or simply bind the computation for the

subterm itself. We will need to bind subterms’ monadic computations to use them anyways, so by wrapping

calls to handle around each binding we ensure that references are always looked up instead of evaluated.

As a sample usage, in a simple language we might see usage for the If functor constructor as below.

It first handles all subterms, and whether they were references to pre-defined terms or expressions built in-

76

place, we will appropriately find their analysis results and name them guard’, tru’, and fls’. We can

then use them to check if the guard is typed as a Boolean, if the branches’ types agree, and so on.� �
1 p h i (I f gua rd t r u f l s) = do

2 guard ’ <− h a n d l e gua rd

3 t r u ’ <− h a n d l e t r u

4 f l s ’ <− h a n d l e f l s

5 i f (guard ’== TyBool) && (t r u ’== f l s ’)

6 then r e t u r n t r u ’

7 e l s e e r r o r . . .�
Anticipating Cycles

The last hurdle to using reference algebras is to anticipate and account for the cycles that would have risen

in the topological sorting approach to ordering our node visitation. As we stated before, each cycle has a

cause that relates to a definition being used by either itself or in some mutually recursive way. The solution

is to put a placeholder into our results that can later be substituted once the result has been calculated.

In order to manually add results, we simply need to append a list of new ‘results’ to our results stored

in the StateX RC monad:� �
1 p u t A l s o : : (MonadStateX RC (RefS t a) m) => [(I n t , a)] −> m ()

2 p u t A l s o as = do

3 r e c <− g e t x RC

4 l e t n e w r e s u l t = f o l d r (u n c u r r y IntMap . i n s e r t) (r e s u l t s r e c) as

5 pu tx RC $ r e c { r e s u l t s = n e w r e s u l t }�
When must we manually add results? It is sufficient to identify all named items and put a placeholder in for

each. So each let-binding, each parameter, each declaration in a facet will have a placeholder added.

For all named entities, we still are benefitting tremendously from the scopeless abstract syntax work.

This approach does not have to determine what a name actually refers to, because we already have the node.

We are only putting in placeholders to account for the situation where a node’s result is needed before it can

be calculated, no matter how the order of node visitation was decided.

77

Reference Algebras within the Rosetta Typing Analysis

Reference algebras were first developed and tested over a small evaluation language. This language contains

features that are relevant for reference algebras, Rosetta, and local type inference. Its definition is presented

in Fig. 4.4.1. It has functions with type ascriptions in their signatures. It also has multiple numerical

types that exhibit a subtype relationship. Functions also have inferrable type parameters, represented by the

String synonym TyName.� �
1 data F x = I f x x x | Tru | F l s
2 | TmNat I n t | TmInt I n t | TmReal F l o a t
3 | Mult x x | Minus x x | P l u s x x | Eq x x
4 | Fun Name [TyName] [(x , Ty)] x Ty | Param Name Ty | App x [Ty] [x]
5

6 data Ty = TyBool | TyNat | T y I n t | TyReal | TyFun [TyName] [Ty] Ty
7

8 type TyName = S t r i n g�
Figure 4.3: Test Language Definition for Reference Algebras.

As a functor, we can directly represent terms of this language in graph form. To represent example

= If Tru (TmInt 3) (TmInt 5), we identify all constructors as nodes, and build up the graph by

assigning a unique identifier to each to represent subterms. The graph for our example is:� �
1 example = Graph [(0 , FCompose (I f (WR F a l s e 1) (WR F a l s e 2) (WR F a l s e 3)))

2 , (1 , FCompose Tru)

3 , (2 , FCompose (TmInt 3))

4 , (3 , FCompose (TmInt 5))

5]�
Rather than implement a parser and tree-to-graph conversion, examples were hand-coded into this graph

representation. There was no added benefit to writing these tools over the test language.

Next I defined a typing analysis that uses refcataGraph, handle, and putAlso as discussed

above. This typing analysis performs local type inference as described in [39], inferring the type parameters

of the Fun constructor where possible. The local type inference code only interacts with the rest of this

typing analysis at the site of App nodes that have been applied. In the full Rosetta typing analysis, this is

78

very useful — it is an orthogonal concern that does not limit other aspects of the typing analysis, having

only localized implications.

This evaluation language served the purpose of testing reference algebras as well as implementing local

type inference in a Rosetta-centric but simplified language. The code in this typing analysis was then ported

to operate over the actual graph representation used by the rosetta-graph tool. This forms the core of the

typing analysis, though many more cases must be handled, and many other features can be added onto it.

4.4.2 Tasks for Basic Type Checking

With structure in place for performing a typing analysis, we then proceed to perform simple type checks on

Rosetta specifications. In order to do so, we need certain core functionalities such as checking if one type

is a subtype of another type or simplifying a type expression. We also must organize these computations

to work around the issue of mutually recursive definitions; the analysis creates placeholders for the types

of nodes, but we require these functionalities to operate over concrete types. We see why and how we deal

with this concreteness requirement.

Checking For Subtypes

isSubtype is a function that determines whether one type is a subtype of another type. It operates over

concrete types, meaning that there is always an answer whether one type is truly capable of being interpreted

as a constrained version of another type. isSubtype respects the lattice of base types found in Rosetta

(see Fig. 4.3.1). Most of the structure of types is directly evident in the subtyping relationship. For example,

given the subtype relation <:, we say that set(A) <: set(B) if A <: B.

There are some chances for further detailed information about typability. For instance, inferrable pa-

rameters may be considered in any order.� �
1 ap p l y1 [A, B] (f : : A−>B ; a : : A) : : B i s . . . ;

2 ap p l y2 [X,Y] (f : : Y−>X; a : : Y) : : X i s . . . ;

3

4 a p p l y (f : : S−>T ; s : : S) : : T i s . . . ;�

79

Both of these applyN functions can be specialized to the type of apply, given [S→A,T→B] and

[S→Y,T→X]. This requires allowing for all permutations of these inferrable parameters to be considered,

though, which can be costly. This is currently not done, as the intended order has meaning the specifier

may not want to be inverted in search of an alternate view of a type that happens to match another type’s

structure.

Simplifying Types

There are many places in the typing analysis where we need a normalized form of a type. One such need

is to allow us to check for equality. Other concerns may be more pragmatic — as we learn more about

the types in a specification, we may facilitate further simplifications that were not readily available. Simple

forms of evaluation of dependently typed fragments also merit simplifying a type in order to learn more

about it.

Calls to the simplifyType function are pervasive throughout the typing analysis. This function per-

forms any currently available reductions on types. Some simplifications are simple, such as:

-- applying zero arguments

TyApp f [] ⇒ f

-- applying ‘native’ functions

TyApp f args = if (f ‘isNodeFor‘ ’and’) && all (==TyBool) args

then ...

The analysis has a representation of Rosetta values, primarily for numerical values. There is a function

simplifyValue that is dispatched within simplifyType whenever a RosettaValue is encoun-

tered within a type. We also simplify all sub-expressions within a type with recursive calls to the function.

As we will see below, there are times when we must introduce placeholder type expressions for some

nodes, which are later made concrete by looking up the result for that node after it has been found. Before a

concrete type has been found, we represent type applications with the TyApp constructor, e.g. TyApp (Ty

80

i) args. Later calls to simplifyType may look up the result at node i, leading to further simplification

of this expression. Because these applications may involve dependent types, we perform a substitution while

simplifying these TyApp expressions. This is described in more detail in § 4.5.3.

Using Delayed Results

More complicated simplifications involve looking up the type of a node in our results. We sometimes delay

storing an actual result in our results graph, in order to break cycles of dependence in the graph. These

delayed results can ‘leak’ to other results, and must be handled appropriately.

At the core of this ‘delay’ approach is the (TyAt Int) type constructor. It is a representation of the

type at a particular node, which is given the unique identifier (Int) for that node. It is opaque, in the sense

that we cannot inspect this type or anything about it beyond the node whose type is referenced. Once we

have visited the node behind this opaque type, however, its result can then safely be looked up and most

likely affords further type simplification.

Looking up TyAt results within a type can ostensibly be repeated every time that type is inspected, so

at key moments in the typing analysis we systematically simplify all results and store these newer results.

Those key moments are specifically at points where we have (potentially) introduced some delayed types

and also have traversed through those nodes. In this way we avoid some repeated type lookups. In the source

code, this is the crunchGraph function.

Rather than defining crunchGraph as a fixed point that iterates repeatedly until no changes occur, we

rely on the fact that crunchGraph is called frequently enough that any situation where multiple passes

would be beneficial will instead be handled by these subsequent calls. Execution time has never exceeded

the order of seconds during testing on small testing examples, so we are satisfied with runtime behav-

ior. We could only trade time spent looking up and simplifying types with time spent repeatedly calling

crunchGraph. The biggest concern is that this decision does not affect the semantics of our analysis, and

so we are free to decide for or against this optimization. This simplification and storage of the simplified

results simply operates as an efficiency improvement without changing the meaning of the represented types.

81

Dealing with Concreteness

One major design choice is to require a concrete type as our result. This means that we do not create type

variables to represent a node’s type and then eventually solve a set of constraints to determine its type. When

we evaluate a node’s type, we must immediately determine a representation for the node’s type. We do allow

for placeholders, as described above, in order to give us a name for nodes that have not been evaluated yet,

but when we evaluate that node itself, the placeholder then refers to the result of that evaluation. Although

this placeholder is opaque, it is not abstracted out, or represented by a variable or some constraint.

This concreteness of types is a requirement of local type inference. The generated constraints are always

between concete types and the omitted type parameters. It is a choice that we can work with: as we are

avoiding any global collection of constraints in favor of more localized approaches, this implies that there is

no further global stage in which we would be solving for type variables introduced in such a fashion.

When we implement functionality such as the is-subtype relation (as the isSubtype function), we

must only allow ourselves to check this relation on concrete types. Cyclic dependencies are broken by

introducing ‘placeholder’ types, which we need to look up in the results or else delay the current compu-

tation until we have a concrete representation for that node. Indeed, the only instance of TyAt within the

isSubtype function involves a lookup of the result, because there should already be an answer there.

4.5 Partial Information Approaches

One goal of this work is to track or expose any partial information of a specification in order to learn more

about its types. We consider different ways in which we track information to distinguish more about types.

We track the value that ‘witnesses’ a type when it is given. We interpret a node in the ASG as representing

a Rosetta type directly. We perform limited substitution, which is complicated by the dependent nature of

Rosetta. We use witnesses to compare word sizes by calling out to a decision procedure.

82

4.5.1 Witnesses

Whenever we supply a parameter to a function, we have both a value and its type. In non-dependent lan-

guages, knowing the type is sufficient for substitutions. However, Rosetta is dependent — and so we must

keep track of the values as well in order to successfully perform substitutions.

In order to obtain the correct values for substitution, we need to record them. To achieve this, we use

the following infix type constructor:� �
1 data Ty = . . . | I n t : : : Ty | . . .�
The :::, or ‘witness’ type as it is called, represents the type Ty on the right-hand side of the ::: construc-

tor. It also records the node representing the value of this type. For instance, if we had 120:::integer

where the Rosetta value at node 120 happened to be the number 5, then we are representing the integer

type while at the same time really representing the set {5} as a type whose value can only be 5. This is

related to ‘singleton types’ [17], where we would say that a value v:{v}. By treating the set {v} as a type,

we are stating that the value v is an element of that type.

Witnesses allow us to track values as necessary, and allows us to perform some evaluation over types

that normally wouldn’t be directly allowed in a non-dependent language. For instance, if we create the

user-defined type in Rosetta as follows:� �
1 P a i r (pa : : type ; pb : : type) : : type i s

2 data Pai rV (v1 : : pa ; v2 : : pb) : : I s P a i r V end data ;�
we can then use Pairs both at the value level as well as at the type level:� �
1 v a l u e p a i r : : P a i r (i n t e g e r , b o o l e a n) i s Pai rV (5 , t rue) ;

2 t y p e p a i r : : P a i r (type , type) i s Pai rV (i n t e g e r , b o o l e a n) ;�
Things get more interesting when we observe these Pair values:� �
1 x : : i n t e g e r i s v1 (v a l u e p a i r) ;

2 y : : (v1 (t y p e p a i r)) i s x ;

3 z : : i n t e g e r i s y ;�

83

Observing valuepair with v1 is straightforward. But simply extracting the left part of typepair in

similar fashion would only be type, meaning that we cannot further guarantee that y is an integer value,

and therefore we cannot confirm that z is well-typed. In order for this to work, we need to have the witness

to typepair — integer — in order to safely conclude that z is well-typed. By recording the type of

typepair as Pair(intNode:::type,boolNode:::type), we can see that v1(typepair) is

not just an element of type, but we can further reduce this down to state that y is an element of integer.

(We assume intNode is the identity of the graph node representing the integer type — even base types

are not hard-coded into the graph).

4.5.2 Nodes as Types

The lack of separation between values and types leads to another complication in type-checking. If our

analysis is supposed to find the type of each node, then what is the type of a type? In type theory, we

understand the type of a type to be a kind. In Rosetta, without all these separated levels of terms, types, kinds,

sorts, and so on, we represent the type of a type with a special keyword, type, which can be considered to

be equivalent to the * kind discussed in section 2.1.4. An⇒ kind from System Fω would become a Rosetta

function of type <* (::type)::type *>.

Some nodes in the graph represent typing annotations within Rosetta, e.g. for function signatures,

ascriptions, and let-bindings. If we were to just look up the results for these nodes, we would not be viewing

the type at that node, but actually the type of that node. While that might be useful for a ‘kind well-

formedness’ check, it means something fundamentally different. Indeed, some early bugs and limitations

during development were due to a lack of respect for this distinction.

As far as the typing analysis goes, in order to extract typing annotations from the Rosetta source, we

must elaborate from the nodes in the graph to a type in the internal type representation. The nodeAsType

function performs this elaboration. The graph representation is tightly coupled with the original source

code, and this means that each type annotation in the source will correspond to a single node in the graph

representation. Of course that one node can refer to other nodes, but for the purposes of the nodeAstype

function, a single node as the ‘root’ of the type is sufficient.

84

This does not amount to performing type checking all over again — instead, we see that nodeAsType

performs pattern-matching over the allowed representations of types in Rosetta, and then simplifies the

resulting type as in the general case with simplifyType. Without this capacity to both get the type

represented by a node as well as the type of a node, examples such as typepair, above, would not be

available for type checking.

4.5.3 Substitutions

From a typing perspective, a key concern arising with dependent types is substitution. We need to have

enough information available to correctly substitute through types when inspecting applications at the type

level. We must be aware of what evaluation is allowed during this substitution in order to perform this

evaluation. And we must ensure that this evaluation terminates. We will inspect some of the concerns of

substitution in Rosetta types, consider a restricted case of evaluation that we can support, and the approach

to actually performing that evaluation.

As Rosetta has first-class types, and therefore dependent types, we must perform substitutions to capture

that dependency. We discuss some of the situations in which substitution is necessary, and the extent that it

is possible to perform these substitutions.

In System F2-style terms where a type parameter is part of the range in some type, we must substitute

the type variable with the supplied argument. Each type parameter can show up in subsequent parameters,

so we must perform substitutions throughout the remaining parameter list and result type. This operation is

O(n·lg n) for n parameters, but parameter lists are rarely particularly long.

In System Fω -style terms, where term parameters appear in following parameters and the resulting type,

we must take care to correctly replace these as well. The typing analysis cannot handle all replacements,

as this requires reasoning about whether two arbitrary expressions in the term language were equivalent, in

turn requiring arbitrary computation. Instead, this analysis supports a restricted set of numerical expressions

expressible within Presburger arithmetic [30]. This roughly translates to addition, subtraction, and multipli-

cation by a constant. In general, as we identify further values that are representable within types, we can add

them to the Value definition (discussed below), and then reason about their equality and substitute them

within types as well.

85

One effect of using the graph is that the type substitution problem simplifies to substituting for a unique

node.� �
1 p r o b l e m a t i c S u b T y : : Name −> Ty −> Ty

2 b e t t e r S u b T y : : U n i q u e I n t e g e r −> Ty −> Ty�
Normally, a substitution algorithm is highly concerned with name capture. That is to say, substituting for a

type variable based on its name must be careful to observe scoping rules and identify whether a particular

instance of a type variable refers to a distinct type variable defined coincidentally with the same name. The

graph analysis has already alpha-converted the entire specification to a structure where each named entity

exists with a unique ‘name’ — its node number — and thus there are no direct name clashes possible. The

only concern is to do with multiple references to a node that involves some parameter type variable. But as

these multiple occurrences will show up only within our own internal representation of types, they will be

structurally separated within the tree-like structure of a type, due to being defined as an abstract syntax tree.

Why do we need substitution at all, then? Type variables can still exist, they are just not introduced by

the typing analysis itself. Every inferrable parameter, though it has its own node, can show up as a type

variable in the rest of the type. This occurrence will be a reference back to the inferrable parameter, and

once an inferred type is found we will substitute a reference to this node with the appropriate substitute type.

The same is true for non-inferrable type parameters.

When we are simplifying types, we sometimes find an application at the type level, and must therefore

perform substitution. The checkAndSubAnApp function, however uninventively named, accepts a list of

formal parameters, actual arguments, function range, and returns the result of applying the actual arguments

for the formal parameters, one at a time. This function performs limited checks such as enforcing a subtyping

relationship between the supplied argument and the formal parameter. It then substitutes throughout the

remaining parameters and range, one argument at a time. It utilises the witnesses (section 4.5.1) to further

inform the substitution in order to propagate the witnesses as necessary throughout the remainder of the

type.

86

4.5.4 Size control

In order to control the values that may appear and be involved in typing a Rosetta specification, we introduce

the Value datatype, as well as an internal type representation allowing these values to show up in types:� �
1 data Value = Numeric I n t

2 | NumericF Double −− F l o a t

3 | NumVar I n t −− node t h a t r e f e r s t o t h e v a l u e .

4 | SomeNum S t r i n g −− a number we can ’ t s p e c i f i c a l l y h a n d l e

5 | NumberAt I n t −− d e l a y e d lookup of t h e number a t t h i s node .

6 | NumAdd Value Value −− an a d d i t i o n of two Values .

7 | NumSub Value Value −− a s u b t r a c t i o n of two Values .

8

9 data Ty = . . . | R o s e t t a V a l u e Value | . . .�
Rosetta has a much richer set of numbers than just integers and doubles (floating-point numbers), but we are

restricting ourselves to these representations. Presburger arithmetic is actually only defined over integers.

But as we find more values that can be handled in some controlled fashion, we can add them to this Value

structure, effectively trapping them within a few isolated points in the code.

Analagous to nodeAsType, we also have the nodeAsValue function to elaborate from a Rosetta

representation of a value to the internal Value representation. When we are checking the type of an

application (with no indication whether it is a term-level application or a type-level application), we can

check via nodeAsValue whether this node is representable in our value space in order to get a more

specific type representation — as the value it truly is — rather than just recording the type of the value

represented by that node. As before, it is crucial to not confuse the type of the node for the type at the node.

4.5.5 Presburger Arithmetic

Presburger arithmetic [21, 30] makes reasoning about a restricted set of equations a decidable problem.

We use this restricted set of arithmetic and relations to bring these restricted values into the Rosetta types,

specifically in allowing finer-grained reasoning about the word type. Cooper’s decision procedure [13]

for Presburger arithmetic is a decidable algorithm that inputs Presburger formulæand outputs whether the

87

formula is valid. It transforms the formula to disjunctive normal form, constructs the sets of truth values (for

variables) that make the various relations consistent, and then checks if any of these sets of truth values make

the formula itself true. Conveniently, there is a Haskell library (Diatchki [18]) that implements Cooper’s

algorithm for Haskell. There are simple extensions to the basic grammar of natural numbers, addition,

equality, and quantifiers that are incorporated in Fig. 4.4.� �
1 data Formula = Formula : / \ : Formula
2 | Formula : \ / : Formula
3 | Formula := > : Formula
4 | Not Formula
5 | E x i s t s (Term −> Formula)
6 | F o r a l l (Term −> Formula)
7 | TRUE
8 | FALSE
9 | Term : < : Term

10 | Term : > : Term
11 | Term : <=: Term
12 | Term : >=: Term
13 | Term : = : Term
14 | Term : / = : Term
15 | I n t e g e r : | Term�

Figure 4.4: Presburger Formula Definition.

Boolean relations consist of and (:/\:), or (:\/:), implies (:=>:), and not (Not). Boolean values TRUE

and FALSE are present. We extend beyond simple equality (:=:) to include inequality (:/=:), less-than

(:<:), greater-than (:>:), less-than-or-equal (:<=:), greater-than-or-equal (:>=:), and divides (:|). A

Term is represented by a special structure that overloads the Num type class so that we can input integers

directly, e.g. 3:<:5 :/\: x:>: 10. Multiplication by a constant is also possible, by ‘unfolding’ the

constant k from (k*x) to (x1+x2+...+xk).

The task is now to find questions about Rosetta’s types that we can phrase in terms of Presburger for-

mulæ. We inspect the sized bitvector type, word(n), defining a sequence of bits of length n. First, we

should be able to inspect explicit sizes:� �
1 w1 : : word (6) i s b ” 001101 ” ;

2

3 w2 : : (x : : word (8) ; y : : word (4)) : : word (1 2) i s x & y ;�
88

In the first case of w1, the analysis can represent the value 6 as a part of the type word(6), as well as

calculate the type of b"001101" to be word(6). We can then equate these numbers while checking if

the latter is a subtype of the former. This is a dispatch of the Presburger formula 6:=:6. In the case of w2,

we see the & operator perform concatenation. The related Presburger formula we generate is 8+4 :=: 12.

Again, this is a simple dispatch to the library, and we are returned True as the result, allowing us to see that

the body of w2’s type is appropriate.

The more interesting cases include variables in the resulting Presburger formulæ. Consider w3:� �
1 w3 : : (a , b : : n a t u r a l ; x : : word (a) ; y : : word (b)) : : word (b+a +1) i s x & ” 1 ” & y ;�
The Presburger formula for w3 is Forall(\b-> Forall (\a-> b+a+1 :=: a+1+b)). This show

that we can use the analysis to test for size restrictions involving specific but unknown quantities, as vari-

ables.

We can also use less information than is present, and similarly track more information than is locally

necessary.� �
1 w4 : : sequence (i n t e g e r) i s [] & [1 , 2 , 3] ;

2 w5 : : sequence (b i t) i s b ” 101 ” ;

3 w6 : : (a : : n a t u r a l ; x : : word (a)) : : word (3+ a) i s w5 & x ;�
w4 does not need to be sized — in order to be well typed, it only needs to be a sequence of integers, of

any length. This is also the case for w5. However, when w5 is used within w6, the length of w5 is important.

The analysis finds that w5 is indeed of type word(3), allowing for w6 to check the Presburger formula

Forall (\a-> 3+a :=: 3+a).

These checks require special cases to handle operators such as &, as well as parameters. We can also —

very cursorily — step inside functions slightly, to try to learn even more about our functions.� �
1 r e p e a t b i t s (n : : n a t u r a l ; b : : b i t) : : word (n) i s

2 i f n=0

3 then []

4 e l s e ([b] & r e p e a t b i t s (n−1,b))

5 end i f ;�
89

This situation is tricky; the value of n is cased-over for different values. the then-branch will be of type

word(0), but the else-branch will be of type word(1+n-1). The issue is that the then-branch is actually

of type word(n) precisely when n=0, yet word(0) is recorded. We’d end up checking the Presburger

formula Forall (\n-> 0 :=: 1+n-1), but of course the two branches have been merged without

concern for their ‘environments.’ One soft check we can do, however, is to instead check Exists (\n->

0 :=: 1+n-1) and then check Exists (\n-> n :=: 1+n-1), which ensures that there is a

value for which repeatbits can legally be called. This is not entirely satisfactory, as it does not check that

all values that may be used will fit. It should instead be possible to try to keep track of what we know about

n in each branch. Then we would be able to check Forall (\n-> (n:=:0) :=>: (0 :=: n))

and Forall (\n-> (Not (n:=:0) :=>: (1+n-1) :=: n)). Both of these are true formulæ.

But we do not currently dig this deep — attempts were too fragile, breaking other previously checkable

examples.

The constructed Presburger formulæ are checkable via the equate function, returning a boolean value.

The valueFit function is little more than a wrapper around equate, returning a yes-no-maybe value

semantically equivalent to a Maybe Bool, where we return ‘maybe’ when we cannot be sure that they

are not equivalent. valueFit is used by the isSubtype function to determine the relationship between

numerical Rosetta values, specifically for checking whether two word sizes relate correctly to each other.

4.5.6 Local Type Inference

We have already discussed what local type inference is. In Rosetta, some uses for local type inference

arise in code generated during the graph analysis. Other uses of local type inference are for inferring the

quantified parameters (those in square brackets). Here, we describe these specific cases of applying local

type inference to Rosetta.

Generated Nodes and Chances for Inference

Some definitions introduce functions that are only named, though their implementation is understood. The

creation and usage of user-defined types introduces functions that are only represented syntactically, with

their implementations understood from the context. The graphing analysis will create nodes to represent the

90

implied definition of these functions in the graph representation. As an example, we define a user-defined

constructed type using the data keyword:� �
1 I n t P a i r : : type i s

2 data

3 I n t P a i r V a l (l e f t v a l : : i n t e g e r ; r i g h t v a l : : i n t e g e r) : : i s I n t P a i r V a l

4 end data ;�
IntPairVal is defined with type IntPairVal :: integer -> integer -> IntPair, but

we do not see its definition. In the graph, however, any call to this constructor function needs a node

for reference; so nodes are generated in the graph analysis as if the following function was present:� �
1 I n t P a i r V a l (x : : i n t e g e r ; y : : i n t e g e r) : : I n t P a i r i s . . . ;�
Similarly, we also have ‘inserted’ definitions for leftval, rightval, and isIntPair. We might

consider the above IntPair definition to be:� �
1 I n t P a i r : : type ;

2 I n t P a i r V a l (: : i n t e g e r ; : : i n t e g e r) : : I n t P a i r ;

3

4 l e f t v a l (x : : I n t P a i r) : : i n t e g e r i s

5 case x of I n t P a i r V a l (l f t ,) −> l f t end case ;

6 r i g h t v a l (x : : I n t P a i r) : : i n t e g e r i s

7 case x of I n t P a i r V a l (, r t) −> r t end case ;

8

9 i s I n t P a i r V a l (x : : I n t P a i r) : : b o o l e a n i s

10 case x of I n t P a i r V a l () −> t rue

11 | −> f a l s e

12 end case ;�
There are of course far more nodes apparent in this second presentation — instead of just a parameter

named leftval, we have another top-level definition of a function with its own parameter.

91

So where is the inference? We see inference arise when the user-defined type is itself parameterized by

types. Instead of an IntPair definition, let’s consider a pair of any two particular types, where we must

keep track of the type of the left and right values.� �
1 P a i r (a : : type ; b : : type) : : type i s data

2 P a i r V a l (f i r s t : : a ; second : : b) : : i s P a i r V a l

3 end data ;�
Now the automatically generated functions have more interesting types:� �
1 P a i r V a l [a , b] (x : : a ; y : : b) : : P a i r (a , b) ;

2

3 f i r s t [a , b] (x : : P a i r (a , b)) : : a i s

4 case x of P a i r V a l (l f t , r t) −> l f t end case ;

5

6 second [a , b] (x : : P a i r (a , b)) : : b i s

7 case x of P a i r V a l (l f t , r t) −> r t end case ;

8

9 i s P a i r V a l [a , b] (x : : P a i r (a , b)) : : b o o l e a n i s

10 case x of

11 P a i r V a l (,) −> t rue

12 | −> f a l s e

13 end case ;�
Not only have we generated functions with inferrable parameters ([a,b] throughout), but we also

have generated usage of these inferrable parameters. PairVal is a constructor with two inferrable type

parameters and two required parameters (that use the inferrable types). We see that PairVal is used in the

case expressions of all three other functions. In order to type check these nodes, we must be able to infer

proper values for a and b.

Consider the definition of first. We case over x, which we know is of type Pair(a,b) (whatever

a and b happen to be — we can’t see any further than the formal inferrable parameters). We must use

this information to assume that PairVal(lft,rt) is of type Pair(a,b), to in turn imply that lft

is of type a to determine that the (only) pattern’s body is of type a as well, matching the entire function’s

92

range. This follows normal application of local type inference — we have an application site that omits type

parameters; we collect constraints over allowable values, and solve; finally, we record the types used in the

substitution.

User-generated Datatype Usage

We see the same chance to infer parameters for user-generated usage of datatypes. If we continue with the

Pair type but define our own functions over it, we again can leave the inferrable parameters out:� �
1 c o l l a p s e [a , b , c : : type] (p : : P a i r (a , b) ; f : : <∗ (: : a ; : : b) : : c∗>) : : c i s

2 case p i s Pai rV (x , y) −> f (x , y) end case ;�
This is the same usage of the inferrable parameters as before. We also can write case expressions over

expressions not directly ascribed types, and then figure out what values for inferrable parameters are best,

given the pattern matches:� �
1 n o A s c r i p t i o n E x a m p l e : : i n t e g e r i s

2 case P a i r V a l (true , 6) of P a i r V a l (x , y) −>

3 i f x then y e l s e 5 end i f

4 end case ;�
The outcome is the same: there is an application of a function with inferrable parameters, and those omitted

parameters are found based on the surrounding usage of the type parameters when compared to the other

supplied arguments.

4.6 Error Reporting

The typing analysis generates errors, warnings, and information messages as necessary when analysing

a specification. We explore the design choices in constructing these messages, including efforts towards

offering fine-grained debugging of the analysis itself. The main goals are to provide for error recovery and

reporting multiple errors.

The initial parsing records source positions of each token, which are in turn recorded in the AST. The

graph structure preserves this source position information, copying what makes the most sense for generated

93

nodes and partially evaluated nodes. We are able to reference these source positions when generating error

or warning messages by simply looking up the source position information for the current node (or any other

specific node, if it is clear where else to report).

There exists a set of analysis tools beyond this dissertation’s typing analysis that is integrated with an

Eclipse [2] plugin. All of these tools may generate Info, Warning, and Error messages. This is directly

usable in a typing analysis. We can generate Error messages for each problem found, we can create Warning

messages for things that cannot be checked but that are not necessarily wrong, and we can generate Info

messages for any other communications.

While we try to connect error messages to the original source as much as we can, the fact of using the

graph analysis and its partial evaluation makes for an effectively irreversible transformation, and we cannot

always pinpoint a meaningful location e.g. for nodes that do not directly relate to any syntax in the source.

Once the analysis is completed, the graphing analysis generates a visualization of the graph representa-

tion as a dot file, and a table of the graph nodes and the found types is generated as an HTML page. Given

the following simple definition of a function:� �
1 f unc (x : : n a t u r a l) : : i n t e g e r i s x +1;�
we get the sample graph in Fig. 4.5. The top node is the focus (root) of the graph, and to find a particular

named entity we trace from that top node down named arrows exactly according to the design units and

named entities that define it. In this simple sample, we have a top-level definition for func, so we directly

follow the arrow from the root to node 403. The seemingly high numbers occur because definitions in the

Rosetta prelude are given their own unique nodes in the representation, but are only shown as dotted-border

nodes when used, and are otherwise hidden to keep the graph representation minimal.

Fig. 4.6 shows a part of the table of node typing annotations that the analysis generates. the table lists

the node number, represents the type both in raw and more readable form, and then displays the raw graph

representation of the node. Between the well-organized and named graph display and the HTML output, the

specifier can track down the type annotation for any sub-expression of the specification.

Throughout the analysis, a Writer monad is present that allows the telling of new messages, that are

then collected and reported to the Eclipse IDE or command line as appropriate. But one major hurdle to

94

Figure 4.5: Sample Graph Output.

Figure 4.6: Sample Type Annotations.

overcome is to make the text meaningful to the reader. Not only do we have to deal with the fact that the

graph does not represent the original specification in one-to-one correspondence of syntax to nodes, but we

have also replaced basic definitions of the language with nodes. integer is no longer handled specially

— we have a node that represents the integer type, and when we check if something is a subtype of

integer, we are checking if it is a subtype of the type represented by the node that happens to refer to

95

integer. We must be careful to track and extract all of these ‘nameable’ things so that we see the latter of

these two type representations in our messages:� �
1 TyArrow [TyData 410 [Ty 182 , Ty 1 9 9]] (Ty 199)

2

3 P a i r (i n t e g e r , n a t u r a l) −> n a t u r a l�
We replace not only base types and primitive definitions of the language, but also user-defined types. In

order to do this, we must record enough information at the time of message generation so that we can later

look up all of the related things from some generated context. To this end, instead of building up the string

for a message, we build up a list of string and type elements that should be displayed in order to generate

the message. We use the following data structure in the Haskell implementation:� �
1 data Showable = STy Ty

2 | STys [Ty]

3 | S S t r S t r i n g

4 | DebugTy Ty

5 | DebugStr S t r i n g�
We see at the same time the inclusion of Debug* versions. While creating the analysis and debugging, it

proved useful to add extra information through these elements in the message list that could all be selectively

stripped out by a simple check. In this way, a debugging mode could be turned on or off without actually

editing the messages that are generated.

Turning debugging on or off is not the only level of control available. If the debugging flag is set to

true, we can also create and set multiple flags, so that we are actually checking things such as : “if we are

debugging, and the Subtyping flag is present, then generate this message.”� �
1 data Flag =

2 F l a g W a l k P a r a m e t e r s −− f o r debugg ing how p a r a m e t e r s a r e h a n d l e d .

3 | F l a g I n f e r e n c e d N o d e −− f o r i n f e r e n c e d node t r a c k i n g .

4 | FlagApp −− f o r messages r e l a t i n g t o t h e App c o n s t r u c t o r .

5 | FlagLambda −− f o r messages r e l a t i n g t o t h e Lambda c o n s t r u c t o r .

6 | F l a g S i m p l i f y −− f o r type s i m p l i f i c a t i o n messages .

96

7 | F l a g P u t A l s o −− f o r v a l u e s manua l ly e n t e r e d i n t o t h e r e s u l t s g raph .

8 | FlagMain −− messages in t h e main f u n c t i o n .

9 | F l a g L i t e r a l s −− shows t h e l i t e r a l s .

10 | FlagASGNodes −− p r i n t o u t a l l t h e nodes (n e a r t h e top of p r i n t o u t) .

11 | FlagNodeEnt ry −− p r i n t t h e ” e n t e r i n g node i ” messages .

12 | F l a g I n f e r −− f o r i n f e r e n c e messages .

13 | F l a g F i n a l R e s u l t s −− p r i n t s r e s u l t s per−node a f t e r t y p e c h e c k i n g .

14 | FlagTyRep −− f o r messages r e l a t e d t o TyRep .

15 | F l a g D a t a −− f o r d a t a t y p e s .

16 | F l a g C o n s t r a i n t s −− f o r c o n s t r a i n t s .

17 | FlagCase −− f o r c a s e s (and t h e i r a s c r i p t i o n i s s u e s)

18 | F l a g T r a v e r s a l s −− show t r a v e r s a l s t e p s (p r i n t p e r node e n t r y) .

19 | F l a g S u b t y p i n g −− f o r s u b t y p i n g i s s u e s .

20 | FlagVoid −− (unused) .�
While it’s not the most beautiful coding solution to edit the data structure every time we want to create

a new flag, it is direct, descriptive, and allows us to turn on batches of extra messages in a meaningful way.

Many messages will check if any or all of a set of flags are set before generating an Info message, and

support functionality allows for checking that certain flags and some boolean condition are both met before

performing some action. Yet all of this is conditional on if debug = true, so it is simple to remove all

debugging information not just by groups of messages, or by conditions met, or even by parts of messages,

but also all at once as well. Each release for a demonstration was a simple as turning off debugging.

4.7 Summary of Methodology

Through this work, we have defined the typing semantics that the typing analysis observes through the

above typing rules. We have provided a tool that performs basic typing checks on Rosetta specifications,

announcing errors as they are found. We also have implemented some more advanced typing analyses in

the tool that attempt to extract more information from the specification and use that information in order

to make stronger claims about the Rosetta specifications. By providing all of this information to the user,

97

more typing information is automatically inspected, and more typing information is available for manual

inspection, all in a language for which complete type checking is undecidable.

We have presented typing rules that codify the semantics of the Rosetta type system sufficiently to

address the issues of the typing analysis we’ve created. These rules are designed through some co-related

relations, primarily τ̀ and γ̀ . These rules do not intend to be algorithmic, as a complete specification

of the Rosetta type system would itself be undecidable. Instead, these rules offer tactics that may lead to

a complete typing judgement, and the typing analysis may be seen as a limited approach at applying these

rules to a specification with some degree of automation.

We have also presented a typing analysis that performs some basic type checking on Rosetta specifi-

cations. This analysis builds on the semantics described in the typing rules. This analysis automates the

application of the simpler, non value-dependent typing rules, providing a basic type checking analysis of

those non-dependent features of Rosetta. It presents errors and warnings to the specifier as output, and also

generates a graph representation of the specification with typing annotations available. This provides a sim-

ple framework for type checking simple specifications, allowing us to perform more detailed checks when

applicable.

This typing analysis also explores ways to perform further typing judgements, focusing on controlled

ways of introducing dependent features or opportunistically adding typing features not always available.

We have introduced local type inference to Rosetta, despite the significant differences between the original

language example of System F<: and Rosetta. This proved useful both in user generated and automatically

generated instances of inferrable quantified parameters. We also introduced some value dependence through

the tracking of witnesses, where the specific value inhabiting a type at a particular usage of the type is

preserved, allowing further inspection. One such check enabled by witnesses was in tracking the widths

of bit vectors. This was accomplished by tracking the numerical expressions via witnesses and embedding

the values in the internal representation of Rosetta types, and then dispatching the equality check between

different numerical expressions to an implementation of Cooper’s decision procedure for solving Presburger

arithmetic formulæ.

This work allows us to see what effect we gain by providing more detailed information to the specifi-

cation writer, and performing type correctness checks when applicable in a best-effort approach rather than

98

only providing analyses that can always be performed. This allows for Rosetta specifications that utilize the

full spectrum of Rosetta’s rich type system, without forfeiting all type analysis. Not only do we attempt to

type check usage of features that are sometimes feasible to check, but we provide details and annotations of

the typing analysis over the entire specification even when one part of the specification utilizes features for

which we cannot perform type checking.

99

Chapter 5

Evaluation

We now evaluate the work completed and the claims we have made. We have provided type rules to address

the features of the Rosetta type system that the typing analysis addresses. These rules provide a formal view

of the Rosetta type system in the traditional presentation format, and allow us to compare any implemen-

tation against it. We implemented a typing analysis for the Rosetta specification language that handles the

expressions and structures of the language. It also performs more sophisticated analysis, tracking witness

values and checking word sizes when it can, as well as performing local type inference for the quantified

parameters. Emphasis on concrete type representations helps in error recovery. The analysis provides type

annotations for each node in the graph representation of the specification, allowing the specification writer

to inspect the analysis’ results with a fine-grained level of detail.

Overall, the analysis reconsiders from the beginning what the purpose of a typing analysis is for a

specification language. Given that Rosetta and other specification languages tend towards expressiveness

to the point of undecidable type checking, the purpose of the analysis transitions away from completely

checking for type safety in a yes/no answer and towards annotating type information, tracking dependent

typing features as it can even when complete coverage isn’t possible, and generally giving a best effort in the

expectation that the specification will be further revised and expanded based on the information the analysis

can provide.

The typing analysis approaches Rosetta with the understanding that a complete typing analysis is un-

achievable and instead provides assistance when it can, always maintaining decidability and termination

100

of the analysis. The strategy of operating over concrete types and providing localized analyses leaves the

analysis extensible to incorporate further opportunistic analysis of dependent typing features.

5.1 The Type System

We have presented typing rules for the Rosetta specification language. They define typing as the mutually

recursive τ̀ and γ̀ relations, relying on the subtyping relationship <: and the rules of local type inference.

These rules fully define the implemented Rosetta semantics found in the typing analysis, but do not attempt

to provide a complete set of typing rules for the entire Rosetta language. Other dissertations or research

efforts will surely formalize the language’s semantics explicitly in the future, and the current work may

perhaps serve as a basis or starting point. The current work is concerned with developing a typing analysis

implementation over Rosetta. As such, the rules provided are intended to formalize the aspects of Rosetta

that the analysis covers. Features that are notably missing from the typing rules include facet composition

in its various forms, as well as interactions.

Conversely, some of the primitive types are not supported by the graph analysis, and therefore can-

not be supported by the typing analysis until then. The graph analysis supports the bit, natural,

integer, and real numerical types but does not support posint, negint, rational, posreal,

negreal,imaginary, and complex numerical types. The typing rules however may describe the se-

mantics of these numerical types, and operators over them, in anticipation of inclusion. The requirement for

these rules is that the typing analysis’ behavior is fully described by the rules.

The typing analysis itself is defined over the core ASG of the graphing analysis, in turn defined over the

Rosetta AST after parsing the original source. This means that there is not a one-to-one relationship between

syntax in Rosetta and syntax in the typing analysis. These differences are not a hindrance to defining typing

semantics. All of the design units — facets, components, domains, packages — have similar areas of

definition and parameters, and the collapse into a single structure in the ASG does not confuse the already-

highly-similar typing rules. These rules are defined over Rosetta syntax and are applied over the graph ASG,

but there is little to no cause of ambiguity in the elaboration between the two.

101

Through these typing rules, we gain a more formal view of the semantics of Rosetta. We have a formal

foundation for discussing what the typing analysis should do, allowing us to define and identify correct or

incorrect behavior for the analysis. Perhaps the biggest finding is in recognizing that the ad-hoc semantics of

some primitive operators in Rosetta are not well-represented in Rosetta themselves. The addition operator

+ is a simple example. Addition in other languages can be made simpler by only defining it for integers and

floats, with implicit but well-defined casts as seen in Java. It can be made more explicit, with type classes of

Haskell providing the ad-hoc mechanism for defining multiple implementations of addition via the Num type

class and relying on the algorithm for instance selection to choose the most appropriate (i.e. most specific)

instance to apply. But in Rosetta, we have more numerical types than a 32-bit integer representation and

one or two floating-point representations. These numerical representations are also reflections of the math-

ematical types of integers and reals, not implementations with all the associated details such as overflow,

two’s complement representation, and the IEEE 754 standard for floating point representation. And type

inference alone is not a sufficient substitute for the type classes of Haskell. It may be valid Rosetta to embed

a computation for the range of a function that is quite dependent upon the likely inferred types of the formal

parameters, but it would certainly not be good practice, as the issue of mixing evaluation with typing is still

present, and must be addressed in some fashion. Therefore the typing rules explicitly handle these primitive

types and provided operators.

In general, development of these rules was not expected to greatly redirect the specification of the Rosetta

language itself, and it did not lead to any new developments in the standards procedure or the design of the

language, and it indeed did not cause such changes.

5.2 Basic Typing

The second task of this work is to provide basic typing analysis for the simpler aspects of the Rosetta

language. This is characterized by simple expressions and scoping constructs, and does not include type

inference or anything of a dependent nature. The analysis supports the following kinds of expressions:

102

Expression Example

atomic (literal) -1 5.2 ’c’ true ...

operators + - * / # ...

function definition f (x :: T)::Tr is e;

function application f(a)

if expression if b then et else e f end if

case expression case e of p→ e end case

let expression let x :: T be e in ebody end let

primitive types bit natural integer real boolean

character string top bottom

composite values {sets} {* multisets *} [sequences]

bitvectors word(n)

The analysis also reasons about the following Rosetta functions that are defined in the prelude:

numerical operators + - *

bit/boolean operators & and or xor

relational operators < > >= =< = ==

bitvector/word operator sequence # word replace

Within the implementation of the analysis, the abstract syntax graph admits a smaller core of language

constructs. The various supported expressions follow.

• Literals – Various numerical values, booleans, characters, and strings are directly represented in the

ASG. Their typing rules are straightforward: they are of the respective type. Some of the numerical

types require a check on the specific value, e.g. if an integer value is 0 or 1, and would return bit; if

instead we can show the value is greater than zero, we report posint; and so on.

• Lambda – Functions are represented with the more familiar lambda expression. Rosetta lambdas are

ascribed with a type, containing both quantified parameters (which may be possibly inferred) and

103

explicit parameters. Being Rosetta, the ascribed range may depend on the values of these parameters.

We do not differentiate between Π values and λ values. Typechecking a lambda consists of visiting

the parameter nodes (to ensure their usage will see the ascriptions as typing results), visiting the body

of the lambda, and checking that the body of the lambda is a subtype of the ascribed range.

• Application – To typecheck an application, we first visit the function and all arguments. We then check

if there are any quantified parameters that were omitted, and attempt to infer them. We then check

that all parameters are subtypes of the respective formal parameters of the function being applied to

the arguments.

• Conditional – To typecheck if-expressions we first visit each subterm. The guard is restricted to be

a subtype of boolean. We then calculate the least upper bound of the two branches. We do not

check for one to be a subtype of the other, as that would exclude cases such as if true then -5

else 5 end if; we cannot claim that posint or negint is a subtype of the other, and yet there

is an appropriate type to return. One unfortunate consequence of allowing the least upper bound to be

returned is that we may find a least upper bound of top. But this is technically valid Rosetta, and is

not an error. The directly surrounding expression most likely expects to know more about the value’s

type than top betrays, and a mistaken top-typed value will most likely trigger a type error when

used.

• Constructor Types – Rosetta constructed type definitions and constructors are represented in the ASG.

In order to typecheck a constructor usage, we can use the (provided) node of the constructed type’s

definition to build the type “type of node i”. A constructed type definition itself is of type type. It

would be tempting to report more here, but violating the value-type-kind level, especially when the

distinction isn’t syntactically or semantically preserved, causes trouble.

• Case expression – Case expressions require us to inspect a scrutinee expression, and then combine

several patterns over an expression to define a type that contains that scrutinized expression. We must

consider inferrable parameters when defining that type. Next, we visit each pattern, taking care to

visit the variable matches within to prepare for visiting the matching result expression. We find the

104

least upper bound of all of these result expressions, for similar reasons to the conditional expression,

and report this as the type of the entire case expression.

• Let expression – A let expression introduces named expressions that scope over the body of the let

expression. In the ASG, we simply visit the declarations to associate typing annotations with the

named items’ nodes themselves, and then visit the body, returning the body’s type as the entire let

expression’s type.

• Ascription – We view the type ascription’s node as a type, to convert from a Rosetta-syntax version

of a type to our own internal representation of a type, visit the annotated expression, and enforce the

subtyping relation between the two. If the subtyping relation does not hold, we generate an error, but

still report the annotated type. This seems to capture the specifier’s intent the best.

The ASG also supports representations of Rosetta types.

• Dependent Product – this represents a Π type. Rosetta does not explicitly have Π in its syntax, but the

abstract syntax graph uses them to represent function types, as they are semantically the same as the

dependent product Π we saw in chapter 2. Internally, the analysis represents this with our arrow type

TyArrow, since all typing may be dependent.

• SubtypeOf – use of the subtype keyword results in this. It is represented directly in our internal

representation of types.

• Constructed – this represents a constructed type, such as our Tree and List examples. It is repre-

sented directly in our internal representation of types.

All of the supported Rosetta design units in the ASG are placed in a single functor, called Facet.

We visit its domain expression, and then the quantified and explicit parameters sequentially to include type

results for all items that may be referenced through the environment. We then visit the declarations and

manually add placeholders for these declarations as they can be mutually recursively defined. We then visit

the assumptions, terms, and implications. The assumptions and implications must all be boolean expressions

while the terms must be either boolean expressions or facet instantiations.

105

One aspect of the graphing analysis is that for a variable to refer to a parameter’s value, there must be

a node for the value of the parameter. Since we cannot in general know what form the value will have, the

ASG represents it with a Universal. A Universal contains the node that is its type, and maybe an

instance, essentially containing the value that the node itself represents.

Types that are completely unspecified can also be distinguished, by their node in the graph:� �
1 Foo : : type ;

2 Bar : : type ;

3 f unc (a : : Foo ; b : : Bar) : : Bar i s b ;�
although we know nothing about Foo or Bar, the typing analysis will distinguish between values of each.

We know absolutely nothing else about the types. We cannot do anything to unbox these values, or inspect

them in any way. In fact, the only known value of type Foo is the error-value bottom.

The analysis also addresses subtype declarations to a small degree. In the following, val should at a

minimum be an integer value:� �
1 Bazz : : subtype (i n t e g e r) ;

2 v a l : : Bazz i s 5 ;�
We do not know how Bazz constrains the integer type, if at all, and so there is nothing to enforce.

We have achieved the goals of basic type checking. If a specification uses no dependent typing, then the

basic typing aspect of the analysis should completely analyze the specification. The only limitations are to

what extent the primitive types are supported, and therefore whether their operators are available. This is

just a matter of the degree to which support has been added to the graphing analysis and cases added to the

type checking analysis to support these additional types and operators.

This analysis maintains decidability of type checking. When none of the more complex features of

Rosetta type system are present, the analysis will return the equivalent of a “yes” or “no” to whether the

specification is well-typed or not. Of course, it also provides the ASG graph representation of the specifica-

tion, along with typing annotations on a per-node basis.

106

5.3 Partial Typing

The third and most important task of this work is to explore ways to provide typing information to the

specifier, and to perform localized checks that we find feasible. This allows us to consider the thesis of the

work–that providing typing analysis and type information improves the specification refinement process.

5.3.1 Local Type Inference

The first major task was to adapt the local type inference approach of Pierce and Turner [39] to the Rosetta

language, exhibiting a much richer type system than System F<: of the original implementation. This ap-

proach allows parametric type parameters to be omitted and thus inferred when a principal (best) type can

be determined. Rosetta provides for such parameters directly in the language itself, called quantified param-

eters. These parameters are found in square brackets, distinct from the explicitly required parameters.

Local type inference allows the Rosetta typing analysis to type check strictly more terms than it previ-

ously was capable of doing. A previous iteration of the typing analysis used a more traditional approach,

where global constraints were collected and unified as one set. This previous approach had two major issues.

First, with no notion of the ‘closeness’ of constraints over particular areas of the specification, the constraints

that were the cause of unification failure were often not the specific constraints that eventually clashed. By

limiting constraints unification to a specific application site, it is clearer with local type inference where

the source of the error is. Second, when the constraints clearly could not be unified, there was no sense of

continuing with the typing analysis. Which constraints should be removed in order to continue unification

in a meaningful fashion, just the ones that clashed? There is no good recovery strategy in this situation and

the localized technique is more resilient in this case.

The clearest set of examples that become type checkable via local type inference are user-defined con-

structed types parameterized over type parameters, such as the List and Tree types. They generate

constructor, observer, and recognizer functions with the data definition’s type parameters designated as

inferrable parameters. Usage of these functions, as well as case expressions over these constructed types,

all require some type to be supplied for these type parameters. Through local type inference, these can be

omitted and inferred when a principal type exists. Because there is not always a principal type, we could

107

not guarantee to always infer type parameters. A global constraint solving approach also would not be able

to always infer type parameters, and has no recourse in case of failure. But the local approach targets each

individual application with omitted parameters and attempts to infer them, much in the spirit of our best

effort approach that expects incompleteness and failures, and expects to continue the analysis.

5.3.2 Witnesses

The second approach to locally extrapolating or extracting information out of a specification through the

typing analysis is through the tracking of witness values. The Rosetta typing analysis has a type represen-

tation that represents a type along with a specific value of that type. Thus, when an expression receives a

typing annotation we can keep track of the value itself with the type.

This work tracks these value ‘witnesses’ and attempts to allow a very simplified form of evaluation

arise in type expressions. We gave an example in §4.5.1, where a constructed type expression was used to

represent a type. This allows more Rosetta types to be included in type checking. In general, the approach

of tracking witnesses allows for more information to flow through the typing analysis, leading to more

chances to reason about the specification. The witness information can always be safely ignored when

it is not needed, but provides more information that has been shown useful. Because Rosetta does not

differentiate between values, types, and kinds syntactically, constructed types themselves are available in

type expressions, and witnesses allow us to analyse such types.

5.3.3 Tracking Sizes

One particular usage of witness types that we pursued further was in tracking the sizes of bitvector words.

This work tracks numerical parameters that are used in a dependently typed fashion, primarily for examples

such as double(n::natural;x::word(n))::word(n+n). As we discussed in §2.3, general de-

pendent typing leads to undecidable type checking, and thus we seek limited forms that retain decidability

of type checking. The limitation in this case is to only allow numerical expressions that are representable

in Presburger arithmetic (§ 4.5.5, [21, 30]) for which decision procedures exist [13]. We use a minimal rep-

resentation of Rosetta values that can be wrapped into the internal representation of types, and then encode

Presburger formulæ and dispatch them to an implementation of Cooper’s algorithm to reliably perform this

108

limited form of evaluation at the type level. As is the recurring theme in this work, whenever we cannot

phrase the check in a sufficient fashion, we can always simply drop the check, generate a warning, and

continue the analysis over the rest of the specification.

5.3.4 Error Reporting and Graph Annotations

Error recovery is often a goal in static analysis tools. Given our focus on localized, best-effort analysis that

highly expects portions of a specification to be under-specified, we seek error recovery to avoid breaking the

standard typing analysis at the first error or underspecified portion of a specification. This work pushes most

reasoning about types down to concrete type representations, helping in both reporting and recovering from

errors. There is no global type variable constraints unification, only localized constraints unification, where

the source of the error is well defined. Rosetta does offer ascriptions alongside most every declaration, so

we can use these ascriptions to help contain typing errors from crossing scoping boundaries.

The analysis generates the abstract syntax graph of the specification and annotates a type for every single

node in the graph, meaning that each sub-expression is both type-checked and annotated for the specifier

to review. While we do not pretend to offer a polished interface in providing this information at this time,

the presence of this information allows any found typing errors to be analyzed in greater detail. We provide

both the internal type representation and a more human-readable type representation, where primitive types

and constructed types’ names are included with syntax much closer to Rosetta syntax. Compilers and static

analysis tools cannot read the programmer’s or specifier’s intent, and errors in language usage often appear

away from the error in semantic intent, but tools usually only provide information where the error was found,

and not where errors were not found — even though these other locations may indeed be legal but against

the writer’s intent.

When a specification cannot be successfully typed by the basic checks that suffice for more restricted

languages and the more opportunistic checks that attempt to extend into the dependent typing realm se-

lectively, the specifier will have to be involved. The approach of compartmentalizing errors and providing

extensive annotated analysis results allows for the specifier to interact not only with the end result of the

analysis, but with the information that was generated throughout the whole analysis.

109

5.4 Driving Specification Refinement

In the end, what can we say about a best-effort, possibly incomplete approach to a typing analysis and

its effects on the process of specification refinement? When failure becomes an option — in the sense

of unfulfilled analysis tasks, not in the sense of type incorrectness — we find there are ways to bring more

information about the specification to the specifier, and we find we can apply techniques not always intended

for a language consisting of quite the same language features as our target.

We have argued the position that specification languages should not be conflated with programming lan-

guages, because there are many opportunities to serve the interests of the system specifier. These arise both

by relaxing executability restrictions that are not in place and by enhancing other efforts through controlled

analysis extensions that smell of dependent typing.

We have shown that we can perform opportunistic analysis without having to guarantee that it can

always be done. Indeed, most of the localized and controlled dependently typed checks with which we

experimented can be overwhelmed by legitimate examples in the language. But we can still perform these

checks and enhance the specifier’s ability to handle the successful cases.

We have shown that we can expose information from throughout the analysis through the graph annota-

tions that are a byproduct of the analysis. As argued previously, this allows the specifier to analyse not just

the location where an error was discovered, but all areas down to the sub-expression where the specifier’s

intent can be checked against the automatic, intent-agnostic results of the static typing analysis. This is

useful both in solving typing errors as well as checking that the specifier’s intent has been preserved.

This work has provided a foundation of typing semantics in the form of typing rules. It provides for

basic type checking, applicable as an executable static analysis and integrated through the Rosetta Eclipse

plugin. Further opportunistic approaches to typing were implemented to attempt to provide extra checks and

safeguards on the code. This analysis provides a detailed typing annotation over the graph representation of

the specification for detailed inspection of the typing analysis’ results. And the approach of localizing these

different approaches through a focus on concrete types allows for decent error recovery and pinpointing the

source of errors.

110

By considering the purpose of types in a specification language and defining what a typing analysis

should be, we have identified an approach to testing and preserving typing semantics in a language such

as Rosetta that focuses on the process of generating a well typed specification rather than the end test of

whether a specification obeys the language’s typing rules. This end check is still possible with our tool. In

our view, the only appropriate way to approach the type system of a language with undecidable typing is

to involve the specifier in the process. Whether we are pinpointing where more information is needed, or

eventually going further to state exactly what further information is needed to prove the claims made on the

types in a specification, the specifier will need to be involved in the process. Specifications are written to

explore what a system is and how it behaves rather than to create the artifact of the system itself, and thus

this purpose pervades the static analysis tools written over the specification language.

111

Appendix A

Rosetta Typing Rules

Here we collect all the type rules that define the Rosetta type system. There is more in-depth discussion in

§4.2, but any rules presented there are also included here for a complete record of the typing rules.

A.1 Design Units

A facet definition has a domain, parameters, definitions, and declarations. The facet is an extension of

that domain, so all domain definitions are present and visible all throughout the facet. Declarations are not

ordered: they are mutually defined. All parameters are visible in the declarations. Definitions (the ‘body’ of

the facet) are also mutually defined between themselves; all parameters and declarations are visible.

• G-Facet

Γ γ̀ dom : Γdom

Γ,Γdom, p : P τ̀ decl : Decl

Γ,Γdom, p : P,decl : Decl τ̀ de f n : De f n

Γd = Γdom∪{p : P,de f : De f ,decl : Decl}

Γ γ̀ f acet f (p :: P) :: dom is decl begin de f n end f acet f : Γd

112

• T-Facet

Γ γ̀ dom : Γdom

Γ,Γdom, p : P τ̀ decl : Decl

Γ,Γdom, p : P,decl : Decl τ̀ de f n : De f n

Γ τ̀ f acet f (p :: P) :: dom is decl begin de f n end f acet f : dom

A facet instantiation is a fully-applied facet definition, meaning that all parameters are supplied. (A

partially-applied facet definition may be considered a function from the arguments to a facet instance).

These parameters must be substituted all throughout the facet. The resulting type of a facet instantiation is

this substituted version of the facet definition’s type, which will be the domain specified.

• G-FacetInstantiation

Γ τ̀ a : P

< f :(p : P)|Γf >∈ Γ

Γ γ̀ f (a) :: [p 7→ a]Γ f

• T-FacetInstantiation

Γ τ̀ a : P

< f :(p : P)|Γf >∈ Γ

Γ τ̀ f (a) :: [p 7→ a] f

A package is a collection of definitions that may be imported through use-clauses. Packages can them-

selves be parameterized.

• G-Package

Γ γ̀ dom : Γdom

Γ,Γdom, p : P τ̀ de f : De f

Γ,Γdom, p : P,de f : De f γ̀ de f : Γde f

Γ γ̀ package pack(p : P) : dom is de f end package pack;

: Γdom,de f : De f ,<pack :(p : P)|Γdom,de f : De f >

113

• T-Package

Γ γ̀ dom : Γdom

Γ,Γdom, p : P τ̀ de f : De f

Γ γ̀ package pack(p : P) : dom is de f end package pack; : dom

A component combines the declarative aspects of a facet with sets of assumptions and implications about

its usage. These are pre- and post-conditions.

• G-Component

Γ γ̀ dom : Γdom

Γ,Γdom, p : P τ̀ de f n : De f n

Γd = Γdom∪{de f n : De f n}

Γ γ̀ component c(p : P) : dom is a de f n imp end component c

: Γdom,de f n : De f n,<c :(p : P)|Γdom,de f n : De f n>

• T-Component

Γ γ̀ dom : Γdom

Γ,Γdom, p : P τ̀ de f n : De f n

Γ,Γdom, p : P,de f n : De f n τ̀ a : boolean

Γ,Γdom, p : P,de f n : De f n τ̀ imp : boolean

Γ τ̀ component c(p : P) : dom is a de f n imp end component c : dom

• G-Component-Instantiation

Γ τ̀ an : Pn

<c :(pn : Pn)|Γf >∈ Γ

Γ γ̀ c(a) : [p 7→ a]Γ f

• T-Component-Instantiation

Γ τ̀ an : Pn

<c :(p : Pn)|Γf >∈ Γ

Γ τ̀ c(an) : [p 7→ a]c

114

Rosetta domains have already been discussed to some length. A domain definition must extend a domain,

and may introduce its own definitions.

• G-Domain

Γ γ̀ Sdom : ΓS

Γ,ΓS, p : P τ̀ de f n : De f n

Γ,ΓS, p : P,de f n : De f n τ̀ tm : T m

ΓD = ΓSdom ,de f n : De f n, tm : T m

Γ γ̀ domain dom(p : P) : Sdom decl tm

: ΓD,<c :(p : P)|ΓD>

• T-Domain

Γ γ̀ Sdom : ΓS Γ τ̀ Sdom : TS

Γ,ΓS, p : P τ̀ de f n : De f n

Γ,ΓS, p : P,de f n : De f n τ̀ tm : T m

Γ τ̀ domain dom(p : P) : Sdom decl tm : Sdom

A.2 Use Clauses

A use clause allows a package to be imported, such that all definitions within it are visible for a given design

unit such as as facet, domain, component, or other package. It behaves just like a giant, special let binding.

• G-Use

Γ γ̀ p : Γp

Γ,Γp γ̀ decl : Γdecl

Γ γ̀ use p in decl : Γdecl

• T-Use

Γ γ̀ p : Γp

Γ,Γp τ̀ decl : Tdecl

Γ τ̀ use p in decl : Tdecl

115

A.3 Quantified Parameters

As mentioned in §2.2.3, when local type inference is capable of identifying a principal type for a type

parameter, we will capture the claim that local type inference can find a principal type for a particular omitted

type parameter, through the infer relation. The required information is an application of a function with

inferrable parameters Q and explicit parameters p, and supplied arguments a. We can then represent the

T-App-InfAlg rule’s applicability thus:

Γ τ̀ f : [Q](p : P) : R

Γ τ̀ a : A

{} τ̀ A <: P⇒C

I = σCR

infer(Q, p : P,R,a : A)⇒ I

If we’re given the function signature f[Q](p:P):R, and arguments a:A, and if ensuring that A <:

P implies the constraint set C upon the inferrable parameters Q, then we can define I as the best set of

substitutions for inferrable types Q when solving the constraint set C with respect to the type R. infer

doesn’t refer to f directly, instead relating its quantified parameters, explicit parameters, range type, and

arguments to the best set of type substitutions for the inferrable quantified parameters.

Because this infer relation only shows up in a few places in the Rosetta rules, we do not re-write all

of the typing rules from local type inference for Rosetta directly. They would be identical up to the lan-

guage syntax differences. Lambdas and applications become any parameterizable definitions and function

calls/instantiations; top and bottom also exist in Rosetta; and Rosetta also defines the subtyping relation

<:.

Of course, in Rosetta we are only allowed to infer quantified parameters; explicit parameters must

be supplied, even if they are inferrable. Quantified parameters may seem to be conflated with inferrable

parameters, but the distinction between the two is made by the specifier by choosing whether to place a type

parameter in the quantified parameters list of the explicit parameters list.

116

A.4 Qualified Names

• G-Qualified.

Γ γ̀ a : Γa

Γa,Γ γ̀ b : Γb

Γ γ̀ a.b : Γb

• T-Qualified.

Γ γ̀ a : Γa

Γa τ̀ b : Tb

Γ τ̀ a.b : Tb

A.5 Variables

A variable’s type is just a lookup into the environment: the variable must be in the environment for any well

formed expression, and thus the lookup will not fail if the scope-introducing construct correctly extended

the environment as we require.

• T-Var

t : T ∈ Γ

Γ τ̀ t : T

A.6 Applications

Applications occur whenever we supply parameters. This can apply to facet definitions, functions, any-

thing with parameters. The dependent nature of Rosetta means that we must perform substitutions for our

parameters. As the orderedness of parameters affects their environments, so too does the orderedness af-

fect the substitution of parameters. Since a parameter is visible in all subsequent parameters, we substitute

parameters one at a time, through both the remaining parameters and the range of the function.

117

• G-Application

Γ τ̀ f : (p : P)→ R

Γ τ̀ a : P

Γ, p : P γ̀ R : ΓR

Γ γ̀ f (a) : ΓR

• T-Application

Γ τ̀ f : P→ T

Γ τ̀ p : P

Γ τ̀ f (p) : T

• G-Application-Infer

Γ τ̀ f : [Q](p : P)→ R

Γ τ̀ a : A

infer(Q, p : P,R,a : A)⇒ I

Γ, p : P γ̀ [Q 7→ I]R : ΓR

Γ γ̀ f (a) : ΓR

• T-Application-Infer

Γ τ̀ f : [Q](p : P)→ R

Γ τ̀ a : A

infer(Q, p : P,R,a : A)⇒ I

Γ τ̀ f (a) : [Q 7→ I, p 7→ a]R

A.7 Functions

Rosetta provides multiple ways of defining functions. The body of a function may be omitted, may be

defined, or may be declared as constant without giving a specific value. A function definition also may

include a where clause, placing constraints upon the values via boolean expressions that must be true,

without directly specifying the value of the function. These various syntactic forms all obey the same typing

118

rules: the body of the function must be of the type of the range of the function, and where-clauses must

contain a boolean expression.

• T-Function-Anonymous

Γ τ̀ p : P Γ τ̀ t : T
Γ τ̀ <∗(p : P) :: T is t∗> : p : P→ T

• T-FunctionApplication

Γ τ̀ a : P Γ τ̀ f : (p : P)→ TR

Γ τ̀ f (a) : [p 7→ a]TR

A.7.1 Direct Functions

• T-FunctionInterpretable

Γ τ̀ p : P Γ τ̀ t : T
Γ τ̀ f (p :: P) :: T is t; : p : P→ T

• T-FunctionUninterpretable

Γ τ̀ p : P
γ τ̀ f (p :: P) :: T is constant; : p : P→ T

• T-FunctionQualifiedInterpretable

Γ τ̀ p : P Γ τ̀ t : T Γ τ̀ tw : boolean
Γ τ̀ f (p :: P) :: T is t where tw; : (p : P)→ T

• T-FunctionQualifiedUninterpretable

Γ τ̀ p : P Γ τ̀ tw : boolean
Γ τ̀ f (p :: P) :: T is constant where tw; : p : P→ T

119

• T-FunctionVariable

Γ τ̀ p : P
Γ τ̀ f (p :: P) :: T ; : p : P→ T

• T-FunctionQualifiedVariable

Γ τ̀ p : P Γ τ̀ tw : boolean
Γ τ̀ f (p :: P) :: T where tw; : p : P→ T

A.7.2 Anonymous Functions

• T-FunctionFormer

Γ τ̀ t : T Γ τ̀ te : Te

Γ τ̀ <∗t :: T∗> [is te] : t : T → Te

• T-FunctionValue

Γ τ̀ p : P Γ τ̀ t : T Γ τ̀ tw : boolean
Γ τ̀ <∗(p :: P) :: T [is (t| constant)]∗> [where tw] : p : P→ T

A.8 Let-expressions

• G-Let

Γ τ̀ t : T

Γ,x : T γ̀ e : Γe

Γ γ̀ let x be t in e end let; : Γe

• T-Let

Γ τ̀ t : T

Γ,x : T τ̀ e : Te

Γ τ̀ let x be t in e end let; : Te

120

A.9 Sequence Predicates

Rosetta provides some predicate functionality that can be applied across sequences.

• G-Forall

Γ γ̀ forall(x : T | pred) : {}

• T-Forall

Γ,x : T τ̀ pred : boolean

Γ τ̀ forall(x : T | pred) : boolean

• G-Filter

Γ γ̀ seq : Γs

Γ γ̀ filter(pred,seq) : Γs \{x : T |pred(x) = false}

• T-Filter

Γ τ̀ pred : T → boolean

Γ τ̀ s : sequence(T)

Γ τ̀ filter(pred,s) : sequence(T)

A.10 Control-Flow Expressions

• G-If

Γ γ̀ t : Γt Γ γ̀ f : Γ f

ΓR = Γt ∩Γ f

Γ γ̀ if b then t else f end if; : ΓR

• T-If

Γ τ̀ b : boolean

Γ τ̀ t : T Γ τ̀ f : F

R = T uF

Γ τ̀ if b then t else f end if; : R

121

• G-Case

Γ τ̀ p : P

Γ, pi : Pi γ̀ ei : Γei for each i

ΓR =
⋂

Γe

Γ γ̀ case e of p→ e end case; : ΓR

• T-Case

Γ τ̀ e : E

Γ τ̀ p : P, uP = E

Γ, pi : Pi τ̀ ei : Tei for each i

T = uTe

Γ τ̀ case e of p→ e end case; : T

A.11 Ascriptions

Ascriptions do not introduce new scoped items, so the G-Ascription rule only passes the generated

environment through. Also, note that we do not perform any type checking that is not required to formulate

the resulting environment in a γ̀ rule. That check is performed in the τ̀ rule.

• G-Ascription

Γ γ̀ t : ΓT

Γ γ̀ t : T : ΓT

• T-Ascription

Γ τ̀ t : S

S <: T

Γ τ̀ t : T : T

122

A.12 Constructed Types

User-defined constructed types allow for a parameterized definition of a collection of constructors, ob-

servers, and recognizers. The parameters play an important role in the typing rules: although explicit in

a fully instantiated representation of the constructed type, these type parameters become quantified (in-

ferrable) parameters for all of the constructors, observers, and recognizers.

• G-Constructed-Type

Γconstr = ∪constructor : [p](observer)→ adt(p)

Γobser = ∪observer : [p](observer :: Observer)→ observer

Γrecog = ∪recog : [p](adt(p))→ boolean

Γd = {adt : (p :: P)→ type}∪Γconstr ∪Γobser ∪Γrecog

Γ γ̀ adt (p :: P) :: type is data constructor(observer :: Observer) :: recognizer end data; : Γd

• T-Constructed-Type

Γ τ̀ P :: type

Γ, p :: P τ̀ Observer :: type

Γ τ̀ adt (p :: P) :: type is data constructor(observer :: Observer) :: recognizer end data;

: (p :: P)→ type

A.13 Rosetta-Standard Operators

Rosetta has many functions built into the language through the prelude. Many of these are defined over

the composite types and over the primitive numerical types of Rosetta. As the semantics of these operators

are built into Rosetta directly, we present some typing rules to give meaning to these operators.

A.13.1 Composite Types

Composite types are ways of structuring values of some particular type. The three composite types offered

in Rosetta are sets, multisets, and sequences. As these composite types are all concerned with constructing

values and not with introducing any scope, we do not provide γ̀ rules.

123

• T-Set

Γ` label :: set(T) : {T}

• T-Multiset

Γ` label :: multiset(T) : {∗T∗}

• T-Sequence

Γ` label :: sequence(T) : [T]

• T-SetFormer
∀i Γ` ti : T

Γ`{t0, t1, . . . , tn} : set(T)

• T-MultisetFormer
∀i Γ` ti : T

Γ`{∗t0, t1, . . . , tn∗} : multiset(T)

• T-SequenceFormer
∀i Γ` ti : T

Γ` [t0, t1, . . . , tn] : sequence(T)

A.14 Set Operations

• T-SetRelations

Let op be one of: < |=< |>= |> |==

Γ` t1 : set(T) Γ` t2 : set(T)
Γ` t1opt2 : boolean

• T-SetUnion
Γ` t1 : set(T) Γ` t2 : set(T)

Γ` t1 + t2 : set(T)

• T-SetIntersection
Γ` t1 : set(T) Γ` t2 : set(T)

Γ` t1 ∗ t2 : set(T)

124

• T-SetDifference
Γ` t1 : set(T) Γ` t2 : set(T)

Γ` t1− t2 : set(T)

• T-SetCardinality
Γ` t : set(T)

Γ`#t : natural

• T-SetContainment
Γ` tv <: T Γ` ts : set(T)

Γ` tv in ts : boolean

• T-SetContents
Γ` t : set(T)

Γ`∼ t : set(T)

• T-SetChoose
Γ` t : set(T)

Γ` choose(t) : T

• T-SetImage

Γ τ̀ Sub1 : T1 Γ τ̀ T2 : Sup2

Γ τ̀ f : Sub1→ Sup2 Γ τ̀ t1 : set(T1)

Γ τ̀ image(f , t1) : set(T2)

• T-SetFilter
Γ` t : set(T) Γ`S <: T Γ` f : S→ boolean

Γ` filter(f , t) : set(T)

A.15 Multiset Operations

• T-MultisetUnion
Γ` t1 : multiset(T) Γ` t2 : multiset(T)

Γ` t1 + t2 : multiset(T)

• T-MultisetIntersection
Γ` t1 : multiset(T) Γ` t2 : multiset(T)

Γ` t1 ∗ t2 : multiset(T)

125

• T-MultisetDifference
Γ` t1 : multiset(T) Γ` t2 : multiset(T)

Γ` t1− t2 : multiset(T)

• T-MultisetCardinality
Γ` t : multiset(T)

Γ`#t : natural

• T-MultisetElementCardinality

Γ` tm : multiset(T) Γ` te <: T
Γ` te#tm : natural

• T-MultisetContainment
Γ` tv <: T Γ` ts : multiset(T)

Γ` tv in ts : boolean

• T-MultisetContents
Γ` t : multiset(T)

Γ`∼ t : set(T)

• T-MultisetChoose
Γ` t : multiset(T)
Γ` choose(t) : T

• T-MultisetImage

Γ`Sub1 <: T1 Γ`T2 <: Sup2

Γ` f : Sub1→ Sup2 Γ` t1 : multiset(T1)

Γ` image(f , t1) : multiset(T2)

• T-MultisetFilter
Γ`S <: T Γ` t : multiset(S) Γ` f : T → boolean

Γ` filter(f , t) : multiset(T)

• T-Set2Multiset
Γ` t : set(T)

Γ` set2multiset(t) : multiset

126

A.16 Sequence Operations

• T-SeqeuenceConcatenation

Γ` t1 : sequence(T) Γ` t2 : sequence(T)
Γ` t1&t2 : sequence(T)

• T-SequenceRandomAccess

Γ` t : sequence(T) Γ` tn : natural
Γ` t(tn) : T

• T-SequenceSubset

Γ` t : sequence(T)∀i Γ` ti : natural
Γ` t sub [t0, t1, . . . , tn] : sequence(T)

• T-SequenceRelations (for subsequence testing)

Let op =< |=< |>= |>

Γ` t1 : sequence(T) Γ` t2 : sequence(T)
Γ` t1 opt2 : boolean

• T-SequenceMin

Γ` t1 : sequence(T) Γ` t2 : sequence(T)
Γ` t1 min t2 : sequence(T)

• T-SequenceMax

Γ` t1 : sequence(T) Γ` t2 : sequence(T)
Γ` t1 max t2 : sequence(T)

• T-SequenceCardinality

Γ` t : sequence(T)
Γ`#t : natural

127

• T-Contents

Γ` t : sequence(T)
Γ`∼ t : multiset(T)

• T-SequenceHead

Γ` t : sequence(T)
Γ` head(t) : T

• T-SequenceTail

Γ` t : sequence(T)
Γ` tail(t) : sequence(T)

• T-SequenceLast

Γ` t : sequence(T)
Γ` last(t) : T

• T-SequenceCons

Γ` t : sequence(T) Γ` te <: T
Γ` cons(te, t) : sequence(T)

• T-SequenceReverse

Γ` t : sequence(T)
Γ` reverse(t) : sequence(T)

• T-SequenceImage

Γ`Sub1 <: T1 Γ`T2 <: Sup2

Γ` f : Sub1→ Sup2 Γ` t : sequence(T1)

Γ` image(f , t) : sequence(T2)

128

• T-SequenceFilter

Γ` t : sequence(T)

Γ`T <: Sup Γ` f : Sup→ boolean

Γ` filter(f , t) : sequence(T)

• T-SequenceReduce (fold left)

Γ` f : T → T

Γ` t : sequence(T)

Γ` t0 : T

Γ` reduce(f , t0, t) : T

• T-SequenceReduceTail (fold right)

Γ` f : T → T

Γ` t : sequence(T)

Γ` t0 : T

Γ` reduce tail(f , t0, t) : T

• T-SequenceZip

Γ` t1 : sequence(T1)

Γ` t2 : sequence(T2)

Γ` f : T1→ T2→ Tr

Γ` zip(f , t1, t2) : sequence(Tr)

• T-SequenceReplace

Γ` t : sequence(T) Γ` tnat : natural Γ` tv : T
Γ` replace(t, tnat , tv : sequence(T)

129

A.17 Bitvector Operations

A bitvector is simply a sequence of bits; thus common operations over bitvectors are provided.

• T-BitvectorPadl

Γ` t : bitvector Γ` tlength : natural Γ` t f ill : bit
Γ` padl(t, tlength, t f ill) : bitvector

• T-BitvectorPadr

Γ` t : bitvector Γ` tlength : natural Γ` t f ill : bit
Γ` padr(t, tlength, t f ill) : bitvector

• T-Bitvector2Natural

Γ` t : bitvector
Γ` bv2nat(t) : natural

• T-Natural2Bitvector

Γ` tn : natural
Γ` bv2nat(tn) : natural

• T-BitvectorOps

Let op = twos|lshl|lshr|ashl|ashr|rotl|rotr|not

Γ` t : bitvector
Γ`op(t) : bitvector

• T-BitvectorSext

Γ` t : bitvector Γ` tn : natural
Γ` sext(t, tn) : bitvector

130

• T-WordFormer

Γ` tnat : natural
Γ` word (tnat) : word(tnat)

• T-BitvectorBooleanOperations

Let op = and|or|nand|nor|xor|xnor

Γ` t1, t2 : bitvector Γ` t1.length == t2.length == n
Γ` t1 opt2 : bitvectorwith lengthn

A.18 Mathematical Operators

Rosetta provides many built-in mathematical operators. They are not surprising in their semantics, but we

nonetheless provide the related typing rules. Given the rich set of numerical types in Rosetta, there is a lot

of ad-hoc polymorphism in the typing behavior of an operation such as addition. We could simply claim a

type for addition such as +::complex→complex→complex, but this loses a lot of information. We’d

much prefer 4+5 to be of type posint, instead of complex. And some operations such as division are not

even conveniently closed for a type representation such as (/)::a→a→a for a∈{natural, posint,

negint, integer, rational, real, posreal, negreal, imaginary, complex},

which we could try to reason for an operation like addition.

A.19 Addition

Let the relation R be {

(complex,complex,complex), (imaginary,real,complex), (imaginary,imaginary,imaginary),

(real,real,real), (posreal,posreal,posreal), (negreal,negreal,negreal),

(rational,rational,rational), (integer,integer,integer), (posint,natural,posint),

(posint,posint,posint), (negint,negint,negint), (natural,natural,natural)
}. Then:

T-Addition
(A,B,C) ∈ R or (B,A,C) ∈ R Γ τ̀ x : A Γ τ̀ y : B

Γ τ̀ x+ y : C

131

A.20 Subtraction

Let the relation R be defined as {

(complex,complex,complex) (imaginary,imaginary,imaginary) (real,real,real)

(posreal,negreal,posreal) (negreal,posreal,negreal) (posint,negreal,posreal)

(natural,negreal,posreal) (negreal,posint,negreal) (posreal,negint,posreal)

(negreal,natural,negreal) (rational,rational,rational) (integer,integer,integer)

(posint,negint,posint) (negint,posint,negint) (natural,negint,posint)

(negint,natural,negint)
}. Then:

T-Subtraction
(A,B,C) ∈ R Γ τ̀ x : A Γ τ̀ y : B

Γ τ̀ x− y : C

A.21 Multiplication

Let the relation R be defined as: {

(complex,complex,complex) (imaginary,imaginary,imaginary) (imaginary,real,imaginary)

(real,real,real) (posreal,posreal,posreal) (posreal,negreal,negreal)

(negreal,negreal,posreal) (posreal,posint,posreal) (posreal,negint,negreal)

(negreal,posint,negreal) (negreal,negint,posreal) (rational,rational,rational)

(integer,integer,integer) (posint,posint,posint) (posint,negint,negint)

(negint,negint,posint) (natural,natural,natural) (bit,bit,bit)
}. Then:

T-Multiplication
(A,B,C) ∈ R Γ τ̀ x : A Γ τ̀ y : B

Γ τ̀ x∗ y : C

132

A.22 Division

Let the relation R be defined as: {

(complex,complex,complex) (imaginary,imaginary,imaginary) (imaginary,real,imaginary)

(real,imaginary,imaginary) (real,real,real (posreal,posreal,posreal)

(posreal,negreal,negreal) (negreal,posreal,negreal) (negreal,negreal,posreal)

(posreal,posint,posreal) (posreal,negint,negreal) (negreal,posint,negreal)

(negreal,negint,posreal) (posint,posreal,posreal) (posint,negreal,negreal)

(negint,posreal,negreal) (negint,negreal,posreal) (posreal,natural,posreal)

(negreal,natural,negreal) rational,rational,rational) (integer,bit, integer)
}. Then:

T-Division
(A,B,C) ∈ R Γ τ̀ x : A Γ τ̀ y : B

Γ τ̀ x/y : C

A.23 Exponentiation

Let the relation R be defined as: {

(complex,complex,complex) (imaginary,imaginary,real) (real,real,real)

(real,negreal,posreal) (posreal,real,posreal) (negreal,posreal,negreal)

(negreal,negreal,negreal) (negreal,posint,negreal) (negreal,negint,negreal)

(integer,integer,integer) (posint,real,posreal) (posint,posreal,posreal)

(posint,negreal,posreal) (posint,rational,posreal) (posint,inetger,posreal)

(posint,posint,posint) (posint,negint,posreal) (posint,natural,posint)

(negint,negreal,posreal) (negint,posint,integer) (negint,negint,posreal)

(negint,natural,integer) (natural,real,posreal) (natural,posreal,posreal)

(natural,negreal,posreal) (natural,rational,posreal) (natural,integer,posreal)

(natural,posint,natural) (natural,negint,posreal) (natural,natural,natural)

(bit,real,bit)
}. Then:

T-Power
(A,B,C) ∈ R Γ τ̀ x : A Γ τ̀ y : B

Γ τ̀ x ˆ y : C

133

A.24 Exponentials

• T-ExpComplex

Γ` t <: complex
Γ`et : complex

• T-ExpReal

Γ` t <: real
Γ`et : posreal

A.25 Negation and Identity for Numbers

Let the relation R be defined as {

(complex,complex), (imaginary,imaginary), (real,real),

(posreal,negreal), (negreal,posreal), (rational,rational),

(integer,integer), (posint,negint), (negint,posint),

(natural,integer), (bit,integer)
}. Then:

T-Negation
(A,B) ∈ R Γ τ̀ x : A Γ τ̀ y : B

Γ τ̀ − x : B

• T-NumberIdentity

Γ` t : T Γ`T <: complex
Γ`+t : T

A.26 Bit and Boolean Operators

Let op = and|or|nand|nor|xor|xnor |=>|<=| implies

• T-BinaryBitOps

Γ` t1 : bit Γ` t2 : bit
Γ` t1 opt2 : bit

134

• T-BinaryBooleanOps

Γ` t1 : boolean Γ` t2 : boolean
Γ` t1 opt2 : boolean

• T-BitNot

Γ` t : bit
Γ` not t : bit

• T-BooleanNot

Γ` t : boolean
Γ` not t : boolean

• T-Bit2Boolean

Γ` t : bit
Γ`%t : boolean

• T-Boolean2Bit

Γ` t : boolean
Γ`%t : bit

A.27 Functions over Complex Numbers

• T-Complex-Function

Let op = re | im | abs | arg | conj :

Γ` t : complex
Γ`op(t) : real

135

A.28 Trigonometry and More with Complex Numbers

• T-Complex-Operation-Complex

Let op = sin | cos | tan | arcsin | arccos | arctan

| sinh | cosh | tanh | arcsinh | arccosh | arctanh

| exp | sqrt | log | log10 | log2 :

Γ` t : complex
Γ`op(t) : complex

• T-Complex-Operation-Integer

Let op = floor | ceiling | trunc | round | sgn

Γ` t : complex
Γ`op(t) : integer

A.29 Mathematical Constants

• T-j

Γ` j : imaginary

• T-e

Γ`e : real

• T-pi

Γ` pi : real

136

A.30 Real, Imaginary Math Ops

• T-MinReal

Γ` t1 : real Γ` t2 : real
Γ` t1 min t2 : real

• T-MinImaginary

Γ` t1 : imaginary Γ` t2 : imaginary
Γ` t1 min t2 : imaginary

• T-MaxReal

Γ` t1 : real Γ` t2 : real
Γ` t1 max t2 : real

• T-MaxImaginary

Γ` t1 : imaginary Γ` t2 : imaginary
Γ` t1 max t2 : imaginary

• T-RelationReal

Let op =< |=< |> |>=

Γ` t1 : real Γ` t2 : real
Γ` t1 opt2 : real

• T-RelationImaginary

Let op =< |=< |> |>=

Γ` t1 : imaginary Γ` t2 : imaginary
Γ` t1 opt2 : imaginary

137

A.31 Rational Number Operations

• T-DenominatorRational

Γ` t : rational
Γ`den(t) : integer

• T-NumeratorRational

Γ` t : rational
Γ`num(t) : integer

• T-MinRational

Γ` t1 : rational Γ` t2 : rational
Γ`min(t1, t2) : rational

• T-MaxRational

Γ` t1 : rational Γ` t2 : rational
Γ`max(t1, t2) : rational

A.32 Integer and Natural Number Operations

• T-IntegerTruncationDivision

Γ` t1 : integer Γ` t2 : integer
Γ` t1divt2 : integer

• T-IntegerRemainderDivision

Γ` t1 : integer Γ` t2 : integer
Γ` t1remt2 : integer

138

• T-IntegerModularDivision

Γ` t1 : integer Γ` t2 : integer
Γ` t1modt2 : integer

• T-ClosedNaturalOperations

Let op = +| ∗ |∧ |div|rem|mod

Γ` t1 : natural Γ` t2 : natural
Γ` t1 opt2 : natural

A.33 Character Operations

• T-Char2Unicode(Ord)

Γ` t : character
Γ` ord(t) : natural

• T-Unicode2Char(Char)

Γ` t : natural
Γ` char(t) : character

• T-CharacterRelations

Let op =< |=< |>= |>

Γ` t1 : character Γ` t2 : character
Γ` t1 opt2 : boolean

• T-UpperCase

Γ` t : character
Γ`uc(t) : character

139

• T-LowerCase

Γ` t : character
Γ`dc(t) : character

A.34 Top and Bottom Literals

• T-Top

Γ` top : top

• T-Bottom

Γ` bottom : bottom

140

References

[1] The Glorious Glasgow Haskell Compiler. URL http://haskell.org/ghc/.

[2] The Eclipse Project. URL http://www.eclipse.org/.

[3] The Epigram Project. URL http://www.e-pig.org/.

[4] The SAL Language Manual. Technical report, 2003.

[5] P. Alexander. System-Level Design with Rosetta. Morgan Kaufmann Publishers, Inc., 2006.

[6] P. Alexander, D. Barton, and C. Kong. Rosetta Usage Guide. The University of Kansas / ITTC, 2335

Irving Hill Rd, Lawrence, KS, 2000.

[7] A. Avron, F. Honsell, and I. Mason. An Overview of the Edinburgh Logical Framework. In In Cur-

rent Trends in Hardware Verification and Automated Theorem Proving, G. Birtwistle, pages 323–240.

Springer-Verlag, 1989.

[8] H. Barendregt. Introduction to Generalized Type Systems. J. Funct. Program., 1(2):125–154, 1991.

[9] H. Barendregt, S. Abramsky, D. M. Gabbay, T. S. E. Maibaum, and H. P. Barendregt. Lambda Calculi

with Types. In Handbook of Logic in Computer Science, pages 117–309. Oxford University Press,

1992.

[10] G. Barthe. Type-checking Injective Pure Type Systems. J. Funct. Program., 9(6):675–698, 1999. ISSN

0956-7968. doi: http://dx.doi.org/10.1017/S0956796899003573.

[11] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction, and Polymorphism. Computing

Surveys, 17(4):471–522, December 1985.

[12] D. Clément, T. Despeyroux, G. Kahn, and J. Despeyroux. A Simple Applicative Language: mini-ML.

In LFP ’86: Proceedings of the 1986 ACM conference on LISP and functional programming, pages

13–27, New York, NY, USA, 1986. ACM. ISBN 0-89791-200-4. doi: http://doi.acm.org/10.1145/

319838.319847.

[13] D. Cooper. Theorem proving in arithmetic without multiplication. In Machine Intelligence, 1972.

[14] T. Coquand and G. Huet. The Calculus of Constructions. Inf. Comput., 76(2-3):95–120, 1988. ISSN

0890-5401. doi: http://dx.doi.org/10.1016/0890-5401(88)90005-3.

[15] C. Cornes, J. Courant, J. C. Filliâtre, G. Huet, P. Manoury, C. P. Mohring, C. Muñoz, C. Murthy,

C. Parent, A. Saı̈bi, and B. Werner. The Coq Proof Assistant Reference Manual. Institut National de

Recherche en Informatique et en Automatique, 1995.

141

http://haskell.org/ghc/
http://www.eclipse.org/
http://www.e-pig.org/

[16] L. Damas and R. Milner. Principal Type-schemes for Functional Programs. In POPL ’82: Proceed-

ings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages

207–212, New York, NY, USA, 1982. ACM. ISBN 0-89791-065-6. doi: http://doi.acm.org/10.1145/

582153.582176.

[17] David Aspinall. Subtyping with Singleton Types. In Eighth International Workshop on Computer

Science Logic, pages 1–15. Springer-Verlag, 1995.

[18] I. S. Diatchki. Presburger: Cooper’s Decision Procedure for Presburger Arithmetic. http://

hackage.haskell.org/package/presburger-0.3, April 2009.

[19] J.-Y. Girard. Interprétation fonctionnelle et Élimination des coupures de l’arithmétique d’ordre

supérieur. In J. Fenstad, editor, Summary in Proceedings of the Second Scandinavian Logic Sym-

posium, pages 63–92, Université Paris VII, 1972. North-Holland.

[20] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal of the Association

for Computing Machinery, 40:194–204, 1987.

[21] Herbert Enderton. A Mathematical Introduction to Logic. Academic Press, Boston, MA, 2nd edition,

2001.

[22] J. Hickey, A. Nogin, R. L. Constable, B. E. Aydemir, E. Barzilay, Y. Bryukhov, R. Eaton, A. Granicz,

A. Kopylov, C. Kreitz, V. N. Krupski, L. Lorigo, S. Schmitt, C. Witty, and X. Yu. MetaPRL - A

Modular Logical Environment, 2003.

[23] P. Jackson. The Nuprl Proof Development System, Version 4.1: Reference Manual and User’s Guide.

Cornell University. Department of Computer Science, 1993.

[24] Ken Arnold, Tim Lindholm, Frank Yellin, The Java Team, Mary Campione, Kathy Walrath, Patrick

Chan, Rosanna Lee, Jonni Kanerva, James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java

Language Specification - Second Edition, 2000.

[25] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The Undecidability of the Semi-Unification Problem. In

STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages

468–476, New York, NY, USA, 1990. ACM. ISBN 0-89791-361-2. doi: http://doi.acm.org/10.1145/

100216.100279.

[26] O. Lee and K. Yi. A Generalized Let-Polymorphic Type Inference Algorithm. Technical report,

Technical Memorandum ROPAS-2000-5, Research on Program Analysis System, Korea Advanced

Institute of Science and Technology, 2000.

142

http://hackage.haskell.org/package/presburger-0.3
http://hackage.haskell.org/package/presburger-0.3

[27] S. Liang, P. Hudak, and M. Jones. Monad Transformers and Modular Interpreters. In ACM, editor,

22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages: San Francisco,

California, January 22–25, 1995, pages 333–343, New York, NY, USA, 1995. ACM Press.

[28] Mark Snyder and Perry Alexander. Monad Factory: Type-Indexed Monads. In Post-Proceedings of

Trends in Functional Programming, pages 106–120, May 2010.

[29] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press, 1990.

[30] Mojżesz Presburger. Über die Vollstndigkeit eines gewissen Systems der Arithmetik ganzer Zahlen,

in welchem die Addition als einzige Operation hervortritt. pages 92–101, 1929.

[31] W. Naraschewski and T. Nipkow. Type Inference Verified: Algorithm W in Isabelle/HOL. Journal of

Automated Reasoning, 23:3–4, 1999.

[32] D. Nazareth and T. Nipkow. Formal Verification of Algorithm W: The Monomorphic Case, 1996.

[33] Nicolas Frisby. Scopeless Abstract Syntax, 2009.

[34] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic,

volume 2283 of LNCS. Springer, 2002.

[35] V. S. Owre, S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-calvert. PVS Language Refer-

ence.

[36] S. Peyton Jones. Haskell 98 Language and Libraries: the Revised Report. 2003.

[37] B. C. Pierce. Bounded Quantification is Undecidable. In POPL ’92: Proceedings of the 19th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages 305–315, New York,

NY, USA, 1992. ACM. ISBN 0-89791-453-8. doi: http://doi.acm.org/10.1145/143165.143228.

[38] B. C. Pierce. Types and Programming Languages. The MIT Press, Cambridge, MA, 2002.

[39] B. C. Pierce and D. N. Turner. Local Type Inference. ACM Trans. Program. Lang. Syst., 22(1):1–44,

2000. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/345099.345100.

[40] R. Pollack. The Theory of LEGO - A Proof Checker for the Extended Calculus of Constructions.

Technical report, 1994.

[41] J. C. Reynolds. Towards a Theory of Type Structure. In Programming Symposium, Proceedings

Colloque sur la Programmation, pages 408–423, London, UK, 1974. Springer-Verlag. ISBN 3-540-

06859-7.

[42] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM, 12(1):23–41,

1965. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321250.321253.

143

[43] J. Roorda and J. Jeuring. Pure Type Systems for Functional Programming (Extended Abstract).

[44] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-calvert. PVS Prover Guide - Version 2.2.

[45] M. Snyder, N. Frisby, G. Kimmell, and P. Alexander. Writing Composable Software with Interpreter-

Lib. In SC ’09: Proceedings of the 8th International Conference on Software Composition, pages

160–176, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-02654-6.

[46] M. Sulzmann, M. M. T. Chakravarty, S. P. Jones, and K. Donnelly. System F with type equality

coercions, 2007.

[47] Thorsten Altenkirch, Conor McBride, and James McKinna. Why Dependent Types Matter. In In

preparation, http://www.e-pig.org/downloads/ydtm.pdf, 2005.

[48] J. B. Wells. Typability and Type Checking in System F Are Equivalent and Undecidable. Annals of

Pure and Applied Logic, 98:111–156, 1998.

[49] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1996. ISBN 0-13-948472-8.

144

	Acceptance Page
	Abstract
	Introduction
	Thesis Experimentation and Evaluation
	Summary

	Related Work
	Type Systems
	The Lambda Cube
	Simply Typed Lambda Calculus
	System F2
	System
	System F
	LF, the Logical Framework
	System P
	Calculus of Constructions
	Pure Type Systems
	System FC()
	System F<:
	Relation to Current Work

	Type Inference
	Algorithm W
	Local Type Inference
	Definitions and Typing Rules for Local Type Inference
	Type Inference of System F2

	Dependent Types
	Refinement
	Summary

	Background Work
	The Rosetta Type System
	Standard Types and Operators
	Composite Types, Constructed Types
	First-Class Types
	Building Blocks - Facets
	Reflection and Interactions
	Rosetta Type System Summary

	Rosetta Alpha Type Checker
	Preparatory Typing Work
	Local Type Inference on ASG's
	Error Reporting

	Summary

	Methodology
	Introduction
	Defining Rosetta Typing Rules
	A Note on Lists
	Qualified Names
	Design Units
	Use Clauses
	Quantified Parameters
	Applications
	Variables
	Functions
	Direct Functions
	Anonymous Functions
	Further Binding Sites: Functions and Lets
	Sequence Predicates and Operators
	Control-Flow Expressions
	Ascriptions
	Constructed Types
	Mathematical Operators
	Top and Bottom Literals

	Subtyping Relationship
	Subtyping for Primitive Types
	Subtyping for Composite (Structural) Types
	Subtyping for Functions
	Subtyping for User-Defined Datatypes
	Explicit Subtype Definitions

	Developing the Typing Analysis
	Reference Algebras
	Tasks for Basic Type Checking

	Partial Information Approaches
	Witnesses
	Nodes as Types
	Substitutions
	Size control
	Presburger Arithmetic
	Local Type Inference

	Error Reporting
	Summary of Methodology

	Evaluation
	The Type System
	Basic Typing
	Partial Typing
	Local Type Inference
	Witnesses
	Tracking Sizes
	Error Reporting and Graph Annotations

	Driving Specification Refinement

	Rosetta Typing Rules
	Design Units
	Use Clauses
	Quantified Parameters
	Qualified Names
	Variables
	Applications
	Functions
	Direct Functions
	Anonymous Functions

	Let-expressions
	Sequence Predicates
	Control-Flow Expressions
	Ascriptions
	Constructed Types
	Rosetta-Standard Operators
	Composite Types

	Set Operations
	Multiset Operations
	Sequence Operations
	Bitvector Operations
	Mathematical Operators
	Addition
	Subtraction
	Multiplication
	Division
	Exponentiation
	Exponentials
	Negation and Identity for Numbers
	Bit and Boolean Operators
	Functions over Complex Numbers
	Trigonometry and More with Complex Numbers
	Mathematical Constants
	Real, Imaginary Math Ops
	Rational Number Operations
	Integer and Natural Number Operations
	Character Operations
	Top and Bottom Literals

