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Abstract

HaskHOL is an implementation of a HOL theorem proving capability in Haskell.

Motivated by a need to integrate theorem proving capabilities into a Haskell-based

tool suite, HaskHOL began as a simple port of HOL Light to Haskell. However,

Haskell’s laziness, immutable data, and monadic extensions both complicate an

implementation and enable a new feature class. This thesis describes HaskHOL,

its motivation and implementation. Its use to implement a primitive, interactive

theorem prover is explored and its performance is evaluated using a collection of

intuitionistically valid problems.
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Chapter 1

Introduction

The notion of proof is something that everyone has struggled with at one point

in time or another. Whether it was in high school geometry class trying to figure

out how you could show that triangles always have 180◦, or at a bar arguing with

your friends about how many NBA teams Jacque Vaughn has played for1, each

of us has either formally or informally tried to prove something. At its heart, a

proof is a very simple concept; it is an argument that some statement is true. This

simplicity is reflected in the examples mentioned above, with our proofs consisting

of trivial applications of the ”laws of triangles” or a quick lookup on the Elias

Sports Bureau website, the official record keeper of the NBA. Don’t be mistaken,

though, proving can rapidly become a very complicated activity, especially when

talking about the domain of computer software or hardware. How can we show

that a body of code with millions of lines or a processor with billions of transistors

is correct? Is that verification something that we want to do by the unassisted

human hand?

1Five
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The first question is still a relatively open one, however, the answer to the

second is a resounding no. If there is one thing humans are great at, it is making

mistakes, especially when dealing with problems of intractable size. Thankfully,

advances in computer science have spawned a wide array of formal systems for

computer aided design and verification, so we no longer are forced to reason about

such complex topics on our own. Once such class of systems is automated theorem

proving, a branch of theoretical computer science whose goal is to assist and

automate proof as discussed above. Even within this class there are numerous

other subclasses, separating the systems even further based on their principle

logics, levels of interactivity, or domains of problems they are designed to reason

over.

This thesis in particular will explore the implementation of a new member of

the Higher-Order Logic (HOL) theorem proving family. HOL has a rich history of

being used for system verification that dates back to Mike Gordon’s 1986 paper,

“Why higher-order logic is a good formalism for specifying and verifying hard-

ware” [12]. Since then, research has spawned a wide variety of materials covering

verification with HOL, including everything from textbooks [28] to research pa-

pers detailing verification targets ranging in size from single algorithms [18–20]

to large software systems [22]. Given the success HOL has had verifying such a

diverse set of topics, when it came time to connect a verification formalism to

Rosetta [3,4], a system level design language in development at The University of

Kansas, HOL seemed to be the logical choice.
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1.1 Higher-Order Logic and Rosetta

There have been a number of popular and successful tools developed in the

HOL family, so selecting among them should be as easy as finding the one that

matched our requirements. Many of the tools, such as HOL4 [33], PVS [8] and

Isabelle/HOL [29], require the Rosetta specification to be “thrown over the wall”

and embedded in the prover with the verification work ultimately occurring in the

formal tool’s environment and not Rosetta’s. This is non-ideal for two reasons.

First, it requires translating informational messages among the Rosetta tool suite

and the prover. Our experience with VSPEC [6] demonstrates the difficulty of

trying to restructure prover outputs to be meaningful in the context of the original

specification. Second, it requires the users to become proficient with two very

different interfaces, one for Rosetta and one for the formal tool. These two issues

lead to the desired properties for a formal tool: it must be lightweight and it must

be able to interface with the existing Rosetta environment.

HOL Light [17], a lightweight implementation of a HOL system designed to run

in a terminal shell, satisfies these goals, but not without introducing new problems

of its own. Namely, it piggybacks upon the OCaml interpreter and requires the

use of checkpointing software to prevent having to spend several minutes loading

the theorems of the tool every time it is run. Admittedly these are not issues for

the majority of HOL Light users, however, the Rosetta tool suite is developed in

Haskell, not OCaml, on machines where no reliable checkpointing software exists.

Given this, the use of HOL Light introduces another dependency to our tool chain,

increase the difficulty of development, and potentially decrease the portability of

the Rosetta tool suite.
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1.2 Formal Reasoning and Haskell

There have been several efforts to connect formal reasoning systems, even

HOL, to Haskell. Recent work has been completed by Florian Haftmann to con-

nect HOL and Haskell via translations between specifications written in Isabelle

and executable Haskell source [16]. The generation of code from an Isabelle spec-

ification is presented as an established and mature tool, however, the tool for

verifying Haskell artifacts, Haskabelle, depends on a large external tool base.

Agda [2], a combination of a dependently typed language and proof assis-

tant, is another attempt to connect formal reasoning to Haskell. Because both

pieces utilize concrete syntax that is heavily inspired by Haskell, it is possible for

Agda to translate code produced from compiling Haskell into an equivalent Agda

specification that can be reasoned about in its proof assistant. This is similar

to the approach taken by Haskabelle, the primary differences being the logical

foundations and proof techniques associated with each tool.

In addition to the various attempts to connect Haskell with external tools,

there is at least one major attempt to bring these reasoning capabilities to Haskell

intensionally. Ivor [7] is a type theory based theorem proving library that provides

an API for embedding theorem proving capabilities inside of Haskell applications.

Instead of dedicating itself to one fixed logical system, like HOL, Ivor aims to be

an extensible theorem proving framework with the goal of implementing a variety

logical systems and tactic languages that can change based on the application.

There is also a major difference compared to the other tools in that Ivor is designed

to be used in conjunction with generative programming techniques instead of

directly by humans.
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1.3 HaskHOL

All of the formal systems mentioned above fail to satisfy the previously estab-

lished requirements for one reason or another. Given that, it was decided that

the best solution for pairing a Haskell-based prover with the Rosetta tool suite

was to develop one of our own. The first attempt to do so was Prufrock [38].

Similar to Ivor, Prufrock provided a prover framework portable across both logics

and language. The Prufrock experiment was successful in both, but proved too

inefficient for a primary verification tool. Specifically, Prufrock did port to mul-

tiple syntaxes effectively – including the TPTP problem library [36] – making it

an effective prototyping language. However, evaluation with respect to the TPTP

library demonstrated inefficiencies leading to the decision to implement a smaller,

more targeted proof tool.

With great naivety, I suggested what I thought would be a simple solution

to all of the above problems: why not port HOL Light to Haskell? While the

work began originally as a direct port of HOL Light, it became immediately clear

that Haskell was a viable implementation language for a HOL system that was

worthy of more in depth exploration. What was found was that many of Haskell’s

language features, specifically its laziness, purity, and advanced type system, pro-

moted alternative implementation techniques compared to more traditional im-

plementations utilizing the ML family of languages. The results of these efforts is

HaskHOL, a Haskell hosted domain specific language for HOL theorem proving.

While originally designed to help a single research group, HaskHOL has since

grown to become a platform for exploring the challenges and benefits of imple-

menting a HOL system in Haskell with the goal of contributing to a much wider

audience than the single research group it was originally designed to help.
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1.4 Organization

The organization of this thesis is as follows:

• Chapter 2 – A preliminary introduction to Higher-Order Logic provided to

better understand this thesis.

• Chapter 3 – A preliminary introduction to Haskell provided to better un-

derstand this thesis.

• Chapter 4 – A high-level explanation of the primitive implementation tech-

niques of HaskHOL.

• Chapter 5 – An exploration of the use of HaskHOL to implement an inter-

active theorem prover

• Chapter 6 – An evaluation of HaskHOL’s performance.
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Chapter 2

Higher-Order Logic

Higher-order logic (HOL) [14] is a logical formalism for theorem proving based

on Robin Milner’s Logic of Computable Functions (LCF) [13]. As its name im-

plies, HOL separates itself from LCF by providing the ability to reason about

higher-order predicates. What is shared, though, is an implementation technique

that focuses on a small, trusted logical kernel from which more advanced reason-

ing features are bootstrapped from. Known colloquially as the ”LCF-style,” this

method reduces the code base that must be checked for soundness and complete-

ness, ultimately making verification of the entire system simpler.

2.1 Terms and Types

The primitive term language of any HOL implementation is a typed lambda

calculus [17,29,33], whose grammar is shown below:

Type ::= x (c [Type])

Term ::= x : Type c : Type (Term Term) (λ x . Term)

7



Types can be either variables or applications of a list of types to a type constant

while terms can be either typed variables, typed constants, combinations of two

terms, or abstractions of a variable over a term. Some HOL systems supplement

this grammar with additional term constructors; others instead rely on HOL’s

ability to define new constants and definitions in terms of the existing constructors.

In either case, writing terms in HOL should feel immediately comfortable for

those familiar with the lambda calculus, especially those proficient in functional

programming. For example, take the polymorphic constant to represent a test for

equality between two terms, = : a → a → bool. Assuming that we have existing

representations for our types, aTy and boolTy respectively, a term expressing

equality between two boolean terms, x and y can be expressed as follows:

(("=":("fun" [aTy, ("fun" [aTy, boolTy]])) x:boolTy) y:boolTy)

At this point it is painfully clear that writing any significantly large terms

using the primitive constructors directly is more of a burden than it’s worth. For

this reason, most HOL implementations include a parser to allow terms to be

written in a more human friendly style that more closely resembles traditional

logic notation. The implementation details of the parser for HaskHOL will be

explained in Chapter 4, but in brief the HOL kernel provides the capacity to

extend the parser with definitions for new types of a specified arity and new

constants of a specified type, associativity, and precedence level. This allows us

to write terms such as a : bool = (x ∧ y ⇒ z) directly instead of worrying about

how to glue together all of the necessary constructors. This relaxed notation is

what will be used for the remainder of the HOL background section.

8



2.2 Theorems

The principle logical data type of HOL is a theorem, usually expressed with the

notation a1, ..., an ` c. Here the term c represents the conclusion of the theorem

and is used to state what we are trying to show is valid. The list of terms a1, .., an

represent the assumptions of the theorem and are used to state what must be true

in order for the conclusion to also be true. Obviously, given that we care about

the truth of these terms, all assumptions and the conclusion must be propositions,

terms of type boolean. For example, the theorem x∧ y ` x states that a variable,

x, is true under the assumption of the conjunction of x and y. A theorem with

an empty assumption list, such as ` x ∨ ¬x, reflects a conclusion that is always

true, also known as a tautology.

Of important note is the fact that theorems cannot be manually constructed

like terms can. Theorems can only come to existence through the application of

one of the HOL system’s kernel functions, typically the primitive inference rules.

It is through this restriction that the HOL system can maintain its argument that

if the kernel is sound and complete then the rest of the tool is too. The primitive

inference rules of HaskHOL will be discussed in more detail in Section 2.3.

The kernel does provide an alternative method of constructing theorems with-

out application of primitive inference rules by allowing the user to introduce new

axioms into the proof theory. To construct a new axiom the user supplies a propo-

sition and the system returns a new theorem with an empty assumption list and

with that proposition as the conclusion, effectively accepting that term as true

without any burden or guarantee of proof. Clearly this feature can be used to

introduce inconsistent theorems into the proof theory, breaking the soundness for

the rest of the proof tree. For this reason most HOL systems warn the user when

9



axioms are introduced and some even prevent then from being accepted when the

system is run at a higher trust level.

2.3 Primitive Inference Rules

HaskHOL was originally born as a direct port of HOL Light to Haskell, and

as such, shares the same ten primitive inference rules [21]. Among them are two

rules for basic equality reasoning, two rules for congruence of combinations and

abstractions, a beta reduction rule, three rules for deduction of new theorems from

existing ones, and two rules for instantiation of type and term variables. Each

rule’s logical semantics will be presented along with a brief discussion and small

example. For these examples, the syntax will be used to indicate the evaluation

of a rule and its arguments to a theorem value.

2.3.1 Equality Rules

REFL
t

` t = t

This rule provides reflexivity of terms. It takes as input a term and returns a

theorem proving that the term is equal to itself. It has no failure conditions.

Example:

REFL x  ` x = x

TRANS
A1 ` t1 = t2 A2 ` t2 = t3

A1 ∪ A2 ` t1 = t3

This rule provides transitivity of equality. It takes as input two theorems that have

equations as their conclusions and returns a theorem proving the equation of the

outside terms under the assumption of the union of the two original assumption

10



lists. It fails when the middle terms are not alpha equivalent or when at least one

of the theorems does not have an equation as its conclusion.

Example:

TRANS (x = y ` x = y) (y = z ` y = z)  x = y, y = z ` x = z

2.3.2 Congruence Rules

MK COMB
A1 ` f = g A2 ` x = y

A1 ∪ A2 ` f x = g y

This rule provides congruence of term combination. It takes as input two the-

orems that have equations as their conclusions, the first of function terms and

the second of argument terms, and returns a theorem proving the equation of

the respective term combinations under the assumption of the union of the two

original assumption lists. It fails when the types of the functions terms and ar-

gument terms don’t agree, when the first theorem conclusion isn’t an equation of

function terms, or when at least one of the theorems does not have an equation

as its conclusion.

Example:

MK COMB (` (λ x . x) = (λ x . x)) (x = y ` x = y)  

x = y ` (λ x . x) x = (λ x . x) y

ABS
A ` t1 = t2 x not free in A

A ` (λx.t1) = (λx.t2)

This rule provides congruence of term abstraction. It takes as input a variable

term and a theorem that has an equation as its conclusion and returns a theorem

proving the equation of the abstraction of the variable over the terms of the

equation under the original assumptions. It fails when the variable term is free in

11



the assumption list or if the conclusion of the theorem is not an equation.

Example:

ABS x (` x = x)  ` (λ x . x) = (λ x . x)

2.3.3 Beta Reduction Rule

BETA RULE
(λx.t[x]) x

` (λx.t) x = t[x]

This rule provides equality between a term and its form after beta reduction. It

takes as input a combination term consisting of a function and an argument and

returns a theorem proving the equation of the original term and its function body.

It fails if the combination term is not a valid application or if the argument term

is not equivalent to the abstracted term of the function.

Example:

BETA RULE ((λ x . x ∧ y) x)  ` (λ x . x ∧ y) x = x ∧ y

2.3.4 Deduction Rules

ASSUME
t

t ` t

This rule provides the only mechanism in the kernel for adding assumptions be-

tween proof steps. It takes as input a term and returns a theorem proving that

term under the assumption of itself. It fails if the term is not a proposition.

Example:

ASSUME (x ∧ y)  x ∧ y ` x ∧ y

EQ MP
A1 ` t1 = t2 A2 ` t1

A1 ∪ A2 ` t2

12



This rule provides modus ponens reasoning for equality. It takes as input two

theorems, the first with an equation of terms and the second with a conclusion

of the first term from the equation, and returns a theorem proving the second

term under the union of the two original assumption lists. It fails if the terms of

the two theorems do not agree or if the conclusion of the first theorem is not an

equation.

Example:

EQ MP (x = y ` x = y) (x ` x)  x = y, x ` y

DEDUCT ANTISYM RULE
A ` p B ` q

(A− q) ∪ (B − p) ` p = q

This rule provides the only mechanism in the kernel for removing assumptions

between proof steps. It takes as input two theorems and returns a theorem proving

an equation between their conclusions under the assumption of the union of the

first assumption list minus the second term and the second assumption list minus

the first term.

Example:

DEDUCT ANTISYM RULE (x ` x) (x ` x)  ` x = x

2.3.5 Instantiation Rules

INST TYPE
[(ty1, tv1), ..., (tyn, tvn)] A ` t

A[ty1, ..., tyn/tv1, ..., tvn] ` t[ty1, ..., tyn/tv1, ..., tvn]

This rule provides instantiation of type variables. It takes as input a type envi-

ronment of type variable and type pairs and a theorem and returns a theorem

identical to the original one where all type variables in the assumption list and

conclusion are replaced with the associated type from the environment.

13



Example:

INST TYPE [(A, bool)] (x:A = y:A ` x:A = y:A)  

x:bool = y:bool ` x:bool = x:bool

INST
[(t1, x1), ..., (tn, xn)] A ` t

A[t1, ..., tn/x1, ..., xn] ` t[t1, ..., tn/x1, ..., xn]

This rule provides instantiation of term variables. It takes as input a term envi-

ronment of term variables and term pairs and a a theorem and returns a theorem

identical to the original one where all term variables in the assumption list and

conclusion are replaced with the associated term from the environment.

Example:

INST [(x, z), (y, z)] (x = y ` x = y)  z = z ` z = z

2.4 Forward Proof

A basic proof in HOL is conducted through repeated applications of the prim-

itive inference rules. This is referred to as forward proof because the user starts

with an empty theory and proceeds forward, sequentially building up new the-

orems until the proof is complete. Notice that this proof technique suffers from

the same issue that was discussed regarding the construction of terms; using the

primitive constructors of a data type is unnecessarily burdensome. The answer

to this problem, as it was for terms, is to provide more advanced functionality

built on the primitive constructors that simplifies the user’s interactions. This

section will discuss two major advanced functions of forward proof: derived rules

and conversions.
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2.4.1 Derived Rules

Take, for example, a proof of Γ ` r = l from the hypothesis Γ ` l = r:

1. Γ ` l = r [Hypothesis]

2. ` (=) = (=) [Reflexivity applied to (=)]

3. Γ ` ((=)l) = ((=)r) [Congruence of Combs. applied to 2 and 1]

4. ` l = l [Reflexivity applied to l]

5. Γ ` (l = l) = (r = l) [Congruence of Combs. applied to 3 and 4]

6. Γ ` r = l [Modus Ponens of Equality applied to 5 and 4]

Note that as long as the hypothesis is of the form Γ ` l = r this sequence will

always return a valid proof. In general, a sequence that returns a valid proof from

provided hypotheses is referred to as a derived rule. This derived rule just happens

to represent a major equality rule missing from our logical kernel, symmetry of

equations.

Lines 1 through 3 can also be abstracted out to a derived rule if we generalize

it to the following form:

1. Γ ` x = y [Hypothesis]

2. ` f = f [Reflexivity applied to f ]

3. Γ ` fx = fg [Congruence of Combs. applied to 2 and 1]

This derived rule, AP TERM, is used to apply a function to both sides of an equa-

tional theorem as long as the types align. This can be used to simplify our derived

rule for symmetry, displaying the real benefit of derived rules:
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1. Γ ` l = r [Hypothesis]

2. Γ ` ((=)l) = ((=)r) [Application of term (=) to 1]

3. ` l = l [Reflexivity applied to l]

4. Γ ` (l = l) = (r = l) [Congruence of Combs. applied to 2 and 3]

5. Γ ` r = l [Modus Ponens of Equality applied to 4 and 3]

Notice that we could also use a similar derived rule, AP THM, to apply an argument

to both sides of an equational theorem to again abstract away lines 3 and 4.

However, notice that line 5 requires the theorem built in line 3, causing us to

repeat the call to REFL if we use the derived rule. Repetition of work is something

to be careful to avoid when building or using derived rules because the inefficiency

will replicate every time that rule is used. However, for one off proofs the benefits

of the added clarity and brevity that derived rules provide may outweigh the cost

of the inefficiency.

2.4.2 Conversions

One very important class of derived rules is conversions. A conversion is a

rule that maps a term to a theorem that concludes the equation of that term and

a new term. One example that should be familiar to all of those who have worked

with the lambda calculus before is beta conversion:

BETA CONV
(λx.u) v

` (λx.u) v = u[v/x]

We have already seen the simplest case of beta conversion, where the bound

variable is equal to the argument, which was captured with the primitive beta

reduction rule that was described in Section 2.3. The BETA CONV conversion lever-

ages the primitive beta rule in combination with the primitive term instantiation
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rule to handle the other cases.

In general, conversions are used to generate equational theorems to justify the

replacement of terms with equivalent ones. Sometimes these theorems are used

directly, such as in the implementation of HOL’s rewriting tools. Other times,

however, it would be nice to skip the theorem step and automate the replacement

of the term in an existing theorem. HOL provides this functionality with the

CONV RULE derived rule:

CONV RULE
c where c t A′ ` t′ A ` t

A ∪ A′ ` t′

Example:

CONV RULE BETA CONV ((λ x . x ∧ y) z ` (λ x . x ∧ y) z)  

(λ x . x ∧ y) z ` z ∧ y

HOL also provides the functionality to construct new conversions out of exist-

ing ones using conversion combining operators called conversionals. For example,

what if we want to prove an equivalence of a term of form (λx1....xn.u) v1...vn

with its reduced form u[v1/x1...vn/xn]. We could manually apply BETA CONV n

times over the operator of the application, chaining the equivalences together

with TRANS, but it would be nicer to automate this process. The conversion

library provides two terminal conversions, NO CONV and ALL CONV, roughly equiv-

alent to failure and identity functions respectively, and several conversionals for

sequencing and trying conversions, such as THENC, ORELSEC, and REPEATC. Also

provided are subterm conversionals that target a conversion to a specific portion

of a term, such as RATOR CONV and RAND CONV which apply a conversion to the

operator or operand of a combination accordingly.
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These conversionals allow us to specify the new conversion, BETAS CONV that

was described above. All that is necessary is a basic inspection on the structure

of the term we are applying the conversion to. If the term is a single application

then we simply call the original conversion: BETA CONV. If the term is a nested

application then we build a new conversion consisting of a recursive call followed

by a call to BETA CONV and apply that the operator of the term: RATOR CONV

(BETAS CONV THENC BETA CONV).

2.5 Backwards Proof

For many problems forward proof is too primitive to feel natural or appro-

priate. An alternative, much more robust, proof technique is goal directed, or

backwards, proof based on the notion of tactics, an invention of Milner’s from the

1970s [15]. Whereas in forward proof we start with nothing and work towards

our goal theorem, in backwards proof we start at our goal and work in reverse,

asking ourselves what we need to prove to get to that point. At that point we

have effectively split the problem into subproofs that can be examined and solved

independently of each other utilizing the same technique. This process then re-

peats until we no longer have any subproof obligations to complete, the final result

being a proof of how the summation of all of our subproofs is sufficient to prove

our original goal theorem.

2.5.1 Tactics

Tactics, in short, provide the plumbing to logically formalize the process ex-

plained above. More specifically, a tactic is responsible for two things, defining

how a goal is split into subgoals and keeping track of the justification for why
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solving the subgoals solves the original goal. The collection of the new subgoals

and the justification is tracked along with some other plumbing in what is called

the goal state. This makes a tactic a function of type Goal → GoalState.

As an example, suppose that we wanted to prove the goal A ` X ⇐⇒ Y . We

know that X ⇐⇒ Y is logically equivalent to (X ⇒ Y ) ∧ (Y ⇒ X), so it would

appear to be sufficient to prove the subgoals A ` X ⇒ Y and A ` Y ⇒ X in

order to prove the original goal. In fact, this reasoning is exactly what is capture

by the implication anti symmetry rule:

IMP ANTISYM RULE
A1 ` t1⇒ t2 A2 ` t2⇒ t1

A1 ∪ A2 ` t1⇐⇒ t2

The tactic for the above example, therefore, must be able to deconstruct the

original goal to build the two new subgoals as well as provide a justification using

IMP ANTISYM RULE. The tactic in question, EQ TAC, already exists as part of most

standard HOL system tactic libraries and is shown below:

EQ_TAC (asl, w) =

let (l, r) = dest_eq w

tm1 = mk_imp l r

tm2 = mk_imp r l in

([(asl, tm1), (asl, tm2)],

\ [th1, th2] -> IMP_ANTISYM_RULE th1 th2)

A goal is roughly the same type as a theorem, consisting of both an assumption

list of terms and a conclusion term. Because of this we can use the same term

destruction and construction functions that we do for derived rules, making the

construction of the subgoal terms trivial in most cases. On a similar note, the

justification constructed by a tactic is just a derived rule that provides the for-

warding reasoning from the solution of the subgoals to the solution of the original

goal, hence why there is a one-to-one relationship between subgoals and argument
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theorems to the justification.

Note that EQ TAC does not actually solve the example goal, it just gets us one

step closer. In fact, rarely will a single application of a tactic solve a goal; much

more common is the case where a sequence of tactics must be applied to reach a

solution. For this reason, tactics have a rich tactical language that is very similar

to the conversional language discussed in Section 2.4.2. Also provided is a tactic

constructor, CONV TAC, that creates a tactic from a conversion. This allows very

easy definition of new tactics from existing conversions, such as a tactic for beta

reduction, BETA TAC = CONV TAC (REDEPTH CONV BETA CONV).
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Chapter 3

Haskell

The previous chapter made numerous references to the lambda calculus and

functional programming without concretizing the language we were working with.

That language is Haskell, a pure, lazy, functional programming language known

for its widespread adaptation in academia and borderline esoteric language fea-

tures. When we say Haskell we are actually informally referring to the language

supported by the Glasgow Haskell Compiler [1]; this covers the Haskell 2010 Stan-

dard [25] and numerous other language extensions that augment the syntactic and

type systems. For the sake of brevity, the following sections assume a relatively

solid level of understanding about functional programming; namely, features that

are prevalent in most functional languages will not be explained. Instead, this

chapter will focus on explaining the more advanced or novel features of Haskell

that are used in the implementation of HaskHOL.
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3.1 Type Classes

Most, if not all, functional languages admit parametric polymorphism through

the use of either explicit or inferred universal quantifications in their type sig-

natures; for example, a -> a -> Bool. On the other hand, the techniques for

implementing ad-hoc polymorphism can vary widely from language to language,

assuming that they admit it at all. The path that Haskell has taken is the use

of type classes, a technique that allows the programmer to group related methods

together and specify their implementations for a collection of types. The perennial

example is a class framing an equality test for two expressions of the same type:

class MyEq a where

eq :: a -> a -> Bool

This class can be instantiated for any type that satisfies the kind checking of a (*

in this case). For example:

data NotQuiteNat = Zero | Succ NotQuiteNat

instance MyEq NotQuiteNat where

Zero ‘eq‘ Zero = True

Succ x ‘eq‘ Succ y = x ‘eq‘ y

_ ‘eq‘ _ = False

We can now use this newly defined eq method in other code we write; for

example, checking if an expression is an element of a list.

myElem x xs = or $ map (eq x) xs

In the example above the $ operator is used to evaluate the expression on its

immediate right and then pass the result to the expression on its immediate left.

This is a fantastic way to avoid needing to use parentheses and can lead to cleaner

and clearer code. As such, it is an operator that I will use a significant amount

from this point on.
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When assigning this function a type, the first instinct is to use a parametrically

polymorphic type of a -> [a] -> Bool, but recall that eq is only defined for types

that belong to the MyEq class. In other words, parametric polymorphism is too

strong to state what we want. Therefore, we need to weaken the type by adding

the assumption of membership in the class to the type context, like so:

myElem :: MyEq a => a -> [a] -> Bool

The behavior of the myElem function is changed every time we define a new

instance of the MyEq type class, providing behavior similar to function overload-

ing. That is not to say that the value of type classes is limited to use in type

signatures; they can be used in a variety of other ways as well.

They can be used in the contexts of instances to instantiate type constructors...

instance MyEq a => MyEq [a] where

(x:xs) ‘eq‘ (y:ys) = x ‘eq‘ y && xs ‘eq‘ ys

In the contexts of classes to provide the notion of inheritance and class extension...

class MyEq a => MyOrd a where

(<), (<=), (>=), (>) :: a -> a -> Bool

Or in the contexts of data types to weaken the set of permissible of arguments...

data MyEq a => EqProof a = Refl a a

3.2 Monads

Perhaps the most famous, and arguably the most intimidating, type class in

Haskell is the Monad class:

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a
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As mentioned previously, Haskell is a pure language in that it does not admit

mutable variables or other side-effectful language features. In short, monads are

how Haskell captures these computational effects without losing its purity. Be-

fore trying to explain how the above definition actually accomplishes that, it’s

beneficial to examine what the methods of the monad class actually do.

We look to the Identity monad as an example given its simplicity:

newtype Identity a = Identity { runIdentity :: a }

instance Monad Identity where

return a = Identity a

m >>= k = k (runIdentity m)

The definition of Identity uses Haskell’s record syntax to provide both a construc-

tor, Identity :: a -> Identity a, and a destructor, runIdentity :: Identity a

-> a, succinctly. Additionally, because there is only one constructor, the newtype

mechanism is used to avoid any overhead that would normally be incurred by us-

ing the data mechanism to define new types. Both of these are common tricks in

Haskell, especially in the implementation of monadic types.

Looking at this definition it is clear that the purpose of return is to serve as a

polymorphic ”boxing” function for the Monad class, lifting a pure expression into

any monadic container. The purpose of >>= is hopefully equally clear; it serves

as a sequencing operator, applying the value of the first monadic computation

to the functional, second argument. When this second argument is wrapped in

a lambda expression, for example return 4 >>= (\ x -> return $ x * x), it has

the effect of binding the first argument to a name, hence the name of the >>=

operator, bind. In the event that you do not care about the value of the first

monadic computation, typical with ”effect-only” computations, you can use the

>> operator. This operator is simply an alias to the special case use of the bind
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operator, x >>= \ _ -> y.

This binding behavior is made even more clear in the sugared do notation for

monadic expressions. In this notation, x >>= (\ x’ -> f x) can be replaced with

the following code:

do x’ <- x

f x’

Again, when you would like to ignore the value of a computation, all that is

required in this syntax is to omit the sugared binding operator:

do prereq

x’ <- x

f x’

It should be noted that if the value of the computation prereq is not of the type

() then the compiler will produce a warning. In these cases it is preferable to be

explicit that you are ignoring the value by binding it to a wild card:

do _ <- prereq

x’ <- x

f x’

This alternative syntax makes it significantly easier to write complicated chains of

monadic computations, and, as such, is the preferred way to write monadic code

that cannot be succinctly expressed in a single line.

In addition to do notation, the base Haskell libraries include a robust Monad

library that contains everything from monadic generalizations of list functions to

functions designed to lift pure functions into monadic ones. Several items from

this library will be used in the remainder of this chapter and in the main body

of the thesis, however, they will not be discussed here for the sake of brevity. For

more information about them, it would be best to consult either Philip Wadler’s

”Comprehending Monads” paper [37] or the Monad Transformer Library docu-
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mentation1. That being said, what will be discussed in the following subsections

are instances of the Monad class that are more interesting than Identity.

3.2.1 State Monad

The State monad is used to capture computations that require the notion of

global state.

newtype State s a = State { runState :: s -> (a, s) }

instance Monad (State s) where

return a = State $ \s -> (a, s)

m >>= k = State $ \s -> let

(a, s’) = runState m s

in runState (k a) s’

From this definition we can see that a stateful computation is represented as a

function that takes an initial state value and returns a pairing of the computation

value and final state value. Again, like the Identity monad, State is defined with

a record type such that the expression runState m init means run the stateful

computation m with initial state init. The bind operator is also written in a

similar way, such that both the resultant state and value from the first monadic

computation is threaded through to the second. As an interesting aside, State’s

binding behavior makes its instance of the >> operator behave almost identically

to the ; operator from most imperative languages.

The previous definition on its own is not enough to truly represent stateful

computations; obviously missing are the capabilities to access and modify the

state. Without these, State is little more than a specialized version of the Identity

monad. These methods are defined in an extension of the Monad class, MonadState.

1http://hackage.haskell.org/package/mtl-2.0.1.0
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class (Monad m) => MonadState s m | m -> s where

get :: m s

put :: s -> m ()

Class extension is hopefully something that is familiar given its introduction earlier

in this chapter. This is example is slightly different, though, in that the class takes

multiple parameters and requires a functional dependency (m -> s. All that this

extra information specifies is that m and s may vary independently and that s

can be uniquely determined from m. This allows us to write a single instance that

covers all possible types of State.

instance MonadState s (State s) where

get = State $ \s -> (s, s)

put s = State $ \_ -> ((), s)

As one might be able to derive from the names, get returns the state as the

value of a computation and put takes a state value as input and sets it as the

state of a computation. These methods allow us to write stateful functions, like

a fresh name generator:

freshName :: String -> State Int String

freshName base =

do count <- get

let name = base ++ show count

next = succ count

put next

return name

This function depends on an integer counter being maintained in the state value

to keep track of what the next value to append to the string is, thus allowing it to

append the string representation of the counter, obtained via the show function, to

a base string provided by the user before incrementing the counter and returning

the resultant name. This way a guarantee can be made that any two strings

generated by this function that are in the same State computation will be unique,
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even if they use the same base string. For example, the expression evalState (

mapM freshName . take 5 $ repeat "abc")0 will return the list ["abc0","abc1"

,"abc2","abc3","abc4"].

Also defined for the State monad are a number of convenience functions that

capture common uses and combinations of runState, get, and put. Examples

include evalState and execState which look at only the resultant value or state

of a computation respectively, and modify which accepts a state transforming

function rather than making the user explicitly make calls to get and put to make

state modifications. Again, please look to Haskell’s Haddock documentation for

more information about what the State library provides.

3.2.2 IO Monad

To borrow a tired expression usually reserved for talking about one’s bed, the

IO monad is ”where the magic happens.” Aptly named for input and output,

the IO monad is used to captures computations that require communicating with

sources outside of Haskell. These communications can be anything from printing

to standard output to reading input from a file. In fact, the ongoing development

of Haskell has led to a large number utilities not typically associated with input

and output to also be included in the IO monad, such as a rich exception system

and support for explicit memory reference management. Given this, rather than

describe what the IO monad does, it is often easier to dismissively ask, ”What

doesn’t it do?”

Notice that absent so far from the discussion of the IO monad is its instance

of the Monad class. This is because the IO monad cannot actually be written in

Haskell and instead is implemented as a collection of language primitives, such as
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bindIO and returnIO. The instance of the Monad class for IO simply calls these

primitives directly, leaving any knowledge about how IO works as compiler magic.

We can reason about what the IO monad is and does, though, by describing it

as an instance of the State monad where the state value is the ”real world.” Expe-

rienced Haskell users may recognize this for the little white lie that it is, however,

it makes introductory discussion about IO possible. Under this assumption we

can interact with the IO monad in every way we can with State with one major

exception; there is no runIO function. The argument for this is that the only

way to maintain type correctness and safety with effectful IO computations is to

maintain a strict ordering of them; once you ”escape” from the ”real world,” any

guarantee about the ordering of these effects is lost. Therefore, the only way to

run an IO computation is to bind it to a special function defined in your compiled

program, Main.main :: IO (), or to have it called directly or indirectly from some

point in the main function.

3.2.3 Monad Transformers

Sometimes it is desirable to be able to combine the effects of two different

monads. Rather than having to write a new monad that captures the combi-

nation of those effects, Haskell provides a monad transformer library. The idea

behind a monad transformer is that rather than having run function that returns

a pure value, like runState does, it will instead return a computation for that

value in a different monad. To accomplish this, the old, non-transformer defi-

nition is modified to accept an additional parameter for this new monad return

type, effectively wrapping the new monad transformer definition around the re-

turn monad. In this way, repeated applications of monad transformers builds up
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a stack of monads with the base of the stack being some non-transformer monad.

Likewise, repeated applications of the appropriate transformer run functions peel

layers off of the stack until the bottom is reached where either a non-transformer

run function is called to return a pure value or an IO computation is reached that

can be bound to or called from main.

To relate this concept to material we’ve already seen before, the definition for

the State monad transformer is shown below:

newtype StateT s m a = StateT { runStateT :: s -> m (a,s) }

instance (Monad m) => Monad (StateT s m) where

return a = StateT $ \s -> return (a, s)

m >>= k = StateT $ \s -> do

~(a, s’) <- runStateT m s

runStateT (k a) s’

fail str = StateT $ \_ -> fail str

Note that the beauty of this implementation is that it is indifferent to what

monad StateT is stacking itself upon. As long as the type m is an instance of

the Monad class, then pure values can be boxed with return and let bindings can

be replaced with monadic bindings without any other knowledge about what lies

beneath StateT on the monad stack.

Defining get and put are equally easy, at least when StateT is at the top of

the stack:

instance (Monad m) => MonadState s (StateT s m) where

get = StateT $ \s -> return (s, s)

put s = StateT $ \_ -> return ((), s)

But what if we want to use other monad’s methods when StateT is at the top

of the stack, for example any IO computation? In effect, what we would like to

do is reach into an arbitrary point of the stack, grab a method, and lift it to the

top so that we can use it. We can do this with another specialized monad type
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class, MonadTrans, whose purpose is to convert a monadic computation into an

equivalent computation contained within a given transformer type.

class MonadTrans t where

lift :: Monad m => m a -> t m a

instance MonadTrans (StateT s) where

lift m = StateT $ \s -> do

a <- m

return (a, s)

Recall, though, that IO is somewhat of a magic monad in that it is entirely

defined by compiler primitives. It makes sense then that it has its own lifting

function and type class:

class (Monad m) => MonadIO m where

liftIO :: IO a -> m a

instance MonadIO IO where

liftIO = id

This lifting type class lets us to write code similar to the following example. In

this case, we are building a monad stack that is two layers deep, StateT on top

of IO, so that we can grab the global state value and then print it to standard

output. We can then use evalStateT to peel the StateT layer off, leaving an IO

computation that we can bind to main.

printState :: StateT Int IO ()

printState =

do st <- get

liftIO . putStrLn $ show st

main :: IO ()

main = evalStateT printState 10

It should be noted that monad transformers are so powerful that they have

subsumed most of the standard monads from the old versions of Haskell’s base

libraries. For example, there is no longer a definition of State like we saw previ-
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ously, instead State s is defined as an alias to StateT s Identity.

3.3 Dynamics

Dynamic typing is an incredibly powerful and useful concept in practice be-

cause it admits numerous other features, such as heterogeneous containers. Even

though Haskell is a statically typed language, it is possible to provide a basic dy-

namic typing interface using the techniques covered in Section 3.1. The standard

implementation of dynamics in Haskell is contained in the Data.Dynamic library

and is implemented using the Typeable type class.

The purpose of the Typeable type class is to provide a mechanism to reify

any type to a universal type representation. This type representation can be

constructed, destructed, and compared just like any other value in Haskell. The

definition for the Typeable type class is shown below:

class Typeable a where

typeOf :: a -> TypeRep

An important fact that can’t be seen from this definition is that the typeOf method

ignores the value passed to it. This makes it possible to accept an undefined

argument with a scoped type variable to reify any type without requiring that a

valid value of that type be accessible at that point in time. What can be seen

from the definition is that typeOf only accepts arguments of a monomorphic type.

To get the type representation of a polymorphic value it must first be ascribed a

monomorphic type, for example typeOf (undefined :: Bool).

Most commonly, typeOf is used for the purpose of comparing two different type

representations before a cast or coercion is made. This is precisely how dynamics

are implemented in Data.Dynamic. When a static value is injected into a dynamic
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container, the type representation is stored along with a coerced version of the

object:

toDyn :: Typeable a => a -> Dynamic

toDyn v = Dynamic (typeOf v) (unsafeCoerce v)

When converting back to a static value, the type representation of a default value

is checked against the stored type representation; if the representations are equal

then the stored object is again coerced back to its static version, otherwise the

default value is returned:

fromDyn :: Typeable a => Dynamic -> a -> a

fromDyn (Dynamic t v) def

| typeOf def == t = unsafeCoerce v

| otherwise = def

As mentioned, this primitive dynamic type interface makes it possible to create

containers like a heterogeneous list:

type HetList = [Dynamic]

hetCons :: Typeable a => a -> HetList -> HetList

hetCons x xs = (toDyn x) : xs

example = (1::Integer) ‘hetCons‘ (True ‘hetCons‘ [])

3.4 Template Haskell

One of the most powerful extensions that GHC provides is Template Haskell,

a compile-time metaprogramming library [32]. The goal of Template Haskell is to

provide the ability to reify concrete Haskell syntax to an abstract syntax tree that

itself can be modified with Haskell, all in a type safe way. This is accomplished

through the two major syntactic extensions provided by Template Haskell, splicing

and quoting.
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Splicing is used to take an abstract syntax tree prepared by Template Haskell

and ”splice” it back in with regular Haskell code, effectively providing a translation

from the abstract syntax to the concrete syntax. The splice operator, $(X) will

accept any abstract syntax for an expression, type, or list of declarations in place

of X. For example, the splice $(litE (IntegerL (1 + 2))) will return the concrete

Haskell expression 3.

Quoting is used to take concrete Haskell syntax and convert it to its ab-

stract representation. The quote operators, [e|...|], [t|...|], [d|...|], and

[p|...|], accept expressions, types, list of declarations, or patterns accordingly.

The operator [|...|] is provided as a shorter alternative for the expression quoter

since it is the most commonly used. The framework for the abstract syntax for the

previous example was derived by quoting an integer expression, [| 1 |], which

provides the syntax LitE (IntegerL 1).

Note the change in case between litE and LitE. This difference has to do

with a detail that has been ignored in the explanation so far; Template Haskell

has its own computation monad, Q, that is closely related to the IO monad. As

far as the two main operations are concerned, the values returned from quoting

are contained within the Q monad and arguments to splicing must be Q monad

computations. This relationship allows quoting to be nested within splicing, or

vice versa.

The ultimate goal of Template Haskell is to expose functionality that would

not be possible without the metaprogramming paradigm. One basic example is

implementing a generic selection function that works for tuples of all sizes. In

ordinary Haskell it is impossible to write a single function that works for tuples of

all sizes because the size of a tuple directly dictates its type; this means that that
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you must write a separate selection function for each tuple size. Rather than do

this, it is a much cleaner solution to implement a single Template Haskell function

that constructs the appropriate selection function at compile time. The code to

do this is shown below:

sel i n = lamE [pat] rhs

where pat = tupP (map varP as)

rhs = varE (as !! (i - 1))

as = [ mkName $ "a" ++ show j | j <- [1..n] ]

While this may look intimidating to those who do not recognize the internal con-

structors for Haskell, it is actually a relatively simple function. The sel function

constructs a list of names, as, that is equal in length to the size of the tuple, n.

From there a pattern for a tuple of that size is constructed, pat, and the name

at the index i in that pattern is identified, rhs. Then the function returns a

new function that accepts a tuple that satisfies this pattern as an argument and

returns the indexed value. This allows the user to write expressions like $(sel

2 3)(1, 2, 3) and $(sel 1 2)(1, 2) after having only written the sel function

once.
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Chapter 4

HaskHOL

As alluded to in the title, HaskHOL is implemented as a Haskell hosted

DSL. The primary technique for developing an embedded DSL in Haskell is well

known [11]. The process begins by identifying the functionality of the primitive

combinators of the DSL and unifying it around a set of abstract data types. From

there, a monadic computation model is identified and a structure around it is

implemented that provides a usable interface and types for the programmer. The

primitive combinators are then implemented using this structure and the standard

monadic techniques of Haskell.

Those familiar with the LCF theorem prover style may immediately recognize

how analogous it is to the process just described. The HOL family of formal

systems, having their roots in the LCF, follows this style by implementing a small

logical kernel that advanced features are bootstrapped from to reduce the burden

of proof of soundness and completeness. This commonality is what makes the

embedded DSL approach such a natural and obvious choice for the implementation

HaskHOL.
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Because HaskHOL started as a direct port of HOL Light, it maintains roughly

the same logical kernel. The ten primitive inference rules and definitional ex-

tension functions map directly to the primitive combinators of HaskHOL, with

the primitive types also translating directly. In fact, largely the only difference

between the HaskHOL and HOL Light kernels is that HOL Light eschews the

monadic computation model in favor of the effectful features of OCaml, like global

references, as is standard when using impure languages. The following sections

describe the implementation of the HaskHOL kernel, explaining the ramifications

of using the monadic implementation style.

4.1 Types, Terms, and Theorems

At the lowest level HaskHOL is based on a sound and complete set of ten

primitive inference rules that, when applied sequentially, construct a theorem that

serves as proof of a conclusion term. These terms are based on a typed version of

Church’s λ-calculus, as explained in Section 2.1. As might be expected, HaskHOL

implements these primitive data types using Haskell’s abstract data types:

data HOLType

= TyVar String

| TyApp String [HOLType]

deriving (Eq, Ord)

data HOLTerm

= Var String HOLType

| Const String HOLType

| Comb HOLTerm HOLTerm

| Abs HOLTerm HOLTerm

deriving (Eq, Ord)

Likewise, the theorem data type can be encoded as a constructor taking two

arguments, an assumption list of terms and a conclusion term:

data Theorem = Thm [HOLTerm] HOLTerm deriving (Eq, Ord)

There is nothing particularly novel about the implementation of these primitive

types, HOL Light does so in exactly the same way. However, the data types are
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worth introducing for those unfamiliar with the logical system and to help clarify

the types of other features later on.

4.2 The HOL Monad

The purpose of a DSL’s monad is to provide a model of computation for its

primitive combinators. As Haskell is a pure language, we cannot rely on the use

of destructive side effects to achieve this goal in the style of other HOL systems.

While there are alternative methods and techniques available, the use of monads

to model effects is standard practice among Haskell programmers. In the case of

HaskHOL there are primarily two such effects to be concerned about: extension

of the proof context and proper exception handling. Those familiar with earlier

versions of HaskHOL [5] will recognize that the majority of refinements made are

directly related to supporting these effects in more trusted and efficient ways.

Monad transformers, as discussed in Section 3.2.3, are used to combine the

State and IO monads to provide the desired effects. The resultant type for the

HOL monad, along with its associated run functions, is shown below:

newtype HOL a = HOL (StateT HOLContext IO a) deriving Monad

runHOL :: HOL a -> IO a

runHOL (HOL a) = evalStateT a initCtxt

runHOLCtxt :: HOLContext -> HOL a -> IO (a, HOLContext)

runHOLCtxt ctxt (HOL a) = runStateT a ctxt

The runHOL function is used to evaluate a HOL monad computation using the pre-

defined initial proof context. The proof context will be explained in more detail

in the next subsection, but for now it is sufficient to understand that it roughly

represents the notion of the current working theory for a HOL system with the

initial context specifying the base theory. Comparatively, the runHOLCtxt function
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is used to run a HOL monad computation using a context provided by the user. It

should be noted that this run function has the potential to introduce unsoundness

to the system if the supplied context is invalid or poorly constructed. That being

said, the power that is provided by the runHOLCtxt function is necessary in certain

cases, such as the suspension and resumption of a monadic computation during

interactive proof. It should be noted that this problem is analogous to the issue

exposed by the use of the put method from the State monad, discussion of which

will happen in the next subsection.

4.3 Extensibility

Extensibility is an important feature because it allows the users to define their

own types, terms, axioms, etc. HaskHOL carries this information in a context

threaded through computations using the State monad, as explained in Section

3.2.1. The context is implemented as a record type as shown below:

data HOLContext =

Ctxt { tmcounter :: !Int

, typeConstants :: ![(String, Int)]

, termConstants :: ![(String, HOLType)]

, axs :: ![Theorem]

, defns :: ![Theorem]

, loadedLibs :: ![String]

, debug :: !Bool

, extState :: !(Map String ExtState)

}

Any data we need to store in the future is encoded directly as its own field; for

example, axioms are stored in the axs :: ![Theorem] field. It is not uncommon,

though, for libraries and prover extensions beyond the kernel to require the ability

to store their own data. Since information about this data may not be known at

the time that HOLContext is defined, the context itself must be extensible.
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This contextual extensibility is provided using a technique similar to dynamics,

as explained in Section 3.3. The principle difference in HaskHOL’s approach is

that the extensible data type has a dependency on the Typeable class rather than

having it store an explicit representation of the original type. In a sense, this is

an unboxed version of Haskell’s standard Dynamic type, with the advantage being

that it allows for additional methods to be defined for all dynamic types in a

superclass of Typeable. This is a common technique among Haskell programmers

and is present in several large libraries, such as XMonad [34].

Shown below is the data definition and associated type class for this dynamic

data type.

class Typeable a => ExtClass a where

initValue :: a

data ExtState = forall a. ExtClass a => ExtState a

Defining an instance of this type is trivial thanks largely in part to the GHC

specific extension DeriveDataTypeable which allows for automatic derivation of

Typeable instances. This is demonstrated in the example below, a counter used

to generate fresh type variable names during term elaboration.

newtype TyCounter = TyCounter Int deriving Typeable

instance ExtClass TyCounter where

initValue = TyCounter 0

Note that instead of simply defining an instance of ExtClass for Int, the integer

value is instead wrapped in a newtype declaration first; the reason for this twofold.

First, it provides documentation at the type level to indicate what that integer

value is used for. The second reason has to do with how these dynamic types are

contained, as a map of dynamic types indexed by a serialization of their static

type. Without first wrapping types in distinct newtype declarations it would be

impossible to store more than one value of the same base type without overwriting
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old data. Types could alternatively be wrapped in data declarations, however, in

cases like this it is more common to use newtype in combination with GHC’s

GeneralizedNewtypeDeriving extension for performance reasons.

Storing a value in the extensible context is as easy as serializing its type rep-

resentation to a String using show and then inserting the value into the extState

map using that string as the index. The code to do this is shown below:

changeExt :: (Map String ExtState -> Map String ExtState) -> HOL ()

changeExt f = modify $ \ st -> st { extState = f (extState st) }

putExt :: (ExtClass a) => a -> HOL ()

putExt val = changeExt . insert (show . typeOf $ val) $ ExtState val

The putExt function does not check to see if a value of the same type already

exists before inserting the new value. Implementing this check would not make

much sense, given that there is always a value for any valid extension type, even

if it is only initValue defined in the ExtClass type class. In this sense, putExt

operates very similarly to the State monad’s put method. This presents some

problems that will be discussed later in this section, but most of these dangers can

be mitigated by preventing the user from manually constructing their own values.

The easiest way to do this has already been discussed above; wrap extensible data

types in a newtype declaration, hiding the internal constructor beyond the module

where it was defined. It will still be possible to misuse or abuse putExt within the

module where the data type was defined, so the burden to ensure correctness falls

on the author of said module.

Retrieving a value from the extensible context is not quite as easy because

we have no value to serialize a type from, therefore, we have no way to index

into the map. To get around this, we use GHC’s ScopedTypeVariables extension

to universally quantify the return type of the function so that we can create an
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undefined, dummy value of the same type. From there the type of the dummy

value is serialized and used as the lookup key. As mentioned above, In the event

that no value for that type is found in the map the initial value specified in

the type class instance, initValue, is used. If a value is found the ExtState

data wrapper which provides the dynamic behavior must be stripped away. This

process prevents inference of the equivalence between the original type and the

desired return type, so the unboxed value must be cast. The casting function used

is the type safe version provided by the Typeable library which allows an error

to be thrown in the event that casting were to fail. Again, the code to do this is

shown below:

getExt :: forall a. (ExtClass a) => HOL a

getExt =

do v <- gets $ lookup (show . typeOf $

(undefined :: a)) . extState

case v of

Just (ExtState val) ->

case cast val of

Just b -> return b

Nothing -> throwError $ HOLException "getExt"

Nothing -> return initValue

There are issues with using methods that operate like put from the State

monad. In general, exposing these functions directly provides the user with the ca-

pability to invalidate the context by supplying a new context that was not properly

constructed. This is roughly the same problem that is introduced by runHOLCtxt as

described in the last section given that \ x -> liftIO . runHOLCtxt x $ return

() ≈ put. To prevent this, HaskHOL wraps the StateT transformer in a newtype

and avoids deriving instances of the MonadState and MonadIO classes. Instead, the

necessary methods of MonadState and MonadIO are defined external to the class,

forgoing the provided polymorphism in favor of more direct control over how the
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methods are exported. For example, the new definitions of put and liftIO are

shown below:

put :: HOLContext -> HOL ()

put ctxt = HOL . StateT $ \ _ -> return ((), ctxt)

liftIO :: IO a -> HOL a

liftIO m = HOL . StateT $ \ s -> do a <- m

return (a, s)

The Haskell module system is used to hide these methods and the field con-

structors of the HOLContext record type outside of the kernel. Again, the goal of

these actions is to prevent the user from being able to manually construct val-

ues, incorrect or not. This is analogous to the approach of HOL Light where the

OCaml module system is used to hide the global references and expose only the

definitional extension functions. HaskHOL also hides the internal constructor of

the HOL monad type to prevent users from defining their own HOL values as well.

In addition to providing the guarantee that hidden methods cannot be redefined

later on, hiding the constructor makes a type level guarantee that any value with

the HOL type that is constructed safely, that is to say without the use of functions

like unsafePerformIO, can be reduced to a combination of only primitive kernel

combinators and pure code. In essence, this guarantee goes above and beyond

what HOL Light, or any system built upon an impure language, can provide by

limiting the possible effects in a proof to those enumerated in the kernel.

4.4 Exception Handling

Exception handling in HaskHOL is performed by using the IO monad and the

associated Control.Exception library. Haskell does provide an Error monad as

an alternative way to implement exception handling, however, it is little more
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than a limited interface built around the Either data type. Using the Control.

Exception library provides numerous advantages over the Error monad, including

a richer interface, the ability to throw errors in pure as well as monadic code, and

in many cases a performance boost. What is shared in common are throwError

and catchError methods that operate similar to those in any other language.

HaskHOL follows this trend by basing its exception handling on three main

functions: a way to throw errors in pure code, a way throw errors in HOL monadic

code, and a way to catch both sets of errors in HOL monadic code; the code to

implement these functions is shown below:

throwPureError :: Exception e => e -> a

throwPureError = throw

throwError :: Exception e => e -> HOL a

throwError = liftIO . throwIO

catchError :: Exception e => HOL a -> (e -> HOL a) -> HOL a

catchError job errcase =

do ctxt <- get

(a, s’) <- liftIO $ runHOLCtxt ctxt job ‘E.catch‘ \ e ->

runHOLCtxt ctxt (errcase e)

put s’

return a

Even though errors can be thrown in pure code, suspiciously absent is the ability

to catch them in pure code. This is a consequence of inheriting Haskell’s exception

handling methods that dictate that errors can only be caught in the IO monad.

This restriction complicates the implementation of catchError in that HOL com-

putations must be run to the IO level for the errors to be handled. When forcing

computations to run with runHOLCtxt, care must be taken to appropriately handle

the input and output proof contexts. Incidentally, the passing around of the proof

context is inversely proportional to the performance of the catchError function;
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the smaller the context the faster the function runs. A large amount of data is

currently stored in the proof context so at present this is somewhat of an issue.

Plans to alleviate this will be detailed in the Future Work section near the end of

this thesis.

HaskHOL also provides several common logical operators related to handling

errors, such as the alternate operator, <||>. This operator is used in cases where

the user would like to run a second HOL computation in the event that the first

one fails. The implementation of this operator could follow similarly to the im-

plementation of catchError, utilizing lifting and projecting functions. Easier yet

is to define the operator using catchError itself, as shown below.

(<||>) :: forall a. HOL a -> HOL a -> HOL a

job <||> errcase = job ‘catchError‘ ignore

where ignore :: SomeException -> HOL a

ignore _ = errcase

The only challenge with this implementation path is that the type of catchError

dictates a constraint about what type of exception must be found on the right

hand side. Since the alternate operator ignores the exception completely, this

creates an unresolvable ambiguity for the type checker. The solution is to make

the type of the ignored error explicit. Simply adding the same constraint to this

functions type will not help given that you cannot show equivalence between the

two. Scoped type variables can sometimes be used to solve this problem, but

not in this case given that the type of the error is not present in the top level

type signature. Instead, we rely on a dynamic type, SomeException, from the

Control.Exception library to capture all possible exception types without having

to introduce a constraint. This type, SomeException, works almost identically to

our ExtState type from the previous section that is used to capture all possible

extensible data types.
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At first it appears that all that is happening with HaskHOL’s exception han-

dling is that it is being shifted into the implementation of the system, slightly

edging the point of trust away from the host language’s run time system. The real

benefit, though, comes from implementing exceptions in a monadic model. Im-

pure languages, like members of the ML family, have either undefined or counter

intuitive evaluation orders which can greatly affect the ordering of effects, like

throwing exceptions. In a monadic model, this problem disappears because the

explicit sequencing of effects is given through application of the bind operator.

This provides the guarantee that exceptions are both thrown and caught in the

order that they occur, something that is incredibly important as interdependencies

are built in a proof tree.

4.5 The Kernel

HaskHOL uses the primitive data types and computation monad mentioned

above to build a kernel almost identical to that of HOL Light. Shared are the

basic functions for construction, destruction, and observation of types, terms, and

theorems. These base functions are used to implement the same ten primitive

inference rules and three primitive definition extension functions for axioms, basic

types, and basic terms. The HaskHOL implementation of one of the primitive

inference rules, INST, is shown below along with the original HOL Light imple-

mentation for point of comparison.

HaskHOL Implementation of INST

ruleInst :: [(HOLTerm, HOLTerm)] -> Theorem -> HOL Theorem

ruleInst env (Thm a t) =

let instFun = vsubst env in

do a’ <- termImage instFun a

t’ <- instFun t
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return $! Thm a’ t’

HOL Light Implementation of INST

let INST theta (Sequent(asl,c)) =

let inst_fun = vsubst theta in

Sequent(term_image inst_fun asl,inst_fun c)

Two things are worth noting about this code. First, excluding minor differences

due to varying language syntax and programming styles, it demonstrates that the

monadic computation model is sufficient for implementing the primitive logical

rules in a way that maintains the conciseness and clarity of the original HOL Light

version. Second, as mentioned in the previous section, the monadic computation

model makes explicit the sequencing of events, a detail that can be at times

obscured or ignored in the HOL Light implementation. As HaskHOL is extended

beyond the kernel, a topic that will be discussed in section 4.7, these observations

of the monadic model become more beneficial as the code grows to be more and

more complicated.

Similar to how the monadic computation model was folded into the trusted

core, the last major difference between HaskHOL’s kernel and HOL Light’s kernel

is the inclusion of other effectful combinators. Sections 4.2 and 4.3 have already

discussed in detail the dangers of allowing users to construct their own HOL values,

so any functions that require this, even to carry out seemingly mundane effects,

must be defined in the kernel. A perfect example of this are combinators to

support printing debug tracing statements, HaskHOL’s implementation of which

is shown below.

turnDebugOn :: HOL ()

turnDebugOn = modify $ \ ctxt -> ctxt { debug = True }

turnDebugOff :: HOL ()

turnDebugOff = modify $ \ ctxt -> ctxt { debug = False }
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printDebug :: String -> HOL a -> HOL a

printDebug str x =

do ctxt <- get

if debug ctxt

then (liftIO . putStrLn) str >> x

else x

Users of Haskell may immediately recognize how similar printDebug is to the

trace function. The primary difference between the two is that because the

HaskHOL monad stack is built upon the IO monad, the print statements can

be properly sequenced to maintain referential transparency. Functions like these

are typically defined in the library of a HOL system, outside of the kernel. Given

printDebug’s dependency on liftIO, this is impossible in HaskHOL without modi-

fying it to use unsafePerformIO, in effect making it identical to trace and breaking

referential transparency. This is the constantly considered trade off in HaskHOL,

whether it is more appropriate to grow the size of the trusted kernel code or opt

for a potentially unsafe library implementation.

4.6 Term Parsing

Another major difference between HaskHOL and HOL Light is the way HaskHOL

deals with the construction of long or complicated terms. To do so using the prim-

itive data type constructors would be extremely burdensome. HaskHOL, much

like HOL Light, attempts to alleviate this problem by providing a collection of

parsing and elaboration functions to allow the user to write terms and types in a

more natural string representation:

-- Parsing

holParser :: String -> HolContext -> Either ParseError PreTerm

holTypeParser :: String -> HolContext -> Either ParseError PreType

showErrors :: ParseError -> String
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-- Elaboration

ty_elab :: PreType -> HOL HOLType

elab :: PreTerm -> HOL HOLTerm

These parsing functions are implemented as expression parsers in Parsec [23]

using information from the proof context to build the operator tables. They were

designed to be as flexible as possible to allow them to be used in a variety of

ways, however, they are most commonly used in HaskHOL in combination with

the TermRep type class, shown below:

class TermRep a where

toHT :: a -> HOL HOLTerm

The goal of TermRep is to provide a method to reduce any valid representation

of a term to its primitive data type representation. This type class allows us to

rewrite the type of a combinator to allow it to be called with any representation

that has a class instance declared for it. For example, the following code allows

us to call the primitive rule for beta reduction with either a string or data type

constructor representation:

instance TermRep String where

toHT x = do ctxt <- get

case holParser x ctxt of

Left err -> throw $ "toHT: " ++ showErrors err

Right tme -> elab tme

instance TermRep HOLTerm where

toHT = return

ruleBeta :: TermRep t => t -> HOL Theorem

ruleBeta = ruleBeta’ <=< toHT

Here we see that ruleBeta acts more as a wrapper for the old version of the

rule rather than a complete rewrite. This is purely an implementation choice to

separate the logic for potential reuse or alternative application; it presents no

49



significant performance difference when compared with a rule rewritten to use

toHT directly.

Parsing terms at runtime like this is a computationally expensive process that

adds up very quickly. As an alternative to the TermRep type class, preliminary

work has begun on utilizing Template Haskell and its quasi-quotation capabilities

to move parsing to compile time [24]. The main two functions used to implement

this, along with the basic string quoter, are shown below:

baseParse :: String -> HOL a -> TH.Q HOLTerm

baseParse str ld = TH.runIO $ runHOL work

where work :: HOL HOLTerm

work = do ld

ctxt <- getCtxt

case holParser str ctxt of

Left err -> throw $ showErrors err

Right ptm -> elab ptm

baseQuoter :: HOL a -> QuasiQuoter

baseQuoter ld = QuasiQuoter quoteBaseExp nothing nothing nothing

where quoteBaseExp str = dataToExpQ (const Nothing) =<<

baseParse str ld

nothing _ = fail "quoting here not supported"

The baseQuoter quasi-quoter works by accepting a HOL computation that will

load the appropriate theory before performing any parsing. This computation is

passed to the baseParse function which handles the interaction with holParser

and any necessary error handling. Writing a quasi-quoter that is theory specific is

as simple as defining an alias to baseQuoter supplied with the corresponding load

computation. For example, assuming the existence of a computation loadBoolLib,

the definition of the boolean theory quoter can be written shown below:

bool :: QuasiQuoter

bool = baseQuoter loadBoolLib
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In addition to supplying term quasi-quoters, HaskHOL also provides a basic

string quasi-quoter. This quoter is used in cases where the user would like to

write strings that contain special characters without having to escape them; such

as defining term constants. For example, when introducing the definition for im-

plication, instead of having to write newBasicDefinition "(==>)= \\p q. p /\\

q <=>p" one could write the much more human readable newBasicDefinition [

s| (==>)= \p q. p /\ q <=>p |]. The quoters provided by HaskHOL only work

over expressions. There is value in also providing quoters for pattern matching,

however, there is still a very complicated issue to consider of whether soundness

can be maintained when doing term examination and deconstruction in a quoter

rather than using logical kernel primitives. This problem is being actively con-

sidered along with many other possible compile time improvements that will be

discussed in the future work section.

4.7 Extending HaskHOL

HaskHOL supports libraries and feature extension through the use of the con-

text modifying functions exposed by the kernel. In HOL Light these functions are

called at the top level of OCaml modules where they are executed when the main

hol module is loaded. The result is that every parser extension, user definition,

and constant theorem are evaluated before the prover is usable, a process that

can take several minutes on some machines, a detail previously pointed out when

discussing some of the downsides of HOL Light. HaskHOL takes an alternative

approach, explicitly stating when these functions are called by containing them

within a wrapper function, loadLib, whose type is shown below:

loadLib :: String -> HOL a -> HOL ()
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The arguments to loadLib are a label for the library and the monadic com-

putation that contains all of the context modifying functions that need to be

evaluated. The function first checks the context to make sure that another library

with the same name hasn’t been loaded already. This is done largely to avoid

duplicating work by attempting to load the same library twice, but also to alert

the user they made be loading an alternative version of a library that has already

been loaded. Then it simply evaluates the monadic computation for the library

and returns the unit value.

An example use of this is shown for the classical logic library:

loadClassicalLib :: HOL ()

loadClassicalLib =

loadLib "Classical"

(do loadBoolLib

loadProofsLib

addBinders ["@"]

new_constant "@" "(A->bool)->A"

aETA_AX

aSELECT_AX

extend_basic_rewrites =<< sequence [pSELECT_REFL])

Two things are important to note in this example. First, the classical library

depends on the the boolean library and the proofs library. Both libraries could in

turn have dependencies of their own. Because the loadLib function checks to see

if the library dependencies have already been loaded, it is safe to call their load

functions in the monadic computation for the classical library without having to

worry about a loss of performance or invalidating the proof context. Second, it is

hopefully clear that there is no limitation on what code may be contained within

the monadic computation for the library. In this example the parser is extended,

new axioms are defined, and the basic rewrite engine is extended with a new

theorem. In fact, any Haskell code can be used here as long as it is encapsulated
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within the HOL monad. This might seem too open ended, but recall that HOL

represents a type level guarantee that the code contained within the computation

is well defined by HaskHOL’s logical kernel.
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Chapter 5

Using HaskHOL

While HaskHOL has been described as a DSL for HOL theorem proving, per-

haps more accurately it should be referred to as a DSL for implementing HOL the-

orem proving tools. It is certainly possible to use HaskHOL directly to construct

proofs, however, the process is non-interactive and constrained by the Haskell

development tools being used. The suggested method of proof with HaskHOL is

to build a tool exposing the user interface that best facilitates your verification

strategy that utilizes HaskHOL as its logical foundation or prelude.

5.1 HaskHOLi

The first attempt at building such a tool is HaskHOLi, a general interactive

theorem prover based on HOL Light’s subgoal module. This interactive style is

based on the notion of a goal stack, allowing an initial goal to be set that can be

expanded to subgoals via tactics. It also provides the functionality for undoing

a proof step, reordering the goal stack to allow the subgoals to be solved in a

specified order, and printing the goal stack’s status at any point in time. Like
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HOL Light, HaskHOLi piggybacks on its implementation language’s interpreter,

in this case GHCi. Doing so greatly reduces the amount of code that needs to

be written to provide a familiar REPL environment, allowing HaskHOLi to be

implemented in only about one hundred lines of code.

The greatest challenge of implementing HaskHOLi was that GHCi is not a

stateful interpreter and, therefore, does not provide its users with a mechanism

for storing data to be shared between evaluation of expressions. This made it im-

possible to store either the proof context or the goal stack without first extending

the capabilities of GHCi. After several different attempts, it was decided to store

these values using the same method that GHC uses to store its internal variables,

via a combination of the global function from the GHC API and judicious use of

the C preprocessor:

#define USER_STATE(name,value,ty) \

{-# NOINLINE name #-}; \

name :: IORef (ty); \

name = Util.global (value); \

get_/**/name :: IO (ty); \

get_/**/name = readIORef name; \

set_/**/name :: (ty) -> IO (); \

set_/**/name val = writeIORef name val;

USER_STATE(ctxt,initCtxt,HOLContext IO)

USER_STATE(goal_stack,GStack [],GoalStack)

The global function is implemented using unsafePerformIO which provides a

backdoor to the IO monad to create an IORef at run time. In most cases the use

of unsafePerformIO should be avoided because it is just that, potentially unsafe.

In this case, though, it can be reasonably argued that its use is safe given that

name is never inlined, common sub expression elimination is turned off, and in

both cases the initial value of the IORef is built through a data constructor and

not an effectful function. To be extra safe, though, these functions are hidden
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from the user and a pure interface to them is exposed instead. This interface

is composed of the same functions as HOL Light’s subgoal module and a new

function, extendCtxt:

extendCtxt :: HOL a -> IO ()

extendCtxt m =

do ctxt <- runval $ m >> getCtxt

set_ctxt ctxt

set_goal_stack $ GStack []

This function runs a HaskHOL monadic computation and sets HaskHOLi’s proof

context to the resultant context from the computation. It should be noted that

it also resets the goal stack to prevent cases where the new context may have

invalidated proof steps already taken.

5.2 An Example

Here we examine a short proof in HaskHOLi to illustrate how HaskHOL looks

to a user. To begin we launch GHCi and load the HaskHOLi module and the

boolean logic library that together prepare our context for propositional logic

proofs:

Prelude> :m HaskHOLI

Prelude HaskHOLI> extendCtxt loadBoolLib

...

Loading package HaskHOL-0.1 ... linking ... done.

Loading package HaskHOLI-0.1 ... linking ... done.

The example proof shows that x ∧ y ⇒ x is a tautology, so we set that as our

initial goal:
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Prelude HaskHOLI> g [bool| x /\ y ==> x |]

Free vars in goal: x, y

1 subgoal(s) (1 total)

-----

(x /\ y) ==> x

We can now use the expand function in combination with the discharge tactic to

create a new subgoal from the antecedent of the implication, x ∧ y:

Prelude HaskHOLI> e tacDisch

1 subgoal(s) (1 total)

0 x /\ y

-----

x

In addition to using the subgoal functions and tactic language, HaskHOLi can

still construct individual theorems to assist with the proof. Here we construct the

theorem x ∧ y ` x which matches with the current subgoal to use later in the

proof.

Prelude HaskHOLI> thm <- runval $ ruleConjunct1 =<< ruleAssume [bool|

x /\ y |]

[x /\ y] |- x

One of the greatest advantages of working interactively is being able to see when

you make a mistake immediately so that you can quickly correct it and proceed.

Here we accidentally use the theorem constructed in the last step with the wrong

tactic, introducing an extra assumption to the current subgoal rather than sim-

plifying it. When the error is spotted the backup function is called returning the

goal stack to the state it was in before:
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Prelude HaskHOLI> e $ tacAssume thm

1 subgoal(s) (1 total)

0 x /\ y

1 x

-----

x

Prelude HaskHOLI> b

1 subgoal(s) (1 total)

0 x /\ y

-----

x

The correct tactic is applied now, resulting in a goal stack with no subgoals

indicating a completed proof. If the resultant theorem is to be used in a subsequent

proof its value can be return with the top_thm function:

Prelude HaskHOLI> e $ tacAccept thm

No subgoals

Prelude HaskHOLI> top_thm

|- (x /\ y) ==> x

Primitive proof replay and checking capabilities of interactive proofs can be had

simply saving the proof commands to a text file and piping it to GHCi via standard

input. As long as the last command in the file is top_thm a failed proof will result

in a GHC exception containing the HaskHOL error message being thrown and a

successful proof will result in a theorem being returned. Whether this theorem is

the intended one is a check left for the user. It can either be compared against the

expected result visually, or the theorem can be deconstructed with its conclusion

being compared against the expected term value programmatically.

This simple interactive session illustrates how HaskHOL is used in an interac-

tive mode. HaskHOL also provides an execution feature that runs non-interactive

proof scripts generated by hand or automated tools. Such proof scripts are simply
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Haskell programs executed by the interpreter and represent the probable interac-

tion between the prover and associated Rosetta tools.
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Chapter 6

Evaluation

At the time of this writing, the most advanced library for HaskHOL that is

considered both stable and complete is the Intuitionistic library. This library

contains both a derived rule, ruleITAUT, and a tactic, tacITAUT, that take a term

as input and attempt to prove that it is a tautology using intuitionistic first-order

logic. This process is done via proof search using derived rules and tactics built in

previous HaskHOL libraries and extensions (Bool, Equal, Rules, and Tactic). It

is worth noting that ruleITAUT and tacITAUT are identical to HOL Light’s ITAUT

and ITAUT_TAC respectively. They also provide similar to functionality to that of

HOL4’s TAUT_TAC with the principle difference being that HOL4 checks tautologies

via SAT solver proof replay and admits classical logic principles like the Law of

the Excluded Middle or the Law of Double Negation.

Given that the Intuitionistic library incorporates such a large portion of al-

most all of the other HaskHOL libraries and extensions, it represents an ideal

target for evaluation of HaskHOL as a whole. The Intuitionistic Logic Theorem

Proving (ILTP) library [30] was chosen as the problem framework to perform this

evaluation. Similar to the Thousands of Problems for Theorem Provers (TPTP)
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library [35], the ILTP library provides a large collection of problems specifically

designed for testing automated theorem provers. The principle difference between

the two is that the ILTP library, as the name would suggest, specifically limits

itself to including problems to test automated theorem provers for intuitionistic

logic, whereas the TPTP library contains many additional classes of problems.

6.1 Evaluation Formula Classes

Unlike most automated theorem provers dedicated to intuitionistic logic solv-

ing, HaskHOL’s Intuitionistic library does a very poor job of identifying terms

that are not valid under intuitionistic logic. In fact, supplying either ruleITAUT or

tacITAUT with a term that is not an intuitionistic tautology will generally result

in the proof system entering an infinite loop. For this reason, the Intuitionistic

library is generally only used for bootstrapping purposes to prove known valid

theorems to aid in the construction of more advanced HOL features.

Knowing this, a subset of the ILTP library problems had to be selected that

were known to be intuitionistically valid so that the evaluation of HaskHOL mir-

rored its true use case. The problems chosen were inspired by Roy Dyckhoff’s

work [9] and represent six classes of scalable problems collected to help evaluate

not only a prover’s correctness, but also its performance as more and more com-

plicated terms are introduced. Each of these six classes will be briefly introduced

and discussed with the final results of HaskHOL’s performance summarized at the

end of this chapter.
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6.1.1 The de Bruijn Class

The first class of problems arrises from Dyckhoff’s personal communications

with N. G. de Bruijn [9]. de Bruijn provided an example formula that is intuition-

istically provable, but is intended as a particularly difficult exercise for students

to prove by natural deduction:

((b⇐⇒ c)⇒ (a∧ b∧ c))∧ ((c⇐⇒ a)⇒ (a∧ b∧ c))∧ ((a⇐⇒ b)⇒ (a∧ b∧ c))⇒

(a ∧ b ∧ c)

In general this class of formulae can be expressed as:

((
n∧

i=0

pi ⇐⇒ p(i+1)(mod n))⇒
n∧

i=o

pi)⇒
n∧

i=0

pi

where n is the number of unique atoms in the formula and pi represents the

ith unique atom in the formula. It should be noted that members of this class of

problems with an even number of variables are known to be classically unprovable,

and as such intuitionistically unprovable, so we restrict HaskHOL’s evaluation to

problems with an odd number of variables.

6.1.2 The Pigeonhole Class

The pigeonhole principle is something that all computer scientists should be

familiar with. In short, it states that if there are n + 1 pigeons and n holes then

at least one hole will contain two pigeons.

In general this class of formulae can be expressed as:
n+1∧
i=1

n∨
j=1

occ(i, j)⇒
n,n+1,n+1∨

i=1,j=1,k=j+1

occ(j, i) ∧ occ(k, i)

where occ(x, y) indicates that pigeon x is occupying hole y. This property is

intuitionistically provable for any number of pigeons, so there is no restriction on

HaskHOL’s evaluation for this class of problems.
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6.1.3 The N-Many Contractions Class

Franzen provided examples in his work [10] of formulae that required n-many

contractions for their proof:

¬¬(¬p1 ∨ ¬p2 ∨ ¬p3 ∨ (p1 ∧ p2 ∧ p3))

Most modern provers can trivially solve formulae of this form by leveraging Glivenko’s

Theorem which states that ¬¬P is a theorem in intuitionistic logic if and only

P is a theorem in classical logic and all formulas are quantifier-free. Given this,

Dyckhoff replaced any instance of a negated atom with an instance of that atom

implying false, transforming ¬p to p ⇒ F . Additionally, the largest disjunctive

clause, the conjunction of all of the free variables, was moved to the front to punish

provers who naively grabbed that portion first.

In general, the resultant class of formulae can be expressed as:

((
n∧

i=1

pi ∨
n∨

i=1

pi ⇒ F )⇒ F )⇒ F

where n is the number of negated atoms in Franzen’s original formula. Again, this

property is intuitionistically provable for any number of atoms, so no restrictions

for the evaluation of HaskHOL is necessary.

6.1.4 The Big Normal Natural Deductions Class

Schwichtenberg [31] mentions a class of formulae that have no normal natural

deduction proof of size less than an exponential function. Dyckhoff provides a

general form for this class of formulae as:

(pn ∧
n∧

i=1

pi ⇒ pi ⇒ pi−1)⇒ p0

where n is one less than the number of unique atoms in the formula and bounds

the proof size as an exponential function of n.
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This class of problems is particularly interesting for HaskHOL’s evaluation

because most other provers can decide formulae from this class very fast but with

some space issues. Given that HaskHOL is built upon a garbage collected run-

time system, a space allocation issue could directly result in a serious slowdown

of proof speed.

6.1.5 The Korn and Krietz Class

Similar to the work of Franzen, Korn and Kreitz propose a class of formulae

that can be proved quite efficiently by classical reasoning using Glivenko’s Theo-

rem:

¬(¬a0 ∧ ((bn ⇒ b0)⇒ an) ∧ (
n∧

i=1

((bn−1 ⇒ ai)⇒ ai−1)))

Again, Dyckhoff transforms any negated atom to an implication of false to re-

move this classical logic shortcut. Additionally, two different orderings of the

antecedents of the implications in the formulae are prepared and conjuncted to

augment testing in case a prover is ordering dependent.

The resultant general form is then given as:

((a0 ⇒ F ) ∧ ((bn ⇒ b0)⇒ an) ∧ (
n∧

i=1

((bn−1 ⇒ ai)⇒ ai−1))⇒ F )∧

((
n∧

i=1

((bn−1 ⇒ ai)⇒ ai−1)) ∧ ((bn ⇒ b0)⇒ an) ∧ (ao ⇒ F ))

where n is one half of the number of unique atoms in the formula.

6.1.6 The Equivalences Class

The final class of problems is composed of formulae containing nothing but

bi-implications of atoms. These formulae are designed with the generally agreed

upon notion that bi-implications can cause difficulty for even non-intuitionistic

solvers. There are a number of ways to prepare this class, however, Dyckhoff
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settles for the simplest form that he finds adequate, a bi-implication of all atoms

in both forward and reverse order themselves bi-implicated.

In general this is given as:

(⇐⇒n
i=1 pi)⇐⇒ (⇐⇒1

i=n pi)

where n is the number of unique atoms in the formula.

6.2 Results

Table 6.1 below shows the results of using tacITaut to solve three increasingly

difficult problems from each of the above evaluation classes1.

Table 6.1. HaskHOL Evaluation Results

Class N Solved? Time (sec)

de Bruijn
1 YES 6.024
2 YES 272.528
3 YES 1872.035

Pigeon Hole
1 YES 0.014
2 YES 0.577
3 YES 21.659

N-Contractions
1 YES 0.076
2 YES 1.086
3 YES 28.742

Big Natural Deductions
1 YES 0.046
2 YES 0.745
3 YES 3.679

Korn and Krietz
1 YES 0.223
2 YES 3.573
3 YES 9.664

Equivalences
1 YES 0.005
2 YES 0.044
3 YES 0.233

1Running on OS X 10.6.6, 2.2 GHz Intel Core 2 Duo, 4 GB 667 MHz DDR2 SDRAM.
Compiled with ghc -O2. Averaged over ten iterations.
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The first result worth mentioning is that HaskHOL was capable of solving each

problem, a very promising sign. Unfortunately there are still some classes of

problems that present a challenge for HaskHOL, specifically the de Bruijn class.

Beyond that class, though, HaskHOL was able to solve all problems of complexity

N = 1 exceptionally fast, another very promising sign. In addition to these

generalities, a few more specific observations were made:

• Excluding de Bruijn, Korn and Krietz is the slowest class in all cases, but

scales the best.

• The Pigeon Hole and N-Contractions classes scale terribly.

• The equivalences class was thought to be a hard one, yet HaskHOL appears

to handle it extremely well.

Two other specific observations were made that are worthy of more detailed dis-

cussion, given that they indicate possible avenues for improvement for HaskHOL.

The first, as was expected, is that the Big Natural Deductions class of problems

did exhibit a space leak during execution. This is clearly documented in Figure

6.1.

Space leaks are a relatively common problem in Haskell and are usually in-

dicative of areas in the code that are ”too lazy.” Further heap profiling during

the execution of this problem class should help to pinpoint these troublesome

areas, hopefully identifying areas where improvement may benefit all classes of

problems. The second observation relates to the abysmal performance of the de

Bruijn problem class. After building call graphs from the profiling information

of the tests, it was noted that the de Bruijn class depends more heavily on the
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Figure 6.1. Heap profile for Big Natural Deductions, N=3

conversion language than the other classes do. These conversions represent a ma-

jor bottleneck in the solution of this problem, as indicated by a subset of the call

graph pictured in Figure 6.2.

Again, this information points directly to troublesome areas that are deserving

of further attention, with the goal of improving the performance for all problem

classes. Unfortunately, the slowdown here is not as simple or well understood

as a space leak; improvement will most likely have to come in the form of an

alternative implementation for the conversion language. This will be discussed in

more detail in the future work section.
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Figure 6.2. Subset of call graph for de Bruijn, N=3
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Chapter 7

Conclusions and Future Work

HaskHOL has already shown great promise in progressing towards its goal of

implementing a full HOL system in Haskell. That being said, as is true of most

things, there is always room for improvement. Future advancements planned for

HaskHOL fall within three main domains:

• Improving the performance of current features.

• Advancing HaskHOL’s feature set.

• Integrating HaskHOL with the Rosetta tool suite.

Items two and three and very much tied together; the order in which new theories

are developed for HaskHOL will very much be dictated by the needs of the Rosetta

tool suite. As such, it will be hard to speak about the future work associated

with these topics because they will follow the ever changing demands and ideas

presented by the Systems Level Design Group. There are numerous points of

improvement that can be discussed for current features, though.
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As noted in Section 4.4, HaskHOL still contains a few implementation choices

that are less than ideal. The immediate focus of the future work is to fix the most

glaring of these issues, the bloat of the proof context that inhibits efficient error

handling. Currently, when a theorem is proved and is intended to be reused it is

naively cached in the proof context, leading to a rapid expansion of the size of

the context as more and more theories are loaded. At this point in time there

appears to be two possible solutions to this problem. The first is to find a more

space efficient way to store the information contained within a theorem before

caching it. Yet to be considered is whether the cost of translating to and from

this alternative representation will outweigh the overall benefit. The second is to

push as much proof as possible to compile time using Template Haskell.

The use of Template Haskell with HaskHOL has already been explored for the

purpose of compile time quasi-quotation of terms as explained in Section 4.6. As

mentioned, the quasi-quotation functionality itself could be extended to support

pattern matching, but it exposes the bigger issue of combining theorem proving

and metaprogramming; how can you be assured that you maintain soundness and

completeness? As is, HaskHOL provides several guarantees about the correctness

of a proof based on the explicit ordering of the effects used to construct it. The use

of Template Haskell to perform more complicated term quoting or compile time

proof essentially ”cuts in line,” skipping to a specific point in this sequence of

effects. In order to maintain the correctness guarantees there has to be some way

to reason that the result of the actions taken by Template Haskell is equivalent

to the result had the normal ordering of effects occurred. In a sense this is what

HaskHOL attempts to do now with basic term quoting, tying a quasi-quoter to

a theory by having it perform that theory’s load function before any parsing
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occurs. For something as minor as term parsing, this hand waving reasoning is

acceptable. However, when you expand the notion to compile time proof where

an entire session can be invalidated by the introduction of an inconsistent axiom,

this connection must be formalized. This issue must be address before Template

Haskell’s metaprogramming capabilities can be leveraged for their true power.

Remaining reimplementation work will focus on transforming existing code to

leverage more of Haskell’s language features. The most apparent ”low hanging

fruit” is the redesign of HaskHOL’s conversionals and tactics as type restricted

monads. All three objects serve roughly the same purpose, acting as data types

that describe computations. Thus, to re-express the first two using Haskell’s im-

plementation of monads would appear to make sense. Andrew Martin and Jeremy

Gibbons have already conducted similar research [26] interpreting Angel, a generic

tactic language [27] in Haskell. In the case of HaskHOL, interpreting conversionals

and tactics as monads would allow many of the sublanguage connectives, such as

then,fail, and or else, to be replaced with existing Haskell monad combinators.

This should lead to a dramatic reduction in code size and increase in clarity for

large tactics, like those for solving intuitionistic or first-order logic. It may also

provide a secondary benefit of improving the performance of conversionals and

tactics which would lead to significant improvements in the results of the test

suite from Section 6.

There also remains the exploration of the tiny changes brought with the recent

release of GHC 7. This is a particularly exciting release because it includes the

movement to the Haskell 2010 standard and several new extensions to try out.

One of the major ones, RebindableSyntax, presents a way to overload or replace

syntax bound in the GHC prelude. Specifically, this extension was provided to

71



allow for the traditional if ... then ... else syntax to be used in conjunction

with monadic computations without having to first bind the result of the condition

computation. This alone should lead to a significant code cleanup in HaskHOL.

Also included with GHC 7 is improved support for new compilation flags and

backends, like LLVM. These represent new avenues to adventure down in search

of performance improvement with little to no modification of the code itself.

Finally, before HaskHOL can be formally released in any trusted code base

its logical kernel must be verified for soundness. In the Prufrock work the TPTP

libraries served as a source of test cases. The same was done for HaskHOL,

allowing for potential comparison with Prufrock and other provers as well as

providing evidence of soundness. I would like to take the verification a step further,

though, and provide a more formal argument for the correctness of the HaskHOL

kernel. Ultimately this will require opening the flood gates of reasoning about

monadic code, however, I think it is the necessary and proper next step.
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