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Abstract 

 HIV is a growing concern worldwide. With slow progress in the development of a 

vaccine, researchers have turned to alternate methods of preventing the spreading of HIV as a 

result of unprotected sexual intercourse.  

Developing a mechanism capable of protecting the vaginal or rectal epithelium from 

sexually transmitted pathogens can be an effective tool in the prevention of HIV infection. One 

such tool can come in the form of a microbicide gel, which provides a physical barrier and acts 

as a delivery vehicle for its active ingredient. In order for the microbicide to be an effective 

barrier and delivery vehicle, it must have the capability to coat the epithelium for a specific 

amount of time and sustain its structural integrity under the influence of gravity and other 

perturbation forces. In addition, to be used as a drug delivery vehicle the microbicide must serve 

the following functions: coat the surface completely without leaving any of the surface exposed, 

stay on the surface while influenced by external forces such as gravity and squeezing, and be 

able to contain potent concentrations of one or more active microbicidal ingredients.  

Many currently available vaginal spermicidal gels are applied using a syringe-like 

applicator. After vaginal application, several physical forces will perturb the gel: gravity, 

squeezing, surface tension and shearing.  

In this document I will outline the work that has been completed, for an original PhD 

dissertation, on the mathematical and experimental analysis of microbicide vaginal gels. This 

document contains an in-depth discussion of the methods taken to satisfy the following 

engineering goals: 
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1. An instrument/method for conducting gravity-induced flow experiments and 

obtaining spreading characteristics along with surface topography. 

2. A numerical solution for a non-linear, second-order, partial differential equation 

that governs the evolution of the free surface of a spreading fluid. 

3. A derivation and numerical solution for the 3-D power-law evolution equation. 

4. A derivation and numerical solution for the 3-D Ellis evolution equation. 

 

All experimental and computational simulations presented in this study involve a finite 

bolus of fluid, with non-Newtonian viscous properties, spreading on an inclined plane under the 

influence of gravity. Using the two numerical models presented in this document, I conducted an 

in-depth parameter and parameter sensitivity analysis of the power-law model, and a parameter 

study of the Ellis model. Combining the experimental data with computational simulations 

allowed me to make the following conclusions:  

1. Accounting for lateral slumping in the computational simulation will improve the 

theory‟s agreement with experiment.  

2. Approximating the initial condition to disregard complex curvatures on the free 

surface, and only consider gross geometric parameters, will not compromise 

theoretical model‟s agreement with experiment.  

3. The 3-D power-law model provides a sufficient approximation of 

Hydroxyethylcellulose (HEC) spreading under the influence of gravity, for gels at 

2.4-3.0% HEC concentration. Furthermore, implementing a constitutive equation 

that accounts for the low-shear Newtonian plateau (Ellis constitutive eq.) does not 
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improve the models agreement with experiment enough to justify its added 

complexity.  

 In conclusion, the following work provides an original experiment and a computational 

simulation of non-Newtonian fluid spreading. It is my hope that this work can be used by 

researchers in the field of microbicide development and any other scenario where free surface 

flow of non-Newtonian fluids is applicable.   
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INTRODUCTION: SUMMARY OF OBJECTIVES 

AND OUTCOMES   

 HIV is a growing concern in the scientific community and general populace all over the 

world. The research presented in this document will explain the work completed for an original 

Ph.D. dissertation. I hope that this document will aid in the development of microbicide delivery 

vehicles, which can be used to prevent the growing spread of HIV infection as a consequence of 

unprotected sex.  

The document will cover an overview of HIV transmission (Ch 1), the development and 

rheological testing of hydroxyethylcellulose (HEC) gels (Ch 2), and carrying out objectives 

described in this introduction.  

Developing a mechanism capable of protecting the vaginal or rectal epithelium from 

sexually transmitted pathogens can be an effective tool in the prevention of HIV infection. One 

such tool can come in the form of a cellulose-based gel, used to provide a physical barrier and 

act as a delivery vehicle for its active ingredient. Published findings of the Microbicide 

Development Strategy (MDS) have documented that vehicle design is a current priority gap [1]. 

In order for the microbicide to be an effective barrier and delivery vehicle it must have the 

capability to coat the epithelium for a specific amount of time and sustain its structural integrity 

under the influence of gravity and other perturbation forces [2]. In addition, to be used as a drug 

delivery vehicle the microbicide must serve the following functions: coat the surface completely 

without leaving any of the surface exposed, stay on the surface while influenced by external 

forces such as gravity and squeezing, and must be able to deliver potent concentrations of one or 

more active microbicidal ingredients. 
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The analytic hierarchy of this dissertation will be modeled using the system outlined in 

Figure I. 

 
Figure I. Analytic Hierarchy of Dissertation 

 

Our research group‟s long-term goal is to design a delivery vehicle, in the form of a gel, 

optimized to cover the vaginal epithelium. To achieve that goal, we need to better understand 

how a gel‟s rheological properties (i.e. viscosity, shear-thinning behavior) will govern spreading 

characteristics.  

This work analyzes a finite bolus of gel applied to the epithelium of the vagina. After 

application, several physical forces will perturb the gel: gravity, squeezing and shearing. This 

dissertation will focus on the free surface coating flow of a shear-thinning polymeric liquid 

(“gel”), perturbed by gravity, analyzed in 3-D.  

 The overall objective of this work is: 

(1) To design an instrument and technique for obtaining experimental flow 

characteristics along with surface topography of spreading gels. 



3 

 

(2) To develop a numerical model of a non-Newtonian fluid spreading, in 3-Dimensions, 

due to gravity.  

The development of a 3-D power-law model is an advancement of a previous 2-D model 

[3, 4], which was used to simulate shear-thinning gels spreading under the influence of gravity. 

My motivation for developing a 3-D model was that when compared with an experiment, the 2-D 

model noticeably overestimated the flow in the axial direction.  

The overall hypothesis for this work is that the following three changes will improve our 

existing numerical model‟s simulation of gravity-driven flow experiments:  

1. Use modeling in 3-Dimensions to account for axial and lateral spreading rather than 

the current 2-Dimensional power-law model, which does not account for lateral 

slumping. This should improve the overshooting problem seen with the old numerical 

method because some of the mass will now be slumping in the lateral direction, resulting 

in less mass moving in the axial direction. 

2. Use the experimental initial condition, which accounts for local curvatures of the 

free surface, as input into the numerical model rather than a 4
th

 order 

approximation that includes only bulk geometry dimensions. The spreading evolution 

of the free surface is governed by the local contours of the free surface. Therefore, 

accounting for the local contours of the experimental initial condition in the numerical 

simulation should improve spreading agreement, between numerical model and 

experiment, compared with an initial condition that only matches the experiment in 

maximum height, length, and width (bulk dimensions).  

3. Use an improved constitutive equation (Ellis) to account for low-shear rate shear-

thinning behavior, not well described by the current power-law model.  
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A constitutive equation that can accurately describe viscous forces at low shear rates 

should result in a better correlation with experiment, because during spreading some 

regions of the flow are exposed to very low shear rates.  

  

 The overall objectives of this work were accomplished by sequentially completing the 

following objectives that are specific to this dissertation:  

OBJECTIVE 1 (Chapter 3): Develop an instrument and a technique for performing 

spreading tests with the ability to: 

1. Simulate humidity and temperature of in vivo environment. 

2. Release a finite volume bolus of gel that is not in contact with anything other 

than the spreading surface (contact-free). 

3. Map the topography of the initial condition of the sample to be used as the initial 

condition for the numerical simulation. 

4. Measure sample spreading characteristics as a function of time. 

This instrument will provide useful data for spreading characteristics of different gels, with 

different concentrations of HEC, as well as validate the numerical simulation.  

The engineering goal of this objective is to introduce a new instrument and method for 

releasing a “contact-free” spreading sample, measuring free surface topography, and obtaining 

spreading characteristics of a bolus of fluid.  

Outcome: In Chapter 3, I will present an instrument and original technique for conducting 

gravity-induced flow experiments, and non-invasively obtaining spreading characteristics and 

surface topography as a function of time.  
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OBJECTIVE 2 (Chapter 4): Develop a 3-D numerical model to simulate the free surface, 

gravity-induced spreading of a thin film of Newtonian fluid.  

The engineering goal of this objective is to develop an original code for solving a non-

linear, second order PDE, in 3-D, that governs the free surface of a viscous, gravity-driven flow 

of a finite volume. This numerical simulation should: (1) show mesh convergence in axial and 

lateral direction; (2) conserve volume within 0.0001%; (3) be easy to upgrade for other PDEs 

that account for non-Newtonian behavior.   

Outcome: In Chapter 4, I will present a numerical code capable of solving PDE‟s that 

govern free surface flow of a Newtonian fluid perturbed by gravity, in 3-D. This method is 

robust and can be upgraded to account for additional driving forces (e.g. surface tension, 

intermolecular).    

 

OBJECTIVE 3 (Chapter 5): Incorporate the power-law constitutive equation into the 3-D 

numerical model developed in Objective 2.  

The first hypothesis of this objective is that upgrading the 2-D numerical method 

(currently used to simulate power-law flow) to a 3-D method will result in better agreement with 

experimentally measured spreading characteristics (from Objective 1). The second hypothesis of 

this objective is that, when compared with code using an approximation of the initial condition 

that does not include specific gradients of the free surface, the actual experimental initial 

condition inserted in the computational code will result in better agreement between the 

numerical and experimental spreading characteristics.    
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Sub-Objective 3.1: Derive an evolution equation in 3-D using the power-law 

constitutive equation, and incorporate it into the numerical method developed in 

Objective 2.  

The engineering goals of this sub-objective are to derive a 3-D evolution equation 

with power-law parameters that includes axial and lateral fluxes, and solve it numerically 

using the method developed in Objective 2.  

Outcome: In Chapter 5, I will show the derivation of a second-order, non-linear 

PDE that governs the 3-D free surface flow of a two-parameter power-law fluid. I will 

present the methods used for discretizing the power-law evolution equation to ensure 

mass conservation.  

 

Sub-Objective 3.2: Perform 2-D and 3-D numerical simulation for 2.4%, 2.7% and 

3.0% HEC gels using the 3-D power-law code with rheological parameters (obtained 

by fitting to the viscometric data) and the experimental initial conditions obtained in 

Objective 1. For the 2-D numerical simulation, the initial condition will be a cut 

along the midpoint of the lateral axis of the experimental initial condition.  

The hypothesis of this sub-objective is that the 3-D power-law code will match 

the spreading of the experiment better than the old 2-D power-law code. 

 Outcome: In Chapter 5, I will show that the 2-D numerical model noticeably 

overestimates axial spreading when compared with experiment. The 3-D model corrected 

this overestimation by diffusing some mass laterally.   
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Sub-Objective 3.3: Perform numerical simulation for 2.4%, 2.7% and 3.0% HEC 

gels using the 3-D power-law code with rheological parameters obtained by fitting to 

the viscometric data using: (1) the experimental initial condition (obtained from 

Objective 1) and (2) a 4
th

 order approximation of the initial condition that matches 

the maximum width, length and height of the experimental initial condition. 

The hypothesis of this sub-objective is that the code with experimental initial 

conditions will match the experiment better than approximate initial condition. The 

engineering goal is to determine if variations of local surface gradients at the onset of 

flow, where shear rates are highest, will substantially impact flow dynamics.  

Outcome: In Chapter 5, I will show that an approximation of the free surface, 

which entails the general physical dimensions of the experiment, is capable of simulating 

the experiment as well as using a detailed surface topography for the initial condition that 

encompasses a better approximation of the local surface contours.  

  

Sub-Objective 3.4: Perform a rigorous power-law parameter sensitivity analysis, 

and document the effect of rheological parameters on axial spreading.  

The engineering goal of this sub-objective is to perform a parameter study and a 

sensitivity analysis of the power-law numerical model and provide a framework for 

predicting how changes to the power-law parameters would impact axial spreading.  

Outcome: In Chapter 5, I will present a complete sensitivity analysis of the 

power-law parameters and their impact on axial spreading and axial spreading rate.   

 Outcome of Objective 3: The overall conclusion of Chapter 5 shows that it is important to 

account for lateral spreading in a numerical simulation, and that mapping the exact local 
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contours of the initial condition does not particularly aid in agreement between computational 

analysis and experimental results.   

 

OBJECTIVE 4: Incorporate the Ellis constitutive equation into the 3-D numerical model 

developed in Objective 2.     

The hypothesis of this objective is that a 3-D numerical model (using exact IC) with an 

Ellis constitutive equation will match the experiment closer than the power-law model. 

Completing this objective will also result in a sensitivity analysis that reveals how the three Ellis 

parameters impact axial spreading. 

Sub-Objective 4.1: Derive an evolution equation, in 3-D, using the Ellis constitutive 

equation and incorporate it into the numerical method developed in Objective 2.  

The engineering goals of this sub-objective are to derive an evolution equation 

with Ellis parameters that includes axial and lateral fluxes, and solve it numerically using 

the method developed in Objective 2.  

Outcome: In Chapter 6, I will show the derivation of a second-order, non-linear 

PDE that governs the 3-D free surface flow of a three-parameter Ellis fluid. I will present 

the methods used for discretizing the Ellis evolution equation to ensure mass 

conservation. 

Sub-Objective 4.2: Perform numerical simulation for 2.4%, 2.7% and 3.0% HEC 

gels using the 3-D power-law and Ellis code (using exact IC) with rheological 

parameters obtained by fitting to the viscometric data, and compare the spreading 

characteristics of each simulation with its experimental counterpart. 



9 

 

The hypothesis of this sub-objective is that the Ellis numerical model will spread 

more like the experiment than the 3-D power-law numerical model due to the fact that the 

Ellis constitutive equations accounts for the Newtonian viscosity plateau at low shear 

rates. 

The engineering goal is to determine if it is more beneficial to perform 

computational simulations of HEC spreading using the Ellis constitutive equation.  

Outcome: In Chapter 6, I will show that the Ellis simulation equation does not 

pose considerable advantages over the power-law simulations, and are probably not 

worth implementing for microbicide application.  

Sub-Objective 4.3: Perform a rigorous Ellis parameter sensitivity analysis and 

document the impact of rheological parameters and axial spreading.  

 The engineering goal of this sub-objective is to perform a parameter study of the 

Ellis numerical model and provide a framework for predicting how changes to the three 

Ellis parameters would impact axial spreading, which could be useful for numerous 

applications in addition to microbicides. 

Outcome: In Chapter 6, I will present a complete sensitivity analysis of the Ellis 

parameters and their impact on axial spreading and axial spreading rate.  

 Outcome of Objective 4: The overall conclusion of Chapter 6 shows that using the Ellis 

constitutive equation results in modest advantages over the power-law constitutive equation 

when compared with experimental spreading of HEC gels. 
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Chapter 1 HIV TRANSMISSION AND 

MICROBICIDES 

Overview of HIV infections 

 According to the UNAIDS Global report, it is estimated that in 2010 approximately 33.3 

million people were living with HIV worldwide [5]. The rate of infection increases the number 

of sick patients by about 5 million per year [6]. A lot of current research is focused on decreasing 

the rate of spreading by testing techniques that prevent infection and making the infected less 

contagious.  

Post-infection therapy using antiviral medication can improve the life expectancy of the 

patient and decrease the chances of transmitting the virus by reducing the genital secretion of 

HIV in infected patients [7]. Nevertheless, post-infection therapy is not currently capable of 

ridding the patient of the virus and is not a viable solution for preventing undiagnosed hosts from 

spreading the infection. Preventative measures, which range from improving awareness and 

teaching abstinence to free condom distributions, have proved to be disappointing [7, 8].  Also, 

after decades of grueling research, there is still no vaccine that can give uninfected people 

immunity to the HIV virus [6-10]. This lack of progress forces the scientific community to 

constantly re-evaluate realistic choices for treatment and prevention. 

A significant portion of new infections is a result of unprotected sex. Emerging research 

has repeatedly confirmed that women are more vulnerable to infection than men during 

intercourse because of anatomical factors. In sub-Saharan Africa the effect that this epidemic is 

having on women is disproportionate, accounting for 60% of HIV cases  [5]. It is widely 
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believed that this imbalance is a result of gender inequality and socioeconomic status, where in 

many cases of intercourse women are subjected to violence and are unable to negotiate condom 

use [5, 9].  

Relative Anatomy and HIV transmission 

The vagina is a muscular passage that is connected to the cervix. It is tubular with an H 

cross-section. It is surrounded with a rich matrix of blood vessels, which regulate moisture and 

pH. The multi-layered squamous epithelium, which does not have the necessary mechanisms to 

be infected, acts as a barrier to the lamina propria, which contain the primary sites of infection: 

(1) lymphoid cells, (2) dendritic cells, and (3) macrophages [7]. All of these cells have the CD4 

receptor along with either the CCR5 or CXCR4 co-receptor, necessary for infection to occur [6, 

7].  Infected dendritic cells can travel to the local lymph nodes where the virus will begin 

aggressive replication.  

Intra-epithelial T-cells and Langerhans cells that can position themselves in the epithelial 

lining might have surfaces that extend into the mucosal lumen and act as transports for HIV. 

Once internalized, they can serve as a host for the virus or simply a transport mechanism like a 

bridge [6, 7, 9].  

Vaginally transmitted HIV can also occur through cervical routes [6]. The cervix is a 

single layer of endocervical columnar epithelial cells usually coated with mucus containing 

antiviral proteins [6, 9]. The intact endocervix can usually block both the cell-associated and 

cell-free HIV from internalizing, but remains vulnerable to disruption. Moreover, it remains 

inconclusive if the ectocervix is more susceptible, but a condition that results in the ectocervix 
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being exposed beyond the mucus plug (cervical ectopy) has been shown to increase susceptibly 

to HIV transmission [6].  

 
Figure 1.1. Diagram of vaginal epithelium subjected to semen infected with HIV. 

 

During intercourse, semen infected with HIV (leukocytes infected with HIV and cell-free 

HIV [6]) comes into contact with the epithelial tissue inside the vaginal lumen. Any virion that 

penetrates the epithelial lining into the lamina propria is free to proliferate and cause the 

recipient to become infected. The epithelial wall is normally a sufficient barrier to infection, 

however any disruption to the epithelial walls can increase the risk of virions transmitting the 

mucosa [7]. Disruptions to the epithelial lining can appear as traumatic breaches or lesions 

caused by dry or traumatic sex, or occur as a result of pathological conditions such as other 

sexually transmitted infections [6].  

Microbicides 

 A microbicide is a topical formulation that consists of a pharmaceutical agent suspended 

in a delivery vehicle (e.g. a polymeric liquid “gel”). The pharmaceutical agent will most likely 
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serve one of the following purposes: (1) damage the lipid membrane of the pathogen [7, 8], (2) 

inhibit cell entry by receptor deactivation [6, 8] by means such as charge manipulation, (3) 

inhibit target viral structures [6, 8], and (4) prevent dendritic cell uptake [8]. The delivery vehicle 

can come in the form of a gel or foam (from this point on a microbicide formulation will be 

referred to as a microbicide gel). The vehicle itself can act as a physical barrier and if developed 

to meet specific conditions might eliminate the need for a pharmaceutical agent all-together. In 

fact, a vehicle‟s ability to coat the epithelium has been singled out as a crucial variable, which 

might dictate the microbicides efficacy [11]. Vehicles can be designed to serve as a bioadhesive 

lubrication agent and regulate, or be controlled by, pH [8]. 

 
Figure 1.2. An image showing a microbicide gel protecting the surface of the epithelium. 

Delivery 

 There are several options when considering methods of applying microbicide gels to the 

vaginal epithelium. The method we consider in this paper is application using a plunger that is 

inserted near the posterior fornix of the vagina (Figure 1.3). After application, the gel might 
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come into contact with anterior and posterior walls, especially after the plunger is removed and 

the vagina relaxes to the un-distended conformation [2].  

 

 

Figure 1.3. Example of microbicide gel being applied, using a syringe, directly below the cervix. 

 

 After application, the gel will be subjected to three main perturbation forces: (1) gravity, 

(2) shear, and (3) squeeze [2] (Figure 1.4). The idea behind the remainder of this dissertation is 

to model the gravity-induced perturbation acting on the gel. A final master model will have to 

account for all three perturbation forces.  
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Figure 1.4. Likely evolution of the gel after delivery. The gel will be exposed to three 

perturbation forces: (1) squeezing, (2) shear, and (3) gravity.  
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Chapter 2 PREPARATION AND RHEOLOGY OF 

GELS 

Introduction 

 A microbicide is a topical formulation that consists of a pharmaceutical agent suspended 

in a delivery vehicle. The microbicide delivery vehicle can come in the form of a gel, foam, 

cream, or any other applicable material [2]. The delivery vehicle should coat the entire 

epithelium under the perturbation of physical forces, such as gravity, squeezing and shearing. No 

specific type of vehicle has been singled out or excluded, but polymeric liquids, referred to by 

the pharmaceutical and microbicide community as “gels”, seem to present clear advantages when 

considering the application in question. To confirm distribution and retention [12], magnetic-

resonance imaging has shown that gels can be retained in the vagina for many hours [7, 13]. In 

addition, the only formulations that ever advanced to Phase III trials, as current microbicide 

candidates, were gels intended to be vaginally delivered before intercourse [8, 14, 15]. A 

formulation with a hydroxyethylcellulose (HEC) thickening agent, which is a linear polymer 

with no net charge or antiviral properties, has been implemented as a universal placebo for 

clinical trials [16].  

 In 2004, Kieweg et al. compared the spreading characteristics of different commercially 

available vaginal gels being perturbed by gravity [2]. Because cellulose gels don‟t have a yield 

stress, they are able to freely deform under the influence of gravity making them ideal for 

researching the correlation of spreading characteristics with certain non-Newtonian properties.   



17 

 

As a result of all these factors I have decided to focus my research on the spreading 

characteristics of a hydroxyethylcellulose gels and the constitutive equations that might be used 

to represent their shear-thinning behavior.   

Cellulose 

 Cellulose is a tough, water-insoluble polysaccharide polymer, found in the protective cell 

walls of plants, with repeating units of -glucose monosaccharide molecules [17, 18]. Cellulose 

can be chemically transformed for a variety of applications such as fabric detergent and solution 

thickener.    

 A specific ether of cellulose is hydroxyethylcellulose [19]. The addition of hydroxyethyl 

side chains makes this large molecule water-soluble (Figure 1). When added to water, this 

cellulose derivative becomes stiff under the influence of van der Waals forces and hydrogen 

bonding [19].  

 Water or PBS solution mixed with a hydroxyethylcellulose powder results in a non-

Newtonian monopolymeric system (HEC “Gel”). Cellulose gels are rheologically characterized 

as shear-thinning fluids [2], meaning that the effective viscosity of the solution is decreased as 

the shear rate is increased. Cellulose gels, along with most other polymeric liquids that don‟t 

have a yield stress, generally abide by the following viscosity regimes when shear stress is 

applied: at some low and high shear rates they behave as Newtonian fluids, but somewhere in the 

middle the stress vs. strain-rate relationship becomes non-linear and can be represented using a 

power-law [20]. 
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Figure 2.1. Structure of a repeating unit of hydroxyethylcellulose molecule [19]. Branches show 

hydroxyethyl side chains, which make the molecule water soluble.  

 

 

 Dynamic (oscillatory) rheological analysis has revealed that HEC gels store more elastic 

energy as the polymeric concentration is increased [21, 22]. Andrews et al. [23] found that for 

HEC concentrations of 2.4-4.8% (w/w), the storage modulus (G‟) might slightly exceed the loss 

modulus (G‟‟) indicating solid-like behavior. For my research I will focus on the viscous 

behavior of the solution as the preliminary step to modeling the dynamics of this monopolymeric 

system in full. I feel that this simplification is not very impractical because, for my application, 

the concentrations that I am working with are in the lower spectrum of the “elastic” range that 

Andrews et al. specified. In addition, Andrews et al. found that strong elastic behaviors mostly 

occurred at high oscillation frequencies, but because my application deals with a very low rate of 

flow, I feel that the reasoning, for only considering the viscous behavior, is only affirmed.  

Dynamic oscillation data collected by Taylor Wilson at the University of Kansas, Biofluids 

Laboratory, confirms that a gel with 3.0% HEC concentration will adopt “solid-like” properties 



19 

 

at approximately 0.5 Hz of oscillation. This frequency will increase for gels with lower 

concentrations of HEC. This further reinforces that the HEC gels in question do not have a 

strong elastic component, especially within the scope of my application. 

 In conclusion, the mathematical models that will be presented in later chapters are not 

limited by the constitutive equations; therefore it might be possible to upgrade their capabilities 

to account for elastic behavior, but probably won‟t be necessary. 

Constitutive Equations to Model HEC 

 To model the rheological behavior of HEC gels I start with the Newtonian expression for 

the linear stress-shear rate relationship [24] (Eq. (2.1)). Where  is the shear stress,   is the 

effective viscosity, and   is the shear rate in 1-D.  

   (2.1) 

 The power-law model [24] (Eq. (2.2)) is able to mathematically account for the shear-

thinning behavior observed in most cellulose-based gels, where m is the consistency index and n  

indicates the level of non-Newtonian behavior ( n = 1  Newtonian) in 1-D. 

nm )(   (2.2) 

Its primary limitation is that it is unable to fit to any plateaus in the stress-shear rate relationship 

[20].   

 To account for this limitation the Ellis model introduces a third parameter (Eq. (2.3)), 

which incorporates the low shear rate Newtonian plateau [20, 24, 25] seen in the rheological data 

of HEC gels (Figure 2.2), where 0  is the zero shear rate viscosity,  is the measure of shear-
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thinning behavior, and 2/1 is the stress at which the apparent viscosity has dropped to half 

its
0

 (stress evaluated at zero shear rate) value. 
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In the shear-thinning region of the data, there are direct relationships between the Ellis and 

power-law models [24]. The measure of shear-thinning behavior, , is directly related to the 

power-law shear-thinning index: n = 1/. Therefore, as  increases, the fluid exhibits more shear-

thinning behavior.  

 There is an alternative way of writing the Ellis constitutive equation. This substitute 

strategy is particularly advantageous in this circumstance because the viscosity/stress data were 

obtained by varying the shear rate, while Eq. (2.3) expresses the viscosity as a function of the 

shear stress. Eq. (2.4) is an expression of the relationship between the shear rate and the stress 

[24].   

 
 1

10


  (2.4) 

The coefficients 00 /1   and    1

2/101 /1/1





 are easily related back to Eq. (2.3). It should 

be noted that it is not trivial to explicitly express the stress term as a function of the shear rate as 

is desirable for fitting this equation to the rheology data. The technique for overcoming this 

limitation will be explained in the following section.   

 The Carreau model is able to account for plateaus in both low and high shear rate regions 

[20]. The advantage of using the Ellis model is that when deriving the thin-film flow model, the 

Carreau model does not allow for the explicit expression of velocity [20]. This simplification 

comes at practically no cost because the rheological data of HEC gels don‟t show a clear plateau 
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in the shear rate region that is of interest to our application. Therefore, the Ellis constitutive 

equation is an acceptable choice for mathematically representing the rheological properties of 

HEC gels.   

Preparing the gels: 

 The gels were prepared by combining de-ionized water with hydroxyethylcellulose 

(manufacturer: Hercules, lot #: C1763, Type: 250 HX PHARM ). The HEC percentage indicates 

its ratio of HEC to water in the mixture. The pH was not adjusted because this experiment was 

mostly intended for observing the effects of rheological characteristics on spreading 

characteristics along with initial condition effects. The water was heated to 80C and stirred at 

~750rpm (constant RPM) as HEC was slowly added. The mixture was left to stir for 60 minutes, 

or until no visible clumps of HEC were left. After the gel was created, it was refrigerated for 

approximately 24 hours. 

 One batch was made for each concentration (2.4%, 2.7%, 3.0% HEC). Each batch 

underwent rheology and spreading testing. In addition, to show repeatability of reproduction, 3 

batches of 2.7% HEC gel were created. The rheological and spreading data comparing different 

batches can be found in Appendix B.  

Rheological Testing: 

 Before testing the gels‟ rheological properties, each sample was inserted into syringes 

and centrifuged to remove air bubbles. Each gels‟ rheology was recorded using an AR2000 

rheometer (TA Instruments) with a 2 aluminum cone (40mm diameter) geometry containing a 

humidity trap loaded with ionized water. 
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 The gel was released onto a heated plate (37  1 C) and allowed to settle for several 

seconds. The geometry was then lowered to 69 m and the excess gel was cleared from the 

edges of the geometry according to rheometer specifications. The geometry was then lowered 

again to a testing gap of 49 m, as dictated by the cone angle.  

 Before obtaining rheological data, a test was run, for each HEC concentration, to confirm 

that every sample point was given sufficient time to reach equilibrium.   

Initially, the gel was allowed to relax at the testing temperature for 5 minutes. The sweep test 

consisted of recording shear stress values for a shear rate sweep over 0.1/s to 100/s, on a log 

scale, sampling for 3 minutes at each shear rate. Each gel was tested in triplicate and the results 

were averaged at each recording of shear rate.  

Rheological Test Results: 

 In order to incorporate the rheological characteristics of the HEC gel, the viscometric 

measurements were fitted with the two-parameter power-law and three-parameter Ellis models 

[24] for each gel. 

Power-law 

 The average values of the shear stress, of triplicate experiments, were fitted with the 

power-law constitutive equation (Figure 2.2). Using the Nelder-Mead simplex direct search 

method, the second term of Eq. (2.5) was optimized to arrive at the best fit [3, 26, 27]. 

 Eq. (2.5) represents the goodness of fit between the model and the measured values for 

the power-law constitutive equation; where iy is the log of the measured data point, y is the log 

of the mean of the measured data points, and iŷ is the log value of the power-law constitutive 
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equation corresponding to the same shear rate. An 2R  value of 0 would mean that there is no 

correlation, while a value of 1 indicates that both data sets are 100% the same [26, 27].  
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Figure 2.2. Example rheological data of 2.7% HEC gel. Dots represent the average stress values 

of three trials. Solid line represents power-law fit. Power-law model captures overall non-

Newtonian trend of rheological data.  

 

The viscometric measurements of the power-law fit are given in Table 2.1: 

HEC Concentration % (w/w) m (Psec
n-1

) n R
2
 

2.4 227.9195 0.5951 0.9806 

2.7 343.3896 0.5543 0.9793 

3.0 479.6178 0.5207 0.9789 

Table 2.1. Power-law parameters for gels of 3 different HEC concentrations. Note: m  

consistency index; n  shear-thinning index; R
2
 represents the goodness of fit. 
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As expected, the model embodies the fact that as the concentration of HEC increases, the 

consistency index of the gels will also increase along with the level of non-Newtonian behavior 

(i.e. n decreases).  

Ellis 

 In order to account for the low shear rate Newtonian plateau in the rheology data, a third 

parameter had to be introduced into the constitutive equation.  

 There were 4 techniques of fitting the data with the Ellis constitutive equation to arrive at 

the three parameters: o,  and 1/2.  

Technique 1: 

 The Ellis equation (Eq. (2.3)) was fitted to the viscometric measurements using a “curve 

fitting toolbox” from MATLAB. MATLAB uses a non-linear, least-squares method, of fitting to 

the non-log values of the measured data, to perform custom equation fits to non-linear data and 

calculates the correlation using Eq. (2.5).  

 Using the least-squared method for fitting the rheological data seems to produce a good 

fit that loses accuracy as it reaches the shear-thinning region. Fitting to the log of the residuals 

results in an improved approximation of the data, as will be seen in Technique 2.  

HEC Concentration  o (Poise) 1/2 (Dyne/cm
2
)  R

2
  

2.4% 944.1 141.7 2.017 0.9942 

2.7% 1813 151.4 2.045 0.9950 

3.0% 3120 170.4 2.108 0.9970 

Table 2.2. Ellis parameters fitted with the T1 technique. Note: o  zero shear Newtonian 

viscosity plateau; 1/2   (1/2 o);   measure of shear-thinning behavior; R
2
 represents the 

goodness of fit. 
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Figure 2.3 Rheological data for 2.4%, 2.7% and 3.0% HEC gel fitted with the Ellis constitutive 

equation (T1). With T1 fit, Ellis model fits well with data at low shear rate, but diverges from 

data at higher shear rates.  

 

Figure 2.3 shows viscosity vs. shear-stress rheological data for 2.4%, 2.7%, and 3.0% HEC 

concentrations. The dependent and independent axes of this plot are different from the power-

law plots because the Ellis constitutive equation is a function of viscosity and stress as opposed 

to the power-law constitutive equation, which is a function of stress and shear rate.  

Even though the agreement between the data and the fit was modest at the shear-thinning region, 

the R
2
 values were surprisingly good.  

Technique 2: 

 The Ellis equation (Eq. (2.3)) was fitted using the log of the residuals, as it was done for 

the power-law constitutive equation (Figure 2.4). As a result, the quality of the fit seems to be an 

improvement over Technique 1, when considering the entire data set.  
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HEC Concentration  o (Poise) 1/2 (Dyne/cm
2
)  R

2
  

2.4% 762.56 276.98 2.604 0.9895 

2.7% 1370.50 331.70 2.700 0.9888 

3.0% 2264.90 381.00 2.800 0.9887 

Table 2.3. Ellis parameters fitted with the T2 technique. Note: Parameters defined in Table 2.2. 

 

 After implementing this fitting technique, we see that the Newtonian plateau is decreased 

and the shear-thinning region is better accounted for by increasing the value of 1/2 and .  

 
Figure 2.4 Rheological data for 2.4%, 2.7% and 3.0% HEC gel fitted with the Ellis constitutive 

equation (T2). With T2, the Ellis model improves fit between rheology data and model of 

viscosity to shear stress relationship.  

 

Technique 3: 

 There is a direct relationship between the Ellis and power-law constitutive equation. They 

are both intended for modeling the shear-thinning region of non-Newtonian rheology data, but 

the power-law is not capable of accounting for the Newtonian plateau at low shear rate. 
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Nevertheless, Bird, Armstrong, and Hassager [24] identified a relationship between the power-

law and Ellis parameters as:  

)/1(1

2/1

/1

0

  m
 /1n  (2.6) 

I used this relationship, along with the power-law parameters presented in Table 2.1, to arrive at 

the Ellis parameters for T3. The viscosity of the Newtonian plateau was obtained from Table 2.3.  

HEC Concentration  o (Poise) 1/2 (Dyne/cm
2
)  R

2 

2.4% 762.56 38.63 1.68 0.7849 

2.7% 1370.50 61.41 1.80 0.8320 

3.0% 2264.90 88.82 1.92 0.8656 

Table 2.4. Ellis parameters fitted with the T3 technique. Note: Parameters defined in Table 2.2. 

 

When plotted with the actual data, this technique results in a modest description of the rheology 

data, but it‟s a good approximation of the overall trend (Figure 2.5). The resulting approximation 

appears similar to the power-law fit with a plateau region at low shear rate.  

 
Figure 2.5 Rheology data (dotted) of 2.7% HEC fitted with Eq. 2.3 (solid) using the values from 

Table 2.3. (2.4% and 3.0% HEC fits are omitted for clarity). Using the relationship between Ellis 

and power-law constitutive equations, the Ellis model produces a modest fit of rheology data.  
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Technique 4: 

 Because the rheology data was actually acquired by controlling the shear rate, the Ellis 

equation (Eq. (2.4)) was used to fit to the original stress data vs. shear rate. A predicament occurs 

since in Eq. (2.4), it is not trivial to explicitly write an expression for the stress as a function of 

the shear rate. When minimizing the norm of the log of the residuals, I solved Eq. (2.4) for the 

stress at each value of shear rate by using Newton‟s method, set to converge at an error of 10
-10

.  

 
Figure 2.6 Rheology data (dotted) of 2.7% HEC fitted with the Ellis equation (Eq. (2.4)) (solid) 

using the values from Table 2.5. (2.4% and 3.0% HEC fits are omitted for clarity). Using T4 

allows for fitting to the shear rate vs. shear stress data, with good agreement at low shear 

viscosity.  

 

HEC Concentration  o (Poise) 1/2 (Dyne/cm
2
)  R

2
  

2.4% 1000 137.72 2.391 0.9948 

2.7% 1590 174.01 2.461 0.9925 

3.0% 2883 260.01 2.732 0.9944 

Table 2.5. Ellis parameters fitted with the T4 technique. Note: Parameters defined in Table 2.2. 
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Discussion and Conclusions 

 The rheological parameters in this chapter will be used as input parameters into the 

numerical models described in the subsequent chapters. It is important to note, as will be 

discussed in Chapter 7, that the power-law and Ellis models are only capable of capturing the 

shear-thinning part of an otherwise very complex behavior of HEC gels. Moreover, as was seen 

with the Ellis constitutive equation, even using different methods for fitting the data can result in 

different output parameters.  

 In Chapter 6 (Ellis) I will explain which fitting technique was used when presenting 

results.  

 From a thermodynamics perspective, one might consider verifying that the constitutive 

equations satisfy the Clausius-Duhem inequality (second law of thermodynamics). For a 

microbicide application, the Reynolds number is low enough that I can neglect any heat loss.  
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Chapter 3 INSTRUMENT AND METHOD FOR 

VISUALIZING AND CHARACTERIZING 

GRAVITY-INDUCED FLOW 

Introduction 

Our team‟s long-term goal is to design an effective microbicide delivery vehicle with 

optimized spreading characteristics. A crucial step in reaching this goal is being able to conduct 

spreading experiments that are capable of validating numerical models and providing reliable 

spreading data. This chapter will address this project‟s first overall objective: to design an 

instrument and technique for obtaining experimental flow characteristics along with surface 

topography of spreading gels. In addition, performing spreading tests on this instrument will 

provide data that will be used in Objectives 3 and 4.  

Significance and Chapter Goals 

When conducting 3-D gravity-induced flow experiments, there are two common 

objectives which present challenges: dispensing the gel on to the spreading surface in a way that 

resembles the physical process that is being modeled, and numerically representing the 3-D 

shape of the fluid [28]. The 3-D shape is needed for two reasons: (1) to recreate the initial shape 

of the experiment and use it as the initial condition in the numerical model and (2) to compare 

the spreading characteristics of the experiment with the numerical model at later times.  

In detail, challenges of capturing the 3-D shape of a fluid include: 
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(a) Obtaining the instantaneous shape of a fluid as it is spreading. Some methods can take 

minutes to analyze and capture the shape of an object, which is not a practical option during 

an experiment.   

(b) Dispensing and releasing a fixed volume of fluid without disturbing its spreading or its 

environment.  

(c) Capturing the shape of the fluid without bulky equipment. 

 

OBJECTIVE 1: The objective of this chapter is to present an instrument and a technique 

for performing spreading tests with the ability to: 

1. Provide a humidified, temperature-controlled environment that simulates aspects of 

the vaginal lumen (371C, <70% Humidity), and prevents the gel from drying 

during the experiment. 

2. Dispense an initial condition without the applicator in contact (“Contact Free”), and 

create a repeatable initial shape. 

3. Represent the spreading gel at any point during the spreading as a computerized 

mesh, which can be used for implementing the experimental initial condition into 

numerical code. 

4. Quantify the characteristics of gel spreading in the axial and lateral direction as a 

function of time.  

 

The engineering goal of this chapter is to introduce a new instrument and method for 

releasing a “contact-free” spreading sample, measuring free surface topography, and obtaining 
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spreading characteristics of a bolus of fluid spreading in a humidity/temperature controlled 

environment.  

The novel contribution of this work is a method to repeatedly dispense a gel onto a 

spreading surface, to quantify the shape of the initial condition using a 2-D mesh discretization 

matrix, and to measure the characteristics of the gel‟s spreading properties at any point in the 

spreading process.   

Review of Relevant Literature 

Experiments of free surface coating flows are useful for many applications, such as: 

geophysical flows [29], industrial flows [30], and mathematical instability analysis [31, 32]. For 

a drug delivery application [2], my colleagues and I have been needing to do similar 

experiments, and corresponding numerical simulation, in order to optimize and design new 

polymeric liquids for the topical vaginal delivery of anti-HIV microbicidal agents. However, 

previously existing methods to image and analyze free surface coating flows do not meet the 

specific needs of our objectives. 

Incorporating experimental initial condition topography into a computational simulation 

is a challenge, especially when evaluating microbicide delivery vehicles, because the physical 

application of the vehicle by a potential user must be taken into account. Therefore, in our 

experiment, the polymeric liquid must be applied to the spreading surface using a syringe that 

will break contact with the fluid immediately after application – a contact-free dispensing 

method. Instantly after contact is broken, surface topography of the fluid is needed as the initial 

condition in the numerical model. As the fluid begins to spread, quantities such as coverage area, 

thickness (up to 1 cm), and spreading rate should be obtainable at any instance of time to verify 
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numerical results. And finally, all this must be done in a controlled environment that replicates 

body temperature and humidity, so that the gel does not dry during the test.  

In the past, researchers have tried several techniques to capture the shape and thickness of 

a spreading fluid at a brief instance in time, but all these methods have restrictions that do not 

meet the needs of my application. Research on thin-film dynamics has given birth to several 

different non-intrusive techniques to measure thin-film spreading, thickness, and surface waves.  

In 1952 Duckler and Bergelin [33] measured the average film thickness by placing the 

spreading fluid between two conducting plates and measuring the capacitance between them. By 

finding the relationship between the capacitance and the air gap (distance between fluid surface 

and top plate), they could effectively measure the thickness of the film. Because this method can 

only give the average thickness for a small region of interest, it is not capable of mapping the 

surface topography of a large area that is constantly deforming. Ambrosini et al. [34] and Roy et 

al. [35] considered a larger region of interest by placing capacitance probes in different parts of 

the spreading domain. This was a successful method for obtaining a film thickness distribution 

along the entire spreading surface. However, due to the large size of each probe it would be 

impossible to set them up to measure surface topography at an acceptable spatial resolution for 

our application. In addition, stray electromagnetic fields can cause equipment malfunction and it 

is unlikely that this method could measure capacitance across air gaps as large as 10 mm. This is 

too restrictive for our application because the height of a given sample may vary from 1 to 9 mm, 

spanning along its length. 

Liu et al. [36-38] used laser beam deflection together with a fluorescent imaging 

technique to measure the properties of traveling waves on a film‟s surface. The laser beam 

deflection technique is only capable of giving the local surface slope at a specific point and 
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cannot be used for mapping an entire surface that is constantly changing in time. The fluorescent 

imaging technique will be discussed later. 

Zaitsev et al. [39] used a double-fiber optical probe that they were able to move along the 

free surface to measure the thickness of thin, smooth films. The limitation of this method was 

that it could only provide local film thickness and every measurement presented in that study 

was below 1 mm. 

Lel et al. [40] compared a chromatic confocal imaging method and a fluorescence 

intensity technique for obtaining film thickness. Both techniques provided accurate 

measurements of fluid thickness (less than 1 mm) at a specific point, but could not 

instantaneously map the surface. Also, the measurement system for the fluorescence intensity 

technique must be within a few millimeters of the spreading surface making it an unrealistic 

option for surfaces with large variation in height. The chromatic confocal imaging method [40, 

41] can be used at a gap of 1 cm, but is also an unrealistic option for our application due to its 

coverage-area limitation. 

Techniques such as the anamorphic schlieren system [32, 42] and the laser focus 

displacement instrument [43] can provide a slice of thickness in one plane of interest, but are 

incapable of scanning an entire surface at an instant of time. Laser focus displacement is also 

limited in that it can only measure thickness within 2 mm, and is inaccurate at steep changes in 

surface topography occurring at spreading edges. The anamorphic schlieren system can give an 

entire footprint of the spreading fluid‟s leading edge [31, 32], but it remains unclear if it can map 

the edges at the trailing end or the sides of a fluid with a finite width. 

In contrast to the thin-film experimental methods, a few techniques (summarized below) 

have been developed to measure the topography of thicker layers (more than 1 or 2 mm) of a 
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spreading fluid. However, these techniques are also too restrictive for our needs, or do not 

implement a suitable dispensing mechanism. For example, Johnson et al. [44, 45] applied a 

fluorescent imaging technique to successfully measure surface topography of thicker films (up to 

10 mm), but did not include a method to automatically dispense a contact-free, finite volume of 

polymeric liquid. The fluorescent intensity to fluid-depth data presented in that study shows that 

the relationship could be strongly non-linear depending on the fluid being tested and is 

extrapolated for any depth greater than 3.5mm. In addition their averaging process to normalize 

the UV illumination intensity might be problematic for a large finite volume of fluid (up to 1 cm 

in height), with large variations in height, that is constantly spreading in three-dimensions. The 

technique presented here offers an alternative way of approximating surface topography and also 

describes a new method to automatically dispense a contact-free initial shape of gel.  

An earlier approach by Kieweg et al. [2] was to hold and release a finite bolus of gel 

from a frame, momentarily controlling the shape of the initial condition. Such a method, like 

others with surfaces that are in contact with the fluid right up until the experiment began [46-48], 

can lead to problems with fluid adhering to the loading frame when it is removed [2]. In addition, 

it is hard to activate such an apparatus unless an operator can reach it with his/her hand, and 

therefore it is difficult to do in an environment-controlled chamber. It is also important to note 

that the box-like initial condition produced by a rectangular frame in this method might not work 

well with some numerical methods that need a certain level of smoothness in order to minimize 

error [49]. Thus, these methods do not satisfy our need for a contact-free initial condition.  

Another approach is to take advantage of a fluid‟s yield stress to set up a stable, contact-

free, initial shape before the flow experiment began. In one particular test, a kaolin slurry was 

extruded from the base of a horizontal surface and allowed to settle into a constant-volume, 
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stable shape [28]. The mathematical approximation of the slurry‟s shape (the dome-shaped Nye 

solution [28]) was used as the numerical initial condition before tilting the spreading surface for 

the experiment. However, only fluids with a yield stress (e.g. kaolin slurry [28]) could be tested 

using this technique because fluids without a yield stress would continue to slump before the 

start of the experiment. The yield stress requirement is too restrictive for applications that 

consider polymeric liquids without a yield stress (such as cellulose-based microbicide delivery 

vehicles). In addition, that dispensing method injected the fluid at the base of the spreading 

surface to model a specific phenomenon, which is not consistent with our application and can 

impact flow characteristics.  

Cochard and Ancey [46, 47] employed an imaging analysis technique, analyzing changes 

of patterns projected onto the fluid surface, to reconstruct the free surface profile and obtain the 

spreading rate of an avalanching mass of fluid. The release mechanism for the dam-break 

experiment in that study is specific to applications with a source of fluid (i.e. geophysical flows) 

and is not applicable for spreading experiments of a finite (constant-volume) bolus of fluid. Also, 

while the technique was effective for mapping the surface of the sample, it did not acquire the 

complete footprint and was demonstrated only on the leading edge. Nevertheless, Schwartz and 

Eley [30] applied this technique to a finite bolus of fluid, but did not show clear resolution and 

borders at the trailing edge. 

There are methods that use ultrasonic waves for measuring surface topography, but they 

are limited in the amount of surface area they can scan at one time point [48]. Therefore, when 

considering a large surface area that is continuously deforming, they are incapable of analyzing 

the entire surface at a specific time point. 
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Here we present a dispensing/imaging procedure, capable of automatically releasing a 

contact-free bolus of a polymeric fluid on any surface and obtaining topography and spreading 

characteristics over time. The apparatus and procedure yields measurements that are accurate 

within 0.5%, in a temperature and humidity-controlled environment, with repeatability. This 

apparatus and method will be useful for providing an initial shape as input to 3-D numerical 

simulations, and for verifying the time-dependent results of numerical simulations. The system 

described in this paper is ideal for our application of gravity-driven flows of polymeric 

microbicide delivery vehicles, but is also applicable to any field of research in which free 

surface, gravity-induced flow is of interest. 

Methods  

The new apparatus and method consists of an environment-controlled chamber, spreading 

surface, release mechanism and camera (with calibration and image analysis technique) (Figure 

3.1).  

There were four main criteria for the experimental setup: (1) The syringe must release the 

gel on the spreading surface at a consistent 45 degree angle relative to and regardless of the 

spreading surface angle; (2) the rate of release must not vary between experiments of the same 

gel; (3) after release, the syringe must detach from the gel to ensure “contact free” initial 

conditions; and (4) the top and side profile of the gel must be visible at all times during the 

experiment. 
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Environment-Controlled Chamber 

The chamber is rectangular in shape with physical dimensions of 35.625” x 7” x 34.75”. 

The chamber walls are made of 0.5” and 1” transparent Acrylic Plexiglas.  

An air-heating element (1025W Finned Tubular) maintained the temperature of the 

environment and two 12V fans circulate the air. Temperature was acquired using two 

thermocouples (NI Type E) strategically placed to ensure that the whole environment in which 

the experiment was taking place was uniform. Temperature control (within 1C) was 

accomplished with a custom NI LabView 8.6.1 feedback control system program using a data 

acquisition card (NI PCI 6221 DAQ).  Temperature was validated using two high accuracy 

Fisherbrand thermometers (Red-Spirit, partial immersion).  

 
Figure 3.1. Picture of temperature/humidity chamber. 

 

Humidity was provided using an ultrasonic cool-mist air humidifier (Sunbean Ultrasonic 

Humidifier 700), pumping at a constant rate, and measured with a humidity indicator (Fisher 
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Scientific). Because excess humidity would obstruct the camera‟s field of view, every 

experiment was started after chamber humidity reached 70%.   

Spreading Surface 

The gel spreads on a polycarbonate surface. The ramp was designed so that any other 

surface can be attached and detached with ease. For example, in future work, users can perform 

spreading experiments conducted on a surface of bovine vaginal epithelial tissue. The tilt angle 

of the spreading surface (with respect to the horizontal) can be changed in 10 increments (0-

80).  

Gel Release and Syringe Detachment Mechanism 

 
Figure 3.2. Mechanical drawing of side view of release mechanism, definition of spreading 

characteristics and overall assembly of apparatus. Cross-section A-A shows that during 180 of 

servo rotation, plunger releases gel and gets retracted from the spreading surface to obtain a 

contact-free initial condition.  
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A servo motor (JRSERVO DS8711) was used to press the gel out of the syringe (Figure 

3.2). The servo motor control software was developed using NI LabVIEW 8.6, and connected 

through a data acquisition card (NI PCI 6221 DAQ). Servo motor rotation rate was controlled 

using pulse width modulation (PWM) analysis and optimized to achieve a dome-like shape (~/2 

rad/sec).  

Once the servo was activated, the “servo-rotating arm” (Figure 3.2) converted rotation to 

linear motion, thereby compressing the plunger. The first 90 of the rotation was responsible for 

compressing the plunger, while the second 90 retracted it from the gel (Top View of Figure 

3.2). This simple mechanism achieved a contact-free initial condition with a manageable shape, 

reproducible over multiple experiments.   

Top and Side View Image Acquisition 

This instrument was designed to reproduce gel geometry with a computerized mesh and 

characterize spreading in both the axial and lateral direction. In order to avoid the complexities 

of synchronizing two separate cameras, for the side and top view, a mirror was installed (Figure 

3.2) with the reflective plane 45 to both the spreading surface and the camera (Figure 3.3). 

The instrument contains an optional single light source positioned directly behind the side 

view of the gel (Figure 3.3) (not used in this study). If needed, light can be diffused using a black 

cardboard membrane, which (after experimenting with many different configurations) I found 

most clearly accentuated the edges of a transparent gel. In this study, only ambient room lighting 

was used and the gel was colored using a food coloring dye (0.3 ml of water volume), which was 

confirmed not to affect rheological properties and did not require the use of a background light 

source. 
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During the experiment, gel spreading was recorded using a camcorder (Aiptek HD-DV, 

1280x720 HD, 30 fps) positioned directly outside the chamber (Figure 3.3). The camera captured 

the side view of the gel and the top view from the image reflected in the mirror (Figure 3.3 b). 

The resulting video file consisted of images that were 1008x576 pixels. When doing 

measurements using image analysis, it is important to determine how each pixel of the image 

corresponds to a physical dimension of the space being photographed (pixel to real-world 

calibration). Because the lens of the camera is concave and parts of each image are observed at 

an angle, a complex calibration algorithm is required. 

 
Figure 3.3. Apparatus and camera configuration. (a) Shows side view of chamber with camera 

capturing side and top view profiles. (b) Shows views seen by camera.  

 

It would be inaccurate to determine the dimension of a single pixel, and assume that it 

would correspond to every other pixel in the image. Ordinarily, the position and zoom of the 

camera would affect the calibration and must remain constant for every experiment. With this 
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technique, the camera position between experiments did not have to be exactly the same because 

a method (described in the next section) was employed to obtain pixel to real-world calibration 

within 1mm accuracy, for each experiment, regardless of camera position or zoom.  

Calibration 

Once the camera was positioned and set in a way that was suitable to film the side and 

top profile of the spreading experiment, the camera‟s recorder was activated and top-view and 

side-view calibrations were performed as follows. First, specially manufactured grids of dots at 

5mm intervals were placed on the spreading surface. Using the dots on the grid, the camera 

captured spacing of 5mm increments of both the top and side view (Figure 3.4).  

 
Figure 3.4. Top-view and side-view calibration image with calibration grids. Calibration 

technique eliminates error from: (1) camera position changing between experiments, and (2) 

pixel to real world conversion non-linear relationship with camera view perspective. 

 

A calibration was completed using NI Vision Assistant 8.6, employing the software‟s 

non-linear calibration algorithm, which accounted for the camera‟s distortion of an image as it 
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got further away from its center by measuring the distortion of the dots. Vision Assistant created 

a calibration file that could be incorporated into any LabVIEW code being used for image 

analysis. 

I determined the measurement and calibration accuracy by first performing a calibration, 

then recording the centroid (the energy center of a dot) of five specific dots positioned 

throughout the grid, and then verifying that their calibrated, measured distances relative to the 

bottom-right dot were as expected: within 1mm (Table 3.1).   

Table 3.1 shows an example of a side-view calibration. The % accuracy results are all 

less than 0.5%, allowing me to conclude that measurements taken within the spreading domain 

are accurate.  

Reference Point Actual Point (mm) Coordinates Measurement (mm)  |(% Accuracy)| 

A 0,0 0,0 --- 

B 30,0 30.06,0.01 0.2 

C 30,10 29.85,9.96 0.45 

D 50,10 49.83,9.95 0.33 

E 50,0 50.13,-0.23 0.26 

F 80,5 79.87,4.95 0.16 

Table 3.1. Example of side-view calibration measurements of points.  (The point of origin, A, 

was positioned in the bottom right corner of the grid.  The % accuracy was determined using the 

total length of the vector between two points.) 

 

Performing this calibration process for every experiment separately ensures accuracy for each 

experiment. This method, in conjunction with image analysis, allows for pixel to real-world 

calibration within 1mm accuracy regardless of camera positioning or zoom. 

Experiment 

After completing the calibration, the grid was removed and the chamber was sealed, 

allowing for the spreading experiment to begin once the proper temperature and humidity levels 
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were reached. After 180 seconds of spreading was recorded, the .avi file was transferred to a PC 

for analysis. Quick Time Player was used to export the movie into frames of 1-second intervals 

to analyze a successive 180 frames of spreading. The first frame was considered to be the initial 

condition, taken at the point when the syringe first breaks contact with the gel.  

Image Analysis 

Each image underwent an image analysis procedure (Figure 3.5) developed using 

LabVIEW 8.6. The analysis procedure performed a “Color Plane Extraction” to convert all the 

pixels to a green plane, which made an image containing one color with different intensities. 

Then, I performed a Logarithmic Image Sequence (LIS) and highlighted the details using a 

LabVIEW algorithm.  

 
Figure 3.5. Example of image analysis procedure on top view. Each image undergoes 

green color extraction (top), edge highlighting algorithm (middle), and is turned into a binary for 

measurement (bottom).  
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This procedure allowed me to eliminate “shadow” noise, and analyze the true fluid edges. 

Afterwards, the image was turned into a binary, which eliminates most noise from the image, and 

analysis of flow characteristics could be executed. 

Using image analysis software written in LabVIEW, the calibrated coordinate position of 

the fluid edge was found for every pixel within a user-defined domain, leading to the calculation 

of the maximum length, width and height of the fluid in each image. The following procedure 

was performed for each image in the 180-second sequence to determine the maximum length, 

width and height as a function of time thus resulting in the fluid‟s spreading characteristics.  

Surface Topography of the Initial Condition 

In addition to providing spreading dimensions, the image analysis procedure produced a 

height matrix (over a user-specified N x M grid domain) of the gel for any time frame in the 

spreading experiment. N and M are the number of spatial nodes in the axial (downhill) and lateral 

direction, respectively (Fig 3.6). 

To approximate the surface topography of the fluid, the image underwent the same 

process described for spreading characteristics analysis, to arrive at a binary image clearly 

showing the edges of the side view profile (representing the height at the centerline axial plane) 

and the footprint (z-plane). The pixelated edges (due to the binary image) of the side profile and 

footprint were smoothed using the least squares method to find a general polynomial fit. The 

degree of the polynomial was chosen based on the shape and dimension of the curve in 

comparison with the image. 

The surface topography of the fluid was constructed by combining the views of the axial 

(side-view profile seen in camera view) and z-planes (footprint seen in mirror), while assuming a 
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cross section defined in Eq. (3.1) along the lateral plane, which was not captured in the 

camcorder view (Fig 3.6). The algorithm prompts the user to define the number of nodes (N x 

M), and a mesh size (dx and dy, in mm). If the desired mesh size was finer than the one available 

by the resolution of the camera, linear interpolation was used to obtain the three parameters:  dt, 

db and h (in mm) (Fig 3.6) for each gel edge dimension along the axial plane and the z-plane. 

(N,0)
CL

(N,M)

dx

dy
dz

h

dt
db

(0,M)

h (y) = Eq. 3.1

z-plane

lateral-plane

 
Figure 3.6. A conceptual image of how dimensions and planes are defined. N and M are the 

number of spatial nodes in the axial and lateral directions, respectively. Values dt and db are 

distances from the centerline (CL) to the gel edge, measured using the top view, at each 

increment of N. Measurements of height are denoted using h, which are the distances from the 

spreading surface to the top surface of the gel, measured using the side view.  

 

The assumed parabolic-like shape in the lateral direction was selected with a shape factor 

(F) and represented as: 
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The shape factor (F) adjusted the volume of the mesh to match the volume used in the 

experiments, as measured with volume indicators on the syringe. (For experiments here, volume 
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was matched within 0.1ml for a 3.8ml initial experimental volume.) As can be seen from Eq. 

(3.1), having the footprint dimensions (dt, db) and the height (hmax) (Figure 3.6) at a specific point 

along the N mesh allows for Eq. (3.1) to calculate an appropriate cross section.  

 The origin of Eq. (3.1) is relatively straight-forward and omitted for brevity. It stems 

from 4
th

 order polynomial, with roots at dt and db and a maximum height at hmax. 

Spreading Experiments 

 Spreading experiments were conducted on three concentrations of HEC gels (2.4%, 

2.7%, and 3.0% HEC), each concentration (from a single batch) tested in triplicate. For each 

experiment, the plunger automatically dispensed an approximately 3.80.1 ml bolus of gel onto a 

plexiglass surface set at a slope of 30 with respect to the horizontal, and was allowed to spread 

for 180 seconds. 

Results and Discussion 

The image analysis process in conjunction with the image calibration described in the 

Methods section allowed me to obtain axial and lateral spreading characteristics within 1mm 

over a 80mm spreading domain (all measurements were within 0.5% accuracy).  

Table 3.2 shows spreading data of 3 HEC concentrations tested in triplicate. Each 

experiment was compared with corresponding numerical simulation that used the experimental 

topography as the initial condition (Chapter 5). For a 180 second test, gels with lower 

concentrations of HEC spread further in the axial direction than gels with higher concentrations. 

Interestingly, gels with lower concentrations also got thinner, but did not diffuse as far in the 

lateral directions when compared with gels containing higher concentrations. There does not 
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seem to be a correlation between initial bolus height and lateral diffusion. Therefore, it is not 

immediately clear why higher HEC concentrations cause greater lateral diffusion. It might be due 

to surface tension affects, which should be investigated in future studies. 

The influence of gel development on behavior variability is discussed in Appendix B by 

comparing the spreading behavior and rheology of different batches with the same HEC 

concentration.  

Concentration L  W  h  h0 

2.4% HEC 58.25±3.18 mm 

(5.46%) 

3.34±0.66 mm 

(19.76%) 

3.27±0.43mm  

(13.15%) 

7.46±0.49mm 

(6.57%) 

2.7% HEC 38.07±0.77 mm 

(2.02%) 

4.44±0.57 mm 

(12.84%) 

3.18±0.30mm 

(9.43%) 

7.29±0.12mm 

(1.64%) 

3.0% HEC 29.38±1.69 mm 

(5.75%) 

4.65±0.48 mm 

(10.32%) 

2.95±0.40mm 

(13.56%) 

8.64±0.25mm 

(2.89%) 

Table 3.2. Spreading data of gels containing 2.4%, 2.7%, and 3.0% HEC concentrations (n = 3 

from 1 batch of each concentration). L and W represent total axial and lateral spreading, in 

180 sec, respectively. h represents the change in height, with h0 being the initial height. The 

data show more axial spreading and less lateral diffusion for lower HEC concentrations. Note: 

Each cell presents the: Mean ± Standard Deviation (Coefficient of Variation). 
 

Figure 3.7 shows curves of 3 runs of a 2.7%HEC gel. The axial spreading curve seems 

almost linear, while lateral spreading appears to nearly plateau at approximately 90 seconds.  

A separate, but identical, experiment was conducted on untreated glass, only to find that 

the variability of spreading characteristics between experiments of the same fluid were 

occasionally as large as 1 cm. This result confirmed a study by Kieweg et al. [2] that showed 

variations, when spreading on glass, can be large. Further investigation revealed that 

condensation on the glass surface was the culprit that was to blame for this surprising result, and 

that spreading experiments on plastic materials were more consistent. This short study alludes to 

the fact that the spreading surface can have an impact on spreading characteristics and, most 
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importantly, repeatability of the results. Therefore, in future studies, it is important to repeat 

these spreading experiments on epithelial tissue, which might reveal that any potential theoretical 

model would have to account for slip at the gel-epithelium interface (see more on slip and 

surface interaction in Chapter 7).   

 
Figure 3.7. Spreading characteristics of the gel as a function of time for three repeated 

experiments of the 2.7% HEC gel. 

 

Figures 3.8 and 3.9 show the surface topography obtained with the new method and 

apparatus for the same example data. The results show very good agreement between the 

photographed images and digitized surface meshes (Fig 3.8). 

I chose the camcorder and apparatus dimensions for my specific application where a 1-

image/sec and 1 mm accuracy over an 80 mm domain were sufficient. For other applications that 

require higher accuracy and time resolution, researchers may choose different apparatus 

dimensions or a camera/camcorder/frame-grabbing software with appropriate capabilities (e.g. 

finer pixel resolution, faster image-grabbing frequency).   
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The careful design of the automated dispensing mechanism created a smooth, dome-

shaped initial condition that did not fold over onto itself, a phenomenon that could not be 

digitized/viewed with this technique. 

 
Figure 3.8. Comparison of photo image (immediately after the gel was dispensed on the 

spreading surface) with resulting digital surface topography of 3 repeated experiments of the 

2.7% HEC gel. Left: top and side view of the photograph image of experiment initial condition. 

Right: top contour and side view of the resulting digital surface topography. There is good 

qualitative agreement between the photographic images and their computational reconstruction.  

 

This apparatus does not provide a lateral view, but the assumed parabolic shape in that 

dimension was qualitatively similar to the dome-like shape observed at the start of the 

experiment. This method also ensured that the digitized volume exactly matched the known 

experimental volume. 
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Figure 3.9. Isometric views of the evolution of the digital surface topographies of a spreading 

experiments at t = 0, 60 and 120 seconds (RUN1). 

 

There are three main limitations for this technique for reconstructing the surface 

topography of a finite bolus of fluid. The first limitation stems from the fact that each point in 

space (x,y) will have one height value h(x,y). If the experimental gel has any fluid collapsing on 

itself (Figure 3.10), the method presented would not capture that complexity.   

 

Figure 3.10. Cartoon showing an example of a fluid edge that would not be appropriately 

captured with the method described in this document.  
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The second limitation of this technique is that as the leading edge of the fluid becomes very thin, 

the side view of the gel, seen in the camera, might have low visibility. This does not pose a 

problem for obtaining bolus dimensions because they are available in the top view, but 

reconstructing the topography of the trailing edge could be problematic. Finally, the fact that the 

cross-section along the lateral plane is approximated using a standard function (Eq. (3.1)), with 

known width dimensions, is clearly a disadvantage to methods that don‟t make this assumption. 

Nevertheless, the width and height of the cross-section are measured experimentally and the fact 

that the resulting volume of the fluid matches the experiment suggests that the 4
th

 order estimate 

for the lateral cross section is close to the actual cross section.    

 Two other realistic methods for reconstructing the surface: approximating fluorescent 

intensities [44, 45] and tracking projected image deformation of the fluid surface [30, 46, 47] 

will not provide solutions to the first two limitations. Nevertheless, for future work it might be 

advantageous to use the fluorescent technique [44, 45] because it is more of a measure of the 

topography, as opposed to an approximation resulting from reconstructing the topography from 

the cross-sections.    

Conclusion 

In this chapter I present a new repeatable technique for automatically dispensing a finite 

mass of fluid that is free to spread down an incline without contact with any other surface. This 

dispensing technique enables me to control the rate at which the fluid is applied to a spreading 

surface in a controlled environment, allowing the researcher to experiment with different 

spreading surfaces and examine how the initial release of the gel might impact spreading.  
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In addition, I present a new automated image analysis procedure using LabVIEW to 

measure the spreading dimensions and approximate surface topography of a free surface, finite 

bolus of fluid with spatial accuracy within 0.5%. This is especially useful for verifying numerical 

simulations of free surface flow and can be used to quantify surface area coverage of a 

microbicide delivery vehicle as a function of time. The non-invasiveness of this image analysis 

technique allows for accurate measurements of polymeric fluid that is spreading in a controlled 

environment and on any surface (e.g. hydrophilic, hydrophobic, epithelium tissue, etc.). The 

method and apparatus described here is ideal for finite samples of viscous polymeric liquids and 

slurries studied in drug delivery, geophysical fluid flow, and non-Newtonian fluid dynamics. 

The instrument and image analysis technique presented here achieves the engineering 

goal of this chapter and completes the first objective of this dissertation. I completed a total of 9 

spreading experiments on HEC gels by testing 2.4%, 2.7% and 3.0% HEC gels in triplicate. Gels 

with lower concentrations of HEC spread more in the axial directions, but diffused less in the 

lateral direction. This limited diffusion might be explained by surface tension, which should be 

investigated in future studies. The surface topography of each experiment was used as the initial 

condition of each corresponding computational simulation. Finally, the spreading data obtained 

from each experiment was used to validate the power-law (Chapter 5) and Ellis (Chapter 6) 

numerical models.   
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Chapter 4 DEVELOPING A COMPUTATIONAL 

SPREADING SIMULATION  

Introduction 

The dynamics of avalanching masses of fluid are extensively studied in countless 

disciplines, including biomechanics, and are essential to achieving our group‟s long-term goal of 

developing a microbicide delivery vehicle. This chapter will outline the numerical solution that 

will be used to meet the second overall objective of this project: to develop a numerical model of 

a non-Newtonian fluid, spreading in 3-D, due to gravity.  

Significance and Chapter Goals 

Modeling fluid flow usually begins by solving a momentum equation in conjunction with 

the conservation of mass. In order to simplify the momentum equation, when relevant, many 

studies implement the lubrication approximation [30, 50] allowing for the inertial terms to be 

neglected. Originally, models that employed lubrication approximations were restricted to 

Newtonian fluids [30], but researchers have expanded this field of study by incorporating 

different constitutive equations such as Bingham, Herschel-Bulkley, power-law, Ellis, O‟ldroyd-

B and even some viscoelastic models [51]. In this document, one of my objectives is to focus 

on numerical modeling of a finite volume of fluid being driven by gravity and Newtonian 

viscous forces. In the subsequent chapters, I aim to incorporate non-Newtonian viscous 
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forces, and compare the spreading characteristics derived from the numerical model with 

the spreading characteristics measured experimentally to investigate how: 

a. Sophistication of the constitutive equation that incorporates viscous forces 

affects the model’s spreading accuracy. 

b. Matching the model’s initial condition with the experiments initial 

condition affects the model’s spreading accuracy. 

This chapter will outline the derivation and numerical solution of the 3-D evolution 

equation for a Newtonian fluid. The foundation for this derivation was adopted from an existing 

2-D model [3, 4]. Presented here is a mathematical model that simulates a finite bolus of 

Newtonian fluid coating an inclined surface. The fluid is analyzed using the Navier-Stokes 

Equation to develop a differential equation for the evolution of the height of the fluid as a 

function of time and space in the x and y direction, h(x,y,t) (Figure 4.1). The evolution equation 

will then mathematically describe the motion of the fluid‟s surface, while incorporating the 

viscous properties of the fluid and gravitational perturbation force acting on it.    

Figure 4.1 shows the coordinate system diagram of the problem statement, analyzing 

spreading in 2-dimensions (x and y). In the remainder of this work, spreading in the x-direction 

will be referred to as axial and spreading in the y-direction will be referred to as lateral.   

OBJECTIVE 2: Develop a 3-D numerical model to simulate the free surface, gravity-

induced spreading of a thin-film of a Newtonian fluid, to be used in Objectives 3 and 4 for 

non-Newtonian fluids.   

The engineering goal of this objective is to develop an original code for solving a non-

linear, second order PDE that governs viscous, gravity-driven flow of a finite volume of 

Newtonian fluid with a free surface in 3-D. This numerical code should: (1) obtain mesh 
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convergence in axial and lateral direction; (2) conserve volume within 0.001%; (3) be easy to 

upgrade for power-law and Ellis constitutive equations.   

 This chapter‟s work may not have a defensive novel contribution. It is intended to 

provide a foundation and validation for numerical code (described in subsequent chapters) that 

simulates non-Newtonian free surface flow, which is original and is intended for publication.    

 
Figure 4.1. Coordinate System of the Problem Statement. Spreading surface is inclined to spread 

in the axial direction, and slumping is defined in the lateral direction.   

Review of Relevant Literature: 

 There is a rich body of literature on gravity-induced flow. The following focused review 

of relevant literature is intended to give a general background of the type of modeling that has 

been done for Newtonian and non-Newtonian fluids being perturbed by gravity. All of the 

mentioned literature implements the thin-film approximation along with one of four viscous 

models (Newtonian, Bingham, power-law, Ellis), which I considered to be most relevant to the 

current objective. There have been several review articles outlining various models for coating 

flows of non-Newtonian fluids [20, 51, 52], but they rarely consider flow in multiple dimensions 
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or finite volume flow. Craster et al. primarily discuss finite volume flow papers with stability 

issues resulting from surface tension that don‟t address viscous relationships relevant to this 

document [53]. Ancey et al. allude to several articles that address finite geophysical flow with 

viscoplastic constitutive properties, which serve as a useful reference, but that work does not 

meet the current objectives because they focus on yield stress in the material [54].    

Numerical and Analytical modeling of Newtonian flow 

 A natural starting point for modeling the flow of polymeric liquids is to start with a basic 

2-D Newtonian simulation of a free surface, gravity-induced flow of a finite volume (Figure 4.1). 

The non-linear partial differential equation governing Newtonian flow (Newtonian evolution 

equation derived later in this chapter) can be solved approximately in 1-D of spreading, using a 

similarity solution, with acceptable experimental agreement [55]. However, to fully solve the 

evolution equation and to develop techniques capable of incorporating non-linear viscometric 

relationships, 2-D and 3-D numerical solutions have been introduced [49, 56-60].  

 Harlow et al. developed a finite-difference, explicit method for numerically simulating a 

dam breaking problem, using a Newtonian fluid [61]. This paper was one of the first to analyze 

free surface flow numerically, concluding that this method could be improved upon to account 

for different problem configurations.   

Kondic et al. have documented a finite-difference method for solving a fourth-order PDE 

describing the time evolution of a free surface of a Newtonian fluids being perturbed by gravity 

[62]. In most cases they use a configuration with an infinite source of fluid (constant-flux), for a 

Newtonian liquid under the influence of viscous, capillary and gravity forces [56, 58]. Recent 

publications give a thorough outline of a numerical method so robust that incorporating non-
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linear viscometric data or any other driving forces is straightforward [62]. While the numerical 

method being presented in this paper has its own unique attributes, many space and time 

discretization ideas were adopted from this article.  

 Originally I tried solving the evolution PDE using an Alternate Direction Implicit (ADI) 

scheme [49, 60, 63, 64], resulting in irresolvable problems with space convergence and volume 

conservation. As a result, I adopted the numerical scheme outlined in this chapter. 

Numerical and Analytical modeling of viscoplastic flow 

 Most geophysical flows are modeled as Bingham or Herschel-Bulkley  viscoplastic 

materials, which typically behave as a single-phase fluid that obey Newtonian (Bingham) or 

power-law (Herschel-Bulkley) viscous deformation in areas that have exceeded a yield stress 

[54, 65]. The Herschel-Bulkley constitutive equation is a commonly used stress versus shear 

ratemodel for viscoplastic flow [51, 54], which can be reduced to the power-law at the limit of 

no yield stress. There are two primary reasons for why this rich body of literature is seldom 

applicable to the objectives of this document: (1) researchers modeling viscoplastic flow are 

rarely interested in shear-thinning effects, and mostly focus their research on how yield stress 

impacts flow characteristics [66-68], and (2) most viscoplastic models are trying to simulate 

source-flow [69-71] instead of a finite volume due to the nature of their problem, and in some 

cases use channel-like geometry instead of flat plate [66].  

 Fluids that contain a yield stress could potentially be a very useful tool when developing 

a vaginal delivery vehicle, as discussed in Chapter 7. Quantifying the interdependence of the two 

power-law parameters and their impact on spreading is challenging enough, and could be done 



59 

 

using a Herschel-Bulkley code with zero yield stress, but adding a third yield stress parameter 

complicates the problem even further.   

Huang and Garcia [72] conducted preliminary studies of power-law parameters and their 

impact on the free surface and flow characteristics, for a Hershel-Bulkley fluid. They combined 

asymptotic solutions for the inner and outer surface, for spreading at a relatively steep slope. 

Most of the results and conclusions reached in that study were targeted for fluid that contains a 

yield stress. Some aspects of the sensitivity analysis focused on the impact of the shear-thinning 

of the fluid. They inevitably reached the common conclusion that as a fluid becomes more shear-

thinning; it does not spread as far in a given time. This was, however, the extent of the shear-

thinning sensitivity analysis. They found that, when incorporating a yield stress, shear-thinning 

does not have a considerable impact on spreading at early time stages, but does have great 

impact at later times. An important limitation to note is that this and most Hershel-Bulkley 

studies are intended to simulate large scale flows (e.g. volcanic), therefore small scale flows are 

outside the scope of the work done by Haung and Garcia [72] and most previous papers that 

investigate fluids with a yield stress. 

Balmforth et al. [29] have presented a discussion on the effect of shear-thinning and yield 

stress on spreading characteristics for symmetric extrusions on horizontal plates. They found that 

in a given time, the extrusion would spread further as the shear-thinning index approached unity. 

 Balmforth et al. has published a Herschel-Bulkley fluid numerical, Alternate Direction 

Implicit (ADI) scheme, spreading model of a free surface, finite volume bolus, where they even 

attempted to roughly match the initial conditions of an experiment to compare flow 

characteristics [68]. They also experimented with different initial condition configurations to 

conclude that the initial condition is a driving force in flow characteristics, even in cases where 
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volume is the same [28, 68]. It is noteworthy that they reached this conclusion based on the 

fluid‟s surface ridges not being able to overcome yield stress, but I believe the same conclusion 

would be reached for fluids that don‟t have a yield stress because the fluxes in the evolution 

equation are functions of the gradients of the surface curvature [49]. The performance of the 

numerical method used in these papers was not extensively documented. When trying to 

replicate that method for a power-law fluid, I encountered problems with convergence and 

volume conservation, and chose to use a direct Newton‟s method [49], which resolved the 

aforementioned issues.  

 Sutalo et al.  introduced a sophisticated computational fluid dynamic (CFD) simulations 

of constant-flux viscoplastic flow spreading from one incline to another, until it eventually coats 

four inclines [71]. To incorporate non-Newtonian effects, they used the Herschel-Bulkley 

constitutive equation, with rheological parameters obtained from viscometric analysis of three 

gels. Very similar to the objectives of this document, in order to confirm their numerical model 

they compared spreading data of the three gels to the solution of the numerical method. They 

found that the numerical simulation agreed with the experiment for the first incline, but not for 

the other three. Most importantly, they documented a parameter study of the power-law variables 

of the Herschel-Bulkley constitutive equation, and showed that they changed spreading 

characteristics in agreement with the experiment [71]. Otherwise their problem statement was 

not applicable to this objective because they used an infinite source and only calculated for one-

dimension of spreading.  
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Numerical and Analytical modeling of power-law flow 

 In an effort to mathematically represent any non-linearity in the stress-shear rate 

relationship, the power-law constitutive equation has been used in models that that utilize the 

lubrication approximation [20]. Its appeal is that it is able to account for shear-thinning behavior, 

but it is limited in the fact that it can‟t describe Newtonian plateaus observed with most 

polymeric fluids [20, 24]. Because the terms in the power-law constitutive equation can be 

mathematically and explicitly manipulated, it is straightforward to implement it into a derivation 

of a second-order, non-linear PDE that governs the evolution of a fluid being perturbed by 

gravity and viscous forces.  

 Using an evolution equation that is slightly different than the one derived in this paper, 

Gratton and Perazzo developed approximate analytical solutions for different geometry 

configurations [73], including a finite volume of a fluid that is spreading on an incline in one-

dimension [74]. Only considering nearly horizontal or vertical inclines, the evolution equation 

was approximated as an initial value problem, which was solved using the method of 

characteristics. This analysis was limited to modeling the free surface from the trailing edge to 

the nose (“outer edge” defined in [72]), and can‟t be applied to most engineering problems. This 

analysis showed that the shear-thinning index, in the power-law constitutive equation, has a 

major effect on the outer edge of the free surface, but this is not enough information to conclude 

the shear-thinning indexes impact on spreading characteristics [74].  

 In 1999, Gratton et al. analytically solved the evolution PDE, using a similarity solution, 

to show that the spreading of a finite-volume on a horizontal surface will have good agreement 

with experiment [52]. Other approximate solutions are usually also limited to a horizontal plane 
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[75, 76]. A free surface solution of a power-law fluid spreading on an extremely angled incline 

was developed using an approximate self-similar solution of the evolution PDE [77].  

 Haeri et al. conducted 3-D numerical and experimental studies on the falling flow of 

power-law films [78]. An open source CFD package using a “volume of fluid” numerical method 

was implemented to solve the continuity and momentum equations, for the velocity vectors, in a 

domain that included both the spreading fluid and the surrounding air. The free surface was 

found by applying an algorithm to distinguish between the fluid and air. The study accounted for 

power-law viscous forces and surface tension. A contact angle measurement was utilized to 

account for the interaction between the spreading surface and fluid. The method presented in this 

document eliminates the need for a fluid-solid interface search algorithm by deriving and solving 

for the fluid height directly.  

In Chapter 5 I will present the derivation of a second-order, non-linear PDE, governing 

the 3-D motion of a finite bolus of power-law fluid, spreading under the influence of gravity and 

viscous forces. The 3-D power-law model is an expansion of Kieweg‟s previously published 

PDE governing spreading of a power-law fluid in 2-dimensions [3]. Kieweg‟s numerical solution 

tended to overshoot the experimental spreading in the axial direction. This may be because the 

model did not account for lateral spreading in the 3
rd

 direction. Alternately, it may also reflect 

other assumptions/limitations, such as the power-law constitutive equation.  

 The completion of Objective 3 (in Chapter 5) is necessary because it will allow me to see 

if the power-law model is a good predictor for HEC spreading characteristics. This simulation 

will also allow me to perform detailed sensitivity analysis to expose the interdependence of the 

power-law parameters, inclination angle and axial spreading. Finally, I will test if incorporating a 
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detailed topography of the initial condition results in a more accurate numerical model, when 

compared with an approximate topography.   

Numerical and Analytical modeling of Ellis flow 

 The Ellis constitutive equation complicates the derivation of the evolution equation by 

adding a third parameter. This allows the constitutive equation to describe the low shear rate 

Newtonian plateau of the HEC rheological data, giving it a clear advantage over the power-law 

[20, 79]. Its limitation is that it can‟t fit with the second plateau at high shear rates [20], which 

does not apply to this work because the low shear rate region is of principal interest. This leads 

to the conclusion that the Ellis model is a good option for modeling the viscous behavior of HEC 

gels.  

 There is very limited literature on integrating the Ellis constitutive equation into an 

evolution equation describing free surface flow. Weinder and Schwartz derived an analytical 

expression for the velocity of an Ellis fluid edge, when spreading on a completely vertical 

surface (with surface tension) [80]. They also completely derived an evolution equation that 

can‟t be applied to the current objective because it does not account for a surface inclination 

angle or spreading in the lateral direction.    

 Schwartz and Eley developed a 3-D numerical ADI scheme to simulate the spreading of a 

shear-thinning fluid, and compared it with an experiment [30]. Even though the fluid could have 

been characterized well with an Ellis model, they developed a method to use the tabulated 

experimental rheological data to avoid deriving the evolution equation with Ellis viscous forces. 

The other studies that I found implementing the Ellis constitutive equation never solve for the 

evolution of a free surface [25, 81]. 
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 Thus, there are no known publications describing the derivation and solution of a PDE 

that governs gravity-induced, free surface flow of an Ellis fluid.        

 Chapter 6 presents the derivation of a second-order, non-linear PDE, governing the 3-D 

motion of a finite bolus of Ellis fluid, spreading under the influence of gravity and viscous 

forces. I will also present sensitivity analysis to suggest how the three parameters of the Ellis 

constitutive equation influence axial spreading. 

The completion of Objective 4 (in Chapter 6) is necessary because it will produce an 

original numerical study of gravity-induced spreading of a finite volume of fluid characterized 

with an Ellis constitutive equation. I will show if using the more complicated Ellis constitutive 

equation results in an improvement over the power-law constitutive equation, when using a 

numerical model to simulate gravity-induced HEC spreading. I will also present a sensitivity 

analysis of the Ellis parameters and discuss how the method of obtaining those parameters could 

considerably influence the efficacy of the simulation. 

In this chapter I will derive the Newtonian evolution equation and describe the numerical 

method used to solve this equation. This numerical simulation will also be used as a basis for 

solving more complicated non-Newtonian models in Chapter 5 and 6.  

Methods 

The Navier-Stokes Equation (Eq. (4.1)) where v~ and g~ are the velocity and gravity 

vectors respectively, p is the hydrostatic pressure,  is the viscosity and   is the density, is 

utilized as the governing equation of motion. 
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 (4.1) 

 

The velocity vector v~ is broken down into its Cartesian coordinates: u, v, w in the x, y, z 

directions respectively.   

1. Thin-film (lubrication) approximation:  We start by assuming that throughout the 

simulation, the characteristic height, H (maximum thickness along the x-z plane) of the 

gel is considerably larger than the characteristic length, L (measured from the trailing to 

the leading edge along the x-axis), and T is the characteristic time (Eq. (4.2)). 

H << L and 1
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Eq. (4.3) is the characteristic Reynolds number [50], where U is the characteristic 

velocity. With both conditions (Eq. (4.2) and (4.3)) satisfied [50], using the lubrication 

approximation is justified [50]. The reasoning for this is explained in greater detail in 

Appendix A1. Even though the Reynolds number does not necessarily have to be small to 

implement the thin-film approximation, it generally will be for the simulations presented 

in this document. Kieweg estimated worst-case scenarios of Reynolds number for 

extreme conditions of flow, for gels similar to ours, and found that the largest values are 

on the order of 10
-2

 to 10
-4

 [3]. Therefore, I conclude that viscous forces dominate and 

omit the inertial terms in Eq. (4.1) following the lubrication approximation. 
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2. No slip assumption: Here we assume that there is no slip between the gel and the 

spreading surface, which leads us to the following boundary condition: 

a. Boundary Condition 1: u(z = 0) = v(z = 0) = 0 

3. Free surface assumption: Here we assume that the surface of the gel, which is exposed 

to the air, is not experiencing any stress and is subjected to ambient pressure. 

a. Boundary Condition 2: at z = h(x,y,t)   zx = zy = 0 

b. Boundary Condition 3: at z = h(x,y,t)   p = po 

After implementing the first three assumptions, the momentum equation (Eq. (4.1)) is 

reduced to three governing equations of motion (Eq. (4.4)-(4.6)) where  is the angle of 

the ramp with respect to the horizontal plane (Figure 4.1). 

x-direction:  sin0
2

2

g
dz

ud

dx

dp
  (4.4) 

y-direction:
2

2

0
dz

vd

dy

dp
  (4.5) 

z-direction:  cos0 g
dz

dp
  (4.6) 

 Using Eq. (4.4)-(4.6) along with the first boundary condition, I arrive at the velocity 

profiles in the axial (Eq. (4.11)) and lateral (Eq. (4.12)) directions.  
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The flow rate per unit width in the axial ( xq ) and lateral (
yq ) directions, is then found 

using Eq. (4.9). Integrating the equation of motion in the z direction, and incorporating the third 

boundary condition, I arrive at an expression for pressure (Eq. (4.10)).   


)..(

0
),,(

tyxh

x dztyxuq  
)..(

0
),,(

tyxh

y dztyxvq  (4.9) 

   opztyxhgp  ),,(cos  (4.10) 

Incorporating pressure (Eq.(4.10)) and using the flow rates in the axial and lateral (Eq. (4.9)) 

directions, substituted into the conservation of mass (Eq. (4.13)), I arrive at the non-linear partial 

differential equation. This equation describes the evolution of the free surface, and thus called 

the “evolution equation”.  
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Numerical Solution of Evolution Equation 

Discretization in Space: 

 The free surface evolution equations (Eq. (4.13)) was solved for h(x,y,t) using Newton‟s 

method written in the C programming language. The domain is the rectangular spreading surface 

(Figure 4.1), broken down into a finite number of grid points, that can be set to any dimensions.  
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Figure 4.2. Domain for the numerical method divided into TOT points.  

 

 The surface is defined by 0  x  L and 0  y  W, which is divided into rectangular cells, 

TOT = N x M, in the x and y directions respectively. The user-defined cell dimensions are x and 

y in the x and y-directions, respectively, and are not necessarily equal to each other (Eq. (4.14)).  

xxx ii 1  yyy ii 1  (4.14) 

 Because the value of any point that is not covered by the fluid is zero, the values on the 

boundary of the domain, , were also fixed at zero. It is important to point out that the code is 

not written to have a distinct boundary. Instead of setting a boundary that will be big enough to 

accommodate the spreading fluid, this code is designed to expand the boundary immediately 

ahead of the fluid. This prevents the code from solving for any points on the boundary that are 

not expected to contain fluid in the next time step, resulting in a code that requires less memory 

and less computation time.     

The main evolution equation (Eq. (4.13)) will be discretized in space using the central 

difference approximation (Eq. (4.15)).   
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where:  K = 




3

g
. 

The fluxes will be discretized using central differences (Eq. (4.16)-(4.19)), centered about the 

node interfaces. After experimenting with different methods of discretizing the diffusion 

term, 3h , I found that a discretization suggested by Diaz and Kondic [62] resulted in the fastest 

computation time. 
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 Discretization in Time: 

Defining the free surface height as a function of space and time as h(x,y,t
n
) can be 

simplified numerically as n

kh , where the superscript, n, denotes the time step. The superscript 

n+1 symbolizes the solution at the next time step (variable being solved for).  The  -method 

[62, 63] is a time discretization scheme (Eq. (4.20)), where  = ½ results in an implicit, second-

order accurate Crank-Nicolson scheme.  
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Using any other value for  that is greater than zero also results in an implicit scheme that is 

first-order accurate.  

Solving the non-linear system of equations: 

 Applying Eq. (4.15) and (4.20) to the domain will result in TOT non-linear equations 

with TOT unknowns (Eq. (4.21)), where the superscript n represents the time step and the 

subscript k is the point in space. 
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Newton‟s method can be used to transform the system of non-linear equations into a 

linear system (Eq. (4.22)) [82], where h
z
 is a guess and z+1 is an improvement of the guess. The 

derivative matrix is the Jacobian [J], which is a sparse matrix with at most five non-zero 

elements in each row. 
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For any good initial guess, Newton‟s method can be expected to converge rapidly by 

iteratively solving linear systems until a suitable error is reached [64, 82]. The linear system (Eq. 

(4.22)) can be solved using iterative and direct methods [83], but iterative methods are generally 

more appealing for large, sparse systems. This iterative method is especially efficient for sparse 

systems because its computational procedure only requires matrix-vector multiplication, making 

the code for banded matrices straight forward. The Conjugate Gradient method is a widely used 

iterative method, which is able to solve symmetric and positive definite systems [83, 84]. The 

system presented in this document is not symmetric but is positive definite, therefore I used the 

BiConjugate Gradient Method (BiCG), a slight variation of the conjugate gradient method [83], 

to obtain an iterative solution.  

A preconditioner can be used to accelerate the convergence [83] of iterative methods. 

Both sides of Eq. (4.22) can be multiplied by a matrix [M], which should be chosen to make the 

left hand side of the equation as close to an identity matrix as possible  [83, 84]. If the inverse of 

[J] were known, then using it as the preconditioner would result in a solved system, but because 

this matrix is not known a preconditioner can be an approximation of   1
J . In this model an 

incomplete LU (ILU ) factorization is performed on the Jacobian matrix, for every iteration of 

Newton‟s method, and is used as the preconditioner matrix [83].  

 The BiCG method is set to iterate until the first norm of the residuals, defined as iCGB  , 

falls below 10
-6

. The first norm of the height change, resulting from each Newton‟s iteration, 







1

0

,,max
N

i

iterationoldiiterationnewiNEWT hh  , is used as the check for Newton‟s method convergence. 

Once the first norm of the height change falls below 10
-10

, Newton‟s method iteration is 

terminated and a solution for the new time step is accepted.  
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 In the event that either Newton‟s method or BiCG method will not converge within a 

user-defined number of iterations, the time step, dt, is decreased and Newton‟s method is 

repeated.  

 A final note is that all numerical simulations were carried out on an Information and 

Telecommunication Technology Center (ITTC) cluster allowing me to run multiple 

computations at one time. 

Results: 

Code Validation: 

 I confirmed that the code results in reproducible spreading in both the axial and lateral 

direction, and the maximum height of the bolus does not grow. An excellent check of the 

accuracy of the solution is validating that the conservation of mass is not violated (volume stays 

constant) [62]. If mass is completely conserved, then the area under the surface of the fluid 

should never change in time (Eq. (4.23)). During each simulation, volume is monitored to 

confirm mass conservation was maintained within 0.001% for the entire simulation. The main 

shortcoming of the ADI scheme that I originally used to solve this problem was that it 

accumulated truncation error, and the volume would gradually decrease.  

0),,( 






dydxtyxh
t

 (4.23) 

All simulations for code validation and convergence study purposes were carried out on a 

5 x 1.8 cm domain (prior to introducing space-adaptation), in the x and y direction respectively. 

The angle of inclination was set at 30. The initial condition was a discretized dome shape 
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calculated using the equation: (max)

22

ohyxh  . Figure 4.3 shows a typical bolus initial 

condition.  

Another useful check for a numerical solution is to compare it with a known analytical 

solution, which has been presented by Huppert [55]. I show this comparison in later chapters for 

non-Newtonian constitutive equations and verify that they simplify to the Huppert solution for 

the Newtonian case.  

 Each simulation in this validating study was run for up to 5 seconds of spreading. The 

time step was originally set to: dt = 10
-5

, but the code was written to dynamically adapt time in 

case Newton‟s method or the BiCG method could not converge. In most cases this was not 

necessary.  

A singularity might arise from the fact that a numerical simulation solves for a 

propagating contact line, while restricted under the no-slip boundary condition. This is not 

problematic for our solution because the movement of the contact line can be driven by any point 

that is not at z = 0. The axial spreading of the fluid is interpreted as tractor treads rolling along 

on a surface [85]. To preserve the positivity of the solution, any point that became negative 

during numerical calculations (typically immediately ahead of the leading edge) was forced to 

zero.  

Often, a precursor is used in thin film simulations to handle the singularity when surface 

tension effects (4
th

 order derivatives) are included (e.g., Ref [62, 72, 86, 87]). While this has no 

physical meaning, I originally ran my code with a precursor positivity preserving method, using 

a constant thin film of d = 10
-3

 cm. After a brief study, I found little difference in spreading 

characteristics when comparing the two positivity-preserving techniques and both simulations 

conserved volume. However, a solution with the forced positivity technique, rather than the 
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precursor method, was a slightly better comparison with the similarity solution. Most 

importantly, using a precursor film caused a sufficient lag in computational efficiency. Thus I 

chose the forced method rather than the precursor method to use in all simulations presented in 

this dissertation. 
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Figure 4.3. 1 x 1 cm bolus of fluid used as an initial condition for simulations validating mass 

conservation and used to validate non-Newtonian models introduced in subsequent chapters. 

Input Parameters: (α = 30, x = 0.01, y = 0.01, t – adapted, µ = 500 Poise, NEWT = 10
-10

, 

BiCG = 10
-6

) 

  

Spreading characteristics of the fluid analyzed using this code appeared to have a familiar 

and expected shape, formerly seen in previous studies and papers related to this work [3]. 

Because of the inclination of the spreading surface, the length, L (in the x-direction), of the fluid 

increased at a higher rate than the width, W (in the y-direction) (Figure 4.4) as expected. Results 

show that the leading edge of the fluid spreads in both directions, but because spreading in the 

lateral direction is only a result of the weight of the fluid collapsing on itself (slumping), lateral 

spreading decreases along with the maximum thickness. The spreading in the axial direction is 
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also happening as a result of the fluid collapse, but flow downhill causes spreading to dominate 

in the axial direction.  

Figure 4.5 shows a typical evolution of the free surface, for as fluid spreading on an 

incline. As code validation, a simulation was run at a zero inclination angle and spreading was 

uniform in all directions as expected. Another technique used to validate the code and accuracy 

of the solutions was to verify that mass is being conserved throughout the simulation. In the five 

seconds of spreading, there was absolutely no change to the fluid‟s volume, which was 

calculated using a Riemann‟s Sum technique [64].  

 
Figure 4.4. Spreading Characteristics of a Spreading Bolus of Newtonian Fluid Input Parameters: 

(α = 30, x = 0.01, y = 0.01, t – adapted, µ = 100 Poise, NEWT = 10
-10

, BiCG = 10
-6

) 

 

 



76 

 

0
0.5

1
1.5 0

0.5

1

1.5
0

0.1

0.2

0.3

0.4

0.5

Width (cm)
Length (cm)

H
e
ig

h
t 

(c
m

)

 
Figure 4.5. Spreading Profile of a bolus presented in Figure 4.3 after 1 second of spreading. Input 

Parameters: (α = 30, x = 0.01, y = 0.01, t – adapted, µ = 500 Poise, NEWT = 10
-10

, BiCG = 

10
-6

) 

Mesh Convergence: 

 A convergence study was completed to determine if the solution converged with refined 

spatial discretization. Figures 4.6 and 4.7 show case studies to investigate how changing the 

mesh affected the spreading characteristics of a fluid with all other parameters kept constant.  

 
Figure 4.6. Convergence of Axial Spreading (Lfront) as a function of time, for varying dx (dy kept 

constant). This figure shows axial spreading convergence with decreasing mesh size for each 

time point of the simulation.  Input Parameters: (α = 30, x = 0.01, y = 0.01, t – adapted, µ = 

500 Poise, NEWT = 10
-10

, BiCG = 10
-6

) 
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 Results of the axial convergence study (Figure 4.6) show that as the mesh in the axial 

direction becomes finer, the solution converges. From this data, I concluded that dx = 0.01 is an 

operational number because making it even smaller would only add to computation time with 

very little benefit to the accuracy of the solution.  

 A similar study confirmed that the solution also converged as dy was decreased (Figure 

4.7). From that convergence study I concluded that dy = 0.01 was an operational mesh 

dimension in the lateral direction because making dy smaller would only improve accuracy to 

1/10
th

 of a millimeter on average.  

 
Figure 4.7. Convergence of Lateral Spreading (W) as a function of time, for varying dy (dx kept 

constant). This figure shows lateral spreading convergence with decreasing mesh size for each 

time point of the simulation.  Numerical solution of lateral spreading converges as dy is made 

smaller. Input Parameters: (α = 30, x = 0.01, y = 0.01, t – adapted, µ = 500 Poise, NEWT = 

10-
10

, BiCG = 10
-6

) 

 

 As an interesting note, varying the mesh in a particular direction does not cause the 

spreading characteristics in the other direction to drastically change.  
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In a final step to improve the efficiency of the code and determine operational parameters 

with which I would expect an accurate solution at the lowest computational cost, I conducted 

several tests to verify that using time adaptation did not impact the accuracy of the spreading 

characteristics.  

During computation, none of the simulations needed to adapt the time step below  10
-6

 

sec. To verify that adapting time did not affect the numerical solution, I compared two 

simulations: (1) one was set to a starting dt = 10
-3

 sec and allowed to adapt time according to 

999.0 dtdt  when Newton‟s method could not converge, and (2) a dt set to a constant dt =10
-6

 

sec without any time adaptation (Newton‟s method always converged). All other input 

parameters were identical.  

The results of both numerical simulations, with and without time adaptation, were 

identical for all 5 seconds of simulation. Calculating for dx = 0.005 and dy=0.01 seconds of 

spreading took approximately 64 hours of CPU time without time adaptation, and 7.5 hours with 

time adaptation. Therefore, using time adaptation improves the efficiency of the code with no 

loss of accuracy.  

Conclusion 

 Completing the second objective resulted in a 3-D numerical code capable of solving free 

surface evolution equations for Newtonian, which can also be straightforwardly employed to 

solve for the spreading of non-Newtonian fluids. Solving the Newtonian evolution equation 

confirmed that this code converges with refined spatial discretization. In addition, the Newtonian 

flow results can be used as a validation for simulations with non-Newtonian fluids (see 
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subsequent chapters). Finally, this code can be updated to account for other driving forces such 

as surface tension.  

 The main limitation for this numerical method is efficiency. An upgrade of this code to 

perform parallel calculations on multiple processors might drastically decrease CPU time.  

 It should be noted that the implementation of more complex, non-Newtonian, constitutive 

equations would undoubtedly require more involved spatial discretization, as will be discussed in 

subsequent chapters. When performing calculations on a single grid point, the current Newtonian 

model requires the values for 4 surrounding points. As a result, the Jacobian matrix will contain 

5 non-zero columns. As will be explained in future chapters, PDE‟s that govern the height of 

non-Newtonian fluids will require using more surrounding points.  

 Unless it is stated otherwise, all of the input parameters used for the Newtonian fluid 

spreading simulations were implemented into the non-Newtonian models.  
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Chapter 5 THE POWER-LAW MODEL 

Introduction 

 In an effort to achieve our group‟s long-term goal of developing a microbicide delivery 

vehicle with desired spreading characteristics, non-Newtonian viscous forces of any potential 

vehicle must be accounted for in math modeling. This chapter will address the second overall 

objective of this project: to develop a numerical model of a non-Newtonian fluid spreading, in 3-

dimensions, due to gravity. 

Significance and Chapter Goals 

Kieweg [3, 4] has developed a 2-D numerical model to simulate free surface, gravity-

driven flow of a power-law fluid. When compared with experiments, the 2-D model 

overestimated flow in the axial direction and was unable to account for coating in the lateral 

direction.  

OBJECTIVE 3: The working objective of this chapter is to develop a 3-D numerical model 

of a free surface power-law fluid that is spreading under the influence of gravity. 

The first hypothesis of this objective is that upgrading the 2-D numerical model, which is 

currently used to simulate power-law flow, to a 3-D model will result in better agreement with 

experimentally measured spreading characteristics (from Objective1). The second hypothesis of 

this objective is that, when comparing with a parabolic initial condition, setting the numerical 

initial condition with the experimental initial condition will result in better agreement between 

the numerical and experimental spreading characteristics. 
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Sub-Objective 3.1: Derive an evolution equation in 3-D using the power-law 

constitutive equation, and incorporate it into the numerical method developed in 

Objective 2.  

The engineering goals of this sub-objective are to derive an evolution equation with 

power-law parameters that includes axial and lateral fluxes, and solve it numerically 

using the method developed in Objective 2 (Chapter 4).  

Sub-Objective 3.2: Perform 2-D and 3-D numerical simulation for 2.4%, 2.7% and 

3.0% HEC gels using the 3-D power-law code with rheological parameters obtained 

by fitting to the viscometric data and the experimental initial conditions obtained in 

Objective 1. For the 2-D numerical simulation, the initial condition will be a cut 

along the midpoint of the lateral axis of the experimental initial condition.  

The hypothesis of this sub-objective is that the 3-D power-law code will match the 

spreading of the experiment better than the old 2-D power-law code. 

Sub-Objective 3.3: Perform numerical simulation for 2.4%, 2.7% and 3.0% HEC 

gels using the 3-D power-law code with rheological parameters obtained by fitting to 

the viscometric data using: (1) the experimental initial condition (obtained from 

Objective 1) and (2) a 4
th

 order approximation of the initial condition that matches 

the maximum width, length and height of the experimental initial condition. 

The hypothesis of this sub-objective is that the code with experimental initial conditions 

will match the experiment better than an approximate initial condition. 
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Sub-Objective 3.4: Perform a rigorous power-law parameter study and sensitivity 

analysis, and document the effect of rheological parameters on axial spreading.  

The engineering goal of this sub-objective is to determine how the power-law rheological 

parameters impact spreading characteristics. I aim to create a framework for optimizing 

delivery vehicle rheological parameters based on anatomical requirements and 

functionality.    

 

Thus, the overall engineering goal of this chapter‟s objective is to develop a 3-D power-

law numerical model and use it to test if: (1) 3-D modeling poses a noticeable advantage over 2-

D, and (2) incorporating details into the initial conditions improves model agreement with 

experiment, when compared with an approximate initial condition.  

The novel contribution of this work is an original numerical solution of a 3-D power-law 

evolution equation governing gravity-induced flow. In addition, this work will document the 

effects 3-D modeling and initial conditions have on the numerical models reliability by drawing 

direct comparisons between theoretical and experimental spreading characteristics. Finally, I will 

present a thorough sensitivity analysis of the power-law rheological parameters and their impact 

on spreading characteristics.  

Review of Relevant Literature 

For a review of relevant literature discussing power-law rheology and using the power-

law constitutive equation in spreading models please refer to the introductions of Chapters 2 and 

4, respectively.    
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Methods 

Evolution Equation for a Free Surface Flow of Power-law Fluid 

The mathematical model presented in this chapter simulates a gel coating the vaginal 

epithelium as a finite bolus of a power-law fluid spreading down an incline. The fluid is analyzed 

using the conservation of linear momentum combined with the power-law fluid constitutive 

equation.   

 The primary goal of this model is to develop a differential equation for the evolution of 

the height of the gel as a function of time and space in the x and y direction, h(x,y,t) to represent 

the spreading of the finite bolus. The evolution equation will then describe the motion of the 

gel‟s free surface, while incorporating gel properties and gravity.    

Figure 5.1 shows the coordinate system diagram of our 3-D model analyzing spreading in 

3-dimensions (x, y and z). In the remainder of this paper, spreading in the x- direction will be 

referred to as axial and spreading in the y-direction will be referred to as lateral. In addition, 

Figure 5.1 defines the relevant nomenclature that will be used to describe spreading 

characteristics for the remainder of this chapter.   

Implementing a similar approach as for the Newtonian model (Chapter 4), I begin by 

solving the conservation of linear momentum (Eq. (5.1)) where v~ and g~ are the velocity and 

gravity vectors respectively, ~  is the shear stress tensor, p is the pressure, and   is the density. 

The analysis presented in this chapter deviates from the Newtonian model after the power-law 

constitutive equation is introduced, particularly because writing out the tensor invariants results 

in a function of two tangent vectors.  
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Figure 5.1. Coordinate System (same as Chapter 4) along with defined spreading characteristics 

considered in this document. Note: W, which is not shown here, is the maximum width along the 

lateral axis.  

 

gpvv
dt

vd ~~~11~)~(
~

 


 (5.1) 

The velocity vector v~ is broken down into it cartesian coordinates: u, v, w in the x, y, z directions 

respectively. The same assumptions are made as in Chapter 4: 

1. Thin-film Approximation 

2. No slip at the sliding surface 

a. Boundary Condition 1: u (z = 0) = v (z = 0) = 0 

3. The free surface of the gel is exposed to ambient air at pressure po. 

a. Boundary Condition 2: at z = h(x,y,t)   zx = zy = 0 

b. Boundary Condition 3: at z = h(x,y,t)   p = po 

Tension at the free surface is neglected under the condition Bo >> 1 [55], where Bo is the 

Bond number (measure of body forces to surface tension forces).    /2aLBo  , where L is the 
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characteristic length, a is the acceleration acting on body forces (g sin ), and  is the surface 

tension. For gravity-induced spreading of HEC gels, the typical Bond number for  = 10 and 

90 is 38.3 and 220.5, respectively.  

After incorporating the thin-film approximation, and keeping only the relevant stress 

components, the momentum equation (Eq 5.1) is reduced to three governing equations of motion 

where  is the angle of the ramp with respect to the horizontal (Figure 5.1).  

x-direction: 


sin0 g
dz

d

dx

dp xz   (5.2) 

y-direction:
dz

d

dy

dp yz
0  (5.3) 

z-direction:  cos0 g
dz

dp
  (5.4) 

 The pressure term is derived using Eq. (5.4) and Boundary Condition 3.b, where op  is the 

pressure at the free surface and gets cancelled during integration. 

   opztyxhgp  ),,(cos  (5.5) 

 A power-law fluid, spreading in 3-D, is mathematically modeled using the constitutive 

Eq. (5.6), where m is the consistency index (Psec
n-1

) and n is the level of non-Newtonian 

behavior (n < 1 is shear thinning). 

 ij

n

Dij DIIm 22

1

2



  (5.6) [88] 

In Eq. (5.6), ij is a component deviatoric stress tensor, vvD T ~)~(
~~

2   is the shear rate tensor 

and 




  22

2 )
~~

2()
~~

2()2/1( DtrDtrD is the second invariant of the shear rate tensor. Utilizing 



86 

 

the second invariant provides the power-law constitutive equation with material indifference (the 

power-law does not depend on a particular state of reference).  

 Eq. (5.6) can be broken down into the components remaining in the momentum equations 

(Eq. (5.2)-(5.3)) after only keeping the shear stress components parallel to the spreading 

surface: xz  (Eq. (5.7)) and yz  (Eq. (5.8)).   
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Rearranging and integrating (with respect to z) Eq. (5.2) and (5.3), I derive an expression 

for xz  and yz , and set them equal to Eq. (5.7) and (6.8). 
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 Using the relationship between 
z

u




and 

z

v




shown in Eq. (5.11), along with the no-slip 

boundary conditions, I solve for the velocity in the axial (Eq. (5.12)) and lateral (Eq. (5.13)) 

direction. 
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Please note from this point on, the variable ),,( tyxh will be expressed as h.  
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Eq. (5.12) and (5.13) are explicit expressions for velocity in the axial and lateral directions, 

respectively, where 
m

g
K


 . 

The flow rate per unit width, in the axial (Eq. (5.15)) and lateral (Eq. (5.16)) direction, is 

then found by inserting the velocity expressions into Eq. (5.14). 
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Using the flow rates in the axial (Eq. (5.15)) and lateral (Eq. (5.16)) directions, 

substituted into the conservation of mass (Eq. (5.17)), I arrive at the non-linear partial differential 

equation that governs the surface evolution.  
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 Eq. (5.15) and (5.16) are rearranged and simplified to make them more suitable for 

numerical discretization, where 

n

m

g

n

n
/1

cos

21





















. 

2
12

1

22

tantan
























































 n

n

n

x h
y

h

x

h

x

h
q   (5.18) 

2
12

1

22

tan
























































 n

n

n

y h
y

h

x

h

y

h
q   (5.19) 

By setting the shear-thinning index, n, to 1, and neglecting all terms relating to the lateral 

direction, and comparing it with its Newtonian counterpart found by Huppert [55], Eq. (5.17) is 

validated. Under the Newtonian approximation (n = 1), the flux terms (Eq. (5.18) and (5.19)) 

reduce to the flux terms found for the Newtonian model ((Eq. (4.11) and (4.12)) in Chapter 4. If 

the surface is flat and lateral spreading is neglected, Eq. (5.17) matches equations of the same 

form as in Gorodtsov [[89], eqn 5] and Gratton et al. [74], as mentioned by Betulu and Fontelos 

[90]. 

Numerical solution of the evolution equation  

In order to properly optimize a potential delivery vehicle, it is important to be able to perform 

a detailed sensitivity analysis of the spreading characteristics as a function of rheological 

parameters, inclination angle and time. Analytically solving Eq. (5.17) provides limited 
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information about the spreading at either a horizontal or vertical extreme. A numerical solution 

allows us to obtain the entire free surface profile as a function of space, time, inclination angle 

and rheological parameters. In addition, a working numerical model yields itself to be updated to 

account for other external forces (e.g. squeezing, shear, surface tension) and constitutive 

equations.  

As was done for the Newtonian numerical model in Chapter 4, the spreading domain is 

divided into a finite number of grid points. The evolution equation (Eq. (5.17)) was discretized 

using the central difference approximation (Eq. (5.20)).  
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The fluxes were discretized using central differences (Eq. (5.21)-(5.24)), centered about the node 

interfaces.  
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The discretized flux terms in Eq. (5.21)-(5.24) simplify down the discretized flux terms of 

Newtonian model (Eq. (4.16)-(4.19)) when setting n = 1 and after incorporating them into Eq. 

(5.20).    

Due to the fact that there will be no flux across the domain boundaries, the total volume of 

the fluid should stay constant throughout the simulation (Eq. (5.25)).  
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The flux terms must be discretized in such a way that the conservation of mass is satisfied. Any 

slight deviation from the initial fluid volume should only be a result of the truncation error and 

not a violation of mass conservation.  

 The flux in the axial direction contains a h/y term and the flux in the lateral direction 

contains a h/y term (referred to in this document as Perpendicular Derivatives). Therefore, in 

order to properly discretize these terms, the sum of each discretization over the entire domain 

must be equal to zero (Eq. (5.26) and (5.27)).  
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To satisfy Eq. (5.26) and (5.27), if one considers a random point, z, the following condition, for 

the flux in the axial direction, must be true to satisfy the conservation of mass: 

0
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This results in a technique for discretizing the h/y term in the axial flux equation and the h/x 

term in the lateral flux equation.  
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As a result of the more complex spatial discretization, the calculation of each point will 

now require more surrounding points (Figure 5.2). The subscript for each grid point can be 

matched to its physical location in Figure 5.2.  

 
Figure 5.2. Left: Domain for the numerical method discretized into NM points. Right: Points 

used in discretized Eq. (5.20) about a specific point, k. 

 

Applying Eq. (5.20) to the domain will result in TOT non-linear equations with TOT 

unknowns (Eq. (5.33)), where the superscript n represents the time step and the subscript k is the 

point in space. Each discretized point is now a function on 9 unknowns as opposed to the 5 

unknowns encountered in the Newtonian model. 
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As with the Newtonian numerical code, the system of non-linear equations was solved using 

Newton‟s method. The first norm of the height change, resulting from each Newton‟s iteration, 
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was used as the check for Newton‟s method convergence. Once the first norm of the height 

change falls below 10
-9

, Newton‟s method iteration is terminated and a solution for the new time 

step is accepted.  

The Preconditioned BiConjugate Gradient  (P-BiCG) method, used to solve the linear 

system encountered in each iteration of Newton‟s method, was set to iterate until the second 

norm of the residuals converges below 10
-6

. Including more points in the calculation will result 

in more non-zero elements in the Jacobian matrix. For this specific case, there will now be a total 

of 9 non-zero elements, as opposed to the 5 for the Newtonian simulation. The P-BiCG linear 

system solver was modified to accommodate these elements in the sparse matrix. In the event 

that one might want to include surface tension into the evolution equation, the Jacobian matrix 

would grow to 12 non-zero elements and a further update would be required to the linear system 

solver.  

Mesh convergence study 

A mesh convergence study, identical to the one described in Chapter 4, was completed 

for the power-law numerical code.  

In order to determine if the shear-thinning parameter had an influence on numerical 

convergence, a convergence study was conducted with all the parameters identical to the 

Newtonian code study (Chapter 4), but with the shear-thinning parameter, n, set to 0.5. 
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Figure 5.3. Convergence of Axial Spreading (Lfront) as a function of time, for varying dx (dy kept 

constant). This figure shows axial spreading convergence with decreasing mesh size for each 

time point of the simulation. Input Parameters: (α = 30, dy = 0.01, t – adapted,                         

m = 707.11 Ps
n-1

, n = 0.5 NEWT = 10
-9

, BiCG = 10
-6

) 

 

 As was evident in the Newtonian convergence study, the power-law numerical code is 

also showing numerical order. The solution of axial spreading seems to converge to a specific 

solution, as the mesh in the axial direction is made finer. For the remainder of this chapter I 

performed all simulations using dx = dy = 0.01, which found results with acceptable accuracy 

(within 1mm of finer mesh sizes), without a great sacrifice to computational performance. The 

Newtonian code showed that convergence in the lateral direction is similar to the axial direction. 

I assumed that because the power-law code showed clear convergence in the axial direction, 

almost identical to the Newtonian code, it would show the same convergence in the lateral 

direction.  
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Validating the numerical solution 

The two techniques I chose for validating the power-law code were: (1) to compare it with 

the Newtonian code and (2) to compare the spreading profile to an analytical solution that 

satisfies the evolution equation (Eq. (5.17)).  

Technique 1 - Compare with numerical solution of Newtonian code 

In the same manner as validating the evolution equation, the numerical solution was 

validated by comparing it to the Newtonian code, with n = 1 and m = µ. The spreading results of 

power-law code and Newtonian code were in complete agreement.    

Technique 2 - Compare with similarity solution 

Assuming mostly convective flow, )/(tan xh  , as occurs at steep inclinations, the 

evolution equation is simplified to neglect any diffusive components, including the diffusive flux 

in the lateral direction. Eq. (5.34) is the convective component of the power-law evolution 

equation (Eq. (5.17)).  
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Recognizing that Eq. (5.34) takes the form of a non-linear advection equation and its 

commonalities with the material derivative of h, the solution to the convective component of Eq. 

(5.34) is found by solving for h, which is constant along the characteristics of the form:   
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The method of characteristics (as outlined by Huppert for a Newtonian fluid [55]) and 

consideration of times far beyond the initial condition, t , provides the height profile of the 

free surface. 
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This similarity solution satisfies the convective component of the evolution (Eq. (5.34)). 

Considering a Newtonian fluid, Eq. (5.36) reduces to Huppert‟s similarity solution [55]. Perazzo 

and Gratton [74] found a similar expression for the similarity solution, which also satisfies the 

evolution equation, but with an extra term that is a function of the shear-thinning index. This 

dissimilarity appears because, I believe, Gratton‟s et al. constitutive equation has a mistake, 

which is carried as a constant through the entire derivation and ultimately ends up in the solution. 

Even with the extra term, the evolution equation is satisfied because the terms cancel.    

The free surface of the 3-D numerical model was compared with the free surface of the 2-D 

similarity solution at 90 sec of spreading. Qualitative assessment of Figure 5.4 confirms that the 

numerical and analytical solutions are in complete agreement. The numerical solution shown in 

Figure 5.4 is a cross-section of the free surface that was cut along the midpoint of the lateral 

plane.  

The slight discrepancy between the numerical and the analytical solutions of the free surface 

at the leading edge is likely the result of the diffusive component, which seems to have an added 

effect on the 3-D numerical model by diffusing a slight current in the lateral direction, resulting 

in slower propagation of the wave front in the axial direction (Figure 5.4).  

An investigation of the 2-D numerical model (not shown) confirmed that the numerical 

solution is indeed invariant of the initial condition. The size of the initial condition does not 

change the gradient of the free surface, but rather the axial location of Lnose. In fact, the location 

of Lnose, which is almost Lfront for very steep slopes, appears to be directly affected by the initial 

area under the free surface, A.  
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Figure 5.4. Comparison of height profile, at 90 sec of spreading, obtained from the 3-D 

numerical model and the similarity solution. There is good agreement between the numerical and 

similarity solution, validating the numerical method. Input parameters for both solutions:  = 

60, m = 1000 Ps
n-1

, n = 0.75. Note: The profile of the 3-D numerical model is cut at the 

centerline along the lateral axis.  

  

One does not need to know the exact shape of the initial condition, but can find an expression 

for the axial location of the wave crest as a function of time by recognizing two key points: (1) 

The initial area of the spreading bolus,  dxtxhA ),( , will remain constant as the bolus 

spreads (Eq. (5.37)), and (2) for a very steep slope the nose can be approximated at the same 

location as the front [55].  
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Results 

Each numerical simulation was carried out on the ITTC computing cluster at the 

University of Kansas. For 90 sec of spreading, the 3-D simulations took approximately 120 

hours, while most 2-D simulations required less than 24 hours of computation. 

 The topography of the height evolution of spreading power-law simulations is similar to 

the results of the Newtonian numerical model, presented in Chapter 4. Nevertheless, 

incorporating non-Newtonian shear-thinning effects caused noticeable changes to spreading 

characteristics.  

2-D and 3-D Numerical Models Compared with Experiment 

As explained in Chapter 3, I conducted a total of 9 spreading experiments on HEC gels, 

with 2.4%, 2.7% and 3.0% HEC tested in triplicate (each concentration of HEC consisted of 3 

runs: R1-R3). Each numerical simulation corresponds to a specific experiment by incorporating 

the surface topography of that experiment‟s initial condition. Therefore, a total of 9 numerical 

simulations were conducted using the 2-D and 3-D numerical code. Each simulation used the 

experiment‟s initial condition obtained in Chapter 3 and input rheological properties for the 

respective HEC concentration. The 2-D code used the profile of the free surface as sliced along 

the axial axis at the lateral midpoint of the experimental domain.  

As expected, gels with higher concentrations of HEC did not propagate as far in either the 

axial or lateral direction, when compared to gels with lower concentrations. In addition, 

experiments showed that the moving front at the leading edge decelerated in the axial direction 

as the free surface became smoother (less steep slopes), regardless of HEC concentration.  
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Figure 5.5 presents sample spreading profiles of the experiment alongside the numerical 

model for a 2.4% HEC gel. Both the experimental data and the 3-D numerical model 

demonstrate that the gels, regardless of HEC concentration, do not accelerate in the axial 

direction – as one might suspect given that gravity is the primary driving force. In fact, judging 

by the velocity profiles of the leading edge (Figure 5.5), the gel will eventually stop spreading as 

the curvature of the free surface decreases.  

 
Figure 5.5. Sample spreading characteristics (black) and the axial velocity of the moving front 

(red) for a sample 2.4% HEC R1 with experimental IC. Black (Left axis): Axial (Lfront) and 

lateral (W) spreading as a function of time for 2-D and 3-D models, and experiment. Red (Right 

axis): Velocity of the moving front as a function of time for 2-D and 3-D models, and 

experiment. This figure shows that both the 2-D and 3-D numerical models overestimate axial 

spreading when compared with experiment, but the 3-D model is a considerable improvement 

over the 2-D model.  

 

It is clearly evident that accounting for lateral spreading has an effect on spreading in the 

axial direction, and drastically improves agreement between the numerical model and 
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experiment. Lateral spreading is only due to slumping, since the spreading surface is not directed 

downhill along the lateral direction. Because the experimental data shows that most lateral 

slumping plateaus at approximately 30 seconds, we conclude that a balance must be reached 

between the gels internal (e.g. viscous and surface tension) and external driving factors (e.g 

gravity). This is not happening in the numerical models, which might indicate that there is an 

internal force (e.g. surface tension) that any future simulation might need to take into account.  

 
Figure 5.6. Comparison of axial spreading (Lfront) of 9 experimental runs (3 runs of 2.4%, 2.7%, 

and 3.0% HEC concentration), and 9 numerical simulations that used the corresponding 

experimental initial condition obtained in Chapter 3. The 3-D power-law model shows 

considerable improvement over the 2-D power-law model, when comparing with experiment. 

Experiment (dot), 3-D Numerical Model (solid), 2-D Numerical Model (dashed).  
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The speeds of the leading edge seem to disagree at the beginning of the experiment, but 

all reach a plateau of similar values for later times. The experiment reaches what seems to be a 

constant axial velocity at approximately 70 seconds, which is a similar observation for both the 

2-D and 3-D numerical models. Nevertheless, the 3-D numerical model approaches the 

experiment much sooner, and seems to plateau at a constant velocity that is closer to the 

experiment than the 2-D numerical model.  

In Figure 5.6, the conclusions reached for a single run of 2.4% HEC are consistent with 

the other HEC concentrations and experimental runs. Each numerical simulation was carried out 

using the experimental initial condition obtained in Chapter 3.  

In all cases, axial spreading of the 2-D numerical model overestimates the experiment. 

There is substantial agreement between the experiment and 3-D numerical model to say that it is 

capable of predicting the experiment within 1cm. These results satisfy the hypothesis that 

accounting for lateral spreading would noticeably improve the numerical model‟s agreement 

with experiment. 

Comparing the different initial condition approximations in numerical simulations 

A study was conducted to determine the importance of the initial condition used in the 3-

D numerical simulation. For each of the 9 experimental runs, I computed a numerical simulation 

that used: (1) the initial condition obtained by using the surface topography image acquisition 

algorithm described in Chapter 3 (referred to in this document as: „Real IC,‟ and used for all 

previous results), and (2) an approximation of the initial condition described in Eq. (5.38), where 

the coefficients a, b and hmax are chosen for the profile to match the experiment in maximum 

length, width and height within 1mm of the measured values.   
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As a result, the benefits of using a more accurate initial condition were inconclusive, 

when comparing the spreading profiles with experiment. In fact, some cases showed that using 

an approximate initial condition was computationally more efficient without a noticeable change 

to spreading characteristics. The results from this work are not shown in this dissertation because 

the spreading curves comparing the two initial condition approximations are practically 

indistinguishable.   
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  Figure 5.7. Axial spreading (Lfront) of 3-D power-law simulations compared with 9 experimental 

runs. First row shows 3 runs of 2.4%HEC gels, and the second and third row show 2.7% HEC 

and 3.0% HEC, respectively (vertical-axis scales of each row are different). From these plots, it 

appears as if the experimental IC slightly improves agreement with experiment, but Figure 5.9 

will show that this is misleading. 
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Figure 5.7 shows axial spreading characteristics of the power-law computational model, 

using real and approximate initial conditions, compared with experiment. Ostensibly, it appears 

that using an approximate initial condition actually slightly improves agreement between model 

and experiment. In each of the 9 comparisons, the power-law model overestimates the 

experiment at the initial phases of spreading and using an approximate initial condition seems to 

decrease this affect. Figure 5.8 shows that for a 2.7% HEC gel, the approximate initial condition 

does not spread as far in the initial stages of spreading because it takes approximately 0.5 

seconds for the center of mass to move closer to the leading edge and advance the contact line.  
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Figure 5.8. An example of 3-D power-law model spreading using two different initial conditions 

and compared with experiment, for a 2.7% HEC gel. Top Left: Surface topography of Real IC, 

obtained using method outlined in Chapter 3. Bottom Left: Surface topography of approximate 

IC, obtained using Eq. (5.38) with bulk geometry dimensions of Real IC. Top Right: Axial 

spreading (Lfront) vs. time for computations using Real and Approximate Initial Conditions, 

compared with experiment (same as Figure 5.8 – 2.7% HEC R1). Bottom Right: Axial 

spreading vs. time for computations using Approximate and Real Initial Conditions at early stage 

of spreading. This figure shows that the improved agreement between Approximate IC and 

experiment seen in Figure 5.8 is misleading, and is a result of the “waiting time solution” [52].     

This phenomenon is known as the waiting time solution [52] and it can be thought of as an 

additional variable of error influencing the computational model. The slight improvement of the 
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approximate initial condition over the real initial condition is purely coincidental because the 

power-law model tends to slightly overestimate axial spreading, while the “waiting time 

solution” phenomenon, seen when using an approximate initial condition, caused a slight delay.    

Parameter and Sensitivity Analysis 

 All sensitivity analyses were conducted for a simulation set to spreading on a 30 incline 

for 90 seconds. Eq. (5.38) was used to construct the initial condition, with Wmax Lmax  hmax 

were set to: 2cm  2cm  0.5cm.  

 A non-dimensional parameter analysis has been completed for the 2-D numerical model 

[3]. Because the spreading profiles between the 2-D and 3-D numerical models were so 

dissimilar, I present a separate 3-D numerical analysis to determine the effect of power-law 

parameters and gravity on spreading range in a given time and inclination, and spreading rate, 

which was not included in the original 2-D analysis. In addition, I will present a novel “percent” 

sensitivity analysis to determine how fractional changes to the power-law parameters impact 

spreading.  I hope for this analysis to be used as a preliminary step for optimizing potential 

delivery vehicles, based on desired clinical performance and external driving factors such as 

inclination angle.  

 In this document I will consider the shear-thinning and consistency index ranges most 

applicable to microbicides. For that reason I will discuss a fluid with pseudoplastic behavior, 

with a consistency index within the range of 200 to 600 P s
n-1

.  Figure 5.9 shows final axial 

spreading lengths of a 90 second simulation at different values of n and m, for a total of 9 data 

points. Overlaying dashed lines computed at slightly different values of n show increases to axial 

spreading as a result of marginal (10% increase) changes to the power-law parameters can be 



104 

 

approximated by the general curve, but as I will show later in this chapter, these changes are 

more complicated than they may appear.  

 
Figure 5.9. Axial spreading length (Lfront) after 90 sec of spreading, for different values of n and 

m. The solid lines indicate the original parameter study presented in Figure 5.11, while the 

dashed lines represent an identical parameter study after increasing the values of n by 10%. This 

figure shows that the trends can be used to roughly predict axial spreading after slight changes to 

the power-law parameters. Note: m  consistency index [=] Ps
n-1

; n  shear-thinning index. 

 

 The contour plots for the power-law parameter analysis show the final position of the 

moving front, Lfront, after 90 sec of spreading, which is the same data as is shown by the solid 

lines of Figure 5.9. Axial spreading values were recorded for n = 0.3, 0.6, and 0.9; and m = 200, 

400, and 600, and a MATLAB interpolation algorithm is used to reconstruct the contour plots. 

Figure 5.10 shows that fluid with smaller values of m and smaller shear-thinning effects (i.e. 

larger n) will spread further in the axial direction, at a given inclination angle. 

 The angle of each contour line can be reasoned to represent the relationship between the 

two parameters: n and m. A vertical contour would translate to mean that axial spreading is 

independent of the consistency index. A horizontal contour would indicate that axial spreading is 
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independent of the shear-thinning index. A contour slanted at a 45 degree angle represents that 

both parameters hold approximately equal weight within their own range.  

 
Figure 5.10. Contour lines of axial spreading (Lfront [=] cm) as a function of power-law 

rheological parameters. Created using 9 numerical simulations and interpolated using a 

MATLAB algorithm. This figure shows that within the ranges of m and n considered, both 

parameters have near equal impact on axial spreading. Also, maximum spreading in the axial 

direction occurs at higher values of n (near Newtonian) and lower values of m. Note: m  

consistency index [=] Ps
n-1

; n  shear-thinning index. 

 

Influence of Gravity to Viscous Force Ratio on Axial Spreading 

 In an effort to analyze the dependence of multiple variables on axial and lateral 

spreading, Eq. (5.17) was non-dimensionalized according to the transformations in Eq. (5.40)-

(5.43) to arrive at the non-dimensional PDE (Eq. (5.44)).  

Hhh /ˆ   (5.40) 

Hxx /ˆ 

 

(5.41) 

Hyy /ˆ 

 

(5.42) 
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For the 2-D numerical model, preliminary parameter analysis showed that no noticeable axial 

spreading would occur until after the gravity forces begin to dominate over viscous forces (not 

shown in this dissertation). We do not see this constraint for the 3-D numerical model. In fact, 

we see that the 3-D numerical model starts to show signs of spreading earlier, but will spread less 

at later times. The early onset of spreading is most likely due to the fact that both fluxes have a 

convective and diffusive component.  

Figure 5.11 shows the relationship between axial spreading and the ratio of gravity to 

viscous forces. The curves for the lateral component of spreading appear to have the same trends 

as the axial curves and are not shown in Figure 5.11. In the beginning stages of each of these 

simulations, Figure 5.11 shows a plateau resulting from the fact that gravity forces must take a 

moment to overcome the viscous forces, and sufficient mass must accumulate at the leading edge 

(h/x at the leading edge must be sufficiently high) for the contact-line to propagate. 
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Figure 5.11. Non-dimensional parameter study of 3-D numerical power-law model, showing the 

dependence of axial spreading on the ratio of gravity to viscous forces. This figure relates axial 

spreading to the ratio of gravity to non-Newtonian viscous parameters, which allows for the 

isolation of certain parameters during analysis. Note: Lfront/H  ratio of axial spreading to 

characteristic height; m  consistency index [=] Ps
n-1

; n  shear-thinning index; t’  ratio of 

gravity to viscous terms. 

 

As seen in the 2-D numerical model, the relationship between the axial propagation and the ratio, 

t̂ , is constant for any consistency index along the shear-thinning iso-lines. By following a single 

n iso-line, one is able to eliminate a single variable from the analysis. For example, at a specific 

value of m, n and , the fluid will spread up to a certain point: t = t1 along the n iso-line. As t 

increases, axial spreading will follow that same iso-line regardless of m. Therefore, if given a 

specific n value, and a desired axial spreading, Lf, one could deduce how changes to m or  

would impact axial spreading characteristics. It is also worth noting that the slope of a given 

curve can be used to find the instantaneous velocity of the moving contact line (Eq.(5.39)), 

which could be used to draw the same conclusions as above, but for the relationship between the 

inclination angle, rheological properties, and the velocity of the moving contact line. 
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Influence of Power-law Parameters of Spreading Rate 

 The following parameter analysis examines how the change in velocity of the traveling 

front depends upon the power-law rheological parameters. I define a change-of-rate indicator, , 

which represents the relative deviation of Lfront vs t, from a completely linear (i.e. constant 

velocity) relationship  

s

sL

A

AA
f

)( 


 

(5.40) 

where 
fLA  is the area under the Lfront vs t curve, and As is the area under the same curve 

assuming that it is a straight line (i.e. constant velocity). For example, if the velocity of the 

spreading front is more constant, then the change-of-rate indicator approaches zero.  

 
Figure 5.12. The effect of the shear-thinning index, n and the consistency index, m (Ps

n-1
) on the 

change-of-rate indicator, . This figure shows that as m increases and n decreases, axial 

spreading rate of the contact line approaches steady-state.  
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The parameter is larger if velocity is not constant. Figure 5.12 shows that both the consistency 

index and the shear-thinning index influence the acceleration and deceleration of the spreading 

front. According to Figure 5.12, minimizing the shear-thinning index would make the axial 

spreading profile more linear with respect to time (constant velocity), except for in cases where 

the consistency index is very low. In addition, increasing the consistency index would have the 

same effect of creating a more constant spreading velocity. These trends are in agreement with 

the ones found using the 2-D numerical model. It should be noted that for all other factors kept 

equal, the change-of-rate indicator for a 3-D model would be higher than the 2-D model.         

Influence of Marginal Changes to Power-law Parameters on Axial Spreading 

 A percent change sensitivity analysis of the power-law parameters was conducted to 

determine the influence of small changes to n and m at different baseline values of n and m. This 

kind of sensitivity analysis could be used to predict how small changes to the power-law 

parameters, from things like delusion or temperature changes, will impact axial spreading for a 

given time. While it may appear from Figure 5.9 that small changes to the shear-thinning index 

will result in predictable behavior, a closer look reveals that the spreading response to these 

slight changes is actually quite complicated. 

I define percent sensitivity of axial spreading, to percent changes in a power-law 

parameters, as Eq. (5.41), where Lfront, original is the value of Lfront at 90 sec of spreading for a 

given power-law parameter (i.e. n or m), and Lfront, cange is the value of Lfront at 90 sec of spreading 

after making a 10% change to the power-law parameter.  

%100
,

,,




originalfront

originalfrontchangefront

L

LL
 (5.41) 
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The original values for Lfront are presented in the axial spreading data in Figure 5.9 and 5.10. 

Figure 5.13 shows percent sensitivity of axial spreading to changes in the shear-thinning index. 

A gel with a large value of m and n ~ 0.6 is most sensitive to small changes in n.  

 
Figure 5.13. Contour lines showing percent (%) sensitivity of axial spreading (Lfront (t = 90sec)) 

to 10% increase in n. This figure shows highest sensitivity at: m~ 600 Ps
n-1

 and n ~ 0.6.  

Note: m  consistency index [=] Ps
n-1

; n  shear-thinning index. 

 

  

 Figure 5.14 shows percent sensitivity of axial spreading to changes in the consistency 

index. Figure 5.14 shows that making 10% changes to m will result in the most drastic changes 

to axial spreading at lower values of n and m.  

Figure 5.15 shows contour lines of percent changes to axial spreading after making 10% 

changes to n (increase) and m (decrease). The contour lines show that the most evident increase 

in axial spreading occurred when changing m and n at mid ranges. 
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Figure 5.14. Contour lines showing percent (%) sensitivity of axial spreading (Lfront (t = 90sec)) 

to 10% decrease in m. This figure shows highest sensitivity at: m~ 200 Ps
n-1

 and n ~ 0.3. Note: m 

 consistency index [=] Ps
n-1

; n  shear-thinning index. 

   

 
Figure 5.15. Contour lines showing percent (%) sensitivity of axial spreading (Lfront (t = 90sec)) 

to 10% decrease in m and increase in n. This figure shows highest sensitivity at: m~ 400 Ps
n-1

 

and n ~ 0.6. Note: m  consistency index [=] Ps
n-1

; n  shear-thinning index. 
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 Discussion  

 2-D vs. 3-D numerical power-law model compared with experiment 

Gravity-induced spreading simulated using the 3-D numerical model showed acceptable 

agreement with experiment. As hypothesized, it is a substantial improvement over the 2-D 

numerical model. The main area of concern is the fact that the 3-D numerical model seems to 

consistently have a greater initial velocity, but agrees well with the experiment at later times. 

Another point worth considering is the fact that the 3-D numerical model consistently 

overestimates spreading in the lateral direction. Both of these shortcomings could be a result of 

several factors, such as surface tension or an inadequate modeling of rheological parameters, that 

must be investigated in future work and will be further discussed later in the chapter.  

Experimenting with different initial conditions 

I compared numerical simulations using an approximate and an experimental (real) initial 

condition. Because the experimental initial condition might have drastic curvature at the 

spreading front, incorporating this geometry is challenging in terms of acquisition and 

computational efficiency. Nevertheless, neglecting the slope of the free surface at the leading 

edge has been found to directly contribute to inconsistencies between the computational model 

and experiment. The evolution equation is a function of the fluid‟s physical properties, but the 

evolution of the free surface is actually driven by the slopes at the free surface. Therefore, as the 

center of mass moves towards the leading edge, the slope of the free surface at the leading edge 

becomes steep enough to move the contact line. The time it takes for the center of mass to move 

to the leading edge and propagate the contact line is a source of error, referred to as the “waiting 
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time solution [52].” This phenomenon was observed for all nine simulations that used an 

approximate initial condition. Therefore, the second hypothesis is accepted.  

When using a more accurate initial topography, a good time adaptation algorithm is 

recommended because the initial time step might need to be greatly reduced to facilitate 

convergence of Newton‟s method. The time adaptation technique described in this document was 

straight foreword to implement and effective.  

Starting simulation at t = 60 seconds 

 A direct comparison between the model and experimental spreading reveals that the 

computational model has an initial burst of velocity, which is not seen in the experiment. In order 

to rule out the shape of the initial condition as the primary cause of this inconsistency, I 

compared the two spreading profiles after setting the initial condition to be at: t = 60 seconds.  

 Figure 5.16 shows the spreading characteristics of a 3-D power-law model computing a 

2.7% HEC gel, with initial conditions at different intervals of time. Previous data has compared 

to computations conducted using an initial topography obtained at the instant when the plunger 

broke contact with the gel, shows as the dashed line (same data as in Figure 5.6). This data is 

now being compared with a simulation that considered the initial condition at t = 60 seconds, 

shown as a solid line. Both plots show an overestimation of axial spreading at the onset, and 

improved comparison at later times. As a result, the lubrication approximation can be ruled out 

as a possible cause of the differences between model and experiment, and other factors such as 

the constitutive equation should be investigated.   
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Figure 5.16. Original power-law model (dashed) vs. experiment (dotted) axial spreading data 

(seen in Figure 5.6) for a 2.7% HEC gel, compared with power-law model with initial condition 

starting at t = 60 seconds (solid). Starting with an initial condition at t = 60 seconds does not 

prevent the model overestimation of axial spreading at onset.   

Sensitivity Analysis 

In this study, I conducted a parameter study and sensitivity analysis to attempt to 

understand the relationship between the shear-thinning index, consistency index, and axial 

spreading characteristics. An in-depth understanding of these parameters and their influence on 

spreading can be a valuable tool for designing and optimizing a microbicide gel for maximum 

effectiveness.  

It is straightforward to assume a direct link between both rheological parameters and 

axial spreading. I presented a sensitivity analysis showing that both the consistency index and the 

shear-thinning index have a direct impact on a spreading characteristics. For a microbicide 

design application, one would need to consider the fact that: as the shear-thinning index 
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decreases, the axial distance the fluid would spread in a given time will decrease. Also, as the 

consistency index decreases, the axial distance the fluid spreading in a given time would 

increase. Therefore, it appears that both parameters have an influence on spreading, but further 

analysis was conducted to determine the weight of each parameters contribution.  

All the experimental and numerical data presented in this dissertation was limited to a 

single angle of inclination (α = 30). I presented a non-dimensional parameter analysis that 

introduces the relationship between axial spreading and the ratio of gravity to viscous forces.  

An inconsistency between the compared experimental and theoretical data is the fact that 

there is an acceleration of the moving front in the numerical simulations, which is not seen in the 

experiment. In fact, experimental data shows minimal acceleration and deceleration during the 

experiment, for all three HEC concentrations. The parameter analysis presented in this document 

shows that the rate of axial spreading is directly a function of the power-law parameters. I 

conclude that the velocity of the moving front becomes steady as the consistency index increases 

and the shear-thinning index decreases. For a microbicide application, it might be desirable to 

use gels with constant velocity spreading characteristics. This would make approximating their 

spreading behavior very straightforward.  

A study that investigates the sensitivity of axial spreading to marginal changes of the 

power-law parameters was completed to approximate how factors such as dilution would impact 

the gels expected spreading characteristics. This study concluded that a gel’s axial spreading 

behavior is most sensitive to 10% increase in n at large values of m and n ~ 0.6. In addition, a 

gel’s axial spreading behavior is most sensitive to 10% decrease in m for very shear-thinning 

fluids at low values of m. Finally, a gel at approximately mid range (n ~ 0.6 and m ~ 400) would 

be most sensitive to simultaneous 10% changes of both n (increase) and m (decrease). For a 



116 

 

microbicide application, research needs to be done to determine how diluting polymeric gels will 

influence power-law parameters. Once completed, this analysis can serve two purposes: (1) act 

as guide for approximate values necessary for fluids needed to spread in a specific way, and (2) 

forecast of how a given fluid might behave once it is introduced into an environment where it 

might be diluted by fluids in its surroundings. Given the limited rheological data presented in 

Chapter 2, 3.0% HEC would be most sensitive to simultaneous 10% changes in both m and n. 

Otherwise, none of the gels tested in this study would be expected to have an extreme sensitivity 

to changes in n or m.  

This sensitivity analysis is done in the absence of surface tension; therefore we are able to 

isolate the effects of rheological properties on spreading characteristics. Because the current 

model will eventually be incorporated into a master model that accounts for shearing and 

squeezing forces, the inclusion of surface tension seems irrelevant. Nevertheless, in Chapter 7 I 

provide a detailed discussion of the possible impacts of including surface tension into the power-

law numerical model.  

Discussion of the evolution of flow for a numerical model: 

 For a Newtonian fluid, the evolution of the numerical height is strictly a function of the 

gradient of the free surface. Because the simulation has no sense of momentum (the calculations 

at each time step are only a function of the immediate surface topography), the driving factor for 

the flow is a function of the surface topography at the immediate time step. At the beginning of 

the simulation, the gradients of the free surface can be relatively high; therefore the maximum 

shear rate at those locations, and within the bolus, would also be high. As the free surface 

becomes smoother, the shear rate within the fluid also decreases causing the rate of spreading to 
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subside. This is seen in the Lfront vs. t profile of the Newtonian numerical simulation. When 

considering a fluid with pseudoplastic rheological characteristics, as the free surface becomes 

smoother and the maximum shear rate within the bolus decreases, the apparent viscosity of the 

fluid would increase. This would further add to the deceleration of the spreading evolution. 

 The range of expected shear rates in a spreading bolus depend on the topography of the 

free surface and the shear-thinning index. Table 5.1 reports the maximum shear rate within a 

fluid for a typical simulation.  

 

 
Figure 5.17. Visualization of shear rate within the spreading bolus. (a) Initial condition of the 

free surface topography. (b) The free surface after spreading for 90 seconds. (c) and (d) the shear 

rates, at z = 0.001 cm, (color bar - 1/s, where RED = max and BLUE = min) of the topographies 

in Figures a. & b., respectively. Input Parameters:  = 30, n  = 1 (Newtonian), m = 500 P s
n-1

. 

This figure shows that the highest shear rates are seen at the leading edge, near the spreading 

surface, and for this simulations are below ~ 1/s.  
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 For these simulations, the upper bound for a possible shear rate within the fluid is 

approximately 1/s. The lower bound could vary; therefore it is unclear whether accounting for a 

Newtonian plateau will prove to be advantageous. 

 When determining the power-law rheological parameters, n and m for a given HEC 

concentration, I fit to a larger range of the controlled shear rate (   s/1100,01.0 ) even though 

the numerical simulation might never encounter such high values. This results in a model that is 

not limited by the inclination angle, because a steeper angle would clearly increase the shear rate. 

n Time (sec) max|z = 0.001 cm (1/s) max|z = 0.4 cm (1/s) 

1 
0 0.72 0.1 

90 0.51 --- 

0.5 
0 0.48 0.01 

90 0.09 --- 

0.1 
0 0.10 10

-9 

90 2.6e-5 --- 

Table 5.1. Expected ranges of shear rate for a spreading bolus evaluated at a different time, hear-

thinning index, and elevation along the z-axis (the fluid depth). Input Parameters:  = 30, m = 

500 P s
n-1

, n = 1. 

Future Work 

There are several improvements that could add to the accuracy and effectiveness of this 

numerical model: 

1. Incorporating a constitutive equation that fits to the rheological data more closely 

(Chapter 6). 

2. Accounting for the elastic storage of energy in the fluid. 

3. Accounting for surface tension in the evolution equation.  

4. Loosening the no-slip boundary condition – There is always the question of the 

influence of fluid-structure interaction on spreading. In most fluid mechanics 
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applications, analyzed on a macro scale, implementing the no-slip boundary 

condition is standard practice. Nevertheless, preliminary experiments and other 

literature [78] suggest that changing the spreading surface can drastically alter 

spreading characteristics. In Chapter 7, I will present some background for this 

complex issue, and possibly the importance of accounting for slip in the future.  

5. An important note to consider is the fact that using the lubrication approximation 

becomes more justified at later times than for the initial time frame. If one considers 

the maximum height and length to be the characteristic values, the conditions: 

H/L<<1 and 1
2


T

H




 become more accurate for later time points because the 

maximum height will decrease, and the maximum length and time will increase. This 

might be one of the explanations for why the theory matches the experiment better as 

time progresses. Nevertheless, this would be the last approximation that I would 

recommend for someone to reconsider because without it the math would become 

almost unmanageable and it is probably not contributing to a large amount of error 

when compared with the other approximations in this list.  

 

Before investing time and effort into any of these endeavors, it is important to isolate a 

single factor that might result in the biggest improvement to the theoretical model. This concept 

is also not trivial. As I will show in the next chapter, implementing a different constitutive 

equation could either improve or worsen the model‟s agreement with the experiment, depending 

on how the equation‟s parameters are obtained.  
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Conclusions 

 In this chapter, I presented a numerical simulation of a finite bolus of power-law fluid 

spreading down an incline. The numerical simulation shows convergence to a single solution, as 

the spatial mesh is made finer. Also, the numerical solution shows good agreement with a 

similarity solution that was confirmed to satisfy the power-law evolution equation. This satisfied 

the engineering goal of the first sub-objective and the second overall objective of this work.  

 I used my computational simulation to determine the advantages of accounting for lateral 

slumping and an initial condition that more accurately resembles the experiment. I confirmed my 

first hypothesis that a 3-D numerical model does improve agreement with experiment over a 2-D 

numerical model, and my second hypothesis that incorporating a more accurate initial condition 

does result in better agreement with the experiment. 

 Finally, I completed the remaining engineering goals and sub-objectives of Objective 3, 

by completing a unique power-law parameter and parameter sensitivity analysis, which is 

directly applicable to developing and testing future microbicide delivery vehicle candidates.    

 While I am certainly not the first person to model the free surface spreading of power-law 

fluid, as far as I know this is the first numerical solution for the evolution of the free surface of a 

spreading power-law fluid. While others have documented this preliminary parameter analysis 

for Hershel-Bulkley fluid, and have done some simulations without a yield stress, the parameter 

and sensitivity analysis in this work is extensive and can be directly applied to microbicides. 

Moreover, the governing equations are solved using a numerical technique which is confirmed to 

conserve mass and agree with a similarity solution, and is an excellent framework for 

experimenting with other constitutive equations and boundary conditions.  
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Chapter 6 THE ELLIS MODEL  

Introduction 

 Achieving our group‟s long-term goal means developing a microbicide delivery vehicle 

with desired spreading characteristics. To do this it is necessary to develop a math model that can 

account for non-Newtonian viscous forces. This chapter will address the second overall 

objective: to develop a numerical model of a non-Newtonian fluid spreading, in 3-dimensions, 

due to gravity. 

Significance and Chapter Goals 

 A technique was outlined in Chapter 5 that resulted in a 3-D power law numerical model 

capable of simulating shear-thinning flow. A drawback of the evolution equation was the use of a 

constitutive equation that did not account for Newtonian plateaus in the rheological data (refer to 

Chapter 2).  

OBJECTIVE 4: Incorporate the Ellis constitutive equation into the 3-D numerical model 

developed in Chapter 4.  

The hypothesis of this objective is that, because the Ellis model considers the Newtonian 

plateaus in the rheological data, its spreading results will match the experiment closer than the 

power-law model.  

Sub-Objective 4.1: Derive an evolution equation, in 3-D, using the Ellis constitutive 

equation and solve it using the numerical method developed in Objective 2.  
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The engineering goals of this sub-objective are to derive an evolution equation with Ellis 

parameters that includes axial and lateral fluxes, and solve it numerically, to be used in 

later sub-objectives.  

Sub-Objective 4.2: Perform numerical simulation for 2.4%, 2.7% and 3.0% HEC 

gels using the 3-D power-law and Ellis code (using exact IC) with rheological 

parameters obtained by fitting to the viscometric data, and compare the spreading 

characteristics of each simulation with its experimental counterpart. 

 The hypothesis of this sub-objective is that the Ellis code will match the 

experimental spreading characteristics better than the power-law code. 

The engineering goal is to run the simulations and determine if it is more 

beneficial to perform computational simulations of HEC spreading using the Ellis 

constitutive equation.  

Sub-Objective 4.3: Perform a rigorous Ellis parameter sensitivity analysis and 

document the impact of rheological parameters and axial spreading.  

 The engineering goal of this aim is to perform a parameter study of the Ellis 

numerical model and provide a framework for predicting how changes to the three Ellis 

parameters would impact axial spreading, which could be useful for numerous 

applications in addition to microbicides. 

   

 This work includes several novel contributions to advance the field of microbicide 

development and free surface fluid dynamics. As far as I know, this thesis contains the original 

derivation of the free surface evolution equation of an Ellis fluid. As a result, this is also an 

original numerical solution of this equation. Using the numerical solution, I will show how the 
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Ellis parameters influence axial spreading, which is useful for any application in addition to 

microbicide development.  

Review of Relevant Literature 

For a review of relevant literature discussing Ellis rheology and using the Ellis 

constitutive equation in spreading models please refer to the introductions of Chapters 2 and 4, 

respectively.    

Methods 

Evolution Equation for a Free Surface Flow 

The mathematical model presented in this chapter simulates a gel coating the vaginal 

epithelium as a finite bolus of a Ellis fluid spreading down an incline. The fluid is analyzed using 

the conservation of linear momentum combined with the Ellis constitutive equation, which is an 

improvement over the power-law because it accounts for the Newtonian plateau observed for 

HEC fluids at low shear rates.   

Implementing a similar approach as for the Newtonian (Chapter 4) and power-law 

(Chapter 5) models, I start by solving the conservation of linear momentum (Eq. (6.1)) where 

v~ and g~ are the velocity and gravity vectors respectively, ~  is the shear stress tensor, p is the 

pressure and   is the density. The analysis presented in this chapter deviates from the 

Newtonian model after the Ellis constitutive equation is introduced, particularly because writing 

out the tensor invariants results in a function of two tangent vectors.  



124 

 

gpvv
dt

vd ~~~11~)~(
~

 


 (6.1) 

The velocity vector v~ is broken down into its Cartesian coordinates: u, v, w in the x, y, z 

directions respectively. The same assumptions are made as in Chapter 4: 

1. Thin-film Approximation (Appendix A1) 

2. No slip at the sliding surface 

a. Boundary Condition 1: u(z = 0) = v(z = 0) = 0 

3. The free surface of the gel is exposed to ambient air at pressure po. 

a. Boundary Condition 2: at z = h(x,y,t)   zx = zy = 0 

b. Boundary Condition 3: at z = h(x,y,t)   p = po 

After incorporating the thin-film approximation, and keeping only the relevant stress 

components, the momentum equation (Eq. (6.1)) is reduced to three governing equations of 

motion where  is the angle of the ramp with respect to the horizontal (Figure 5.1).  

x-direction: 


sin0 g
dz

d

dx

dp xz   (6.2) 

y-direction:
dz

d

dy

dp yz
0  (6.3) 

z-direction:  cos0 g
dz

dp
  (6.4) 

 The pressure term is derived using Eq. (6.4) and Boundary Condition 3.b, where op  is the 

pressure at the free surface and gets cancelled out during integration. 

   opztyxhgp  ),,(cos  (6.5) 
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In this chapter the fluid will be modeled using the 3-D Ellis constitutive Equation that 

relates the viscosity to the second invariant of the stress tensor, 22

yzxz   : 













 


1

2/10

1
11






 (6.6) [88] 

In Eq. (6.6), 0  is the zero shear rate viscosity,   is the measure of shear-thinning behavior, and 

2/1 is the stress at which the apparent viscosity has dropped to half its zero value. The relevant 

components of the stress tensor are presented in Eq. (6.7) and (6.8). 

z

u
xz




 )(   (6.7) 

z

v
yz




 )(   (6.8) 

The equations for the relevant stress components are derived using Eq. (6.2) and (6.3) along with 

Boundary Condition 3.b, to express stress as a function of h(x,y,t), which will be presented 

simply as h. Constant 1T  and 2T  are also introduced and will be used in subsequent expressions.  

     hzThz
x

h
gxz 













 1tancos   (6.9) 

  )(cos 2 hzThz
y

h
gyz 












   (6.10) 

Plugging Eq. (6.9) and (6.10) into Eq. (6.7) and (6.8) results in two simultaneous equations that 

require algebraic manipulation to solve for an expression for the relevant shear rates: 
z

u




 and 

z

v




. Integrating each shear rate with respect to z, and using the no-slip boundary condition, 

results in an expression for velocity in the axial and lateral directions.  
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Only velocity in the axial direction is presented here (Eq. (6.11)), where 2

2

2

1 TTA  .  The 

expression for lateral velocity is identical, but with T1 replaced with T2. Integrating the velocities 

in the axial and lateral directions, using Eq. (6.12), I find the mass flow rate per unit width (Eq. 

(6.13) and (6.14)). 
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Plugging Eq. (6.13) and (6.14) into the conservation of mass (Eq. (6.15)), I arrive at the 

evolution equation for an Ellis fluid that will be solved numerically for h(x,y,t). 

0
),,(


dy

dq

dx

dq

dt

tyxdh yx  (6.15) 

  

Numerical solution of the Ellis evolution equation 

 Eq. (6.15) was solved using the numerical techniques outlines in Chapter 4 and 5, and 

was discretized according to Eq. (6.16),   
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where 
o

g





2

cos
 . The spreading domain was divided into N points along the axial direction 

and M points along the lateral direction (Figure 5.2). Each flux term was discretized about the 

half-node using central difference approximations, and just as for the power-law model, each 

axial flux contained a h/y term, and each lateral flux contained a h/x term (defined as 

perpendicular derivatives in this document). In an effort to satisfy the conservation of mass, the 

“perpendicular derivative” terms were discretized according to the strategy described in Chapter 

5.  
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Applying Eq. (6.16) to every point on the numerical domain will result in TOT non-linear 

equations with TOT unknowns. The non-linear system was solved using Newton‟s method set to 

converge as the first norm of the height changes falls below 10
-9

. Each iteration of Newton‟s 
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method solved a linear system of equations using the P-BiCG method, set to converge as the 

second norm of the residuals fell below 10
-6

. In the event that either Newton‟s method or the P-

BiCG method did not converge within 10 and 100 interaction, respectively, a time adaptation 

was completed, which is described in detail in Chapter 4.  

Mesh Convergence Study 

 A mesh convergence study, identical to the one described in Chapter 4, was completed 

for the Ellis numerical code. In order to verify that the Ellis parameters would not interfere with 

the convergence of the numerical method, the study used typical parameters that might be 

encountered in a microbicide application.  

 
Figure 6.1. Convergence of Axial Spreading (Lfront) as a function of time, for varying dx (dy kept 

constant). This figure shows axial spreading convergence with decreasing mesh size for each 

time point of the simulation. Input Parameters: (α = 30, dy = 0.01, t – adapted,                         

m = 707.11 Ps
n-1

, n = 0.5 NEWT = 10
-9

, BiCG = 10
-6

) 

 

This convergence study is identical to the one performed for the Newtonian and power-law 

numerical models, and the results also appear to be similar. In fact, the Newtonian code showed 

that convergence in the lateral direction is similar to the axial direction. I assumed that because 
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the Ellis code showed clear convergence in the axial direction, almost identical to the Newtonian 

code, it would show the same convergence in the lateral direction.  

   The Ellis numerical model is showing order, just like the Newtonian and power-law 

models. The solution of axial spreading seems to converge to a specific solution, as the mesh in 

the axial direction is made finer. Just like for the power-law model, for the remainder of this 

chapter I perform all simulations using dx = dy = 0.01, which provided results with acceptable 

accuracy (within 1mm of finer mesh sizes), without a substantial burden on computational 

performance. 

 

Validating the Numerical Solution 

 An advantage of the power-law numerical model was that comparing it with a known 

Newtonian solution easily validates it. The Ellis constitutive equation has common parameters 

with the power-law constitutive equation, but there is no straightforward way of matching the 

Ellis parameters to the power-law model in order to validate the computation. The Ellis code 

conserved volume throughout the simulation with 0.001%, regardless of the duration of 

spreading, which is a good way of confirming that numerical error is not accumulating. One 

option for validating the actual numerical solution is to derive an analytical solution to Eq. (6.15) 

that can be used to compare the free surface of both solutions.   

Derivation of the Similarity Solution 

 To simplify the original evolution equation, I neglect any diffusive spreading and 

assumed: tan  >> (h/x), as is seen for a very steep inclination angle or smooth topography. 

Note that because I neglect diffusive spreading, this becomes a 2-D problem with all spreading 

occurring in the axial direction. The original evolution equation (Eq. (6.15)) is simplified to:  
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 Eq. (6.21) takes the form of a non-linear advection equation, which can be solved by 

setting the characteristic equation to: 
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This method for solving these types of equations was originally introduced by Huppert [55] for a 

Newtonian fluid. The solution of Eq. (6.22) is x(t), where h(x(t),t) is a constant that is restricted 

to a characteristic curve. After integrating Eq. (6.22), it become evident that it is not possible to 

explicitly solve for h(x,t). Therefore, I used Newton‟s method to solve for h at discrete points 

along the axial axis, at a given time. The convergence criteria for each solution of Newton‟s 

method is when the first norm of the residuals falls below 10
-15

.  
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Figure 6.2. Comparison of height profile, at 54 sec (dashed) and 90 sec (solid) of spreading, 

obtained from the Ellis numerical model and Ellis similarity solution. Agreement between the 

numerical and similarity solutions is improved at as t∞. Input parameters for both solutions: 

rad55.1 , 5.1,/600,1000 2

2/1   cmDynePo .  
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 Because the 3-D numerical model will result in a singularity if it is computed at  = /2, 

some diffusive elements contributed to spreading. Nevertheless, after 15 seconds of spreading, 

the numerical solution seems to agree with the similarity solution within approximately 0.5mm, 

and this agreement is improving as spreading time increases, as can be seen for the comparison 

at 25 sec of spreading. This result is encouraging because the analytical solution becomes more 

accurate as: t  , and the diffusive components of the numerical solution are minimized.  

Results 

 Each numerical simulation was carried out on the ITTC computing cluster at the 

University of Kansas. For 90 seconds of spreading, the 3-D Ellis simulations required 

approximately 120 hours of CPU time. The Ellis constitutive equation incorporated into the 

numerical model results in surface evolution topographies similar to the Newtonian and power-

law models. As with the other models, the spreading characteristics of the Ellis model are 

strongly dependent on the rheological parameters: o , 2/1 , and  .  

Comparison of how fitting rheology technique impacts the numerical solution when 

compared with experiment 

 As was explained in Chapter 2, there were several rheometry options for obtaining the 

Ellis rheological parameters from fitting to the HEC data. Simulations ran with parameters 

obtained from using each rheometry technique would result in, sometimes, drastic changes to the 

axial spreading characteristics. Therefore, I present data for the spreading characteristics 

obtained from using each fitting technique: T1 – T4. Table 6.1 shows sample data for a 

2.7%HEC gel along with a short explanation of each rheometry technique.  
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Rheometry 

Technique 
Description 

o 

(Poise) 
1/2 (Dyne/cm

2
)  R

2
 

T1 
Least-squares fitted to the 

residuals 
1813.00 151.40 2.045 0.9950 

T2 
Least-squares fitted to the log of 

the residuals 
1370.50 331.70 2.700 0.9888 

T3 
Relationship between power-

law and Ellis (Eq. (2.6)) 
1370.50 61.41 1.800 0.8320 

T4 

Fitted with shear rate vs. stress 

form of the Ellis equation (Eq. 

(2.4)) 

1590.00 174.01 2.461 0.9925 

Table 6.1. Summary of rheometry techniques and their values for a 2.7% HEC gel. 

 

Figure 6.3 shows a comparison of the spreading simulations when using different input 

parameters, obtained from different strategies for obtaining rheological data. Each plot contains 

experimental spreading data to determine which rheology technique results in a more accurate 

simulation. 

 
Figure 6.3. Comparison of axial spreading (Lfront) of 9 experimental runs (3 runs of 2.4%, 2.7%, 

and 3.0% HEC concentration), and 9 numerical simulations, each using different Ellis data, that 

used the corresponding experimental initial condition obtained in Chapter 3. The T3 technique 

produces best agreement with experiment.  
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It appears that technique‟s: T1, T2, and T4, spreading solution underestimates the experimental 

data, especially for fluids with a lower HEC concentration. The rheology technique: T3, slightly 

overestimates experimental spreading for 2.7 and 3.0 % HEC concentrations, while 

underestimating spreading at later times for 2.4% HEC gels. In all cases, regardless of the 

technique, the initial spreading rate of the numerical simulations is larger than the experiment.  

The 3-D power-law and Ellis numerical models compared with Experiment 

 Figure 6.4 presents comparisons of the spreading characteristics of: the 3-D Ellis 

numerical model, 3-D power-law numerical model, and the experiment. The Ellis model is 

showing similar spreading traits to the power-law model. In both cases, the velocity of the 

leading edge appears to reach a plateau at a similar point in the spreading process, although the 

Ellis model is in slightly better agreement with experiment.  

 
Figure 6.4. Sample spreading characteristics (black) and the axial velocity of the moving front 

(red) for a sample 2.4% HEC R1 with experimental IC. Black (Left axis): Axial (Lfront) and 

lateral (W) spreading as a function of time for 3-D power-law and Ellis models, and experiment. 

Red (Right axis): Velocity of the moving front as a function of time for 3-D power-law and 

Ellis models, and experiment. There is not a noticeable difference between the two models. 
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For both the Ellis and power-law models, lateral spreading characteristics appear to be 

practically identical and both overestimate the lateral spreading observed in the experiment. The 

experiment shows slight lateral spreading at the beginning of the spreading process, and quickly 

approaches a plateau. Both numerical models also appear to be approaching a plateau, but at 90 

seconds of spreading, there is approximately a 1cm difference between the theory and the 

experiment.   

 Figure 6.5 shows a comparison of the power-law and Ellis models with all 9 experiments. 

When considering a T3 rheology technique, the Ellis model slightly improves agreement with 

experiment when compared to the power-law model. In all cases, the comparison of the power-

law and Ellis model shows that the final rate of spreading is practically identical, but the Ellis 

simulations show a slight decrease in the initial spreading rate, which results in a closer fit to 

experiment at later times. 

 
Figure 6.5 Comparison of axial spreading between the 3-D Ellis model and power-law model for 

9 experimental runs. All nine runs show a slight improvement in the comparison with experiment 

for the Ellis model. Shown, with each row of plots at different scales, is the: experiment (dot), 3-

D numerical power-law model (solid), 3-D numerical Ellis model (dashed) with T3 technique for 

obtaining rheology values. 
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Parameter study of the Ellis rheological parameters 

 A detailed sensitivity analysis of the Ellis parameters gives insight into the complex 

relationship between the three parameters of the model and spreading characteristics. The 

simulations shown in Figures 6.6 and 6.7 present a parameter study of the Ellis parameters, and 

their influence on axial spreading. Each simulation was completed using an initial condition 

identical to the one used for the power-law sensitivity analysis (Chapter 5). Lfront of the initial 

condition was 2cm, and each simulation was computed for 40 seconds of spreading.  

 Figure 6.6 shows that the highest values of axial spreading, for a 40 second simulation, 

occur at lowest values of all three Ellis parameters. 

 
Figure 6.6. Contours show axial spreading (Lfront) at 40 seconds for different parameter values. 

The first row plots show contours of Lfront over a range of 1/2 and 0, at different values of . 

The second row plots show contours of Lfront over a range of 1/2 and , at different values of 0. 

The third row plots show contours of Lfront over a range of 0 and , at different values of 1/2. 

The contours in each plot are created using 9 data points, and interpolated using a built in 

MATLAB algorithm. Note: o  zero shear Newtonian viscosity plateau [=] Poise; 1/2   (1/2 

o) [=] Dyne/cm
2
;   measure of shear-thinning behavior. 
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The first row of Figure 6.6 shows that as becomes smaller (i.e. less shear-thinning), the contour 

plots become more linear and vertical for a relationship between 1/2 and o, indicating that 

changes in 1/2  have little impact at low . The contour lines within the plot of 1/2 vs. , appear 

to be practically unchanged for different values of o, indicating that o impacts axial spreading, 

but does not change overall dependence of axial spreading to 1/2 and  as o changes. Finally, as 

1/2 decreases, the contour plots for a o vs.  relationship become more horizontal, suggesting 

that spreading becomes more independent of  as 1/2 decreases. 

 
Figure 6.7. Contours show rate-of-change indicator at 40 seconds for different parameter values. 

The first row plots show contours of Lfront over a range of 1/2 and 0, at different values of . 

The second row plots show contours of Lfront over a range of 1/2 and , at different values of 0. 

The third row plots show contours of Lfront over a range of 0 and , at different values of 1/2. 

The contours in each plot are created using 9 data points, and interpolated using a built in 

MATLAB algorithm. Note: o  zero shear Newtonian viscosity plateau [=] Poise; 1/2   (1/2 

o) [=] Dyne/cm
2
;   measure of shear-thinning behavior. 
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An important parameter to consider, when investigating the Ellis variables impact on 

spreading, is variation in the velocity of the leading edge. The data presented in Figure 6.7 

computes the change-of-rate indicator, , which represents the relative deviation of Lfront vs t, 

from a completely linear (i.e. constant velocity) relationship.  

Figure 6.7 shows that the lowest values of the curvature factor, implying constant 

velocity of the leading front for a 40 second simulation, occur at higher values of all three Ellis 

parameters. The first row of Figure 6.7 shows that as becomes smaller, the contour plots 

become more linear and vertical for a relationship between 1/2 and o, indicating that at lower 

values of  the rate of spreading becomes independent of 1/2. The second row of Figure 6.7 

shows that at higher values of o, the change-of-rate indicator will be smaller for a given 

simulation meaning the rate of spreading will stay more constant, but the impact of other 

variables cannot be excluded. Also, regardless of o, the contour lines become horizontal at 

higher values of  , and smaller values of 1/2, indicating that in that specific region the change-

of-rate indicator is independent of . 

Discussion and Conclusions 

In this chapter I present the derivation and numerical solution of the evolution of the free 

surface of an Ellis fluid being perturbed by gravity. As the spatial mesh is made finer, the 

numerical solution converges to a single solution. Comparing the shape of the free surface with a 

similarity solution also validated the numerical solution. In Chapter 2, I considered 4 techniques 

for fitting the Ellis constitutive equation with the rheology data, and I present the results from 

using each technique in numerical simulations.  
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Different techniques for fitting to the rheological data 

It appears that the rheological parameters obtained from using the fitting technique, T3, 

results in the best axial spreading agreement with experiment. For most of the other rheology 

techniques the spreading characteristics appear to be consistently underestimating the spreading 

in the axial direction, and especially underestimating the velocity of the leading edge for 

approximately the final 40 seconds of spreading. For that reason, it appears that the T3 

technique, which obtains it‟s rheological parameters from their relationship to the power-law 

parameters and a measured low-shear rate viscosity, is the optimal choice for modeling gravity-

induced spreading of HEC gels, and will be the data being discussed for the remainder of this 

chapter.   

Comparing Ellis, power-law and experimental spreading characteristics 

 At the beginning of spreading, both models overshoot axial spreading rate when 

compared with experiment, but the Ellis model is a slight improvement over the power-law. As a 

result, the Ellis model slightly underestimates axial spreading at the later stages of the 

experiment, which could be interpreted as a more accurate estimate of the entire 90-second 

spreading process. 

 For both models, lateral spreading seems to considerably overestimate the experiment, 

and I can conclusively declare that switching to the Ellis constitutive equation possess no 

advantage in this respect. Possible solutions to this problem are discussed in Chapter 7 and might 

be implemented in future work.  

 The Ellis model provides an improvement over the power-law model, when comparing 

axial spreading with experiment. Nevertheless, this improvement comes from using rheology 

technique (T3) obtained from using a fitting strategy that yielded the worst R
2
 values, implying 
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that either the constitutive equation is incomplete or some other driving factor is unaccounted 

for.  

 The result of my original hypothesis, that the Ellis constitutive equation would improve 

the theoretical agreement with experiment, remains inconclusive. It appears that the technique 

for obtaining the Ellis input parameters could dictate the efficacy of the computational model for 

predicting free surface HEC flow. Here I concluded that a T3 rheology technique does 

consistently show an improvement over the power-law model, for HEC gels, when considering 

flow in the axial direction. For a microbicide application, the prediction of the Ellis model could 

be a sufficient tool for performing in depth sensitivity analysis to predict the behavior of HEC 

flow after application. Nevertheless, considering a 3-parameter model, such as the Ellis, does not 

currently pose a clear advantage over the less complicated, 2-parameter, power-law model, 

which allows me to conclude that when modeling HEC gels in the concentrations considered for 

microbicide application, accounting for the low-shear rate Newtonian viscosity does not improve 

the numerical models agreement with experiment.  

 In order to improve the agreement between computational simulation and experiment, 

future work would need to incorporate one of the following improvements: (1) a different 

constitutive equation that accounts for the gel‟s elastic behavior, (2) surface tension, which might 

lessen the lateral slumping, (3) account for slip at the fluid-solid interface. This will be discussed 

in further detail in Chapter 7. 

Ellis Model Parameters Study 

 Thorough parameter analyses of the Ellis model can provide insight into the complex 

interrelationship between the parameters themselves, and their impact on spreading 

characteristics. An understanding of this relationship can be useful for optimizing or predicting 
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the behavior of any fluid with a rheological relationship that fits well with an Ellis constitutive 

equation. Regardless of whether this may be useful for microbicide development, this kind of 

parameter analysis can be useful for understanding the role each parameter plays to contribute to 

a specific spreading profile.   

 The primary conclusion reached from the parameter analysis was that decreasing each 

parameter will result in an increase in axial spreading. Furthermore, increasing each parameter 

will cause the spreading rate of the traveling front to remain more constant. This is an important 

conclusion, but is somewhat oversimplified, as it does not explain the contribution of each 

variable or whether these conclusions are applicable to each scenario.  

 The parameter study was also useful for recognizing the fact that under certain 

conditions, changes to one Ellis parameter over another could cause minimal changes to axial 

spreading, but in another scenario changes to that parameter might considerably impact 

spreading characteristics. The contour plots for axial spreading indicated that as  approaches 

unity, axial spreading appears to become independent of 1/2. Moreover, the contour lines are 

getting steeper, implying that this spreading is becoming more dependent on o. This 

conclusions makes sense because as  approaches unity, the fluid assumes a more Newtonian 

behavior, therefore most of the dependence of flow lies on the low-shear rate viscosity, which 

will not drastically change throughout the simulation. Also, at low values of 1/2, the level of 

non-Newtonian behavior () does not really matter; therefore axial spreading is mostly dictated 

by the value of o. For any application where it is of interest to know how changes to the Ellis 

parameters could impact spreading characteristics, Figure 6.6 could be used as a preliminary 

guide for making these estimations. 
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 Figure 6.8 summarizes these results and presents a conceptual graphic intended to be a 

reference of how Ellis parameters impact spreading characteristics. As a fluid‟s properties 

approach the origin, axial spreading is increased and the rate of the spreading front will have lots 

of variation during the spreading process. By identifying where a given fluid lies on this plot, it 

is possible to predict how external factors, such as dilution, might impact spreading, but 

obviously the first step would need to be an understanding of how delusion impacts the Ellis 

rheological parameters. Assuming that a relationship between delusion and the Ellis properties 

are known, after identifying where a given gel might lie in Figure 6.8, one might be able to 

narrow down the gels behavior to 2 of the 3 parameters.  

 
Figure 6.8. A preliminary interpretation of the Ellis rheological parameters and their impact on 

axial spreading. This figure is intended to give a guideline for predicting how changing a single 

parameter might influence spreading characteristics for a give fluid.  

 

The contour plots of velocity changes show lines becoming vertical as  approaches unity, 

suggesting that in this range the rate of axial spreading is independent of 1/2. The second row of 

plots in Figure 6.7 simply reinforces the fact that the rate of spreading of the leading edge 
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becomes more constant as each of the three parameters increases. Even though the variation of 

the rate of spreading of the leading edge seems to increase as 1/2 becomes smaller, its 

dependence on 1/2 decrease. Furthermore, this dependence almost seems to become reversed as 

1/2 becomes very small. The nearly horizontal contours shown in the o vs.  plots, for different 

values of 1/2, reinforce that: for smaller values of o, the variation in the rate of axial spreading 

becomes independent of , regardless of 1/2. Furthermore, at higher values of o, the relationship 

between o and  becomes very dependant on 1/2. In fact, if a constant rate of spreading were 

required, for smaller values of 1/2, an increase to  would require a corresponding increase to o 

to remain on the same contour line. The relationship at higher values of 1/2 is completely 

reversed, whereas an increase to  would require a corresponding decrease to o to remain on the 

same contour line. 

Future Work  

 At this point, it is unclear if using this model for simulating HEC fluid is optimal. 

Improvement similar to the ones suggested for the power-law model, with the exception of the 

one proposing to change the constitutive equation, would also undoubtedly improve this models 

agreement with experiment. Nevertheless, because this model did not improve its agreement with 

experiment over the power-law model, I would not recommend perusing it further for simulating 

HEC fluids within 2.4-3.0% concentration. Nevertheless, if a potential fluid did have a strong 

dependence on the low-shear rate viscosity, in order to properly use the parameter analysis in this 

study, it is important to first find the relationship between solute concentrations and rheological 

parameters. For a microbicide application, such as the one presented in this document, the solute 

would clearly be HEC and its concentration could change after application. 
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Conclusions 

In this chapter, I presented a novel numerical simulation of a finite bolus of Ellis fluid 

spreading down an incline. The numerical simulation shows convergence to a single solution, as 

the spatial mesh is made finer. Also, the numerical solution shows good agreement with a 

similarity solution that was confirmed to satisfy the Ellis evolution equation. This satisfied the 

engineering goal of the first sub-objective and the second overall objective of this work. As far 

as I know, this is the first derivation and numerical solution governing the free surface of an Ellis 

fluid spreading due to gravity. 

Comparing the Ellis and power-law numerical models with the experiment, I address the 

hypothesis of Sub-Objective 4.2 by concluding that accounting for the low-shear rate viscosity, 

for the HEC gels considered in this study, does not improve agreement between theory and 

experiment. Consequently, I would not recommend using the Ellis model for the simulation of 

HEC fluids being considered in this study.     

Finally, to satisfy Sub-Objective 4.3, I conduct an Ellis parameter study to determine the 

influence each parameter on spreading and spreading rate. This analysis can be applicable to any 

field of study interested in the spreading of fluids that are well represented using the Ellis 

constitutive equation. This might include other candidates for microbicidal gels that were not 

considered in this study, such as methylcellulose gels or HEC gels at higher concentration.  
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Chapter 7 Discussion and Application 

The overall objective of this work was to develop a microbicide delivery vehicle that is 

capable of acting as a reliable pharmaceutical delivery medium and barrier to the vaginal 

epithelium. Our research group believes that a reliable numerical model that simulates the 

spreading of a potential vehicle can be used to predict the efficacy of a specific fluid and a tool 

for conducting efficient and cost effective sensitivity analysis of the fluid‟s rheological 

parameters, in order to optimize the fluid‟s spreading and coating characteristics. In addition, a 

bench top experimental apparatus and software that is capable of providing spreading 

characteristics in a domain that closely resembles in vivo conditions can be used as a validation 

for the numerical model and as another tool for predicting a fluid‟s spreading behavior after 

application.   

 To arrive at a “Master Model” of the fluid spreading in a virtual environment of a 

female‟s lower reproductive track, a complete numerical simulation must account for gravity, 

shearing and squeezing perturbation forces. In addition, because a potential vehicle will likely be 

a cellulose-based polymeric fluid, a crucial aspect of a reliable model would be to capture the 

vehicle‟s rheological properties, which would dictate the fluid‟s behavior resulting from internal 

stresses. Also, as I will discuss in more detail in the “Future Work” section, while accounting for 

each perturbation force it is important to consider the interaction between the fluid-solid 

interfaces. Simply implementing the no-slip boundary condition might be acceptable for models 

compared with flow experiments conducted on Plexiglas surfaces, but would oversimplify the 

gel spreading on biological epithelial tissue, which is coated in other ambient fluids. This 
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ambient fluid could not only change the gels composition, but might drastically undermine the 

no-slip boundary condition.   

General Conclusions 

 The work presented in this document was restricted to free surface flows of non-

Newtonian fluids. To satisfy the first overall objective of this work, and the first objective of this 

dissertation, in Chapter 3 I presented an apparatus, image analysis software and procedure for 

conducting environmentally controlled spreading experiments, and obtaining the fluid‟s 

spreading characteristics and surface topography. To satisfy the second overall objective of this 

work, in Chapters 4, 5, and 6 I presented numerical models simulating the free surface, gravity-

induced flow of Newtonian and non-Newtonian fluids using different constitutive equations, and 

compared the results with experiments.  

Hypothesis: 3-D model will improve agreement with experiment over 2-D model - 

Confirmed 

 The power-law and Ellis models were reasonably effective for predicting the axial 

spreading of HEC gels, especially when using 3-D modeling. In fact, 2-D numerical modeling 

noticeably overestimated axial spreading, when compared with experiment, and the 3-D model 

greatly improved that overestimation.  

 Both the power-law and Ellis models were somewhat unsuccessful at modeling lateral 

spreading. Experimental data showed that gels would typically slump in the lateral direction for 

approximately the first 30 sec of spreading and then maintain a somewhat constant width for the 

remainder of the experiment. The computational simulations, regardless of the constitutive 

equation, showed that typically lateral spreading was approaching a plateau after 60 seconds. 
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Therefore, during the 90 second simulation, the computational spreading characteristics would 

overestimate the experiment by approximately 5mm. 

Hypothesis: Incorporating local surface gradients into the numerical initial condition will 

result in better agreement with experiment, when compared with an initial condition that 

only includes bulk dimensions - Confirmed 

 Using the power-law numerical model, I tested if accounting for local surface gradients 

on the free surface of the initial condition would improve the numerical model‟s estimation of 

experiential spreading at later times. Surprisingly, using a numerical initial condition that 

matched the free surface of the experiment did not improve agreement between model and 

experiment, when compared with an initial condition that was a 4
th

 order approximation (Eq. 

(5.38)) of the experiment‟s topography (matching only the maximum height, length and width). 

In fact, using an approximate initial condition slightly improved agreement with experiment. 

Nevertheless, because the 3-D power-law model slightly overestimates axial spreading, using an 

approximate initial condition caused this overestimation to be inhibited because of a “waiting 

time” solution [52]. It took time for the center of gravity to advance to the leading edge and 

move the contact line; therefore the overall movement of the contact line was delayed when 

compared with a computation that used a real initial condition. Therefore, I conclude that 

incorporating an accurate topography of the experimental initial condition is a critical model 

consideration, when comparing model with experiment. Because the evolution of the free surface 

is mostly governed by the derivatives of the height variable, the values of this variable being 

input into the initial condition must be consistent with the experiment, with which the numerical 

model is being compared to.  
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Hypothesis: Accounting for the low-shear rate Newtonian viscosity by using the Ellis 

constitutive equation would improve agreement with experiment over the power-law 

constitutive equation – Inconclusive and conditional 

 Both models approximated the experimental axial spreading within 1 cm for the entire 90 

sec simulation. For both the power-law and Ellis models, the initial spreading velocity of the 

fluid was noticeably greater than experiment, although the Ellis model did show a slight 

improvement over the power-law when using a T3 technique for obtaining rheological 

parameters.   

 A serious limitation of the Ellis model is the fact that there are several ways of fitting to 

the rheological data, and each technique results in different values of the Ellis parameters leading 

to different model behavior. In addition, the fact that the Ellis model did not provide 

considerable improvements of the power-law model allows me to conclude that the low-shear 

rate Newtonian viscosity is not a driving parameter for the gels considered in this document. 

Therefore, I would not recommend using the Ellis model to simulate the gels being considered in 

this study, but it might be necessary for a gel with a larger low-shear rate Newtonian plateau. An 

important implication of this conclusion is that for 2.4-3.0% HEC gels, 0 is not critical and can 

be left out of the parameter analysis. 

Application 

 Only conducting gravity-induced analysis is obviously oversimplifying the true nature of 

the problem. Therefore, even sensitivity analysis of the numerical models presented in this 

document are useful for getting an idea of how specific rheological parameters influence 

spreading characteristics, but cannot be directly extrapolated to a vaginal drug delivery 
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application. Nevertheless, before assembling a complete “Master Model”, it is useful to isolate a 

single perturbation variable, as is being done in this document. This type of study can clearly 

allude to the validity of the constitutive equation because the nature of this type of flow is easier 

to model experimentally, and allows for direct comparisons between theory and experiment.  

 To give an idea of how a parameter analysis could be used, I present a practical example 

of using the presented data for optimizing a potential delivery vehicle, when considering only 

free surface flow. This can be combined with models that account for other perturbation forces to 

get a more accurate relationship between gel physiochemical property values and coating 

characteristics. In this discussion, the example is only intended as proof of concept. Here I show 

how to identify sample target values for n and m depending on some general anatomical 

parameters, desired spreading time, and inclination angle. Assuming that the gel only needed to 

cover approximately 3 cm in 90 sec, at α = 30, a gel with an n = 0.3-0.6 and m = 350-600 Ps
n-1

 

would be the target rheological values (from Fig. 5.9). If in a patient specific scenario, the target 

distance is increased to 5 cm, a gel with an n = 0.8-1 and m ~ 200 Ps
n-1

 would be the target 

rheological values. Parameter analysis to accommodate larger domains would need to be 

computed for longer times, or at steeper inclination angles, or both. As discussed in Chapter 5, 

specific ways of looking at non-dimensional data, as presented in Figure 5.11, can be used to 

approximate how changes to inclination angle or spreading time would influence a gel with 

specific physiochemical properties. Moreover, the numerical code presented in this document, 

combined with other models accounting for different perturbation forces, can be used to conduct 

a full mapping of vaginal coverage length, inclination angle, and tissue elastic properties and 

their target rheological parameter values.  

  



149 

 

 The zero-shear rate parameter, 0, included into the Ellis model will increase axial 

spreading as its value is decreased. Nevertheless, this work does not find 0 to be a critical 

parameter for the HEC concentration range considered. It is possible that this parameter must be 

considered for different concentrations of HEC or other solutes.   

 Part of the reason for why it is important to conduct detailed percent sensitivity analyses 

is because once the fluid is introduced to a vaginal environment; its rheological characteristics 

could change due to dilution resulting from high humidity and surrounding fluid, and 

temperature changes. If only considering gravity, the analysis in Chapters 5 and 6 can give a 

framework of how small changes to the fluid‟s composition might impact spreading 

characteristics. In future work, a parallel study is necessary to document how changes to a 

solute‟s concentration will influence changes to n and m. The sensitivity analysis conducted in 

Chapter 5 showed that if dilution caused a 10% increase to n and decrease to m, axial spreading 

can change by up to 8.2%, on a 30 incline. If a gels chemical composition change was to impact 

a single power-law parameter, the influence on axial spreading would be reduced. Also, the 

impact of delusion is dependent on the original concentration of the gel. Axial spreading is most 

drastically changed for power-law fluids with original m and n values of 400 Ps
n-1 

and 0.6, 

respectively. Changes to axial spreading for gels starting with other original power-law values 

were between 6.8% and 8.0%, within the ranges of m and n presented in Chapter 5. Future work 

should focus on changes to axial spreading for fluids within a larger range of original power-law 

values and at different inclination angles.   
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Suggested Improvements to the Numerical Model 

It might appear as if the overestimation of spreading in the lateral direction, and 

spreading rate in the axial direction at the onset of spreading, is a direct result of the fact that 

surface tension was neglected. Therefore, it is possible that accounting for increased tension at 

the free surface would limit spreading in the lateral direction and possibly decrease the initial 

outburst at the start of the simulation. While this is a valid hypothesis, which should be 

investigated in future work, it‟s important to avoid devoting time and effort to a strategy that 

might not result in drastic or even noticeable improvements. In fact, the Bond number (ratio of 

gravity forces to surface tension) for a typical flow discussed in this dissertation is much greater 

than 1 (typical values for this dissertation are 38-220), which would suggest that the original 

decision to neglect surface tension is reinforced. On the other hand, in the side view profile of 

the experiments and topographical measurements (Figure 3.9) we see that the fluid develops a 

capillary ridge, which would imply that the effect of surface tension might not be negligible after 

all.  

 

 One might point out that correcting the 3-D model to predict less slumping in the lateral 

direction would effectively cause more mass to propagate in the axial direction, causing yet 

another inconsistency with experiment. This is not necessarily true because: (1) the decrease in 

maximum height of the numerical model overestimates the experiment by approximately 2-3 mm 

suggesting that improving the overestimated lateral spreading could also improve agreement in 

terms of maximum height, and (2) the shape of the cross-section of the fluid along the lateral 

plane could be noticeably different after improving lateral overestimation.   
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Discussion of surface tension 

Bin Hu (University of Kansas, Mechanical Engineering) has been investigating the 

impact of surface tension on microbicidal gels. He found that it can result in instabilities at the 

moving contact line (“fingering”) and that surface tension can directly impact spreading 

characteristics. Incorporating surface tension into future numerical models is possible, but first 

analysis of the flow vectors might give insight into whether this update would improve the 

models agreement with experiment.  

Gratton et al. [74] introduced a method for incorporating surface tension effects into the 

evolution equation. Making the following replacements to the flux terms (Eq. (7.1 & 7.2)): 
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(7.2) 

where  is the surface tension (units), results in a modified evolution equation that 

incorporated surface tension as a driving factor. Figure 7.1 shows the flow rate per unit width 

vectors for a free surface, with and without surface tension. These plots were made by 

incorporating Eq. (7.1) and (7.2) into the power-law flux terms and evaluating them for a generic 

topography (Figure 7.1a).  The model that does not incorporate surface tension seems to have a 

very dominating axial flow along its center, and then starts to diffuse outward at the edges. In 

addition, the flow at the trailing edge seems to be going in the opposite direction from the flow at 

the leading edge. It makes sense that this would happen at the initial stages of spreading, and it is 

seen in the experiments also. For the model that solves for surface tension, there also seems to be 
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dominating axial flow along the center, but it gets shorter at the leading edge than it is within the 

bulk of the fluid.  

 
Figure 7.1. Comparison of flow rate per unit width for a simulation with and without surface 

tension. (a) Contours of free surface (b) flow rate per unit width vectors without surface tension 

(c) flow rate per unit width vectors with surface tension:  = 40 (units). 

Visco-elastic representation of the fluid 

 I hypothesize that a more likely culprit for most inconsistencies between the model and 

experiments is the constitutive equation. I suspect that only accounting for the gels pseudoplastic 

behavior is insufficient. Therefore, I would suggest exploring other constitutive relationships that 

account for the fluid‟s elastic component, and factors such as relaxation. This is by no means a 

trivial task, and it could result in a considerable burden on computation, even if an evolution 

equation can be explicitly written. 

Constitutive models that account for a fluid‟s viscoelastic behavior could be an important 

improvement on the current numerical simulations. An example of such a model is the Maxwell 
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constitutive equation. This can account for the relaxing internal stress in response to strain, and 

the constant internal stresses resulting from elongation.   
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Where,  is the relaxation time in sec, and 0 is a function which accounts for the viscous and 

elastic components of a Maxwell element. Eq. (7.1) is a first order ODE, and incorporating it into 

the evolution equation is more difficult than the power-law and Ellis equations.  

Incorporating a yield stress 

 Most of the discussion, the entire derivation, and numerical solution  in this section was 

originally presented by Kieweg [3]. In this document, I reintroduce some of the issues that I 

consider relevant and show some original data of parameter analysis of a Herschel-Bulkley 

model.  

 Even though the current placebo is a shear-thinning fluid with some elastic properties, a 

reasonable assumption for future microbicide candidates is that the delivery vehicle will contain 

some sort of yield. After coating the inner lumen, some type of internal stress would be 

necessary to retain the gel under the continued influence of gravity, squeezing and shear forces.  

 An in-depth literature background on mathematical modeling of fluids that exhibit a yield 

stress is presented in Chapter 4. The goal of this discussion is to introduce how a yield stress 

would be incorporated into the master model, while still considering shear-thinning behavior.  

A fluid which exhibits both shear-thinning and yield stress behavior can be modeled by a 

Herschel-Bulkley constitutive equation [65]: 
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Eq. (7.4) and (7.5) are written in 2-D according to the coordinate system defined in the power-

law section in Chapter 5, where, o is the yield stress and all other terms are consistent with the 

power-law model.  The velocity gradient is zero in the fluid region between the yield surface, 

),(0 txhz  , and the free surface, ),( txhz  . The shear stress at the yield surface is 
0

0 hzzx 
 .  

This yields an expression for the yield surface: 
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 Using the same procedure as for the power-law formulation, we arrive at the following 

evolution equation for a Herschel-Bulkley fluid: 
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The evolution equation (Eq. (7.7)) has the following constraint [66, 69] for flow to occur: 
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This also requires that B is greater than zero. The cross-section of a spreading bolus of a 

Herschel-Bulkley fluid has two regions: (i) the yielding region – where the stress within the 

material has exceeded the fluid‟s yield stress and is flowing ( 0/  zu ), and (ii) a region that is 

approximated as pseudo-plug flow ( 0/  zu ). In Eq. (7.10), ho physically represents the height 

of the yield surface, meaning that only the fluid below ho is undergoing shear. 

Similar Herschel-Bulkley evolution equations for 1-D or 2-D spreading on relatively 

steep slopes were solved using self-similar solutions [91], numerical methods [92], and 

asymptotic solutions [67, 72]. Kieweg et al. [3] has developed a 2-D numerical simulation of a 

Hershel-Bulkley fluid spreading down an incline. Numerically, The flow constraint (Eq. (7.10)) 

was imposed onto the flux term in the evolution equation using a numerical step function, : 
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where, )/tanh()2/1(2/1)( xx   is a numerical Heaviside function and  specifies the 

transition range (set to 610 ).  This function is similar to the one used by Balmforth et al. 

[28] to dictate if the flux at a given point is greater than zero. 

Figure 7.2 shows example numerical results for the spreading of a Herschel-Bulkley 

fluid.  As in the power-law results, the gradient of the free surface between the nose and the front 

must reach a critical value before the contact line begins to move. This is clearly presented in 

Figure 7.2 by the fact that Lfront does not start moving for approximately the first 2 sec, while 

Lnose moves closer to the contact line.  
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Figure 7.2. Numerical  results of the evolution of the free surface of a Herschel-Bulkley fluid. 

(TOP) The evolution of the free surface (solid) and the yield surface (dashed) at t = 0, 5, 10 and 

15 sec. (BOTTOM) Axial spreading of the nose and front, and height vs time. Input 

Parameters:α = π/6, 0 = 39.2 dynes/cm
2
, m = 500 Ps

n-1
, n = 0.8 

 

 Sensitivity analysis of the Hershel-Bulkley numerical model showed that yield stress 

had a large influence on spreading characteristics, as expected. Figure 7.2 shows the non-

dimensional spreading length as a function of a non-dimensional reference thickness (Eq. 

(7.12)). The ch  is a ratio of yield stress to gravity terms, and thus a measure of plasticity. 
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Where, H is the characteristic height of the bolus and t represents the non-dimensional ratio of 

gravity to viscous terms at a given time. 
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 In all cases, increasing the plasticity will result in a decrease of the spreading distance.  

Additionally, the spreading length is more sensitive to plasticity as the consistency index is 

decreased.  
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 For a constant yield stress, varying the power-law parameters had the same effect for the 

Herschel-Bulkley fluid as for the power-law fluid: as the shear-thinning index increased or the 

consistency index decreased, the fluid spread further. Huang and Garcia‟s analysis [72] with 

asymptotic solutions included the influence of shear-thinning on viscoplastic mud flow, 

evaluated at two yield stress values.  For both of the yield conditions, it was found that a 

Bingham fluid (n = 1) spread more than the shear-thinning fluid (n = 0.6). Our results match 

those, and expand for variations in m and inclination angle.  Specifically, with our numerical 

model we can further examine the effect of the ratio of gravity to viscous terms, over a range of 

yield stresses. 

 

 
Figure 7.3. Numerical results of a Hershel-Bulkley fluid and sensitivity analysis showing the 

effects of m, n and o  on spreading. Input Parameters: tfinal = 15 sec, α = π/6, H = 0.5 cm. 

(Extension of data presented in [3], but computed for different rheological values and angle of 

inclination, α) Note: Lfront/H  ratio of axial spreading to characteristic height; m  consistency 

index [=] Ps
n-1

; n  shear-thinning index; ch   ratio of yield stress to gravity terms; t’  ratio of 

gravity to viscous terms. 

 

 As Figure 7.3 indicates, the ch  value was a predictor of spreading distance.  However, the 

ranking of the ratio of gravity to viscous terms (the non-dimensional time term) was not a 
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predictor of spreading distance, and the ranking was dependent on plasticity. Our sensitivity 

study showed an effect of pseudo-plasticity on the impact of yield stress.  Figure 7.3 shows that, 

for this time frame, the effect of changing yield stress (i.e. the slope of the line) is the same for 

both n = 0.4 and n = 0.8 when considering a fixed m value. These observations may be limited to 

the short time frame, and this particular inclination angle.   

 Figure 7.4 presents the spreading results as a function of the non-dimensional time (Eq. 

(7.13)), as was done for the power-law solution. The top and bottom edges of the parallelogram 

region in Figure 7.4 indicate iso-lines for constant n. As the arrow indicates in the figure, the 

constant n lines shift down as the yield stress increases. The slope of the line (and thus the 

spreading of the fluid) depends on the yield stress, but not the level of shear-thinning. 

 
Figure 7.4. Herschel-Bulkley numerical results as a function of non-dimensional time. Input 

Parameters:, tfinal = 15 sec, α = π/6, H = 0.5 cm. Note: m[=]Ps
n-1

  (Plot obtained from [3]). Note: 

Lfront/H  ratio of axial spreading to characteristic height; m  consistency index [=] Ps
n-1

; n  

shear-thinning index; t’  ratio of gravity to viscous terms; 0  yield stress [=] dynes/cm
2
. 

 

As another demonstration of the trade-offs between yield stress, viscous resistance, and gravity, 

Figure 7.5 indicates that as the yield stress increases, the ratio of gravity to viscous terms (the 

non-dimensional time) required for the fluid to start flowing increases.  
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 In conclusion, this work shows that future implementation of yield stress into the 3-D 

numerical analysis is feasible. Moreover, the sensitivity analysis gives a better understanding of 

the yield stresses impact of spreading, and what we might expect from incorporating it.  

 
Figure 7.5. Numerical results of a Hershel-Bulkley fluid and sensitivity analysis showing the 

effects of m, n and o  on spreading. Axial spreading is decreased at higher values of yield stress. 

Input Parameters: st final 15 , 6/  , cmH 5.0 , 1500  nsPm , 4.0n . Note: Lfront/H  

ratio of axial spreading to characteristic height; t’ is a ratio of gravity to viscous terms; ch   ratio 

of yield stress to gravity terms. 

Future Work 

Incorporating shearing and squeezing into the evolution equation 

 Sunil Karri (University of Kansas, Mechanical Engineering) is currently working on a 

numerical model that simulates the squeezing perturbation force of the anterior and posterior 

epithelium. It is perhaps the most influential perturbation force and must be considered in any 

type of master model.  

 Once a constitutive equation is finalized, by perfecting the free surface model, the 

simulation can be upgraded to incorporate both gravity and squeezing perturbation forces. A 

scenario modeled by Yin and Kumar [93] includes the elastohydrodynamic interactions that arise 
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from flow between flexible walls. Figure 7.6 shows a scenario of a fluid entrapped between a 

flexible wall and a rigid surface. The pressure exerted on the gel by the posterior epithelium is 

mathematically incorporated in Eq. (7.14) through the free surface pressure term.  

1)()(   xDExp p  (7.14) 

A project at the KU Biofluids laboratory is currently underway to determine a typical modulus of 

elasticity for the vaginal epithelium, to be used as input into the 2-D numerical power-law 

model. 

 
Figure 7.6 Squeezing spreading scenario. 

 

Accounting for fluid-solid contact interaction 

 As the fluid is introduced to the vaginal lumen, and is free to spread, one factor that must 

be considered is the fact that the spreading surface could considerably alter spreading 

characteristics. Preliminary experimental analysis has shown that conducting gravity-induced, 

free surface spreading experiments on a glass surface will result in considerably inconsistent 

spreading profiles of the same fluid, when compared to spreading on a plexiglass surface. Future 

work will require repeating these experiments on a bovine epithelium surface and ultimately 

accounting for the thin substrate of mucus that would separate the gel from the epithelial 

spreading surface. Mathematical analysis of this problem would be very complicated, but simply 
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incorporating a slip length could roughly model this phenomenon. An important direction for this 

research is to investigate ways to relax the no-slip boundary condition, which is the focus of the 

following discussion.  

 Contact Angle – A contact angle  is the angle that a drop of fluid makes when in 

contact with another surface (Figure 7.7). For simplicity I will consider this drop to be some 

liquid in contact with a solid, all within some gas.  

The forces of the surface molecules, within a unit area, of the liquid will depend on the medium 

with which the unit area is in contact with. The surface of the liquid in contact with the solid will 

undergo a tensile contraction of different magnitude than the surface of the liquid in contact with 

the surrounding gas. 

 
Figure 7.7 Graphical Representation of Contact Angle 

 

Figure 7.7 shows a liquid drop resting on a solid, all immersed in some gas with all three 

mediums in equilibrium. Assume point 1 is a molecule on the edge of the liquid drop. Note that 
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the interface forces LG, SL and SG will be the magnitude of the 3 different forces acting on point 

1 (Figure 7.7). With that considered, in order for point 1 to be static all the forces should cancel 

out. As can be seen from Figure 7.7, all the forces will cancel out (be in equilibrium) when the 

drop adopts a specific shape, characterized by the contact angle, , which represents a force 

balance between the molecular forces at the gas-fluid-solid interface:  

SLSGLGxF   cos0  (7.15) 

Young equation can be used to describe the “wetting” of a liquid on a 

specific solid by using the contact angle.  

cos  = 1  Drop spreads completely over entire solid surface (complete 

wetting) 

-1 < cos  < 1  Drop partially spreads over the solid surface (partial 

wetting) 

cos  = -1   The drop is curled up into a sphere and is making minimal 

contact with the solid (Un-wetted) 

 

 

Slip Length – When a fluid is propagating along a solid, it is normally assumed that the fluid at 

the fluid-solid interface is not moving. This corresponds to a no-slip boundary condition (Figure 

7.8 a), which most researchers tend to implement for macro-scale flows (fluid thickness > 20 

molecular diameters) [94]. Nevertheless, depending on the wetting properties of the fluid/solid 

interface, some fluids will tend to slip during propagation (Figure 7.8 b). This “slip” velocity is 

proportional to the distance that the velocity profile would project into the solid before the front 

of the profile would intersect with the back, b (Figure 7.9). 
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Figure 7.8 Velocity Profiles for no-slip (a) and partial-slip (b) Boundary Conditions 

 

For a partial slip scenario, the slip velocity in the axial direction of spreading, us, is quantified 

using Eq. (7.16).  
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u
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  (7.16) 

 
Figure 7.9 Derivation and Graphical Representation of Slip Length 

 

Relating Contact Angle to Slip Length – It should be noted that the very act of measuring the 

contact angle is theoretical. The angle will vary with resolution and most importantly the zoom 

with which it is observed. The more a drop corner is zoomed in on the larger the angle will 

appear. 

Many researchers have tried to relate some kind of contact angle measurement to slip 

length because of the intuitive relation they must have with one another. It should be noted that 



164 

 

because of the sensitivity of both of these parameters, any kind of modeling showing the 

relationship between slip length and contact angle undergoes warranted criticism because of the 

unrealistic assumption it makes that: the surface of interface is completely flat with no grooves. 

Obviously this is inapplicable to the physical world and especially to any macro-scale 

observation. The real problem is the fact that this assumption provides erroneous results when 

finding the contact angle because surface roughness might contribute to how much the drop 

spreads. Combined with the limitations of the contact angle, the slip length relation would 

produce a colossal error. Consequently, modeling the slip length by measuring the contact angle 

is probably not a reliable option for improving the current numerical model.  

While these methods cannot be applied to the physical world, their findings are still very 

important because they show a relation between wettability and slip length. They prove that they 

are not independent of each other and that at very low wettability, the no-slip assumption should 

be re-considered, maybe even for macro-scale analysis.  

Determining Slip Length without Using Contact Angle - While the methods presented in this 

section also fall victim to the no-groove surface assumption, the resulting error of this 

assumption is cut in half because it is no longer considered for the drop when measuring contact 

angle.  

In a paper by J. Baudry and E. Charlaix [95], it was shown that the no-slip boundary 

condition might not be valid when considering fluid flow in contact with hydrophobic surfaces, 

even for a macro-scale. Using a surface force apparatus, they observed the hydrodynamic force 

between a solid sphere and a plane immersed in glycerol (Figure 7.10). When the sphere was 

oscillated at a specific frequency and amplitude, the immersed glycerol provided a damping to 

the oscillation. Analysis with a no-slip boundary condition showed a relation of the damping 
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with the distance of separation D. Assuming that D and b were related, combined with the 

assumption that b << D showed that the slip length b was equal to the distance of separation D 

when the relation: 6R
2/A = 0, where all the values in the relation are physically measurable: A 

= damping coefficient, R is the radius of the sphere and  is the viscosity of the fluid, which is 

averaged for a non-Newtonian fluid (within the relevant shear region). They also verified their 

results by showing that a situation in which the no-slip boundary condition was expected, a value 

of b = 0 was obtained.  

This analysis might be directly applicable to this research because it is an opportunity to 

determine the slip length without having to measure any kind of contact angle, the limitations of 

which are described above. We could even perform this analysis on an already available 

rheometer (AR 2000), because it is capable of checking the damping resulting from oscillating a 

fluid and the distance of separation between two surfaces.  

 

 
Figure 7.10 Relation of Slip Length to Distance of Separation 
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Mucus-Gel Interaction: When considering the application of micribicide research, we need to 

not only be able to use boundary conditions for gel-solid interaction, but also for gel-body fluid 

interaction. In order to model this interaction correctly, a crucial step is to determine how the gel 

intermingles with any kind of fluids it might come into contact with in the vaginal lumen. If it is 

found that the gel completely mixes with a fluid, rheological properties will be gathered of the 

gel-vaginal fluid mixture, and standard rheological analysis of that mixture will be performed 

with the gel in contact with the solid epithelium. If we are to determine that the gel is immiscible 

with any form of the vaginal fluid, and then gel-vaginal fluid surface properties will be 

determined using the methods described above and analysis will be carried out as two immiscible 

fluids in contact with each other.  

 An immiscibility assumption can be justified by determining the inner interaction 

potentials, W, of each fluid. Israelachvili [96] suggests that if the interaction potentials of each 

fluid are very different from each other, than the fluids can be considered immiscible.  

The methods for determining W for each fluid will not be discussed because it is purely 

theoretical, and as will be described below more practical approaches can be employed.  

In practice, the methods used to determine if a gel will mix with the fluid it interacts with 

will be employed using techniques similar to the ones described by Anthony R. Geonnotti et al 

(2005) [97]. This work describes an approach of putting gels in contact with vaginal fluid (and 

semen) for specific periods of time and measuring the change in viscosities of both layers as a 

function of time, and then using that to qualify the miscibility of the two fluids. 



167 

 

Experiments with Epithelium Tissue Spreading Surface 

 Having a bench top experimental apparatus that is capable of controlling temperature and 

humidity, along with a software that will provide spreading characteristics and topography as a 

function of time, allows us to expand the experimental work that has been completed by 

conducting spreading tests on bovine epithelial tissue. The instrument is designed in such a way, 

that a cut of tissue could easily be incorporated into the spreading surface.  

 These types of test will truly allow us to assess the impact of fluid-structure interaction in 

the in vivo domain. Overall they would be valuable to conclude if the “no slip” boundary 

condition is suitable for spreading on biological tissue.  

Final Conclusions and Remarks 

Aside from a microbicide application, the novel work presented in this dissertation 

presents: (1) an instrument and technique for conducting gravity-induced flow experiments, (2) a 

numerical solution of the power-law evolution equation, (3) a sensitivity analysis of the power-

law rheological parameters, (4) a derivation of the Ellis evolution equation, and (5) a numerical 

solution of the Ellis evolution equation along with an original parameter study and sensitivity 

analysis. 

This work is a foundation for the final “master model.” Once all the other perturbation 

forces are included, a working numerical simulation will be useful for parameter studies, 

sensitivity analyses and a tool for reverse engineering rheological parameters that will be 

necessary for the fluid to serve a specific function. Consequently, it is important to conduct 

parallel work to determine relationships between cellulose concentration and rheological 

parameters.  
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 Final in vivo analysis will reveal the efficacy of the numerical model by validating it with 

an experimental model. This will result in collaboration with pharmaceutical developers to 

complete an affective microbicidal gel that could have enormous impact on the millions of 

people affected by HIV.  
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Appendix A- The Lubrication Approximation 

 The proof for the lubrication approximation is written for a free-surface, 2D flow, 

scenario in which the direction of axial spreading is in the x-direction, and the decrease in the 

height of the free surface is along the (-z). I define the velocity vector as: kwiuu ˆˆ~  . 

In the equation of motion, for a steady flow (Eq. (A.1)), the terms on the left side can be 

neglected under the assumption of several properties of the flow.  

      gupuutu ~~/~/1~~/~ 2    (A.1) 

A straightforward way of neglecting the inertial terms is to recognize that if the Reynolds 

number is very small (Eq. (A.2)), the viscous terms must dominate with respect to the inertial 

terms. Therefore, the inertial terms uu ~)~(   are assumed to be zero. 
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 (A.2) 

 This is an effective strategy for simplifying the momentum equation to set the left side equal to 

zero, but only for a steady flow. Nevertheless, for a flow that is very viscous, but is not 

necessarily steady, another strategy can be used to show that the terms on the left side of Eq. 

(A.1) can be approximated as zero.  

 One way to prove that I can neglect the left side of Eq. (A.1) is to non-dimensionalize it 

according to the following scaling laws:  

tTt   (A.3) 

xLx   (A.4) 

zHz   (A.5) 
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uUu   (A.6) 

 wLHUw  /  (A.7) 

pPp   (A.8) 

Where, T, L, H, U, and P are the characteristics time, length, height, axial velocity, and pressure 

respectively.  

 After normalizing the momentum equation, and only considering motion in the axial 

direction, I arrive at:  
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This equation can be re-written as: 
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(A.9) 

 Recognizing that I am analyzing a thin-film, especially as time progresses, and several 

other characteristics that are relevant to the nature of the problem discussed in this dissertation, I 

arrive at the following three assumptions:  

1/ LH  (A.11) 
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Eq. (A.11) is valid for all phases of the simulation, but becomes more valid as the free surface 

becomes smoother. For the application presented in this document, the typical value for Eq. 

(A.13) is about 0.002, and as time progresses the numerator decreases as the denominator grows.   

 After omitting terms on the order of H/L and H
2
/T, and converting Eq. (A.9) back into 

dimensional form, the entire left side of the equation of motion can be set to zero.  

 These are the rules behind the lubrication approximation and are the restrictions of the 

simulation presented in this document. For example, running the presented simulations for a 

different liquid like water would completely undermine the condition set in Eq. (A.13), and its 

values could become much greater than unity.  
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Appendix B - Additional Experiments 

 In order to investigate how the process of making the gel would impact the final product, 

and its spreading and rheological properties, I made 3 batches of a 2.7% HEC gel. Each batch 

underwent rheological and spreading testing, in triplicate.  

 The procedure for making each batch was identical, and is described in Chapter 2. The 

protocols for rheological and spreading experiments are outlined in Chapter 2 and 3, 

respectively. Table B1 shows power-law parameter values obtained by fitting to the average 

rheological data, for each of 3 batches of 2.7% HEC gels. Rheology data is fit to the power-law 

constitutive equation using the Nelder-Mead simplex search method, as described in Chapter 2.  

2.7% HEC BATCH m (Ps
n-1

) n R
2 

1 343.3896 0.5543 0.9793 

2 336.2361 0.5736 0.9796 

3 304.7081 0.5719 0.9807 

mean ± S.D. 328.11±20.58 0.5666±0.0110 --- 

Table B1. Power-law parameters for 2.7% HEC gels. Note: m  consistency index; n  shear-

thinning index; R
2
 represents the goodness of fit.  

 

 The high standard deviation of the consistency index between different batches is due to 

two general sources of error: (1) error associated with making the gel, and (2) error associated 

with testing the gel. When making the gel, there are several steps in the protocol that could 

contribute to inconsistencies in overall rheology between batches. The most impactful is the 

amount of water that is evaporated during the mixing process, and the amount of solute (HEC) 

that does not get mixed into the solvent (water). After pouring HEC into the stirring water, some 

is always left on the delivery paper and unintentionally poured on the stirring rod. During 

rheology testing, the gel must be trimmed off the testing geometry, which is a source of error 
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between tests. Mixing HEC on a pharmaceutical assembly line could eliminate most of these 

errors, which I suspect would noticeably lower the deviation between batches.  

 The differences in spreading physiognomies seen between batches are generally on the 

order of millimeters. Table B2 shows the changes in length, width, and height over 180 seconds 

of spreading, for 3 batches of 2.7% HEC gels.  

2.7% HEC BATCH L  W  h  

1 38.07±0.77 mm 

(2.02%) 

4.44±0.57 mm 

(12.84%) 

3.18±0.30mm 

(9.43%) 

2 41.89±2.59 mm 

(6.18%) 

4.22±1.00 mm 

(23.70%) 

3.47±0.27mm 

(7.78%) 

3 46.29±2.42 mm 

(5.23%) 

4.21±1.38 mm 

(32.78%) 

4.12±0.63mm 

(15.29%) 

Table B2. Spreading data for 3 batches of 2.7% HEC gels. L and W represent total axial and 

lateral spreading, in 180 sec, respectively. h represents the change in height. Note: Each cell 

presents the: Mean ± Standard Deviation (Coefficient of Variation). 

  

 The average values, expected of a typical 2.7% HEC gel, of the spreading physiognomies 

are found using Eq. (B.1) and (B.2), where wi = 1/2
. 





i

ii

w

Mw
M  (B.1) 




iw
DS

1
..

 
(B.2) 

Therefore, the weighted averages are:  

 Lavg = 39.05±0.71 mm 

 Wavg= 4.37±0.47 mm 

 havg = 3.41±0.19 mm 

The weighted values show less variation than in Table B2, and are the best estimate of 2.7% 

HEC spreading behavior, found experimentally at a 30 incline.  
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