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Abstract 

The intracellular transport of proteins and membrane lipids to the cell surface or 
between organelles is a fundamental process in eukaryotic cells.  This process is 
required for the biogenesis and maintenance of organelles, as well as for traffic to the 
cell surface for cell growth and proliferation.  The transport routes in the late secretory 
pathways are branched and complex, and their regulation requires sensing and 
responding to environmental conditions for proper control of cell growth.  Both the 
transport and regulatory mechanisms are robust, so that defects can be overcome by 
alternate mechanisms.  This complexity has made it difficult to identify the late 
exocytic transport machinery and its regulators.  The goal of my thesis work was to 
use a yeast chemical genetic strategy to identify components of the exocytic transport 
machinery, and to generate useful chemical tools that will help us to understand how 
the machinery functions.  I analyzed the effects of small molecules that we obtained in 
two similar high-throughput screens of large libraries of drug-like compounds, in order 
to identify compounds that cause a block in the late exocytic pathway.  Several of our 
new compounds cause exocytic defects and are selectively toxic to yeast mutants in 
which one of numerous transport pathways are blocked.  The design of the high-
throughput screen strategy was based on that of an earlier mutant screen that led to the 
discovery of a novel component of the transport machinery, Avl9, a conserved 
eukaryotic protein that has not yet been well characterized.  Some of our new 
compounds are expected to target Avl9 or proteins with functions related to that of 
Avl9.  In order to identify proteins and processes affected by our compounds, I 
screened for genes which, when overexpressed, can suppress the toxic effects of our 
compounds.  I found that highly-expressed GTR2, which encodes a Ras-family small 
GTPase, can suppress the effects of one of our compounds.  Gtr2 and its paralog and 
binding partner, Gtr1, as well as their metazoan orthologs, signal nutrient availability to 
regulate both traffic and the activity of TOR (target of rapamycin) kinase, a master 
regulator of growth.  Furthermore, the gtr1∆ and gtr2∆ mutants share some 
phenotypes with the avl9∆ mutant.  Our results indicate that our new compounds will 
serve as tools to help us understand how Avl9 and Gtr proteins function in cellular 
response to environmental conditions for proper regulation of protein and membrane 
transport in the late exocytic pathway.  
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Chapter 1

Introduction

! The transport of proteins and membranes between organelles and the cell surface is 

a fundamental process in all eukaryotic cells.  Intracellular transport mediated by 

membrane vesicles and tubules is required to establish and maintain organelle identity 

and function, and also to regulate the components of the cell surface and mediate cell 

growth.  Traffic in the secretory pathway involves a sequence of processes:  proteins 

enter the secretory pathway by means of translocation into the endoplasmic reticulum 

(ER) either co-translationally, or, less commonly, after translation in the cytoplasm (36).  

They are core-glycosylated in the ER and then transported to the Golgi complex where 

they are further glycosylated.  Cargo is then sorted at late Golgi compartments, referred 

to as the trans-Golgi Network (TGN) in most cell types.  Sorting involves recruitment 

into distinct carriers that are targeted to different final destinations: endosomes, 

lysosomes, and the cell surface (6; 8; 39; 43).  Intracellular compartments also receive 

traffic from the cell surface by the endocytic pathway.  

! The molecular mechanisms of transport in the secretory pathway have been 

extensively studied for over 30 years, and much is now known about the basic 

mechanisms of intracellular transport.  Especially well-characterized are the 

mechanisms of transport from the ER, endocytic uptake at the cell surface, and the 

mechanisms of transport vesicle fusion at various stages of transport.  In my thesis 

work, I used the popular experimental model, the budding yeast, Saccharomyces 

cerevisiae, to help understand exocytic transport from endosomes and late Golgi 

compartments.  Exocytic traffic from these compartments is still relatively poorly 

understood, because complex traffic routes have made it difficult to identify the 

molecular machinery that functions in forming the numerous types of late exocytic 

vesicles (25-27).  However, the fundamental mechanisms of transport at each step of the 
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secretory pathway are conserved, and in the first part of this introductory chapter I will 

give an overview of what we know of these mechanisms.  Similar mechanisms, and 

most likely additional processes, are thought to regulate traffic routes in the late 

exocytic pathway.  A long-term goal of my work was to contribute to identifying these 

mechanisms at the Golgi and endosomes.  In addition, it is critical to understand how 

traffic pathways are regulated.  In the second part of this chapter, I describe the traffic 

and signaling pathways that are most relevant for my thesis work.

MECHANISMS OF VESICLE MEDIATED PROTEIN TRANSPORT

Vesicle Coats Recruit Cargo and Form Vesicles 

! Cargo exits from donor compartments by the formation of coated vesicles.  There are 

numerous types of coated vesicles, but three types have been characterized in great 

detail: COPII-coated vesicles, which mediate exit from the ER; COPI (also called 

coatomer)-coated vesicles, which function at various traffic steps but have been 

primarily studied in retrograde transport from the Golgi to the ER; and clathrin-coated 

vesicles, which shuttle between the trans-Golgi network (“late Golgi” in yeast), the 

endsomes, and the plasma membrane (23; 52).

COPII-coated vesicles

! Formation of transport vesicles at the ER requires the recruitment of the small 

GTPase Sar1 by the guanine nucleotide exchange factor (GEF) Sec12 (52; 60).  Sec12 is an 

ER-resident, transmembrane-anchored GEF.  Sar1 associates only with ER membranes.  

After binding of Sar1 to the ER membrane, the GTPase activating protein (GAP) Sec23 

and the cargo recruiter Sec24 form a complex with Sar1 and the cargo. There is only one 

gene for Sec23, and four different Sec24 isoforms are present in mammals (68).  Three 

different Sec24-like genes are encoded in the yeast genome, which suggests that 

different types of cargo might associate with different Sec24 recruiters, and that 

different isoforms mediate transport of subsets of cargo (61). Finally, a subcomplex of 
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Sec13/31 binds to the cargo-associated Sec23/24 complex. The Sec13/31 complex helps 

to deform the membrane and to stabilize the polymerizing coat.  Sec13/31 can even 

assemble into a cage-like form in the absence of the other components of the COPII coat 

(62).  After the vesicle is formed, the coat is released upon hydrolysis of GTP to GDP by 

Sar1.

COPI-coated vesicles 

! The process of COPI vesicle biogenesis is controlled by Arf1, a small GTPase of the 

Ras superfamily.  However, unlike Sar1 in COPII vesicle biogenesis, Arf1 can induce 

vesicle formation at multiple distinct membranes along the secretory pathway, and it 

can recruit both COPI coat components and adaptor complexes of the clathrin coat (61).  

A variety of guanine nucleotide exchange factors (GEFs) are involved in the recruitment 

of Arf1 to different membranes.  All Arf GEFs share a domain with the first Arf GEF that 

was discovered, Sec7 (11).  This domain is required to induce the exchange of bound 

GDP to GTP in Arf1.  GBF1, a large Sec7-domain-containing GEF, is the major exchange 

factor involved in COPI vesicle biogenesis (40). 

! Following nucleotide exchange, Arf1-GTP undergoes conformational change, 

leading to the exposure of a myristoylated N-terminal amphipathic helix that provides 

stable membrane anchorage (35). Then, Arf1-GTP recruits coatomer to the membrane.  

Coatomer components in turn recruit cargo proteins.  After the formation of a COPI-

coated vesicle, the coat has to be released to allow for vesicle fusion with the target 

membrane.  The uncoating reaction depends on GTP hydrolysis by Arf1 (65), catalyzed 

by Arf1 GTPase-activating proteins (ArfGAPs).  In addition to recruiting and releasing 

coatomer, an Arf- GEF/GAP- mediated cycle of GTP exchange and hydrolysis was 

proposed to play a role in regulating the uptake of cargo into COPI vesicles (34).

Clathrin-Coated vesicles   

! Clathrin-coated vesicles can form at different compartments in the late secretory 

pathway and in the endocytic pathway: the trans-Golgi network, endosomes, and the 
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plasma membrane. The clathrin coat consists of an assembly of clathrin triskelions, 

which are formed from three clathrin heavy chains and three clathrin light chains.  

Besides clathrin, the various types of clathrin-coated vesicles contain one of four 

adaptor protein (AP) complexes (AP1–AP4) and additional adaptor-like proteins, which 

are involved in the recognition and recruitment of cargoes (45).  Similar to COPI, the 

formation of clathrin-coated vesicles requires the small GTPase, Arf1, for the 

recruitment of adaptor subunits, which then recruit cargo and clathrin.  The best-

characterized clathrin-coated vesicles function in endocytic uptake and contain the AP2 

adaptin complex.  In contrast, the AP1 adaptor-containing clathrin-coated vesicles 

mediate transport between the Golgi and endosomes, possibly in both directions (45).  

The functions of the other two adaptin complexes are less clear: AP3 promotes the 

delivery of proteins to lysosomes, and also appears to function in the formation of 

regulated secretory granules (2; 58), while AP4 may mediate a pathway to the plasma 

membrane (55). 

! The budding and release of clathrin-coated vesicles involves the mechanochemical 

action of dynamin GTPases (13; 28) as well as various BAR domain proteins that 

directly modify membrane curvature either at the plasma membrane or at the TGN/

endosomes; these include endophilin, amphiphysin, nexins, and epsins (9; 19-20; 64).  

Actin and its regulators also play critical roles in clathrin coated vesicle formation, both 

at the plasma membrane and at the TGN (10; 18).

Other vesicle coats  

! Although COPI, COPII, and clathrin-coated vesicles have been studied the longest 

and are therefore best characterized, there are other types of vesicles.  For example, the 

retromer is a coat complex that mediates traffic from endosomes back to the Golgi (4).  

Other coats, especially those that traffic cargo to the cell surface, may be specialized to 

select only certain types of cargo as a mechanism to regulate what gets transported to 

the cell surface, as well as when and where transport occurs.  These coats likely 

diverged significantly between distant species or cell types that need to traffic different 
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cargo to the cell surface.  For example, a specialized vesicle coat recognizes and 

transports chitin synthase Chs3 and a few other proteins to the bud neck region of yeast.  

This transport is dependent on Arf1p and a protein complex called exomer (51; 66).  

Metazoans do not contain proteins that are readily identifiable as homologs of the 

exomer components.  It is therefore possible that there are diverse coat complexes with 

unique cargo specificities and overlapping functions, which makes it difficult to identify 

the coat proteins involved in transport to the cell surface.

Vesicle Targeting and Fusion

Rab GTPases regulate vesicle targeting

Rab GTPases are central regulators of membrane traffic.  Like Arf and Sar1, Rab 

proteins are members of the Ras superfamily of small GTPases that function as 

molecular switches.  Rab proteins form the largest family of small GTPases, and there 

are more than 60 Rab GTPases in mammalian cells.  As for the other GTPases, Rabs 

alternate between two conformational states: the GTP-bound “on” form and the GDP-

bound “off” form.  The exchange of GDP for GTP is catalyzed by guanine nucleotide 

exchange factors (GEFs), which therefore regulate the activation of the GTPases.  The 

primary function of Rab proteins is to ensure that cargoes are delivered to their correct 

destinations.  They do this by controlling various aspects of transport, including vesicle 

budding, uncoating, motility, and fusion.  Rabs play a role in regulating a wide range of 

effector proteins such as sorting adaptors, tethering factors, kinases, phosphatases, and 

cytoskeletal motors (42; 63).  The effectors are usually activated or recruited by the GTP-

bound form of the Rab protein.  Conversion from the GTP- to the GDP-bound form is 

driven not only by the intrinsic GTPase activity of the Rab protein but is also catalyzed 

by GAPs (GTPase activator proteins).  Rab GDI (GDP dissociation inhibitor) prevents 

release of GDP from Rab, thus stabilizing the GDP –bound form (63).   

! The first characterized function of Rab proteins was the regulation of membrane 

vesicle fusion with the appropriate target membrane.  This conclusion was made from 
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the observation that yeast cells with a mutant allele of the Rab GTPase, Sec4, 

accumulate post-Golgi exocytic vesicles that cannot fuse with the plasma membrane 

(49).  This phenotype suggested that Rab GTPases might mediate vesicle docking or 

fusion.  It was later shown that key effectors for Rab proteins are tethering complexes 

that form contacts between the transport vesicle and the acceptor membrane.  In its 

GTP-bound form, Sec4 interacts with Sec15, a subunit of the octameric exocyst tethering 

complex on the plasma membrane (24).  Tethering complexes on other target 

membranes are effectors for Rab proteins that regulate targeting to those membranes.  

For example, EEA1 is an effector for Rab5 in regulating fusion with early endosomes 

(12).  Different Rab GTPases are localized to distinct organelles, which is another reason 

that Rab GTPases were initially suspected of playing a role in regulating membrane 

targeting.  In some cases, in particular early endosomes, different Rab proteins are 

located on the same organelle but reside in distinct membrane microdomains (63).

SNARE proteins mediate specific membrane fusion

! Both to maintain organelle identity and to regulate the specificity of traffic, it is 

critical for membrane fusion to occur in a controlled manner.  The key proteins 

responsible for membrane fusion also play a role in specifying membrane identity.  

These are the SNARE proteins.  The initials stand for soluble N-ethylmaleimide-

sensitive factor attachment protein receptors).  SNAREs were identified in a search for 

membrane receptors that bind SNAPs (soluble NSF attachment proteins) and NSF 

(Nethylmaleimide-sensitive factor) (37; 59).  SNAREs have been classified as v- and t-

SNAREs, because they operate on opposing membranes, usually on a transport vesicle 

(v-SNARE) and a target membrane (t-SNARE).  Tethering factors such as the exocyst act 

over a longer distance to “capture” the transport vesicles, and this facilitates the 

subsequent pairing of the v-SNARE with the cognate t-SNARE.  The assembly of 

specifically matched v-/t-SNAREs between two membranes generates SNARE 

complexes that bring the lipid bilayers close together and drive membrane fusion (1;29; 

31; 69).  In order to allow subsequent rounds of transport, the SNARE complex needs to 
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be disassembled.  This is catalyzed by the combined action of alpha-SNAP and NSF (46; 

72).

! Specific SNARE proteins are present on specific membranes, and this helps to 

regulate proper targeting and fusion.  However, SNARE’s can potentially pair 

inappropriately, so there are additional regulators of SNARE-mediated fusion.  Key 

regulators of SNARE complex assembly are Sec1/Munc18-like (SM) proteins (54) .  In 

regulated exocytosis such as synaptic vesicle fusion, SM proteins are important targets 

of regulatory proteins.  Additional regulators of membrane fusion include the Ca2+-

binding synaptotagmins (73), and complexins, which either inhibit or facilitate SNARE 

action (38).

Membrane Lipids Regulate Traffic

! The control of membrane lipid composition is critical for regulating essentially all 

aspects of membrane trafficking.  For example, compartment-specific recruitment of 

components of the traffic machinery, including both coat components and tethering 

factors, involves localized generation of specific phosphoinositides (PIs) (14). These 

various PIs are generated by the phosphorylation of the hydroxyl groups at the 3, 4 and 

5 carbon positions of the inositol ring of phosphatidylinositol (PtdIns).  This process is 

mediated by various PI kinases and PI phosphatases (57).  An additional mechanism by 

which membrane composition regulates traffic is cargo recruitment into sterol-rich 

“lipid rafts” (33; 56).  Furthermore, lipid modification is important for deforming 

membranes during vesicle budding and pinching off (5).

Summary

! Exocytic trafficking from the Golgi and endosomes is expected to involve all of the 

mechanisms reviewed here:  1) recruitment of cargo proteins via lipid-mediated 

enrichment and coat proteins; 2) shaping of the vesicle by coats, lipid-modifying 

enzymes and the cytoskeleton; 3) pinching off the vesicles by the action of dynamin 
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GTPases, the cytoskeleton, and motor proteins, and lipid-modifying enzymes; 4) 

specific targeting and fusion with the plasma membrane, at least in some cases via an 

endosomal intermediate.  The results and tools generated from my thesis work promise 

to help identify components of this machinery in the late secretory pathway. 

TRAFFIC PATHWAYS AND SIGNALING PATHWAYS IN POST-GOLGI TRANSPORT

! Defining the traffic routes in the late exocytic pathways, and understanding the 

intracellular signaling mechanisms that regulate these pathways, is essential for a 

fundamental understanding of intracellular transport.  The amount and direction of 

traffic from the Golgi and endosomes must be modulated, and the regulation of this 

process is not well understood.  Much of this regulation occurs at the level of 

endosomes, which receive signals that indicate the nature of the extracellular 

environment as well as signals that indicate the cell’s state, for example the amount of 

various nutrient reserves.  The cell integrates these signals for optimizing the type of 

cargo, and cargo quantity, to be trafficked to the cell surface, maintained in the 

endosomes/Golgi, or trafficked to the lysosome either for a function there or for 

degradation.  In particular, regulation of traffic to the cell surface is critical for proper 

control of cell growth and proliferation.  The following review on traffic pathways in 

yeast will provide background to help explain the rationales behind the design of my 

thesis work, while a section on signaling will provide background for interpreting some 

of my results. 

 

Branching in the Late Secretory Pathway

In both yeast and mammalian cells, secretory cargoes are transported to the cell 

surface by at least two pathways (25; 39).  In yeast, secretory vesicles that accumulate in 

the late sec mutants, such as sec6-4, can be separated into two vesicle species based on 

their different buoyant densities and unique cargoes (25).  The lighter vesicles transport 

surface proteins, such as the cell wall protein Bgl2p, which contribute to cell growth, 
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while the denser vesicles transport invertase and other enzymes secreted into the 

periplasm or growth medium (25).  The existence of two pathways helps to explain why 

it is difficult to isolate mutants that are defective in the late secretory pathway.  A 

mutation that causes a defect in just one of the transport pathways from the Golgi may 

not be sufficient to display an obvious phenotype, because cargoes can be diverted from 

the blocked route so that cells are still viable.  Therefore, it is necessary to screen for 

mutants with defects in the late exocytic pathway by using a mutant strain background 

that already has a defect in one pathway, so that an additional mutation can generate a 

screenable phenotype (26-27).  As described at the end of this chapter, my thesis work 

included a chemical-genetic version of a successful mutant screen that was performed 

in such a strain background.  The mutant screen and chemical screen have identified 

genes and chemical tools that will help us to understand the mechanisms and 

regulation of late exocytic transport (27; 71). 

Multiple Traffic Pathways Require VPS (Vacuolar Protein Sorting) Gene Function 

VPS proteins function in traffic to the vacuole

! The yeast vacuole is analogous to mammalian lysosomes, but it has additional 

functions.  It is involved in many processes, including protein turnover, osmolarity 

regulation, pH homeostasis, and nutrient storage.  The VPS (vacuolar protein sorting) 

proteins are involved in the transport of cargo from the Golgi to the vacuole (reviewed 

in (7)).  A model cargo in this pathway, carboxypeptidase Y (CPY), is sorted at the Golgi 

by being diverted away from the exocytic pathway and recruited into vesicles that 

deliver it to endosomes called the prevacuolar compartment (PVC), from which it is 

transported to the vacuole.  The proper sorting and processing of CPY is used in assays 

to study VPS protein function.  The vps mutants were isolated by screening for mutants 

that secrete CPY from the cell (3; 44; 48).  The mutants were divided into six classes (A to 

F) based on a number of criteria including vacuolar morphology and the secretion of 

CPY.  For example, mutants in Class E accumulate an exaggerated form of the PVC 
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endosomes in which most CPY gets trapped.  Most of the VPS proteins, including those 

in the Class E, have mammalian homologs with similar functions.

! Among the VPS proteins, only a few have been implicated in the formation of 

vesicles from the Golgi.  One of these proteins, which is very relevant to my thesis work, 

is Vps1.  The VPS1 gene encodes a homolog of the metazoan protein, dynamin (41; 47).  

Unlike some dynamins, Vps1 appears not to be involved in endocytosis, but is instead 

proposed to function at the Golgi and/or endosomes.  In the vps1∆ mutant, CPY is 

secreted, and vacuolar membrane proteins are transported to the plasma membrane 

rather than the vacuolar membrane (41).  Clathrin has also been found to be involved in 

the formation of the vesicles that transport vacuolar proteins from the Golgi (16).  As in 

vps mutants, a temperature-sensitive mutant of clathrin results in the mislocalization of 

vacuolar proteins to the cell surface (53).

 

VPS proteins function in an exocytic pathway

! In addition to functioning in traffic to the vacuole, VPS proteins also play a role in 

traffic in one branch of the exocytic pathway (26).  For example, in the vps1∆ mutant, 

exocytic cargo such as invertase is missorted from high-densitiy secretory vesicles and 

is instead trafficked in low-density vesicles along with cargo normally in low-density 

vesicles, such as Bgl2.  Thus, only one of the known exocytic pathways appears to be 

functional in the mutant, and all cargo is transported in this pathway (26).  Similarly, 

clathrin is involved in transporting the cargo secreted by dense vesicles (21; 26).  These 

findings suggest that exocytic cargo normally transported by high-density exocytic 

vesicles are transported together with vacuolar hydrolases from the Golgi to an 

endosomal compartment by clathrin-coated vesicles, and from endosomes, cargo is 

sorted either to the vacuole or to the cell surface.  When the Golgi-to-endosome route is 

blocked in vps mutants, both invertase and CPY are missorted into light-density 

exocytic vesicles.  These finding were crucial for the design of genetic screens aimed at 

identifying components of the late exocytic transport machinery.
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A Classical Genetic Screen Strategy for Identifying Genes Involved in Post-Golgi 

Transport

! As I discussed earlier, the branching of the post-Golgi pathway makes it important 

to screen for mutants involved in the late secretory process using a strain background 

that already has a secretion defect.  Blocking a remaining pathway by an additional 

mutation in a second gene is then expected to result in lethality.  The genetic interaction 

between the two genes that together are required for viability is called “synthetic 

lethality.”  In yeast, ~ 70% of the genes are non-essential under optimal growth 

conditions, but when these genes are deleted in combination with a deletion of another 

non-essential gene, together the two deletions can lead to cell death.  Such synthetic 

lethal interactions between two genes usually indicate that they function in the same 

process, or in parallel, partially redundant, processes.  This concept was used in an 

attempt to identify genes required for exocytic transport from the Golgi.  Based on the 

known role of VPS proteins in one branch of the exocytic pathway, a vps1∆ mutation 

combined with a mutation that results in the block of the remaining transport pathway 

should result in synthetic lethality.  However, this strategy was unsuccessful in 

identifying novel components of the exocytic transport machinery, indicating that 

transport routes are more complex than simply two possible pathways.  Therefore, an 

additional mutation, apl2∆, was added to the screen strain background, to screen for 

mutations in a third gene that would result in lethality (27).  

! APL2 encodes β-adaptin, which is a large subunit of the AP-1 clathrin adaptor 

complex.  As mentioned in the previous section, the AP-1 adaptor is thought to 

functions in the sorting of cargo molecules into some classes of clathrin-coated vesicles.  

However, the exact function of AP-1 is unclear, and there is evidence that it functions 

either at the TGN, early endosomes, or both (45: 67).  The apl2∆ mutation was chosen 

because both the vps1 and apl2 mutations perturb the invertase-transporting pathway, 

but they appear to block transport at different steps along this pathway (27).  A screen 

for synthetic lethality in a vps1∆ apl2∆ double-mutant background led to the 
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identification of a novel gene involved in late exocytic transport, AVL9 (27).

! Phenotypic characterization of the avl9∆ mutant indicates that it plays a role in 

transport from the Golgi, most likely in both of the known exocytic pathways (27). 

When Avl9 was depleted in a vps1∆ apl2∆ strain, the cells had an exocytic defect and 

accumulated abundant structures that resemble aberrant Golgi membranes seen in 

mutants that block the exit from the Golgi, such as sec14 and sec7.  The avl9 mutation 

alone or vps1Δ apl2Δ mutations do not generate such phenotypes (27).  Characterization 

of the avl9Δ mutation by itself (so that Vps1 and Apl2 are present) by both subcellular 

fractionation and electron microscopy showed that the mutation perturbs the formation 

of secretory vesicles (27).  In addition, over-expression of Avl9 is highly toxic to 

otherwise wild-type cells and results in the accumulation of heterogeneous membrane 

compartments, as well as a transport defect that appears to be specific for the late 

exocytic pathway (27).  These results indicate that the screen strategy is successful in 

identifying novel components of the late exocytic pathway.  However, the screen, and 

gene cloning, was very laborious due to the requirement of triple-mutant lethality.  My 

thesis work used a very similar rationale as the AVL mutant screen, but rather than 

screening for mutants, my work involved high-throughput screens for small molecules 

that generate the AVL (apl2 vps1 lethal) phenotype.  Targets of some of the small 

molecules that generate the AVL phenotype could be genes that are involved in a 

process related to Avl9 function, or they could target Avl9 itself.  Alternatively, the small 

molecules could target additional novel components of the late transport machinery, or 

regulators of this machinery. 

The TOR Signaling Pathway regulates cell growth

The main goal of my thesis research was to characterize the effects of the compounds 

that we identified in two high-throughput screens for secretory inhibitors (described in 

Chapters 2 and 3).  In addition, I pursued the identification of compound targets, and/

or proteins that are relevant to the functions of the compound targets (described in 
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Chapter 2).  One suppressor that I identified for our best secretory inhibitor was over-

expressed GTR2.  This gene encodes a Ras-type small GTPase, which functions as an 

amino acid-dependent upstream regulator of TORC1 (Target of Rapamycin Complex 1)

(17; 22; 50).  In this final section of my introductory chapter, I will briefly describe the 

TORC1 signaling pathway, with a focus on the upstream regulation of this pathway, 

including regulation by Gtr proteins and their metazoan homologs, the Rag proteins.  In 

Chapter 4, I will speculate more on how the TORC1 signaling pathway and Gtr proteins 

tie in with regulation of transport in the late exocytic pathway. 

There are two complexes that contain TOR: TORC1, which is sensitive to rapamycin, 

and TORC2, which is not, at least in most assays.  The TOR protein in these complexes 

is a highly-conserved Ser/Thr kinase that regulates cell growth and metabolism in 

response to environmental factors (30).  TORC1 is stimulated by nutrients to positively 

regulate cell growth by up-regulating anabolic processes, including translation and 

ribosome biogenesis.  Activation of TORC1 also negatively regulates catabolic processes 

by down-regulating stress-responsive gene transcription and autophagy.  In contrast, 

the mechanisms that regulate TORC2 are less-well understood, and they do not appear 

to be directly connected to nutrient levels (15).

In metazoan cells, TORC1 regulates cell growth by integrating various upstream 

signals, whereas in yeast, nitrogen source level and quality is the primary signal that 

controls TORC1 (reviewed in (70)).  The major inputs that regulate TORC1 signaling in 

metazoan cells are growth factors, nutrients, energy, and stress.  The best-understood 

pathway upstream of TORC1 is the pathway mediated by growth factors.  TOR is 

activated in response to growth factor signals via PI3K-mediated activation of the 

kinase Akt/PKB.  The Akt/PKB kinase inhibits Tsc1/2 (tuberous sclerosis proteins), 

which form a GTPase-activating protein (GAP) complex for the GTPase, Rheb1.  

Inactivation of Tsc1/2 by Akt/PKB leads to the activation of Rheb1, which in turn 

stimulates TOR (70).  Other signals such as stress and energy also regulate Tsc1/2, and 

this is through other kinases: LKB, AMP-activated kinase, and MAPK (Mitogen-
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activated protein kinase).  However, Tsc1/2 is not affected by a major regulator of TOR, 

which is amino acid level (70).  Until recently, TOR regulation by amino acids and other 

nitrogen sources was not understood in either yeast or metazoan cells.  

A clue for amino-acid dependent regulation of TORC1 first came from work by 

Duboluoz et al., in a yeast study aimed at identifying stimulators of TORC1 following 

recovery from starvation (17).  That study identified a complex containing the small 

GTPase, Gtr2, as a key regulator required for amino acid-dependent and TOR-

dependent recovery from starvation.  Gtr2, along with its paralog and binding partner, 

Gtr1, was also identified in a similar complex by a yeast genetic screen aimed at 

identifying nitrogen-source-dependent regulators of amino acid permease transport 

(22).  The strongest evidence for Gtr proteins as amino acid-dependent upstream 

regulators of TORC1 and traffic came from more recent studies in Drosphila (32) and 

mammalian cells (50).  The metazoan orthologs of Gtr1 (RagA/B) and Gtr2 (RabB/C) 

regulate TORC1 activity by regulating its localization to compartments that contain its 

activator, Rheb1; furthermore, this function of Rag proteins is dependent on amino acids 

and is required for the amino acid-dependent regulation of cell growth (32; 50).

My identification of GTR2 as a gene-dosage suppressor of a small-molecule inhibitor 

of the late exocyic pathway further implicates Gtr2 in the regulation of protein traffic.  

Furthermore, based on the known functions of Gtr2, this regulation may involve TOR 

kinase, implicating this kinase in the regulation of cell growth by regulating traffic to 

the cell surface.  These concepts are discussed in more detail in the final chapter of my 

thesis.

Summary

! The discovery that VPS proteins function in one branch of the exocyitc pathway was 

critical in the design of classical genetic (mutant) screens and chemical genetic (small 

molecule) screens aimed at discovering genes and molecular tools that will help us to 

understand the mechanisms of late exocytic transport.  Furthermore, the results of my 
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experimental work, especially the identification of Gtr2 function as a suppressor of the 

inhibiting effects of one of our new compounds, indicate that some of the compounds 

we identified in the chemical genetic screen will serve as tools for understanding the 

signaling pathways that regulate traffic in the late exocytic pathway.
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Chapter 2

A chemical genetic screen for modulators of exocytic transport identifies 

inhibitors of a transport mechanism linked to GTR2 function
Work from this chapter was published in Eukaryotic Cell, Vol. 9, p. 116-126 (2010) and 

reproduced here with permission from the publisher.

Introduction

! Cell growth and proliferation as well as the regulation of cell surface composition 

are achieved by an intracellular transport machinery that delivers proteins and 

membrane to the cell surface.  The transport machinery is regulated by environmental 

sensing and signaling pathways that are integrated for the fine-tuned control of 

transport to the cell surface.  The mechanisms that regulate cell growth and 

proliferation are highly robust; therefore, they can function in a wide range of 

environmental conditions and even when some components of the transport or 

signaling machinery fail.  In eukaryotic cells, this robustness is achieved in part by a 

complex network of membrane and protein traffic routes to the cell surface (17, 33).  

Defects in a transport pathway can result in cargo transport by an alternate route, 

making transport defects difficult to detect in mutant screens (17, 18).  Therefore, 

relatively little is known about the mechanisms by which protein and membrane cargo 

is transported from late exocytic sorting compartments, the Golgi and endosomes, and 

we have yet to identify most of the components that mediate and regulate this process.

! Complex processes are more readily understood in relatively simple organisms.  

For this reason, the budding yeast Saccharomyces cerevisiae has become one of the most 

powerful experimental models for understanding intracellular transport, and most of 

the conserved components of the exocytic traffic machinery were first discovered using 
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yeast genetic strategies (27).  We used a yeast genetic screen to identify a novel 

component of the late exocytic transport machinery, Avl9, a member of an ancient 

eukaryotic protein superfamily (18).  Avl9 is essential in a mutant strain lacking Vps1, a 

dynamin homolog that functions in transport vesicle formation at a late Golgi 

compartment (26, 34), and also lacking Apl2, a large subunit of the adaptor protein-1 

(AP-1) complex, which is required for forming certain classes of clathrin-coated vesicles 

at the Golgi and endosomes (18, 19, 31, 42).  The apl2∆ and vps1∆ mutants have defects 

in an exocytic pathway(s), but these mutants, as well as an apl2∆ vps1∆ double-mutant, 

grow well because cargo is rerouted into a remaining pathway(s) (18).  Mutations such 

as avl9∆, which are lethal in a apl2∆ vps1∆ strain but not in a wild-type strain, are 

expected to cause defects in a branch of the exocytic pathway that remains functional in 

the apl2∆ vps1∆ strain.  Analogous to using mutagenesis to screen for a secretory block 

in the apl2∆ vps1∆ mutant, we performed a high-throughput screen of a large library of 

small molecules to identify compounds that inhibit the growth of the vps1∆ apl2∆ 

mutant but which have relatively little effect on wild-type cells.  The targets of these 

compounds are potential components of the secretory machinery, and some of the 

compounds may interfere with an Avl9-related function.  The biochemical function of 

Avl9 and related proteins is still unknown, and the inhibitors identified by our screen 

strategy could be valuable tools in understanding the role of Avl9 in both yeast and 

mammalian cells.  

! Our high-throughput screen was successful in identifying novel exocytic transport 

inhibitors, and we describe the phenotypic effects of one structurally similar group of 

compounds in detail.  Furthermore, we show that the toxic effects of this group of 

compounds is inhibited by highly expressing GTR2, which encodes a Ras-like small 

GTPase that plays a role in regulating nutrient-responsive TORC1 (Target Of 

Rapamycin Complex 1) kinase signaling, exocytic cargo sorting at endosomes, and 
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epigenetic control of gene expression (7, 11, 14, 25, 37).  Therefore, the small molecules 

identified by our chemical-genetic approach are promising tools for understanding how 

signaling pathways that respond to environmental conditions regulate the traffic 

pathways that mediate cell growth and proliferation. 

25



Materials and Methods

Reagents, plasmids, and yeast strains

! Minimal medium for growing plasmid-carrying yeast strains was CSM (complete 

synthetic medium) lacking a nutrient for plasmid selection, with amino acid mixes from 

Q-Biogene.  All other growth media components were from Difco, and were prepared 

following recipes described in (39).  Rich medium was YPD (yeast extract, peptone, 2% 

glucose) or YPGal (yeast extract, peptone, 2% galactose) unless otherwise stated.  

Culture growth was monitored by measuring OD600 in a Genesys 5 spectrophotometer 

(Thermo-Fisher).  Rapamycin was from Sigma-Aldrich and prepared as described in (6).  

Hit compounds from high-throughput screening were reordered from ChemBridge 

(KU#1-11) or ChemDiv (KU#12-15). 

! Our “wild-type” yeast strains are EHY46 and EHY47 (18).  EHY361 is a vps1∆ 

mutant strain in the EHY47 background (18).  EHY644 is an apl2∆ vps1∆ mutant strain 

(obtained from EHY361 crossed to GPY1783-10A; (18)).  EHY644 was transformed with 

pEH227, which is pRS316 with VPS1 (18) to generate EHY658; with pEH331, which is 

pRS316 with APL2 (18) to generate EHY1166; or with an “empty” vector, pRS316, which 

is a URA3 CEN plasmid (40) to generate EHY707.  EHY807 is an apl2∆ strain, generated 

from EHY47 by integrating a PCR product containing apl2∆::kanMX4 (obtained from 

Y12725 using primers EH130, EH131; (18)).  EHY1325 is a wild-type diploid generated 

by crossing EHY47 to EHY46.  GTR2 was deleted in this diploid to generate EHY1326 

by integrating a PCR fragment containing gtr2∆::LEU2 (using primers EH212: 

GGAAAGGACCGTTTCCGGAC and EH213: CGACCCCCATCGTGAGTGCT), 

obtained from strain NBW5∆gtr2 (a kind gift of Takeshi Sekiguchi; (25)).  EHY1326 was 

sporulated, and gtr2∆ progeny (LZY260) was crossed to EHY644 to obtain the following 
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haploid progeny: gtr2∆ vps1∆ apl2∆ (LZY253); gtr2∆ apl2∆ (LZY256); and gtr2∆ vps1∆ 

(LZY257).  

! Plasmids containing mutant alleles of GTR1 and GTR2 that encode proteins 

restricted to the GDP- or GTP-bound conformations were the generous gift of Takeshi 

Sekiguchi (Kyushu University), and are pL146, pL148, pL264, and pL263 (described in 

(25, 43).  We switched the TRP1 auxotrophic marker in these plasmids to URA3 for use 

in our strains, using the pTU marker-swapper plasmid (9).  Plasmid pLZ43 contains 

GTR2 (20 upstream and 61 downstream bp) under the control of the GAL1 promoter, 

and was isolated from a cDNA library (22).  Plasmid pLZ44 contains GTR1 under the 

control of the GAL1 promoter and was generated by cloning a genomic PCR fragment 

(using primers LZP48: GTAATGTCGTCAAATAATAGGA and LZP26: 

AAACACTCAATTGCCGAATGT) into pCR-BluntII-TOPO, using the Zero-Blunt TOPO 

kit (Invitrogen).  The GTR1-containing insert was then subcloned into pRS316-GAL (22) 

using the PstI and SacI restriction enzyme sites.

High-throughput screen

! Our high-throughput screen for compounds that selectively inhibit the growth of 

an apl2∆ vps1∆ yeast strain was performed at the University of Kansas High 

Throughput Screening Laboratory, which has a collection of over 100,000 compounds 

selected from the ChemBridge, ChemDiv, and Prestwick Libraries.  101,376 screening 

compounds were distributed in 384-well plates.  Each plate had 352 wells for 

compounds and 32 wells for positive control (no cells) and negative control (DMSO 

without screening compound).  The plates were seeded with an overnight (18-hour) 

culture of EHY644 (apl2∆ vps1∆)grown at 24°C in YPD to OD600 0.05 (early log phase).  

80 µl of culture was mixed with 20 µl of compound dissolved in 2.5% DMSO, for a final 

concentration of 5 µg/ml compound, 0.5% DMSO, in 100 µl per well.  The plates were 
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then stacked (but not sealed) and incubated at room temperature for 15-17 h to a final 

average OD600 of 0.8 (close to late exponential growth under these conditions).  Plates 

were read on an Envision multilabel plate reader (PerkinElmer, Wellesley, MA).  We 

defined hits as those compounds that gave an OD600 that was 60% lower than that of 

the negative control.  We identified 279 hits from screening with the apl2∆ vps1∆ mutant.  

These hits were then tested with both the apl2∆ vps1∆ mutant (EHY644) and the 

corresponding wild-type strain (EHY47), in a 6-point dose-response assay (0.15 µg/ml - 

5 µg/ml) in 96-well plates.  Of the 279 primary screen hits, 15 compounds inhibited the 

growth of the apl2∆ vps1∆ mutant strain but were significantly less toxic to the wild-type 

strain.  

Assays for drug effects

! All liquid cultures for growth assays and secretion assays were grown at 24°C, with 

the exception of the pulse-chase assays, which were performed at 30°C.  (Growth at 

24°C and 30°C was compared for the enzymatic invertase assay in selected samples, and 

no difference in results was observed for the two temperatures.)  Yeast on agar plates 

were incubated at 30°C.  For shaking-culture exponential-phase growth assays, cells 

were grown overnight to early exponential phase in CSM (minus uracil) medium to 

maintain plasmids.  They were then diluted to OD600 0.07, and compounds dissolved 

in DMSO were added at the indicated concentrations, with final DMSO concentration of 

0.25% in each case.  Cultures were placed on a rotating platform for aeration, and 

OD600 readings were taken every 2 hours at least five times to generate an exponential 

growth curve.  Rates were calculated from an exponential curve fit equation using 

Kaleidagraph 3.6 (Synergy Software; Reading, PA).  The correlation coefficient 

(Pearson's R) was >0.9 in each case.  
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! The invertase, Bgl2, and CPY transport assays were performed as described 

previously (18).  For the invertase assay, we grew cells overnight to exponential phase in 

either YPD or CSM (to select for CEN plasmids), then shifted them to fresh YPD with 

5% glucose for 2-3 hours.  Compound or DMSO control was then added to this medium 

at the indicated concentration and cultures were grown for an additional 15 min, 

followed by shifting cells to YPD with 0.1% glucose (to derepress invertase expression) 

plus compound or DMSO control for 90 min prior to performing the invertase secretion 

assay as described previously (18).  Results from at least three independent cultures 

grown on different days were averaged, and variability is indicated as SEM (standard 

error of the mean).  Statistical significance (using a student t-test) was calculated using 

Kaleidagraph 3.6 software.  Pulse-chase analysis of transport kinetics was performed as 

in (18).  Briefly, exponential-phase cells were inoculated into CSM, -Cys, -Met at 4 

OD600/ml, shaken at 30°C for 5 min, and compound or DMSO control was added for 

20 min prior to a 4-min pulse with 25 µCi labeling mix/OD600 cells.  Chase for 2-20 min 

was with excess cold amino acids, and cells were processed for immunoprecipitation 

and detection of Bgl2, invertase and CPY as described (18).  Cells for thin-section 

electron microscopy were grown at 30°C in YPD, and prepared as described previously 

(18).

Screen for gene overexpression suppressors of drug effects

! To screen for genes that, when overexpressed, can suppress the toxic effects of our 

drugs, we used both a 2µ (high copy) genomic library (5) and a GAL-promoter-driven 

cDNA library (22).  Only the cDNA library yielded a suppressor clone.  For that library, 

we screened for suppressors in strain EHY644 (apl2∆ vps1∆).  The strain was 

transformed with library DNA using the method of Schiestl and Gietz (36), and cells 

were plated on CSM -Ura, 2% galactose plates with compound (1 µM KU#7 or 2 µM 

KU#4).  Plasmids were recovered from colonies that could grow on drug plates and re-
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transformed and re-tested for suppression in EHY644.  Plasmids that retested were 

sequenced at the insert junctions to identify the suppressing gene. 

30



Results

A high-throughput screen for compounds that are selectively toxic to a vps1∆ apl2∆ 

mutant strain

! We performed a high-throughput screen of a library of drug-like molecules for 

compounds that inhibit the growth of a yeast strain with apl2∆ and vps1∆ mutations but 

which have relatively small effects on a corresponding background strain.  Our goal 

was to identify compounds that generate an AVL phenotype (apl2 vps1 lethal), 

analogous to the phenotype of an avl9∆ mutant (18).  Of 101,376 compounds screened, 

279 significantly inhibited the growth of a vps1∆ apl2∆ mutant (less than 40% of growth 

without drug).  These compounds were then screened in dose-response growth assays 

to eliminate compounds that inhibited the growth of both wild-type and mutant strains.  

Of our 279 initial hits that inhibited the growth of a vps1∆ apl2∆ mutant, we identified 15 

hit compounds that selectively inhibited the growth of the mutant strain. 

! Seven of the 15 hit compounds could be grouped into two groups based on similar 

structures, whereas the rest of the structures were unique (Figure 1).  We identified four 

similar compounds that we named Group A, and three compounds that we named 

Group B.  A fifth Group A compound, KU#7f, was not identified in our screen but was 

purchased as a substitute for KU#7 when that compound was no longer available from 

the supplier (KU#7f is somewhat more active than KU#7 in our assays).  Dose-response 

growth assays in 96-well plates for representative Group A compounds and a Group B 

compound are shown in Figure 2a.  Piperazine rings are common in drug-like 

molecules, but the published bioactive piperazine derivatives that most resembled our 

Group A structures (12, 44) did not have growth-inhibiting activity for our mutant 

strains, when tested at up to 10 µM.  In particular, we found that the N-benzoyl 
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Figure 1.  Structures of all 15 hit compounds identified in a high-throughput phenotypic 

screen of a 101,376-compound library for small molecules that have an AVL (apl2∆ vps1∆ 

lethal) effect.  Some of the confirmed hit compounds grouped into two structural 

groups, Group A and Group B, whereas other hits had unique structures (“sinlgetons”).
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substituent was essential for the activity of our Group A compounds, because similar 

piperazine compounds that did not have this substituent (12) had no effect in our assays 

(our unpublished observations).  We did not find published examples of bioactive 

compounds that resembled our Group B compounds.

Group A compounds selectively inhibit the growth of apl2∆ and vps1∆ mutants

! We tested all of our 15 hit compounds in exponentially growing shaking cultures 

for growth-inhibiting activity and found that the Group A compounds had the most 

rapid (within 30 min), dramatic effect on the growth of either the apl2∆ or vps1∆ or apl2∆ 

vps1∆ mutant strains, with relatively much smaller effect on the growth of our wild-type 

strain (Figure 2b).  However, when grown on solid medium, the toxic effects of the 

compounds were specific to the apl2∆ vps1∆ strain; thus, the Group A compounds have 

an AVL (apl2∆ vps1∆ lethal) effect (Figure 2c).  It is possible that rapidly-growing cells in 

shaking cultures, in which membrane trafficking occurs at a greater speed than it does 

in cells grown on plates, are more sensitive to Group A compounds.  Alternatively, our 

results could reflect the time scale of the assays, a few hours in shaking cultures at 

exponential growth, compared to several days on plates, in which time the vps1∆ and 

apl2∆ single-mutants could possibly adapt to the effects of the compounds. 

! In contrast to Group A compounds, most of our hit compounds initially did not 

appear to inhibit growth of exponentially growing shaking cultures.  This included the 

Group B compounds, which consistently strongly inhibited the growth of the apl2∆ 

vps1∆ strain but not the wild-type strain when the growth assay was performed in 96-

well (non-shaking) liquid cultures (Figure 2a) or agar plates (not shown).  However, we 

found that after growing cells for a longer time (>4 hours), growth inhibition in shaking 

liquid cultures became apparent in Group B compounds (results not shown).  The delay 

in growth defect was not due to a need for build-up of compound in cells, because we 

33



Figure 2 (following page).  Group A and Group B compounds have mutant-specific 

effects on growth.  (A) Dose-response growth assays for KU#6 (Group A), KU#7 (Group 

A) and KU#10 (Group B) compounds.  Wild-type and apl2∆ vps1∆ (“mutant”) cells were 

grown in the presence of compound or DMSO control in 96-well plates.  Compounds 

were at the following concentrations, prepared by 2-fold serial dilutions:  5, 2.5, 1.25, 

0.625, 0.31, and 0.15 µg/ml.  The graphs show [(OD600 in compound)/OD600 in 

DMSO]x100, after ~18 h growth.  (B) Growth rates of exponential-phase cells in shaking 

cultures.  Overnight exponential-phase cultures were diluted to OD600 0.07, and 

compounds or DMSO control were added at the indicated concentrations with final 

DMSO concentration of 0.25% in each case.  Cultures were grown with aeration, and 

OD600 measurements were taken over ~9h of growth to generate growth curves.  Rates 

were determined from an exponential curve fit equation (correlation coefficients >0.9 in 

each case).  (C) Growth on solid media in presence of Group A compounds.  Cultures 

were grown to OD600 1.0 and spotted on a YPD plate containing 1 µM KU#7f and on a 

control plate, after 4-fold serial dilutions.  Mutant strains have an EHY47 wild-type 

background and are identical except for the plasmids they contain:  EHY658 (apl2∆), 

EHY1166 (vps1∆), and EH707 (apl2∆ vps1∆).
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noticed the same time delay in lower and higher concentrations of the drug.  It is 

possible that these compounds affect gene expression or signaling pathways that 

regulate growth. 

Group A compounds inhibit exocytic transport

! It is difficult to interpret results with slow-acting growth inhibitors, so we focused 

on analyzing the effects of Group A compounds, which rapidly inhibited the growth of 

our mutant strains.  To determine whether the toxicity of these compounds is due to a 

transport block, we assayed the effects of the compounds on exocytic cargo transport.  

In wild-type yeast, two pathways can transport exocytic cargo.  One route transports 

the cell wall protein Bgl2, whereas another route transports the periplasmic enzyme 

invertase (16).  These two cargoes are sorted into one pathway in a vps1∆ mutant, in 

which the normal invertase pathway appears to be blocked (17).  Bgl2 transport can be 

conveniently assayed, because at steady state most of this protein is in the cell wall, 

which can be removed by enzymatic digestion (spheroplasting).  Wild-type cells have 

very little Bgl2 after spheroplasting, which represents intracellular Bgl2 in transit to the 

cell surface.  We found that 15 min after adding compound, intracellular accumulation 

of Bgl2 was detected in the vps1∆ and apl2∆ mutants but not in the corresponding wild-

type strain (Figure 3).  This accumulation was very dramatic after 90 min, indicating a 

significant defect in Bgl2 transport.

! We also assayed the transport of a periplasmic enzyme, invertase, in the presence of 

Group A compounds.  Invertase expression is repressed when cells are grown in 2% 

glucose, and expression is derepressed when cells are shifted to 0.1% glucose (8).  There 

is no detectable invertase secretion prior to derepressing expression.  We added 

compounds to cells 15 min prior to derepression, and then shifted cells into low glucose 

with compound for 90 min, followed by enzymatic assays for invertase secretion 
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Figure 3.  Group A compounds cause internal accumulation of the cell wall protein, 

Bgl2, in apl2∆ and vps1∆ mutant strains.  Cells were grown to exponential phase, and 

compound KU#4 (Group A) was added at 10 µM for the indicated times.  DMSO 

controls (“D”) represent 60-min time-point samples.  The cell walls were digested to 

remove external Bgl2, and internal Bgl2 was assayed by western blotting.  Actin is 

shown as loading control.  Strains are as in Figure 2.
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Figure 4.  Group A compounds cause a mutant-specific defect in invertase secretion.  

Cultures were grown to exponential-phase in high-glucose medium, and compound 

was added for 15 min before shifting to low glucose with compound (to derepress 

invertase expression).  Growth in compound was continued for 90 min.  External 

invertase was compared to total invertase by an enzymatic assay to calculate the percent 

of invertase secreted.  Strains are as in Figure 2.  The means of three experiments (from 

three independent cultures) are shown.  Error bars, SEM.
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(Figure 4).  We observed a very significant secretory defect for the apl2∆ mutant in as 

low as 0.5 µM compound KU#7, the lowest concentration that we assayed.  We found 

similar effects on secretion for all of our Group A compounds, and the apl2∆ mutant was 

consistently the most sensitive to compound in this assay (Figure 4).  The mutant strains 

were identical except for the plasmids that they contained (double mutant with either 

empty vector, or vector with VPS1 or APL2).  It is possible that the double mutant 

adapts to the transport defect in some way that makes it less sensitive to compound in 

this assay.  Interestingly, the relative invertase secretion defects in the different mutants 

did not correspond with the relative growth decrease in compounds (Figure 2b,c).  

! ! The secretory assays described above have the advantage of being very sensitive for 

detecting transport defects.  However, the assays show cargo accumulation over time, 

rather than an immediate effect on transport kinetics.  Therefore, we also performed 

metabolic labeling and pulse-chase analysis of secretory cargo to determine whether the 

compounds had observable effects on transport kinetics in this assay (Figure 5).  In the 

absence of inhibitors, about half of the Bgl2 is exported within 5 min, while transport of 

invertase is faster (Figure 5 a,c shows results for apl2∆; results are similar for wild type).  

Both wild-type and apl2∆ cells show a defect in Bgl2 transport kinetics in compound 

KU#4 and KU#7 (Figure 5b), and the defect is more substantial in apl2∆ cells.  The 

slower transport kinetics was most easily observed at early chase time points, but there 

was not a complete transport block, and most Bgl2 was secreted by 20 min (not shown).  

KU#4 and KU#7 also slowed invertase transport in the apl2∆ mutant, but not in wild-

type cells (Figure 5d).  However, invertase transport is normally very fast, so it is 

difficult to detect a partial transport block by pulse-chase analysis.  Wild-type cells did 

show a defect in the enzymatic invertase secretion assay (Figure 4), but internal 

invertase in that assay represents accumulation over 90 min.  Furthermore, the 

enzymatic assays also show an incomplete transport block for wild-type and even 
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Figure 5.  Pulse-chase analysis shows a kinetic lag of Bgl2 and invertase exocytic 

transport in the presence of Group A compounds.  Cells were pre-incubated with 

compound or DMSO control for 20 min and metabolically labeled with 35S cysteine and 

methionine for 4 min, followed by addition of excess unlabeled amino acids for 2-20 

min chase times (A, C, E) or for a 5 min chase (B and D).  The inside (I) fraction was 

separated from the cell wall and media fraction (O), and Bgl2 (A, B), invertase (C, D) 

and CPY (E) were immunoprecipitated and detected by phosphorimaging.  Bgl2 is not 

visibly modified, whereas invertase has an ER form and a Golgi-modified (G) 

heterogeneously glycosylated form.  CPY has a 67 kDa ER form, a 69 kDa Golgi form, 

and a 61 kDa vacuole form.  Group A compounds do not cause a defect in ER-to-Golgi 

or Golgi-to-vacuole transport of CPY.
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Figure 6.  Group A compounds cause accumulation of Golgi or endosome-like 

membranes.  An apl2∆ strain (EHY807; A, B) or wild-type (EHY47; E) were grown in the 

presence of 2.5 µM compound KU#7 for 30 min.  Similar results were obtained for apl2∆ 

cells grown in 10 µM KU#3 (a less-potent Group A compound) for 60 min (C).  DMSO 

controls without compound are shown in D (apl2∆) and F (wild type).  Cells were 

prepared for thin-section electron microscopy as described (18).  The scale bars 

represent 200 nm (A), or 500 nm (B-F).
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mutants, at the drug concentrations we tested (for comparison, the sec6-4 conditional 

secretory mutant secretes <5% invertase at restrictive temperature in this enzymatic 

assay; (27) and our unpublished observations).  The transport defects caused by our 

compounds appear to be specific to the late exocytic pathway, because pulse-chase 

analysis of transport of a vacuolar protein, CPY, showed no detectable defect in ER-to-

Golgi transport or transport from the Golgi to vacuole (Figure 5e).

Group A compounds cause accumulation of Golgi-like membranes

! To further define the membrane traffic defects caused by our Group A compounds, 

we examined the ultrastructure of cells grown in the presence of KU#7 or KU#3 by thin-

section electron microscopy (Figure 6).  The apl2∆ strain showed dramatic accumulation 

of membranes when grown in KU#7 for just 30 min (Figure 6a, b).  Most of the 

membranes were clusters of vesicles and/or tubules (tubules and fenestrated 

membranes could appear as clustered vesicles in the plane of a thin section).  Another 

common and striking structure was a ring of discontinuous membranes (enlarged inset 

in Figure 6a; also seen in Figure 6b,c,e).  Similar rings were observed in cells grown in 

the presence of KU#3 for 60 min (Figure 6c; KU#3 is our least-effective Group A 

compound).  Because the rings were consistently circular, they likely represent 

fenestrated spheres, structures also observed in sec14-ts mutants after a short shift to a 

restrictive temperature (32) and in an arf1∆ mutant (15).  Gaynor et al. (15) observed 

both very large and smaller rings in arf1∆ cells, and from complementing 

immunolocalization studies by light microscopy, they concluded that the large rings 

likely represent aberrant endosomes, whereas the smaller rings represent Golgi 

membranes.  In our samples, we did not observe the very large rings seen in the arf1∆ 

mutant.  However, the arf1∆ and sec14-ts mutants have defects in transport from both 

Golgi and endosomes (15, 23), and the invertase-transporting exocytic pathway likely 

transits endosomes (17), so our Group A compounds could perturb exit from either or 
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both the Golgi and endosomes.  Wild-type cells had a similar but less abundant 

membrane-accumulation phenotype when grown in the presence of KU#7 (Figure 6e).  

We did not observe these abnormal membranes in either apl2∆ cells or wild-type cells 

grown in DMSO control (Figure 6d, f), although the apl2∆ cells had occasional small 

continuous rings which represent cup-shaped structures, similar to but much smaller 

than Berkeley bodies, thought to represent aberrant Golgi, in sec7-ts and sec14-ts 

mutants (27)).  We also observed small continuous rings in cells grown in KU#7, but 

these were likewise smaller and rarer than the structures accumulated by sec7 and sec14 

mutants.  Cells grown in KU#7 for 1h had a similar phenotype (not shown), so the 

fenestrated spheres did not progress to Berkeley bodies at the drug concentrations we 

tested.  It is possible that the fenestrated spheres and tubules represent an incomplete 

block in exit from the Golgi (as is the case with the arf1∆ mutant described in (15)).  

Alternatively, the different abnormal membranes may represent different molecular 

defects.  

Toxicity of Group A compounds can be suppressed by overexpressed GTR2

! A relatively simple strategy for identifying potential drug targets, or genes that are 

relevant for the function of a drug target, is a screen for gene-dosage suppression of the 

drug effects.  We screened both a 2µ (multicopy) genomic library and a GAL-promoter-

driven cDNA library (22) for genes that, when overexpressed, can suppress the toxicity 

of Group A compounds.  We obtained no suppressors from the 2µ library and only one 

strong suppressor gene from the cDNA library.  We identified the suppressor gene as 

GTR2 (Figure 7).  Gtr1 and Gtr2 are homologous Ras-like GTP binding proteins that 

form hetero- and homo-dimers (14, 25).  They function as nutrient-responsive regulators 

of the TORC1 signaling pathway (7, 11), exocytic sorting of the Gap1 general amino acid 

permease at endosomes (14), and epigenetic control of gene expression (37).  Although 

Gtr1 and Gtr2 are thought to function as obligate heterodimers, Gtr1 had no 
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suppressing effect when highly expressed from the GAL promoter (Figure 7).  A 2µ 

(high-copy) plasmid containing GTR2 under its native promoter could not suppress 

toxicity either on glucose or galactose (our unpublished observations).

A dominant-negative form of the Gtr complex and decreased TORC1 signaling suppress 

the secretory defect caused by Group A compounds

! Our invertase secretion assay is not compatible with growth on galactose-

containing media, so we could not use our GAL-GTR2 construct to test whether 

overexpression of GTR2 can suppress the effects of Group A compounds on invertase 

secretion.  Instead, we used mutant alleles of the GTR genes expressed from their native 

promoters in CEN (low-copy) plasmids.  The Gtr1/Gtr2 dimer, as well as the metazoan 

counterpart, RagAB/RagCD, are active in positively regulating TORC1 signaling when 

Gtr1 (or RagA or RagB) is GTP-bound and Gtr2 (or RagC or RagD) is GDP-bound.  

Furthermore, in the opposite conformations (Gtr1/RagAB in a GDP-bound state and 

Gtr2/RagCD in a GTP-bound state) have a dominant-negative effect on TORC signaling 

(7, 11, 20, 35).  Likewise, the Gap1 permease is sorted from a vacuolar pathway to the 

exocytic pathway when Gtr1 is GTP-bound and Gtr2 is GDP-bound, but not when the 

GTPases are restricted to the opposite conformations (14).  We tested GTR alleles that 

express either GTP-restricted or GDP-restricted forms of the proteins for effect on 

invertase secretion in apl2∆ vps1∆ cells grown in presence of KU#7f (Figure 8a).  We 

found that both Gtr1 and Gtr2 can partially suppress the effects of KU#7f on secretion, 

and only when the GTPases are restricted to the conformations that are expected to 

form a dominant negative complex.  Although the suppression of the secretory defect 

was not dramatic, the Gtr proteins were not overexpressed in these experiments, and 

the wild-type proteins were also present.  Furthermore, the results were consistent in 

each repeat of the experiment and statistically significant (P = 0.001 for secretion with 

empty vector compared with secretion when Gtr2-GTP is expressed).  In contrast, the 
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Figure 7.  Overexpression of GTR2 on galactose-containing medium suppresses the 

toxic effect of Group A compounds.  The strains are described in Materials and Methods 

and are as follows: EHY47 with pRS316, EHY807 with pLZ43; EHY807 with pRS316, 

EHY361 with pLZ43, EHY361 with pRS316, EHY644 with pLZ43, EHY644 with pLZ44, 

and EHY644 with pRS316.
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Figure 8.  Dominant-negative Gtr proteins and sub-inhibitory rapamycin suppress the 

invertase secretion defect caused by Group A compounds.  (A) An apl2∆ vps1∆ mutant 

strain (EHY644) was transformed with empty vector (pRS316) or pRS-based (CEN) 

vectors expressing GDP- or GTP-restricted mutant forms of Gtr1 and Gtr2, from their 

native promoters.  The strains were tested for invertase secretion after growth in 0.5 µM 

KU#7f, as described for Figure 4.  For each strain, the means were calculated from 7 

repeats (for KU#7f) or 3 repeats (for DMSO).  Each repeat was an independent culture.  

(B) An apl2∆ vps1∆ mutant strain (EHY644) culture was divided into four samples, 

which were treated with either DMSO (control), or 0.5 µM KU#7f, or 10 ng/ml 

rapamycin, or 0.5 µM KU7f plus 10 ng/ml rapamycin together.  The means from three 

independent (pre-drug) cultures are shown.  (C)  Total invertase activity (secreted plus 

internal) from the cultures used in (B).  Invertase is expressed as A540 units per OD600 

cells from the invertase enzymatic assay.  Error bars, SEM.
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alleles that are expected to form the TORC1-activating form of the Gtr complex (Gtr2-

GDP and Gtr1-GTP) had less or no effect on invertase secretion (Figure 8a).

! Because the “active” Gtr complex positively regulates TORC1 signaling, whereas 

the “inactive” complex has a dominant negative effect on TORC1 activity, we asked 

whether decreasing TORC1 activity also suppresses the secretory defect in the presence 

of KU#7f.  We found that 10 ng/ml rapamycin (which is the amount typically used as a 

sub-inhibitory level, while 200 ng/ml is used to inhibit TORC1; (6)) suppressed the 

secretory defect caused by KU#7f to an extent similar to that of the dominant-negative 

Gtr proteins (Figure 8b).  A nearly identical result was obtained with 20 ng/ml 

rapamycin (not shown), so our results with both the Gtr proteins and rapamycin may 

represent the maximum possible suppression.  Rapamycin alone, either 10 ng/ml (or 20 

ng/ml, not shown) had no effect on invertase secretion in the apl2∆ vps1∆ strain when 

no Group A compound was present (Figure 8b). 

! TORC1 positively regulates translation (45), so we speculated that suppression by 

reducing TORC1 activity may be due to a decrease in cargo flow through the secretory 

pathway, such that the reduced secretory competence due to effects of our Group A 

compound is less deleterious to the apl2∆ vps1∆ mutant.  Cells are grown in the drugs 

for 15 min prior to derepression of invertase expression, followed by 90 min more in 

drug, so some reduction in protein synthesis might eventually occur in the time course 

of our experiments.  However, for the identical samples shown in Figure 8b, we found 

that total invertase (secreted plus internal) was essentially the same when just KU#7f 

was added to cells and when both KU#7f and rapamycin were added (although total 

invertase level was somewhat lower compared to DMSO control, whether or not 

rapamycin and KU#7f were combined or each was present alone).  These results 

suggest that TORC1 activity may regulate membrane traffic in a way that is deleterious 
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when traffic is perturbed in the apl2∆ vps1∆ mutant by Group A compounds.  We were 

unable to detect suppression of the growth-inhibitory effect of Group A compounds, by 

either the mutant alleles of Gtr proteins or by sub-inhibitory levels of rapamycin.  This 

could be because the invertase assay measures a relatively short-term effect, and the 

long-term effect on growth is not as readily suppressed. 

GTR2 is not a likely direct target of Group A compounds

! Suppression by overexpressed Gtr2 could indicate either that Gtr2 is a target of our 

Group A compounds, or that the function of the drug target is relevant for Gtr2 activity.  

Because Group A compounds are toxic to an apl2∆ vps1∆ mutant, a defect in the drug 

target could likewise be deleterious to the apl2∆ vps1∆ strain.  We found that crossing a 

gtr2∆ mutation into our apl2∆ vps1∆ strain did not noticeably reduce the growth of the 

gtr2∆ apl2∆ vps1∆ triple-mutant progeny (Figure 9).  It is still possible that Group A 

compounds have a dominant effect on Gtr2, or target a regulator of its activity.  

However, this is unlikely, because in such a case, the deleterious effects of the 

compounds would require the presence of GTR2, and we found that KU#7f is at least as 

toxic to a gtr2∆ apl2∆ vps1∆ mutant as it is to an apl2∆ vps1∆ mutant (Figure 9).  

Although we have not yet identified the molecular target of our comounds, we can 

conclude that modulation of TORC1 activity is critical when the effects of Group A 

compounds are combined with the apl2∆ and vps1∆ mutations, and our results are 

valuable in suggesting additional target candidates. 
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Figure 9.  Gtr2 is not a likely target of our Group A compounds.  A gtr2∆ mutation (in 

EHY47 background) was crossed into an apl2∆ vps1∆ strain (EHY644).  All double- and 

triple-mutant progeny were viable; therefore, unlike Group A compounds, gtr2∆ does 

not produce an AVL phenotype.  The gtr2∆ apl2∆ vps1∆ strain was at least as sensitive to 

1 µM KU#7f as was an apl2∆ vps1∆ strain, indicating that the drug does not interact with 

Gtr2 for a dominant effect.  These results show that Group A compounds do not have a 

direct effect on Gtr2 function.
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Discussion

! We screened a 101,376-compound library for small molecules that perturb the late 

exocytic pathway, with the goal of identifying novel molecular probes to help us 

understand the mechanisms and regulation of late exocytic transport.  We identified 15 

compounds that had selective toxicity towards a yeast mutant, apl2∆ vps1∆, in which 

exocytic cargo is rerouted from a defective pathway to an alternative exocytic route.  

Thus, the compounds are expected to perturb a remaining exocytic pathway in this 

mutant, and cause an AVL (apl2 vps1 lethal) phenotype, analogous to the phenotype of 

the avl9∆ mutant identified in a classical yeast mutant screen (18).  Some of our hits fell 

into two groups of similar structures, and one of these groups, which we named Group 

A, was characterized in detail for effects on membrane trafficking.   

! The Group A compounds inhibit the growth of the apl2∆ vps1∆ strain at a low (<1 

µM) concentration, and cause an exocytic defect at <0.5 µM both in this double-mutant 

and the apl2∆ and vps1∆ single-mutants.  The transport defect appears to be specific to 

the late exocytic pathway, because the compounds have no detectable effect on 

transport to the vacuole/lysosme in either apl2∆ or wild-type cells.  Furthermore, the 

compounds cause rapid (within 30 min) accumulation of membranes that resemble the 

aberrant membranes in other mutants with exocytic blocks at the Golgi.  With higher 

concentrations of compound (>2 µM), we detected secretory defects and membrane 

accumulation in wild-type cells as well.  These results indicate that our compounds 

inhibit exocytic transport from the Golgi and possibly endosomes, and thus target a 

molecule or molecules that mediate traffic at these steps.

! We initiated efforts to identify the molecular target of our Group A compounds by 

screening for genes that suppress the toxicity of the compounds when overexpressed.  
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Although Avl9 is a potential target, it is highly toxic when overexpressed (18), and other 

strategies are needed to explore it as a potential drug target.  Our suppressor screen 

identified just one gene, GTR2, which suppressed the toxic effects of our most potent 

Group A compound, KU7f, when highly expressed from the GAL promoter.  Gtr2 and 

its homolog, Gtr1, function as a dimer to regulate numerous nutrient-responsive 

processes, but the primary function of these GTPases and the corresponding metazoan 

proteins is thought to be the regulation of TORC1 signaling, and thus regulation of 

growth (7, 11, 20, 35).  Overexpression of GTR1 could not suppress the toxicity of KU7f, 

a result that was explained in our subsequent assays with GDP- and GTP-restricted 

mutant alleles of the GTPases.  We found that the dominant-negative alleles of the 

GTPases, having a GDP-restricted conformation for Gtr1 and GTP-restricted 

conformation for Gtr2, partially suppressed the invertase secretion defect caused by 

KU7f in the apl2∆ vps1∆ mutant.  Therefore, the overexpressed wild-type proteins are 

likely more abundant in a GTP-bound conformation.  

! The alleles of the GTPases that best suppressed the secretory defect caused by KU7f 

are dominant-negative regulators of TORC1 signaling, and, correspondingly, sub-lethal 

concentrations of rapamycin, a TORC1 inhibitor, likewise suppressed the invertase 

secretory defect caused by KU7f.  This result was not due to a reduction in invertase 

production.  Therefore, TORC1 signaling may regulate a pathway that needs 

modulation in response to secretory transport blocks.  Invertase in wild-type cells likely 

transits endosomes en route to the cell surface (17), and endosomes are the most likely 

site where the Gtr/Rag complex functions in regulating transport in response to amino 

acid signals in both yeast and mammalian cells (14, 35).  Furthermore, TORC1-mediated 

signaling functions at endosomes or the Golgi for sorting the high-affinity tryptophan 

and histidine permeases, Tat2 and Hip1, from an endosome-mediated vacuolar 

pathway to the exocytic pathway (6).  It is possible that both Group A compounds and 
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TORC1 signaling enhance sorting into an endosome-mediated exocytic transport route 

that is defective in the apl2∆ vps1∆ mutant.  TORC1 signaling and our compounds may 

in addition, or instead, downregulate an alternative transport route for invertase that is 

utilized by the apl2∆ vps1∆ mutant. 

! In addition to linking exocytic transport to signaling mechanisms that regulate 

growth, the identification of GTR2 as a suppressor of our Group A compounds was an 

exciting result, because it suggests that our chemical-genetic strategy may lead to 

insights about Avl9 function.  The gtr and avl9 mutants were among the top-ranked 

mutants in a genome-wide screen of the non-essential yeast gene deletion collection for 

mutants that are hypersensitive to both high hydrostatic pressure and cold temperature 

(3).  The reason for this growth phenotype of gtr an avl9∆ mutants is not clear, but it 

could reflect defects in traffic due to reduced membrane fluidity under these conditions.  

Other mutations in non-essential genes that cause defective transport from the Golgi 

were also identified in the screen (3).  Furthermore, at high pressure and cold 

temperature, the Tat2 permease is sorted to the vacuole even though TOR signaling 

seems unaffected (2), suggesting that the TORC1-regulated exocytic route is especially 

sensitive to conditions that reduce membrane fluidity. 

! Transcriptional profiles of S. cerevisiae subjected either to high hydrostatic pressure 

or to cold temperature indicate highly upregulated expression of genes involved in 

remodeling of the cell surface (plasma membrane and cell wall) under anaerobic growth 

conditions (1, 4, 10, 13, 28).  Traffic pathways or mechanisms that involve Avl9 and Gtr 

function may be involved in cell surface remodeling, and a defect in this process may 

lead to pressure- and cold-sensitivity.  Alternatively or in addition, the high levels of 

expression of these same set of genes encoding cell surface components may be toxic to 

the avl9∆ mutant.  The avl9∆ mutant is SLAM (synthetic lethality analysis on 
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microarrays) with mot3∆ (29), and Mot3 is a repressor of the expression of most of these 

same cell surface components (38).  It is also possible that Avl9 and Gtr proteins have a 

role in regulating plasma membrane homeostasis, or an Avl9- and Gtr-dependent 

sorting or transport process depends on optimized lipid composition.  There is much 

evidence that regulation lipid composition is critical for cargo sorting and transport 

carrier formation in the late secretory pathway (21, 23, 24, 30, 41). 

! The signaling pathways that regulate cell growth and proliferation are expected to 

coordinate with regulation of the traffic pathways that deliver cell-surface components 

and thereby mediate cell growth.  Therefore, our result that modulation of a TORC1-

mediated process is critical in the presence of our Group A compounds suggests that 

these compounds may serve as powerful probes for understanding the molecular 

mechanisms by which late exocytic transport is regulated in response to environmental 

factors.  Furthermore, a possible link to Avl9 function via Gtr2-mediated suppression of 

the drug effects, as well at the AVL phenotype conferred by the compounds, indicate 

that our new exocytic transport inhibitors may help us to discover the biochemical and 

biological functions of the Avl9 protein family.
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Chapter 3

A high-throughput screen for chemical inhibitors of 
exocytic transport in yeast

Work from this chapter was published in ChemBioChem, Vol. 11, p. 1291-1301 (2010) and 
reproduced here with permission from the publisher.

Introduction

! The signaling pathways that control cell proliferation must regulate the membrane 

and protein traffic pathways that are required for cell growth and cell division.  How 

these membrane traffic pathways are regulated, in particular at the late sorting steps of 

the exocytic pathway, is poorly understood.  Both the signaling pathways and exocytic 

routes are highly complex, resulting in numerous alternate mechanisms by which 

transport to the cell surface can be regulated.  The budding yeast, Saccharomyces cerevi-

siae, has proven to be a powerful model for understanding complex cellular processes, 

due both to the relative simplicity of this organism and the many tools available that 

take advantage of its genetic manipulability.  Yeast genetic studies played a major role 

in elucidating the basic signaling pathways by which cells respond to nutrient and other 

environmental conditions to regulate cell growth and proliferation [1, 2].  Furthermore, 

many of the components of the membrane traffic machinery were first discovered and 

characterized in yeast [3, 4].  However, the mechanisms by which cargo is sorted and 

packaged into transport vesicles in late exocytic compartments (Golgi and endosomes) 

is still not known.  This is in large part because we still need to identify the molecular 

machineries that carry out exocytic transport from the Golgi and endosomes, and we 

need to define the signaling mechanisms that regulate traffic from these organelles.  The 

goal of the present study was to identify molecular probes that hold promise to serve as 

powerful tools for both identifying and understanding the machineries that regulate 

and carry out late exocytic transport.  
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! The difficulty in identifying components of the late exocytic transport machinery is 

due to multiple exocytic traffic routes in both yeast and mammalian cells [5, 6], which al-

low cargo transport by alternate routes when a pathway is blocked [7].  Such ability of 

cells to overcome defects in late exocytic transport steps has made it difficult to identify 

the genes involved in mediating and regulating late exocytic transport, necessitating 

complex and laborious genetic screens [8].  An alternative and potentially more efficient 

strategy is a chemical genetic version of a successful classical yeast genetic screen that 

identified a novel component of the late exocytic transport machinery, Avl9 [8].  Here we 

describe such a chemical genetic screen, in which we identified small molecules that are 

novel secretory inhibitors.  Identifying the molecular and biological targets of these in-

hibitors will facilitate our understanding of late exocytic transport mechanisms, and 

how these mechanisms are regulated. 

Materials and Methods

Yeast strains and reagents

! The construction or origin of yeast strains used in this study are shown in Table 1.  

Strains were generated by crosses using standard yeast genetic techniques [26].  In some 

cases, sequential crosses were needed using progeny from the indicated parents in order 

to obtain the desired combined mutations.  The primary screen strains were JTY2953 

(snq2∆ pdr5∆) and an snq2∆ pdr5∆ vps1∆ apl2∆ strain derived from it, LZY35 (AID 738, 

739).  These strains are adenine auxotrophs (due to the ade2-101 allele, common in many 

laboratory strains).  In order to improve strain growth and to back-cross mutant strains 

into our wild-type background, new strains having wild-type ADE2 were constructed 

for use in all subsequent screening steps and assays.  These strains have primarily an
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Table 1.  Yeast strains used in this study.
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S288c background [27].  Additional strains were constructed to cross out a suc2∆ muta-

tion (deletion of the gene for invertase) to enable us to perform invertase secretion as-

says.  Strains were grown in YPAD medium:  Difco Bacto yeast extract (1%), Difco Bacto 

peptone (2%), and glucose (2%), supplemented with adenine hemisulfate (20 mg/L).  

Screening compounds (a ~97,000 compound library) were from the Molecular Libraries 

Small Molecule Repository.  All compounds were provided by BioFocus DPI in di-

methyl sulfoxide (DMSO, 100%) at a concentration of 10 mM. 

High-Throughput Screens

! Yeast strains were maintained as frozen glycerol stocks or on YPD agar plates (kept 

at 4°C for up to two weeks).  Two days before screening, ~4 colonies were inoculated 

into YPAD (50 mL) and grown at 30°C with aeration on a rotating platform (260 rpm) 

for 18-24 h to mid-exponential phase (OD600 0.5-0.9, read in a Genesys 5 spectropho-

tometer, Thermo-Spectronic Instruments).  This primary culture was inoculated into 

YPAD such that the secondary culture, grown at 30°C for ~20 h, was OD600 0.04 (strain 

JTY2953) and 0.1 (strain LZY35) at the time of plating for the screen.  This was done by 

first determining the growth rate of each screen strain, so that the secondary culture 

would not need to be diluted prior to plating, thus minimizing a lag in growth at the 

start of the screen.  The initial plating density of cells resulted in cultures nearing the 

end of exponential growth after ~18h growth in plates.

! For the primary screens (AID 738, 739), compound (7.5 nL) was added to YPAD me-

dium (1 µL) in 1536-well black, clear bottom plates (Corning), and secondary yeast cul-

ture (7 µL) was added to the plates for a final compound concentration of 10 µM and a 

final DMSO concentration of 0.1%.  Each plate contained control wells, with YPAD me-

dium containing DMSO (0.1%) serving as negative control and KU#7 (1.25 µg/mL), 

DMSO (0.1%) as positive control [16].  Liquid handling steps were performed with a 
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Biomek FX liquid handler (Beckman Coulter), a Multidrop Combi dispenser (Thermo 

Scientific), or an Echo 550 liquid handler (Labcyte).  After adding the yeast culture to all 

wells, the plates were incubated with lids (un-sealed), and inverted, at 30°C for 18 h in a 

humidified atmosphere.  Incubating the plates inverted maximized cell growth due to 

better access to oxygen, as the cells settled at the surface of the medium.  Following in-

cubation, the plates were slowly shaken before the reading at OD615 in an EnVision mul-

tilabel plate reader (PerkinElmer).

! For the dose response screens (AID  788, 789, 790), 320 compounds that selectively 

inhibited the growth of the vps1∆ apl2∆ mutant in the primary screen were retested in a 

10-point dose response assay.  Compounds were diluted in YPD medium to prepare a 

10x concentrated dosing solution (250 µM) from which a 10-concentration, 2-fold dilu-

tion series was prepared in YPD medium and added to 384-well clear plates (Corning) 

in 5 µL. The yeast cultures (strains LZY53, LZY80, LZY81 and LZY82) were grown as for 

the primary screen to generate an early-exponential phase culture, and yeast culture (45 

µL) was added to the plates with compounds for final compound concentrations be-

tween 0.05 µM and 25 µM, and a final DMSO concentration of 0.25%.  Positive and 

negative controls were as for the primary screen.  The plates were incubated at 30°C in a 

humidified atmosphere for 18 h, and OD615 was read in an EnVision multilabel plate 

reader. 

Data analysis for primary and dose-response screens

! All data from primary screens and dose-response assays were imported into Activi-

tyBase (IDBS) data management software for analyses.  For the primary screens, percent 

inhibition for both the control and mutant strains was calculated as: 100 x (1-(Median of 

test compound – Median of positive control)/Median of negative control – Median of 

positive control)).  Active compounds were those that showed ≥30% inhibition (30% is 
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the average compound % inhibition plus three times the standard deviation of com-

pound % inhibition).  Among the compounds chosen as having ≥30% inhibition, a hit 

was determined to be any compound that was significantly more toxic to the mutant 

test strain than to the control background strain.  Compounds that showed less than 

30% inhibition were defined as Inactive.  Compounds that were screened more than 

once and had both Active and Inactive outcomes were labeled Inconclusive.  For the 

dose-response screens, the percent inhibition of growth rate was calculated as: 100 x 

([growth rate DMSO-treated cells]-[growth rate compound-treated cells])/[growth rate 

DMSO-treated cells]. 

Secondary screens

! For secondary screening, 24 compounds from the 93 dose-response hits were reor-

dered from the original suppliers and subjected growth and secretion assays in mutant 

and background strains.  The first assay was a shaking-culture growth rate assay to de-

termine growth rates during exponential growth were measured.  Strains were grown in 

YPD overnight to exponential growth phase, and culture densities were adjusted to 

OD600 0.07 in YPD (8 mL), in 25x150 mm glass culture tubes.  Compounds were added 

at the indicated concentrations for a final volume of 10 mL and final DMSO concentra-

tion of 0.25%, and tubes were placed on a roller drum (Bellco) rotating at 50 rpm.  OD600 

readings were taken every two hours, for at least 4 readings to generate a growth curve.  

Rates were calculated from an exponential curve fit equation.  The correlation coeffi-

cient (Pearson r) was >0.9 in each case.  Secondary growth assays to generate growth 

curves were also performed in 96-well plates.  OD595 was read with a Model 680 micro-

plate reader (Bio-Rad) controlled by Microplate Manager software (Bio-Rad).  

! We tested selected hit compounds in two established secretion assays.  The first 

was an invertase secretion assay [3].  Cells were grown overnight to exponential phase, 
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then grown in YPD with high glucose (5%) for 2-3 hours on a roller drum at 50 rpm.  

Compound was added at the indicated concentration (or DMSO control, 0.25% final 

concentration), and cultures were grown for 15 min, followed by shifting cells to YPD 

with low glucose (0.1%) and compound or DMSO control for 90 min prior to perform-

ing the invertase secretion assay as described previously[8].  For slow-acting compounds 

(Figure 4E), the cells were grown in compound for 3h rather than 15 min prior to dere-

pressing invertase expression.  Invertase expression is repressed in high-glucose media, 

but upon shifting to low glucose, its expression is rapidly derepressed.  Therefore, all 

invertase expression and secretion occurs after compound addition.  As a second secre-

tory assay, we assayed for internal accumulation of an abundant cell wall protein, Bgl2, 

as described previously[8].  

Results and Discussion

! Most of the genes involved in membrane traffic were discovered by perturbing 

their functions either by mutations or with drugs [3, 9, 10].  We used a triple-synthetic-

lethal yeast mutant screen to identify a novel eukaryotic gene involved in exocytic 

transport, AVL9 [8].  This gene is essential in a mutant strain lacking a dynamin homo-

log, Vps1 [11, 12], and also lacking a subunit of the adaptor protein-1 (AP-1) adaptin com-

plex, Apl2, which is required for forming certain classes of clathrin-coated vesicles at the 

Golgi and endosomes [8, 13-15].  The apl2∆ vps1∆ double mutant has a block in an exocytic 

pathway but grows well because cargo is rerouted into a remaining pathway [8].  Muta-

tions or drugs that are lethal for the apl2∆ vps1∆ mutant but have little or no effect on 

wild-type cells are expected to cause a block in a remaining exocytic pathway.  We per-

formed a high-throughput phenotypic screen of a large library of drug-like compounds 

to identify small molecules that have such a mutant strain-specific effect.  An earlier 

screen produced only a few hits, likely due to the ability of yeast cells, like other fungi, 

to efficiently pump out a very broad range of structurally and functionally unrelated 
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compounds due to an abundance of ATP-binding cassette (ABC) transporters [16, 17].  S. 

cerevisiae has at least nine ABC pumps that are localized to the plasma membrane, and 

at least three of these, Pdr5, Snq2, and Yor1, are involved in pleiotropic drug resistance 
[17].  The most important of these are Pdr5 and Snq2, which have overlapping but also 

distinct specificities [18].  To increase the number and diversity of compounds in our 

phenotypic screen, we added the pdr5∆ and snq2∆ mutations to our vps1∆ apl2∆ strain. 

High-throughput screens for mutant-specific growth inhibitors

! Before screening the full compound library, we screened a subset of 10,000 com-

pounds for inhibition of growth of the test strain, vps1∆ apl2∆ snq2∆ pdr5∆ (LZY35).  The 

screen was performed in duplicate, in both 384- and 1536-well formats, to check repro-

ducibility of the assay and to confirm the appropriate screening parameters (data not 

shown, see PubChem Assay ID’s 636 and 637).  The Pearson’s correlation between the 

two runs (all 10,000 compounds) was a moderate 0.4, and the Minimum Significant Dif-

ference (MSD, denoting the variability between the two assays) was an acceptable 15.2% 

inhibition.  We then screened 97,519 compounds from the NIH Molecular Libraries 

Small Molecule Repository for compounds that selectively inhibit the growth of a vps1∆ 

apl2∆ snq2∆ pdr5∆ strain, when compared to the growth of the snq2∆ pdr5∆ background 

strain (Figure 1).  The screens were run in several batches on different days, with failed 

plates repeated.  Actives in the screen were defined as compounds that at 10 µM 

showed ≥30% inhibition in the assay (see details in Experimental Section).  Out of the 

compounds with an active outcome for the mutant strain, 320 that had an apparent se-

lective activity towards the vps1∆ apl2∆ snq2∆ pdr5∆ strain over the snq2∆ pdr5∆ control 

strain were reordered for a confirmatory dose response screen.
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Figure 1.  Summary of a high-throughput screen for identifying compounds that prefer-

entially inhibit the growth of a mutant strain having apl2∆ and vps1∆ mutations.  Pub-

Chem Assay ID’s (AID) are indicated for each screen step.
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Figure 2 (next page).  Summary of dose-response end-point growth assays for identify-

ing 93 hit compounds.  A) Structural clustering of compounds from the 93 hits.  Pub-

Chem SID’s for our designated SR numbers are shown in Table 2.  The SR number cor-

responds to the rank from the dose-response assay, with SR2 being the top-ranked com-

pound.  B) Data from the dose-response assays allowed grouping of compounds accord-

ing to specificity for mutants (PubChem AID 788, 789, 790).  The majority of our hit 

compounds were specific for the apl2∆ vps1∆ double mutant.  Among the top 56 con-

firmed compounds (ranked according to dose response growth assay), 13 compounds 

caused inhibition due to the vps1∆ mutation and were similarly toxic for the apl2∆ vps1∆ 

mutant; 12 compounds inhibited primarily the apl2∆ vps1∆ mutant but also had signifi-

cant effect on the apl2∆ mutant; and 31 compounds inhibited the growth of primarily 

the the apl2∆ vps1∆ double mutant with little or no effect on the apl2∆ or vps1∆ mutants.  

None of the top 56 compounds inhibited growth the apl2∆ vps1∆ mutant due only to the 

apl2∆ mutation.
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Table 2.  PubChem Substance ID for compounds referenced in this study.
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Dose-response and secondary assays

! A 10-point dose-response assay with compound concentration ranging between 0.05 

µM and 25 µM was performed for the 320 compounds obtained from the primary 

screens, for each of the following strains, with the test-mutations indicated in bold: 

vps1∆ apl2∆ snq2∆ pdr5∆, vps1∆ snq2∆ pdr5∆, apl2∆ snq2∆ pdr5∆, and the snq2∆ pdr5∆ 

background strain (PubChem Assay ID’s 788, 789, and 790).  Of the 320 compounds 

tested in the dose-response assays, 93 confirmed as being selective for one of the three 

traffic mutant strains over the control strain.  Some of these compounds grouped into 

structural clusters (Figure 2A).  More than half of our 56 top-ranked hits from the dose-

response growth assays required both the vps1∆ and apl2∆ mutations for significant 

growth-inhibitory activity, consistent with the rationale for the design of our chemical 

genetic screen (Figure 2B).  However, some compounds had activity due to the vps1∆ 

mutation alone (with no increase in effect on the apl2∆ vps1∆ strain).  Other compounds 

significantly affected the growth of the apl2∆ mutant and not the vps1∆ strain; however, 

all of these had greater activity on the apl2∆ vps1∆ strain, indicating more robustness in 

Apl2-mediated processes.  The different mutant-specificities of our hit compounds indi-

cate that they have unique molecular and biological targets.

! Of our 93 hit compounds from the dose-response growth assay, 24 compounds were 

chosen for follow-up studies based on:  1) significant selectivity towards the vps1∆ apl2∆ 

strain over the background strain;  2) representatives of major structural clusters among 

the identified hits;  3) preference for being active for the vps1∆ apl2∆ mutant over one of 

the single traffic mutants, but with representatives of each class selected; and 4) chemi-

cal tractability.  We named these compounds “SR#,” and they are listed, along with 

other compounds referenced here, in Table 2.

! As our first secondary assay, we retested growth in shaking exponential-phase cul-

tures, in presence of compound compared to DMSO control.  Whereas the dose-
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response end-point growth assays were performed in 384-well plates, non-shaking, over 

~18 h of growth, the shaking cultures had greater aeration, allowing faster growth, and 

were assayed only during ~9 h of exponential growth phase (see Experimental Section).  

Some of the compounds did not show confirmed activity in the shaking-culture assay, 

likely because they were slow-acting, and therefore would have observable activity over 

18 h, with just one end-point measurement taken, but not in the first few hours of expo-

nential growth.  Alternatively, some compounds could be more active in lower-oxygen 

conditions or on slower-growing cells in plates.  The shaking-culture secondary screen 

was repeated with strains having only either the pdr5∆ or only the snq2∆ mutation, to 

test which drug pump mutation was more critical for compound effect (Figure 3A).  Ef-

fectiveness of compounds in the presence of just one of these pump mutations was de-

sired because we noticed a drop in growth rate of the vps1∆ apl2∆ mutant when both 

drug pump mutations were crossed into the strain.  In contrast, effect on growth was 

much less when just one ABC transporter was deleted (Figure 3B), indicating that in-

cluding just one of these deletion mutations would minimize growth defects or other 

phenotypes due to pump mutations in our subsequent assays.  We found that the pdr5∆ 

mutation was the more critical one for sensitizing our strain to almost all of the 24 com-

pounds we tested (Figure 3A).  This mutation had no effect on the growth of an apl2∆ or 

a vps1∆ strain, which had a similar growth profile as the pdr5∆ background strain; how-

ever, the apl2∆ vps1∆ pdr5 triple mutant did have some growth defect (Figure 3C).  We 

performed our remaining secondary assays using just the pdr5∆ mutation in all strains 

(wild-type for SNQ2). 

! Our largest structural group from the 93 compounds identified in the dose-response 

assays is shown in Figure 4A.  Two of these compounds fall into Cluster 1 (Figure 2A), 

and three-dimensional overlay of all five compounds in this group shows that they have 

very similar structures (Figure 4B).  The dose-response growth assays for these com-

pounds indicated that they were all highly specific for the vps1∆ apl2∆ mutant, with 
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Figure 3 (next page).  Exponential-growth-rate assays of mutant and background 

strains. A) Shaking-culture growth assays showed that the pdr5∆ mutation is sufficient 

for sensitizing yeast strains to most of the compounds (at 20 µM) identified as hits in 

our dose-response assay.  Rates were determined from the equation of an exponential 

curve fitted to the exponential growth curve of each strain (correlation coefficient >0.9) 

and shown as a percent of the rate without compound added.  Each compound is at 5 

µM.  The sequence of SR numbers corresponds with ranking in the dose-response 

growth assay, with SR2 being the highest-ranked hit.  SR numbers are color-coded ac-

cording to mutant specificity, as determined by dose-response assays (PubChem AID 

788, 789, 790).  Corresponding PubChem SID’s are shown in Table 2.  B) The pdr5∆ and 

snq2∆ mutations confer a growth defect on a vps1∆ apl2∆ strain, which is most pro-

nounced if both pdr5∆ and snq2∆ mutations are present and least-pronounced with 

pdr5∆.  Rates were determined as in (A).  C) Microwell-plate exponential growth curves 

of strains having a pdr5∆ mutation.  Strains for A-C are as follows:  LZY109 (snq2∆); 

LZY108 (pdr5∆); LZY96 (apl2∆ vps1∆ snq2∆); LZY104 (apl2∆ vps1∆ pdr5∆);  NY10 (wild-

type = “wt”); LZY53 (snq2∆ pdr5∆); EHY644 (apl2∆ vps1∆); LZY82 (apl2∆ vps1∆ snq2∆ 

pdr5∆ = “quad”); LZY119 (vps1∆ pdr5∆) and LZY120 (apl2∆ pdr5∆).
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Figure 4 (next page).  The largest structural group of hit compounds had greatest speci-

ficity for the apl2∆ vps1∆ mutant for inhibiting growth and secretion.  A) Compound 

structures with SR# and PubChem SID.  B) 3-dimensional overlay of the five com-

pounds shown in (A), with carbons in each compound colored as the SID #.  C) Dose-

response end-point growth assay for SR5.  The yeast strains are LZY53 (background); 

LZY81 (vps1∆); LZY80 (apl2∆); and LZY82 (vps1∆ apl2∆); all four strains have snq2∆ 

pdr5∆ mutations.  D) Microwell plate growth curves for SR5 (compare to Figure 3C).  E) 

Invertase secretion assay for SR5 shows a secretion defect specific for vps1∆ apl2∆.  

Strains are as in Figure 3C.  The means of three experiments (from three independent 

cultures) are shown.  Error bars, SEM.  F) Strain LZY104 (apl2∆ vps1∆ pdr5∆) grown in 

microwell plates, in either 2.5 µM SR5 or DMSO control.  There is no growth defect until 

~4h after adding compound.  
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smaller effect on the growth of vps1∆ or apl2∆ mutants.  Figure 4C and D show growth 

assays for SR5, the highest-ranked compound in this group.  Furthermore, an assay for 

invertase-secretion (see Experimental Section) showed that SR5 has an inhibitory effect on 

secretion that was specific for the vps1∆ apl2∆ mutant and not detected in the other 

strains (Figure 4E).  However, we also found that these compounds were relatively 

slow-acting, with little effect on growth until ~4h of exponential growth (Figure 4F).  

This suggests that these compounds may affect signaling pathways that regulate gene 

expression, or they may need to build up a toxic effect (although higher and lower con-

centrations of compound showed a similar delay in effect; not shown).  

! Another compound of interest is SR28 (Figure 5A), which did not fall into a struc-

tural group from our 93 hits.  Dose-response and growth-curve analyses indicated that 

this compound affects primarily vps1∆ (and therefore also the vps1∆ apl2∆ mutant).  This 

compound is of significant interest because it causes a very severe, rapid block in inver-

tase secretion (Figure 5D).  Although the greatest effect on secretion is seen in the vps1∆ 

strain, at higher concentrations there is also significant effect on the apl2∆ and back-

ground strains (Figure 5D).  Likewise, SR28 caused a significant internal accumulation 

of the cell wall protein, Bgl2, which at steady-state is normally almost entirely in the cell 

wall (Figure 5E).  Interestingly, the background strain also had slight internal accumula-

tion of Bgl2 at the 30 min time point after adding compound, but this accumulation did 

not increase, and even decreased slightly, with longer time points, suggesting that the 

background strain was able to adapt to the transport defect, perhaps by upregulating an 

alternate transport route that is blocked in the mutant strain.

! Another compound that had a significant and rapid effect on invertase and Bgl2 se-

cretion is SR9 (Figure 6).  We tested structurally similar compounds, and found one 

compound with very similar activity, having PubChem Compound ID 656067 (Figure 

6A).  The dose-response end-point growth assay for SR9 indicated that all growth ef-
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fects were due to the vps1∆ mutation, and this was consistent both in our exponential 

growth curve assays and invertase secretion assays, which likewise showed vps1∆-

specific effects (Figure 6B-D).  SR9 was of interest also because unlike the majority of the 

other hits that we tested, it had a significant effect on secretion even in PDR5 SNQ2 

strains (wild-type for drug pumps; not shown), making it more promising in future 

genome-wide screens for identifying the molecular and biological targets of the com-

pound.

! A group of compounds with similar structures that also did not require pump muta-

tions for effects on growth is shown in Figure 7A.  Some of these compounds fell into 

Cluster 2 (Figure 2A).  Additional hit compounds that are similar to these are shown in 

Figure 7B.  The compounds in Figure 7 were among  the highest-ranking hits from our 

dose-response growth assays for potency and selectivity for the vps1∆ apl2∆ strain, with 

some activity for the apl2∆ strain, and little or no effect on either vps1∆ or the back-

ground strain (Figure 7C, D).  The lack of effect on the vps1∆ strain differentiates these 

compounds from others that we analyzed in detail (Figures 5-7), so it is likely that they 

have a different molecular and biological target than those of the other hits.  Interest-

ingly, these compounds were effective primarily in rich media (YPD), with little effect in 

minimal (synthetic) media (such as CSM) (our unpublished observations).  This effect of 

media is interesting because it resembles the phenotype of yeast ras mutants as well as 

mutants of the yeast synaptobrevin homologs, which function in targeting exocytic 

vesicles to the plasma membrane[19].  We also found that the compounds were slow-

acting, and therefore difficult to analyze in our transport assays.  Like the compounds in 

Figure 4, they may affect signaling pathways that respond to transport blocks by regu-

lating gene expression.

! Many of the 24 compounds selected for secondary assays did not block invertase se-

cretion in our assays.  Some of these compounds may have a delayed effect and block 
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Figure 5 (next page).  SR28 was the most potent secretory inhibitor obtained from the 

screen.  A) Structure of SR28.  B) Dose-response end-point growth assay for SR28.  C) 

Microwell plate growth curves for strains grown in 5 µM SR28.  D) Invertase secretion 

assay for strains grown in 2 µM or 5 µM SR28.  All strains had a secretory defect in this 

compound, and the defect was most severe for the vps1∆ and vps1∆ apl2∆ mutants.  The 

means of three experiments (from three independent cultures) are shown.  Error bars, 

SEM.  E) Western blots showing the accumulation of internal Bgl2 in 5 µM SR28 at the 

indicated times.  Bgl2 is almost entirely in the cell wall at steady state, so the internal 

accumulation of this protein can be detected by removing the cell wall.  PGK (a cyto-

plasmic protein) is shown as a loading control.  Strains are as in Figure 3C.
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Figure 6 (next page).  SR9 is a vps1∆-specific growth and secretory inhibitor.  A) Struc-

ture of SR9 (left) and an analog (right) with similar activity.  B) Dose-response end-point 

growth assay for SR9 (strains as in Figure 4C).  C)  Microwell plate growth curves for 

strains grown in 5 µM SR9 (strains as in Figure 3C).  D) Invertase secretion assay for 

strains grown in 5 µM SR9.  The secretory defect is dependent entirely on the vps1∆ mu-

tation.  The means of three experiments (from three independent cultures) are shown.  

Error bars, SEM.  E) Western blots showing accumulation of internal Bgl2 after growing 

strains in 5 µM SR9 for the indicated times.  PGK is a loading control.
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Figure 7.  Cluster 2 and similar compounds were highly selective for the vps1Δ apl2Δ 

double mutant. A) Structures for two Cluster 2 and one closely related compound. B) 

Additional compounds that resemble Cluster 2 compounds.  C) The Cluster 2 com-

pound, SR2, ranked highest in our dose-response screen. It is highly selective for inhib-

iting the growth of the apl2Δ vps1Δ double mutant in microwell plates (shown) and agar 

plates (not shown).   D) Compounds shown in (B) were also specific for the vps1Δ apl2Δ 

mutant. Yeast strains are as in Figure 3C.
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secretion at a later time point.  Alternatively, they may have vps1∆ apl2∆ mutant-specific 

toxicity that is not due to blocking exocytic transport.  Recent studies have suggested 

that traffic mutants are particularly prone to drug hypersensitivity, perhaps because 

they are defective in trafficking of drug transporters that function in detoxification ei-

ther at the cell surface or at the vacuole [20, 21].  However, we would expect a larger num-

ber of hits if our screen merely identified toxic substances due to a general drug-

sensitivity of our test strain.  Analysis of screen results submitted by others to PubChem 

suggests that our compounds were highly specific for our screen, in particular at the 

dose-response or confirmatory steps, again arguing against general drug-sensitivity of 

our screen strain.  Furthermore, because both the vps1∆ apl2∆ mutant and control back-

ground strain had a significant defect in detoxification due to the pdr5∆ snq2∆ muta-

tions, neither test nor control strain could efficiently eliminate drugs, so most of our hits 

likely target a process that is relevant to membrane traffic function.  Therefore, even 

compounds that do not rapidly block secretion are of potential future interest.  For ex-

ample, they could trigger signaling mechanisms that shut down growth in response to 

traffic defects.

Conclusions

! Using a high-throughput phenotypic screen, we identified 93 compounds that spe-

cifically affect the growth of a mutant strain blocked in one branch of the exocytic 

pathway.  Our analysis of selected compounds from these hits indicates that at least 

some of our mutant-specific growth inhibitors are novel secretory inhibitors that likely 

affect a transport pathway that remains functional in the mutant in the absence of 

drugs.  Therefore, further analysis of our hits is expected to identify additional traffic 

inhibitors.  
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! Identifying the molecular targets of our inhibitors, as well as biological effects in 

genome-wide fitness assays [22, 23], will contribute to a better understanding of the 

mechanisms that mediate late exocytic transport.  Some of our compounds are expected 

to target Avl9 or an Avl9-related process, since they generate an AVL (apl2∆ vps1∆ le-

thal) phenotype, similar to that of avl9∆ [8].  Avl9 is a conserved, ancient eukaryotic pro-

tein and a member of a novel superfamily of ancient paralogs, most of which have not 

been studied in any organism [8].  Therefore, the hits identified in our HTS assay may 

serve as useful tools for discovering a potentially novel function mediated by Avl9 and 

its homologs.  Prior to seeking the targets of our new inhibitors, we may need to opti-

mize our compounds by testing analogs for potency as well as specificity for the traffic 

mutant strains.  The possibility of non-specific effects is common to all small molecule 

screens, whether the screens involve in vitro assays or a cell-based phenotypic assay 

such as ours [24].  However, low-specificity compounds would be expected to be simi-

larly toxic to the background control strain in our assays.  Therefore, some of our hits 

should have sufficient specificity for simple screens that could help to identify potential 

target(s), for example a gene-dosage screen [25]. 

! Although some of our hit compounds may have pleiotropic effects, mutations like-

wise can have pleiotropic effects, and specificity of effect is not necessarily a greater 

concern with small molecules than it is with mutants as tools to study gene function.  

For example, most bioactive small molecules do not primarily affect protein target lev-

els, whereas many mutations do affect protein abundance, causing pleiotropic effects 

especially in cases where the protein is normally a part of a complex [24].  Furthermore, 

our chemical genetic strategies are likely to identify genes that would be difficult or im-

possible to identify by the classical genetic mutant screen that identified Avl9.  For ex-

ample, gene mutations that result in very severe growth phenotypes even in the pres-

ence of APL2 and VPS1, or which have only sickness rather than lethal phenotypes 

when their functions are blocked in the screen strain background, would not be so read-
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ily identified in the mutant screen.  Therefore, our chemical genetic strategy is a valu-

able complement to classical genetics for understanding the mechanisms and regulation 

of late exocytic transport.
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Chapter 4

Conclusions and Future Directions

Despite the enormous advances in the membrane traffic field in the past three 

decades, the mechanisms of exocytic transport from the Golgi and endosomes have 

remained elusive.  This is due primarily to the complexity of the post-Golgi traffic 

pathways (9-10).   The goal of my doctoral thesis was to contribute towards 

understanding how cargo is transported to the cell surface, and how this process is 

regulated.  My strategy involved chemical genetic screens, in which we identified novel 

inhibitors of the late exocytic pathway (23-24).  I discovered that one of these inhibitors, 

KU7, can be suppressed by over-expressing GTR2.  This gene encodes a small GTPase 

that regulates the traffic of an amino acid permease and the activity of a major regulator 

of growth, TORC1 (23).  My results indicate that the chemical genetic strategy is useful 

for discovering components and regulators of the late exocytic transport machinery.  

Another contribution of my thesis work is helping to establish a link between Gtr2 

and Avl9 function in the late secretory pathway.  The avl9∆ mutation is lethal in an apl2∆ 

vps1∆ background (11).  Likewise, our secretory inhibitors have an "AVL" phenotype, 

meaning that they are especially toxic or lethal in an apl2∆ vps1∆ background (23-24).  

Therefore, some of the inhibitors could inhibit Avl9, or they could inhibit a process that 

is somehow connected to Avl9 function.  Prior to my work, there was already a hint that 

Avl9 and Gtr2 may have a related function, because both GTR2 and AVL9 had been 

identified together in a genome-wide screen for genes important for survival under 

high pressure and in the cold (2).  AVL9 and GTR2 were among the very top-ranked 

mutants in that screen, and very few other phenotypic screens have identified either 

AVL9 or GTR2.  However, the cold/pressure sensitivity screen identified genes in a 
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wide range of functional classes, so that screen alone did not indicate a strong 

functional link between the genes.  Because increased GTR2 expression suppresses a 

traffic-related defect caused by KU7, and KU7 causes a traffic defect that is related to 

Avl9 function, it is possible that both Avl9 and Gtr2 function together to regulate traffic 

by a mechanism that is sensitive to cold and high pressure.  Alternatively, Avl9 and Gtr2 

may regulate the traffic of cargo that protect cells from environmental stress such as 

cold and high pressure.

Only a few traffic-related genes were identified in the cold/pressure sensitivity 

screen.  Gtr2 is part of a complex that sorts an amino acid permease at endosomes 

depending on nutrient conditions (7).  Other members of this complex are encoded by 

genes that were also identified as cold/pressure sensitive (2).  In addition, the cold/

pressure sensitivity screen identified DRS2, which encodes for an aminophospholipid 

translocase (flippase) important for the formation of clathrin-coated vesicles (4; 6).  This 

suggests that regulation of membrane lipid composition may be the key traffic-related 

factor that is sensitive to the physical environment.  Many genes that regulate lipid 

composition are either highly redundant or essential for viability.  Essential genes 

would not have been identified in the screen by Abe and Minegishi, because that screen 

made use of the haploid collection of yeast gene deletion mutants, so this could explain 

why they did not identify many lipid regulators in their screen.  They also did not 

include mutants that were very sick even under normal growth conditions.  Although 

Avl9 and Gtr2 function may be sensitive to lipid composition, neither protein is likely to 

be directly involved in regulating membrane lipids.  This is because a large genome-

wide genetic interaction study did not link either Avl9 or Gtr2 closely to this function 

(5).  So, Avl9 and Gtr2 may regulate a traffic pathway that is especially sensitive to 

membrane composition.  The proper sorting of some nutrient permeases is very 

sensitive to high pressure as well as to altered membrane lipid composition (1; 20).  In 

the future, we plan to examine whether Avl9 has a function in trafficking nutrient 
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permeases, as has already been shown for Gtr2 (7).

Another function of Gtr2, along with Gtr1, is regulating the activity of TORC1 in 

response to amino acids (14; 19).  TORC1 is a major regulator of cell growth, and cell 

growth requires the exocytic pathway for transporting membranes and proteins to the 

cell surface.  Therefore, Gtr2 and possibly Avl9 may link TORC1 activity to regulating 

the late secretory pathway for growth.  When nutrient conditions are poor, it is 

important to downregulate an exocytic pathway that promotes growth, and when 

nutrient conditions are optimal, then growth-promoting exocytosis should be increased.  

Under nutrient-poor conditions, another traffic pathway, autophagy, is increased in 

order to recycle nutrients, and this is in part regulated by TORC1 (reviewed in (21)).  

Recent evidence from our laboratory showed that Avl9 has a regulatory role in 

autophagy (unpublished results).  Therefore, a future research direction is to determine 

whether Avl9 and Gtr proteins regulate the balance between the exocytic and autohagic 

pathways, both of which require traffic from late Golgi compartments and possibly 

endosomes (8; 15).

The biochemical function of Avl9 is still not known, so we do not know exactly how 

it is related to Gtr2 function or traffic regulation.  Avl9 is a member of an ancient 

eukaryotic protein family (11), one branch of which has recently been shown to encode 

for Rab GEF's (3; 22).  However, Avl9 was not found to function as a GEF for any Rab 

tested (22).  This suggests the possibility that the Avl9-branch of the superfamily also 

functions as a GEF but for another type of small GTPase.  The link of Avl9 and Gtr2 

suggests that perhaps Avl9 is a GEF for Gtr2.  However, my work suggests that this is 

very unlikely.  AVL9 and GTR mutants have different phenotypes:  I found that unlike 

gtr2∆ or gtr1∆, the avl9∆ mutant is not sensitive to the TORC1 inhibitor rapamycin (my 

unpublished results).  This is in contrast to the result from genome-wide analysis by 

others, which indicates that avl9∆ homozygous diploid is rapamycin sensitive, but we 
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found that there is a problem with the avl9∆ mutant used in many genome-wide 

studies.  Also, as shown in Chapter 2, I found that the gtr2∆ mutation is not lethal in 

combination with vps1∆ apl2∆ double-mutation.  More recently, I found that gtr1∆ vps1∆ 

apl2∆ as well as the quadruple mutant, gtr1∆ gtr2∆ vps1∆ apl2∆, likewise have only a 

small growth defect and are viable (my unpublished results).  In contrast, the avl9∆ 

vps1∆ apl2∆ triple mutant is not viable (11).  Furthermore, overexpression of AVL9 is 

highly toxic (11), and I found that this toxicity is not rescued by the gtr2∆ mutation.  

Although my results do not entirely rule out the possibility that Avl9 has GEF activity 

for Gtr2, this cannot be the primary function of Avl9.  Most likely, Avl9 functions as a 

regulator of another GTPase, and future experimental analysis of Avl9 function will 

help to identify that GTPase.  

Discovering the targets of some of our new secretory inhibitors promises to reveal 

more about Avl9 and Gtr function, and this is an important area for our future research.  

One very promising strategy for target identification, which can indicate both the 

biological function being targeted and hint at the specific molecular target, is parallel 

analysis of fitness, and this is the method we plan to use.  In this method, pools of yeast 

gene deletion mutants are grown in the presence of a compound, and the cultures are 

then assayed to determine which mutants have reduced fitness under these conditions, 

compared with fitness in the absence of compound (12; 17).  In the heterozygous gene 

deletion strain collection, the compound target may be revealed, because if there is only 

one copy of the gene for the target, the mutant would likely have reduced fitness.  In a 

haploid or homozygous diploid collection (nonessential genes only), the biological 

function being targeted can be revealed.  Our compounds are somewhat toxic even in 

wild type cells, so it should not be necessary to include the vps1∆ or apl2∆ mutations to 

see effects on fitness, which is assayed after many generations of growth and does not 

require a high level of toxicity.  There are additional strategies for compound target 

identifications, including more direct methods that assay for physical interaction 
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between compounds and targets, but such methods generally require strong, stable 

interactions and are often not successful (13; 16; 18).  These methods could be used in 

combination with the chemical genomics strategy described above.

! In summary, my thesis work shows that our new compounds promise to serve as 

tools to study the exocytic transport process, and they will help us to learn more about 

Avl9 and Gtr2 function.  My work also provides an example of how chemical genetic 

strategies can serve as helpful complements to classical genetics (mutant screens and 

genetic interactions) for understanding complex cellular processes.  Similar yeast 

chemical genetic screens should be useful in other areas of cell biology.  Our work will 

contribute to future screens because we have optimized compound library screening 

with yeast cells.
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