DAMPING ESTIMATION OF PLATES JOINED AT A POINT USIS STATISTICAL

ENERGY ANALYSIS

by

AKHILESH CHANDRA REDDY KATIPALLY

Submitted to the Graduate degree program in Aeoesgagineering and the
Graduate faculty of the University of Kansas intiadfulfillment of the requirements

for the degree of master of science

Chairperson Dr. Mark S. Ewing

Dr. Rick Hale

Dr. Adolfo Matamoros

DATE DEFENDED: &' June 2011



The Thesis Committee for Akhilesh Chandra Reddypédly

certifies that this is the approved version offihlowing thesis:

DAMPING ESTIMATION OF PLATES JOINED AT A POINT USIS STATISTICAL

ENERGY ANALYSIS

Chairperson Dr. Mark S. Ewing

DATE APPROVED: 18 June 2011



ABSTRACT

The loss factors and coupling loss factors of dafep coupled system were estimated
using the Statistical Energy Analysis methodology. particular the Power Input Method
(P.I.M.) and the Transient Statistical Energy Asa@yMethod (T.S.E.A.) were applied to both
steady state and transient excitation cases. Tieetefof various process parameters such as
frequency resolution, frequency bandwidths, typdarhmer tip and measurement points on the
estimated loss factors were also investigated fdiffdrent levels of damping. Possible reasons
for the occurrence of negative coupling loss faestimations using the T.S.E.A. method have
been discovered to be the flexibility of the job@tween the plates and the frequency resolution

of the measured data.

The effect of frequency resolution and damping be estimated loss factors was
examined both numerically and experimentally. Fiastwo degree of freedom (2-DOF) system
was numerically simulated with varying model lossctbrs of 0.1%, 7.5% and 75% and
frequency resolutions of 0.05 Hz, 0.2Hz and 1 Hze €stimated loss factors were found to be
highly dependent on the frequency resolution onlthe lightly damped case. Experiments were
then performed on 2 Aluminum plates coupled at iatpearying both the damping (by adding
constrained layer damping) and the frequency réisolult was seen that the coupling loss
factors were not dependent on the damping leveltgreas the loss factors increased as the
damping increased as expected. As the frequenoyutes was decreased the loss factors in
some frequency bands, especially the lower frequbaads, tended to negative values. The loss
factors estimated, using the power input methodevire good agreement with both shaker and

hammer excitations.



Modal density and modes in band were also calalilatel compared with the theoretical
results. Significant variation between the thecsdtvalues and the experimental values was seen

only in the ‘No damping’ case and only in the loirequency bands.

The main aims of using the T.S.E.A. method weranterpret the results from the
dissertation by M. L. Lai, to find out the practlitianitations of the method and to establish the
degree of agreement of the asymptotic loss facstimations with respect to the P.LM. A
numerical simulation was run on a 2-DOF systemhtmashow the loss factor varies with time
for a transient hit. It also showed that the thBoaé coupling coefficients were off by more than
150% when a double hit occurs. Experiments weredwcted to check for the effects of
frequency resolution and frequency bandwidth on ésémated coupling loss factors. An
increase in the damping levels of the plates catisecdhumber of negativities in the “apparent
time varying coupling loss factor” estimates to r@ase while simultaneously decreasing the
time taken to reach an asymptotic value. Posséasans for the occurrence of negative coupling

loss factors were discussed.
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1.0INTRODUCTION

Any structural deformation that repeats itself afte interval is called vibration or
oscillation [2]. Engineered structures contain comgnts which possess finite levels of stiffness,
mass and dissipative energy transfer characteyistiee to inherent damping. Imposition of
alternating external loads on such structures esultr in very high amplitude vibrations at
numerous distinct resonant frequencies [3]. Anwydtre undergoing vibration stores both
kinetic energy (on account of its mass) and poaéminergy (due to stiffness) and a means to
dissipate energy (damping) [2]. Any structure vilmg at a resonant frequency with insufficient
damping tends to vibrate at high amplitudes whiehdtto radiate sound and which might
ultimately lead to structural failure. Hence itakutmost importance to predict these resonant
frequencies and prevent high amplitude vibratiaasadequate structural damping [3].

Damping in a structure is defined as any effectcWwhends to reduce the amplitude of
oscillation. Several types of damping are inheyeptiesent in any structure[4]. They can be
classified into two types. They are internal damgpfthe structure and structural damping at the
various joints. If any structure has low inhereatmgbing, additional damping can be added to a
structure which can be classified into active damg@nd passive damping.

Active damping is achieved by actuators which amnthe motion of the structure
whereas passive damping is achieved by adding er lafy visco-elastic material which, in
constrained layer damping, is covered by a layercaistraining material to the structure.
Constrained layer damping dissipates the enerdlgeobtructure as heat because of the shearing
deformation of the visco-elastic material. Undex hfluence of dynamic loads, the visco-elastic
material dissipates energy by disrupting the boofdgs long-chain molecules to convert the

kinetic energy to dissipative thermal energy (hgsit)
1



There are several notations which describe the degripvel of a structure, namely the
equivalent modal damping rati,, loss factory, and quality factor Q. For loss factors ranging

from 0 to 0.3 the relationship between them is wgilg the following equation[5].

C 1
=2 =—=—_
n=2 mw Q (3.1)
The actual relationship betwegnand &is given byn = 2&./1- & which is within 5% of

equation (1.1) whem<0.3. [5]

1.1LOSS FACTOR

The loss factorr) is defined as the ratio of the dissipated powegy)(per radian to the total

energy of the plateK,, ) [6].

n=—1o

a)ETotaI

1.2)
Under steady state conditions, since the storechgrne a structure remains constant, the
power input to a structure is dissipated by thacstire itself. Thus the dissipated power can be

replaced with power input’ ) to give the following equation.

,7 = 77i'n = Ein (1'3)

wETotaJ a)gTotaI

Here, E, is the energy input to the structure agyg,, is the integrated total energy.

The integrated total energy is the sum of the nmatiegl potential energy and the integrated

kinetic energy of the system.

gTotaI = gk + gP = 2£k (14)



We assume that the integrated total energy is tthieeintegrated kinetic energy, which for an

idealized single degree of freedom system causesare than a 0.5 % error fgr>0.1and a 3

% for n >0.2[7]. This assumption is used throughout this thesis

1.2EXPERIMENTAL METHODS TO ESTIMATE LOSS FACTORS

The experimental methods to estimate loss factomse broadly classified into
1. Time domain decay-rate methods.
2. Frequency domain modal analysis curve fitting me#o

3. Methods based on the flow of energy and power.[8]

1.2.1 TIME DOMAIN DECAY RATE METHODS

Decay rate methods, as the name suggests, contptlds factors from the decay
response of the free decay of structures. Thisyilegaesponse of the structure can be generated
by either an impulse, used in Random Decrement iigab [9], or by an interrupted steady—
state excitation, used in Reverberation Decay MetH®] or by clever processing of input

output measurements, used in Impulse Response Déstinpd [11] .

For the above three techniques, the proceduredini@e loss factors is the same. That is,
the loss factor is proportional to the logarithmtleé assumed exponential decay of response,

irrespective of whether the response is acceleratielocity or displacement.



1.2.2 HALF POWER BANDWIDTH METHOD

The ‘half power bandwidth method’ is an exampldrefjuency domain based method.
The *half power bandwidth method’ or the ‘peak pnckmethod’ is the simplest method for the
estimation of modal parameters. The method treath distinct peak in the frequency response
function (FRF) as an individual system and find$ the apparent equivalent modal viscous
damping level. [12].
The procedure of using the peak-picking method is:
(1) Picking the natural frequency
(2) Estimating the equivalent viscous modal damping
For estimating the damping, the half power poirdsehto be first identified. The half power

points are the frequencies which have amplitudeadff the squared amplitude of the deflection

. . LV -
(or velocity or acceleration) FRF “peak” and areegi by—", as shown in Figure 1.

V2

The loss factor can then be estimated using thateou(1.5)

P Sl
@

The half power bandwidth method can only be used structure in the lower frequency

(1.5)

ranges where the natural frequencies are widelgegpand it cannot be used in higher frequency
ranges where the structure is modally dense antptaks” of the FRF might be so “close” that
the response does not decrease to “half powerldarethe vicinity of a peak. The use of the
half power bandwidth method also requires a higlgdency resolution so that the peak point
and half power points can be measured accuratdl Mmethod is also dependent on a high

quality FRF which typically requires the time domanput and output signals to be averaged



multiple times. Hence, the half power bandwidth moet can be used for lightly damped

structures with well separated modes as long appropriate frequency resolution is used.

Receptance FRF
0.07

0.06F

0.05 -

0.04 I

0.03 e —

Velocity (ms™1)

0.02F b

0.00f -

250

Frequency(Hz)

Figure 1: Mobility FRF of a single degree of freedm system as used to measure damping
using half power bandwidth method

1.2.3 POWER INPUT METHOD

The Power Input Method (P.I.M) is based on a comparof the dissipated energy of a
system to the total energy of the system undedgtstate vibration. Since P.1.M. is based on the
definition of the loss factor, theoretically itumbiased and it is applicable at all frequencids. A
higher frequencies, where the modes overlap, th®Rs used to calculate loss factors over
broad frequency ranges. These band averaged logsssfaare used in models based on Finite

Element Method (FEM) and Statistical Energy AnaySEA) [13].



Since the power input into a system is dissipatgdth® system under steady state

conditions, we can replace the dissipated powdr thi2 power input.

— n — Ein
n= = 1.6
wETotaJ a)gTotaI ( )

Here,n is the loss factokp is the frequencyrz, is the input powerE,, is the input energy,,,
is thetotal energy of the structure ang ,is the integrated total energy. The formulae to

calculate the values of the total power input ithi® structure and the energy of the structure are

given by equations (2.35).

1.2.4 TRANSIENT STATISTICAL ENERGY ANALYSIS METHOD

This method was proposed by M. L. Lai and A. Soantheir paper ‘Prediction of
Transient Vibrations Envelopes using Statisticagiigy Analysis Techniques’ [14]. This method
was proposed as an alternative to the Power Inpihddl under transient excitations using the
basic S.E.A relationship of the energy transferbedween the subsystems to calculate the
coupling loss factors between them. The power impethod for transient excitations uses the
steady state loss factors for estimating the pofteay between subsystems of the structure
whereas the T.S.E.A. method on the other hand asesw ‘apparent time varying coupling
coefficient’ to characterize the power flow betweseihsystems.

The basic T.S.E.A. relationship between 2 subsyste given by

5(1) = 2C,()(EL 0 - £5(1) (L7
Here,

Cu2 (1) is the apparent time varying coupling coefit between subsystems 1 and 2.
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N0 is the time varying energy transferred from sgbsy 1 to subsystem 2.

g (t) is the integrated kinetic energy of subsysiem

Equation (1.7) is the basis for the T.S.E.A methddking an assumption that the energy
stored in the coupling is very small when comparedhe energy transferred between the
subsystems leads us to the relationship betweecotn@ing coefficients which then leads to the
formulation of the T.S.E.A Method as stated bydheation (2.49)

C,,(t) =C,,(1) (1.8)
Both G (t) and Gy (t) will asymptotically approach a constant vafligvhich is the steady state

coupling coefficient.

1.3TYPES OF EXCITATION

1.3.1 SINUSOIDAL EXCITATION

Sinusoidal excitation is one of the oldest meth@misexciting a structure for modal
testing and is still widely used [12]. As shownFRigure 2 below, the force input consists of a
sinusoidal wave of a particular frequency, here BHZ9 thus exciting the structure only at that
frequency.

Since the response characteristics of a strucrere@pendent on the frequency at which
it is excited, this type of excitation can be ugmddirect parameter identification, because of the
satisfactory signal to noise ratio, with the hatiyer bandwidth method. The downside to this
type of excitation is that it is very time-consuito excite the structure at multiple natural

frequencies.
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Figure 2 : Time plot, FFT and auto spectrum of a siusoidal excitation with frequency 1000

radians/sec

1.3.2 RANDOM FORCE EXCITATION

The force signal for random excitation is a staignrandom signal with Gaussian
distribution having a constant spectral densityisltgenerated by using a random number
generator and is a non-repeating sequence of nsmhgiseen in Figure 3, the random force has
“frequency content” over a broad frequency range s it excites all the natural frequencies

of a structure in any large frequency band. Fotracgire that behaves nonlinearly, random
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excitation has the tendency to linearize the behralrom the measurement data. It correctly
models the amount of energy dissipation of thecsitine during vibration [12]. Hence random

force excitation is preferred while using the powgrut method.

Time plot of a Simulated Random force of duration 1 sec with Hanning window
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Figure 3 : Time plot, FFT and auto spectrum of a snulated random force excitation with
no noise
For a structure excited with a random force, simegher the force input nor the response
is periodic, leakage errors might occénor the signal to be transformed into frequency aiom
using the Fourier transform, the signal shouldsgatihe Dirichlet condition, which states that the

value of the signal and its time derivative at st@t and end of a time record must have the same



value, preferably equal to zerdhis leakage can be minimized by using a Hanningdeiv. A
Hanning window is a raised cosine function whiclogeout the signal and its first derivative, at

the beginning and at the end of the time recora tohe domain signal.

1.3.3 TRANSIENT EXCITATION

The time domain signal of an impact excitation igpwse of limited duration. The

frequency band that an impact force excites isctlyeelated to the impact duration as

1
F :E (1.9)
Here, F is the highest frequency excited by thesichpndAt is the duration of the impact. As
seen in Figure 4 the maximum frequency excitechiyimpact force of duration 0.001 second is
about 1000 Hz.

Transient excitation is a relatively simple, cheapnvenient and portable excitation
technique which requires minimum hardware. Sinegethis no physical connection between the
excitation source and the structure there are rwsmvolved because of the loading of the test
structure due to the mass of the shaker. Examgléesnsient forces include shock loading,
impacts, for example is using an impact hammer wittalibrated force gauge, earthquakes and
wind gusts.

To minimize leakage errors the measured input fdroem the impact must always
include a nascent (pre impact) time interval atidbginning of the time record thus satisfying the

Dirchlet condition. The main disadvantage of impextitation is that it is difficult to control

either the force level or the frequency range efithpact which could affect the signal to noise

10



ratio, resulting in poor quality data. Repetitivesas another issue with transient excitation. In

addition, some structures are too delicate to benf@red upon.[12]

Time plot of an impact hit of duration 0.001 sec
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Figure 4 : Time plot, FFT and auto spectrum of anmpact hit of duration 0.001 seconds
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2.0THEORY OF STATISTICAL ENERGY ANALYSIS

2.1LITERATURE REVIEW

Statistical Energy Analysis was developed at a twvhen estimation of damping and other
modal parameters were limited by the lack of corapomal resources and limitations of existing
techniques. Estimation of damping and other modahkipeters by classical methods, used
widely then, were limited to well-defined and wigalpaced modes particularly at low
frequencies. Even the computational models used dnéy predicted the modal parameters of
the lower order modes of rather idealized (simgdijimodels of structures [15].

The aerospace and automotive industries have teemprimary contributors to the
development of new methods based on statisticalagirey, both temporally and spatially, of
response functions. Increasing complexity of stmed, better damping predictions and the
demand to predict parameters over a wide frequeacge while simultaneously reducing the
computational effort required lead to the developmef Statistical Energy Analysis. The
fundamental principle involved in S.E.A is the cenation of energy. Complex structures like
aircraft wings and automobiles are described in/Slty a set of simple structures like plates
and beams and by S.E.A parameters like loss faatat<oupling loss factors.

The first paper on Statistical Energy Analysis wagten by Lyon and Maidanik [16] who
considered two linearly coupled oscillators. Theparted that the power flow is directly
proportional to the difference in the modal eneirgyhe two oscillators and the direction of the
power flow is dependent on the sign of the diffeeenFurther developing it, they applied the
idea to 2 multimodal systems which were randomlgited. They divided the structure into
groups of modes in narrow frequency bands and eefoan energy balance in each frequency

band independently.
12



The basic power flow equation given in referendg |&

j12=_j21=912(61_62) (2-1)

Here,

J100 I, @re the power flows between oscillators 1 and 2.

6,0, are the modal energies (defined as temperatuttés ipaper).

0,, is the coupling constant of proportionality whistdependent on the system parameters.
Modal energy is defined as the ratio between tked emergy € ) in a frequency band to the

number of modesr() in that band.

E
g=—
= (2.2)

Assumptions made in the formulation of StatistiEakrgy Analysis are as follows:

1. The structure of interest is divided into simpldsgstems and an energy balance
enforced in multiple frequency bands such thatrifoeles in a particular band have
the same energy.[16]

2. Since the energies are concentrated near naterpldncies, to get a better statistical
estimate each frequency band should have a lamgéerof modes.

3. The frequency band should not be so huge such thetmodal energies vary
significantly in a frequency band of interest.

4. The structure is assumed to be under a reverbietshtwhich is defined as a sound
field which is dominated by reflected sound wavesvhich the flow of energy in all

directions is equally probable.[17]
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Initial work in S.E.A assumed a weak coupling betwesub-systems. Ungar [18] applied
S.E.A to a strongly coupled case. Gresch in 1968 épplied S.E.A to a system of 3 oscillators
with non- conservative coupling between them.

The S.E.A method assumes the presence of stedadycstaditions, but Manning and Lee in
[20] applied Statistical Energy Analysis to a tians case by adding an additional energy term
to the basic SEA equation describing the power tinpto the system. Because of the time-
varying nature of the transient problem, the enarfjthe system also changes with time. The

time rate of change of energy term addresses #ntecplar aspect of the transient case.

7T, =—+wnE (2.3)
Here, 7z is the input power and is given by equation (2:8) anE is the dissipated energy

described by equation (2.12). Equation (2.3) iteddaihe quasi-transient equation because of the
addition of an additional energy term while simn#ausly retaining steady state coefficients.
Equation (2.1), which is applicable under steadyestconditions, is also assumed to be
applicable in the transient case [21].

For a system with 2 oscillators, described by Fegbiy combining equations (2.3) and (2.1)

we get,

de
7, :E+wE1(/71+/712) ‘CUEz(ﬂz]) (2.4)
The above equation (2.4) describes the power fiow structure having 2 sub-systems under
a transient force.

Mercer [22] in 1971 developed an expression usiagupbation analysis describing the

energy flow between 2 oscillators connected by akneupling and under a transient load. He
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concluded that the energy flow between the 2 @doils is directly proportional to the energy
difference and also the magnitude of the transrapact force.

Pinnington and Lednik [23] studied and comparedetkact transient energy response of a 2
oscillator system with the results from quasi transstatistical energy analysis of a 2 oscillator
system. They compared and reported that the peaks|antegral of the transmitted energy and
the decay rates are similar for both the methodsHgutime taken to reach the peak level is less
in the case of the quasi- transient statisticatggnanalysis (T.S.E.A) method.

Another approach to solve transient problems us$iegstatistical energy analysis method
was proposed by Lai and Soom [14]. They furtherroupd equation (2.1) by using new
“apparent time varying coupling loss factors” ireteof steady state loss factors to describe the
energy flow between any 2 oscillators so thathalparameters involved vary with time.

Ext, @) = 20, (7,,(t. @, )e5 €. )~ 11,0 . e €0, ) (2.5)

Here,

E,(t,c.) is the energy transferred from oscillator 2 toilistor 1 and is a function of the time
and frequency band.

w. is the center frequency of the frequency band.

£* is the integrated kinetic energy.

n;(t,@,) is the apparent time varying coupling loss factor.

2.2BASIC CONCEPTS

Statistical Energy Analysis deals with the flow @nergy in a structure. It is based on the
principle of conservation of energy which is “Engian neither be created nor destroyed it can

only be transformed from one state to another”.ddetihe energy imparted into a structure can

15



either be stored in it or has to be dissipated eet. For example under transient conditions
energy stored in the system varies but once stsi@dy conditions are reached the energy stored

in a system remains constant and all the energgiriteg into the structure is dissipated.

2.2.1 STRUCTURE CONTAINING A SINGLE OSCILLATOR

Consider a single oscillator structure having asrds stiffness K and damping coefficient

C. Under an applied random forté), the equation of motion for a 1-DOF system is gitg

M+ Cx+ Kx = f (f) (2.6)

AN

OQ%
z

Figure 5 : Single degree of freedom oscillator

For a random force f (t), the time averaged powpui is given by [24] as:

1
T _MEJT f (t)v(t)dt 2.7)
Here, v(t)is the velocity of the oscillator. Applying Parsésaheorem and transforming to the

frequency domain, we get

1
217

T T F (wV (w)dw (2.8)
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Here * denotes the complex conjugate of the foftece power is a real quantity, equation (2.8)

can be further reduced to:

_ 17
o =5 | See R (2.9)
Here, Y is the mobility frequency response functibRF).S.; is the auto-spectrum of the force
and is given by:

S =F (W)F () (2.10)

On further simplification, we get

7T, :%ZM2 S dw (2.11)
Equation (2.8) is used to calculate the experimieptaver input into the system from the
measured data. The time-averaged power dissipaggdan by the definition of loss factor given
by (1.2) as

Ty = N0y (2.12)

Assuming the kinetic energy is twice the total gyewe get the total energy as

M |
B = 26, =im — jT v2(t)dt (2.13)
The relationship between the loss factor and dagnpaefficient given by

C
=— 2.14
=i (2.14)

Substituting equations (2.13) and (2.14) in equatih12), we get

. C ¢
Mo =lim = j V(1) 2dt (2.15)

-T

Applying Parseval’s theorem on equation (2.15) madsforming into frequency domain we get

17



_C 3.
Mo = o j V' (w)V (w)dw (2.16)

Equation (2.16) can be further simplified by usitige following definition of Frequency

Response Function (FRF), Y

|Y|2 _Sw V' (wV (w)

S. F(@F @ (2.17)

CSi2
My == [|¥[* Serdw (2.18)
7TO
Equations (2.11) and (2.18) prove the relationbleippveen the power input and power dissipated

to be

7T, = Ty = NNOWE (2.19)

2.2.2 STRUCTURE CONTAINING TWO OSCILLATORS

For a structure with two distinct sub-systems otiltzgors, the energy balance equation

consists of an additional term of the dissipatedgroat the junction of the two subsystems.

nlin T|2in:0
SUBSYSTEM 1 1 SUBSYSTEM 2
my
Properties R Properties
My, K1, G, B2 Kg Moz, Ko, G, B>
ﬂldiss T|2diss

Figure 6 : Structure with 2 oscillators
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Consider the structure in Figure 6. Oscillator Exsited by a force which imparts powet,
into the structure. Oscillator 2 is not exciteddmy external force and hence the power input into
it is 0. At the intersection of the 2 oscillatongte is a net energy flow from subsystem 1 to 2.
The formula for the transferred power is given loyvell [21] as

77tlr2 = 0)/712(E1— Ez) (2.20)
For a simple case of spring coupling between tradlawrs, the equation of motion for a 2-

degree of freedom system is given by

o : K +K K
M, O X1 + C 0 >'<1 4] 1T N g X F (2.21)
0 M,)|% 0 C,)|x, Ky Ky +Ky )% 0

From the above equation, the force transferrecbearepresented by

R =K% (2.22)

The power transferred can be calculated from thatson (2.22) as

1., . 1
]2;2 = E Kgxle = ECZSN = néss (2.23)

Thus, the power balance equations of the abovetataeican be represented as

T, =Ty + 78,
2 ;’#2 & (2.24)
diss —

2.2.3 SYSTEM OF 2 MULTIMODAL OSCILLATORS

For a system of multimodal oscillators, modal egenghich is defined as the total
energy in a band divided by the number of modea imand, instead of total energy, is the
primary parameter of the energy balance equatidhs. power transferred depends on the

difference between the modal energy and not tHerdifice in the total energy. The formula to
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calculate the modal energy from the total energyiven by equation (2.2) stated in the previous
section.

Experimentally, measuring the total energy of tkeiltator is difficult so the difference
between the total energies can be substituted iog tihve difference in the kinetic energies of the
oscillators. This assumption is used in all wodated to Statistical Energy Analysis.

Re-writing the equation (2.1) for multimodal stuas, we get the total transferred energy as

Nl N2
ﬂ;er = Z Z Cmn (gl,n - 92,m) (2-25)
n=1 m=1
Upon simplifying the equation (2.25), we get thei@epn for the total power transferred as
k k
2 _ E _E
=2C NN (——— 2.26
tr 127 V1 2( N1 N2 ) ( )

In multimodal oscillators, loss factors and couglinss factors are generally calculated
in specific frequency bands having a finite numisiemodes. The bandwidth of a frequency band
is selected such that all the modes in a band hhawest equal modal energies. The coupling
coefficients of all the modal interactions in aguency band are of similar magnitude.

Since S.E.A is based on the assumption of theepoesof a large number of modes,
frequency bands having high modal densities giveebeesults than bands at lower frequencies

where the modes are sparsely populated. Hence &bdter suited at higher frequency ranges.

CN,(@) oy = N (@)

(o C

Defining the coupling loss factors ag, = , we get the

relationship between the transferred power, theetidnenergies of the oscillators and the

coupling loss factorg,, andy,, in a frequency band of bandwidfitwand center frequeney, as

n:rz (wc) = 2a)c (,712 (wc )EZIL( (wc ) - ,721(a)c ) EI; (wc )) (2-27)
Here, E*(w,) is the kinetic energy in a frequency band centated, .
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Nl 22l ________l_Iz:=s N2

Figure 7 : Interaction of modes in multi-modal subsystems from
reference[1]

The coupling loss factorg,, andy,, are related to each other by the consistencyioalgiven in

[25]. Fori # j, we have

N7y =10, (2.28)

Where,n and n, are the modal densities of subsystems i and | otispéy.

2.3DEVELOPMENT OF THE POWER INPUT METHOD (TRADITIONAL SEA)

As defined in Chapter 1, the Power Input Metholdased on the very definition of loss

factor. For a structure with a single oscillatdre tequation for the P.I.M can be derived from
equation (2.19) as

,7_ ﬂi'n — Ein — ﬂi-n — Ein 229
WE,,, E 20wE"  2wE (2.29)

Total

The power input to a structure can be calculatedhfexperimental data using equation (2.8).

The kinetic energy of the system can be from tHeciy data calculated as
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E'=— [ §,dw (2.30)

Combining equations (2.29), (2.30), (2.9) we get

[ S Ret w
n==— (2.31)
Ma)J' S, dw

Similarly, for a system with two oscillators therritula to estimate the loss factors and
coupling loss factors can be derived from equat®4) stated in the previous section.
Combining equations (2.12), (2.24), (2.20) and §2&e get the formula for the power

input method for a 2 oscillator system as

iTii = 2|:’7sz|2( + a)/721E§ - a)’712Ek1]

77'-1n = 2[’71“)Elk + w’712E|1( —arn 21Ek2:|
(2.32)

Equation (2.32) can be represented in matrix foym b
T, + - E)
|: — 26() ,71 ,712 ,721 1k (233)
7T, 1115 N,+1M,] | E;

For multimodal systems, where the frequency rarigeterest is divided into bands, and
for the ease in calculation of the loss factoes,directly using matrix inversion techniques, the

equation (2.33) can be modified to include poweuirto both systems as

nian 0 =20 M+ 1] E1k,| Efu 534
2 T + EX EX (2.34)
0 in o 1,71 2.1 2.
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The Roman numeral | denotes that the power inpsitipplied to the subsystem land no
power is imparted into subsystem 2.Similarly, Ihdges the power input is supplied only to the
subsystem 2w, is the center frequency of the frequency band attwAw.

Equations (2.30), (2.8) calculate the kinetic egeagd the power input for the whole
frequency range. The power input and kinetic endogyn a frequency band of widthwand

center frequencyy, are given by

1 %+Aw2
== j F (w)V(w)dw
wc_sz
(2.35)
M %+Aw2
EX=— dw
21T _-£w S
@72

Generalizing the power input method to include Nltvihodal Systems, the power

balance equations [26] become

B N
XM T Tha | )
M N i#li=1
HI O .. 0 N E;fl Eiu Eil(N
0 n‘” ... 0O - n+yn, - -1, K K LB
: 7?2 ) : :2ag Tho 2 i;l 2 N2 E2| E?,u . :2N (2.36
L o 0 - #r\:'N_ . . 'N B k,| Erlfl,n Erlfl,N_
Ty Ty N DT
L iZNi=1
The above equation can be written in a compact fsm
[72,] = 2 [n]  E*] (2.37)

Or, in terms of the loss factor matrix, equatior8{2 can be written as
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1 K -1
=—|r || E
[7] 2wc[ [ EX ] (2.38)
Herey is the Loss Factor Matrixw, is the center frequencyz, is the input power matrix and

EXis the Kinetic energy matrix.

The power input method has been successfully usquedict the loss factors and the
coupling loss factors of several systems throughbatyears. Bies and Hamid [27] in 1980
applied the power input method to calculate thesitn coupling loss factors and loss factors
between two rectangular plates with non paralleJesd They concluded that good agreement
was obtained between measured values and predigiiaes.

Carfagni and Pierini [28] applied the power inputthod to various plates of different
sizes with constrained layer damping. The plate exasted with an impact hammer. They noted
that to achieve good results using the power impethod the following guidelines have to be
followed.

1. The input point mobility should be measured witmast precision because errors in its

measurement lead to incorrect loss factors, whiah also noted by [29].

2. Multiple taps must be avoided. Taps must be madpgndicularly and always at the
same point on the plate.

3. The excitation point should not be along a node bin along the edges of the plate to
avoid local edge effects.

Carfagni et al. [30] also conducted the same erpmris using a shaker to simulate
steady state conditions and to reduce the erragstallnammer excitation. References [30] and
[28] concluded that loss factors are dependent morthe damping added than on the size of the
plates. They also noted that the quality of losidiameasured can be improved by increasing
the number of measurement points.
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Liu and Ewing [8] recommended that errors due t@cspen /excitation source
interaction can be decreased by using long stindigis weight and small shakers, and high
spatial discretization.

Panuszka et al. in their paper [31] presented ffieeteof joints on the coupling loss factor
measured. They showed that the measured coupksgdators depend on both the position and
the number of point joints. The measured couplogs Ifactors increase with an increase in the
number of point joints. They also showed that treasured coupling loss factors depend on the

thicknesses of the plates.

2.3.1 PRACTICAL LIMITATIONS

Even though the Power Input Method (P.I.M) has heotetical limitations it is
practically limited to the range of 0.4<0.001 [32].
The reasons given were
a) For high damping levels, a large number of measantmpoints are required to correctly
capture the reverberant field in the structure.
b) For low damping levels, minute phase errors inrtteasured data lead to negative loss
factors.
It has been shown in [5] that Power input methad loa used for increasingly heavily damped
structures by considering the response of incrgisimore points on the structure.
Minute phase errors lead to an incorrect input £gEectrum, which is given in terms of the

Fourier transform of the force and velocity by

S.v = F (WV(w) (2.39)
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As shown in Figure 8, phase errors result in ngggbower input in certain frequency
bands which result in negative (or incorrect) Ié@stors. Phase changes occur rapidly as a
structure undergoes resonance and the phase chacweover a very small frequency range in
lightly damped structures which are difficult tcsodve well [1]. Phase errors can be eliminated
by minimizing measurement noise and by improvirgftequency resolution. It is shown in this
thesis that selecting the correct frequency regolus directly related to the quality of the loss
factor estimated.

The power input method is also not suitable forteays having many subsystems

because of the complexity in inverting the largeekic energy matrix given by equation

(2.36)[29].
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Figure 8 : Changes in input cross spectrum becausd phase errors
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2.4DEVELOPMENT OF THE TRANSIENT STATISTICAL ENERGY ANA LYSIS
(LAl AND SOOM) METHOD

Statistical Energy Analysis was first applied te tinansient case by Manning and Lee.
They investigated a transient problem by addingha varying energy term to the power balance
equations. Even though the power input and theggnarthe sub-systems change with time they
used steady state coupling loss factors to retetévio terms. Manning and Lee’s formulation to
solve for the S.E.A parameters for a single odoitlaase is given by equation (2.3) and is

restated here.
m.=—+wnE 2.40
=gt (2.40)
The termC:j—ltE is the instantaneous change in total energy obsiadlator.

For the 2-oscillator case, as described by Figuteeépower balance equations for the transient

case can be given as

in

e T
ddé (2.41)
— 2 = ]Tz

dt in~ Zldiss T
Here, E, is the total energy of oscillator 17, is the power input into oscillator 17;_is the

power dissipated by oscillator 1 amf is the power transferred from oscillator 1 to tatir 2.

Integrating the equations (2.41) with respect toetigives us the energy balance relationship

between the oscillators.

140 e - £ 0 +E20

de,(t) _
dt

(2.42)
E; (1) - Eg(t) + EF(1)
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Here, &,(t) is the integrated total energy of oscillatorEL,(t) is the energy input into oscillator

1, Ei.(t)is the energy dissipated by oscillator 1 aB{f(t) is the energy transferred from
oscillator 1 to oscillator 2.

The energy transferred between the oscillatorelasted to the difference between the
integrated kinetic energy of 2 oscillators by ammng coefficient. Manning and Lee used the
steady state coupling coefficient to describe thergy transferred. In the T.S.E.A method,

proposed by Lai and Soom, because of the time mgrpature of the energy terms, a new

coupling coefficient termed as the-“apparent tiraeying coupling coefficient” is used[26]:

2(t) = 2C, (1) (X (1) - £51) (2.43)
Here, C,,(t)is the “apparent time varying coupling coefficieatid £/ (t) is the integrated kinetic
energy of oscillator 1C,,(t) will asymptotically approach a constant value deddy C which

is the coupling coefficient used by Manning and.Lee

2.4.1 MULTIMODAL SYSTEMS

For multimodal systems as described by Figure &,ehergy balance equations in a

frequency band of widtihwand center frequency, are given by

a0 Q) _ g1 w0)-EL(bw)+ERE@)

dt
de,(t,w,) .
% =Ei(tw)-Ej (@) +E (@)

For multimodal systems, every mode interacts witrg other mode. Hence to calculate
the energy transferred in a frequency band theggrteansferred between the individual modes
can be directly summed. This leads to an expresstunh is similar to the power transferred

given by equation (2.25).
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Ni N,

r (L) =2 > Co ), 1) &, (1)) (2.45)

n=1 m=1

Here, £, ,(t) is the integrated modal energy of the mode nefcillatorl.

A couple of assumptions are made to further sim@duation (2.45). They are
1. Integrated modal energies up to time t in a banth veandwidth Aw and center

frequencyw, are assumed to be equal.[26]

2. The energy stored in the physical coupling, fomepke a series of rivets or a bolted joint,
is small when compared to the total energy transfiefrom one oscillator to the other.
This assumption leads us to the relationship betwiee coupling coefficients as
C..(t)=C,, ) (2.46)
By using the above 2 assumptions and using theevialuthe kinetic energy in the band instead
of the total energy we have

g§tw) &ta)
Nl N2

2(t,w)=2<Ct,w)> NN, ( ) (2.47)

Here, <C(t,w.) > is the statistical mean of the “apparent time wayyoupling coefficient”.N,
and N, are the number of modes in a given band.

Defining the “apparent time varying coupling loastbrs”7,,(t,w.) and#n,,(t,aw.)as

<C{t,w)>N,

Nyt @) =
“ (2.48)
<C(t,w.)>N '
Nyt @)= ( ) L
@,
Equation (2.47) reduces to the form
B/ (tw,) = 20, (7., ., e €., )= 0@, )7 €@, ) (2.49)
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The “apparent time varying coupling loss factorsg eelated by the compatibility relationship,
which is similar to the compatibility relationshipetween steady state loss factors given by

(2.28), as

N7,,(t, @) = Ng7 (L, @) (2.50)

Here, n :AN—;) is the modal density of oscillator 1 in a frequgbeand of widtlAw.

The energy dissipated is also similar to equatibh?) and can be given as

B, = 270" (t,@,) (2.51)

Combining equations (2.44), (2.49), (2.51) we @&t instantaneous response, or rate of change

of the kinetic energy, as

de(t,w,)

. En(ta) - 2708 o)+ 20 0.t @ ¥ tw ) nat@ ¥ tm)  (252)

The “apparent time varying coupling loss factorh aalculated from equation (2.49). In
a 2-oscillator system, a transient force is figgblaed only to oscillator 1 and the energy stored i
both of the oscillators and the transferred energiee measured. Then the transient force is
applied to oscillator 2 and the energies are medsum a similar fashion. The transferred
energies thus measured in both the above casgdedawith the relationship given in (2.45) can

be used to calculate the coupling loss factors as

é‘lk’I (t,w) —EIZ(J (t’a)c):Hﬂlz(t’wc)}:{ er'I } (2.53)

leta) -8, )| [7atw) ;

Or, in compact form equation (2.53) can be reprieskeas
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20| & |} ={E,} (2.54)

Here,

{/7} Is the apparent time varying coupling loss fachaitrix.
{E,} is the transferred energy matrix.

[ £ is the integrated kinetic energy matrix.

Lai and Soom[14] have shown that the time varyiogs|factors asymptotically approach the

values computed in a steady state SEA.

2.4.2 CALCULATION OF ENERGY TERMS FROM EXPERIMENTAL DATA

The energy terms used in the T.S.E.A. method aretifons of both time and frequency.
To calculate the energy of an oscillator up tanzett, only the experimental data up to time t has
to be involved in the calculations and the remajrdata has to be converted into zeros. (This is
called zero padding the data)

The formula to calculate the integrated kineticrggen the time domain is

M 0
£X(t) == [ o) (0)dr (2.55)
Where,v,(r) =v(r) when7 <t andv,(r) =0 whenr >t

Applying Parsevals theorem and transforming inte filequency domain, and calculating the

kinetic energy in a frequency bafdv centered aty, we have the kinetic energy as

@ +89)
£k(t,a)c):% [ Re{v@) @}dw (2.56)
A
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When the experimental data is in acceleration tehmas equation (2.56) has to be changed into

acceleration terms as

M “".72Re{ AW)A @} o

k
t, =— .
&t w)=7 I — (2.57)
“@="72
Similarly the energy transferred can be calcula®d
wc.,.Aw
& taw)=— Re F wy }dw
(@)= ”%_jm R wy W)
2
2.58
o o (2.58)
g&tw)== | Im{F(w) }
ﬂ%_A%

2.4.3 PRACTICAL LIMITATIONS

The T.S.E.A. Method proposed by Lai and Soom [1af) theoretically be used in all
frequency ranges and for a variety of fixtures, that practical usage of this method is limited.
Since the energy transferred between 2 subsystenthei core measurement used in the
estimation of loss factors, the method is pradichinited to only those junctions where the
energy transferred can be explicitly measured. drtiqular it can be used at point junctions
where a force transducer can be placed to measefferce transferred but cannot be used at line
junctions.

Another limitation to this method is that the nwths overly dependent on the junction
properties. Any flexibility at the point junctionight cause the assumption of zero coupling
energy which can cause the energy transferredngbyethe equation (1.7), to be negative

leading to estimation of negative coupling losgdex at those frequencies.
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3.0EXPERIMENTAL SETUP

The Experimental setup is as shown in the figusdevb. The test setup consists of
1. Data acquisition unit — An 8 channel Data Physign&calc Mobilyzer Model -70502.
2. Work station with Data Physics SignalCalc 730 Dy@a8ignal Analyzer software.
3. Shaker — Ling Model number V203.
4. Power Amplifier — LDS Model number PA25E.
5. Modally Tuned Hammer — PCB Model number 086CO03.
6. 7 Accelerometers — PCB Model number 352A71.
7. 2 Force Transducers — PCB Model number 208A02, PGEAS50.

8. Signal conditioner — 16 channel PCB ICP Model nunt.

/ “— SHAKER

’J FORCE TRANSDUCER
7

N

POWER AMPLIFIER

[ Ny

>\ LT T ™

| I & ]

DATA PHYSICS
UNIT \
ACCELEROMETERS
- SIGNAL
WORK STATION CONDITIONER

A

Figure 9 : Experimental setup — Persistent excitabin
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WORK STATION PEEN CONDITIONER

Figure 10 : Experimental setup — Transient excitatn

The test article is excited either using a hammenduce transient conditions or by a shaker
with a pseudo random excitation to induce steadtestonditions. The workstation is loaded
with the Data Physics SignalCalc 730 Dynamic Sighaalyzer software which controls the
Data Physics Signalcalc Mobilyzer unit. The Datgdts Signalcalc Mobilyzer has both input
channels for data acquisition and output chanmmetsugh which it can send a drive signal to the
shaker. This signal is passed through a power &empo that the test article is sufficiently
excited at all the frequencies. The shaker is coiaaeto the test article using a thin stinger and a
force transducer, which measures the force ingot time system. Accelerometers are placed on
the other side of the test article to measure toelarations of the plate. A force transducer is

used to connect the 2 plates and since it is inldhd path it measures the force transferred
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between the 2 subsystems. These measurementikexezfto ensure that no aliasing takes place.
To maintain consistency in the units involved, tlaa measured is converted into and saved in
Sl units.

To simulate transient conditions the test artideexcited with a hammer. The hammer is
directly connected to the signal conditioner andsdnot require any input signals. The tip of the
hammer can be changed depending on the frequeti@désare to be excited. The plates are
suspended from a stiff frame with two steel stripgs plate, giving essentially “free” boundary
conditions with regard to out of plane vibratioB8].

To test the effect of damping on the estimationosk factors and coupling loss factors,
visco-elastic damping (3M-F9469PC) is added totds articles. A constraining layer, in this
case a brass sheet with thickness between 0.088srand 0.010 inches, is rolled over the visco-
elastic layer to create an efficient constrainggladamping treatment. The excitation point is
then chosen away from the axes of symmetry andsgnimetry of the plate to be sure that all
the high energy (low frequency) modes are suffityeaxcited. As a matter of practicality the

excitation point is not located on a visco-elaktier to provide loading directly to the plates.

3.1EXPERIMENTAL PLATES

The test articles are two aluminum plates (seee€lapljoined at a point by a force transducer.
The force transducer is bolted to both the plates forming a physical bond between the 2
plates. These plates are called as the “Lai ananSelates” in this thesis as these plates were
constructed to be as similar as possible to thieeplased by Lai and Soom. Constrained layer
damping is added on the back side of the platesna@asurements are taken on the front side.

The placement of the damping layers is describekppendix B.
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Figure 11 : Experimental plate setup — Plates joined at aqnt, No Damping adde(

TABLE 1: PROPERTIES OF THE EXPERIMENTAL PLATES

DAMPING LAYER | CONSTRAINING LAYER MASS
CASES

THICKNESS (cm VOLUME (cm®) ©)
NO DAMPING | DAMPING NOT | CONSTRANING NOT | Platel 4808
ADDED ADDED ADDED Plate2 :3628
2 SHEETS OF 3M F9469 P BRASS SHEET Platel 4844
DAMPING 2 x 0.0127 2x25.4x4.95x0.254 | Plate2 :3670
6 SHEETS OF 3M F9469 P BRASS SHEET Platel 4925
DAMPING 6 x 0.0127 6 x 25.4 x4.95 X 0.254 | Plate:: 3752
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Figure 12: Aluminum plates with partial damping added

TABLE 2 : SPECIFICATIONS FOR THE EXPERIMENTA L PLATES

PLATE MATERIAL DIMENSIONS (rr3)
ALUMINUM
1 0.61 x 0.47 x 0.006:
AL CLAD 2024-T3
Thickness = 0.64 cm
2 Elastic Modulus =70 GPa  0.53 x 0.38 x 0.00¢
Density = 2.7e3 Kg/th
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4.0ESTIMATION OF LOSS FACTORS USING THE POWER INPUT ME THOD

4. 1NUMERICAL SIMULATION OF A SIMPLE 2-DOF SYSTEM

Consider a simple 2-DOF system as shown in Fig@ddlow. The system consists of 2
oscillators joined together by a spring coupling Khis configuration is one of the simplest
examples of a multiple degree of freedom systentill@®r 1 consists of the mass;Mspring
with stiffness K and a damper with coefficient;QOscillator 2 consists of the mass,Mpring
with stiffness Kk and a damper with coefficient,CThe two masses Mand M are free to move
in only one direction, x, as shown in the figufea force is applied on any one of the oscillators,

energy flows to the other through the spring couphbetween them.

> Xo
X1
Ky " Ko
ve PWWH me
K
C ‘ C,

Figure 13 : Two degree of freedom oscillator

Summing the forces acting in the x direction, tiggiaion of motion for the above system is

given by equation (2.21) and restated here.
M, O x1 N C, O >_<1 N Ki+K, -K, X _ f 4.1)
0 M,)|X% 0 C,)|x%, -K, K, +K,/)[X 0
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In matrix form the above equation (4.1) can betemitas

[MI{% +[C]{x} +[K]{x} ={F} (4.2)
This system of ordinary differential equations che solved to give the velocities and

displacements of the two oscillators. The systenOBE’'s can be solved either directly as a

system of ODE’s or by using the state matrix mettiescribed in [34].

A sample problem with given input loss factors isnerically solved with the power
input method to estimate the loss factors and clacthe differences between the estimated and
the loss factors used to develop the model destidyeequation (4.2). The properties of the
sample 2-DOF system are as follows. The masseaid M, are 1 Kg each. The natural
frequenciesn,; andw,, are 149.8 radians/s and 200.1 radians/s respbctiMee spring coupling
K¢ is 1000N/m. The spring stiffness kind K are 22500N/m and 40000N/m respectively. The
blocked natural frequencies of the oscillators ake150 radians/s an@,=200 radians/s
respectively. As there is no damping coupling inedl at the junction of the two oscillators and
since the spring coupling is an order of magnitladeer than the stiffness of the oscillators the
junction is an example of a weak conservative dagplThe relationship between thegkand

the Ky, terms of the stiffness matrix and the natural destries of the oscillators is given by

Ki+ Ko =@M, (4.3)
The oscillator loss factorg, and 7,, are the variables in this numerical simulationl an

are equal to 0.75, 0.075, 0.001 for three diffecasies. The oscillators are excited by rectangular

t)—o(t — At
pulse force of magnitudéd() ZE )) with duration of 0.001 second to simulate transient

conditions. Hereg is the Dirac-delta function. To simulate steadtesiconditions the system is
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excited by a random force (force with a constaetcsl density and random phase) as shown in

Figure 3.

The 2-DOF system is solved for the deflectiopsixd % using the built-in ODE45 solver
in Matlab. The formula to estimate the loss factofsghe above simple system is given by
equation (2.34). The force is first applied only tve oscillator 1 and the system response is
calculated and saved. The force is then applieg onlthe second oscillator and the response of
the whole system is calculated and saved. The guvedo solve for the system characteristics is

as follows.

Consider the equation (2.8), which is the equatibmotion of the any 2-DOF system.

Pre-multiplying the equation (2.41) ] ™ yields

{g+[M][Cl{% +[M][K]{x =[M]{F} (4.4)
This system of second order differential equaticans be converted into an equivalent system of

four first-order ODE’s by substituting the follovgrequation (2.45) into equation (2.8).

(4.5)

Here,{y.} { .} {¥ are all 2 x 1 matrices. The relationship betwégs ,{ y,} is given by

{n}=0{y}+1{y} (4.6)

Rearranging the terms in the equation (4.4) andbtoimg the equations (4.6) and (4.4) results in
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{yylH—[M[ﬁ[K] _[M[]'l[c]]{§g}+{[M§3}{F}} 0

This approach is called the state- matrix apprd@dh Solving equation (4.7) results in
the calculation of displacements and velocitiebath the oscillators. Substituting the calculated
velocity into the equations (2.34), (2.35) leadsashe estimated loss factors using the power
input method. As the loss factor of an oscillatan de correctly estimated only near a natural
frequency the power input method can be appliegbtave system only at 2 natural frequencies

of the oscillators to estimate the correct valughefloss factor that is used to model the system.

The main aim of this numerical simulation is to ckdor the relationship between the
frequency resolutionAf and the ability to correctly estimate the loss dacfThis process of
solving for the response characteristics of the@Fystem and the calculation of the loss factor
is repeated for various input loss factors, différgequency resolutionaf and different input
forces - both a transient rectangular pulse forog @ steady state excitation in the form of a

random force.

4.1.1 PERSISTENT EXCITATION

The two oscillators of the sample 2-DOF system exeited by a random force and the
system response characteristics are computed. ddse factors are then estimated using the
power input method. The estimated loss factorsthadnput loss factors of the 2 oscillators are

plotted in Figure 14 and Figure 15.
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Figure 14 : Simulatedn; with persistent excitation, varying model loss faors andAf .
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Figure 15 : Simulatedn, with persistent excitation, varying model loss faors andAf .
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It is clear from the figures above that the losgdarange in which the power input method
can be applied is very wide. It can successfultyregte an improbably high loss factor of 0.75
and also a very low damping loss factor value 600. The above figures also convey that the

quality of the estimated loss factor depends atathe frequency resolutiofsf chosen.

Af is inversely proportional to the sampling time @agapture duration), ‘T’. So, a higher
frequency resolution (lower numerical valueAdf) means a higher sampling time and more data
points. Oscillators with low damping need a longe for the vibrations to die down and hence
need a higher frequency resolution (lower numenedlie ofAf ). This is also seen in the figures
above. In particular insufficient frequency resmat (higher value ofAf ) for lightly damped

oscillators does not capture enough data pointsaagnsleen in the figures above the estimated
loss factors are overestimated and are off by al@o®rder of magnitude.

On the other hand, oscillators with high input lésstors are less dependent on the value of
Af chosen. As seen, frequency resolutions of 0.2 HizlaHz result in estimated loss factors of
0.075 and 0.75. The loss factors estimated byquéecy resolution of 0.05 Hz are slightly off
by a factor of about 2-3. However it has to be ddtet the natural frequencies of the oscillators

are 24, 32 Hz and hence we need such high sanfpdéiggencies to estimate the loss factors.

4.1.2 TRANSIENT EXCITATION

The two oscillators of the sample 2-DOF systemeax@ted by a rectangular pulse force
generated by using 2 Heaviside step functions dd slystem response characteristics are
computed. The loss factors are then estimated dsamgower input method. The estimated loss

factors and the model loss factors of the 2 odoiltaare plotted in Figure 16 and Figure 17.
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Figure 16 : Simulatedn; with transient excitation, varying model loss faabrs andAf .
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Figure 17 : Simulatednz with transient excitation, varying model loss faabrs andAf .
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The magnitude of the loss factor estimated by theegp input method with the transient case
is dependent on the frequency resolution, aswtitis the persistent case, and this effect is seen
much more clearly at lower damping levels. At hagmping levels, the loss factor estimated is
less dependent on the frequency resolution chosdrddferent levels of frequency resolution

give loss factors which are close to the model fastor. A frequency resolutionf of 0.05 Hz

at high damping levels estimates loss factors wharehoff by a factor of 1-2.

At lower damping levels, on the other hand, theafiof frequency resolution on the loss
factor estimations is very clear. The estimated fastor with a frequency resolutioif, of 1 Hz
and a model loss factor of 0.001 is a negative evg0.06 for oscillator 1). The exact
mathematical relationship between estimated lostofaand frequency resolution is beyond the
scope of this thesis and can be worked on in the@duHowever it is clear that, up to a point,

increasing the frequency resolution solves the lprolof negative loss factors.

4.2EXPERIMENTAL RESULTS FOR THE LAI AND SOOM PLATES

The experiments were conducted on the Lai and Saates shown in Figure 11 and Figure
12 using the experimental setup described in Ch&pt&he experiments were conducted with
both persistent and transient excitations.

For the persistent excitation case, the acceleensetere placed on the front side of the
plates and a shaker was attached on the backTdget a better statistical spatial average of the
acceleration of the two plates, measurements wakentat 9 points on each plate and were
distributed uniformly over the whole surface aswhdn Figure 18. Plate 1 was first excited
with a shaker and, since an 8 channel data acguisitnit was used, the experiment was

repeated 3 times, changing the position of the lammmeters and keeping the excitation point
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the same. Then, the same procedure was repeatedhegitshaker connected to plate 2. The
excitation point was chosen away from known, loeqgfrency node lines and away from the
added damping sheets as shown in Figure 18. Fquettsistent excitation case, the experimental

data was averaged 50 times to compute the regsiectra.

¢ Shaker excitation
points

G Hammer excitation
points

X Accelerometer positions
(9 points case)

® Accelerometer positions
(3 points case)

0.470

Figure 18 : Measurement and excitation points on t Lai and Soom plates

For the transient case, a modal hammer was usexictte the structure. Since the frequency
range of interest was from 0-4000 Hz, a steel tgswsed which could excite up to about
4500Hz. The hammer hit and the accelerometers wreithe front end of the plate as shown in
Figure 18. To compare results and to maintain eb@iscy with the experiment setup in the
dissertation[26] by M. L. Lai, the excitation parand the measurements points were replicated
with those described in the dissertation. Thathsge measurement points were chosen on each
plate and were located along a diagonal of theeplathe plates were excited at the bottom-most
and the top-most points as shown in Figure 18.eXpeerimental data was averaged only 3 times
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because of the difficulty in getting a good hit hvthe steel tip: an estimated 90% of the hits
attempted were double hits for which the respomsae not used in the calculations.
The experimental test settings were as follows

e Sampling frequency F = 32768 Hz.

* Frequency resolutiomAf = 1 Hz.

* Number of samples N = 32768.

e SamplingtimeT=1s.

e Sampling resolution At = 30.52us.

Table 3 : Description of the Frequency bands used

STARTING ENDING CENTER
BAND FREQUENCY(Hz) FREQUENCY(Hz) FREQUENCY(Hz)

1 0 512 256

2 512 1024 768

3 1024 1536 1280

4 1536 2048 1792

5 2048 2560 2304

6 2560 3072 2816

7 3072 3584 3328

8 3584 4096 2840

Figure 19-Figure 22 show the results from the expemtal tests from the 6 sheets of
Constrained Layer Damping (CLD) added on the Lal &om plates. The figures show and
compare the loss factors calculated using the pawert method with both hammer and shaker

excitations. They show a general agreement betwsertalculated loss factors with different
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excitation sources. Figure 21 and Figure 22 shoadgagreement between the estimated loss
factors in most bands, except for bands 2 and rdeoed at 768 Hz and 1280 Hz, in Figure 21
and bands 1 and 3, centered at 265 Hz and 128ihHizgure 22 . The coupling loss factors in
Figure 19 and Figure 20 are also in good agreemihteach other except for a few bands like
band 6, centered at 3072 Hz, in Figure 20 and baradsl 3, centered at 768 Hz and 1280 Hz in
Figure 19.
The possible reasons for the disagreement are
* Modes in those bands are not properly excited artdn calculated loss factors are
different from the actual loss factors.
» Since the change in energy term, as in equati@), (. not included in the calculation of
loss factor with the transient hit, the formula slawt fully describe the physics of the

problem.

» A bad hit some times can spoil the averaged datdalenaveraged estimated loss factor.
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Figure 19 : Experimental Coupling Loss Factom, - Transient and persistent excitation
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Figure 20 : Experimental Coupling Loss Factom; - Transient and persistent excitation
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Figure 21 : Experimental Loss Factom; - Transient and persistent excitation
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Figure 22 : Experimental Loss Factom) - Transient and persistent excitation
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4. 3EFFECT OF DAMPING

One of the primary errors involved in the estimataf loss factors are phase errors in the
processing of data into the frequency domain. Tipdsese errors, which are witnessed in cases

of low damping, can be minimized by increasing filegjuency resolution (decreasifify). Near

a natural frequency, phase changes occur rapidiytlaa rate at which those changes occur is
directly related to the damping level of the stauetinvolved. The lower the damping of the

plate the faster the phase changes occur [1]. Basaline, experiments were conducted with a
constant frequency resolutiod =1Hz) on the Lai and Soom plates for the 3 dampinglleve
cases shown in the Table 3. The loss factors (bB)caupling loss factors (CLF) thus estimated

are plotted in the figures below.

4.3.1 PERSISTENT EXCITATION

It can be seen from Figure 25 and Figure 26 thatctrange in the damping level of the
plates induces a similar change on the estimatssl flactor of the plates. As the number of
damping sheets attached to the plate increas@sisedctor of the plate increases. It can also be
noticed that in the bands between 0-2000 Hz the flastors estimated in the 6 sheets case and
the 2 sheets case are very close to one anothemati@ bands between 2000-4000 Hz the
estimated loss factors of the 2 sheets case amibtdeamping case match. Hence we can deduce
that partially damped plates need a larger numbeneasurement points to correctly determine
the damping levels.

On the other hand the effect of damping on the logposs factor is not straightforward

as seen in Figure 23 and Figure 24. The valueettupling loss factor increases slightly with
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increase in the damping level of the plate. Thecally speaking, the coupling loss factors
should not vary with change in damping levels, iputooking at the experimental results we see
that the coupling loss factors show a variatiorgnag from 10% to 100%. The variation in the
experimental coupling loss factors is higher in libnger frequency bands and as the frequency
increases the variation decreases, as seen iratits 7 and 8 (centered at 3584 Hz and 4096Hz).
Also it can be seen that AUTOSEA over predicts @hés with a variation ranging from about
10% to almost 100%. It can also be seen that afe¢h@ency increases, the variation between
the theoretical (AUTOSEA) results and the experitakeresults decreases. This variation in the
results is because the point joint used in AUTOSH®s not correctly describe the physical

characteristics of the actual joint between thégsla
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Figure 23 : Effect of damping on the Coupling Los§&actor ni»
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COUPLING LOSS FACTOR (unitless)
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Figure 24 : Effect of damping on the Coupling Los$actor nz21
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Figure 25 : Effect of damping on the Loss Facton;
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Experimental LF n,
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Figure 26 : Effect of damping on the Loss Facton;

4.3.2 TRANSIENT EXCITATION

As with the persistent excitation case, the cogploss factors estimated with an impact
hammer as a source of excitation are not directipeddent on the damping. It is seen from
Figure 27 and Figure 28 that the coupling lossoiacin the “2 sheets” and “no damping” cases
are similar in magnitude showing little variation.

It can be seen from Figure 29 and Figure 30 thaherease in damping level of the plate
is not correctly represented by the loss factoimeges. The discrepancy in the estimated loss
factors could be because of the low number of nreasent points on the plates. For the
transient hit case, the acceleration is measurgdadr8 points on the plate when compared to 9

points in the persistent excitation case.
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Comparing the results, it can be inferred thatplates which have partial damping added to
them the estimated loss factors can be improveddigasing the number of measurement points
and distributing the points throughout the plate.

The estimated coupling loss factors and the estichldss factors from the “6 sheets” case
show a variation of more than an order of magnitadgome frequency bands, seen in Figure 28
and Figure 30. The reason behind the differencégiiy is that the modes were not properly

excited in “6 sheets case”.
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Figure 27 : Effect of damping on the Coupling Los§actor nz1
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Experimental CLF n,,
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Figure 30 : Effect of damping on the Loss Facton;

4.4AMODES IN BAND AND MODAL DENSITY

According to SEA assumptions, each band should tmvarge (or infinitely many)
number of modes. Since it is practically impossiladeband with a large number of modes is
generally thought to give better statistical restiftan a band with less number of modes. Thus
both the modes in band and the modal density agbad indicators of the expected quality of
the loss factor estimated. The formula to estintate modal density as given in the book by

Lyon and DeJong [1] is

:E(M

<G >%!Y5 2 M

) (4.8)
Here, <G >, | is the conductance or real part of the mobilitynsfer function in a band with

center frequencyw, and excitation poing,. M is the mass of the plate amfw,)is the modal

density of the plateN,, is the number of modes in band.
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The relationship between modal density and modésuml is given by

The theoretical formula to calculate the modal dgred any flat plate is given by [1] as

N, =n(@)bw,

A

n(a)) = %

K :%\@ is radius of gyration of a plate.

G = /%m is longitudinal wave speed.

h is the thickness of the plate.

P, is the material density.

E is Young’'s modulus.

A, is the surface area of the plate

(4.9)

(4.10)
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Figure 31 : Modes in band in plate 1
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Figure 32 : Modal Density of plate 1
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Figure 33 : Modes in band in plate 2
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Modal Density - Top Plate 2
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Figure 34 : Modal Density of plate 2

The modes in band and the modal densities arelatédufrom the experimental FRF’s using
the formula given by equation (4.8). These valuestllen compared with the theoretical values
computed using the equation (4.10) and with thaieslcalculated by the statistical energy
analysis software AUTOSERX 2004 sold by the ESI Group.

From Figure 31, Figure 32, Figure 33 and Figurev@4ee that the experimental values of the
modes in band and the modal density are in goodeagent with both the theoretical values
computed and AUTOSEA' values. Except for the first band in the no darggineatment case,
all other bands in all cases match the theoretiahles. The first band values can be improved
by minimizing phase errors (decreasixig. Each frequency band of the bottom plate has an
average of 7 modes in it and of the top plate hmmua5 modes in it which are statistically

sufficiently high number of modes in a band to 8&A techniques appropriately.
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4.5PROCESS PARAMETERS

There are several parameters involved in the eBbmaf loss factors using the power input
method like the number of measurement points, effethe hammer tip, effect of the frequency
resolution and effect of frequency bandwidths tmaaa few. Experiments were conducted by
varying some of those parameters. The loss faeterse then estimated using the power input

method to check for the effect of the parametertherestimated loss factors.

4.5.1 EFFECT OF FREQUENCY RESOLUTION

As shown by numerical simulation in section 4.k #stimated loss factor is dependent on
the frequency resolution. Since frequency resatutamd the sampling time are inversely

proportional, choosing lower frequency resolutibigler numerical value @f ) means a fewer

number of measured data points. This directly #dfélse quality of the frequency domain data
and might introduce phase errors.

Figure 35-Figure 38 show the effect of the freqyeresolution on the estimated coupling
loss factors and loss factors for the “no dampiddeal” case. A change in frequency resolution
from 4 Hz to 0.25 Hz does not affect the estimdtes$ factor significantly in the frequency
bands above 1000 Hz. The effect of the frequensgluéion is seen only in the frequency bands
below 1000 Hz. This is because higher frequenciée® more cycles per second and hence die
down quickly when compared to low frequencies treguiring lesser sampling time to capture

the decay. Thus Af of even 4Hz correctly predicts the loss factorsigher frequencies.

As the frequency resolution decreases from 0.25H2Hz, the loss factors in the lower bands
start to deviate and are off by a factor of abouas3the frequency resolution is further decreased

the loss factors in the first frequency band becasgative and this is consistent with the theory.
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Experimental Coupling Loss Factor N1
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4.5.2 EFFECT OF FREQUENCY BANDWIDTH

In multi modal systems, loss factor is generaltynested in pre-defined frequency bands
like full octave bands, one third octave bandsamds with constant bandwidths. Since transfer
of energy and energy losses occur at the natueguéncies the bandwidth should be chosen
such that the band has at least a few modes mtitat the loss factor estimated is statistically
relevant. In this present study the loss factoes estimated for 1/3 octave bands with full
octave bins and compared with the loss factorsnaséid with constant bandwidths of 512 Hz.
The merit in choosing constant bandwidths of 512dder 1/3° octave bands can be seen in
Figure 39 to Figure 42 which represent both pessistind transient loading cases with no

damping added to the aluminum plates.
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At lower frequencies, between 100 Hz and 1000 H®,1/3 octave bands are very small,
with frequency bandwidths ranging from 70 Hz to 4989. With a modal density of about
0.0016 modes/radians/s, the number of modes peribdretween 0.7 to 4 modes in those bands.
This means that those bands are not close to tAeaS&imption of a large number of modes per
band and thus in some of those bands the calculadsdactors are negative, abnormally high or
low. In the higher frequency ranges, from 2500@00tHz, the 1/8 octave bands are very large
and have a large number of modes. For exampleahd with center frequency 4000 Hz has a
bandwidth of almost 1750 Hz. On a side note, tHemeds, while having a large number of
modes might still fail a basic assumption in S.&vAich states that all modes in a band should
have almost same modal energies. Large bands @mlsotisen out the loss factor curves as seen

in subplot 2 of Figure 42.
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The advantage of 1f3octave bands over constant bands can be seere ibatids where
negative loss factors are estimated in constantividelnds. In such a case, thel¢gtave bands
can estimate loss factors which are still a de@pgpgroximation of the loss factors at those
frequencies. The loss factors under such condia@sinderestimated because the bands contain

frequency ranges where negative loss factors aireaed.

4.5.3 EFFECT OF NUMBER OF MEASUREMENT POINTS

For the 9 response point case, the accelerometgesplaced in a regular pattern as shown in
Figure 18. For the 6 points case, 6 accelerometerse distributed arbitrarily over the plate
while avoiding the damping sheets and lines of sginyn In this way, node lines for known, low
frequency nodes were avoided. Response and egaitateasurements on such node lines are
known to bias the loss factor estimations [8].tHa 3 points case, accelerometers situated on the
plate diagonals are used for the estimations amdtie 1 point case the driving point
accelerometer is used for calculations. FigurertBRigure 44 give the estimated loss factors for
the “No damping added” case with a shaker excatibis evident from the figures that there is
not much variation in the estimated coupling lessdrs and loss factors when the measurement
points are between 3 and 9 points. When the laderfaare estimated by just taking acceleration
data from a single accelerometer, then the estiniates factors differ significantly from the

other cases.
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From the figures in section 4.3 it is seen thatébgmated loss factors in the partially damped
case (2 sheets case), where the damping sheetslessghan 15% of the surface area, are of
similar magnitude as those from the no damping .cAspossible reason might be the low
discretization of the plates, as only 3 measurenpemits were chosen. Thus, for partially
damped cases the number of measurement pointoHas increased and distributed over the

whole plate covering both the damping sheets apdsed areas of the plate.

4.5.4 EFFECT OF HAMMER TIP

For transient excitation, a modally-tuned PCB inijdeammer is used to excite the Lai and
Soom plates. This study concentrates on the effeitte hammer tip on the maximum frequency
excited in the structure and thus on the loss faestimated. Three different hammer tips were
used experimentally — the steel tip, the plasp¢ @nd the soft tip. The time domain plot of the
hits with different tips is shown below. The duaatiof the hit for the steel tip is about 0.4 ms,
the plastic tip is about 0.6 ms and the soft tigh®ut 9.0 ms to successfully excite the entire
structure. The duration of hit for the soft ti;mdae decreased to about 1.0 ms but upon doing
that the magnitude becomes so low that the eneygyansferred into the structure does not
excite the structure and the accelerometers dpinktup any significant motion.

The maximum frequency excited by a hit can be mefiéfrom auto-spectrum of the input
force and is the frequency at which the auto-spetthits the noise floor. The subplot 1 of
Figure 46 shows the maximum frequencies excitethbysoft, plastic and steel tips to be about

1250 Hz, 3300 Hz and above 4000 Hz respectively.
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The hammer tip is chosen based on the frequenagerah interest. For low frequencies a
soft tip is used and for high frequencies a stpebtt a plastic tip can be used. This is because of
the relative difficulty in getting a good hit whilesing the steel tip when compared to a soft tip.
For the steel tip and the plastic tip as the darabtf the hit is about 0.5 ms the probability of
getting a good hit is very low and it depends alothe skill of the person handling the hammer.

Thus choosing the correct tip can save a lot okargental time.
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Figure 45 : Time domain plot of the hammer hit withdifferent tips
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Figure 46 : Effect of the hammer tip on the estimadd loss factors (no damping case)

On the comparison of the estimated loss factors angling loss factors excited by the
various tips, we can notice from Figure 46 and Fegli7 that the loss factor curves deviate once
the auto-spectrum hits the noise floor. For exantipdesoft tip excites the structure until about
1250 Hz which falls in band 3, centered at 1280 &) the plastic tip excites the structure until
about 3300 Hz which falls in the band 7, centere®8380 Hz. The coupling loss factor and the
loss factor curves from the Figure 46 and Figureshdw that the estimated loss factors,
coupling loss factors deviate after band 3 in thfét§p case and after the band 7 in the plagpic ti
case. Thus, the auto-spectrum can also be usediadieator to check for errors in the estimated

loss factors and coupling loss factors.
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5.0ESTIMATION OF LOSS FACTORS USING THE TRANSIENT STAT ISTICAL
ENERGY ANALYSIS METHOD

The main aim of using the transient statisticalrgpenalysis method to estimate the loss
factors in this thesis was to interpret the resbytdM. L. Lai in [26] and [14], to determine the
practical limitations of the method and to estdblise degree of agreement of the asymptotic
loss factor estimations with respect to the powgut method. The numerical simulations

performed here are similar to the ones performeéference [26].

5.1NUMERICAL SIMULATION OF A SIMPLE 2-DOF SYSTEM

The main purpose of the numerical simulations ishow that in a transient case the
damping coefficients, hence the loss factors, waityh time. Substituting a steady state loss
factor for transient excitations, as done by Magramd Lee [20], might not fully explain the
physics behind the problem and the new “appareme tivarying coupling loss factors”
introduced by Lai and Soom in [14] correctly remmisthe energy losses in the system under a
transient load. These time varying loss factorsthem used to develop a new method (TSEA
method) to analyze transient load cases.

Consider the 2-DOF system with a spring couplintyieen the oscillators as shown in
the Figure 13. The equation of motion for the wheystem is given by the equation (2.19).
Decoupling the matrix form and writing the equatioof motion for the individual oscillators

gives us

M %, +Cyy + (K + K )X, = K X, = F, ®-1)

M2X2+C2)'(2+(K2+K9)X2— KgX1:F2 (5.2)
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The above 2 equations are the force balance egqsatiultiplying (5.1) byx and (5.2) byx,

gives us the power balance equations as

M1X1X1+C1Xi+(K1+ Kg)xf(f Kgxf( = FX (5.3)
M, %%, +CoX + (K ,+ K )X X~ Kk X = F X, -4)
Using the identities
1% _ .
S A%
2 dt (5.5)
1ax? _ .
2 e
Equations (5.3), (5.4) can be reduced to
di1,, ... 1 . :
a(lexf+E(Kl+Kg)X]2.)+Clxi:F:?(1+ Kgxf(: (5.6)
(5.7)

dt\ 2

d(1,, .. 1 . .
( MG+ 2 (K, + Kg)XE)+Cz><§= F X+ KX x.
We can further simplify the above equations. Thaltenergy is the sum of potential energy and

kinetic energy. Hence,

1 (5.8)

— 1 2 o2
Erg((Kl*Kg)Xl)*E(Mle)
The power is dissipated through the inherent dagypmnthe oscillator and hence the term

containing the damping coefficient is the powesitiated term

n$i$ = 1).(12 (59)

Power input is due to the external forces actinghensystem, so the power input is given by
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ﬂl

in

Fx (5.10)

The remaining terms in equations (5.7) and (5.6)ndethe power transferred between the

oscillators

n&z =K %%, (5.11)

Combining the equations (5.6), (5.7), (5.8), (5(9)10), (5.11) we get

Qe op
5= s~ T

tr

(5.12)
d
ST
Integrating the above equation (5.12), resulthédnergy balance equations
d
—&(t) = B, (1) - Eg () — (1)
dt (5.13)

d — 24\ _ 2 _r2t
agz(t) - Ein(t) Ediss(t) Etr (t)

(o(t) - o(t - At))
At

Oscillator 2 is excited by a rectangular step foo€enagnitude and

duration 0.001 s to simulate transient conditiohs the Dirac-delta function.

A simple 2-DOF problem is numerically solved usthg state matrix method shown in
section 4.1. The properties of the sample 2-DOkesgysre as follows. The masses &dhd M
are 1 Kg each. The natural frequencigs and o,, are 149.8 radians/s and 200.1 radians/s
respectively. The spring stiffness; nd K are 22500N/m and 40000N/m respectively. The
spring coupling K is 1000N/m. The blocked natural frequencies of dkeillators are»;=150

radians/s ane,=200 radians/s respectively. The input loss facfdroth the oscillators is 0.075.
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The transferred energies, transferred power, iatedrkinetic energies, integrated total

energies, kinetic energies, total energies caralmilated from the formulae given above.

The new “apparent time varying coupling coefficlestgiven by equation (2.39) and is restated

here

2(t) = 2C, (1) (X () - £5.1) (5.14)

The energy input and the blocked period of os@ilfaire used to non-dimensionalize the energy

terms. The energy input term is given by

E,.(t)= _]i F (r)v,(r)dr (5.15)
Here,
F, is the truncated force up to time t and is defiasd
F.(r) =F(t) whenr <t
and F(7) =0 whenr >t
v, (7) is the velocity of the oscillator which is excitbd the forceF(t) .

The results are plotted in the figures below. Fegd8 and Figure 49 show the velocities
of the oscillators 1 and 2 of the simple 2-DOF peah Since oscillator 2 is directly excited by
the external rectangular impulse force we can sedca decay in its response whereas the
oscillator 1, which is excited by the spring congliand the energy flowing in it, does not have a

smooth decay.
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Figure 48 : Velocity of oscillator 1 of the simple-dof system
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Figure 49 : Velocity of oscillator 2 of the simple-dof system
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Non Dimensionalized Transferred Power
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Coupling Coefficient
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Figure 56 : Apparent time varying coupling coefficent
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On comparing Figure 48 and Figure 55 we can sekthe increase in the velocity of
oscillator 1 corresponds to the time where enesglyansferred from oscillator 2 to oscillator 1
and the decrease in the velocity corresponds totithe where energy is transferred from
oscillator 1 to 2. There is no substantial effatttloe response of oscillator 2 because of the vast
(2 orders of magnitude) difference in the magnitatithe velocity and the energy transferred.

Figure 53 shows that twice the integrated kinetiergy for oscillator 2 is approximately
equal to the integrated total energy which provesdssumption used in the derivation of the
T.S.E.A. method. The slight difference betweenititegrated energies in Figure 51 occurs at a
time when the energy is transferred from oscillatoto 2 and when the displacement of the
oscillator 1 reaches a minimum value, from time.1s0to 0.15s as marked in the plots.
Comparing the plots in Figure 51 and Figure 53ait be noted that the integrated energy curves
in oscillator 2 have the same magnitude but thegmated energy curves in oscillator 1 have a
variation of about 10%. This difference can be aegd because of the difference in the energy
levels of the 2 oscillators is almost 2 orders aigmitude.

Figure 50 and Figure 52 show the change in enenggls of the 2 oscillators with respect
to time and the time at which they stop oscillati@gcillator 2, which is directly excited, shows
a nice decay in its energy curve whereas the emamgse of the oscillator 1, which is excited by
the coupling joint, looks like a sinusoidal curvghvmultiple maximums and minimums.

Figure 54 and Figure 55 show the power and enteagngfer characteristics between the 2
oscillators. The energy transferred is always pasiand slowly reaches an asymptotic value as
the vibration decays down. The transferred powethenother hand is an instantaneous quantity

and is both positive and negative depending ondirection of the energy flow between the
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oscillators. Once the oscillators come to an eguilm state we see that both the transferred
energy and transferred power reach an asymptadiie yvevhich is O for transferred power.

Figure 56 shows the coupling coefficient betweesa Zhoscillators. The plot actually
shows that the coupling coefficient is dependentiore and slowly reaches a value which is
equal to the steady state coupling coefficientc&irG, (t) and G, (t) are calculated using the
transferred energy termyHt) and G; (t) is calculated usingZ(t) the variations in the coupling
coefficient terms are because of the differenceélerenergy terms.

The values in Figure 48 to Figure 56 match exawith the values calculated by M. L.
Lai in [14], the sole exception being the duratadrihe hit. Lai stated that the duration of hit was
0.075 seconds. But upon performing a numericalystuith that hit duration it was found that
the integrated total energy and integrated kinetiergy terms depend on the duration of the hit.
They were off by about 150% and thus the couplimgfficients estimated were also off by about
150%. Experimentally such a hit is called a badonit double hit. This is one of the reasons

why double hits are not acceptable experimentally.
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5.2EXPERIMENTAL RESULTS FOR THE LAI AND SOOM PLATES

The experimental setup and test settings usedltolate loss factors using the power
input method were used to estimate the coupling fastors using the T.S.E.A method. A force
transducer is used to connect the 2 plates an@aisares the force transferred between the two
plates. The input force is also measured to fotgrdouble hits and out of range hits.

Small holes are drilled into the plates at theright corner on the bottom plate and at the
bottom right corner on the top plate. The forceschucer is then bolted into the two plates and
this creates a physical point joint between théeglaAny force transfer that happens between the
2 plates happens through the force transducer. dintain consistency with and compare results
with Lai and Soom results the plate dimensions, Smeament points and the hit points are
similar to the ones used in [26].

Figure 58- Figure 63, are the plots of the appatiere varying coupling loss factors in
the various bands for different levels of dampimgtbe Lai and Soom plates. Comparing the
band 1 and band 2 results from the below 6 figitrissclear that as the damping level increases
the number of negative loss factor estimations ehess.

Comparing the individual bands in the figures belowe can also notice that in bands at
higher frequencies, i.e. band 3 and above, the t#amying loss factors converge to an
asymptotic value quickly when compared to the lofsequency bands, i.e. band 1 and 2. This is
because at higher frequencies, as the system esowdth more cycles per second, more energy
is lost per second and hence reaches a steady cpiately when compared to the lower

frequency bands.
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Figure 58 : Apparent Coupling Loss Factom, of the Lai and Soom plates with no

damping added.
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Figure 59 : Apparent Coupling Loss Factom; of the Lai and Soom plates with no

damping added.
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Figure 60 : Apparent Coupling Loss Factoms, of the Lai and Soom plates with 2 sheets of

damping added
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damping added
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Figure 62 : Apparent Coupling Loss Factomi, of the Lai and Soom plates with 6 sheets of
damping added
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Figure 63 : Apparent Coupling Loss Factomy; of the Lai and Soom plates with 6 sheets of

damping added
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Figure 64 : Time varying Coupling Loss Factors from[14]
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As the damping of the system increases the enegges$ per cycle increase hence the
system reaches a steady state position quicklys Tieans that the “apparent time varying
coupling coefficient”, as shown in Figure 56, aleaches the asymptotic value quickly. Since
the coupling coefficient and the loss factor atatesl by the equation given below the “apparent
time varying loss factor” will attain the asymptwtralue quickly. From the figures above this

relationship is also proved experimentally.

C,(t,w. )N
/712(t,wc)=% (5.16)

(4

5.2.1 NEGATIVE ASYMPTOTIC COUPLING LOSS FACTORS

In Table 4, which summarizes experimental resutimgithe T.S.E.A. method it can be
noticed that the asymptotic loss factors are negdti a few bands like the"4band in the 2
sheets of damping added case and thednd in the 6 sheets of damping added case to aame

few. Investigations were performed to find out taeise of these negativities.

Table 4 : Table comparing asymptotic coupling lostactor estimations

Bands L&S[26] No Damping 2 Sheets 6 Sheets
N2 N21 N1 N21 N2 N2 N2 N2
1 0.002 0.002 | 0.000621 | 0.001509 | 0.002181 | 0.001851 | 0.003389 | 0.007008
2 0.001 0.002 0.007178 | 0.00165 | 0.006927 | 0.00268 | 0.00635 | 0.003012
3 0.002 0.0008 | 0.000365 | 0.00233 | 0.000385 | 0.002469 | 0.005279 | 0.002375
4 0.005 0.006 -0.00217 | -0.00177 | -0.00066 | -0.00025 | 0.001425 | 0.000937
5 0.002 0.003 | 0.002435 | 0.000433 | 0.002072 | 0.000866 | 0.006787 | -0.00452
6 0.0002 0.0015 | 0.003908 | 0.015416 | 0.00349 | 0.007924 | 0.007509 | 0.005557
7 0.001 0.002 0.000935 | 0.000929 | 0.000663 | 0.000848 | 0.004665 | 0.003153
8 0.0005 | 0.0009 | 0.001779 | 0.003638 | -0.00031 | 0.002153 | 0.006387 | 0.011483
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Figure 65 and Figure 66 show the transferred pdeérveen plates 2 and 1 when plate 1 is
excited and when plate 2 is excited respectivelthemfrequency range of 1500 Hz to 4000 Hz.
The transferred power,P; which has to be negative (as the plate 1 is excigegbositive at
frequencies 1700 Hz, 3815 Hz and 3870 Hz. Simildméytransferred powernfP,which has to be
positive is negative at 1700 Hz, 2000 Hz and 2330It is because of these negativities in the

transferred power that the asymptotic loss facioesnegative in band 4 and band 8.

N 107 Transferred Power P21,1
4 ‘
*
3 [~ \\ | N
Band 4 Band 8 «— |
2L i
1L i

Magnitude
o
1

-4 | | | |
1500 2000 2500 3000 3500 4000
Frequency (Hz)

Figure 65 : Power transferred B, 1, Bands 3-8, 2 Sheets of damping case
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Figure 66 : Power transferred B, , Bands 3-8, 2 Sheets of damping case

A modal analysis was performed on the Lai and Sptates using a PSV Laser Vibrometer,
which measures and saves velocity data from vapouirgts in the plates, and a shaker to excite
the structure. The mode shapes at the above medtioequencies are plotted below.

From the figures below it is seen that at the fegmues at which the transferred power is
negative the mode shapes have a particular sityilaicloser look at the point junction where
the two plates are joined shows that at those &egies the 2 plates are vibrating out phase with
one another. At equilibrium the plates are so pws#d in the mode shape plots that the 2 plates
are on the same plane. But at the above shown siwjees there is a Gap along the through the
thickness dimension between the two plates atuhetipn. It is also noticed that a large gap

transforms itself into a bigger negative peak ie fransferred power spectrum. This out of
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phase motion of the 2 plates makes the force trarescht the junction to measure force contrary

to the expected direction of power flow.

Mode Shape at 1700 Hz

\ \

\ \ -
e e e g 7
| AN =

' \‘h
VL)

Mode Shape at 2350 Hz

Figure 67 : Mode shapes at 1700 Hz and 2350 Hz
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Mode Shape at 3815 Hz

Mode Shape at 3870 Hz

Figure 68 : Mode shapes at 3815 Hz and 3870 Hz
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Comparing the results generated by Lai in [26] with experimental results from this
thesis we can infer

» All apparent time varying coupling loss factors aegative for the initial 2-3 ms and this
is seen in the experimental results both in thesithand appears to be as well in Lai's
dissertation [26].

» Apparent time varying coupling loss factors areaie® in the lower frequency bands
and those negativities decrease as the dampinbdetree plate increases.

* The negative asymptotic coupling loss factors are @ the flexibility at the joint. The
type of joint used to join the plates is not menéd in [26]. Flexibility at the bolted joint

has caused the negativities in the experimentaltses

5.3INFLUENCE OF LEVEL OF DAMPING ON ESTIMATION

Experiments were conducted on the Lai and Sooneplaith damping added in the form
of constrained layer damping. 3 different levelslaiping were tested, No damping added case,
2 sheets of damping added and 6 sheets of dampihgda From the figures below it can be
noticed that the asymptotic coupling loss factonas related to the damping level of the plates
unlike the “apparent time varying coupling losstéat It can also be noticed from the figures
below that the values of the coupling loss factorgroves slightly as the damping is increased.
When compared with the analytical loss factor estéd using AUTOSER" 2004 it can be
noticed that the loss factors are under predictddeguencies below 2000 Hz. For frequencies

above 2000 Hz the experimental loss factors temaitd the predicted values.
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Figure 69 : Effect of damping on the asymptotic coupling loss facton»
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Figure 70 : Effect of damping on the asymptotic coupling loss facton:
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5.4PROCESSPARAMETERS

5.4.1 EFFECT OF FREQUENCY RESOLUTION

Frequency resolution is an important parameter lwhitfects the quality of the da
acquired in an experiment especially the resolutibphase in the cro-spectrum. Experimen
performed with wrong frequency resolution can It in incorrect loss factors and a waste
experimental time. Since frequency resolution V&mely proportional to the sampling time, ¢
changes made to the frequency resolution diredtctathe number of data points and thus

length of the data record.

Experimental CLF n,,-T.S.E.A. Method
0.1
I
9
= 0.01
5
5 o/ S
8 0.001 / \g/m
£ ¢
a ——
3 = —
Negative Loss Factors
0.0001
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency (Hz)
=9—df=0.25 =—=—df=0.5 df=1.0 ==<¢=df=2.0 =t=df=4.0

Figure 71: Effect of frequencyresolution on the Asymptotic Coupling Loss Factoni, (No
Damping added)

Experiments were conducted on the Lai and Soonephaith a frequency resolution
0.25 Hz. The experimental @datvas then decimated so that the loss factors dmeilchlculate:

with frequency resolutions 0.5 Hz, 1 Hz, 2 Hz anHlz Higher frequencies have more cyc

99



per second than lower frequencies and hence datjasier. Hence the effect of the chang
frequency resolution can be first seen on the loweguency bands. With a frequency resolu
of 4 Hz only frequencies below 1000 Hz are affectesithe frequency resolution is lowered
loss factors in the first band, centered at 256 dtlrt to devite and as the frequency resolut

is further lowered negative loss factors are edguh

Experimental CLF n,,-T.S.E.A. Method

0.1
g A
% 0.01 \
A
5 ™~ /“
-
:“: .—-
a
S

Negative Loss Factors

0.001

5! S~
0.0001
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Frequency (Hz)

=4=—df=0.25 =fl=df=0.5 df=1.0 ==¢=df=2.0 ==¥=df=4.0

Figure 72: Effect of frequencyresolution on the Asymptotic Coupling Loss Facton.: (No
Damping added)

5.4.2 EFFECT OF FREQUENCY BANDWIDTH

In this thesis all the work presentecas calculated in constant bandwis of 512 Hz.
The effect of bandwidths on the loss factor is ®ddy comparing the loss factor estimated \
standard 1/8 octave bands and full octave bins with the lossofaestimated with constar
bandwidths of 512 Hz. As seé&iigure73 and Figure 7#he effect of frequency bands on thes
factor estimated by th&.S.E.A. nethod is similar to theffect on the Power Input ethod.
Choosing onstant bands is particularly helpful in predictiogs factors in the lower frequen
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ranges as 1/8octave bands in the lower frequency ranges, i..lewb&00 H:, are very narrov

bands in which there may be no natural frequeratied.

Experimental CLF n,,-T.S.E.A. Method
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Figure 73 : Effect of requencybandwidth on the asymptotic couplingloss factorni»(No
Damping added)
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Figure 74 : Effect of requencybandwidth on the asymptotic coupling loss facton,; (No
Damping added)
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6.0CLOSURE

6.1 CONCLUSIONS

6.1.1 POWER INPUT METHOD

Numerical Simulations have shown that the lossofacestimated from the power input
method are dependent on the frequency resolutied. usghtly damped systems need a
high frequency resolution to avoid negative estiomst, whereas high damping level
estimations are not that dependent on the frequiessnjution.

Experimental results on lightly damped, coupledqdashow that the negativities in the
estimated loss factors are reduced or removed treasing the frequency resolution.
Increased frequency resolution (Ia) provides better estimates of thlease of the only
cross-spectra needed, that is, the cross-spedinedre the input force and the driving
point responses.

Experiments on plates with varying levels of dangpbut with the same coupled junction
have shown that the coupling loss factor is indépahof the damping of the plates.

Loss factors estimated using the power input methade shown good agreement
between the results with both shaker and hammetation.

Experiments conducted with different hammer tipwvehahown the importance of
considering effective bandwidth. This can be seendmputing the auto-spectrum of the
input force. The estimated loss factors start toobee invalid once the input auto-
spectrum hits the noise floor.

Experiments conducted by changing the number ofsareanent points have shown that
for lightly damped plates a minimum 3 points distited on the plate are needed to

estimate loss factors reliably.
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6.1.2 TRANSIENT STATISTICAL ENERGY ANALYSIS METHOD

» Experiments conducted on plates coupled at a pané shown that the estimated loss
factors are extremely dependent on the joint fldikyb Flexibility at the joint may lead to
negative loss factors.

* Experiments have shown that an increase in the wangd the coupled plates decreases
the negativities in the “apparent time varying ltssor” curves.

* Anincrease in the damping level also results en“dpparent time varying coupling loss
factor” attaining an asymptotic value quickly.

* Numerical simulations have shown that if a transience (example: from an impulse
hammer) duration is longer than the natural penbdhe oscillator then the coupling
coefficients may be off by more than 150%.

» Experiments have shown that an increase in damgi@g not have any effect on the
asymptotic coupling loss factor.

* Experimental results show that a decrease in #guéncy resolution results in negative

asymptotic coupling loss factors and apparent trarging coupling loss factors.
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6.2FUTURE WORK

The exact relationship between the estimated s®f and the frequency resolution has
to be determined.

Future work on the Power Input Method can be commated on determining the reasons
for the slight disagreements between the shakateekioss factors and hammer-excited
loss factors.

T.S.E.A. method must be applied to plates withedéht joints like riveted, bonded, and
bolted to determine the effect of various kindgpoint joints on the estimated coupling
loss factors.

The concept of the apparent coupling coefficientstie further developed so that time
varying loss factors can be estimated even atgoaitere the transferred energy cannot
be directly measured.

Further work on T.S.E.A method can be concentrateddetermining the correct
damping range where T.S.E.A. method can be applied.

The effect of the stiffness of the force gauge Ifbateral and rotational inertia) on the
estimated coupling loss factor using T.S.E.A. mdthas to be determined.

Further work can be directed towards using the Pdagut Method in a computational
sense, that is, based on the finite element madetharacterize the effects of using a
massive, flexible force gauge at the joint in tlxpeximental investigation to represent

the theoretical mass-less point junction.
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APPENDIX A. CODES

1 TRUE RANDOM FORCE PROGRAM

%%% Random Force Generator Code

clc
clear all
close all

FAmplitude=1,; % Force Amplitude

F=5000; % Sampling Frequency

T=20; % time of the sample

N=F*T; % Number of Samples

df=F/N; % Frequency Resolution

f low=1; % Defining limits of the Frequency Band
f_high=5000; % Highest Freqeuency

band=f_high-f_low; % Force Band
f_cutoff_low=ceil(f_low/df); % generating array indices - lower limit
f_cutoff_high=ceil(f_high/df); % generating array indices - upper limit

So=FAmplitude/band;

P=zeros(N/2+1,1);

P(f_cutoff_low:f _cutoff _high,1)=So*ones(f_cutoff_hi gh-f_cutoff_low+1,1);
N1=length(P);

level=P/2;

level=N*(N*df)*level,

level=sqrt(level);

phase=2*pi*rand(N1,1);

Fw=level.*(cos(phase)+1li*sin(phase));

Fw(N+1:2*(N-1))=conj(flipud(Fw(2:N-1))); % appending complex conjugate Force
force=real(ifft(Fw)); % Random Force

2 SIMULATED ENERGY FLOW PROGRAM FOR A 2 DOF-SYSTEM.

% Divided by e0 and Non Dimentionalized

close all
clear all
clc

global M1M2McKl1K2KcCl1C2f2Gflt2

M21=input( 'Input the value of M1:" );

M2=input( 'Input the value of M2: " );

Mc=input( 'Input the value of Mc: ' ); % only spring coupling
)
)

wl=input( 'Input the value of wl:" :
w2=input( 'Input the value of w2: "
K1=w1"2;
K2=w2"2;
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Ke=input( 'Input the value of Kc: ' );

wnl=input( ‘Inputthe value of wnl:" );

wn2=input( ‘Input the value of wn2: " );

C1=0.075*wn1;

C2=0.075*wn2;

G=input( 'Input the value of G: ' );

fl=input(  'Input the value of f1.0" );

f2=input(  'Input the value of f2:1" ;

t2=input(  ‘'Input the value of t2:duration of the pulse '

d=input( 'Input the value of d:d is the array in the e0 arra

is removed ' );

x0=[0;0;0;0];

ts=linspace(0,1,10000);

[xspan,y]=oded5(@f,ts,x0);

figure(100)

plot(xspan,y(;,1));

grid on

figure(101)

plot(xspan,y(:,2), )

grid on

figure(102)

plot(xspan,y(:,3));

titte(  'Velocity of Oscillator 1' , 'FontWeight'

grid on

ylabel(  'Velocity (m/s"2)' );

xlabel(  'time (sec)' );

figure(103)

plot(xspan,y(:,4), )

titte(  'Velocity of Oscillator 2' , 'FontWeight'

grid on

ylabel(  'Velocity (m/s"2)' );

xlabel(  'time (sec)' );

%%

w2=200; % Blocked Natural Frequency of Plate 2

T2=2*pilw2;

dt=1/10000;

step=1:1:length(xspan);

Matr=zeros(length(step),7);

e0=zeros(length(step),1);

F2=zeros(length(step),1);

for i=2:1:length(xspan)-1
F2(i)=(heaviside(xspan(i))-heaviside(xspan(i)-t
e0(i,1)=e0(i,1)+(F2(i)*y(i,4));
e0(i+1,1)=e0(i,1);

end

e0=e0*dt;

% INTEGRATION

for i=1:1:length(xspan)-1
Matr(i,2)=Matr(i,2)+(2*M1*y(i,3)"2/2);
Matr(i,3)=Matr(i,3)+((M1*y(i,3)"2/2)+(K1*y(i,1)
Matr(i,4)=Matr(i,4)+(2*M2*y(i,4)"2/2);
Matr(i,5)=Matr(i,5)+((M2*y(i,4)"2/2)+(K2*y(i,2)
Matr(i,6)=Matr(i,6)+(Kc*y(i,2)*y(i,3));
Matr(i,7)=Matr(i,7)-(Kc*y(i,1)*y(i,4));
Matr(i+1,:)=Matr(i,:);

end

Matr=Matr*dt;

A.2

, 'bold’
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, 'FontSize'

, 'FontSize'
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step=step*dt;

C=zeros(length(step),3);

for i=2:1:length(xspan)
C(i,1)=-Matr(i,7)/(Matr(i,2)-Matr(i,4));
C(i,2)=Matr(i,6)/(Matr(i,4)-Matr(i,2));
C(i,3)=-Matr(i,7)/(Matr(i,3)-Matr(i,5));

end

for i=1:1:length(xspan)
Matr(i,2)=Matr(i,2)/(e0(d,1)*T2);
Matr(i,3)=Matr(i,3)/(e0(d,1)*T2);
Matr(i,4)=Matr(i,4)/(e0(d,1)*T2);
Matr(i,5)=Matr(i,5)/(e0(d,1)*T2);
Matr(i,6)=Matr(i,6)/e0(d,1);
Matr(i,7)=Matr(i,7)/e0(d,1);

end

%Plotting

figure(11)

hold on

titte(  'Non Dimensionalized Integrated Energy in Oscillato

1', 'FontWeight' |, 'bold" , 'FontSize' ,14);

plot(step,Matr(;,2), ro);

plot(step,Matr(:,3));

grid on

box on

ylabel( 'Energy (joule)' );

xlabel(  'time (sec)’ );

legend( ' 2 * Kinetic Energy' , ' Total Energy’ );

hold off

figure(12)

hold on

titte(  'Non Dimensionalized Integrated Energy in Oscillato
2' ,'FontWeight' , 'bold" , 'FontSize' ,14);
plot(step,Matr(:,4), ro);
plot(step,Matr(:,5));

grid on

box on

ylabel( 'Energy (joule)' );

xlabel(  'time (sec)' );

legend( ' 2 * Kinetic Energy’ , ' Total Energy' );

hold off

figure(13)

hold on

titte(  'Non Dimensionalized Transferred Energy
', 'FontWeight' |, 'bold" , 'FontSize' ,14);
plot(step,Matr(:,6));

plot(step,Matr(:,7), ro);

grid on

box on

ylabel( 'Energy (joule)' );

xlabel(  'time (sec)' );

legend( ' E21(t) , - E12(t) );

hold off

figure(110)

hold on

title(  'Coupling Coefficient' , 'FontWeight' , 'bold’

plot(step,C(:,1), o),
plot(step,C(:,2), -k )
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plot(step,C(:,3));

grid on

box on

ylabel( 'Coupling Coefficient' );

xlabel(  'time (sec)' );

legend( 'C12' ,'C21' ,'C12™ );

hold off

save( 'hit_plate_2 1.mat' , 'Xspan' 'y ),

%
Matr=zeros(length(step),7);
for i=1:1:length(xspan)-1

Matr(i,6)=Matr(i,6)+(Kc*y(i,2)*y(i,3)); % E21
Matr(i,7)=Matr(i,7)-(Kc*y(i,1)*y(i,4)); % E12
end
save( 'hit_plate_ 2 2.mat' , 'Xspan' 'y, 'Matr' );

3 SIMULATED POWER FLOW PROGRAM FOR A 2 DOF-SYSTEM.

% Divided by e0 and Non Dimentionalized

close all
clear all
clc

global M1M2McKl1K2KcCl1C2f2Gflt2
M21=input( 'Input the value of M1:" );
M2=input( 'Input the value of M2: " )
Mc=input( 'Input the value of Mc: ' ); % only spring coupling
wil=input( 'Input the value of wl:" )
w2=input( 'Input the value of w2: " )

K1=w1"2;

K2=w2"2;

Ke=input( 'Input the value of Kc: ' );
wnl=input( ‘Inputthe value of wnl:" );
wn2=input( ‘Input the value of wn2: " );

C1=0.075*wn1;
C2=0.075*wn2;

G=input( 'Input the value of G: ' );

fl=input(  'Input the value of f1.0" );

f2=input(  'Input the value of f2:1" ;

t2=input(  ‘'Input the value of t2:duration of the pulse );

d=input( 'Input the value of d:d is the array in the e0 arra y after the force
is removed ' );

x0=[0;0;0;0];

ts=linspace(0,1,10000);
[xspan,y]=oded5(@f,ts,x0);

figure(100)
plot(xspan,y(:,1),xspan,y(:,2), )
figure(101)
plot(xspan,y(:,3),xspan,y(:,4), )

%%
w2=200; % Blocked Natural Frequency of Plate 2
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dt=1/10000;

T2=2*pilw2;

step=1:1:length(xspan);
e0=zeros(length(xspan),1);E1k=zeros(length(xspan),1

E2k=zeros(length(xspan),1);E2=zeros(length(xspan),1

P21=zeros(length(xspan),1);P12=zeros(length(xspan),

F2=zeros(length(step),1);

for i=1:1:length(step)
F2(i)=(heaviside(xspan(i))-heaviside(xspan(i)-t
e0(i,1)=e0(i,1)+(F2(i)*y(i,2));
e0(i+1,1)=e0(i,1);

end

e0=e0*dt;

for i=1:1:length(xspan)
E1k(i,1)=E1k(i,1)+(M1*y(i,3)"2/2);
EL1(i,1)=E1(i,1)+(M1*y(i,3)"2/2)+(K1*y(i,1)"2/2)
E2k(i,1)=E2k(i,1)+(M2*y(i,4)"2/2);
E2(i,1)=E2(i,1)+(M2*y(i,4)"2/2)+(K2*y(i,2)"2/2)
P21(i,1)=P21(i,1)+(Kc*y(i,2)*y(i,3));
P12(i,1)=P12(i,1)-(Kc*y(i,1)*y(i,4));

end

for i=1:1:length(step)
E1k(i,1)=E1k(i,1)/e0(d,1);
E1(i,1)=E1(i,1)/e0(d,1);
E2k(i,1)=E2k(i,1)/e0(d,1);
E2(i,1)=E2(i,1)/e0(d,1);
P21(i,1)=P21(i,1)*T2/e0(d,1);
P12(i,1)=P12(i,1)*T2/e0(d,1);

end

figure(7)

hold on

titte(  'Non Dimensionalized Energy in Oscillator

1', 'FontWeight' |, 'bold' , 'FontSize' ,14);

plot(xspan,E1k(;,1));

plot(xspan,E1(;,1), ro);

ylabel( 'Energy (joule)' )

xlabel(  'time (sec)' );

legend( ' Kinetic Energy’ , ' Total Energy' );

grid on

box on

hold off

figure(8)

hold on

titte(  'Non Dimensionalized Energy in Oscillator

2' , 'FontWeight' , 'bold" , 'FontSize' ,14);

plot(xspan,E2k(:,1));

plot(xspan,E2(:,1), ro);

ylabel( 'Energy (joule)’ );

xlabel(  'time (sec)' );

legend( ' Kinetic Energy’ , ' Total Energy’ );

grid on

box on

hold off

figure(9)

hold on
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2))2;
% e0



titte(  'Non Dimensionalized Transferred

Power' , 'FontWeight' , 'bold" , 'FontSize' ,14);
plot(xspan,P21(:,1));

plot(xspan,P12(:,1), ro);

ylabel( 'Power (Watt)' );

xlabel(  'time (sec)' );

legend( 'P21(t)' ,'-P12(t) );

grid on

box on

hold off

ODE SCLVER FUNCTI ON

function  dy = f(t,y)

% No Gyroscopic and Mass coupling. Only Spring Coup ling.
%function to be integrated

dy = zeros(4,1);

global M1 M2 Mc K1 K2 Kc C1C2F2

Mc=0; % only spring coupling

F2=(heaviside(t)-heaviside(t-0.075))/0.075; % Rectangular Step Force
dy(1)=(-C1*y(1)/M1)+0*y(2)-(K1*y(3)/M1)+(Kc*y(4)/M1 );
dy(2)=0*y(1)-(C2*y(2)IM2)+(Kc*y(3)/M2)-(K2*y(4)/M2) +(F2/M2);
dy(3)=y(1);

dy(4)=y(2);

4 SIMULATED POWER INPUT METHOD PROGRAM FOR A 2 DOF-SY STEM

% The SIMULATED POWER INPUT METHOD

clear all

close all

clc

load( ‘hit_plate 1 1.mat' , 'Xspan' 'y ),
yPl=y;

load( ‘hit_plate 2 1.mat' , 'Xspan' 'y );
yP2=y;

N=length(xspan);

t2=0.001, % length of the transient hit in seconds

force=(heaviside(xspan-0)-heaviside(xspan-t2))/t2;
autospecd01=(conj(fft(yP1(:,3))).*fft(yP1(:,3)));
autospecd02=(conj(fft(yP1(:,4))).*fft(yP1(:,4)));
autospecd03=(conj(fft(yP2(;,3))).*fft(yP2(:,3)));
autospecd04=(conj(fft(yP2(;,4))).*fft(yP2(:,4)));
csspecd01=(conj(fft(force(;,1))).*fft(yP1(:,3)));
csspecd02=(conj(fft(force(:,1))).*fft(yP2(:,4)));

df=0.2; % frequency resolution
Cfreq=1:1:1000;

band=1000;

M1=1; % Mass of the plate 1 Assumed

M2=1; % Mass of the plate 2
Ek21=zeros(band,1);Ek11=zeros(band,1);Ek22=zeros(ba nd,1);
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Ek12=zeros(band,1);Pin1=zeros(band,1);Pin2=zeros(ba
k=0;
for m=1:1:band
k=k+1;
Ek21(m,1)=Ek21(m,1)+((M2/(2*pi))*real(autos
Ek11(m,1)=Ek11(m,1)+((M1/(2*pi))*real(autos
Ek22(m,1)=Ek22(m,1)+((M2/(2*pi))*real(autos
Ek12(m,1)=Ek12(m,1)+((M1/(2*pi))*real(autos
Pin1(m,1)=Pin1(m,1)+((1/pi)*real(csspecd01(
Pin2(m,1)=Pin2(m,1)+((1/pi)*real(csspecd02(
% Same Multiplication factor - can be removed.
%
Ek21(m,1)=Ek21(m,1)*2*pi;Ek11(m,1)=Ek11(m,1)*2*pi;E
%
Ek12(m,1)=Ek12(m,1)*2*pi:Pin1(m,1)=Pin1(m,1)*2*pi:P
DE(m,1)=(Ek11(m,1)*Ek22(m,1))-(Ek12(m,1)*Ek21(m
AL(:,:,m)=[((Pin1(m,1)*Ek22(m,1))-(Pin2(m,1)*Ek
(Pin1(m,1)*Ek12(m,1));(Pin2(m,1)*Ek21(m,1)) ((Pin2(
(Pin1(m,1)*Ek12(m,1)))];
B1(;,:;,m)=Al(;,:,m)/(2*DE(m,1)*Cfreq(m)*2*pi*df
end
for m=1:1:band
LF1(m)=B1(1,1,m);
LF2(m)=B1(2,2,m);
CLF21(m)=B1(1,2,m);
CLF12(m)=B1(2,1,m);
end
band1=1:1:band,;
figure(1)
plot(band1,LF1, “-r* , 'DisplayName' , 'nl1' ,
figure(2)
plot(band1,LF2, “*r' , 'DisplayName' , 'n2' ,
figure(3)
plot(band1,CLF12, -
figure(4)

plot(band1,CLF21, “*r' , 'DisplayName' , 'n21'

'DisplayName’ , 'n12'

nd,1);

pecd02(k)));
pecd01(k)));
pecd04(k)));
pecd03(k)));
K)));
K)));

k22(m,1)=Ek22(m,1)*2*pi;

in2(m,1)=Pin2(m,1)*2*pi;
1));

'YDataSource' , 'nl' );

'YDataSource' , 'n2' );

21(m,1)))
m,1)*Ek11(m,1))-
);
'YDataSource' , 'nl2' );
'YDataSource' , 'n2l1' );

5 THEORETICAL MODES IN BAND AND MODAL DENSITY PROGRAM

% USING THEORETICAL FORMULA

clear all
close all
clc

% Youngs' modulus of Aluminum
E=7ell; % units g/cm*s2.
Density=2.70; % units gms/cm3.
h=0.64; % thickness of the Plates.
K=h/(2*sqrt(3));

C_l=sqrt(E/Density); % Longitudinal Wavespeed.

Ap(1)=2852.840; % Surface Area of Plate 1 Lai and Soom.
Ap(2)=2042.370; % Surface Area of Plate 2 Lai and Soom.

for i=1:2
nw(i)=Ap(i)/(4*pi*K*C_I);
end
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6 EXPERIMENTAL MODES IN BAND AND MODAL DENSITY PROGRA M.

%% Using the Experimental Accelerometer Data

close all
clear all
clc

Mass=[4.608 3.628];
A=importdata( 'Plate 1_ND.mat'
B=importdata( 'Plate 2_ND.mat'
C=importdata( 'Plate 1_1S.mat'
D=importdata( 'Plate 2_1S.mat'
E=importdata( 'Plate 1_3S.mat'
F=importdata( 'Plate 2_3S.mat' ;
DFRF(:;,1,1)=A.H1_2(;,2); % Inertiance FRF's
DFRF(;,2,1)=B.H1_2(:,2);
DFRF(;,1,2)=C.H1_2(:,2);
DFRF(:,2,2)=D.H1_2(:,2);
DFRF(;,1,3)=E.H1_2(:,2);
DFRF(;,2,3)=F.H1_2(:,2);
% Calculating Average conductance ( real Part of Mo bility) in the bands
df=1; % in Hz
% Constant Bands
% Cfreq=256:512:3840;
% band=8;
% lowbound=round((2:512:3685)/df);
% upbound=round((512:512:4196)/df);
% 1/3rd octave bands with full octave bandwidths
Cfreq=[100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150
4000];
band=length(Cfreq);
lowbound=round(Cfreq/sqrt(2)/df);
upbound=round(Cfreqg*sqrt(2)/df);
COND_AVG=zeros(band,length(DFRF(1,1,:))*2);
for i=1:1:band
for k=lowbound(i):1:upbound(i)
for m=1:1:length(DFRF(1,1,:))
COND_AVG(i,2*m-1)=COND_AVG(i,2*m-

e N N N N

1)+(imag(DFRF(k,1,m))/(2*pi*k*df)); % Plate 1, Plate 2
COND_AVG(i,2*m)=COND_AVG(i,2*m)+(imag(D FRF(k,2,m))/(2*pi*k*df));
end
end

bandwidth(i)=upbound(i)-lowbound(i);
for m=1:1:length(DFRF(1,1,:))

COND_AVG(i,2*m-1)=COND_AVG(i,2*m-1)/bandwid th(i);
COND_AVG(i,2*m)=COND_AVG(i,2*m)/bandwidth(i );
end

end

for i=1:1:band
for m=1:1:length(DFRF(1,1,:))
modal_density(i,2*m-1)=COND_AVG(i,2*m-1)*2* Mass(1)/pi;
modal_density(i,2*m)=COND_AVG(i,2*m)*2*Mass (2)/pi;
end

end

for i=1:1:band
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for m=1:1:length(DFRF(1,1,:))

MPB(i,2*m-1)=modal_density(i,2*m-1)*2*pi*ba
MPB(i,2*m)=modal_density(i,2*m)*2*pi*bandwi

end
end
df=[0 1 3];
for m=1:1:length(DFRF(1,1,:))
figure(4*m-3)
loglog(Cfreq,modal_density(:,2*m-1),
% xIlim([0 5000]);ylim([10e-5 10e-3]);

title([ 'Modal density of Plate 1-'
added' ]);
grid on

figure(4*m-2)
loglog(Cfreq,modal_density(;,2*m),
% xIlim([0 5000]);ylim([10e-5 10e-3]);

title([ 'Modal density of Plate 2-'
added' ]);
grid on

figure(4*m-1)

loglog(Cfreq,MPB(:,2*m-1), -

% xlim([0 5000]);ylim([10e-1 10]);

title([ 'Modes per band of Plate 1-
added' ]);

grid on

figure(4*m)

loglog(Cfreq,MPB(:,2*m), !

% xIlim([0 5000]);ylim([10e-1 10]);

title([ 'Modes per band of Plate 2-"
added' ]);

grid on

end

)

,num2str(df(m)),

rY;

,num2str(df(m)),

,num2str(df(m)),

,num2str(df(m)),

ndwidth(iy*df;
dth(i)*df;

' Sheets of Damping

' Sheets of Damping

' Sheets of Damping

' Sheets of Damping

7 EXPERIMENTAL POWER INPUT METHOD PROGRAM

%% Using the time domain data Power Injection Metho

close all
clear all
clc

t=clock;
A=importdata(
B=importdata(
C=importdata(
D=importdata(
E=importdata(
F=importdata(
dt=A.X1(2,1)-A.X1(1,1);
N=131072;

decimate=1;

%% Using Eval Funciton
for d=1:4

"Test 1_point 1.mat'
"Test 2_point 1.mat'
"Test 3_point 1.mat'

‘Test 1_point 20.mat’
‘Test 2_point 20.mat’
"Test 3_point 20.mat'
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s=| ‘autospecd0’ int2str(d) '=zeros(N,1);' 1;

eval(s);
end
csspecd01=((conj(fft(A.X1(:,2))).*fft(A.X2(:,2)))+( conj(fft(B.X1(:,2))).*fft(
B.X2(:,2)))+(conj(fft(C.X1(:,2))).*fft(C.X2(:,2)))) /3; % Average
csspecd02=((conj(fft(D.X1(:,2))).*fft(D.X2(:,2)))+( conj(fft(E.X1(:,2))).*fft(
E.X2(:,2)))+(conj(fft(F.X1(:,2))).*fft(F.X2(:,2)))) 13;
for d=3:1:8

s=[ ‘autospecd01(:,1)=autospecd01(:,1)+(conj(fft(A.X' int2str(d)
'(:,2))).*fft(AX' int2str(d) ¢, 2); I

eval(s);

s=|[ '‘autospecd02(:,1)=autospecd02(:,1)+(conj(fft(C.X' int2str(d)
'(:,2))).*ft(C.X' int2str(d) ':,2))); 1;

eval(s);

s=|[ ‘autospecd03(;,1)=autospecd03(:,1)+(conj(fft(D.X' int2str(d)
'(:,2))).*fft(D.X' int2str(d) '(,2)));" Ik

eval(s);

s=[ ‘autospecd04(:,1)=autospecd04(:,1)+(conj(fft(F.X' int2str(d)
'(:,2))).*fft(F.X' int2str(d) '(:,2)));' 1

eval(s);
end
for d=3:1:5

s=[ ‘autospecd01(:,1)=autospecd01(:,1)+(conj(fft(B.X' int2str(d)
'(:,2))) . *fft(B.X' int2str(d) '(:,2)));' 1

eval(s);

s=|[ '‘autospecd03(:,1)=autospecd03(:,1)+(conj(fft(E.X' int2str(d)
'(:,2))) . *fft(E.X' int2str(d) '(,2)));" Ik

eval(s);
end
for d=6:1:8

s=|[ '‘autospecd02(:,1)=autospecd02(:,1)+(conj(fft(B.X' int2str(d)
'(:,2))).*fft(B.X' int2str(d) '¢,2); I

eval(s);

s=[ ‘autospecd04(:,1)=autospecd04(:,1)+(conj(fft(E.X' int2str(d)
'(:,2))) . *fft(E.X' int2str(d) '(,2)));" Ik

eval(s);
end
for d=1:4

s=[ ‘autospecd0’ int2str(d) ‘zautospecd0’ int2str(d) 191

eval(s);
end

%% decimating data

for d=1:1:4
for j=1:1:N/decimate
autospec01(j,1)=autospecd01(j*decimate,1);
autospec02(j,1)=autospecd02(j*decimate,1);
autospec03(j,1)=autospecd03(j*decimate,1);
autospec04(j,1)=autospecd04(j*decimate,1);
csspec01(j,1)=csspecd0l(j*decimate,1);
csspec02(j,1)=csspecd02(j*decimate,1);
end

end

clear autospecd0l autospecd02 autospecd03 autospecd04 csspecd0l csspecd02

autospecdOl=autospec01;

autospecd02=autospec02;

autospecd03=autospec03;
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autospecd04=autospec04;
csspecd0l=csspec01;
csspecd02=csspec02;

%% Integration. USING TRAPEZOIDAL RULE
df=0.25*decimate; % frequency resolution
Cfreq=256:512:3840;

band=8;

lowbound=round((2:512:3685)/df);
upbound=round((512:512:4196)/df);

% 1/3rd octave bands with full octave bandwidths
% Cfreq=[100 125 160 200 250 315 400 500 630 800 10 00 1250 1600 2000 2500
3150 4000];

% band=length(Cfreq);

% lowbound=round(Cfreqg/sqrt(2)/df);

% upbound=round(Cfreqg*sqrt(2)/df);

M1=4.80; % Mass of the plate 1

M2=3.628; % Mass of the plate 2
Ek21=zeros(band,1);Ek11=zeros(band,1);Ek22=zeros(ba nd,1);
Ek12=zeros(band,1);Pin1=zeros(band,1);Pin2=zeros(ba nd,1);

for m=1:1:band
for k=lowbound(m):1:upbound(m)

Ek21(m,1)=Ek21(m,1)+((M2/(2*pi))*real(autospecd02(k N/ ((k*df*2*pi)*2));
Ek11(m,1)=Ek11(m,1)+((M1/(2*pi))*real(autospecd01(k N/ ((k*df*2*pi)*2));
Ek22(m,1)=Ek22(m,1)+((M2/(2*pi))*real(autospecd04(k N/ ((k*df*2*pi)r2));
Ek12(m,1)=Ek12(m,1)+((M1/(2*pi))*real(autospecd03(k N/ ((k*df*2*pi)*2));
Pin1(m,1)=Pin1(m,1)+((1/pi)*imag(csspecd01( K))/(k*df*2*pi));
Pin2(m,1)=Pin2(m,1)+((1/pi)*imag(csspecd02( K))/(k*df*2*pi));
end
DE(m,1)=(Ek11(m,1)*Ek22(m,1))-(Ek12(m,1)*Ek21(m 1));
AL(:,:,m)=[((Pin1(m,1)*Ek22(m,1))-(Pin2(m,1)*Ek 21(m,1)))
(Pin1(m,1)*Ek12(m,1));(Pin2(m,1)*Ek21(m,1)) ((Pin2( m,1)*Ek11(m,1))-

(Pin1(m,1)*Ek12(m,1)))];
B1(:,:;,m)=Al(:,:,m)/(2*DE(m,1)*Cfreq(m)*2*pi);
end
for m=1:1:band
LF1(m)=B1(1,1,m);
LF2(m)=B1(2,2,m);
CLF21(m)=B1(1,2,m);
CLF12(m)=B1(2,1,m);
end
band1=1:1:band;
figure(1)
plot(bandl1,LF1, “-r* | 'DisplayName' , 'nl' , ‘'YDataSource' , 'nl' );
figure(2)
plot(bandl1,LF2, “*r' | 'DisplayName' , 'n2' , ‘'YDataSource' , 'n2' );
figure(3)
plot(band1,CLF12, “*r' , 'DisplayName' , 'n12' , 'YDataSource' , 'nl2' );
figure(4)
plot(band1,CLF21, “*r' | 'DisplayName' , 'n21' , 'YDataSource' , 'n2l' );
etime(clock,t)
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8 EXPERIMENTAL MODAL ANALYSIS PROGRAM

%% Modal Analysis Vibrometer Data
close all
clear all

Nfft=6376; % number of lines in the FRF
nupon=176; % number of points in the grid
frequency=25:1:6400;

% The data is in a UFF file which is read through t

% which stores data in a Matrix C.

% % % %1 sheet damping added

fin=fopen(  'Force_point 103 plate_1.asc' );
C=readuff(Nfft,fin);

DFRF=C(;,103);

%% Picking the Natural Frequencies from the FRF.

figure(2)
plot(frequency,angle(DFRF(;,1)));xlim([0 4000]);
figure(1)
plot(frequency,abs(DFRF(:,1)));xlim([0 4000]);
peaks=0;
sel=input(  'Do you want to select peaks?yes or no
while (strcmp(sel, 'ves' )==1)
disp( 'press delete after zooming' );
h=zoom;
set(h, '‘Motion' , 'horizontal' , 'Enable’ ,'on' );
waitfor(gcf, 'CurrentCharacter’ ,127)
% 127 is ascii code for delete
zoom off ;
disp( '‘press enter after selecting peaks:Max of 10 Peaks
[X,y]=ginput(10); % Max 10 peaks
peaks=[peaks;X];
set(gcf, ‘currentcharacter' ,char(4));
sel=input( 'Do you want to select more peaks?

peaks=peaks(2:end);

i=1:1:length(peaks)
for j=1:1:length(frequency);
if abs(frequency(j)-peaks(i))<0.5
k(i)=j-1;
break
end
end

%% Calculating Mode Shapes

i=1:1:length(C(1,:))
for j=1:1:length(k)
MS(j,)=C(k().0);
end

f=sgrt(DFRF(:,1));

i=1:1:length(MS(:,1))
ms(i,:)=MS(i,:)./f(i);
d
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%% Getting Lai and Soom plates Grid from position a rray generated from PSV
%dividing the location arrays into 2 arrays for the 2 plates. 1-P1 2-P2.
% Plate 2 has 77 points and Plate 1 has 99
[X,Y]=readpos(nupon);
figure(2)
plot(X,Y);
X2=X(1,1:77);Y2=Y(1,1:77);
for i=1:1:length(ms(:,1))
ms1(:,:,i)=ms(i,1:77);

end

tolerance=0.1,;

slope=1.1288;

for n=1:1:11 % number of lines along which the slope is 1.1288 o n plate 2
m=1; % index for number of points on each of those 11 li nes.(total=7)
X22(m,n)=X2(1,1);Y22(m,n)=Y2(1,1);ms2(m,n,:)=ms 1(1,1,);

X2=X2(1,2:end);Y2=Y2(1,2:end);
for i=1:1:length(X2(1,:))
a=(Y2(1,i)-Y22(1,n))/(X2(1,i)-X22(1,n));
if (a-slope<tolerance) && (a-slope>0)
m=m+1,;
X22(m,n)=X2(1,i);
Y22(m,n)=Y2(1,i);
ms2(m,n,:)=ms1(1,i,:);
end
end
for m=1:1:length(X22(:,1))
for i=1:1:length(X2(1,:))-m+1
if  X22(m,n)==X2(1,i)
X2=[X2(1,1:i-1) X2(1,i+1:end)];
Y2=[Y2(1,1:i-1) Y2(1,i+1:end)];

ms1=[ms1(1,1:i-1,:) ms1(l,i+1:end,: );
end
end
end
end
clear msl;

% X21=X22(1:end,end:-1:1);Y21=Y22(1:end,end:-1:1);
X1=X(1,78:176);Y1=Y(1,78:176);
for i=1:1:length(ms(:,1))

ms1(:,:i)=ms(i,78:176);

end

tolerance=5;

slope=36.2308;

for n=1:1:11 % number of lines along which the slope is 36.2308 on plate 1
m=1; % index for number of points on each of those 11 li nes.(total=9)
X12(m,n)=X1(1,1);Y12(m,n)=Y1(1,1);ms3(m,n,:)=ms 1(1,1,);

X1=X1(1,2:end);Y1=Y1(1,2:end);
for i=1:1:length(X1(1,:))
a=(Y1(1,i)-Y12(1,n))/(X1(1,i)-X12(1,n));
if (a-slope<tolerance) && (a-slope>0)
m=m+1,;
X12(m,n)=X1(1,i);
Y12(m,n)=Y1(1,i);
ms3(m,n,:)=ms1(1,i,:);
end
end
for m=1:1:length(X12(;,1))
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for i=1:1:length(X1(1,:))-m+1
if  X12(m,n)==X1(1,i)
X1=[X1(1,1:i-1) X1(1,i+1:end)];
Y1=[Y1(1,1:i-1) Y1(1,i+1:end)];
ms1=[ms1(1,1:i-1,:) ms1(l,i+1:end,:
end
end
end
end
figure(3)
hold on
plot(X12,Y12)
plot(X22,Y22)
hold off
%Plotting the Mode Shapes
for i=1:1:length(peaks)
figure(i+4)
hold on
surf(X22,Y22,real(ms2(:,:,i)));
surf(X12,Y12,real(ms3(;,:,i)));

hold off

view(45,60)

grid on
end

function  [X,Y]=readpos(nupon)

fin=fopen(  'Positions.txt' );  %input from asc file

for p=1:15 %214 to skip- 15 to be read number of initial lines
line=fgetl(fin);

end

%%%%% Position

if line(5:6)~= -1

for p=21:nupon
% reading character stings and converting into numb
% storing them
X(p)=str2num(line(42:53));
Y(p)=str2num(line(55:66));
line=fgetl(fin);
end
end
fclose(fin);

% Given by Dr. Ewing edited accordingly.
function  [transfer_function]=readuff(Nfft,fin)
% fin=fopen('Circular Plate 6th May top_2.asc");

for p=1:5 %number of initial lines to skip
line=fgetl(fin);
end
n=0; %index of point number
while feof(fin)==0
%%%%% Transfer Function

)

to skip

ers and

%input from asc file

if line(l)== T
% if line(1:10)=="Transfer F'
n=n+1,;
q=0; %index of current fft line
for p=1:10 %continue to read and write 10 more lines
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line=fgetl(fin);
end

for p=1:(Nfft-1)/3 %Nfft-1: 2 reading at the end of each frf, 3

fft lines per row
line=fgetl(fin);
q=9+1;

% reading character stings and converting into numb ers and

% storing them

transfer_function(q,n)=str2num(line(1:13))+1i*str2n
q=q+1;

transfer_function(q,n)=str2num(line(27:39))+1i*str2
q:q+1;

transfer_function(q,n)=str2num(line(53:65))+1i*str2
end
line=fgetl(fin);
q=q+1;

transfer_function(q,n)=str2num(line(1:13))+1i*str2n
end
line=fgetl(fin);
end
fclose(fin);

9 EXPERIMENTAL T.S.E.A METHOD PROGRAM

%% Transient Statistical Energy Analysis

clear all

close all

clc

N=30000;

load( 'expl.mat" ,'AFFT1" );

AFFTE1=AFFT1(1:N,:,2);

clear AFFT1

load( 'exp2.mat" ,'AFFT2' );

AFFTE2=AFFT2(1:N,:,3);

clear AFFT2

%% % using local accelerations for transmitted energ

% spatial average 2,3,4 columns are the acceleromet

% 5,6,7 columns are the accelerometers 4,5,6 on pla

for k=1:1:length(AFFTE1(1,1,:))
AFFT1(:,1,k)=AFFTEL(;,1,k);
AFFT1(:,2,k)=(AFFTEL(:,2,k)+AFFTEL(;,3,k)+AFFTE
AFFT1(:,3,k)=(AFFTEL(:,5,k)+AFFTEL(;,6,k)+AFFTE
AFFT1(:,4,k)=AFFTEL(:,8,k);
AFFT2(:,1,k)=AFFTE2(:,1,k);
AFFT2(:,2,k)=(AFFTE2(:,2,k)+AFFTE2(;,3,K)+AFFTE
AFFT2(:,3,k)=(AFFTE2(:,5,k)+AFFTE2(;,6,k)+AFFTE
AFFT2(:,4,k)=AFFTE2(;,8,k);

end
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decimate=4;
asd=length(AFFTE1(1,1,?));
%% decimating data
for d=1:1:asd
for i=1:1:4
for j=1:1:N/decimate
AFFT1t(j,i,d)=AFFT1(j*decimate,i,d);
AFFT2t(j,i,d)=AFFT2(j*decimate,i,d);
end
end
end
clear AFFT1 AFFT2
for d=1:1:asd
for i=1:1:8
for j=1:1:N/decimate
AFFTELt(j,i,d)=AFFTEL(j*decimate,i,d);
AFFTE2t(j,i,d)=AFFTE2(j*decimate,i,d);
end
end
end
clear AFFT1 AFFT2 AFFTE1l AFFTE2
AFFT1=AFFTLt;
AFFT2=AFFT2t;
AFFTE1=AFFTELf;
AFFTE2=AFFTE2t;
clear AFFT1t AFFT2t AFFTE1lt AFFTE2t
%%
df=0.25*decimate; % frequency resolution
Cfreq=256:512:3840;
band=8;
lowbound=round((2:512:3685)/df);
upbound=round((512:512:4196)/df);
% 1/3 rd octave with full octave bins
% Cfreq=[100 125 160 200 250 315 400 500 630 800 10
3150 4000];
% band=length(Cfreq);
% lowbound=round(Cfreq/sqrt(2)/df);
% upbound=round(Cfreq*sqrt(2)/df);

M1=4.608; % Mass of the plate 1 Assumed
M2=3.628; % Mass of the plate 2

x1=1:1:33; % x is the number of times time data is taken
x=1:1:34; % x is the number of times time data is taken

%INTEGRATING
Ek21=zeros(band,length(x));Ek11=zeros(band,length(x
x));Ek12=zeros(band,length(x));
Etr211=zeros(band,length(x));Etr212=zeros(band,leng
for m=1:1:band
% for n=1:1:length(AFFT1(1,1,)))-1

for n=1:1:length(AFFT1(1,1,:))

for k=lowbound(m):1:upbound(m)

Ek21(m,n)=Ek21(m,n)+((M2/(2*pi))*real(AFFT1(k,3,34)
£2%pi)"2));

Ek11(m,n)=Ek11(m,n)+((M1/(2*pi))*real(AFFT1(k,2,34)
*2*pi)"2));
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Ek22(m,n)=Ek22(m,n)+((M2/(2*pi))*real(AFFT2(k,3,34) *conj(AFFT2(k,3,n)))/((k*d
£2%pi)*2));

Ek12(m,n)=Ek12(m,n)+((M1/(2*pi))*real(AFFT2(k,2,34) *conj(AFFT2(k,2,n)))/((k*d
F2*pi)*2));
Etr211(m,n)=Etr211(m,n)+((1/pi)*imag(AFFT1(k,4,n)*c onj(AFFTEL1(k,4,34)))/(k*df
*2*pi)); % why not? - for directional change
Etr212(m,n)=Etr212(m,n)+((1/pi)*imag(AFFT2(k,4,n)*c onj(AFFTE2(k,4,34)))/(k*df
*2*pi)); %-
end

A(:,:,n,m)=2*2*pi*Cfreq(m)*[Ek21(m,n) -Ek11 (m,n);Ek22(m,n) -

Ek12(m,n)];

C(:,:,n,m)=[Etr211(m,n);Etr212(m,n)];
B(:,n,m)=A(,:,n,m\C(;,;,n,m);
end

end

for i=1:1:band

ans(:,i)=B(:,34,); %% rowl n21 row2 n12

end

B=B(:,1:33,);

AE1=ones(x(end),band);

AE2=0ones(x(end),band);

for i=1:1:band
AEL(:,i))=AEL(:,i)*ans(1,); % asymptotic values
AE2(:,i))=AE2(:,i)*ans(2,i); % asymptotic values
end
for m=1:1:4
figure(1)
subplot(2,2,m)
semilogy(x,AE1(:,m),x1,B(1,:,m), “*r' | 'DisplayName' , 'n21'
'YDataSource' , 'n21" );ylim([1le-5 le-1]);xlim([O 35]);
title([ 'Coupling Loss Factor \eta21(t) in band
" ,num2str(m)], 'FontWeight' |, 'bold' , 'FontSize' ,10);
ylabel( 'Loss Factor (unitless)' );
xlabel( 'time (sec)' );
AX=legend( eta2l' , "\eta21(t)' , 'location’ , 'south’ );
LEG = findobj(AX, 'type' |, 'text’ );
set(LEG, 'FontSize'  ,8)
end
hgsave( 'TSEA NO_DAMPING_eta21(t) fig_ 1.fig' );
for m=5:1:band
figure(2)
subplot(2,2,m-4)
semilogy(x,AE1(:,m),x1,B(1,:;,m), “*r' , 'DisplayName' , 'n21' ,
'YDataSource' , 'n21" );ylim([1le-5 le-1]);xlim([O 35]);
title([ '‘Coupling Loss Factor \eta21(t) in band
" ,num2str(m)], 'FontWeight' |, 'bold' , 'FontSize' ,10);
ylabel( 'Loss Factor (unitless)' );
xlabel( 'time (sec)' );
AX=legend( eta2l' , '\eta21(t)' , 'location’ , 'south’ );
LEG = findobj(AX, 'type' |, 'text’ );
set(LEG, 'FontSize'  ,8)
end
hgsave( 'TSEA_NO_DAMPING_eta21(t)_fig_2.fig' );
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for m=1:1:4

figure(3)
subplot(2,2,m)
semilogy(x,AE2(:,m),x1,B(2,:,m), “*r' | 'DisplayName' , 'n12' ,
'YDataSource' , 'nl12" );ylim([le-5 le-1]);xlim([O 35]);
title([ 'Coupling Loss Factor \etal2(t)in band
" ,num2str(m)], 'FontWeight' |, 'bold' , 'FontSize' ,10);
ylabel( 'Loss Factor (unitless)' );
xlabel( 'time (sec)' );
AX=legend( etal2' , '\etal2(t)' , 'location’ , 'south" );
LEG = findobj(AX, 'type' |, 'text’ );
set(LEG, 'FontSize'  ,8)
end
hgsave( 'TSEA_NO_DAMPING_etal2(t)_fig_1.fig' );
for m=5:1:band
figure(4)
subplot(2,2,m-4)
semilogy(x,AE2(:,m),x1,B(2,:,m), “*r' | 'DisplayName' , 'n12' ,
'YDataSource' , 'n12' );ylim([1e-5 1e-1]);xlim([O 35]);
title([ 'Coupling Loss Factor \etal2(t)in band
" ,num2str(m)], 'FontWeight' |, 'bold' , 'FontSize' ,10);
ylabel( 'Loss Factor (unitless)' );
xlabel( 'time (sec)' );
AX=legend( etal2'" , \etal2(t)' , 'location’ , 'south’ );
LEG = findobj(AX, 'type' |, 'text’ );
set(LEG, 'FontSize'  ,8)
end
hgsave( 'TSEA_NO_DAMPING_etal2(t)_fig_2.fig' );

% Calculating Averaged FFT’'s And FRF's
% loading Time Domain data

close all
clear all
clc

B=importdata( 'Ptl.mat" );
A(;,1)=B.X1(;,1);
A(;,2)=B.X1(;,2);
A(:,3)=B.X2(:,2);
A(:,4)=B.X3(:,2);
A(;,5)=B.X4(;,2);
A(;,6)=B.X5(:,2);
A(;,7)=B.X6(:,2);
A(;,8)=B.X7(:,2);
A(:,9)=B.X8(:,2);

SF=131072; % number of samples per hammer Hit.
% samples=132:131:4400;
samples=34:33:1090; % number of samples in per 1 msec of data
samples(end+1)=SF;
n=1; % number of Hits to be considered
na=6; % number of accelerometers
nd=8; % number of accelerometers + force input + transduc ed
for i=1:1:nd % plot time domain

figure(i)

plot(A(1:20000,i+1));
end

AFFT1=zeros(SF,nd,length(samples));
%AFRF1=zeros(SF,na,length(samples));
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for k=1:1:length(samples)
[AFFT,AFRF]=fourierfunction(A,SF,n,samples(k));
AFFTL1(:,:,K)=AFFT(:,:);

% AFRF1(:,:K)=AFRF(:,);

clear AFRF AFFT
end
% fourier transformation of truncated and total dat a.

save( 'expl' ,'AFFT1' );
clear A AFFT1 B AFRF1

function [AFFT,AFRF]=fourierfunction(A,SF,n,Samples)

X=0:SF:n*SF; % X= number of hits+1.
Y=X+Samples; % truncating it at some time interval
D=zeros(SF,length(A(1,:)),n);

for i=1:1:n

temp=A(X(@i)+1:Y(i),’);
for j=1:1:Samples
D(j,:,i)=D(j,:,i)+temp(j,:);

% D is a 3D array whose every sheet has data from o ne hit.
end
end
clear temp A
for i=1:1:n % number of Hammer Hits.
for j=2:5
% columnl has the time, 2 has force input, 3-8 are the

% accelerometers 1-6 and 9 is the force transducer.
FFT(,(-1),D)=fft(D(:,j,0));
if j~=2
FRF(,(j-2),i)=fft(D(:,j,i))./fft(D(:,2 A0);
end
end
for j=6:9
FFT(,(-1),)=fft(D(:,j,0));
if j~=9
FRF(:,(j-2),i)=fft(D(:,j,i))./fft(D(:,2 A0);
end
end
end
% FFT is the matrix containing the FFT's of the for ce and acceleration
% FRF is the matrix containing the FRF's
AFRF=zeros(SF,length(FRF(1,:,1)));
AFFT=zeros(SF,length(FFT(1,:,1)));
for i=1:1:n
AFRF(:,:)=AFRF(:,:)+FRF(:,:,i);
AFFT(,))=AFFT(,:)+FFT(,:,0);

end

clear FRF FFT D

AFRF=AFRF/n; % AFRF is the matrix containing the averaged FRF's
AFFT=AFFT/n; % AFFT is the matrix containing the averaged FFT's
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APPENDIX B.

EXPERIMENTAL PLATES

CONSTRAINED LAYER DAMPING PLACEMENT ON THE
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