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Abstract

LONG-TIME BEHAVIOR AND THE STABILITY OF SPECIAL SOLUTIONS OF

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Aslihan Demirkaya

The University of Kansas

Advisor: Milena Stanislavova

May 2011

This dissertation deals with a variety of problems concerning solutions of a large class

of partial differential equations (PDEs) of mathematical physics, which can be viewed

as dynamical systems on an infinite-dimensional space. Many PDEs support coherent

structures like solitary waves (both ground states and bound states), as well as traveling

wave solutions. These coherent structures are very important objects when modeling

physical processes and their stability is essential in practical applications. Stable states

of the system are key because they attract all nearby configurations, while the loss of

stability or being able to control it is of practical importance as well. In this disser-

tation, I apply spectral and variational methods, evolution semigroups, as well as the

techniques of Fourier analysis, to study some outstanding open problems in the theory

of stability and long time behavior for solutions of nonlinear PDEs. The point of view

is that of infinite-dimensional dynamical systems which takes advantage of the analogy

between PDEs and ODEs by looking at systems whose time evolution occurs on ap-
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propriately defined infinite-dimensional function spaces. In general, the main difficulty

in the study of long time behavior of the solutions occurs in higher dimensional spaces

and on unbounded domains. To overcome this difficulty, either the modified equations

have been studied, or the initial data and the domain have been restricted. In the study

of stability, one of the most interesting problems is the relation between the linear sta-

bility/instability and the nonlinear stability/instability. This question is more or less

resolved in the ODE case, but it is much more complicated in the case of PDEs where

infinite-dimensional function spaces and unbounded operators are needed to describe

the situation. Based on the linear results, the challenge is to establish nonlinear sta-

bility/instability and complete invariant manifolds description for these equations. My

contribution described in this dissertation can be divided in two parts.

In the first part, I study the long-time behavior of the solutions of the Kuramoto-

Sivashinsky (KS) equation and the Burgers-Sivashinsky equation. KS equation has

been widely studied and many results have been obtained for bounded domains in di-

mension one. However when the dimension is higher, the problem becomes much more

challenging due to the nonlinear term. Previous results for dimension two have been

obtained either for restricted initial data and a thin domain, or for a modified version of

the KS equation. I work on a two-dimensional modified Kuramoto-Sivashinsky equa-

tion and prove the existence of a global attractor on a bounded domain. Next, I study

the long-time behavior of the solutions of the one-dimensional Burgers-Sivashinsky

equation for general initial data as opposed to the usually considered odd initial data.

My main contribution is in the study of radially symmetric solutions of the KS equa-

tion in dimension two and higher. More precisely, I study the long-time behavior of

radially symmetric solutions of the KS equation in a shell domain in three-dimensions

and prove the existence of a time independent bound for the L2 norm of the solution. I

also show that similar results hold in any dimension n as long as we have the domain,
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which excludes the origin. We utilize various techniques from analysis and PDE such

as energy estimates, coercivity and evolution semigroups .

In the second part, we deal with the conditional stability of radial steady state so-

lutions for the one-dimensional Klein-Gordon equation. It is known that these solu-

tions are linearly unstable and it has been proved that they are also nonlinearly unsta-

ble. Our results complement these. I consider the one-dimensional case and construct

the infinite-dimensional invariant manifolds explicitly. The result is a precise center-

stable manifold theorem, which includes the co-dimension of the manifolds and the

decay rates. I use spectral theory, dynamical systems methods, functional analysis and

Strichartz estimates to obtain this. The main difficulty in dimension one compared to

higher dimensions is that the required decay of the Klein-Gordon semigroup does not

follow from Strichartz estimates alone. Thus I apply additional weighted decay esti-

mates in order to close the argument. In this part of my dissertation, the goal is to

develop a systematic approach to study the fine properties of the solutions in the vicin-

ity of the center-stable manifold and to apply the conditional stability results to control

the perturbations in order to keep the stable configurations.
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Introduction

Partial differential equations that can be studied as dynamical systems on an infinite-

dimensional space describe many important physical phenomena. This point of view

is very beneficial because it allows the generalization of finite dimensional notions and

ideas to the infinite-dimensional systems through use of functional analysis, operator

semigroups and spectral theory. Lately, the unprecedented expansion of this field of

mathematics has found applications in areas as diverse as fluid dynamics, nonlinear

optics and network communications, combustion and flame propagation.

This dissertation consists of two main parts. In the first part, we study the long-time

behavior of the solutions of Kuramoto-Sivashinsky and Burger-Sivashinsky equations.

The second part deals with the one-dimensional Klein-Gordon equation and the linear

and nonlinear stability of its radially symmetric steady-state solutions. In Chapter 1,

we describe some basic tools from differential equations and harmonic analysis that

we use in the rest of this dissertation. We start with some definitions and elemen-

tary properties of semigroups, stability and attractors. Then we give some basic facts

about function spaces and introduce the Littlewood-Paley operators. In the last part, we

present Strichartz estimates for the Klein-Gordon solution semigroup operators.

Kuramoto has discovered the KS equation in the context of angular turbulence of

a system of reaction-diffusion equations modeling Belousov-Zhabotinsky reaction in

three dimensions. Sivashinsky discovered the equation working in combustion theory
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to model small thermal diffusive instabilities in laminar flame fronts in two space di-

mensions. The equation is also suitable for numerical work since it is one-dimensional

and thus more tractable, but nevertheless exhibits complex dynamics. There has been

a lot of work done on this equation in one space dimension in the last three decades

which by now has become classical-the existence of solutions, the low dimensional

global attractor asserted by the inertial manifold theorem of Nicholaenko, Scheurer

and Temam [40], as well as Sell and Foias [23]. The problem of existence of solu-

tions and their long time behavior for the Kuramoto-Sivashinsky equation in higher

space dimensions is very difficult and still open. Some of the available results have

restrictions on the domain [38] or work on a modified equation. One is tempted to

compare the two-dimensional Kuramoto-Sivashinsky equation to other difficult equa-

tions like the Navier-Stokes equation where global existence can be proved via energy

estimates that give control of the L2-norm of the solution. On the other hand, in the

Burgers-Sivashinsky equation no control of any Lp norm is possible but one can use the

maximum principle to gain control of the L∞-norm of the solution. In contrast, both of

these are not available for the Kuramoto-Sivashinsky equation in higher space dimen-

sions. Our interest in the equation was inspired by the recent progress on the long time

behavior of the solution made by Bronski and Gambill [7], see also [25]. In Chapter 2,

we study the long time behavior for the special solutions of Kuramoto-Sivashinsky and

Burgers-Sivashinsky equations. Burgers-Sivashinsky equation,

ϕt = ∆ϕ +ϕ−|∇ϕ|2 (0.0.1)

is related to the Kuramoto-Sivashinsky equation,

ϕt =−∆
2
ϕ−∆ϕ− 1

2
|∇ϕ|2 (0.0.2)
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and can be derived as model for flames propagation. Since the BS equation is a second

order equation, it is considered a simpler model. The two equations are often compared

because there are some similarities, but a lot of new phenomena appear in the fourth

order case.

In Chapter 2, first we consider a modified version of Kuramoto-Sivashinsky Equa-

tion in space dimension two:

ut =−∆
2u−∆u−uux−uuy +g(x) (0.0.3)

on a bounded domain [−L,L]× [−L,L]. With certain conditions on the boundary, initial

value and the external force g, we have the following result:

Theorem 2.2.1: The dynamical system associated with the two-dimensional periodic

Kuramoto-Sivashinsky type equation (2.2.1) with its boundary conditions is globally

well-posed and possesses a global attractor.

The analysis is based on the Lyapunov function approach, point dissipativeness

and asymptotic compactness. Here the main difficulty is to prove the asymptotic com-

pactness. In order to achieve this, using the techniques of Fourier analysis, we show

(a)− (c) of Proposition 1.1.20 where P>N are the Littlewood-Paley projections.

Since BS equation is a simpler model to the KS equation, in the second part of

Chapter 2, we start with one-dimensional Burgers-Sivashinsky equation and prove the

existence of a time independent bound for the L2 norm of the solutions. The result is for

a bounded domain [-L,L] and in the case of any general initial data. Since Lyapunov

function methods rely strongly on the fact that odd solutions vanish at zero, the sharpest

results were always obtained in the odd data case first. Collet in [16] resolved this

obstacle by introducing a translation of the potential, governed by a solution-dependent

gradient flow dynamics. We use similar ideas to give a simple proof in the case of
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Burger-Sivashinsky equation in dimension one. Then we consider radially symmetric

solutions of this equation in two and higher dimensions in a bounded domain [0,R].

After deriving results for the radially symmetric solutions of BS equation [19], we

work on the harder model, KS equation in order to derive similar results. In the third

part of Chapter 2, we consider the radially symmetric solutions of the KS equation in

a shell domain Ω = {x ∈ Rn such that 0 < r0 < ‖x‖ < R0} in any dimension n. We

prove the existence of a time independent bound for the L2 norm of the solution and

show that in the three dimensional case this bound is given by C(R0− r0)
3/2 and we

give an estimate of the rate with which the constant C blows up when r0→ 0. Similar

results hold for any n-dimensional shell domain which does not contain the origin. In

particular we show that if the dimension is sufficiently high one can use the estimates

for the constant C(r0) to prove that the radially symmetric solution does not blow up at

the origin. More rigorously, assuming that the initial condition u0 is a radial function

and u solves the differentiated (2.1.1) and taking the boundary conditions (2.4.3) which

are similar to the ones in [6] (these are the Neumann boundary conditions for a fourth

order model) and using Lyapunov function approach, we prove the following theorem

for the radial system (2.4.2)-(2.4.4).

Theorem 2.4.1: Consider the Kuramoto-Sivashinsky equation (2.4.2) with 0 < r0 <

R0 < ∞, subject to the boundary and initial conditions given by (2.4.3), (2.4.4). Assume

also (R0− r0)≥ α(1+ 1
r2

0
)−1/2 for some α > 0. Then, there is constant C =Cα , so that

limsup
t→∞

‖u(t)‖L2[r0,R0]
6Cα(R0− r0)

3/2
(

1+
1
r2

0

)3

. (0.0.4)
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If (R0− r0)≤ (1+ 1
r2

0
)−1/2, then

limsup
t→∞

‖u(t)‖L2[r0,R0]
≤C

(1+ 1
r2
0
)2

√
R0− r0

. (0.0.5)

In Chapter 3, we study the stability for the radial steady-state solutions of the one

dimensional Klein-Gordon equation. The Klein-Gordon equation is a relativistic ver-

sion of the Schrödinger equation. It was named after Oscar Klein and Walter Gordon

who proposed the Klein-Gordon equation to describe quantum particles in the frame-

work of relativity. It describes the spinless composite particles. However Schrödinger

was the first who considered this equation as a quantum wave equation. Klein-Gordon

type equations are in the form:

utt−∆u+u−N (u) = 0 (t,x) ∈ R+×Rd (0.0.6)

where N (u) is the nonlinear term. With some assumptions on the nonlinear term,

it has been proved by the authors of [32] that these solutions are in fact linearly and

nonlinearly unstable. Our interest is the conditional stability of such steady state so-

lutions. This kind of stability has been extensively studied recently. For example for

the equation utt − ∆u = u5, in [32], the existence of steady state solutions, the lin-

ear and the nonlinear instability of such solutions have been proved. However it has

been also proved in [33] that for the special perturbation to the steady state solution

of utt −∆u = u5, the solution exists globally and remains near the steady state. Thus,

a center-stable manifold for the steady state in the sense of Bates and Jones [2] is de-

scribed. In 1989, Bates and Jones [2], [3] proved that for a large class of semilinear

equations, including the Klein-Gordon equation, the space of solutions decomposes

into an unstable and center-stable manifold. Similar result was proved in [26] for the
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semilinear Schrödinger equation in any dimension. Both are abstract results and do not

deal with the global in time behavior of the solutions, e.g. existence and asymptotic

behavior. The first asymptotic stability result was obtained by Soffer and Weinstein,

[52], [53] (see also [54]), followed by works of Pillet and Wayne [42], Buslaev, Perel-

man, Sulem [9], [10], [11], Rodnianski-Schlag-Soffer [45], [46] etc. In this context we

would like to mention some recent work of Schlag [47] and Beceanu [4],[5] on the ex-

istence of center-stable manifold for the pulse solutions of the focusing cubic nonlinear

Schr odinger equation in dimension three. It identifies a center-stable manifold in the

critical for the equation space H1/2 and shows that solutions starting on the manifold

exist globally in time and remain on the manifold for all time answering an open ques-

tion in [26]. Recently the authors of [57] proved a conditional stability of the steady

state solutions of (3.1.1) with N (u) = |u|p−1u for the dimension d = 2,3 and 4 where

p≥ 1+4/d. In terms of center-stable manifold for the solution, their result shows the

global in time behavior of the solutions and a precise description of the manifold which

includes its co-dimension and decay rates. In these problems, since Strichartz esti-

mates are key, the lower the dimension, the harder it is to close the argument. The main

difficulty in the one-dimensional case is that the required decay of the Klein-Gordon

semigroup does not follow from Strichartz estimates alone. One needs to further refine

the function spaces and use additional decay estimates to resolve this issue. The tech-

niques we use are similar to the ones used in [37]. We prove the following theorem:

Theorem 3.3.1: For (3.1.2) with 5≤ p < ∞, and H ψ =−σ2ψ where σ = σ(p), there

exists 0 < ε = ε(p)<< 1 and 0 < δ = δ (p)<< 1, and a function

h : BH1(δε)×BL2(δε)∩{( f ,g) : 〈σ f +g,ψ〉= 0}→ R1

15



so that whenever the initial data is even and

u(0) = φ + f1 +h( f1, f2)ψ

ut(0) = f2

〈σ f1 + f2,ψ〉= 0;‖( f1, f2)‖H1×L2 < δε,

then

u(t,x) = φ(x)+a(t)ψ + z(t,x) where z = Pa.c.(H )z (0.0.7)

and

‖z‖L5
t L10

x ∩L∞
t H1

x∩L∞
x (R;〈x〉−3/2dx)L2

t
≤ ε, ‖a‖L3

t [0,∞)∩L∞
t [0,∞) ≤ ε.

To prove this result, we use the spectral decomposition of the linearized operator

H = −∆ + 1− pφ p−1 and set up an iteration scheme in the appropriate Strichartz

spaces. The goal is to prove that the corresponding map is a contraction map. The

spectral information for the linearized operator that we need is readily available, say

in [14]. The main difference in d = 1 case compared to other cases like d = 2,3,4,

is the need of decay estimates because the argument can not be closed with Strichartz

estimates alone. In order to prove the decay estimates for the linearized operator H ,

similar to [37], we work on two estimates, the high energy estimate and the low energy

estimate. We use Green’s functions for the first one, and Jost functions and scattering

theory for the second one.
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Chapter 1

Preliminaries

In this chapter, we present some tools from differential equations and harmonic anal-

ysis which we will use later on in this dissertation. In Section 1.1, we present some

definitions and elementary properties of semigroups of linear operators and their use to

describe solutions of evolution equations. Next, we give some preliminaries from the

theory of spectral, linear and nonlinear stability for special solutions of nonlinear PDEs.

We present some conditions that give the relations between these different notions of

stability as well as some examples where one implies the other. Then we discuss special

sets that help us to determine the long time behavior of dynamical systems. We start

with absorbing sets, and then describe global and local attractors. We end this section

with the existence theorem for a global attractor of a dynamical system. In Section 1.2,

we start with the basic definitions and facts about function spaces and present some

basic inequalities that we will need to use later. Then we introduce Littlewood-Paley

projections, which we use to obtain the compactness results in Chapter 2. We end this

section by giving the Strichartz estimates for the Klein-Gordon semigroup operators.

These are key estimates in the proof of the conditional stability theorem in Chapter 3.
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1.1 Differential Equations Tools

1.1.1 Semigroups of linear operators

In this dissertation, our interest is to study dynamical systems whose state is described

by an element u = u(t) of a metric space H. In most cases, particularly for the systems

associated to ODE and PDE, the parameter, t (mostly time variable) varies continuously

in R. Usually the space H is a Hilbert or a Banach space.

Definition 1.1.1. A family of operators S(t), t ≥ 0 describing the evolution of the dy-

namical system
d
dt

u(t) = F(u(t)), u(0) = u0

is called the solution semigroup operators if the map S(t) from H into itself enjoys the

usual semigroup properties:

S(t + s) = S(t)S(s), ∀s, t ≥ 0

S(0) = I (Identity in H)
(1.1.1)

and

u(t) = S(t)u(0)

u(t + s) = S(t)u(s) = S(s)u(t), ∀s, t ≥ 0

Remark 1. The solution of a differential equation determines the solution semigroup

S(t), thus that S(t) does not have to be linear. In the ODE case, the general theorems of

existence of solutions provide the definition of the operators S(t). However in the PDE

case, there are no theorems of existence and uniqueness, so the first step is to prove the

existence of such operators.
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Definition 1.1.2. Let X be a Banach space. A one parameter family {T (t)}t≥0 of

bounded linear operators from X into itself is called as strongly continuous semigroup

of bounded linear operators (C0− semigroup) if T (t) enjoys the usual semigroup prop-

erties:

T (t + s) = T (t)T (s), ∀s, t ≥ 0

T (0) = I (Identity in X)
(1.1.2)

and

lim
t↓0

T (t)x = x for every x ∈ X.

Definition 1.1.3. The linear operator A defined by

D(A) = {x ∈ X : limt↓0
T (t)x−x

t exists in X norm.}

Ax = limt↓0
T (t)x−x

t for x ∈ D(A)
(1.1.3)

is the infinitesimal generator of the semigroup T (t), where D(A) is the domain of A.

Theorem 1.1.4. ([41]) Let T (t) be a C0-semigroup. There exist constants ω ∈ R and

M ≥ 0 such that

‖T (t)‖ ≤Meωt for 0≤ t ≤ ∞

Definition 1.1.5. If ω = 0, then T (t) is called uniformly bounded and if, moreover,

M ≤ 1, T (t) is called C0−semigroup of contractions.

Let X be a Banach space, and consider the linear Cauchy problem

ut = Au, for 0 < t < ∞

u(0) = u0

(1.1.4)
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where A is a linear operator, which generates a C0−semigroup, S(t) = eAt . If u0 ∈ X ,

then the function u(t) := etAu0 is called a mild solution of the differential equation

(1.1.4). If u0 ∈ D(A), then u(t) := etAu0 is called a classical solution.

Theorem 1.1.6. (see [36]) Suppose S(t) is a C0−semigroup on a Banach space X, and

A : D→ X is defined by (1.1.3). Then the following hold.

1. The domain D(A) is a dense subset of X.

2. A : D(A)→ X is a closed operator.

3. For u ∈ D(A), we have S(t)u ∈ D for all t ≥ 0 and AS(t)u = S(t)Au for all t > 0.

4. For g ∈ D(A), u(t) = S(t)g is a classical solution of (1.1.4).

Remark 2. If x ∈ D(A), then etA ∈ D(A). The function t→ etA is not only continuous,

but also differentiable and d
dt etAx = AetAx = etAAx. Thus it makes sense to use the

notation T (t) = etA for the infinitesimal generator of the semigroup in Definition 1.1.3.

Example: Consider the initial value for the wave equation in Rn, that is,


utt =4u for x ∈ Rn, t > 0

u(0,x) = u1(x), ut(0,x) = u2(x) for x ∈ Rn
(1.1.5)

If we introduce a new variable v := ut , this problem becomes equivalent to the first

order system:

 u

v


t

=

 0 I

4 0


 u

v

 for x ∈ Rn, t > 0 (1.1.6)
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and  u(0,x)

v(0,x)

=

 u1(x)

u2(x)

 for x ∈ Rn (1.1.7)

Theorem 1.1.7. (see [41]) The operator A =

 0 I

4 0

 is the infinitesimal generator

of a C0−semigroup of operators in the Hilbert space H1(Rn)×L2(Rn) equipped with

the norm

∥∥∥∥∥∥∥
 u

v


∥∥∥∥∥∥∥=

(∫
Rn
(|u|2 + |∇u|2 + |v|2)dx

)1/2

.

1.1.2 Stability of special solutions

In this section we give the basic definitions and results related to stability of special

solutions of nonlinear PDEs. An equilibrium solutions of a PDE is stable if any orbit

that starts nearby will stay close or will approach these states as time grows to infinity.

Similar to the finite dimensional case, the stability can be inferred by investigating the

spectrum of the linearization around the special solutions. There are some complica-

tions that arise in the case of infinite-dimensional systems (PDEs).

Spectral Stability

Definition 1.1.8. Assume A is a linear, not necessarily bounded, operator in a Banach

space X. Then the resolvent set of A, denoted by ρ(A), is,

ρ(A) = {λ ∈ C : (λ I−A)−1 : X → X is bounded.}

The complement of the resolvent is called the spectrum, denoted by σ(A). The complex

number λ is in spectum if λ I−A is not invertible, i.e., (λ I−A)−1 is not a bounded

linear operator in X.
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The notion of the spectrum extends to densely-defined unbounded operators, which

will be investigated in this dissertation. In this case a complex number λ is in σ(A)

where A : D(A)→ X (where D(A) is dense in X) if there is no bounded inverse (λ I−

A)−1 : X → D(A).

There are several ways to classify the points in the spectrum of an operator A based

on the reasons behind the non-existence of the resolvent as a bounded operator. The

classification that we will use is

σ(A) = σpt ∪σess

where σpt , the point spectrum, contains all the isolated eigenvalues with finite multi-

plicity. The rest of the spectrum is the essential spectrum, denoted by σess.

Definition 1.1.9. We call the operator A spectrally stable if its spectrum is to the left of

the imaginary axis,

σ(A)⊂ {Re(λ )< 0}.

Linear Stability

Example 1: For the equation ut = uxx + f (u) on R, one has F(u) := uxx + f (u). If

φ(x) is a steady state solution, one has F(φ) = 0. We will also assume that φ → 0 as

x→±∞, and | f ′(z)| ∼ O(z). Thus the linearized operator is L v = vxx + f ′(φ)v with

the domain H2(R).

Example 2: Consider the same equation ut = uxx + f (u), but look for the traveling

wave solutions, which are in the form u(x, t) = u(x+ ct, t), where c is a scalar. Define

the moving variable ξ = x+ ct to get the equation

ut = uξ ξ + cuξ + f (u)
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Assume that for fixed c = c∗ there exists an equilibrium solution u(x, t) = ϕ(x+c∗t) =

ϕ(ξ ), such that

ϕξ ξ + c∗ϕξ + f (ϕ) = 0

Then define F(u) := (∂xx + c∗)u + f (u) and linearize the equation ut = F(u) about

the traveling wave. We get the linearized operator L v = ∂xxv+ c∗v+ f ′(ϕ)v with the

domain H2(R). As in the previous example, we assume that φ → 0 as x→±∞, and

| f ′(z)| ∼ O(z).

Consider the nonlinear Cauchy problem:

ut = F(u), u(0) = u0 (1.1.8)

where F is nonlinear.

Definition 1.1.10. Assume Q solves the problem (1.1.8) and L is the linearized oper-

ator of the Cauchy problem and u(t, ·) = eL tu0. Then we say Q is linear stable if

lim
t→∞

e−δ t‖u(t, ·)‖= 0

for every δ > 0.

It is important to know whether spectral stability implies linear stability, as in the

case of ODEs. This holds true if the spectrum is mapped correctly by the exponential

map, that is,

σ(etL )\{0}= etσ(L ) (1.1.9)

as in the finite-dimensional case. (1.1.9) holds for matrices, analytic semigroups and

parabolic equations. In the infinite dimensional case, this amounts to the spectral map-

ping property, that is, for every t > 0, (1.1.9) holds.
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Nonlinear Stability

Finally, one would like to know whether the the special solution is stable in terms of

the full nonlinear equation rather than the linearized one. In this case, the solution can

be asymptotically or orbitally stable.

Definition 1.1.11. Assume Q solves the problem (1.1.8) and let Uδ (Q) be the open ball

centered at Q with the radius δ . Then Q is nonlinearly stable if ∀ε > 0, ∃δ > 0, such

that if u0 is an initial condition in Uδ (Q), then the associated solution u(x, t) satisfies:

u(·, t) ∈Uε(Q{(·+ τ);τ ∈ R)} for t > 0

Definition 1.1.12. Q is nonlinearly stable with asymptotic phase if for each u0 in

Uδ (Q), there exists τ∗ = τ∗(u0) such that

‖u(·, t)−Q(·+ τ
∗)‖→ 0 as t→ ∞

Remark 3. One may look for the answers to the following questions. In which cases

does spectral stability/linear stability imply nonlinear stability? Suppose we are study-

ing the stability of a special solutions Q of the PDE : ut = Au+N(u) and assume the

linearized operator about Q is L = A+∂uN(Q), we will describe several scenarios in

which one can claim nonlinear stability.

• Case 1. If A is a sectorial operator ( σ(A) \ {0} ⊂ {λ ∈ R s.t. λ < −δ ,δ > 0}

and λ = 0 is a simple eigenvalue), then ‖(A− λ I)−1‖ ≤ K
|λ−a| in a sector. D.

Henry proved using center manifold reduction that in this case the linearly stable

special solution is nonlinearly stable with asymptotic phase.
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Figure 1.1: Example for Case 1. 0 is the simple eigenvalue of A, the rest of the spectrum

lies inside the region enclosed by the dashed lines.

• Case 2. If A generates a strongly continuous semigroup S(t) = eAt . In this case

we have to check that

‖(A−λ I)−1‖ ≤ K

for all λ with ℜλ ≥ η . Then by Gearhart-Prüss Theorem ‖eAt‖ ≤ Ceηt . If, in

addition the nonlinearity is differentiable, then spectral stability implies nonlin-

ear stability [2]. This has been used to prove the existence of invariant stable,

unstable and center manifolds for a large class of dissipative and conservative

equations like the Fitzhugh-Nagumo equation.
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Figure 1.2: Example for Case 2. 0 is the simple eigenvalue of A, the rest of the spectrum

has negative real part.

• Case 3. Essential spectrum up to the imaginary axis. This case was treated by us-

ing exponentially weighted spaces or spaces with polynomial weights plus resol-

vent estimates. An example of these are the KPP equation and the real Gintburg-

Landau equation, where there is a continuum of waves for every wave speed

c > c∗. The nonlinear stability of these waves has been studied in such spaces.
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Figure 1.3: Example for Case 3: The essential spectrum of A has negative real part, but

it is tangent at 0.

• Case 4. Hamiltonian PDE’s have essential spectrum on the imaginary axis and

point spectrum, which is symmetric as in the case of the bound states for the

Nonlinear Schrödinger equation. The authors of [28][29] have developed deep

theory to treat these cases by using the second variation of the reduced Hamil-

tonian at the wave. The wave is then nonlinearly stable if this second variation

is sign definite. The method known as Grillakis-Shatah-Strauss method has been

used in a variety of problems.
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Figure 1.4: Example for Case 4. Point spectrum is symmetric to both axes, essential

spectrum lies on the imaginary axis.

The special solution Q of a PDE can be spectrally, linearly and nonlinearly unsta-

ble. However if the initial values are chosen dynamically in a special manner, then the

nearby solution may stay asymptotically close to Q as time grows. We call this condi-

tional stability. It has been studied by Krieger and Schlag ([33]). They showed that

all steady state solutions ϕλ (x) =
(3λ 2)1/4√

λ 2+|x|2
, λ > 0 of the equation utt−∆u = u5,x ∈ R3

are nonlinearly unstable, but one can construct a manifold Σ such that if the radial

perturbation to ϕ1, (ψ0,ψ1) ∈ Σ, then

• The solution exists globally

• limt→∞[‖u(t,x)−ϕ1‖+‖ut‖] = 0.

• The tangent plane to Σ is given by σ
∫

Rn ξ (x)ψo(x)dx+
∫

Rn ξ (x)ψ1(x)dx = 0.

1.1.3 Attractors

Definition 1.1.13. An attractor is a set A ∈ H that satisfies the following properties:
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• S(t)A = A

• A possesses an open neighborhood U such that, for every u0 in U, S(t)u0 con-

verges to A as t→ ∞.

inf
y∈A

d(S(t)u0,y)→ 0 t→ ∞

where d(x,y) denotes the distance of x to y in H.

Definition 1.1.14. A ∈ H is called a global attractor for the semigroup {S(t)}t≥0 if

it is a compact attractor and attracts every bounded set H, i.e., for any bounded set

B ∈ H, it satisfies the following

d(S(t)B,A )→ 0 as t→ ∞.

Definition 1.1.15. Let B be a subset of H and U an open set containing B. B is called

an absorbing set in U if any bounded set of U enters into B after a certain time, i.e.,for

every bounded B0 ⊂U there exists t1(B0) such that

S(t)B0 ⊂ B for≥ t1(B0)

Definition 1.1.16. Let S(t) be a solution semigroup, acting on a normed space H. Then

S(t) is called point dissipative if there is a bounded set B⊂H such that for any u0 ∈H,

S(t)u0 ∈ B for all sufficiently large t ≥ 0, i.e.,

sup
u0∈H

limsup
t→∞

‖S(t)u0‖H < ∞
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Remark 4. In the ODE case, the point dissipativeness of S(t) implies the existence of

an absorbing set. However, in the PDE case, there might be dissipative systems for

which the existence of an absorbing set is unknown.(e.g., the Navier-Stokes equations

in dimension 3.)

Remark 5. A classical result in dynamical systems is that the existence of an attrac-

tor implies the existence of an absorbing set. However the converse is not true. To

guarantee the existence of an attractor, one needs an additional compactness result.(

[48]).

Definition 1.1.17. The semigroup {S(t)}t≥0 is asymptotically compact if for every

bounded sequence {xn} in H and every sequence tn→ ∞, {S(tn)xn}n is relatively com-

pact in H.

Next, we recall the Riesz-Rellich Criteria for precompactness.

Theorem 1.1.18. (Rellich’s criterion, Theorem XIII.65 in[44]) Let F and G be two

functions on Rn so that F → 0 and G→ 0. Then

S = {ψ |
∫
|ψ(x)|2dx≤ 1,

∫
F(x)|ψ(x)|2dx≤ 1,

∫
G(p)|ψ̂(p)|2d p≤ 1}

is a compact subset of L2(Rn).

Theorem 1.1.19. (M. Riesz’s criterion, Theorem XIII.66 in[44]) Let p < ∞. Let S ⊂

Lp(Rn)1, the unit ball of Lp. A necessary and sufficient condition that the norm closure

of S be norm compact is that:

1. f → 0 in Lp sense at infinity uniformly in S, i.e., for any ε , there is a bounded set

K ∈ Rn so that

∫
Rn\K
| f (x)|pdx≤ ε

p
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for all f ∈ S;

2. f (·− y)→ f uniformly in S as y→ 0, i.e., for any ε , there is a δ so that f ∈ S

and |y|< δ imply that

∫
Rn
| f (x− y)− f (x)|pdx≤ ε

p

Remark 6. As shown in [55] and [56], we may replace condition (2) in the Riesz-

Rellich Criteria above by an equivalent condition, which basically says that the mass

of the high-frequency component has to go uniformly to zero. The following proposition

is the exact formulation.

Proposition 1.1.20. Assume that

• (a) sup
n
‖un(tn, ·)‖L2 6C

• (b) lim
N→∞

limsup
n
‖P>Nun(tn, ·)‖L2 = 0 as N→ ∞

• (c) lim
N→∞

limsup
n→∞

‖un(tn, ·)‖L2(|x|>N) = 0

Then the sequence {un(tn, ·)} is relatively compact in L2(Rn).

Remark 7. If we are in a bounded domain, then (c) is automatically satisfied.

Theorem 1.1.21. [1][35][48] Assume that H is a metric space and the operator S(t) is

the solution semigroup and it is asymptotically compact. Also assume that there exists

an open set U and a bounded set B of U such that B is absorbing in U. Then
⋂
s≥0

⋃
t≥s

S(t)B

is a compact attractor which attracts the bounded sets of U. It is the maximal bounded

attractor in U.
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1.2 Harmonic Analysis Tools

1.2.1 Function spaces and Littlewood-Paley projections

In this section, we define Lp spaces, Fourier transform, and introduce Littlewood-Paley

operators which we will use in Chapter 2 in order to prove the asymptotic compactness

of the solution semigroup operators.

`p and Lp Spaces

`p is the subspace of the set of all sequences of scalars, consisting of all sequences

x = (xn) satisfying

∑
n
|xn|p < ∞

where 0 < p < ∞. If p≥ 1, then ‖x‖p =

(
∑
n
|xn|p

)1/p

defines a norm on `p. In fact `p

is a complete metric space with respect to this norm, and therefore is a Banach space.

Assume (X ,M,µ) is a measure space and f is a measurable function on X and

0 < p < ∞, then the Lp space defined on this measure space is defined by

Lp(X ,M,µ) = { f : X → C : f is measurable and‖ f‖p < ∞}

where ‖ f‖p =

(∫
| f |pdµ

)1/p

. In general Lp(X ,M,µ) is abbreviated by Lp(X), or

simply Lp.
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Hölder’s Inequality:

Assume 1 < p < ∞ and 1
p +

1
q = 1 and f ,g are measurable functions on X , then

‖ f g‖1 ≤ ‖ f‖p‖g‖q. (1.2.1)

Minkowski’s Inequality:

If 1≤ p < ∞ and f ,g ∈ Lp, then

‖ f +g‖p ≤ ‖ f‖p +‖g‖p (1.2.2)

Fourier Transform

Fourier Transform is defined on L2([−L,L]d)→ l2(Zd) by f →{ak}k∈Zd , where

ak =
1

(2L)d/2

∫
[−L,L]d

f (x)e−2πik·x/Ldx.

The inverse Fourier transform is the Fourier expansion

f (x) =
1

(2L)d/2 ∑
k∈Zd

ake2πik·x/L.

For f ∈ L1(Rd), the Fourier transform of f is defined as

f̂ (ξ ) = F ( f )(ξ ) =
∫
Rd

f (x)e−2πixξ̇ dx.

The inverse transform is given by

f (x) =
∫
Rd

f̂ (x)e2πixξ̇ dξ .
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Plancherel Theorem:

If f is a square integrable function, then the following statements hold. In the case of

bounded domain [−L,L]d:

∫
[−L,L]d

| f (x)|2dx = ∑
k∈Zd

|ak|2. (1.2.3)

and in the case of Rd , ∫
Rd
| f (x)|2dx =

∫
Rd
| f̂ (ξ )|2dξ . (1.2.4)

Hausdorff-Young Inequality:

Let 1 < p≤ 2 and let f ∈ Lp(Rn)∩L1(Rn). Then with q satisfying 1
p +

1
q = 1,

(∫
| f̂ (ξ )|qdξ

)1/q

≤ cp

(∫
| f (x)|pdx

)1/p

. (1.2.5)

Note that a special case of Hausdorf-Young inequality, p = q = 2 is the Plancherel

formula.

Littlewood-Paley operators

We will define the Littlewood-Paley operators acting on L2([−L,L]d) via Fourier trans-

form. The projection operator P≤n truncates the terms in the Fourier series expansion

with frequencies k : |k|> 2nL. The Littlewood-Paley operators on L2([−L,L]d) for a

function f are

P≤n f (x) =
1

(2L)d/2 ∑
k:|k|≤2nL

ake2πik·x/L.
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More generally, we may define for all 0≤ n < m≤ ∞

Pn≤·≤m f (x) =
1

(2L)d/2 ∑
k:2nL≤|k|≤2mL

ake2πik·x/L.

Lemma 1.2.1. [59] For the Littlewood-Paley operator Pk defined by

Pk f (x) =
1

(2L)d/2 ∑
|n|∼2kL

ane2πin·x/L

we have

‖Pk f‖2 . 2k‖ f‖L1([−L,L]2). (1.2.6)

Sobolev Spaces

Definition 1.2.2. The Sobolev space W s,p(Rn) where 1 ≤ p ≤ ∞, and s ∈ N is defined

to be the set of all functions f ∈ Lp(Rn), that is,

W s,p(Rn) = { f ∈ Lp(Rn) : ∂
α f ∈ Lp(Rn) : ∀|α| ≤ s}

with the norm

‖ f‖W s,p(Rn) = ∑
|α|≤s
‖∂ α f‖Lp(Rn) (1.2.7)

where ∂ α is the weak partial derivative.

Note that Sobolev spaces with the defined norm (1.2.7) are Banach spaces. When

p = 2, it becomes a Hilbert space and is denoted by Hs(Rn). There is also an equivalent

definition using Fourier transform:

Hs(Rn) = { f ∈ L2(Rn) :
(∫

(1+ |ξ |2)s| f̂ (ξ )|2dξ

)1/2

< ∞}.
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This definition is used when s is a non-integer. For p = 2, the homogeneous Sobolev

space is defined as

Ḣs(Rn) = { f ∈ L2(Rn) :
(∫
|ξ |2s| f̂ (ξ )|2dξ

)1/2

< ∞}.

For a bounded domain [−L,L]d ⊂ Rd , the homogeneous Sobolev space is defined as

Ḣs([−L,L]d) = { f : [−L,L]d → C :

(
∑

k∈Zd

|ak|2
(
|k|
L

)2s
)1/2

< ∞}. (1.2.8)

Since we need Littlewood-Paley operators in order to obtain the compactness result in

Chapter 2, we find convenient to work with the equivalent norm:

‖ f‖Ḣs([−L,L]2) ∼

 ∑
j∈Z

22s j( ∑
|k|∼2 jL

|ak|2)

1/2

∼

(
∑

j∈Z
22s j‖Pj f‖2

L2([−L,L]2)

)1/2

.

(1.2.9)

Gagliardo-Nirenberg-Sobolev Inequality:

Assume 1≤ p < n. Then there exists a constant C depending only on p and n, such that

‖u‖
L

np
n−p (Rn)

≤C‖∇u‖Lp(Rn) (1.2.10)

Sobolev Embedding:

Let W k,p(Rn) denote the Sobolev space consisting of all real-valued functions on Rn

whose first k weak derivatives are functions in Lp. Assume k is a non-negative integer

and 1≤ p≤ ∞. If k > l and 1≤ p < q≤ ∞ satisfying (k− l)p < n and
1
q
=

1
p
− k− l

n
,

then

W k,p(Rn)⊆W l,q(Rn). (1.2.11)
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Log-convexity of Lp norms:

Assume 0 < p0 < p1 ≤∞ and f ∈ Lp0(X)∩Lp1(X), then f ∈ Lp(X) for all p0 ≤ p≤ p1

and we have

‖ f‖Lpθ (X) ≤ ‖ f‖1−θ

Lp0(X)‖ f‖θ

Lp1(X) (1.2.12)

for all 0≤ θ ≤ 1, where the exponent pθ is defined by
1
pθ

=
1−θ

p0
+

θ

p1
.

1.2.2 Strichartz Estimates

Strichartz estimates are space-time estimates on wave equations and dispersive equa-

tions, like Klein-Gordon, Kortewegde Vries, Boussinesq, nonlinear Schrödinger equa-

tions. These estimates are needed if one wants to perturb linear wave and dispersive

equations to nonlinear equations, because they are very helpful in order to control the

space-time norm of solutions to the linear problem in terms of the norm of the initial

datum. Space-time norms are defined as follows:

‖ f‖Lr
t Lp

x
=

(∫
R

(∫
R
| f (t,x)|pdx

)r/p

dt

)1/r

‖ f‖Lp
x Lr

t
=

(∫
R

(∫
R
| f (t,x)|rdt

)p/r

dx

)1/p

Note that these two norms are not equivalent.

We present the Strichartz estimates for the Klein-Gordon equation since we will

need them in order to get the proper estimates in Chapter 3.

Definition 1.2.3. We say that a pair (q,r) is KG admissible (sharp KG admissible

respectively), if q,r≥ 2 : 2/q+d/r≤ d/2 (q,r≥ 2 : 2/q+d/r = d/2 respectively) and

(q,r,d) 6= (2,∞,2).
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Figure 1.5: The region of KG admissible pairs.

Lemma 1.2.4. (Lemma 2.1 in [39] with σ = d,λ = (d + 2)/2). Let (q,r), (q1,r1) be

both KG admissible pairs and s≥ 0. Then, for H0 =−∆+1,

‖eit
√

H0 f‖Lq
t W s,r

x
≤C‖ f‖

Hs+ d+2
2 ( 1

2−
1
r )∥∥∥∥∫ t

0

sin((t− s)
√

H0)√
H0

G(s, ·)ds
∥∥∥∥

Lq
t W s,r

x

≤C‖G‖
L

q′1
t W

s−1+ d+2
2 ( 1

r′1
− 1

r ),r
′
1
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Chapter 2

LONG-TIME BEHAVIOR FOR THE SOLUTIONS OF THE

KURAMOTO-SIVASHINSKY EQUATION

2.1 Introduction and Previous Results

The Kuramoto-Sivashinsky equation,

ϕt =−∆
2
ϕ−∆ϕ− 1

2
|∇ϕ|2 (2.1.1)

has been studied extensively in one space dimension. It is interesting mathematically

because the linearization about the zero state has a large number of exponentially grow-

ing modes, whose growth corresponds to the development of nontrivial structures. The

Kuramoto-Sivashinsky equation has become a canonical model for spatio-temporal

chaos in 1+ 1 dimensions. In [58], the instability of the travelling waves is a hint

of the complexity of the dynamics of the equation if the domain is R. When considered

on a bounded domain with appropriate initial and boundary conditions, there are many

important results, some of which we will explain here briefly. In this case it is conve-

nient to work with the differentiated form of the equation, where u = dφ/dx and the
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equation becomes

ut =−uxxxx−uxx−uux.

Using Lyapunov function approach, the authors of [40] gave the first long-time behavior

result showing that limsup
t→∞

‖u‖2 ≤CL5/2 for odd initial data. In [16], the exponent was

improved to 8
5 for any mean-zero initial data. Most recently, the authors of [7] improved

the exponent from 8
5 to 3

2 for any mean-zero initial data. While all of the above results

used the Lyapunov function framework, there are recent results in [25], [30] that do not

use this approach. Our main goal is to treat the case of higher space dimensions, in

particular in the case of two and three dimensional spaces. This problem is difficult and

even the global regularity on unbounded domain and in the periodic case is still open.

Some of the available results have restrictions on the domain or work on a modified

equation. In the two dimensional case, defining U = (u1,u2) = ∇ϕ , the differentiated

KS equation becomes,

∂tu1 +42u1 +4u1 +u1∂xu1 +u2∂xu2 = 0 (2.1.2)

∂tu2 +42u2 +4u2 +u1∂yu1 +u2∂yu2 = 0

∂yu1 = ∂xu2

The authors of [49] showed the existence of a bounded local absorbing set and an

attractor in thin two-dimensional domain, but with restricted initial data. Later in [38]

this result was made sharper and more transparent. Molinet showed that there exist

positive constants C0,K > 1 such that for any Lx > 2π , if 0 < Ly < 2π satisfies

(
1−
(

Ly

2π

)2
)−4/9

Ly 6 (K2C3
0)
−4/7L−67/35

x (2.1.3)
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then the solution satisfies

limsup
t→∞

‖u1‖2 ≤ KL8/5
x L1/2

y , lim
t→∞
‖u2‖2 = 0 (2.1.4)

provided

‖u10‖2 6C−1
0

(
1−
(

Ly

2π

)2
)

L−1/4
x L−7/4

y , ‖u10‖2 6C−1
0 L−1/4

x L1/4
y (2.1.5)

Using the results in [38] and [7] and assuming Ly ≤CL13/7
x , one gets a better bound

limsup
t→∞

‖~u‖2 ≤CL3/2
x L1/2

y .

If one is willing to modify the equation, as in [43], where the equation

ut =−∆
2u−uxx−uux

with periodic boundary conditions is studied, then the existence of an attractor can be

proved. In Section 2.2, we will also obtain results for a modified Kuramoto-Sivashinsky

equation in space dimension 2.

One can also study the long-time behavior of some special solutions to the original

equation. In our recent work, Section 2.4, inspired by the paper [6], we study the

long-time behavior of the radially-symmetric solutions of the Kuramoto-Sivashinsky

equation in space dimension 3. The authors of [6] worked on the radially symmetric

solutions of

ϕt +∆
2
ϕ = |∇ϕ|2 (2.1.6)
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in an annulus Ω = {x ∈ R2 such that 0 < r0 < ‖x‖ < R0} with Neumann boundary

conditions:
∂ϕ

∂ r
=

∂4ϕ

∂ r
= 0 on Γ∞ (2.1.7)

Assuming that the initial condition φ0 is radially symmetric, they proved the existence

of radially symmetric solution ϕ(r, t) such that

ϕ ∈ L∞
loc([0,∞);W 1,2(Ω))∩L2

loc([0,∞);W 3,2(Ω)) (2.1.8)

Furthermore ϕ satisfies an exponentially growing with time bound on the norm of the

solution as follows

∫ R0

r0

ϕ
2(r, t)dr 6 et R0

r0

∫ R0

r0

ϕ
2(r,0)dr+(tet +1)

16c2R2
0

r2
0

e4ct
(∫ R0

r0

ϕ
2
r (r,0)dr

)3

This global existence result is remarked there to be also true in space dimension 3 in a

shell domain between two concentric spheres.

This chapter is organized as follows. In Section 2.2, work on the long-time be-

havior of the solutions of the modified Kuramoto-Sivashinsky equation (2.2.1) in two-

dimensional space. In Section 2.3, we work on a simpler model, Burger-Sivashinsky

equation (2.3.2), first in one-dimensional space, then in two-dimensional space. In

Section 2.4, we study the three-dimensional radially-symmetric Kuramoto-Sivashinksy

equation 2.4.2. We close the chapter by remarks and open questions.

Note that throughout this chapter, we use ‖·‖2 to denote ‖·‖L2(Ω), where in Section

2.2, we take Ω = [−L,L]× [−L,L]. Then in the first part of Section 2.3, while working

on one dimension, Ω will be [−L,L], but in the second part, when we work on radially

symmetric solutions, we will take Ω as [0,R]. Finally, we will take Ω = [r0,R0] in Sec-

tion 2.4. While working on the polar coordinates, we will use the the following norm:
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‖·‖2 =

(∫ R

0
(·)2dr

)1/2

, instead of the actual L2 norm, that is, ‖·‖2 =

(∫ R

0
(·)2rdr

)1/2

.

We also use H̄s(Ω) to denote the Sobolev space obtained by taking the completion with

respect to the norm ‖·‖Hs of smooth functions satisfying the given boundary conditions.

As introduced in [40], we take a dot above any space to denote the subspace of the func-

tions of zero mean, that is, φ ∈ ˙̄Hs(Ω) if and only if φ ∈ H̄s(Ω) and
∫

Ω

φ(x)dx = 0.

2.2 Kuramoto-Sivashinsky type Equation in 2D

2.2.1 Formulation of the Problem

We consider the following variation of the Kuramoto-Sivashinsky equation in 2D:

ut =−∆
2u−∆u−uux−uuy +g(~x) (2.2.1)

u(0;x,y) = u0(x,y) (2.2.2)

u(t;x,y) = u(t;x+2L,y) = u(t;x,y+2L) ∀(x,y) ∈ R2, t ≥ 0 (2.2.3)

We assume that u is a mean-zero solution satisfying the boundary conditions:

dku
dxidy j (x,±L) =

dku
dxidy j (±L,y) =

dku
dxidy j (L,L) k = i+ j = 0,1,2,3 (2.2.4)

where (x,y) ∈ (−L,L)× (−L,L). We also assume that the external force g(x) is a mean

zero function which is in L2([−L,L]2).
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2.2.2 Results

Theorem 2.2.1. The dynamical system associated with the two-dimensional periodic

Kuramoto-Sivashinsky type equation (2.2.1) with its boundary conditions is globally

well-posed and possesses a global attractor in in L2([−L,L]2).

Proof. First we will prove the local well-posedness in the periodic case. In order to

prove the global well-posedness in the periodic case, we will use the potential function

φx introduced in [7], which gives the following result:

limsup
t→∞

‖u‖L2([−L,L]2) 6CL2. (2.2.5)

Then we will show that the solution u is point dissipative and asymptotically compact

in the periodic case with the assumption of the initial solution u0 being in the class of

L2. Then we will conclude the existence of a global attractor in L2([−L,L]2).

Global Well-Posedness for (2.2.1) in L2([−L,L]2)

In this section, we will first show the local well-posedness for (2.2.1) and then iterate the

local well-posedness result to a global one by using the a priori bound for the solution.

We will need some estimates throughout the proof which we collect in the following

lemma.

Lemma 2.2.2. Let f ∈ L2([−L,L]2) then we have

‖e−t42
f‖Ḣ1([−L,L]2) 6

C
t1/2‖ f‖L1([−L,L]2) (2.2.6)

‖e−t42
f‖2 6C‖ f‖2 (2.2.7)

‖e−t42
f‖Ḣ2([−L,L]2) 6

C
t1/2‖ f‖2 (2.2.8)

44



Proof. Duality principle implies that showing the following inequality

‖∇e−t42
f‖L∞([−L,L]2) 6

C
t1/2‖ f‖2

is equivalent to showing (2.2.6). By (1.2.5) and (1.2.9), we have

‖∇e−t42
f‖L∞([−L,L]2) 6 ‖

̂
∇e(−D4)t f‖L1([−L,L]2) =

1
2L ∑

n∈Z2

2π

L
ne−t( 2π

L )4n4
|an|

6 ∑
|n|:n.t−1/4L

π

L2 ne−t( 2π

L )4n4
|an|+ ∑

m∈Z
∑

|n|∼2mt−1/4L

π

L2 ne−24m(2π)4
|an|

6 (∑
n
|an|2)1/2 π

t1/2 +∑
m

(
(π2mt−1/4)(e−24m(2π)4

)(∑
n
|n|2|an|2)1/2

)
. (∑

n
|an|2)1/2 1

t1/2 +∑
m
(∑

n
|an|2)1/2(2mt−1/4)(2mt−1/4)(e−24m16π4

)

= ‖ f‖2
1

t1/2 +‖ f‖2
1

t1/2 ∑
m

22me−24m16π4

6
C

t1/2‖ f‖2 (since ∑
m

22me−24m16π4
converges.)

In order to prove (2.2.7), we will also use (1.2.5) and (1.2.9), that is,

‖e−t42
f‖2 = ‖ê−t42 f‖2 =

(
∑

n∈Z2

e−2t( 2π

L )4n4
|an|2

)1/2

6C‖ f‖2

(2.2.8) also follows from (1.2.5) and (1.2.9):

‖e−t42
f‖Ḣ2([−L,L]2) = ‖4e−t42

f‖2 =

(
∑

n∈Z2

(
2π

L
)4n4e−2t( 2π

L )4n4
|an|2

)1/2

=
1

t1/2 ( ∑
n∈Z2

t(
2π

L
)4n4e−2t( 2π

L )4n4
|an|2)1/2 6

1
t1/2 sup

m
me−2m2

(∑ |an|2)1/2

6
C

t1/2‖ f‖2 (m = t(
2π

L
)4n4 and sup

m
me−2m2

exists.)
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Local well-posedness for (2.2.1) in L2([−L,L]2)

We will show that Λ : L2([−L,L]2)→ L2([−L,L]2) defined by

Λu = e−t42
u(0)+

∫ t

0
e−(t−s)42

(−4u−uux−uuy +g)ds (2.2.9)

has a fixed point in XR,T = {u ∈ L∞((0,T ),L2([−L,L]2)) : sup‖u(t, ·)‖2 6 R}. By tri-

angular inequality, we have

‖Λu‖2 . ‖e−t42
u(0)‖2 +

∫ t

0
‖e−(t−s)42

u‖Ḣ2([−L,L]2)

+‖e−(t−s)42
(u2)‖Ḣ1([−L,L]2)+‖e

−(t−s)42
g‖2ds,

Applying Lemma (2.2.2), we get

‖Λu‖2 6C‖u(0)‖2 +
∫ t

0

C1

(t− s)1/2‖u‖2 +
C2

(t− s)1/2‖u
2‖L1([−L,L]2)+C3‖g‖2ds

Since t is in [0,T ], we have

‖Λu‖2 6C‖u(0)‖2 +2C1T 1/2‖u‖2 +2C2T 1/2‖u‖2
2 +C3T‖g‖2

If we choose R such that C‖u(0)‖2 6 R/2 and T such that

2C1T 1/2‖u‖2 +2C2T 1/2‖u‖2
2 +C3T‖g‖2 6 R/2,

we have ‖Λu‖2 6 R. Similarly one can show that Λ is a contraction.
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Global well-posedness for (2.2.1) in L2([−L,L]2)

In order to prove global well-posedness in L2([−L,L]2), it is enough to show that there

is a time-independent bound for the solution

sup
0≤t≤T

‖u(t, ·)‖2 6C.

In Section (2.2.2), we will see that C only depends on ‖g‖2 and L. We will show that for

the local L2 solution u(t, .), there exists a Lyapunov function φ = φ(x) ∈ H2([−L,L]2)

such that one has the estimate

‖u(t, ·)‖2 6 ‖φ‖2 +

√
e−

λ0
2 t‖u(0)‖2

2 +
2P2

λ0
(2.2.10)

for some constants λ0 > 0 and P, and for every 0 < t < T , where T is its life span. As-

suming (2.2.10), let us prove that the solution is global. Fix u0 ∈ L2([−L,L]2), assume

φ = φ(x) ∈ ˙̄H2([−L,L]2) and define for every (sufficiently large) integer n

Tn = sup{t : L2 solution is defined in(0, t), sup
0<t1<t

‖u(t, ·)L2‖< n}

and define T ∗ := limsup
n

Tn. If T ∗ = ∞, there is nothing to prove, the solution is global.

If T ∗ < ∞, then limsup
t→T ∗

‖u(t, ·)‖L2([−L,L]2) = ∞. On the other hand, take a sequence

tn→ T ∗, so that lim
n→∞
‖u(tn, ·)‖2 = ∞.

By (2.2.10), we have

limsup
n→∞

‖u(tn, ·)‖2 6 ‖φ‖2 +

√
e−

λ0
2 T ∗‖u(0)‖2

2 +
2P2

λ0
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where P = C
(
‖g‖2,‖φ‖H2([−L,L]2)

)
and λ0 are positive constants. Thus, there exist

positive C1, C2 and C3 such that

limsup
n→∞

‖u(tn, ·)‖2 6C1‖φ‖H2([−L,L]2)+C2 sup
0≤s≤T ∗

‖g(s, ·)‖2 +C3‖u0‖2 < ∞,

but this is a contradiction. Thus we can conclude that the solution is globally well-

posed.

Existence of the Global Attractor

We will prove point dissipativeness and asymptotic compactness to conclude the ex-

istence of a global attractor by Theorem 1.1.21. In order to show point dissipative-

ness, we need to verify that for any tn → ∞, B > 0 and any sequence of initial data

{un} ∈ L2([−L,L]2) with supn ‖un‖2 ≤ B, we have

sup
u0∈L2([−L,L]2)

limsup
t→∞

‖S(t)u0‖2 ≤C(g,L) (2.2.11)

In order to obtain the compactness result, we will use Proposition (1.1.20), which re-

quires to prove the following two:

sup
n
‖S(tn)un)‖2 6C(g,B,L) (2.2.12)

lim
N

limsup
n
‖P>NS(tn)un‖2 = 0 as N→ ∞ (2.2.13)

Then we will conclude that the sequence {un(tn, ·)} is point dissipative by (2.2.11) and

asymptotically compact by (2.2.12) and (2.2.13) in L2([−L,L]2).
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Point dissipativeness

In this section, our aim will be to prove (2.2.11). The lemmas and the theorem in this

section will be based on Lyapunov approach.

Lemma 2.2.3. Given u = u(t;x,y) ∈ L2([−L,L]2) for all t ≥ 0, and φ(t;x,y) = φ(x) ∈

L2([−L,L]) satisfying the following inequality:

d
dt
‖u−φ‖2

2 6−λ0‖u‖2
2 +P2 (2.2.14)

for some constants λ0 > 0 and P, then B(O,R∗∗), the ball of radius R∗∗ centered about

the origin, is an attracting region, where the radius R∗∗ is given by

R∗∗ =

√
2‖φ‖2

2 +
2P2

λ0
+‖φ‖2 (2.2.15)

Proof. The proof for 1D is in [7], and it also works for 2D. By the parallelogram law

−λ0‖u−φ‖2
2 >−2λ0‖u‖2

2−2‖φ‖2
2, which gives

d
dt
‖u−φ‖2

2 +
λ0

2
‖u−φ‖2

2 6 λ0‖φ‖2
2 +P2

If we multiply each side by e
λ0
2 t , we get d

dt (e
λ0
2 t‖u− φ‖2

2) 6 e
λ0
2 t(λ0‖φ‖2

2 +P2). By

integrating we get ‖u−φ‖2
2 6 e−

λ0
2 t‖u(0)‖2

2 +
2
λ0
(λ0‖φ‖2

2 +P2). Thus we have the fol-

lowing result

‖(u(t, ·)‖2 6 ‖φ‖2 +

√
e−

λ0
2 t‖u(0)‖2

2 +
2P2

λ0
(2.2.16)

It is clear that B(φ ,R∗), the ball of radius R∗ centered about φ , is exponentially attract-

ing, with R∗2 = 2‖φ‖2
2 +(2P2

λ0
). The triangle inequality implies B(φ ,R∗) ⊂ B(0,R∗∗).

This will guarantee the existence of an absorbing set.
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Lemma 2.2.4. For any φ(t;x,y) = φ(x) ∈ H̄2
per[−L,L] and u(t;x,y) solving (2.2.1) we

have the inequality

1
4

d
dt

∫
[−2L,2L]2

(u−8φ̃)2dx̃dỹ 6 4
∫

[−2L,2L]2

(∇̃u)2− (4̃u)2 +(
1
4
− φ̃x̃)u2dx̃dỹ (2.2.17)

+
∫

[−2L,2L]2

32(φ̃x̃)
2 +256(φ̃x̃x̃)

2 +16φ̃
2 +

g2

2
dx̃dỹ

Proof. Our proof will be similar to the one for the space dimension one given in [7]. A

straightforward calculation gives

1
2

d
dt
‖u−φ‖2

2 =
∫

[−L,L]2

ut(u−φ)dxdy=
∫

[−L,L]2

(−∆
2u−∆u−uux−uuy+g)(u−φ)dxdy.

After integration by parts and applying periodic boundary conditions this becomes

1
2

d
dt
‖u−φ‖2

2 =
∫

[−L,L]2

(
(∇u)2− (4u)2−φxux +φxx4u− 1

2
φxu2 +gu−gφ

)
dxdy.

Applying the Cauchy-Schwartz inequality in the form 〈 f ,g〉 ≤ p/2〈 f , f 〉+1/2p〈g,g〉

and making substitution φ = 8φ̃ , x̃ = 2x, ỹ = 2y, we get (2.3.9).

Note that (2.2.14) and (2.3.9) show that if we can construct φ ∈ H̄2
per[−L,L]2 such

that the coercivity estimate

〈u,Ku〉=
∫

[−L,L]2

(
(4u)2− (∇u)2 +(φx−

1
4
)u2
)

dxdy≥ λ0‖u‖2
2 > 0 (2.2.18)
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holds for some λ0 independent of L, then we get an estimate of the form

limsup
t→∞

‖u‖2 6 R∗∗ =
√

c1‖φ‖2
2 + c2‖φx‖2

2 + c3‖φxx‖2
2 + c4‖g‖2

2 +‖φ‖2 (2.2.19)

6C(‖φ‖H̄2
per
,‖g‖2)< ∞ (2.2.20)

In order to prove (2.4.12), we will use the same potential function φ(x) as constructed

in [7]. We will also use some results from [7] such as

∫ L

−L
u2

xx−u2
x +(φx−

1
2
)u2dx >

1
4

∫ L

−L
u2

xx +u2dx (2.2.21)

for all u ∈ C3[−L,L] with u(0) = 0. In fact (2.4.1) is not the exact inequality that is

proved in [7]. However one can reconstruct the potential φ(x) so that (2.4.1) holds.

Lemma 2.2.5. For u(t;x,y) solving (2.2.1) we have the inequality

∫
[−L,L]2

(
u2

yy +2uxxuyy−u2
y +

1
4

u2
)

dxdy > 0 (2.2.22)

Proof. By rearranging the terms, then applying Plancherel’s Theorem, integration by

parts with the periodic boundary conditions we get

∫
[−L,L]2

(
u2

yy +2uxxuyy−u2
y +

1
4

u2
)

dxdy

=
∫

[−L,L]2

(
u2

yy +
1
4

u2−u2
y

)
dxdy+

∫
[−L,L]2

(2uxxuyy)dxdy

=

(
4π2n2

L2 − 1
2

)2

‖u‖2
2 +2‖uxy‖2

2 > 0
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By using Lemma (2.2.5), we obtain the coercivity estimate (2.2.18):

∫
[−L,L]2

(
(4u)2− (∇u)2 +(φx−

1
4
)u2
)

dxdy =

=
∫

[−L,L]2

(
u2

xx +2uxxuyy +u2
yy−u2

x−u2
y +(φx−

1
4
)u2
)

dxdy

=
∫

[−L,L]2

(
u2

xx−u2
x +(φx−

1
2
)u2
)

dxdy+
∫

[−L,L]2

(
u2

yy +2uxxuyy−u2
y +

1
4

u2
)

dxdy

>
1
4

∫ L

−L

∫ L

−L
(u2

xx +u2)dxdy >
1
4
‖u‖2

2

Lemma 2.2.6. The potential φ satisfies ‖φ‖H̄2
per([−L,L]2) 6CL2.

Proof. From [7], since ‖φ‖H̄2
per([−L,L]) 6CL3/2, we get

∫ L

−L
‖φ‖2

H2([−L,L])dy 6CL4

Remark 8. The results claimed above are for odd initial data with the assumption of

the external force to be odd. Since the theorem proved in [7] requires the assumption of

u(0)=0, it is clear that it holds for any odd initial data. These results can be extended

to arbitrary mean-zero initial data in the manner done by ([16]) or ([27]). So we can

conclude that one can construct a potential function φ satisfying ‖φ‖H̄2
per

6CL2 for any

initial data.

Proof of (2.2.11):

Fix the initial data u0 with ‖u0‖2 ≤ B, and define u(t, ·) = S(t)u0 we can conclude

(2.2.11) because from (2.2.10) we have the following result.

‖S(t)u0‖2 6 ‖φ‖2 +

√
e−

λ0
2 t‖u(0)‖2

2 +
2P2

λ0
(2.2.23)
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It follows that

limsup
t→∞

‖u(t, ·)‖2 6 R∗∗ 6C1‖φ‖H2([−L,L]2)+C2‖g‖2 ≤C(g,L) (2.2.24)

which is the point dissipativeness of S(t).

Asymptotic compactness

Proof of (2.2.12): The uniform boundedness follows from (2.2.10) as well.

If u(tn.·) = S(tn)un, where un ∈ L2([−L,L]2) and ‖un‖2 ≤ B then from (2.2.10)

‖S(tn)un‖2 6 ‖φ‖2 +

√
e−

λ0tn
2 ‖un(0)‖2

2 +
2P2

λ0
6C(g,B,L)

Proof of (2.2.13): Define uk := Pku and gk = Pk(g(x)) where Pk is the Littlewood-Paley

operator. If we apply Pk to (2.2.1) we get

Pkut = Pk(−42u)−Pk(4u)−Pk(uux +uuy)+Pk(g(x)).

We can rewrite this as

(uk)t =−42uk−4uk−Pk(uux +uuy)+gk.

Multiplying each side by uk, integrating over the domain [−L,L]2 and applying integra-

tion by parts gives:

∂t
1
2
‖uk(t, ·)‖2

2 +
∫
(4uk)

2−
∫
(∇uk)

2 +
∫

Pk(uux +uuy)uk =
∫

gkuk.
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Now from (1.2.9), we have

∫
(4uk)

2 >C124k‖uk‖2
2 and

∫
(∇uk)

2 6C222k‖uk‖2
2 (2.2.25)

We can also find a bound for ‖gk‖2‖uk‖2.

‖gk‖2‖uk‖2 6
C3

2
24k‖uk‖2

2 +
1

2C3
2−4k‖gk‖2

2 (2.2.26)

To find a bound for |
∫

Pk(uux + uuy)ukdx|, we define v =
1
2
[∂x(u2) + ∂y(u2)]. If we

apply integration by parts, we get

∫
Pk(v)ukdx =−1

2

∫
(u2)k[∂xuk +∂yuk]dx 6C‖Pk(u2)‖2‖∇uk‖2. (2.2.27)

By using Lemma (1.2.4), and (2.2.25) and (2.2.27), we can say that

|
∫

Pk(uux +uuy)uk|6C‖Pk(u2)‖2‖∇uk‖2 . 2k‖u2‖L12k‖uk‖2 (2.2.28)

Finally using Cauchy- Schwartz inequality, we get

|
∫

Pk(uux +uuy)uk|6 ε25k‖uk‖2
2 +
‖u‖4

2
ε2k (2.2.29)

Thus from (2.2.26), (2.2.27) and, (2.2.28),

∂t
1
2
‖uk(t, ·)‖2

2 +C124k‖uk‖2
2

6C222k‖uk‖2
2 + ε25k‖uk‖2

2 +
‖u‖4

2
ε2k +

C3

2
24k‖uk‖2

2 +
1

2C3
2−4k‖gk‖2

2
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Now defining Ik(t) by Ik(t) = ‖uk(t, ·)‖2
2, choosing ε = C1

2 2−k, we obtain the following

inequality:

∂tIk(t)+C424kIk(t)6
2

C1
‖u‖4

2 +
1

2C3
2−4k‖gk‖2

2 (2.2.30)

Since limsup
t→∞

‖u‖2 =C(g,L) from (2.2.19) and using Gronwall inequality, we get

Ik(t)6 Ik(0)eC42−4kt +
2−4k

C4

(
2

C1
C(g,L)4 +

1
2C3

2−4k‖gk‖2
2

)

Since g∈ L2([−L,L]2), we have that ( 2
C1

C(g,L)4+ 1
2C3

2−4k‖gk‖2
2) is bounded. Thus we

get

‖P>Nun‖2
2 u ∑

k:2kL≥N

‖uk‖2
2 = ∑

k:2kL≥N

Ik 6 ∑
k:2kL≥N

Ik(0)eC42−4kt +
2−4k

C4
C̃(g,L)

which tends to 0 as N→ ∞.

2.3 Burgers-Sivashinsky Equation in 1D and 2D

2.3.1 Formulation of the Problem

Burgers-Sivashinsky Equation,

φt = ∆φ +φ −|∇φ |2 (2.3.1)

is often used as a model problem for fluid dynamical systems. In the first part, we

will work on a bounded domain [−L,L] in the case of one space dimension. When we

differentiate (2.3.1) and define u = φx, then we get

ut = uxx +u−2uux (2.3.2)
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We will work with this equation assuming first that the initial data is odd, then we

will generalize the result to general initial data.We will have the following boundary

conditions and will assume that u is the mean-zero solution, i.e.,

d ju
dx j (L) =

d ju
dx j (−L), j = 0,1

∫ L

−L
u0(x)dx = 0, x ∈ (−L,L) (2.3.3)

In the second part, we will study the long-time behavior of the radially symmetric solu-

tions of Burger-Sivashinksy equation in a two-dimensional domain Ω = {x ∈ R2, 0≤

‖x‖< R0}. Changing the rectangular coordinates to polar coordinates and defining the

radially symmetric solution as v(r), (2.3.1) becomes

vt−
(

∂ 2v
∂ r2 +

1
r

∂v
∂ r

)
− v+

(
∂v
∂ r

)2

= 0 (2.3.4)

And we know that v is even due to its construction. Differentiating (2.3.4), and defining

u = ∂v
∂ r we have

ut−
∂ 2u
∂ r2 −

1
r

∂u
∂ r

+
1
r2 u−u−2u

∂u
∂ r

= 0 (2.3.5)

We will have boundary conditions with the assumption of u(r) being the mean-zero

solution, i.e.,

d ju
dr j (R) =

d ju
dr j (0), j = 0,1

∫ R

0
u0(r)dr = 0, r ∈ (0,R) (2.3.6)

We will work on the following equation, and the space will be L2[0,R] and we know

that u is an odd function, due to its construction.
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2.3.2 Results

Theorem 2.3.1. For the solution u(t;x) satisfying (2.3.2) and (2.3.3), we have

limsup
t→∞

‖u‖L2[−L,L] 6C1L3/2 (2.3.7)

Theorem 2.3.2. For the radially symmetric solution u(t;r) satisfying (2.3.5)-(2.3.6),

we have

limsup
t→∞

‖u‖L2[0,R] 6C2R3/2 (2.3.8)

where C1 and C2 are independent of L and R.

Proof of Theorem 2.3.1:

Our results for BS equations are also based on Lyapunov Function approach. We will

present some lemmas which will help us to construct a potential function φ as in Lemma

2.2.3.

Lemma 2.3.3. For any φ ∈ ˙̄H1[−L,L] and u(t;x) a solution of (2.3.2) and satisfying

(2.3.3), we have the inequality

d
dt

∫ L

−L
(u−φ)2dx 6 2

∫ L

−L

(
(2−φx)u2− 3

4
u2

x

)
dx+

∫ L

−L

(
1
2

φ
2 +2φ

2
x

)
dx (2.3.9)

Proof. A straightforward calculation gives

1
2

d
dt
‖u−φ‖2 =

∫ L

−L
ut(u−φ)dx =

∫ L

−L
(uxx +u−2uux)(u−φ)dx (2.3.10)

After integrating by parts and applying periodic boundary conditions, we have

1
2

d
dt
‖u−φ‖2 =

∫ L

−L

(
−u2

x +u2 +uxφx−uφ −u2
φx
)

dx (2.3.11)
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Applying the Cauchy-Schwartz inequality: 〈 f ,g〉 ≤ p/2〈 f , f 〉+1/2p〈g,g〉 gives

1
2

d
dt
‖u−φ‖2 6

∫ L

−L

((
1+

1
2p
−φx

)
u2 +

(
−1+

1
2q

)
u2

x +
p
2

φ
2 +

q
2

φ
2
x

)
dx

(2.3.12)

Taking p = 1
2 and q = 2 we get

1
2

d
dt
‖u−φ‖2 6

∫ L

−L

(
(2−φx)u2− 3

4
u2

x

)
dx+

∫ L

−L

(
1
4

φ
2 +φ

2
x

)
dx (2.3.13)

Remark 9. Our aim is to construct φ ∈ ˙̄H1[−L,L] such that the coercivity estimate

〈u,Ku〉= 2
∫ L

−L

(
3
4

u2
x +(φx−2)u2

)
dx≥ λ0‖u‖2

2 > 0 (2.3.14)

holds for some λ0 independent of L, then one gets an estimate of the form

limsup
t→∞

‖u‖2 6 R∗∗ =
√

c1‖φ‖2
2 + c2‖φx‖2

2 +‖φ‖2 6C‖φ‖H̄1 < ∞ (2.3.15)

In the following section, defining λ = λ0
2 , we will construct φ ∈ ˙̄H1[−L,L] such that

∫ L

−L

(
3
4

u2
x +(φx−2)u2

)
dx >

λ0

2
‖u‖2 = λ‖u‖2 (2.3.16)

Construction of φ

We construct the mean zero function in this form: φx := q(x)−〈q〉. Here 〈.〉 denotes

the mean value on [−L,L]:

〈q〉= 1
2L

∫ L

−L
q(x)dx (2.3.17)
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We define an even function ϕ ∈ C∞
0 such that supp ϕ ∈ [−4,−1

4 ]
⋃
[1

4 ,4] satisfying

ϕ(x) = 1 if |x| ∈ [1
2 ,2] and

∫ L
−L ϕ(x)dx≤ 1. We define the following potential function

qM as

qM =−M2
ϕ(Mx) (2.3.18)

Note that that 〈qM(x)〉6−M
2L

since

∫ L

−L
qM(x)dx =

∫ L

−L
−M2

ϕ(Mx)dx =−M
∫ L

−L
ϕ(y)dy (2.3.19)

Our aim is to choose q such that it satisfies

X〈q〉6−2−λ (2.3.20)

X
∫ L

−L

3
4

u2
x +q(x)u2dx > 0 (2.3.21)

If we choose q =
qM

100
, then (2.3.20) implies that there exists M such that

M > 200(2+λ )L

So for such M, we have to show (2.4.12). By Hardy’s Inequality with the assumption

of u(0) = 0, we get ∫ L

−L
u2

xdx >
1
4

∫ L

−L

u2

x2 dx (2.3.22)

Using (2.3.22), we get

∫ L

−L

(
3
4

u2
x +q(x)u2

)
dx >

∫ L

−L

(
3

16
u2

x2 +q(x)u2
)

dx

=
∫ L

−L

(
3

16x2 −
M2

100
ϕ(Mx)

)
u2dx
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Observe that if |x| is not in [ 1
4M ,4M], then (2.4.12) automatically satisfies. Otherwise

∫ L

−L

(
3
4

u2
x +q(x)u2

)
dx >

∫ L

−L
M2
(

3
256
− 1

100
ϕ(Mx)

)
u2dx > 0 (2.3.23)

Thus we can conclude that

∫ L

−L

(
3
4

u2
x +(φx−2−λ0)u2

)
dx >

∫ L

−L

(
3
4

u2
x +q(x)u2

)
dx > 0 (2.3.24)

Note that in order to minimize ‖φ‖H1 , we will choose M = O(L) since M > 200(2+

λ )L. Thus an optimal potential function is in the form q(x) =−L2ϕ(Lx).

Lemma 2.3.4. The potential φ satisfies ‖φ‖H1 6CL3/2.

Proof. From the definition φx = q(x)−〈q〉=−L2
ϕ(Lx)−〈q〉

‖φx‖2
L2 =

∫ L

−L
q2(x)dx−

∫ L

−L
〈q〉2dx =

∫ L

−L
L4

ϕ
2(Lx)dx−

∫ L

−L
〈q〉2dx

After rescaling we get ‖φx‖2 = O(L3/2). From the definition of φx, we have

φ(x) =
∫ x

0
φsds =

∫ x

0
(q(s)−〈q〉)ds =

∫ x

0

(
−L2

ϕ(Ls)−〈q〉
)

ds (2.3.25)

After the substitution y = Ls, we get φ(x) =−L
∫ Lx

0
ϕdy−〈q〉x

Since ϕ is bounded and supported on [−4,−1
4 ]
⋃
[1

4 ,4], we conclude that

|φ(x)|6CL+ 〈q〉L = O(L), which implies ‖φ‖2
2 6 (2L)‖φ‖2

L∞ = O(L3).

Extension to arbitrary initial data

In order to extend our claims to any arbitrary initial data, we will use the idea in-

troduced in [16]. We will define the potential function as φb(x) = φ(x + b) where
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b = b(t). The point b will be chosen in such a way that the gradient of the distance

function is parallel to a line connecting u to the closest point on the curve, union of

such comparison functions φb. We will also define b(t) such that b(0) = 0 and satisfy-

ing b′(t) =
1

2L(λ +2)

∫ L

−L
uφ
′
bdx. Note that we have

−
∫ L

−L
uφ
′
bdx =

1
2

∂b

∫ L

−L
(u−φb)

2dx and
∫ L

−L
uφ
′
bdx =

∫ L

−L
(u−φ)φ ′bdx (2.3.26)

Lemma 2.3.5.

1
2

d
dt
‖u−φb‖2

2 +
1

2L(λ +2)

(∫ L

−L
uφ
′
bdx
)2

6
∫ L

−L

(
(2−φ

′
b)u

2− 3
4

u2
x +φ

2 +
1
4

φ
2
b

)
dx

(2.3.27)

Proof.

1
2

d
dt
‖u−φb‖2

2 =
1
2

d
dt

∫ L

−L
(u−φb)

2dx =
∫ L

−L
(u−φb)utdx−

∫ L

−L
(u−φb)

∂

∂b
φbb′(t)dx

=
∫ L

−L
(u−φb)utdx−b′(t)

∫ L

−L
uφ
′
bdx

Thus we get

1
2

d
dt
‖u−φb‖2

2 +
1

2L(λ +2)

(∫ L

−L
uφ
′
bdx
)2

=
∫ L

−L
(u−φb)(uxx +u−2uux)dx

−b′(t)
∫ L

−L
uφ
′
bdx+

1
2L(λ +2)

(∫ L

−L
uφ
′
bdx
)2

Since we choose b′(t) =
1

2L(λ +2)

(∫ L

−L
uφ
′
bdx
)

, then the two last terms cancel and

we get

1
2

d
dt
‖u−φb‖2

2 +
1

2L(λ +2)

(∫ L

−L
uφ
′
bdx
)2

=
∫ L

−L
(u−φb)(uxx +u−2uux)dx
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As in the case of odd initial data, because of (2.3.9), the claim follows.

Construction of φb

Similar to the idea in [16], our aim will be to construct the potential function φb such

that we have

∫ L

−L

(
3
4

u2
x +(φ ′b−2)u2

)
dx+

1
2L(λ +2)

(∫ L

−L
uφ
′
bdx
)2

>
λ0

2
‖u‖2

2 = λ‖u‖2
2 (2.3.28)

which is equivalent to

∫ L

−L

(
3
4

u2
x +(φ ′b−λ −2)u2

)
dx+

1
2L(λ +2)

(∫ L

−L
uφ
′
bdx
)2

> 0 (2.3.29)

It suffices to prove the claim for b = 0 since (2.3.29) is invariant under translation. So

we will write φb=0 = φ and u = u(0)+ua +us where ua is the antisymmetric part and

us is the symmetric part of u.

First, observe that since
∫ L

−L
u′au′sdx = 0, then

∫ L

−L
u2

xdx =
∫ L

−L
u′2a +u′2s dx. Second, we

can partition the integral as in the following form:

∫ L

−L
(φx−λ −2)u2dx =

∫ L

−L
(φx−λ −2)(u(0)+us +ua)

2dx

=
∫ L

−L
(φx−λ −2)(u2

s +u2
a)dx+

∫ L

−L
(φx−λ −2)u(0)2dx

+2
∫ L

−L
(φx−λ −2)u(0)usdx+2

∫ L

−L
(φx−λ −2)u(0)uadx

+2
∫ L

−L
(φx−λ −2)uausdx
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Using the fact that φx is even and
∫ L

−L
usdx =−2Lu(0), we get

∫ L

−L
(φx−λ −2)u2dx =

=
∫ L

−L
(φx−λ −2)(u2

s +u2
a)dx+2L(λ +2)u(0)2 +2u(0)

∫ L

−L
φxudx

Thus we get
∫ L

−L

(
3
4

u2
x +(φx−λ −2)u2

)
dx+

1
2L(λ +2)

(∫ L

−L
uφxdx

)2

=

=
∫ L

−L

(
3
4

u′2a +(φx−λ −2)u2
a

)
dx+

∫ L

−L

(
3
4

u′2s +(φx−λ −2)u2
s

)
dx

+2L(λ +2)u(0)2 +2u(0)
∫ L

−L
φxudx+

1
2L(λ +2)

(∫ L

−L
uφxdx

)2

Since us(0) = 0 and ua(0) = 0, we can construct φ such that the coercivity estimates for

us and ua hold. Thus we can have the following inequality which proves the coercivity

estimate.

∫ L

−L

3
4

u2
x(φx−λ −2)u2dx+

1
2L(λ +2)

(∫ L

−L
uφxdx

)2

=
∫ L

−L

(
3
4

u′2a +(φx−λ −2)u2
a

)
dx+

∫ L

−L

(
3
4

u′2s +(φx−λ −2)u2
s

)
dx

+

(
1√

2L(λ +2)

∫ L

−L
uφxdx+

√
2L(λ +2)u(0)

)2

> 0

This completes the proof of Theorem 2.3.1, because Lemma 2.3.4 and 2.3.15 imply

that

limsup
t→∞

‖u‖2 6C1L3/2
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Proof of Theorem 2.3.2:

Lemma 2.3.6. For any φ ∈ ˙̄H1[0,R] and u(r, t) solving (2.3.5),we have the inequality

1
2

d
dt
‖u−φ‖2 6

∫ R

0

(
−3

4
u2

r +(2−φr)u2
)

dr+
∫ R

0

(
126φ

2
r +

1
4

φ
2
)

dr (2.3.30)

Proof. A straightforward calculation gives that

1
2

d
dt
‖u−φ‖2 =

∫ R

0
ut(u−φ)dr =

∫ R

0
(urr+

1
r

ur−
1
r2 u+u−2uur)(u−φ)dr (2.3.31)

After integrating by parts and applying periodic boundary conditions, we have

1
2

d
dt
‖u−φ‖2 =

∫ R

0

(
−u2

r +
1
r

uur−
1
r2 u2 +u2 +urφr−

1
r

urφ +
1
r2 uφ −uφ −φru2

)
dr

(2.3.32)

We will estimate the terms on the right hand side. Applying the Cauchy-Schwartz

inequality, we have

∫ R

0

1
r

uurdr 6
∫ R

0

2u2

r2 dr+
∫ R

0

1
8

u2
r dr and

∫ R

0
urφrdr 6

∫ R

0

(
1

2p
u2

r +
p
2

φ
2
r

)
dr

(2.3.33)

and ∫ R

0
uφdr 6

∫ R

0

(
1
2s

u2 +
s
2

φ
2
)

dr (2.3.34)

Using Hardy’s inequality, and assuming that φ(0) = 0. (We will construct φ so that it

will satisfiy φ(0) = 0.) We have

∫ R

0

1
r

φurdr 6
(∫ R

0
(
φ

r
)2dr

)1/2(∫ R

0
u2

r dr
)1/2

6 2‖φr‖2‖ur‖2 6
∫ R

0

(
qφ

2
r +

1
q

u2
r

)
dr

(2.3.35)
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In order to find an estimate for
∫ R

0
1
r2 uφdr, we will first use Cauchy-Schwartz inequality

then Hardy’s Inequality. (since u(0)=0)

∫ R

0

1
r2 uφdr 6

∫ R

0

(
1

2m

(u
r

)2
+

m
2

(
φ

r

)2
)

dr 6
∫ R

0

(
2
m

u2
r +2mφ

2
r

)
dr (2.3.36)

When we add all, the right hand side of (2.3.32) becomes

6
∫ R

0

((
−7

8
+

1
2p

+
1
q
+

2
m

)
u2

r +

(
1+

1
2s
−φr

)
u2 +

( p
2
+q+2m

)
φ

2
r +

s
2

φ
2
)

dr

(2.3.37)

If we take p = 12, q = 24, m = 48, s = 1/2, then we get (2.3.30).

Remark 10. The preceding lemmas show that if we can construct φ ∈ ˙̄H1[0,R] such

that the coercivity estimate

〈u,Ku〉= 2
∫ R

0

(
3
4

u2
r +(φr−2)u2

)
dr > λ0‖u‖2 (2.3.38)

holds for some λ0 independent of L, then we get

limsup
t→∞

‖u‖2 6 c‖φ‖H1[0,R] (2.3.39)

One can observe that the coercivity equation for radial case (2.3.38) is same as the

coercivity equation (2.3.16) for one dimensional case. Thus the function φr exists.

Also note that for dimension n, the only difference as compared to dimension 2,

will be

∆ϕ =

(
∂ 2

∂ r2 +
n−1

r
∂

∂ r

)
ϕ. (2.3.40)

The steps in the proof for dimension n will also be similar. The coefficients of the

(2.3.6) will change, however these changes will not affect the exponent of the bound.
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2.4 Radially symmetric Kuramoto-Sivashinsky Equa-

tion in 3D

2.4.1 Formulation of the Problem

Inspired by the paper [6], our goal is to show that limsupt→∞ ‖u‖2 ≤ Cr0(R0− r0)
3/2

where u is the radially symmetric solution of the differentiated Kuramoto-Sivashinsky

equation (2.1.1) in a shell domain Ω = {x∈Rn such that 0 < r0 < ‖x‖< R0}. We work

with the differentiated Kuramoto-Sivashinsky equation in Ω with boundary conditions

similar to [6]

u =
∂

∂ r

(
∂u
∂ r

+
2
r

u
)
= 0 at r = r0, and r = R0. (2.4.1)

We assume that the initial condition u0 is a radial function u0(x) = u0(r), differentiate

(2.1.1) and introduce a new variable u =
dϕ

dr
. Thus we get the reduced radial system:

ut +urrrr +
4
r

urrr +

(
1− 4

r2

)
urr +

2
r

ur−
2
r2 u+uur = 0 (2.4.2)

u = urr +
2
r

ur = 0 for r = r0, r = R0 (2.4.3)

u(x,0) = u0(x) = u0(|x|) in Ω (2.4.4)

We will use the following notations. If Ω is a smooth, bounded domain in Rn, then

Qt = Ω× (0, t), Γt = ∂Ω× (0, t), Ωt = Ω×{t}, |∇ϕ| = (∇ϕ,∇ϕ)1/2 and (·, ·)

is the usual Euclidian dot product in Rn. Changing the coordinates from rectangular to

polar and assuming that ϕ is radially symmetric, we get the usual formulas

|∇ϕ|2 =
(

∂ϕ

∂ r

)2

, ∆ϕ =

(
∂ 2

∂ r2 +
n−1

r
∂

∂ r

)
ϕ, (2.4.5)
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∆
2
ϕ =

(
∂ 4

∂ r4 +
2(n−1)

r
∂ 3

∂ r3 +
(n−1)(n−3)

r2
∂ 2

∂ r2 −
(n−1)(n−3)

r3
∂

∂ r

)
ϕ (2.4.6)

2.4.2 Results

Theorem 2.4.1. Consider the Kuramoto-Sivashinsky equation (2.4.2) with 0 < r0 <

R0 < ∞, subject to the boundary and initial conditions given by (2.4.3), (2.4.4). Assume

also (R0− r0)≥ α(1+ 1
r2

0
)−1/2 for some α > 0. Then, there is constant C =Cα , so that

limsup
t→∞

‖u(t)‖L2[r0,R0]
6Cα(R0− r0)

3/2
(

1+
1
r2

0

)3

. (2.4.7)

For the related problem (2.1.6) with (R0− r0) ≥ α(1+ 1
r2

0
)−1/2 subject to the radial

initial conditions and the boundary conditions [6], we also have

limsup
t→∞

‖∂rϕ(t)‖L2[r0,R0]
6Cα(R0− r0)

3/2
(

1+
1
r2

0

)3

. (2.4.8)

If (R0− r0)≤ (1+ 1
r2

0
)−1/2, then

limsup
t→∞

‖u(t)‖L2[r0,R0]
≤C

(1+ 1
r2

0
)2

√
R0− r0

.

and similar estimate holds for the derivative of the solution ϕr of (2.1.6).

Proof of Theorem 2.4.1:

The proof of the theorem is based on the Lyapunov function approach, which is mainly

the Lemma (2.2.3). As in the previous sections, we will construct a potential function

φ ∈ L2([r0,R0]) such that if we can get the following inequality

d
dt
‖u−φ‖2

2 6−λ0‖u‖2
2 +P2 (2.4.9)
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for some constants λ0 > 0 and P, then we will conclude the existence of an attracting

region, ball of radius R∗∗ centered about the origin,

R∗∗ =

√
2‖φ‖2

2 +
2P2

λ0
+‖φ‖2. (2.4.10)

An energy estimate

Next lemma will be our main energy estimate, which we will use in conjunction with

Lemma 2.2.14.

Lemma 2.4.2. For any φ ∈ ˙̄H2[r0,R0] and u(t;r) solving (2.4.2) we have the inequality

d
dt
∫ R0

r0
(u−φ)2dr 6

∫ R0
r0

(
−u2

rr +
(

4+ 16
r2
0

)
u2

r +(1−φr)u2
)

dr

+
∫ R0

r0

(
4φ 2

rr +
(

1
2 +

18
r2

0

)
φ 2

r

)
dr

(2.4.11)

Note that (2.4.9), (2.4.10) and (2.4.11) show that if one can construct φ ∈ ˙̄H2[r0,R0]

such that the coercivity estimate

〈u,Ku〉=
∫ R0

r0

(
u2

rr−Br0u2
r +(φr−1)u2)dr ≥ λ0‖u‖2

2 > 0 (2.4.12)

holds for some λ0 independent of r0 and R0, where Br0 = 4+
16
r2

0
, then one gets an

estimate of the form

limsup
t→∞

‖u‖2 6 R∗∗ =
√

c1‖φ‖2
2 + c2‖φr‖2

2 + c3‖φrr‖2
2 +‖φ‖2 6C‖φ‖H̄2 < ∞.

Next, we prove the lemma.
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Proof. A straightforward calculation gives

1
2

d
dt
‖u−φ‖2

2 =
∫ R0

r0

ut(u−φ)dr

=
∫ R0

r0

(
−urrrr−

4
r

urrr−
(

1− 4
r2

)
urr−

2
r

ur +
2
r2 u−uur

)
(u−φ)dr

After integration by parts, applying periodic boundary conditions and simplifying,

one gets

1
2

d
dt
‖u−φ‖2

2 = urr(R0)ur(R0)−urr(r0)ur(r0)

+
∫ R0

r0

(
−u2

rr +
4
r

urrur +u2
r +

2
r

uru
)

dr−urr(R0)φr(R0)+urr(r0)φr(r0)

+
∫ R0

r0

(
urrφrr−

4
r

urrφr−urφr−
2
r

uφr−
1
2

u2
φr

)
dr

Using the boundary conditions, one can find estimate for

urr(R0)ur(R0)−urr(r0)ur(r0) as follows:

urr(R0)ur(R0)−urr(r0)ur(r0) =−
2

R0
u2

r (R0)+
2
r0

u2
r (r0) =−2

∫ R0

r0

(
u2

r
r

)′
dr

= 2
∫ R0

r0

u2
r

r2 dr−4
∫ R0

r0

ururr

r
dr

Similarly

−urr(R0)φr(R0)+urr(r0)φr(r0) =−2
∫ R0

r0

urφr

r2 dr+2
∫ R0

r0

urrφr +urφrr

r
dr
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Next combine these terms and rewrite again to get

1
2

d
dt
‖u−φ‖2

2 =
∫ R0

r0

(
−u2

rr +u2
r +

2
r

uur +
2
r2 u2

r +urrφrr−
2
r

urrφr

)
dr

+
∫ R0

r0

(
2
r

urφrr−urφr−
2
r

uφr−
2
r2 urφr−

1
2

u2
φr

)
dr

Applying the Cauchy-Schwartz inequality 〈 f ,g〉 ≤ p/2〈 f , f 〉+1/2p〈g,g〉 gives

1
2

d
dt
‖u−φ‖2

2 6
∫ R0

r0

(
−1+

m
2
+ p
)

u2
rr +

(
1+

q
r2

0
+

2
r2

0
+

d
2
+

k
r2

0
+

c
r2

0

)
u2

r dr

+
∫ R0

r0

(
1
q
+ s− 1

2
φr

)
u2 +

(
1

2m
+

1
c

)
φ

2
rr +

(
1

pr2
0
+

1
2d

+
1

sr2
0
+

1
kr2

0

)
φ

2
r dr

The choice m = 1/2, p = 1/4, q = 4, s = 1/4, k = 1, d = 2 and c = 1 gives (2.3.9).

This shows that for the proof of Theorem 2.4.1, it remains to establish the coercivity

estimate (2.4.12).

Constructing the function φ

In order to prove the coercivity estimate (2.4.12) for L ≥ 1, we will use the following

result, which is in essence what was proved in [7].

Lemma 2.4.3. (see Theorem 1, [7]) Let z ∈C3[0,L],L ≥ 1 with z(0) = 0. Then there

exists a function ψ ∈C∞[0,L], so that one has the estimate

∫ L

0
(z2

xx +ψ
′z2)dx≥ 10

∫ L

0
z2dx.

In addition, ψ is in the form ψ ′(x) = L4/3χ(L1/3x)−
∫ L

0 χ(y)dy, where χ ∈ C∞, sup-

ported on a set with diameter O(1) and so that supx |χ(α)(x)| ≤Cα ,α = 0,1, . . ..
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Our next result will address the question for the coercivity estimates when L < 1.

We shall need this result to finish the proof of the theorem in one of the two cases

considered. Although it’s proof reduces in a simple fashion to Lemma 2.4.3, we include

it for completeness.

Lemma 2.4.4. Let z ∈C3[0,ε],ε ≤ 1 with z(0) = 0. Then there exists a function ψ ∈

C∞
0 [0,ε], so that ∫

ε

0
(z2

xx +ψ
′z2)dx≥ 10

∫
ε

0
z2dx.

In addition, ψ is in the form ψ ′(x) = χ(x/ε)−
∫ 1

0 χ(y)dy, where χ ∈C∞, supported on

(0,1) and so that sup0≤x<1 |χ(α)(x)| ≤Cα ,α = 0,1, . . ..

Proof. Introduce v, so that z(x) = v(x/ε). Clearly v ∈C3[0,1] : v(0) = 0 and we need

to show ∫ 1

0
(v2

yy(y)+ ε
4
ψ
′(εy)v2(y))dy≥ 10ε

4
∫ 1

0
v2(y)dy.

Clearly, that puts us in the situation of Lemma 2.4.3 with L = 1 and thus, it will suffice

to take ψ : ψ ′(εy) = χ(y)−
∫ 1

0 χ(x)dx. Indeed,

∫ 1

0
(v2

yy(y)+ ε
4
ψ
′(εy)v2(y))dy≥ ε

4
∫ 1

0
(v2

yy(y)+ψ
′(εy)v2(y))dy≥ 10ε

4
∫ 1

0
v2(y)dy,

where we have used the construction of Lemma 2.4.3 in the last inequality. Thus,

ψ
′(x) = χ(x/ε)−

∫ 1

0
χ(y)dy.

and the proof of Lemma 2.4.4 is complete.

71



Completion of the proof of Theorem 2.4.1

We will do a rescaling argument, which will show how to obtain (2.4.12) from Lemma

2.4.3 or Lemma 2.4.4. To prove the theorem, we need to construct φr such that

∫ R0

r0

(u2
rr−Br0u2

r +(φr−1−λ0)u2)dr > 0 (2.4.13)

After applying the Cauchy-Schwartz inequality to estimate

−Br0

∫ R0

r0

u2
r dr >−1

2

∫ R0

r0

u2
rrdr−

B2
r0

2

∫ R0

r0

u2dr,

we see that it will be enough to show that for all u ∈C3[r0,R0] : u(r0) = 0,

∫ R0

r0

(u2
rr +φru2)dr ≥ K

∫ R0

r0

u2dr (2.4.14)

where K = 10+B2
r0

. Let L = R0− r0. Introduce v ∈C3[0,L] : v(r) = u(r+ r0). Clearly

v(0) = 0 and we need to show (for appropriate φ )

∫ L

0
(v2

rr +φ
′(r+ r0)v2)dr ≥ K

∫ L

0
v2dr

Next, introduce w : v(r) = w(K1/4r). Again w(0) = 0 and we need

∫ LK1/4

0
(w2

rr +
1
K

φ
′(K−1/4r+ r0)w2)dr ≥

∫ LK1/4

0
w2dr, (2.4.15)

At this point, we will have to consider two separate cases, depending on the relative

size of LK1/4. These will be handled either by Lemma 2.4.3 or by Lemma 2.4.4. We

will be mainly interested in the first case which holds always when r0 is small and we

are tracking the dependence of the constant on 1
r0

in this case.
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Case I: LK1/4 ≥ 1

By Lemma 2.4.3, the following choice of φ (recall LK1/4 ≥ 1)

1
K

φ
′(K−1/4r+ r0) = ψ

′(r) = (LK1/4)4/3
χ((LK1/4)1/3x)− c0,

will guarantee (2.4.12). Note that c0 =
∫ 1

0 χ(y)dy = O(1), according to Lemma 2.4.3.

We get

φr(r) = (LK)4/3
χ(L1/3K1/3(r− r0))− c0K : [r0,R0]→ R1.

Clearly now ‖φrr‖L2 ≤C(LK)3/2, ‖φr‖L2 ≤C(LK)7/6, while since ‖φ‖L∞ ≤C(LK), we

get ‖φ‖L2 ≤CL3/2K.

From Lemma 2.3.9 it follows that

limsup
t→∞

‖u‖2 6 R∗∗ ≤
√

2‖φ‖2
2 + c1(1+

1
r2

0
)‖φr‖2

2 + c2‖φrr‖2
2 +‖φ‖2,

where the constants are independent of r0. Thus, we get the estimate

limsup
t→∞

‖u‖2 ≤C(R0− r0)
3/2
(

1+
1
r2

0

)3

,

whenever R0− r0 = L≥ K−1/4.

Case II: LK1/4 < 1

Going back to the proof of of (2.4.15), we now have LK1/4 < 1 and hence, we use

Lemma 2.4.4 with ε = LK1/4 < 1. Thus,

1
K

φ
′(r0 +K−1/4r) = ψ

′(r) = χ(r/ε)− c0.
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or written otherwise

φr(r) = Kχ

(
r− r0

L

)
−Kc0 : [r0,R0]→ R1.

Clearly, ‖φrr‖L2[r0,R0]
≤ CKL−1/2, ‖φr‖L2[r0,R0]

≤ CKL1/2 and ‖φ‖L∞ < C(KL), which

implies ‖φ‖L2 ≤CL3/2K. Hence

limsup
t→∞

‖u‖2 ≤C
(1+ 1

r2
0
)2

√
R0− r0

.

whenever R0− r0 = L≤ K−1/4.

n-dimensional case

In this section we will describe similar results for the general n dimensional case.

The statement of the theorem remains the same as in the three-dimensional case, even

though after the tedious computations some additional terms appear. In what follows

we will show that the same lemmas can be applied and the coefficients remain similar

and produce same result for the dependence of the limit on
1
r0

. As before, we differen-

tiate (2.1.1), define u =
dϕ

dr
and use the same boundary conditions as in (2.4.1). Thus

we get the following reduced radial system, where n is the dimension.

ut +urrrr +
2(n−1)

r
urrr +

(
n2−6n+5

r2 +1
)

urr +
(

n−1
r −

3(n2−4n+3)
r3

)
ur

+
(

3(n2−4n+3)
r4 − n−1

r2

)
u+uur = 0

(2.4.16)

u = urr +

(
n−1

r

)
ur = 0 for r = r0, r = R0 (2.4.17)

u(x,0) = u0(x) = u0(|x|) in Ω (2.4.18)
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An energy estimate

Similar to what we did in Lemma 2.3.9, we will find the energy estimate for the equation

(2.4.16), which we will use in conjunction with the coercivity to prove that Theorem

2.4.1 holds in this case as well.

Lemma 2.4.5. For any φ ∈ ˙̄H2[r0,R0] and u(t;r) solving (2.4.16) we have the inequality

d
dt ‖u−φ‖2

2 6
∫ R0

r0
−u2

rr +
(

12(n−1)
r2
0

+3
)

u2
r +
(
(n−1) (n−3)2(4n−1)+9|n−3|+1

r4
0

)
u2dr

+
∫ R0

r0

(
2(n−1)

r2
0

+(n−1−φr)
)

u2 +(n+3)φ 2
rr +

(n−1)(4n−3)+1
r2

0
φ 2

r dr

+
∫ R0

r0

(
|n2−4n+3|((n−3)(4n−1)+3)

r4
0

+2(n−1)
)

φ 2dr

Proof. A straightforward calculation gives

1
2

d
dt ‖u−φ‖2

2 =
∫ R0

r0

(
−urrrr− 2(n−1)

r urrr−
(

n2−6n+5
r2 +1

)
urr

)
(u−φ)dr

−
∫ R0

r0

((
n−1

r −
3(n2−4n+3)

r3

)
ur−

(
3(n2−4n+3)

r4 − n−1
r2

)
u−uur

)
(u−φ)dr

(2.4.19)

After integration by parts, applying periodic boundary conditions and simplifying, one

gets

1
2

d
dt
‖u−φ‖2

2 = urr(R0)ur(R0)−urr(r0)ur(r0)−urr(R0)φr(R0)+urr(r0)φr(r0)

+
∫ R0

r0

(
−u2

rr +2(n−1)
(urrur

r
− urru

r2

)
− (n2−6n+5)

r2 urru+u2
r

)
dr

+
∫ R0

r0

((
3(n2−4n+3)

r3 − n−1
r

)
uru+

(
n−1

r2 −
3(n2−4n+3)

r4

)
u2
)

dr

+
∫ R0

r0

(
urrφrr−2(n−1)

(
urrφr

r
− urrφ

r2

)
+(n2−6n+5)

urrφ

r2 −urφr

)
dr

+
∫ R0

r0

(
(n−1)

urφ

r
−3(n2−4n+3)

urφ

r3 +3(n2−4n+3)
uφ

r4 − (n−1)
uφ

r2 −
u2φr

2

)
dr
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Using the boundary conditions, one can find estimate for

urr(R0)ur(R0)−urr(r0)ur(r0) as follows:

urr(R0)ur(R0)−urr(r0)ur(r0) =−
(n−1)

R0
u2

r (R0)+
(n−1)

r0
u2

r (r0) =

=−(n−1)
∫ R0

r0

(
u2

r
r

)′
dr = (n−1)

∫ R0

r0

u2
r

r2 dr−2(n−1)
∫ R0

r0

ururr

r
dr

Similarly

−urr(R0)φr(R0)+urr(r0)φr(r0)

=−(n−1)
∫ R0

r0

urφr

r2 dr+(n−1)
∫ R0

r0

urrφr +urφrr

r
dr

Next combine these terms and rewrite again to get

1
2

d
dt
‖u−φ‖2

2 =
∫ R0

r0

(
(n−1)

u2
r

r2 −u2
rr−

(n2−4n+3)
r2 urru+u2

r

)
dr

+
∫ R0

r0

((
3(n2−4n+3)

r3 − n−1
r

)
uru+

(
n−1

r2 −
3(n2−4n+3)

r4

)
u2
)

dr

+
∫ R0

r0

(
−(n−1)

urrφr

r
+(n−1)

φrrur

r
− (n−1)

urφr

r2 +urrφrr

)
dr

+
∫ R0

r0

(
(n2−4n+3)

urrφ

r2 −urφr +(n−1)
urφ

r

)
dr

+
∫ R0

r0

(
−3(n2−4n+3)

urφ

r3 +3(n2−4n+3)
uφ

r4 − (n−1)
uφ

r2 −
u2φr

2

)
dr

76



Applying the Cauchy-Schwartz inequality 〈 f ,g〉 ≤ p/2〈 f , f 〉+1/2p〈g,g〉 gives

1
2

d
dt
‖u−φ‖2

2 6∫ R0

r0

(
−1+ |n2−4n+3| p

2
+(n−1)

m
2
+

f
2
+ |n2−4n+3|h

2

)
u2

rrdr

+
∫ R0

r0

(
(n−1)

r2
0

+1+
3|n2−4n+3|

r2
0

q
2
+

(n−1)
r2

0

z
2
+

(n−1)
r2

0

c
2
+

(n−1)
r2

0

d
2

)
u2

r dr

+
∫ R0

r0

(
y
2
+

(n−1)
r2

0

w
2
+

3|n2−4n+3|
r2

0

j
2

)
u2

r dr

+
∫ R0

r0

(
|n2−4n+3|

r4
0

1
2p

+
3|n2−4n+3|

r4
0

1
2q

+
3|n2−4n+3|

r4
0

t
2

)
u2dr

+
∫ R0

r0

(
(n−1)

2z
+

(n−1)
r2

0
+

3|n2−4n+3|
r4

0
+

(n−1)
r4

0

w̃
2
− φr

2

)
u2dr

+
∫ R0

r0

(
(n−1)

2c
+

1
2 f

)
φ

2
rr +

(
(n−1)

r2
0

1
2d

+
1
2y

+
(n−1)

r2
0

1
2m

)
φ

2
r dr+

∫ R0

r0

(
|n2−4n+3|

2hr4
0

+
3|n2−4n+3|

2 jr4
0

+
3|n2−4n+3|

2tr4
0

+
n−1
2w

+
n−1
2w̃

)
φ

2dr

Choosing p = 1
4|n2−4n+3| , m = 1

4(n−1) , f = 1
4 , h = 1

4|n2−4n+3| , q = 1
|n−3| , c = 1, d = 1,

j = 1
|n−3| , z = 1, y = 1, w = 1, t = 1, z = 1, w̃ = 1, we get

d
dt
‖u−φ‖2

2 6
∫ R0

r0

−u2
rr +

(
12(n−1)

r2
0

+3
)

u2
r dr

+
∫ R0

r0

(
(n−1)

(n−3)2(4n−1)+9|n−3|+1
r4

0

)
u2dr

+
∫ R0

r0

((
2(n−1)

r2
0

+(n−1−φr)

)
u2 +

(
(n−1)(4n−3)

r2
0

+1
)

φ
2
r

)
dr

+
∫ R0

r0

((
|n2−4n+3|((n−3)(4n−1)+3)

r4
0

+2(n−1)
)

φ
2 +(n+3)φ 2

rr

)
dr

We will prove the coercivity in the n-dimensional case using the lemmas from the

previous section. For the modified coefficients Br0 =
12(n−1)

r2
0

+3, and
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Cr0 = (n− 1) (n−3)2(4n−1)+9|n−3|+1
r4

0
+ 2(n−1)

r2
0

+ n− 1 we have to show that there exists

potential function φr, such that we have the following coercivity estimate.

∫ R0

r0

(u2
rr−Br0u2

r +(φr−Cr0)u
2)dr > λ0

∫ R0

r0

u2dr (2.4.20)

Applying Cauchy-Schwartz inequality once again,

−Br0

∫ R0

r0

u2
r dr >−1

2

∫ R0

r0

u2
rrdr−

B2
r0

2

∫ R0

r0

u2dr,

(2.4.20) will be equivalent to

∫ R0

r0

(
1
2

u2
rr +(φr−Dr0)u

2
)

dr > λ0

∫ R0

r0

u2dr (2.4.21)

where Dr0 = (n− 1) (n−3)2(4n−1)+72(n−1)+9|n−3|+1
r4

0
+ 38(n−1)

r2
0

+ n+ 7
2 . Once again we

have to prove that

∫ R0

r0

(u2
rr +φru2)dr ≥ K

∫ R0

r0

u2dr

where K = 10+Dr0 ∼ (1+ 1
r2

0
)2, which follows from Lemma 2.4.3 or Lemma 2.4.4. To

finish the proof of the theorem, notice that now by Lemma 2.4.5 one has

limsup
t→∞

‖u‖2 6 R∗∗ ≤
√

c1(1+
1
r2

0
)2‖φ‖2

2 + c2(1+
1
r2

0
)‖φr‖2

2 + c3‖φrr‖2
2 +‖φ‖2,

where the constants are independent of r0. Using the estimates for ‖φ‖2
2,‖φr‖2

2,‖φrr‖2
2

in this inequality gives the same results as in the three-dimensional case and proves the

theorem.

78



2.5 Summary, remarks and open questions

Kuramoto-Sivashinsky equation arises when studying the propagation of instabilities

in combustion theory and hydrodynamics and is well studied in dimension one. A

major characteristic of the periodic case in dimension one is the existence of glob-

ally invariant, exponentially attracting inertial manifold, which is finite-dimensional.

Thus the long-term dynamics is well-known in this case. For the higher-dimensional

Kuramoto-Sivashinsky equation the question of long-term dynamics is still open for

any general solution, but some results are available when the equation is considered on

a thin domain or restricted to a periodic solution on a shell domain that excludes zero. In

this paper, we worked with the radially symmetric solutions of Kuramoto-Sivashinsky

equation in a shell domain Ω = {x∈Rn such that 0 < r0 < ‖x‖< R0} and established a

time-independent bound for the L2 norm of the radially symmetric solutions. In partic-

ular, we proved that limsup
t→∞

(∫ R0

r0

|u(t,r)|2dr
)1/2

≤Cr0(R0− r0)
3/2 and we explicitly

calculate the dependence of the constant Cr0 on 1
r0

. This is important when r0 tends to

0 since it might shed some light on the potential formation of singularity at the origin

and is subject of future research. Thus we were not able to prove similar bounds for

the whole disk/ball, but our results can be interpreted as showing that if the dimen-

sion is high enough there is no singularity at the origin. In particular if one considers

the standard L2−norm in polar coordinates on Rn as
∫ R0

r0
|u(t,r)|2rn−1dr instead of the

norm that we have used one gets no singularity at zero in dimension seven and above

immediately. This result does not seem optimal and we are currently working on the

regularity and long time behavior for axisymmetric solutions of the same equation of

the form rsu(r) for an appropriate power s in the standard norm. We have written the

paper using the same norm and Neumann boundary conditions as in [6].
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Although these boundary conditions are quite standard when dealing with radial

and axisymmetric solutions, it might be of interest to consider similar problem with

different boundary conditions. Our initial calculations show that one can get analogous

results in many different situations and the question becomes which boundary condi-

tions are most interesting for the applications.

Finally, it might be feasible to reconsider the general solutions of the Kuramoto-

Sivashinsky equation in higher dimensions. We have proved the result using Lyapunov

function methods that work fairly well in the case of one variable only. If one considers

general solution in dimension two and higher the resulting equations contain mixed

nonlinear terms that are very hard to treat using coercivity. It might be possible to drop

the radial symmetry assumptions, but still use polar coordinates to respect the geometry

of the circle to prove similar results by extending the methods used in this paper. This

is going to require additional estimates beyond the scope of this work. These questions

will be the subject of a future investigation.
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Chapter 3

CONDITIONAL STABILITY RESULTS FOR

KLEIN-GORDON EQUATION

3.1 Introduction and Previous Results

In this chapter, our interest will be the conditional stability of the steady state solutions

of one-dimensional Klein-Gordon equation:

utt−∆u+u−N (u) = 0 (t,x) ∈ R+×Rd (3.1.1)

where N (u) = |u|p−1u and p ≥ 5. With some assumptions on the nonlinear term

N (u), it has been proved by the authors of [32] that these solutions are in fact linearly

and nonlinearly unstable. Our interest is the conditional stability of such steady state

solutions. This kind of stability has been extensively studied recently. For example for

the equation utt−∆u = u5, in [32], the existence of steady state solutions, the linear and

the nonlinear instability of such solutions have been proved. However it has been also

proved in [33] that for the special perturbation to the steady state solution of utt−∆u =

u5, the solution exists globally and remains near the steady state. Thus, a center-stable

manifold for the steady state in the sense of Bates and Jones [2] is described. In 1989,
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Bates and Jones [2], [3] proved that for a large class of semilinear equations, including

the Klein-Gordon equation, the space of solutions decomposes into an unstable and

center-stable manifold. Similar result was proved in [26] for the semilinear Schrödinger

equation in any dimension. Both are abstract results and do not deal with the global

in time behavior of the solutions, e.g. existence and asymptotic behavior. The first

asymptotic stability result was obtained by Soffer and Weinstein, [52], [53] (see also

[54]), followed by works of Pillet and Wayne [42], Buslaev, Perelman, Sulem [9], [10],

[11], Rodnianski-Schlag-Soffer [45], [46] etc. In this context we would like to mention

some recent work of Schlag [47] and Beceanu [4],[5] on the existence of center-stable

manifold for the pulse solutions of the focusing cubic nonlinear Schrödinger equation

in dimension three. It identifies a center-stable manifold in the critical for the equation

space H1/2 and shows that solutions starting on the manifold exist globally in time and

remain on the manifold for all time answering an open question in [26]. Recently the

authors of [57] proved a conditional stability of the steady state solutions of (3.1.1)

with N (u) = |u|p−1u for the dimension d = 2,3 and 4 where p≥ 1+4/d. In terms of

center-stable manifold for the solution, their result shows the global in time behavior of

the solutions and a precise description of the manifold which includes its co-dimension

and decay rates.

In this chapter, we will consider the steady state solutions for the equation

utt−uxx +u−|u|p−1u = 0 (t,x) ∈ R+×R1 (3.1.2)

for p≥ 5 and explicitly construct the center-stable manifold for such solutions. In these

problems, since Strichartz estimates are key, the lower the dimension, the harder it is to

close the argument. The main difficulty in the one-dimensional case is that the required

decay of the Klein-Gordon semigroup does not follow from Strichartz estimates alone.
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One needs to further refine the function spaces and use additional decay estimates to

resolve this issue. The techniques we use are similar to the ones used in [37] and [57].

Note that throughout this chapter, we will use the following norms that are defined

on the weighted spaces

‖ f‖Lr
t Ls

x(R;〈x〉pdx) =

(∫
R

(∫
R
〈x〉p| f (t,x)|sdx

)r/s

dt

)1/r

‖ f‖Ls
x(R;〈x〉pdx)Lr

t
=

(∫
R
〈x〉p

(∫
R
| f (t,x)|rdt

)s/r

dx

)1/s

and 〈x〉=
√

1+ x2

3.2 Preliminary Lemmas

The existence and uniqueness of steady state solutions of (3.1.1) are shown in [34]

for p < d+2
d−2 when d ≥ 3 and for any p when d = 1,2. These solutions are positive,

radial and exponentially decaying. Next lemma in [13] shows the explicit form of such

solutions for (3.1.2) in one-dimensional space, see e.g. [13].

Lemma 3.2.1. For all p∈ (1,∞) the steady state solution φ(x) of (3.1.2) has the explicit

form

φ(x) = cp cosh−β

(
x
β

)
, cp =

(
p+1

2

) 1
p−1

, β :=
2

p−1
(3.2.1)

φ(x) satisfies (3.1.2) and is the unique H1(R)-solution up to translation.
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The linearization of (3.1.2) around φ :

Define v(x, t) := u(x, t)−φ(x). If we plug u = v+φ into (3.1.2), we get

vtt− v′′+ v− ((φ + v)p−φ
p) = 0 (3.2.2)

As in the Section (1.1.2), we can find the linearized equation of (3.2.2):

vtt +H v = 0 where H :=−∂
2
x +1− pφ

p−1 (3.2.3)

We can write the system (3.2.3) as a first order system by introducing a new variable

w := vt , which can be described as

Xt +H̃ X = 0, where H̃ =

 0 −1

H 0

 , X =

 v

w

 . (3.2.4)

The spectral stability of the steady state solutions, that is the spectrum of H̃ is deter-

mined by the spectrum of the operator H . Next lemma gives the spectrum and the

corresponding eigenfunctions.

Lemma 3.2.2. (See Theorem 3.1 in [14]) For the equation (3.1.2), assume 3≤ p < ∞.

Then there exists σ = σ(p)> 0, such that the spectrum of H is given by

σ(H ) = {−σ
2}∪{0}∪ [1,∞) (3.2.5)

with H ψ = −σ2ψ . The eigenfunctions {ψ} and {φ ′} (corresponding to the eigen-

value at −σ2 and 0 respectively) are decaying at infinity and mutually orthogonal.

In particular, in the one-dimensional case the so called ”gap lemma” for the spec-

trum is satisfied if p≥ 3, namely there are no eigenvalues in (0,1] and the point 1 is not
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a resonance. Regarding the eigenvalue at zero, it is well-known that at least some of its

eigenvectors arise out of symmetries for the problem. Thus, 0 is an eigenvalue, due to

translation invariance and it might be of multiplicity 1 or 2, see [61].

Remark 11. One can easily observe that if−σ2 is an eigenvalue of H with the eigen-

function ψ , then λ1 =−σ and λ2 = σ are the eigenvalues for H̃ with the correspond-

ing eigenfunctions ~x1 =

 ψ

σψ

 and ~x2 =

 ψ

−σψ

 respectively. Then the solution

X to the linearized equation (3.2.4) is in the following form:

X(t) = c1eσt

 ψ

σψ

+ c2e−σt

 ψ

−σψ

+Z(t) (3.2.6)

where Z(t) = Pa.c.(H̃) and Pa.c. is the spectral projection associated to the continuous

spectrum of H̃ .

In order to have linear stability, we should have c1 = 0. Thus if the initial value to

the linearized problem (3.2.4) is chosen as

 f1

f2

, then c1 = 0 holds if and only if we

have 〈σ f1 + f2,ψ〉= 0.

3.3 Results

We present a theorem that describes an explicit construction of the center-stable mani-

fold, which is our main result.

Theorem 3.3.1. For (3.1.2) with 5≤ p < ∞, and H ψ =−σ2ψ where σ = σ(p), there

exists 0 < ε = ε(p)<< 1 and 0 < δ = δ (p)<< 1, and a function

h : BH1(δε)×BL2(δε)∩{( f ,g) : 〈σ f +g,ψ〉= 0}→ R1
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so that whenever the real-valued initial data is even and

u(0) = φ + f1 +h( f1, f2)ψ

ut(0) = f2

〈σ f1 + f2,ψ〉= 0;‖( f1, f2)‖H1×L2 < δε,

then

u(t,x) = φ(x)+a(t)ψ + z(t,x) where z = Pa.c.(H )z (3.3.1)

and

‖z‖L5
t L10

x ∩L∞
t H1

x∩L∞
x (R;〈x〉−3/2dx)L2

t
≤ ε, ‖a‖L3

t [0,∞)∩L∞
t [0,∞) ≤ ε.

This theorem states that if the initial data u0 satisfies u0− φ ∈ Σ, where Σ is the

center-stable manifold we construct, then the solution will approach in an exponential

way or slower the steady state φ . In this theorem, we assume the initial data to be even.

This destroys the eigenvalue at 0. Since the evolution preserves even solutions and the

zero eigenvalue has only odd eigenfunctions, the whole evolution proceeds perpendic-

ularly to that marginally stable direction. Thus we will be looking for a solution u in

the form (3.3.1). More precisely, we write differential equations for the unknown func-

tions a(t) and z(t), which we solve using fixed points for certain maps. We show that

these maps do indeed have fixed points, in view of the linear estimates that they satisfy.

These are in turn a consequence of the spectral assumptions and the decay of the bound

state.

Remark 12. As we discussed in Remark 11, we needed the orthogonality condition

〈σ f1 + f2,ψ〉= 0 in order to get linear stability. However our interest is prove nonlin-

ear stability. Thus besides having the same orthogonal condition on the initials, we will
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be allowed to have some amount in the direction of unstable direction

 ψ

0

 because

of the nonlinear term.

Proof of the Theorem 3.3.1:

3.3.1 Main linear estimates

The proof of the conditional stability theorem is based on a spectral decomposition or

modulation argument and a contraction mapping argument in the appropriate spaces.

The key is to define the spaces and the norm in such a way that one is able to close

the argument, and infers the decay rates. In this section we will explain how to prove

Lemma 3.3.2 and Lemma 3.3.3 which are the main tools needed to show the conditional

stability result. The lemmas in this section will also help to understand the reason why

we are choosing these particular spaces.

Let Pa.c. be a spectral projection associated to the continuous spectrum of H =

−∂ 2
x +1− pφ p−1.

Lemma 3.3.2. There exists a positive constant C such that for any g(t,x) ∈S (R2)

and t ∈ R,

∥∥∥∥∥
∫ t

0

e−i(t−s)
√

H

√
H

Pa.c.g(s, ·)ds

∥∥∥∥∥
L5

t L10
x ∩L∞

t H1
x

≤C‖g‖L2
t L2

x(R,〈x〉5dx) (3.3.2)

Lemma 3.3.3. There exists a positive constant C such that for any g(t,x)∈S (R2) and

t ∈ R,

∥∥∥∥〈x〉−3/2
∫ t

0
e−i(t−s)

√
H Pa.c.g(s, ·)ds

∥∥∥∥
L∞

x L2
t

≤C‖〈x〉3/2g‖L1
xL2

t
(3.3.3)
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Remark 13. In order to prove Lemma 3.3.2 and Lemma 3.3.3, we will prove Lemma

3.3.4 and Lemma 3.3.5 first.

Lemma 3.3.4. There exists a positive constant C such that for any f ∈S (R)

‖〈x〉−3/2e−it
√

H Pa.c. f‖L∞
x L2

t
≤C‖ f‖L2 (3.3.4)

where Pa.c.(H ) is the spectral projection associated to the continuous spectrum of

H =−∂ 2
x +1− pφ p−1.

Lemma 3.3.5. There exists a positive constant C such that for any g(t,x) ∈S (R2)

∥∥∥∥∫R
eis
√

H Pa.c.g(s, ·)ds
∥∥∥∥

L2
x

≤C‖〈x〉3/2g‖L1
xL2

t
(3.3.5)

In order to explain the difficulties involved and why we need to resort to the weighted

estimates above , let us consider a very simple and naive model,which is nevertheless

instructive. Consider a Schrödinger equation.

wt + i∂xxw = w2
η +wp, (t,x) ∈ R1+1.

with small data, where η is a rapidly decaying function and p ≥ 5. It is not hard to

check that for the equation wt + i∂xxw = wp, one may apply the standard Strichartz es-

timates for eit∂xx and be done with it very quickly. The addition of the highly-localized

in x (but not rapidly decaying in time) term w2η presents a new challenge in one spatial

dimension in particular. This necessitates the introduction of the weighted estimates in

Lemmas 3.3.2-3.3.5, which in essence make way to exchange this extra spatial decay

for some extra time decay, just enough to close the fixed point arguments. Before we

embark on the proofs of these lemmas which are, as we saw, necessary ingredients in
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the proof of our main results, let us comment on the strategy and previous results in this

direction. We follow mostly the methodology of Mizumachi, [37], which we consider

a breakthrough in the area. As is well-understood by now, one splits the estimates in

high and low frequency regimes. In the high frequency regimes, one basically uses

integration by parts (although this is accomplished by a non-trivial Born series expan-

sion of the resolvents, together with a precise knowledge of the free resolvents). In

low frequency, we have to heavily utilize known properties of the Jost solutions, which

generate the perturbed resolvents directly. In all of this, we use what has become a

standard way of approaching these weighted dispersive estimates. On the other hand,

our arguments are being applied to study the Klein-Gordon’s equation and as such, it is

new and it has subtleties, which are not present in the work of Mizumachi.

Proof of Lemma 3.3.4 and Lemma 3.3.5

Define ϕ(x) to be a smooth function satisfying 0≤ ϕ(x)≤ 1 for x ∈ R and

ϕ(x) =


1 if x≥ 2

0 if x≤ 1
(3.3.6)

and let ϕM(x) be an even function satisfying ϕM(x) = ϕ(x−M) for x ≥ 0 and let

ϕ̃M(x) = 1−ϕM(x). Then define L := H −1 =−∂ 2
x − pφ p−1

Pa.c.e−it
√

H f = Pa.c.e−it
√

L+1 f = e−it
√

L+1
ϕM(
√

L+1) f +Pa.c.e−it
√

L+1
ϕ̃M(
√

L+1) f

(3.3.7)

Let R(λ ) = (λ −L)−1, from Spectral Decomposition Theorem and Complex Analysis

since

f (L) =
1

2πi

∫
℘

f (λ )(λ −L)−1dλ (3.3.8)

89



where ℘ is the closed curve containing the absolute continuous spectrum of L, we have

ϕM(
√

L+1)e−it
√

L+1 f =
1

2πi

∫
∞

0
e−it
√

λ+1
ϕM(

√
λ +1)(R(λ − i0)−R(λ + i0)) f dλ

(3.3.9)

and

Pa.c.e−it
√

L+1
ϕ̃M(
√

L+1) f =
1

2πi

∫
∞

0
e−it
√

λ+1
ϕ̃M(

√
λ +1)Pa.c.(R(λ−i0)−R(λ +i0)) f dλ

(3.3.10)

By change of variables µ :=
√

λ +1, (3.3.9) becomes

=
1
πi

∫
∞

−∞

χ[1,∞]e
−itµ

ϕM(µ)(R(µ2−1− i0)−R(µ2−1+ i0))µ f dµ (3.3.11)

Applying integration by parts for j times, we get

ϕM(
√

L+1)e−it
√

L+1 f =
(it)− j

πi

∫
∞

−∞

e−itµ
∂

j
µ{χ[1,∞]ϕM(µ)(R(µ2−1−i0)−R(µ2−1+i0))µ} f dµ

(3.3.12)

in S ′
x(R) for any t 6= 0 and f ∈Sx(R2). Since

‖∂ j
λ

Pa.c.R(λ ± i0)‖B(L2,( j+1)/(2+0),L2,−( j+1)/(2−0)) . 〈λ 〉
−( j+1)/2 (3.3.13)

the integral is absolutely convergent in L2,−( j+1)/2
x for j≥ 2. Suppose g(t,x)= g1(t)g2(x)

where g1 ∈C∞
0 (R−{0}),g2 ∈S (R). Define

〈u1,u2〉x :=
∫

∞

−∞

u1(x)u2(x)dx (3.3.14)

〈v1,v2〉t,x :=
∫

∞

−∞

∫
∞

−∞

v1(t,x)v2(t,x)dxdt (3.3.15)
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Thus

〈ϕM(
√

L+1)e−it
√

L+1 f ,g〉t,x =
∞∫
−∞

∞∫
−∞

ϕM(
√

L+1)e−it
√

L+1 f g1(t)g2(x)dxdt (3.3.16)

Using (3.3.12), we get

〈ϕM(
√

L+1)e−it
√

L+1 f ,g〉t,x

=
1
πi

∞∫
−∞

dt(it)− jg1(t)
∞∫
−∞

dµe−itµ
∂

j
µ〈χ[1,∞](R(µ

2−1− i0)−R(µ2−1+ i0))ϕM(µ)µ f ,g2〉x

By Fubini’s Theorem

=
1
πi

∞∫
−∞

dµ∂
j

µ〈χ[1,∞](R(µ
2−1− i0)−R(µ2−1+ i0))ϕM(µ)µ f ,g2〉x

∞∫
−∞

dt(it)− je−itµg1(t)

Doing integration by parts for j times

=

√
2√
πi

∫
∞

−∞

dµ(Ftg1)(µ)〈χ[1,∞](R(µ
2−1− i0)−R(µ2−1+ i0))ϕM(µ)µ f ,g〉x

From Fubini’s Theorem

=

√
2√
πi

∫
∞

−∞

dx
∫

∞

−∞

dµ〈χ[1,∞](R(µ
2−1− i0)−R(µ2−1+ i0))ϕM(µ)µ f Ftg(µ,x))

Using Plancherel’s Theorem and Cauchy Schwartz Inequality

|〈ϕM(
√

L+1)e−it
√

L+1 f ,g〉t,x|

6

√
2√
πi
‖ϕM(µ)µ(R(µ2−1− i0)−R(µ2−1+ i0)) f‖L∞

x L2
µ
‖g(µ,x))‖L1

xL2
µ
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Similarly

|〈Pa.c.e−it
√

L+1
ϕ̃M(
√

L+1) f ,g〉t,x|

6

√
2√
πi
‖〈x〉−3/2

ϕ̃M(µ)Pa.c.(R(µ2−1− i0)−R(µ2−1+ i0))µ f‖L∞
x L2

µ
‖〈x〉3/2g(µ,x))‖L1

xL2
µ

If we combine these two and assuming the next two inequalities (3.3.17) and (3.3.18)

hold

‖ϕM(µ)(R(µ2−1− i0)−R(µ2−1+ i0))µ f‖L∞
x L2

µ
6C‖ f‖L2 (3.3.17)

‖〈x〉−3/2
ϕ̃M(µ)Pa.c.(R(µ2−1− i0)−R(µ2−1+ i0))µ f‖L∞

x L2
µ
6C‖ f‖L2 (3.3.18)

we get

|〈x〉−3/2〈e−it
√

L+1Pa.c. f ,g〉t,x|6C‖ f‖L2‖g‖L1
xL2

µ
(3.3.19)

Since C ∞
0 (Rt−{0})⊗S (Rx) is dense in L1

xL2
t and by duality principle

‖〈x〉−3/2e−it
√

L+1Pa.c. f‖L∞
x L2

µ
6C‖ f‖L2 (3.3.20)

Now we will prove (3.3.17) then (3.3.18) in order to complete the proof of the lemma.

We will use Green’s functions to show (3.3.17), Scattering Theory and Jost functions

to prove (3.3.18).
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Proof of (3.3.17): High Energy Estimate

Let R0(λ ) = (λ +∂ 2
x )
−1 and G1(x,k) = eik|x|

2ik , and λ = k2 with k≥ 0 and V :=−pφ p−1.

Then R0(λ ± i0)δ = G1(x,∓k). If M is sufficiently large enough, we have

R(λ ± i0) =
∞

∑
j=0

R0(λ ± i0)(V R0(λ ± i0)) ju (3.3.21)

for λ ∈ R with |λ |> M and u ∈S (R) since

‖〈x〉−1R0(λ ± i0)〈x〉−1‖B(L2(R)) . 〈λ 〉−1/2 (3.3.22)

The sum is absolutely convergent because

R(λ ± i0)u =R0(λ ± i0)u+R0(λ ± i0)V R0(λ ± i0)u+ ...

=〈x〉〈x〉−1R0(λ ± i0)〈x〉−1〈x〉u

+ 〈x〉〈x〉−1R0(λ ± i0)〈x〉−1〈x〉V 〈x〉〈x〉−1R0(λ ± i0)〈x〉−1〈x〉u+ ...

Since V is exponentially decreasing and u ∈S (R), the absolute sum in L2 is bounded

by C
j=∞

∑
j=1
〈λ 〉− j/2. Since |λ |>M and M is large enough, the geometric series converges.

Now if we assign λ = µ2−1, then we can write

‖ϕM(µ)R(µ2−1± i0)µu‖L∞
x L2

µ
6 ‖ϕM(µ)R0(µ

2−1± i0)µu‖L∞
x L2

µ

+
∞

∑
n=1
‖ϕM(µ)F1,n(x,∓k)‖L∞

x L2
µ

where

F1,n(x,∓k) := R0(µ
2−1± i0)(V R0(µ

2−1± i0))n
µu(x) (3.3.23)
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‖ϕM(µ)R0(µ
2−1± i0)µu‖2

L∞
x L2

µ

= sup
x

∫
R
|ϕM(µ)R0(µ

2−1± i0)µu|2dµ

=sup
x

∫
R

k√
k2 +1

|ϕM(
√

k2 +1)R0(k2± i0)
√

k2 +1u|2dk

=sup
x

∫
R

k
√

k2 +1|ϕM(
√

k2 +1)(G1(·,∓k)∗u)(x)|2dk

. sup
x

∫
R

(∣∣∣∣∫ ∞

x
u(y)e±ikydy

∣∣∣∣2 + ∣∣∣∣∫ x

−∞

u(y)e∓ikydy
∣∣∣∣2
)

dk

. ‖u‖2
L2

x

Similarly one can write

F1,n(x,±k)=
∫

Rn+1
G1(x−x1,±k)

n

∏
j=1

(V (x j)G1(x j−x j+1,±k))
√

k2 +1u(xn+1)dx1...dxn+1

(3.3.24)

Since ∫
R

G1(xn− xn+1)u(xn+1)dxn+1 = G1(xn)∗u(xn) (3.3.25)

by Minkowski’s Inequality, we get

‖ϕM(µ)F1,n(x,±k)‖L2
µ
=

(∫
R
|ϕM(µ)F1,n(x,±k)|2dµ

)1/2

.
∫

Rn

n

∏
j=1

V (x j)dx1...dxn

×
(∫

R
k(k2 +1)|ϕM(

√
k2 +1)G1(x− x1)...G1(x− xn)|2|(G1 ∗u)(xn)|2dk

)1/2

. ‖V‖n
L1 sup

xn

(∫
R

k−2nk(k2 +1)|ϕM(
√

k2 +1)(G1 ∗u)(xn)|2dk
)1/2

. ‖V‖n
L1M(−2n+1)/2‖u‖L2 for n≥ 1
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Since V ∈ L1(R), u ∈S (R) and M is sufficiently large, we have

‖ϕM(µ)R(µ2−1∓ i0)µu‖L∞
x L2

µ
. ‖u‖L2 +

∞

∑
n=1
‖V‖n

L1M−n+1/2‖u‖L2

. ‖u‖L2

Proof of (3.3.18): Low Energy Estimate

This section is based on Jost functions and Scattering Theory. Let f1(x,k) and f2(x,k)

be the solutions to Lu = k2u satisfying

lim
x→∞
|e−ikx f1(x,k)−1|= 0, lim

x→−∞
|eikx f2(x,k)−1|= 0 (3.3.26)

Define

m1(x,k) := e−ikx f1(x,k), m2(x,k) := eikx f2(x,k)

Then

m1(x,k) = 1+
∫

∞

x

e2ik(y−x)

2ik
V (y)m1(y,k)dy

m2(x,k) = 1+
∫ x

−∞

e2ik(x−y)

2ik
V (y)m2(y,k)dy

By the results of [17], for x ∈ R and k ∈ C with nonnegative imaginary part, we have

|m1(x,k)−1|. 〈k〉−1(1+max(−x,0))
∫

∞

x
〈y〉|V (y)|dy (3.3.27)

|m2(x,k)−1|. 〈k〉−1(1+max(x,0))
∫ x

−∞

〈y〉|V (y)|dy (3.3.28)
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For every δ > 0, there exists Cδ > 0 such that for every x ∈ R and k ∈ C with nonneg-

ative imaginary part and |k| ≥ δ

|m1(x,k)−1|6Cδ

∫
∞

x
|V (y)|dy (3.3.29)

|m2(x,k)−1|6Cδ

∫ x

−∞

|V (y)|dy (3.3.30)

The resolvent operator R(λ ± i0) with λ = k2 has the kernel

K±(x,y,k) =


− f1(x,±k) f2(y,±k)

W (±k) if x > y

− f2(x,±k) f1(y,±k)
W (±k) if x < y

(3.3.31)

where W (k) = f ′1(x,k) f2(x,k)− f1(x,k) f ′2(x,k) 6= 0 where the Wronskian W (k) is in-

dependent of x.

R(λ ± i0)u =− f1(x,±k)
W (±k)

(I1 + I2 + I3)−
f2(x,±k)
W (±k)

(II1 + II2)

where I1(k)=
∫ 0

−∞

e−ikyu(y)dy, I2(k)=
∫ 0

∞

e−iky(m2(y,k)−1)u(y)dy, I3(k)=
∫ x

0
f2(y,k)u(y)dy

and II1(k) =
∫

∞

x
eikyu(y)dy, II2(k) =

∫
∞

x
eiky(m2(y,k)−1)u(y)dy.

Bound for I1: Assuming x > 0, (3.3.27) (3.3.28) imply that

sup
x>0

(| f1(x,k)|+ 〈x〉−1| f2(x,k)|)< ∞ (3.3.32)

Then

|I1|=
∣∣∣∣∫ x

0
f2(y,k)u(y)dy

∣∣∣∣. ∫ x

0
〈y〉|u(y)|dy .

(∫ x

0
〈y〉2dy

)1/2(∫ x

0
|u(y)|2dy

)1/2

. 〈x〉3/2‖u‖L2
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By using (3.3.27), (3.3.28), Cauchy-Schwartz Inequality and the properties of Fourier

Transform, one can also bound I2,I3,II1 and II2 by C‖u‖L2 . Then since W (k) 6= 0 for

every k ∈ R and ϕ̃M(k) is compactly supported, it follows that

‖ϕ̃M(µ)Pa.c.R(µ2−1± i0)µ f‖L∞
x L2

µ

= sup
x

(∫
R
|k|(k2 +1) | ϕ̃M(k)

∫
R

K±(x,y,k)u(y)dy |2 dk
)1/2

. 〈x〉3/2‖u‖L2

This finishes the proof of Lemma 3.3.4.

In fact, the proof of Lemma 3.3.5 relies on a simple duality argument, based on

Lemma 3.3.4. Define T f := 〈x〉−3/2e−it
√

H Pa.c. f . From Lemma 3.3.4, we have

‖T f‖L∞
x L2

t
≤C‖ f‖L2.

Then using Fubini’s Theorem and Duality Principle we get

|
∫
R

∫
R
〈x〉−3/2e−it

√
H Pa.c. f hdxdt|= |〈 f ,

∫
R

dteit
√

H Pa.c.〈x〉−3/2h〉x| ≤C‖ f‖L2‖h‖L1
xL2

t

(3.3.33)

If we define g := 〈x〉−3/2h, then (3.3.5) follows by duality principle.

Proof of Lemma 3.3.2 and Lemma 3.3.3

First, we need the following

Proof of Lemma 3.3.2. From Strichartz estimates for the Klein Gordon equation, we

have

‖e−it
√

H Pa.c. f‖L5
t L10

x ∩L∞
t H1

x
≤C‖ f‖H1 (3.3.34)
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Similarly, we get ∥∥∥∥∥e−it
√

H

√
H

Pa.c. f

∥∥∥∥∥
L5

t L10
x ∩L∞

t H1
x

≤C‖ f‖L2 (3.3.35)

and from Lemma 3.3.5, we know that

∥∥∥∥∫R eis
√

H Pa.c.g(s, ·)ds
∥∥∥∥

L2
x

≤C‖〈x〉3/2g‖L1
xL2

t
(3.3.36)

Let

T g(t) =
∫
R

e−i(t−s)
√

H

√
H

Pa.c.g(s)ds (3.3.37)

Choose

f :=
∫
R

eis
√

H Pa.cg(s)ds ∈ L2(R) (3.3.38)

Then using (3.3.35),(3.3.36) and Cauchy-Schwartz inequality, we get

‖T g‖L5
t L10

x ∩L∞
t H1

x
=

∥∥∥∥∥
∫
R

e−i(t−s)
√

H

√
H

Pa.c.g(s, ·)ds

∥∥∥∥∥
L5

t L10
x ∩L∞

t H1
x

6C‖ f‖L2 .C‖〈x〉3/2g‖L1
xL2

t
6 ‖〈x〉5/2g‖L2

xL2
t
‖〈x〉−1‖L2

x

6C‖g‖L2
t L2

x(R;〈x〉5dx)

Using the Christ-Kiselev lemma ([15]), it follows that

∥∥∥∥∫s<t
e−i(t−s)

√
H Pa.c.g(s)ds

∥∥∥∥
L5

t L10
x ∩L∞

t H1
x

. ‖g‖L2
t L2

x(R;〈x〉5dx) (3.3.39)

Thus we complete the proof of Lemma 3.3.2.

Proof of Lemma 3.3.3. In order to show Lemma 3.3.3, we shall need two modifications

of results appearing in [37]. These will be needed to control various terms, arising in

the analysis of the estimate (3.3.3).
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The first result is stated in [37] for self-adjoint operators H =−∂ 2
x +V , but in fact,

it is applicable for any self-adjoint operator acting on L2.

Proposition 3.3.6. (Lemma 11, [37]) Let H be a self-adjoint operator and

g(t,x) = g1(t)g2(x). Define the function

U(t,x) =
i√
2π

∫
∞

−∞

e−itλ ǧ1(λ ){R(λ − i0)+R(λ + i0)}[Pa.c.(H)g2]dλ ,

where ǧ1 is the inverse Fourier transform of g1. Then

U(t,x) = 2
∫ t

0
e−i(t−s)HPa.c.(H)g(s, ·)ds+

∫ 0

−∞

e−i(t−s)HPa.c.(H)g(s, ·)ds

−
∫

∞

0
e−i(t−s)HPa.c.(H)g(s, ·)ds

One can obtain similar results for expressions in the form
∫ t

0 e−i(t−s)
√

H Pa.c.(H )g(s, ·)ds.

Namely, based on the argument in Proposition 3.3.6, we get the following formula for

the Duhamel’s operator, associated with our evolution

∫ t

0
e−i(t−s)

√
H Pa.c.(H )g(s, ·)ds =

=
i

2
√

2π

∫
∞

1
e−it
√

λ ǧ1(λ ){R(λ − i0)+R(λ + i0)}[Pa.c.(H )g2]dλ +

+
∫

∞

0
e−i(t−s)

√
H Pa.c.(H )g(s, ·)ds−

∫ 0

−∞

e−i(t−s)
√

H Pa.c.(H )g(s, ·)ds

Combining Lemma 8 and Lemma 10 from [37] yields the following.

Proposition 3.3.7. Let H = −∂ 2
x +V (x), where V (x) is a real valued potential, which

decays sufficiently fast. Then

sup
λ

‖< x >−1 RH(λ ± i0)Pa.c.(H)u‖L∞
x ≤

C
< λ >1/2‖< x > u‖L1

x
. (3.3.40)
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Note: The constant < λ >−1/2 in (3.3.40) is not stated in Lemma 8, [37] (which is

the high-frequency version regime, i.e. λ >> 1), but it is very explicit in the estimates

there.

We are now ready to proceed with the proof of Lemma 3.3.3. First, it is standard

that in order to establish (3.3.3), it suffices to consider functions g(t,x) = g1(t)g2(x).

Therefore, in view of our formula for
∫ t

0 e−i(t−s)
√

H Pa.c.(H)g(s, ·)ds, it remains to es-

tablish

‖< x >−1
∫

∞

1
e−it
√

λ ǧ1(λ )R(λ ± i0)[Pa.c.(H )g2]dλ‖L∞
x L2

t
≤C‖g1‖L2

t
‖< x > g2‖L1

x

(3.3.41)

‖< x >−3/2
∫

∞

0
e−i(t−s)

√
H Pa.c.(H )g(s, ·)ds‖L∞

x L2
t
≤C‖< x >3/2 g‖L1

xL2
t

(3.3.42)

‖< x >−3/2
∫ 0

−∞

e−i(t−s)
√

H Pa.c.(H )g(s, ·)ds‖L∞
x L2

t
≤C‖< x >3/2 g‖L1

xL2
t

(3.3.43)

The proof of (3.3.42) and (3.3.43) are similar, so we concentrate on (3.3.42). We have

from (3.3.4) and (3.3.5)

‖< x >−3/2
∫

∞

0
e−i(t−s)

√
H Pa.c.(H )g(s, ·)ds‖L∞

x L2
t
=

= ‖< x >−3/2 e−it
√

H Pa.c.(H )
∫

∞

0
eis
√

H Pa.c.(H)g(s, ·)ds‖L∞
x L2

t
≤

≤ C‖
∫

∞

0
eis
√

H Pa.c.(H )g(s, ·)ds‖L2
x
≤C‖< x >3/2 g‖L1

xL2
t
.
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Regarding (3.3.41), we have by Plancherel’s theorem in the time variable and Cauchy-

Schwartz inequality that

‖< x >−1
∫

∞

1
e−it
√

λ ǧ1(λ )R(λ ± i0)[Pa.c.(H )g2]dλ‖L∞
x L2

t
≤

≤ 2sup
x
|< x >−1 ‖

∫
∞

1
e−itµ

µ ǧ1(µ
2)R(µ2± i0)[Pa.c.(H )g2]dµ‖L2

t
≤

≤C(
∫

∞

−∞

|µ||ǧ1(µ
2)|2dµ)1/2 sup

µ

|µ|1/2 sup
x
|< x >−1 R(µ2± i0)(Pa.c.(H )g2)(x)|

From (3.3.40), we have ‖< x >−1 R(µ2± i0)Pa.c.(H )< x >−1 ‖L1
x→L∞

x
≤C < µ >−1,

whence

sup
x
|< x >−1 R(µ2± i0)(Pa.c.(H )g2)(x)| ≤C < µ >−1 ‖< x > g2‖L1

x
.

Overall, observing that

(
∫

∞

−∞

|µ||ǧ1(µ
2)|2dµ)1/2 ≤ ‖ǧ1‖L2 = ‖g1‖L2

t
and |µ|1/2 < µ >−1< 1,

we conclude

‖< x >−1
∫

∞

1
e−it
√

λ ǧ1(λ )R(λ ± i0)[Pa.c.(H )g2]dλ‖L∞
x L2

t
≤C‖g1‖L2

t
‖< x > g2‖L1

x

which is (3.3.41).

3.3.2 Analysis of a(t) and z(t) equations

In this section we will prove the conditional stability result by applying the fixed point

theorem. We will set the contraction map and the function spaces. In order to prove the
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contraction mapping theorem, for the decay estimates, we will apply Lemma 3.3.2 and

Lemma 3.3.3 and for the Strichartz estimates, we will use Lemma 1.2.4.

Taking the ansatz (3.3.1) into (3.1.2), we get

ztt +H z+ψ(a′′(t)−σ
2a(t))−F(t,x) = 0 (3.3.44)

where

F(t,x) = |φ +a(t)ψ + z|p−1(φ +a(t)ψ + z)−φ
p− pφ

p−1(a(t)ψ + z(t)) (3.3.45)

Taking the spectral projections, we derive the equations

a′′(t)−σ
2a(t)−〈F(t, ·),ψ〉= 0 (3.3.46)

ztt +H z−Pa.c.[F ] = 0 (3.3.47)

The explicit solution of (3.3.46) is in the form

a(t) = cosh(σt)a(0)+
1
σ

sinh(σt)a′(0)+
1
σ

∫ t

0
sinh(σ(t− s))〈F(s, ·),ψ〉ds (3.3.48)

Note that, if we separate the exponentially growing terms from the exponentially de-

caying ones, we come up with

a(t) =
eσt

2

[
a(0)+

1
σ

a′(0)+
1
σ

∫ t

0
e−σs〈F(s, ·),ψ〉ds

]
+ exponentially decaying term.
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In order to have a vanishing solution, we must have a(t)→ 0, and so, at the very least,

we must ensure (by taking appropriate initial data)

a(0)+
1
σ

a′(0)+
1
σ

∫
∞

0
e−σs〈F(s, ·),ψ〉ds = 0. (3.3.49)

The non-explicit non-linear equation (3.3.49) defines the center stable manifold as we

shall show below and in that sense, it is useful in its own right. It also shows (modulo

the successful completion of our argument) that it is co-dimension one. This, despite

heuristically expected (due to the presence of a single unstable direction of the lin-

earized operator), is not at all obvious statement.

According to our definitions a(0) = 〈( f1+hψ),ψ〉= h+〈 f1,ψ〉. Similarly, a′(0) =

〈 f2,ψ〉. Taking into account 〈 f1+
1
σ

f2,ψ〉= 0, we have no choice, but to set (as in [57])

h( f1, f2) =−
1
σ

∫
∞

0
e−σs〈F(m(s)),ψ〉ds (3.3.50)

Thus, (3.3.48) becomes equivalent to

a(t)=
e−tσ

2
[a(0)− 1

σ
a′(0)]− 1

2σ

∫ t

0
e−σ(t−s)〈F(s, ·),ψ〉ds− 1

2σ

∫
∞

t
eσ(t−s)〈F(s, ·),ψ〉ds

(3.3.51)

Taking into account Pa.c.(H )ψ = 0, the explicit solution of (3.3.47) is in the form

z(t) = cos(t
√

H )Pa.c. f1 +
sin(t
√

H )√
H

Pa.c. f2 +
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.[F(s, ·)]ds

(3.3.52)
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3.3.3 Setting the contraction map and the function spaces

Let Λ be a contraction map defined as Λ : X → X such that Λ(m) = m̃ where m :=

(h,a(t),z(t)) defined as (3.3.50),(3.3.51),(3.3.52) and m̃ = (h̃, ˜a(t), ˜z(t))

h̃ :=− 1
σ

∫
∞

0
e−σs〈F(m(s)),ψ〉ds,

ã(t) :=
e−tσ

2
[a(0)− 1

σ
a′(0)]− 1

2σ

∫ t

0
e−σ(t−s)〈F(s, ·),ψ〉ds− 1

2σ

∫
∞

t
eσ(t−s)〈F(s, ·),ψ〉ds,

z̃(t) := cos(t
√

H )Pa.c. f1 +
sin(t
√

H )√
H

Pa.c. f2 +
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.[F(s, ·)]ds.

Let the norm on X be defined as ‖m‖X := max(M0(m),M1(m),M2(m)) such that

M0(m) := |h|

M1(m) := ‖a‖L3
t ([0,∞))∩L∞

t ([0,∞))

M2(m) = ‖z‖L5
t L10

x ∩L∞
t H1

x∩L∞
x (R;〈x〉−3/2dx)L2

t

Our goal is to show that Λ is a contraction map defined on the Banach Space X , whose

fixed point will be the desired solution.

Estimating M0(m̃)

M0(m̃) = |h̃| ≤ 1
σ

∫
∞

0
e−σs|〈F(m(s)),ψ〉|ds (3.3.53)

From Proposition 3 in [57], we have

|F(t,x)| ≤Cp(φ
p−2(|a(t)|2ψ

2 + |z(t)|2)+ |a(t)|pψ
p + |z(t)|p) (3.3.54)
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Then it follows

|〈F(m(s)),ψ〉| ≤C(|a(s)|2 +‖z(s, ·)‖2
L2

x
+ |a(t)|p +‖z(s, ·)‖p

L2
x
) (3.3.55)

where C depends on various Lw norms of the decaying functions φ , ψ . It follows that

M0(m̃)≤ C
σ

∫
∞

0
e−σs(|a(s)|2 +‖z(s, ·)‖2

L2
x
+ |a(t)|p +‖z(s, ·)‖p

L2
x
)ds

≤ C
σ2 (‖a‖

2
L∞ +‖z‖2

L∞
t L2

x
+‖a‖p

L∞ +‖z‖p
L∞

t L2
x
)

≤ C
σ2 (M1(m)2 +M2(m)2 +M1(m)p +M2(m)p)≤ 2C

σ2 (ε
2 + ε

p)≤min(1,σ)
ε

10

provided C(ε + ε p−1) ≤ 1
20σ2 min(1,σ). Note that we used Sobolev embedding and

Gagaliardo-Nirenberg’s inequality to estimate ‖z‖L∞
t L2

x
which states that for any KG

admissible pair (q,r), one has the following estimate:

‖z‖
Lq

t W 1−(d/2−2/q−d/r)−1/q−2/(dq),r
x

≤M2(m) (3.3.56)

Estimating M1(m̃)

In order to estimate M1, we will use the fact that if h = h̃ and 〈σ f1 + f2,ψ〉 = 0, then

2〈 f1,ψ〉+ h̃ = a(0)− a′(0)
σ

. M1(m̃) has two components. First, we estimate

sup
t
|ã(t)| ≤ 1

2
(2|〈 f1,ψ〉|+ |h̃|)+

1
2σ

sup
t

∫ t

0
e−σ(t−s)|〈F(m(s)),ψ〉|ds

+
1

2σ
sup

t

∫
∞

t
eσ(t−s)|〈F(m(s)),ψ〉|ds
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From (3.3.55) and the estimates for M0(m̃), it follows

sup
t
|ã(t)| ≤ δε +

ε

10
+

1
σ2 sup

s
|〈F(m(s)),ψ〉|

≤ δε +
ε

10
+

C
σ2 (M1(m)2 +M2(m)2 +M1(m)p +M2(m)p)≤ ε

provided δ < 1/2 and 2C(ε + ε p−1) ≤ σ2/4. For the second component, we use

Hausdorf-Young’s inequality

‖ã‖L3
t
≤ (‖ f1‖L2 + |h̃|)

(∫
∞

0
e−3σtdt

)1/3

+
1

2σ
‖e−σ |·|‖L1‖〈F(m(s)),ψ‖L3

s

≤ (δε +
ε

10
min(1,σ))

1
min(1,σ)

+
1

2σ2

(∫
∞

0
|〈F(m(s)),ψ〉|3ds

)1/3

From Proposition 3 in [57], we have

|〈F(m(s)),ψ〉| ≤C(|a(s)|2 +‖z(s, ·)‖2
Lr

x
+ |a(t)|p +‖z(s, ·)‖p

Lr
x
) (3.3.57)

It follows that

(∫
∞

0
|〈F(m(s)),ψ〉|3ds

)1/3

≤C
(
‖a‖2

L6
t
+‖a‖p

L3p
t
+‖z‖2

L6
t L6

x
+‖z‖p

L3p
t L6

x

)
(3.3.58)

Since p ≥ 5, we estimate ‖a‖L6 , and ‖a‖L3p . By Gagliardo-Nirenberg’s inequality (or

log-convexity of Lp norms), for w≥ 3,

‖a‖Lw(0,∞) ≤M1(m). (3.3.59)

This follows from

‖a‖Lw(0,∞) ≤ ‖a‖
3/w
L3(0,∞)

‖a‖1−3/w
L∞(0,∞)

≤M1(m). (3.3.60)
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Thus we have

‖a‖L6
t
,‖a‖L3p

t
≤M1(m)≤ ε (3.3.61)

and because (6,6),(3p,6) are KG admissible, it follows that

‖z‖L6
t L6

x
,‖z‖L3p

t L6
x
≤M2(m)≤ ε (3.3.62)

Thus we have

‖ã‖L3
t
≤ 1

min(1,σ)
(δε +min(1,σ)

ε

10
)+Cσ (2ε

2 +2ε
p) (3.3.63)

and it suffices to require that δ < min(1,σ)/2 and 2Cσ (ε + ε p−1) ≤ 1/4 in order to

conclude that

M1(m̃) = max(‖ã‖L∞
t ,‖ã‖L3

t
)≤ ε (3.3.64)

Estimating M2(m̃)

M2 has two components. Firstly, we will estimate

‖z̃‖L5
t L10

x ∩L∞
t H1

x
6C‖cos(t

√
H )Pa.c. f1‖L5

t L10
x ∩L∞

t H1
x
+

∥∥∥∥∥sin(t
√

H )√
H

Pa.c. f2

∥∥∥∥∥
L5

t L10
x ∩L∞

t H1
x

+

∥∥∥∥∥
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.F(m(s))

∥∥∥∥∥
L5

t L10
x ∩L∞

t H1
x

Using Strichartz Estimates and Sobolev Embedding,

‖cos(t
√

H )Pa.c. f1‖L5
t L10

x ∩L∞
t H1

x
≤C‖ f1‖H1 (3.3.65)
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Similarly we get ∥∥∥∥∥sin(t
√

H )√
H

Pa.c. f2

∥∥∥∥∥
L5

t L10
x ∩L∞

t H1
x

≤C‖ f2‖L2 (3.3.66)

Using (3.3.54), we get

∥∥∥∥∥
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.F(m(s))

∥∥∥∥∥
L5

t L10
x ∩L∞

t H1
x

.

∥∥∥∥∥
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.φ
p−2(|a(s)|2ψ

2 + |z(s, ·)|2)+ |a(s)|pψ
p + |z(s, ·)|p

∥∥∥∥∥
L5

t L10
x ∩L∞

t H1
x

. ‖a‖2
L4

t
+‖a‖2

Lp
t
+‖z‖2

L∞
x (〈x〉−3/2)L2

t
+‖z‖p

Lp
t L2p

x

We use Lemma 3.3.2 and Cauchy-Schwartz Inequality to get ‖a‖L4
t

and ‖z‖L∞
x (〈x〉−3/2)L2

t
.

We have

∥∥∥∥∥
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.φ
p−2|a(s)|2ψ

2

∥∥∥∥∥
L5

t L10
x ∩L∞

t H1
x

.‖φ p−2|a(t)|2ψ
2‖L2

t L2
x(R;〈x〉5)

. ‖a‖2
L4

t

Similarly we have

∥∥∥∥∥
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.φ
p−2|z(s, ·)|2

∥∥∥∥∥
L5

t L10
x ∩L∞

t H1
x

.‖φ p−2|z(t,x)|2‖L2
t L2

x(R;〈x〉5)

. ‖z‖2
L∞

x (〈x〉−3/2)L2
t

We apply Lemma 1.2.4 in order to get ‖a‖2
Lp

t
and ‖z‖p

Lp
t L2p

x
. We take q′1 = 1 and r′1 = 2.

∥∥∥∥∥
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.|a(s)|pψ
p + |z(s, ·)|pds

∥∥∥∥∥
L5

t L10
x ∩L∞

t H1
x

. ‖a‖2
Lp

t
+‖z‖p

Lp
t L2p

x
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Thus we have

‖z̃‖L5
t L10

x ∩L∞
t H1

x
≤C(‖( f1, f2)‖H1(R)×L2(R)+‖a‖2

L4
t
+‖a‖2

Lp
t
+‖z‖2

L∞
x (R;〈x〉−3/2dx)L2

t
+‖z‖p

Lp
t L2p

x
)

Since p≥ 5, we have

‖a‖L4
t
,‖a‖Lp

t
≤M1(m)≤ ε (3.3.67)

From Strichartz Estimates, p≥ 5 implies that
2
p
+

1
2p
≤ 1

2
, thus we get

‖z‖Lp
t L2p

x
≤M2(m) (3.3.68)

Also it is clear that ‖z‖L∞
x (R;〈x〉−3/2dx)L2

t
≤M2(m)≤ ε .

It follows that

‖z̃‖L5
t L10

x ∩L∞
t H1

x
≤C1(δε +2ε

2 +2ε
p)≤ ε (3.3.69)

if C1δ ≤ 1/4, C1(ε + ε p−1)≤ 1/4.

For the second component

‖z̃‖L∞
x (R;〈x〉−3/2dx)L2

t
6C‖cos(t

√
H )Pa.c. f1‖L∞

x (R;〈x〉−3/2dx)L2
t

+

∥∥∥∥∥sin(t
√

H )√
H

Pa.c. f2

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t

+

∥∥∥∥∥
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.F(m(s))ds

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t

By Lemma (3.3.4), we have

‖cos(t
√

H )Pa.c. f1‖L∞
x (R;〈x〉−3/2dx)L2

t
≤C‖ f1‖L2 (3.3.70)

109



and ∥∥∥∥∥sin(t
√

H )√
H

Pa.c. f2

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t

≤C‖ f2‖H1 (3.3.71)

In order to estimate the last term, we will use

∥∥∥∥∥
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.F(m(s))ds

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t

.


‖F‖L1

t L2
x

‖F‖L2
t L2

x(R;〈x〉3dx)

(3.3.72)

The first inequality follows from Lemma 3.3.4.

∥∥∥∥∥
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.F(m(s))ds

∥∥∥∥∥L∞
x (R;〈x〉−3/2dx)L2

t

≤
∫ t

0
dt

∥∥∥∥∥〈x〉−3/2eit
√

H

(
e−is

√
H

√
H

Pa.c.F(m(s))

)∥∥∥∥∥
L∞

x L2
t

.
∫

∞

0
dt

∥∥∥∥∥e−is
√

H

√
H

Pa.c.F(m(s))

∥∥∥∥∥
L2

x

. ‖F‖L1
t L2

x

The second inequality follows from Lemma 3.3.3 and Cauchy-Schwartz Inequality.

∥∥∥∥∥
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.F(m(s))ds

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t

. ‖〈x〉3/2F‖L1
xL2

t

. ‖F‖L2
t L2

x(R;〈x〉3dx)
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Using (3.3.54) and (3.3.72), we get

∥∥∥∥∥
∫ t

0

sin((t− s)
√

H )√
H

Pa.c.F(m(s))ds

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t

. ‖φ p−2|a(t)|2ψ
2‖L2

t L2
x(R;〈x〉3)+‖φ

p−2|z(t,x)|2‖L2
t L2

x(R;〈x〉3)

+‖|a(t)|pψ
p‖L2

t L2
x(R;〈x〉3)+‖|z(t,x)|

p‖L1
t L2

x

. ‖a‖2
L4

t
+‖z‖2

L∞
x (〈x〉−3/2)L2

t
+‖a‖p

L2p
t
+‖z‖p

Lp
t L2p

x

Since p≥ 5, we can control ‖a‖L4
t
,‖z‖L∞

x (R;〈x〉−3/2dx)L2
t
, ‖a‖L2p

t
,‖z‖Lp

t L2p
x

. It follows that

‖z‖L∞
x (R;〈x〉−3/2dx)L2

t
≤C2(δε +2ε

2 +2ε
p)≤ ε (3.3.73)

if C2δ ≤ 1/4, C2(ε + ε p−1)≤ 1/4. Thus we can conclude

M2(m̃) = max(‖z‖L5
t L10

x ∩L∞
t H1

x
,‖z‖L∞

x (R;〈x〉−3/2dx)L2
t
)≤ ε (3.3.74)

Thus we can say that for appropriately chosen ε and δ , so that ‖( f1, f2)‖H1×L2 , we can

establish Λ : Bx(ε)→ Bx(ε). Note that all the estimates leading to that conclusion were

in the form

‖Λ(m)‖X ≤C‖m‖X(1+‖m1‖X +‖m2‖X)
p−1. (3.3.75)

In order to finish the proof of the contraction mapping theorem, we have to prove that

Λ is a contraction, i.e. ‖Λ(m1)−Λ(m2)‖ ≤C‖m2−m1‖ for some C < 1. It is standard

in this line of reasoning that if one has (3.3.75) and the non-linearity F has some “mul-

tilinear” feature, then the proof of (3.3.75) can be used to show the contraction of the
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same map. Indeed, all we have to observe that, similar to (3.3.54), we have

|F(a,z)−F(b,w)| ≤Cp,φ ,ψ(φ
p−2[(|a−b|)(|a|+ |b|)+ |z−w|(|z|+ |w|)]

+ψ p|a−b|(|a|+ |b|)p−1 + |z−w|(|z|+ |w|)p−1).

(3.3.76)

This last estimate will allow us to do the same estimates as before, except one of the

entries will be the difference term m1−m2. This way, we show the following analogue

of (3.3.75)

‖Λ(m1)−Λ(m2)‖X ≤C‖m1−m2‖X(‖m1‖X +‖m2‖X)(1+‖m1‖X +‖m2‖X)
p−2,

which implies the desired contractivity of the map Λ for small ‖m1‖X ,‖m2‖X . This

finishes the proof of the theorem.

3.4 Summary, remarks and open questions

Our result constructs the co-dimension one center-stable manifold of initial data, for

which the solutions of (3.1.1) close to the steady states stay close to the steady states.

The results are important in several different regards - first, it shows that the center-

stable manifold is indeed a co-dimension one object, which is not a priori clear. Sec-

ondly, the actual construction, relies on an implicit constraint (3.3.49), which is of

independent interest. Thirdly, the paper develops new spectral and functional analytic

tools for proving dispersive estimates for the perturbed Klein-Gordon evolution, which

might prove useful in other related situations. However there are still questions which

will be the subject of our future investigation.

First of all, our conditional stability result (3.3.1) for the one dimensional Klein-

Gordon equation was achieved for the even initial data. By restricting our initial data to
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even case, we destroyed the eigenvalue at 0. If we intend to work on the same problem

to get a similar result for any arbitrary initial data, then we have to work on the solution

which will be in the following form:

u(t,x) = φ(x+ y(t))+a(t)ψ +b(t)φ ′+ z(t,x) (3.4.1)

Because of the 0 eigenvalue, the solution u(t) contains y(t) which is the asymptotic

phase function. This makes the problem much harder because we also need to find

estimates for y(t) as in the reaction-diffusion equation case in [57].

Secondly, our conditional stability result (3.3.1) was achieved for p ≥ 5. We ob-

tained this condition as a result of Strichartz estimates. However Strichartz estimates

do not suffice in the case of p < 5. This will certainly require additional estimates.
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