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ABSTRACT 

Limitations in technology, such as DNA sequencing and appropriate model systems, have 

made it difficult to understand the genetic and non-genetic factors that influence the liver‟s role 

in metabolizing drugs.  New approaches are required to overcome these limitations.  In this 

Dissertation, we evaluate 3 such new approaches. 

  Our first new approach relates to the field of pharmacogenetics: using genetics to predict 

how a patient will respond to medication based on their genetic code.  We looked for 

polymorphisms in a novel target gene, Cytochrome P450 Oxidoreductase (POR).  Our results 

show a mutation in P450 reductase (L577P) that associates with decreased metabolism for 8 of 

10 major drug metabolizing enzymes.  However, even though we found a statistical association 

between POR polymorphism and drug metabolism, a wide range of variation in POR activity 

was still observed among the samples with the L577/ P577 genotype, making predicting POR 

activity solely on the basis of L577P genotype difficult.   

 POR represents only a single gene amongst the tens of thousands present in the human 

genome.  To investigate the relationship between how genes and their products interact, a 

systems approach is necessary.  Therefore, in our second new approach, we will characterize the 

transcriptome of our model system, the HepaRG cell line.  We found that HepaRG cells globally 

transcribe genes at the levels more similar to human primary hepatocytes and human liver than 

HepG2 cells, particularly in genes encoding drug processing proteins.  
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Finally, I describe the third new approach: the use of next-generation DNA sequencing to 

understand hepatic drug response.  This section contains two parts.  First, we introduce methods 

that significantly decrease the false discovery rate of genotyping from RNA-Seq data.  With 

these high fidelity SNPs, we were able to perform a genome-wide pharmacogenomic analysis on 

HepaRG cells.  Second, we introduce a new program, called PRUNE, to more accurately 

quantify gene expression, and compare its performance to that of established programs.  
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CHAPTER 1.  INTRODUCTION 
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1.1. Theme and Scope 

 The following Dissertation is presented in the following three main sections, each with its 

own dedicated chapter: 

1. A New Target Gene for Pharmacogenetics: Cytochrome P450 Oxidoreductase 

(POR) 

2. A New Cell Model for Studying Drug Metabolism and Liver Toxicity: 

HepaRG Cells as a Surrogate for Primary Human Hepatocytes 

3. A New Tool for Understanding Drug Response: Next-generation-based mRNA 

Sequencing in Pharmacogenomics 

 

Chapter 2 will focus on our contribution to the field of pharmacogenetics: using genetics 

to predict how a patient will respond to medication.  The status quo for the field of 

pharmacogenetics and genomics is to identify rare alleles in well-known and well-characterized 

pharmacogenetic genes from large populations.  In contrast to this, and thus representing the first 

new approach, we chose to look for polymorphisms in a novel target gene, Cytochrome P450 

Oxidoreductase (POR).  Chapter 2 begins with a brief history of pharmacogenetic research, 

define several key terms that will be used throughout this Dissertation, and describe the 

approach, results, and significance for identifying several novel mutations in the POR gene.   

Chapter 3 will focus on the use of HepaRG cell line as a valuable newer in vitro cell 

model for studies of drug metabolism and liver toxicity in drug discovery.  The second new 

approach was to assess on the total gene expression profile by microarrays, whereby were able 

to show that HepaRG are more correlated to the gene expression of both primary hepatocytes 
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and liver tissue than the commonly-used hepatocyte cell line, HepG2.  Primary human 

hepatocytes still are considered the „gold standard‟ for understanding human hepatocyte 

function, but HepaRG may be a suitable alternative in many cases. 

In chapter 4, we describe the third new approach: the use of next-generation mRNA 

sequencing to understand drug response, in the context of hepatic gene expression.  Because the 

first mRNA-Seq experiments were published less than two years ago, much of the analytical 

dogma required for interpretation of the data has not been established.  We propose, and gauge 

the performance of, analytical pipelines for genotyping mRNA-Seq and how to relate those 

genotypes to pharmacologically relevant information.  We also developed a new software 

program to accurately quantitate gene expression levels and compare its performance to an 

established method. 

 

1.2. A New Target Gene for Pharmacogenetics: Cytochrome P450 Oxidoreductase (POR) 

1.2.1. Pharmacogenetic studies of pharmacokinetic genes 

1.2.1.1. Variation in drug metabolism and clinical outcomes 

Adverse drug reactions cause about 100,000 deaths and 2 million serious events, and is 

responsible for 5-7% of hospital admissions in the United States of America each year (Lazarou 

et al., 1998; Gandhi et al., 2003; Dormann et al., 2004), indicating a need to improve drug safety.  

Current medical practice uses standard protocols to select drugs and doses to treat human disease 

and other maladies.  Standard drug dosing protocols are based on the assumption that most 

patients respond homogeneously to drugs.  However, significant inter-individual variation in 

drug response exists in the general population with respect to both what a drug does to the body 
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(pharmacodynamics: interactions between a drug, its target, and downstream effects) and what 

the body does to the drug (pharmacokinetics: absorption, distribution, metabolism, and excretion 

of a drug from the body, ADME).  The duration and intensity of pharmacological action of a 

drug is influenced by both its pharmacokinetic and pharmacodynamic parameters.   

As an example of how pharmacokinetic parameters can affect efficacy and safety, think 

about the rate at which the body metabolizes xenobiotics (especially the intestines and liver).  If 

the drug is metabolized too fast, it may not reach the required effective concentration to act on its 

target.  Conversely, if the drug is metabolized too slowly, then it may accumulate, leading to 

higher, and potentially dangerous, drug concentrations.  Based on the rate for metabolizing a 

specific drug, an individual can be classified as an ultrafast metabolizer, extensive metabolizer, 

intermediate metabolizer, or poor metabolizer for that drug.  The majority of individuals in the 

general population are defined as extensive metabolizers.  Standard protocols are designed for 

optimal therapeutic efficacy and minimal adverse drug reactions for extensive metabolizer 

patients.  However, if a drug is primarily inactivated by metabolic enzymes, ultrafast 

metabolizers have a higher ability to inactivate the drug than extensive metabolizers and may not 

benefit from the drug at the standard dose.  Conversely, poor metabolizers have a lower ability to 

inactivate drugs than extensive metabolizers and may experience undesirable, even fatal, adverse 

drug reactions resulting from increased plasma concentrations, leading to more on- and off-target 

effects.  Dosage should be adjusted to optimize the safety and efficacy of prescription drugs 

based on each individual‟s drug metabolic rates.  

Many factors influence the drug metabolic rates, including environmental factors (diet 

and environmental toxicants), physiological factors (age and gender), pathological factors (liver, 

kidney, or heart diseases), and genetic factors (genetic polymorphism).  Of these factors, genetic 
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polymorphism may be one of the most important factors.  For some drugs, genetic polymorphism 

contributes to more than 50% of the variation in drug response (Ozdemir et al., 2000; Sanderson 

et al., 2005; Wadelius and Pirmohamed, 2007).  Pharmacogenetic studies on drug metabolic 

pathways attempt to determine which genetic polymorphisms can influence drug metabolic rates, 

and how to adjust the dose for individual patients based on their genetic makeup. 

 

1.2.1.2. Pharmacogenetic studies related to drug metabolism pathways 

Drugs are usually metabolized by specialized enzymatic systems to convert lipophilic 

chemical compounds into more readily excreted polar products.  The metabolism occurs 

primarily in liver hepatocytes and epithelial cells of the small intestine, but also in other tissues, 

such as lungs, kidneys, and skin.  Figure 1.1 illustrates a process of drug metabolism by the 

specialized xenobiotic response systems in a cell.  Drugs are usually absorbed by the small 

intestine and distributed to the liver.  The drugs must diffuse through the lipid bilayer cellular 

membrane or be transported by uptake membrane transporters.  Lipophilic drugs are then 

biotransformed into polar products by phase I and phase II reactions.  Phase I reactions usually 

precedes phase II, although not necessarily.  If the metabolites of phase I reactions are 

sufficiently polar, they may be readily excreted.  However, many phase I products are not 

eliminated rapidly and undergo a subsequent phase II reaction.  The polar products are secreted 

out of the cells by efflux membrane transporters into the elimination system.  Drug import and 

export by membrane transporters are sometime referred to as phase III reactions (though this 

nomenclature is not widely accepted).  The phase I, II, and III reactions are coordinately 

regulated by similar mechanisms mediated by nuclear receptors (Honkakoski and Negishi, 2000; 
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Xu et al., 2005; Nakata et al., 2006), such as pregnane x receptor (PXR) and constitutive 

androstane receptor (CAR).  These nuclear receptors can be activated by drugs as ligands.  The 

activated nuclear receptors act as xenosensors to interact with xenobiotic response elements in 

the promoters of phase I, II, and III genes to stimulate gene transcription.  
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Figure 1.1.  Graphic representation of drug metabolic processes in a drug metabolizing cell.  

Abbreviations: NR, nuclear receptor; XRE, xenobiotic response element; CYP, cytochrome 

P450; POR, cytochrome P450 oxidoreductase; UGT: uridine 5'-diphospho-

glucuronosyltransferase; SER: smooth endoplasmic reticulum. 
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Phase I reactions include oxidation, reduction, hydrolysis, cyclization, and decyclization.  

The most extensive pharmacogenetic studies of phase I reactions have focused on the 

microsomal cytochrome P450 (CYP) superfamily of genes.  Humans have 50 microsomal CYP 

genes (plus 7 additional non-microsomal), of which 15 are involved in drug metabolism for 

about 80% of prescription drugs (Evans and Relling, 1999; Lander et al., 2001).  

Pharmacogenetic and clinical aspects of CYP polymorphisms have been the subject of many 

reviews (Daly, 2004; Ingelman-Sundberg et al., 2007; Plant, 2007).  The impact of null alleles 

resulting from genetic polymorphisms, which can affect CYP gene expression and/or enzyme 

activity, have been well characterized for some CYP isoforms, such as CYP2A6, CYP2B6, 

CYP2C9, CYP2C19, CYP2D6, and CYP3A5.  Based on whether one or both chromosomes 

carry the null alleles or have multiple copies of the normal CYP genes, phenotypes of drug 

metabolism (i.e. ultrafast, extensive, or poor metabolizer) can be predicted with a certain degree 

of accuracy (Gaedigk et al., 1999; Lundqvist et al., 1999; Zanger et al., 2004).  However, null 

alleles have not been identified in all of the CYP genes, for example CYP1A2 and CYP2E1.  

Null mutations in CYP3A4 are rare, with only one group observing 4 family members with a 

heterozygous CYP3A4*20 allele (Westlind-Johnsson et al., 2006).  CYP3A4 is the most 

abundant CYP isoform (up to 30% of total CYP content) in the liver and small intestine 

(Wrighton and Stevens, 1992) and plays a major role in the biotransformation of ~40-50% of 

currently prescribed drugs (Evans and Relling, 1999).  Significant variation in CYP3A4-

mediated drug metabolism exists in the general population, and this may be the reason for 

differences in therapeutic efficacy and toxicity for many drugs administrated at a standard dose 

(Schellens et al., 1988; Renwick et al., 1998).  Genetics are likely the cause for these differences 

(Ozdemir et al., 2000), however most identified CYP3A4 polymorphisms have allele frequencies 
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of <1% in the general population, which cannot explain such wide variation in CYP3A4-

catalyzed drug metabolism, the exception being CYP3A4*1B (Rebbeck et al., 1998; Walker et 

al., 1998).  This indicates that CYP enzymes may not be the only factors for varied drug 

responses.  In many cases, variations in drug response may be due to polygenic or epigenetic 

factors that remain to be elucidated - not only within the CYP superfamily, but also in other 

players involved in drug metabolism. 

The other players include (1) phase II enzymes, which further metabolize phase I reaction 

products; (2) phase III membrane transporters, which control the amount of drugs in each cell, or 

(3) nuclear receptors, which determine the amount of phase I, II, and III proteins available to act 

on the drugs (Figure 1.1).  These players are critical to drug metabolism as they can influence 

metabolic rates.  Phase II reactions essentially conjugate drugs with hydrophilic moieties, such as 

glucuronic acid, glutathione, sulfonates, and amino acids.  Phase II reactions are catalyzed by 

UDP-glucuronosyltransferases (UGTs), glutathione S-transferases (GSTs), sulfotransferases 

(STs), N-acetyltransferases (NATs), and amino acid N-acyl transferases.  Clinically significant 

adverse drug reactions have been reported in patients carrying defective UGT (Burchell et al., 

2000), GST (Roy et al., 2001), and NAT alleles (Huang et al., 2002).  Pharmacogenetic aspects 

of phase II enzymes have been extensively reviewed elsewhere (Guillemette, 2003; de Jong et 

al., 2006; Nowell and Falany, 2006; Lo and Ali-Osman, 2007).   

From the phase III perspective, genetic polymorphisms in the membrane transporter 

genes of multidrug resistance 1 P-glycoprotein (Lamba et al., 2006) and organic anion 

transporter proteins (Tirona et al., 2001; Michalski et al., 2002; Nozawa et al., 2002; Letschert et 

al., 2004) influence P450-catalyzed drug metabolism either by inhibiting proper maturation and 

localization of the transporters, or by changing substrate specificity.  In either case, this alters the 
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amount of drug that can get into the cells where the Cytochrome P450s and other metabolic 

machinery can metabolize them.  Additionally, genetic polymorphisms in nuclear receptor genes 

of PXR (Koyano et al., 2004; Lamba et al., 2005) and CAR (Ikeda et al., 2005; Lamba et al., 

2005) have been identified and shown to alter downstream target CYP gene expression.    

Undoubtedly, pharmacogenetic studies of phase II enzymes, phase III transporters, and 

nuclear receptors will continue to elucidate mechanisms by which variation occurs for drug 

metabolism.  However, a great need still exists to identify markers to better predict drug response 

for drugs that are predominantly oxidized by the CYP superfamily of enzymes.  Because genetic 

explanations for some aberrant CYP-mediated metabolism remain enigmatic, polymorphisms in 

their functional partners may contribute to this altered metabolic function.  One important partner 

is cytochrome P450 oxidoreductase (POR), which is the sole electron donor for all microsomal 

CYP enzymes.   

 

1.2.2. Cytochrome P450 Oxidoreductase (POR) 

1.2.2.1. Physiologic functions of POR 

NADPH-cytochrome P450 oxidoreductase (POR or CYPOR) is also known as NADPH-

cytochrome P450 reductase (CPR), P450 reductase (P450R), NADPH-hemoprotein 

oxidoreductase, and NADPH-ferrihemoprotein oxidoreductase.  POR was first identified as an 

NADPH-specific cytochrome c reductase (Horecker, 1950).  Later studies showed that POR is 

not the physiological enzyme for cytochrome c reduction in mitochondria (Williams and Kamin, 

1962), rather it is located on the smooth endoplasmic reticulum where it donates electrons to 

several oxygenase enzymes, as depicted in Figure 1.2.  These oxygenase enzymes include: (1) 
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heme oxygenases (Schacter et al., 1972), which catalyze the degradation of heme to bilirubin; (2) 

squalene monooxygenase (or squalene epoxidase) (Ono and Bloch, 1975), the first oxygenation 

step and rate-limiting enzyme to reduce squalene to 2,3-oxidosqualene in sterol biosynthesis; (3) 

7-dehydrocholesterol reductase (Nishino and Ishibashi, 2000), the enzyme that reduces the C7-

C8 double bond of 7-dehydrocholesterol in the cholesterol biosynthesis pathway; (4) cytochrome 

b5 (Enoch and Strittmatter, 1979), which supports the fatty acid desaturase and elongase for 

metabolism of fatty acids; (5) microsomal CYP monooxygenases (Vermilion JL, 1981), heme-

containing proteins that catalyze biosynthesis of steroid hormones, cholesterol, and bile acids, as 

well as metabolism of vitamins, steroids, and more than 80% of current prescription drugs. 
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Figure 1.2.  Involvement of POR as electron donor in various physiological functions.    
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The general catalytic cycle scheme for electron transfer from POR to CYP enzymes is 

shown in Figure 1.3.  Briefly, CYPs containing ferric (Fe
3+

) heme iron can initiate catalysis by 

either accepting the drug into the CYP‟s catalytic pocket, and then reducing to ferrous (Fe
2+

) 

state by one electron reduction from POR, or first reducing to ferrous (Fe
2+

) state by POR, and 

then binding to a drug (Guengerich and Johnson, 1997).  Regardless of either initiating sequence, 

after the first electron reduction, a molecular oxygen binds ferrous iron, and then a second 

electron must be donated by POR, or, in some situations, cytochrome b5 (Hildebrandt and 

Estabrook, 1971; Noshiro et al., 1981).  For a long time, cytochrome b5 was thought to only be 

able to donate one of the two electrons needed for P450-mediated catalysis, although this idea 

has been challenged recently (Finn et al., 2008).  Subsequent steps include the introduction of a 

proton, cleavage of the O-O bond, abstraction of the hydrogen, product formation, and release.  

Typical and atypical CYP-catalyzed reactions have been thoroughly reviewed by Guengerich 

(2001).  
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Figure 1.3.  Electron donations by POR in a catalytic cycle of cytochrome P450-mediated drug 

oxidation.  P450 = Cytochrome P450, Fe = heme iron, RH = substrate (drug), ROH = oxidized 

substrate (drug).  *For some CYP isozymes, cytochrome b5 can act as an electron donor.    
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Not only is POR necessarily interesting for CYP activation, but the process by which 

electrons are prepared for transfer is also quite unique.  The crystal structure of the rat POR 

protein (Wang et al., 1997) shows that the POR protein contains five structural domains, a 

transmembrane anchoring domain, a hinge domain, and three binding domains to the cofactors of 

nicotinamide adenine dinucleotide phosphate reduced form (NADPH), flavin adenine 

dinucleotide (FAD), and flavin mononucleotide (FMN), independently.  Through a series of 

macromolecular motions, NADPH initially binds to POR and donates a hydride ion to FAD 

(Hubbard et al., 2001).  Once reduced by the two electrons, FAD is converted to the 

dihydroquinone state (FADH2).  Electrons are then transferred sequentially from FAD to FMN 

through inter-domain electron transfer (Gutierrez et al., 2001), during which time the FMN 

cycles between the semiquinone (FMNH•) and dihydroquinone (FMNH2) states.  This action is 

proposed to be gated by a tryptophan residue in the C-terminus of the POR protein (Gutierrez et 

al., 2002) that sterically impedes electron flow during the macromolecular shifting in primary 

binding events, such as NADPH (Gutierrez et al., 2002; Grunau et al., 2006), and also potentially 

secondary binding events, such as POR-CYP interactions (Sue Masters and Marohnic, 2006).  

More detailed information on the kinetics of electron transfer can be found elsewhere (Gutierrez 

et al., 2003). 

The possibility of POR as a potential rate-limiting step in CYP-mediated drug 

metabolism was initially considered in 1969 (Gigon et al., 1969; Ullrich, 1969), but it was 

generally disregarded as a rate-limiting step because all CYP isoforms would be catalytically 

activated at the same rate (Guengerich, 2001).  However, this assumption did not consider that 

the POR gene could be polymorphically expressed and POR protein might have genetic 

variations.  The question remained as to if a biological system containing limited or functionally 
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disrupted POR has altered physiological functions controlled by microsomal CYPs.  This 

question has been tested in animal models.   

Recently, POR knock-out mice have been engineered, which are embryonically lethal, 

giving rise to multiple developmental defects such as neural tube, cardiac, eye, and limb 

abnormalities, general growth retardation, and vascular defects (Shen et al., 2002; Otto et al., 

2003).  These irregularities are thought to be caused by a number of factors, including elevated 

retinoic acid levels due to the loss of Cyp26 activity (Otto et al., 2003), which normally 

metabolizes all-trans retinoic acids into hydroxyretinoic acids and 4-oxoretinoic acids for 

elimination.  However, diets with low retinoic acids can only partially rescue the phenotypes 

(Otto et al., 2003; Ribes et al., 2007).  In the case of liver-specific deletion of the POR gene, 

mice are reproductively and morphologically normal, but they show a profound decrease in the 

metabolism of steroids and drugs (Gu et al., 2003; Henderson et al., 2003).  Interestingly, 

hepatocyte-specific POR knockout mice demonstrate a compensatory 5-fold increase in total 

CYP content, indicating a negative feedback pathway regulating CYP gene expression 

(Henderson et al., 2003).  Compensatory changes are also observed in extrahepatic tissues such 

as the ileum, jejunum, and colon in the mouse model (Mutch et al., 2007).  

Since engineered disruption of the POR gene has shown significant influence on 

physiological functions in mice, it begs the question, “What would happen in a human?” 

 

1.2.2.2. Cause of a human disease, POR deficiency, by severe POR mutations 

The gene encoding the human POR is genetically polymorphic.  Located on chromosome 

7q11.2 (Shephard et al., 1989), the POR gene (GeneID 5447 in the National Center for 

Biotechnology Information database, NCBI) is a 71753-bp gene (NT 007933) containing 16 
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exons that transcribes a 2509-bp mRNA (NCBI NM_000941.2) and encodes an 82-kDa 

membrane-bound protein with 680 amino acids (NCBI NP_000932.3).  Currently, the NCBI 

dbSNP database (build 128) has reported ~320 single nucleotide polymorphisms (SNPs) in the 

72-kb genomic region (4.4 SNPs per 1 kb, higher than 0.8 SNPs per 1 kb, an estimate of the 

average density of SNPs in human genome (Zhao et al., 2003)).  Fifteen of these SNPs are 

located in the exonic regions, in which 8 are synonymous and 7 are nonsynonymous.  Five of the 

SNPs, rs10262966 (G5G), rs1135612 (P129P), rs2228104 (A485A), rs1057868 (A503V), and 

rs1057870 (S572S), have minor allele frequencies of more than 10% in at least one examined 

ethnic population (http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?locusId=5447&chooseRs=all).   

Genetic mutations in the POR gene cause an autosomal recessive genetic disease, P450 

oxidoreductase deficiency (Huang et al., 2005; Flück and Miller, 2006; Arlt, 2007; Krone et al., 

2007).  Its clinical phenotypes include ambiguous genitalia, congenital adrenal hyperplasia, 

Antley-Bixler syndrome, and polycystic ovary syndrome.  These phenotypes typically link to 

abnormal steroid profiles with accumulation of steroid metabolites.  Molecular genetic analyses 

of these phenotypes in 1985 first focused on steroid 17α-hydroxylase (CYP17) and steroid 21-

hydroxylase (CYP21), which are CYPs involved in steroid metabolism.  Deficiencies of CYP17 

and CYP21 enzyme activities were observed in patients with glucocorticoid deficiency, skeletal 

dysplasia, and Antley-Bixler syndrome, but no mutations could be identified in the CYP17 or 

CYP21 genes (Adachi et al., 1999; Reardon et al., 2000).  These findings suggested that a defect 

may exist in functional partners that interact with these CYP enzymes.  Miller (1986) first 

hypothesized that the mutations might be in the CYP electron donor, POR, at three years before 

the POR gene was cloned (Shephard et al., 1989).  
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Flück et al. (2004) first reported five missense POR mutations (A287P, R457H, V492E, 

C569Y, and V608F) and a splicing mutation in an initial study with four patients who had 

disordered steroidogenesis and Antley-Bixler syndrome.  Later, Arlt et al. (2004) identified 

another POR missense mutation (Y181D) in three patients who had congenital adrenal 

hyperplasia, and also confirmed three POR mutations (A287P, R457H, and C569Y), originally 

described by Flück et al. (2004).  Furthermore, in a study with a larger patient sample size (32 

individuals), Huang et al. (2005) identified and characterized additional missense and frameshift 

mutations found in patients or in other SNP databases (A115V, T142A, Q153R, P228L, M263V, 

R316W, G413S, Y459H, A503V, G504R, G539R, L565P, R616X, V631I, and F646del).  In that 

study, fifteen of nineteen patients having abnormal genitalia and disordered steroidogenesis were 

homozygous or heterozygous for POR mutations that eliminated or dramatically decreased POR 

activity.  The R457H mutation was found at a high allele frequency (62.5%) in a study with 10 

Japanese patients from 8 families with Antley-Bixler syndrome, abnormal genitalia, and 

impaired steroidogenesis (Fukami et al., 2005).  Four other mutations were also identified in 

these patients: a missense mutation (Y578C), a silent transition (G5G), a 1-bp insertion (I444fs), 

and a 24-bp deletion (L612_W620delinsR).  A distinct new disease, POR deficiency, was 

defined (Huang et al., 2005; Flück and Miller, 2006; Arlt, 2007; Krone et al., 2007).  So far, all 

POR deficiency associated mutations were found only once in a single patient, except A287P, 

R457H, and C569Y.  Interestingly, the G5G polymorphism was found to be associated with an 

increased risk of breast cancer in African Americans (Haiman et al., 2007). 

Locations of these mutations can be seen in the artistic rendition of the three-dimensional 

POR structure (Figure 1.4).  Site-mutagenesis studies confirmed that the mutations located in the 

NADPH, FAD, and FMN domains had the most severe influence on electron flow within POR 
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and its catalytic ability to cytochrome c reduction and CYP-catalyzed oxidations (Huang et al., 

2005).  Although the most significant decreases in activity were observed in these cofactor-

binding domains, the consequences of these mutations may (e.g.  Y459H and V492E; (Marohnic 

et al., 2006)) or may not necessarily (F646del; (Huang et al., 2005)) influence cofactor binding. 

POR deficiency is a very rare genetic disease.  Mutations causing the POR deficiency 

may not be common in the general population.  However, it is unclear whether genetic 

polymorphisms in the POR gene affect P450-catalyzed drug metabolism.  Therefore, in chapter 

2, we will discuss the identification of known and novel polymorphisms in the POR gene and 

assess their impact on drug metabolism.   
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Figure 1.4.  Locations of POR mutations in three-dimensional structure of the POR protein.  

The NADPH-binding domain is colored in light purple, FAD-binding domain is green, hinge 

domain is dark blue, FMN-binding domain is red, and transmembrane domain is blue-green.  All 

reported non-synonymous mutations in POR are labeled by color.  Red letters indicate mutations 
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or polymorphisms found in patients with POR deficiency.  Blue letters are polymorphisms 

associated with decreased drug metabolism. 
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Despite our rapid understanding of how genetic polymorphisms affect POR function, it 

likely represents a fractional contribution of genetically-mediated altered drug metabolism.  

POR represents only a single gene amongst the tens of thousands present in the human genome.  

Tens of thousands of genes are capable of producing over 100,000 different proteins, many of 

which can interact with one another directly or indirectly, alone or in combination.  As noted 

earlier, many genes can have genetic polymorphisms that result in altered drug metabolism, not 

just POR.  Complicating things even more, there may be situations where combinations of 

genetic variation in different genes only result in an altered drug-response phenotype when both 

polymorphisms are present.  To investigate these relationships, a systems approach is necessary 

for studying how genes, proteins, and genetic variation interact with one another.  The first step 

in understanding the complexities of these interactions is to define and utilize a model system 

that closely resembles the target cell, tissue, or organ of interest.  Therefore, the next section of 

this Dissertation will be the characterization of a model system, the HepaRG cell line. 

 

1.3. A New Cell Model for Studying Drug Metabolism and Liver Toxicity: HepaRG Cells  

1.3.1. What are HepaRG cells and why do we need them? 

An ideal drug candidate for a clinical trial is expected to present the desired functional 

response on the highly selective target molecule, to have a distinct mechanism of effect, adequate 

bioavailability and biodistribution, and most importantly to pass the formal toxicity evaluation to 

demonstrate the risks for human participants in the clinical studies.  To achieve the desired 

candidates, modern drug discovery has mapped out the road with well-delineated milestones, 

including selection of drug target, identification of lead compounds, establishment of 
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pharmacokinetic parameters, and the toxicity testing (Helfti, 2008).  The broad availability of 

chemical libraries and automatic screening technologies has made it possible to identify the 

candidates for human disease targets at a rapid pace (Bajorath, 2002).  

In contrast, the metabolic transformation and toxic effects of drug candidates vary from 

species to species, which renders interpreting metabolism studies conducted in animals very 

complex and challenging tasks (Olson et al., 2000).  Liver becomes the center of attention 

because it is the principal organ involved in the biotransformation of xenobiotics and the most 

relevant systemic toxicity-target organ.  A variety of in vitro human preparations, including 

cellular (tissue slices, suspensions and primary human hepatocyte, hepatic cell lines) and 

subcellular (S9 fractions, liver microsomes, recombinant enzymes) systems were established for 

subverting this purpose.  Of these, only primary human hepatocytes - which account for 60% of 

liver and produce 90% of the total hepatic proteins - are able to express the entire hepatic 

metabolic machinery for drug metabolic studies and consequently to mimic the diverse 

mechanism of toxicity occurring in liver (Guillouzo, 1998).  Thus, primary human hepatocytes in 

culture are the current system of choice for studying drug metabolism.   

The widespread use of primary human hepatocytes, however, is limited by their restricted 

availability, functional instability with time in culture, limited lifespan and growth potential, 

large variability in CYP activities, and in magnitude of the responsiveness to prototypical 

inducers which is often greater than that in vivo (Guillouzo and Guguen-Guillouzo, 2008).  In 

addition, the elaborate procedures used to isolate hepatocyte from liver samples/slices cause 

stress to the cells, rendering it difficult to use large batches of pre-characterized inducible 

cyropreserved human hepatocytes for high throughput screening tests (LeCluyse, 2001; 
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Rodriguez-Antona et al., 2002; Richert et al., 2006).  There is still an urgent need to develop 

better prediction models to assess the metabolic and toxic effects of drug candidates. 

To overcome these difficulties, researchers have been searching for new human liver cell 

lines.  Currently used human liver cell lines are generally derived from hepatic tumors.  

Unfortunately, most of them have altered gene expression profiles, which lack most liver-

specific functions.  In particular, cytochrome P450 gene expression and enzyme activities are 

usually very low or undetectable in these human liver cells.  For example, HepG2 cells,  the most 

frequently used human liver cell line, express many CYP genes at very low levels (Sassa et al., 

1987).  Although some CYP genes, such as CYP1A1 and CYP3A7, are expressed in HepG2 

cells (Ogino et al., 2002), these P450 members are fetal-specific and not expressed in most adult 

livers.  These changes in gene expression may have happened in HepG2 cells after they were 

derived from the liver tissue of a differentiated hepatocellular carcinoma or may represent a 

developmental phenotype.  

Recently, a new human liver cell line, HepaRG, has become available (Gripon et al., 

2002).  Although this cell line is derived from a female hepatocarcinoma patient, unlike other 

human liver cell lines, HepaRG cells express many drug processing genes at similar levels 

compared to primary human hepatocytes under a certain
 
culture condition (Aninat et al., 2006).  

These drug processing genes encode phase I drug metabolizing enzymes (CYP1A2, 2B6, 2C9, 

2E1, and 3A4), phase II enzymes (UDP glucuronosyltransferase 1 family, polypeptide A1, 

UGT1A1; glutathione S-transferase alpha 1,
 
GSTA1; GSTA4, and GSTM1), gene regulatory 

proteins (aryl-hydrocarbon receptor, AHR; pregnane x receptor, PXR; constitutive androstane 

receptor, CAR), liver-specific proteins (albumin,
 
haptoglobin, and aldolase B), as well as alpha-

fetoprotein, glutathione-related
 
enzymes ( -glutamylcysteine synthase regulatory subunit, -
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glutamylcysteine
 
synthase catalytic subunit, glutathione synthase, and glutathione

 
reductase), and 

thioredoxin.  The activities of several Phase I and Phase II drug metabolizing enzymes were also 

comparable between HepaRG and freshly isolated human hepatocytes (Aninat et al., 2006).  

HepaRG cells also respond to PXR,
 
CAR, and AhR activators, resulting in induction of 

CYP1A1, CYP1A2,
 
CYP2B6, CYP2C8, CYP2C9, CYP2C19, and CYP3A4 in vitro (Lambert et 

al., 2009a; Lambert et al., 2009c).  

HepaRG cells can maintain a proliferative status in an undifferentiated culture media for 

several weeks at sub-confluency.  At confluence, and with the addition of a differentiation-

inducing culture medium, HepaRG cells are capable of differentiating into biliary epithelial cells 

and hepatocytes (Gripon et al., 2002).  The genes encoding liver-specific factors, drug-

metabolizing enzymes,
 
transporters, and transcription factors are stably expressed over a multi-

week
 
culture period.   

In Chapter 3, we show the microarray gene expression profiles of HepaRG cells as 

compared to the HepG2 cell line, primary hepatocytes, and human liver under basal conditions.  

Although not perfect, HepaRG cells are more representative of the basal gene expression profile 

observed in vivo to human primary hepatocytes than HepG2. 

 The main interest in our lab, however, is not to understand how the liver functions under 

basal conditions, since this is a very broad concept.  Rather, our aim is to focus in on how liver 

responds to exogenous stimuli, such as exposure to drugs.  Therefore, the next logical step would 

be to treat HepaRG cells with drugs to see how they respond at the gene expression level.  But 

the resolution of microarrays is limited.  For instance, one can only expect 3-4 orders of 

magnitude for quantitation, which makes seeing induction of gene expression for highly 

expressed genes difficult.  In the same sense, high background levels make it difficult to 
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accurately estimate expression of lowly-expressed genes.  Also, the scope of information that can 

be extracted from arrays is limited, i.e. one can only get gene-level quantitation from probes 

represented on the array.  That is why we used the most advanced tool for analyzing gene 

expression - mRNA-Seq, the details of which are described below. 

 

1.4. A New Tool For Understanding Drug Response: Next-Generation-Based mRNA 

Sequencing For Pharmacogenomics 

   

1.4.1. Next-Gen DNA Sequencing using Illumina Technology 

The first publication of Illumina DNA sequencing technology was in 2006 when it was 

called Solexa sequencing (Fedurco et al.).  To perform Illumina sequencing, libraries first need 

to be constructed.  These libraries can consist of any fragment of DNA from any organism, as 

long as it also has Illumina‟s patented primers ligated to either end.  These primers serve as a 

template for bridge PCR, which is essentially like doing PCR in place on a solid-phased 

substrate.  In this manner, a single DNA can be clonally amplified generating a cluster of 

identical sequence fragments.  Several million clusters can be amplified at discrete locations 

within each of eight lanes on a single flow-cell.  After cluster generation, the amplicons are then 

directionally linearized so that step-wise incorporation of fluorescently nucleotides incorporates 

the same nucleotide in all fragments in each cluster.  After one base is incorporated, four lasers 

are used to excite the flourophores in each cluster.  Each of the nucleotides is labeled in such a 

way that they emit different fluorescence when excited at different wavelengths (e.g.  A is green, 

C is blue, etc).  An image is taken to show the x and y coordinate positions of each cluster, which 
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will glow their respective color.  Then, the terminators are reversed on the fluorescent 

nucleotides and the next base is incorporated, imaged, etc.  

Even more refinements of the sequencing chemistry have resulted in the application of 

paired-end sequencing.  Paired-end differs from single-end in that after all cycles have been 

completed, a new primer is added to the flow cell to amplify clusters from the alternate 

orientation.  So even though the number of fragments remains the same (the density of the 

clusters is fixed, so new clusters are not being added), the amount of sequence generated can 

double by repeating the same number of cycles as the other single-end run.  Since both reads will 

originate from the same x and y coordinates in each lane of the flow cell, one can easily compare 

reading of the same fragment from two different orientations.   

The usefulness of paired-end sequencing is two-fold.  First, twice as many reads are 

sequenced - and in most cases, the more data the better.  Second, sequencing from both ends 

retains positional information that will aid in genomic mapping.  Fragments that are clonally 

amplified in the individual clusters are of a fixed 200-300 bp in length.  A 2 × 36 bp paired-end 

run not only results in 72 bp of actual sequencing, but because the sequence of the first and last 

36 bp is known, and it is known that those two sequences are separated by ~ 200 bp, one could 

infer the remaining non-sequenced portion of the fragment by looking at a reference genome to 

find where these two 36 bp fragments separated by ~200 bases, and assume that sequence 

reflects the unknown.   

 

1.4.2. mRNA-Seq Library Prep for Defining and Quantifying Transcriptome 

The typical strategy for performing mRNA-Seq experiments begins with library 

construction.  Starting with 1 μg of total RNA, mRNA is isolated using polyA selection.  The 
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mRNA is then fragmented and randomly primed for reverse transcription followed by second-

strand synthesis to create double-stranded cDNA fragments.  Ends are repaired and modified to 

produce blunt ends.  Next, an 'A'- base is added to the blunt ends followed by ligation to Illumina 

Paired-End Sequencing adapters.  These adapters contain unique sequencing primer 

hybridization sites.  Additional sequences complementary to the oligonucleotides in the flow cell 

are added to the adapter sequences with tailed PCR primers.  This is followed by gel-based size 

selection, purification, and amplification by PCR to create libraries for cluster generation.  These 

libraries get hybridized to the oligos on the flow cell, which then is mounted in a cBot, an 

instrument that allows the bridge amplification to occur on the flow cell to generate clusters.  

Then, the flow cell is transferred to the sequencing instrument where it is sequenced cycle-by-

cycle as described above. 

 

1.4.3. Data Analysis for mRNA-Seq 

What does data analysis mean?  That actually becomes a complicated question when 

dealing with Illumina-based mRNA sequencing.  For an example, a single mRNA-Seq 

experiment can yield up to 6 dimensions worth of data, compared to 1 dimension of microarray 

(fluorescence intensity levels representing gene expression).  Not 6 times the amount of data, but 

6 different types of data.  With a single wet-lab experiment, one can quantify gene expression, 

discover and annotate new genes, identify transcript-level isoforms, quantitate different isoforms, 

discover fusion genes, and identify coding SNPs.  Each of these features often has different 

requirements, which further complicates the analytical processing.  For example, sequencing ~ 

10 million single-end 36 bp reads is generally sufficient to quantify gene expression, but 

quantitating transcripts generally requires 100-150 million 2 × 75 bp reads.  So, if an 
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experimental design for such transcript level analysis will be conducted, then gene expression 

will be no problem, however the reverse is not true.  If one is to sequence only 25 million 1 × 36 

bp, then gene expression can be calculated but very few transcripts can be annotated correctly.  

Therefore, the most critical element to an mRNA-Seq experiment is an optimal experimental 

design.  Data can always be computationally discarded, but cannot be computationally created, 

so in this case less is not more. 

 Although many of the data analysis procedures require different programs, assumptions, 

filtering parameters, and other factors to consider, all of the current methods have the same first 

step in data analysis.  All of the reads from the instrument must be mapped to the genome.  To 

map reads to the genome, one requires three elements: a genome to map the reads to, a tool to 

align the reads to that genome, and a FASTQ file containing the sequence reads and their quality 

metrics.  The FASTQ file is described in more detail below.  

 

1.4.4. FASTQ format 

 For each single-end read from a given cluster, the images are overlaid from each 

sequencing cycle so that a linear sequence can be deduced.  The base call from each cycle for 

each cluster is not to be thought of as a discrete variable (i.e.  A, C T, G), rather it is a probability 

based event (e.g. there is a 99.99% chance that this base is „A‟).  In order to retain the base-

calling and probabilities for each of the clusters, Illumina sequencing software output data in 

FASTQ format.  FASTQ is a text-based format for storing both a biological sequence and its 

corresponding quality scores using a single character, which is necessary to reduce the file size.  

This is simple for the base calls - „C‟ for cytosine - but is a little more complex for storing 



30 

 
 

probabilities.  To overcome this, engineers have merged tricks from computer science and 

biology.  Rather than interpret probabilities as very small numbers, biologists have introduced 

the PHRED scale (Ewing et al., 1998).  The PHRED scale is simply  , 

where Pe is the probability of making an error.  So from our example before, if there is a 99.99% 

chance that this base is „A‟, then the probability of making an error is .  Therefore, the 

PHRED-scaled probability of making an error would be .  The trick from 

computer science is to encode those PHRED-scores in a single ASCII character.  In the computer 

world, each letter has an associated ASCII value attributed to it.  For instance, „b‟ is equivalent to 

98, whereas „B‟ is 66.  There probably is some method to this madness, but for the sake of this 

discussion, just accept that each key represents a value.  Converters for these values can be 

readily found on the internet.   

The default output of Illumina software is an Illumina 1.3+ FASTQ variant, which 

encodes PHRED scores with an ASCII offset of 64.  This means that the Illumina 1.3+ FASTQ 

variant uses different characters to represent base-qualities than standard FASTQ files (which are 

given by other sequencing platforms).  To fix this problem, the ASCII value minus 64 will give 

you the correct PHRED-scaled probability.  So in our previous case we showed „B‟ is equivalent 

to 66.  If this were the true value, we could reshape the PHRED calculation to and 

we would find that 66 is equivalent to an error 2.5 times in 10 million samples.  However, if the 

FASTQ file is the Illumina 1.3+ FASTQ variant, then the actual probability would be 66 - 64 =  

2, or 63 times in 100 samples.  The difference in these two values are stark, one says that this is a 

highly accurate base call, while the other says it couldn‟t be much worse.  Therefore it is critical 
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to know what type of FASTQ file is being analyzed so as to interpret probabilities and data 

quality. 

 

1.4.5. Problems with current data analysis methods 

1.4.5.1. There is no established dogma 

Unlike microarrays, there is no standard approach to analysis yet.  This is highlighted in 

the many different approaches that existing analysis tools take to analyze and interpret data.  For 

instance, Alexa-Seq (Griffith et al., 2010) measures gene and exon expression at the junction 

level, whereas Cufflinks (Trapnell et al., 2010) tries to assemble all reads into transcripts and 

then report expression level by estimating the number of reads belonging to a given transcript.  

In this section, we will discuss two major flaws in current sequence analysis pipelines, namely 

the way reads are counted for each gene and SNP calling from RNA-Seq.  We have developed 

new methods that make improvements in correcting for these limitations that will be discussed 

later.  

Often times, output from data analysis tools report gene expression in terms of Reads (or 

Fragments) Per Kilobase of exon per Million fragments mapped (RPKM or FPKM).  The term 

FPKM is used only in cases where paired-end reads are used, since two reads are present for 

every fragment sequenced.  In this way, RPKM are a more intuitive way of quantitating gene 

expression than using raw tag counts because one needs to account for depth of sequencing and 

length of transcript.  Adjusting for the depth of sequencing is required to account for differences 

between sequenced libraries.  For instance, if you have a 2.5 kb long transcript and 5 kb of 

sequence covering that transcript in condition A, and 5.2 kb in condition B, then one might 
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assume that there is no difference in transcript level.  If one then finds out that 50 million reads 

were sequenced in condition A, but 60 million reads were sequenced in condition B, then the 

outcome will likely be different.  In condition A, 5 kb sequence of a 2.5 kb transcript from a 

library of 50 M reads yields an RPKM of 40.  In condition B, 5.2 kb sequence of a 2.5 kb 

transcript from a library of 60 M reads yields an RPKM of 34.7.  Now it is apparent that the 

transcript level in condition B is much lower than condition A even though the raw coverage 

would suggest otherwise at the gene level.   

Transcript length is also important to factor into gene expression so that relative levels 

within the same library can be compared to one another.  In this case, assume transcript A and 

transcript B both contain 5 kb of sequence data.  Without factoring in transcript length, one 

would falsely assume that these transcripts are expressed at equivalent levels.  If transcript A is 5 

kb long and transcript B is 1.5 kb long, then one would expect more reads in transcript A because 

there are more places in transcript A to map to (5/1.5 = 3.33 × more).   

 

1.4.5.2. No tool can accurately quantify gene expression levels when multiple genes share same 

exons 

DNA has two strands: the sense (a.k.a.  forward ,+, or Watson) and the nonsense (a.k.a. 

reverse, -, Crick) strands.  DNA can be interpreted by reading the nucleotides in a 5‟- to 3‟-

fashoin.  Consider the following sequence: 

 

 

The + strand reads AGGTCA, whereas the - strand reads TGACCT.  The directionality of 

reading DNA sequence allows genes to be coded on either the + or - strands.  Therefore, it is 
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possible for a gene on the + strand to overlap with a different gene coded on the - strand.  This is 

to say that parts of these overlapping genes share the same chromosomal coordinates.  In the 

event of counting the number of reads assigned to a given gene that overlaps with another, 

different programs can yield different results.  HT-Seq (Anders et al., unpublished) ignores reads 

lying in genes sharing chromosomal coordinates, whereas BEDtools (Quinlan and Hall, 2010) 

will actually count them twice, which ultimately decreases RPKM measurements. 

    Although the unit is conceptually easy to understand, the calculation of RPKM is also not 

always consistent by different tools.  For example, Cufflinks (Trapnell et al., 2010) and 

ERANGE (Mortazavi et al., 2008) compute RPKM differently.  Cufflinks uses standard 

annotated exon models to count reads belonging to a gene and the length of those exons are 

summed to give the per kb exon model information in the calculation of RPKM.  ERANGE 

however, tries to first build new exons and then uses those sizes and counts within them into total 

reads and exon length, thereby influencing RPKM (Pepke et al., 2009).   

 

1.4.5.3. High false discovery rates in SNP calling from RNA-Seq 

 Another major problem with RNA-Seq analysis is that there are no current tools 

specifically designed to call SNPs from RNA-Seq datasets.  All current SNP-calling tools are 

based on whole genome or targeted enrichment-based sequencing.  The assumptions required for 

accurately genotyping these experiments are quite different from the assumptions need to 

genotype RNA-Seq data.  Unlike sequencing genomic DNA, the levels of RNA sequenced varies 

significantly, which is dependent on gene expression.  This causes two problems.  First, coverage 

is non-uniform.  Due to paralogous genes, some reads (especially short 36bp reads) are able to be 

mapped to more than one place in the genome.  This is particularly true if one allows flexibility 
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in the mapping algorithm by allowing x number of mismatches in each read - which by definition 

must exist if one wants to identify variations.  For example if the entirety of a gene was covered 

about 10 ×, but one small area had 20 × - it might be possible to infer that this inconsistency in 

mapping to genomic DNA (gDNA) is a result of similar sequences throughout the genome - and 

the „SNP‟ it was calling was actually the correct base in its paralogous gene.  This is not the case, 

however when dealing with an unspecified level of expression for isoforms of paralogous genes.  

If one was sequencing gDNA, one would expect a 1:1 ratio for those paralogues, but it would be 

impossible to determine such a ratio from cDNA.   

Yet another major problem when calling cSNPs is that most SNP-calling tools require (or 

prefer) a maximum coverage cut-off, with the idea being that if this paralogous gene mapping 

got out of control, then SNPs with unrealistic coverage should be discarded.  However, RNAs 

can be expressed and many thousand times more or less than other mRNAs, so such an arbitrary 

calculation cannot be made.    

Despite these drawbacks, others have already attempted to genotype coding SNPs 

(cSNPs) using RNA-Seq in human samples.  Morin et al., (2008) used 15 million 31 bp single 

end reads to profile HeLa cells.  Reads were aligned to the genome using MAQ (Li et al., 2008), 

after building a synthetic splice junction database (since MAQ does not perform split-read 

alignments).  In their study, Morin et al., (2008) were able to genotype 5,928 SNPs, 38% of 

which had not been previously reported.  In another study, Chepelev et al., (2009) compared the 

cSNP profile of Jurkat T-Cells and CD4
+
 T-cells.  This time, 27 M 30 bp single-end reads were 

aligned to the human genome using ELAND (again with no split-reads).  Only uniquely mapped 

reads were used and potential PCR artifacts were removed.  12,000 cSNPs were identified in 

Jurkat cells while 10,000 SNPs were called in the non-tumorigenic CD4+ T-cell sample.  39% of 
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the Jurkat cSNPs and 28% of the CD4+ T-cell sample were novel.  It is highly suspect that 28% 

of the total cSNPs from a healthy individual are reported as novel.  Although the total number of 

SNPs detected from mRNA-Seq is far less from cSNPs identified from whole genome 

sequencing (~12,000 compared to about 75,000), the entire genome set (cSNPs, introns, 

intergenic, etc) from all genomes sequenced to date is around 18%.  One would logically assume 

that exons are under higher selection pressure and therefore should harbor fewer new mutations 

than less conserved intergenic regions.  Nevertheless, Chepelev et al., (2009) note that they 

detected only 40% of the total homozygous cSNPs and only 14% of the heterozygous cSNPs. 

In another study, CD4+ T-cells from 4 individuals were evaluated for allele-specific expression 

(Heap et al., 2010).  The authors used 20 M 2 × 45 sequencing fragments, but did not report the 

total number of SNPs identified or which were novel. 

 The most comprehensive analysis to date compares exome and transcriptome of PBMCs 

(Cirulli et al., 2010).  Exome sequencing is a targeted sequencing approach similar to whole 

genome sequencing, except that probes designed to bind exons enrich those regions over 

background genomic DNA.  However, Cirulli et al. took a different approach.  They sequenced 

the entire genome, but compared only the exome to mRNA-Seq.  In this way, one is able to get 

the sequences from all genes targeted without those genes being necessarily expressed.  980 M 

reads that were either 2 × 75bp or 1 × 75bp were sequenced from the exome and aligned by 

BWA (Li and Durbin, 2009).  These data were then compared to 81 M reads from the 

transcriptome that were either 1 × 75 or 1 × 68, due to machine errors.  These reads were aligned 

by TopHat (Trapnell et al., 2009), a split-read aligner.  Although the authors were able to call 

40,605 cSNPs, only 19,504 SNPs were present in cDNA and exome DNA, with a 6% novel rate.  

This suggests at least two major problems.  First, only 6% of SNPs were novel, which means that 
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filtering of SNPs is too stringent, since one should expect around 20%.  Second, only about 50% 

of the SNPs identified by RNA-Seq were validated by exome sequencing.  This suggests that 

optimization of SNP-calling tools from RNA-Seq is necessary to decrease the high degree of 

false positives. 

Given the problems such as reporting reads in read-count level and the high false positive 

rate for SNP-detection described above, there exists a critical need to optimize RNA-Seq data 

analysis pipelines to get the most accurate information from these highly expensive information-

rich experiments.  Therefore, the goal of Chapter 4 is to improve existing tools for quantitating 

gene expression and SNP-calling.  To perform such experiments and remove as much variability 

as possible, the framework of the experimental design will be based on understanding how 

HepaRG cells transcriptionally respond to drug treatment. 
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CHAPTER 2.  A NEW TARGET GENE FOR PHARMACOGENETICS 

 

 

 

 

 

 

Chapter 2.1.  Reprinted with permission from the Japanese Society for the Study of Xenobiotics  

 

Chapter 2.2.  Reprinted with permission from Wolters Kluwer Health  
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2.1. Novel SNPs in Cytochrome P450 Oxidoreductase 

2.1.1 Abstract 

 Cytochrome P450 oxidoreductase (POR) is the single flavoprotein which donates 

electrons to the microsomal cytochrome P450 enzymes for oxidation of their substrates.  In this 

study, we sequenced all 15 exons and the surrounding intronic sequences of POR in 100 human 

liver samples to identify novel and confirm known genetic polymorphisms in POR.  Thirty-four 

single nucleotide polymorphisms (SNPs) were identified including 9 in the coding exons (5 

synonymous and 4 nonsynonymous), 20 in the intronic regions, and 5 in the 3‟-UTR.  Of these, 9 

were novel SNPs, including three nonsynonymous SNPs, SNH313003 (817733G>C; K49N), 

SNH313020 (848661C>A; L420M), and SNH313029 (849577T>C; L577P) with minor allele 

frequencies of 0.005, 0.045, and 0.020, respectively.  We also confirmed a previously reported 

non-synonymous SNP rs1057868 (A503V) as well as five synonymous SNPs (G5G, T29T, 

P129P, S485S, and S572S) all with allele frequencies similar to those previously reported.  

Structurally, these polymorphisms occur in different regions: SNH313003 (K49N) in the amino–

terminal tail, SNH313020 (L420M) in the connecting domain, SNH313029 (L577P) in the 

NADPH-binding domain, and rs1057868 (A503V) in the FAD binding domain.     
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2.1.2. Introduction 

The human genome contains 57 genes encoding cytochrome P450 (CYP) enzymes, of 

which 7 are Type I and 50 are Type II.  Type I enzymes, found in the mitochondria, receive 

electrons from NADPH through ferredoxin reductase; whereas, Type II enzymes, located in the 

endoplasmic reticulum, receive electrons from NADPH through a single protein, cytochrome 

P450 oxidoreductase (POR).  Type II P450 enzymes perform a variety of functions: 20 are 

involved in metabolism of steroid, fatty acids, and bile acids, 25 have “orphan” classification, 

and 15 catalyze drug metabolism (Guengerich, 2006).  These drug-metabolizing Type II P450 

enzymes are the primary enzymes, metabolizing more than 80% of current prescription drugs 

(Evans and Relling, 1999).  In some P450 enzymes, single nucleotide polymorphisms (SNPs) 

have significant influence on drug metabolic rates which are critical for drugs with narrow 

therapeutic indices, such as warfarin and phenytoin (Schwarz, 2003; Thomas et al., 2004).  

However, unlike polymorphisms in a P450 enzyme which can only affect the expression level, 

activity, or structure of that particular enzyme, polymorphisms in a universal P450 enzyme co-

factor could influence the metabolism of all drugs catalyzed by the P450 enzymes.  Cytochrome 

P450 oxidoreductase (NP_000932.3) is a co-factor for all microsomal Type II P450 enzymes 

(Porter and Coon, 1991).  POR transfers electrons from NADPH to a microsomal Type II P450 

enzyme for oxidation of its substrates.  Because there is no other electron donor for the 

microsomal Type II P450 system, POR is essential for drug metabolism.    

The necessity of POR has been supported in the mouse by targeted gene disruption 

during development giving rise to different embryonically lethal phenotypes (Shen et al., 2002).  

Liver specific conditional knock-out studies have shown reproductively normal mice, but with a 
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severely diminished capacity for hepatic drug metabolism and accumulation of hepatic lipids (Gu 

et al., 2003; Henderson et al., 2003). 

The human POR gene is quite polymorphic.  Currently, the NCBI dbSNP database has 

reported ~320 SNPs in the 32-kb POR gene 

(http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?locusId=5447&chooseRs=all).  Genetic 

polymorphisms in the POR gene have recently been associated to an autosomal recessive genetic 

disease, “P450 oxidoreductase deficiency”
 
(Arlt et al., 2004; Flück et al., 2004; Huang et al., 

2005; Flück and Miller, 2006)
 
with clinical phenotypes of ambiguous genitalia, congenital 

adrenal hyperplasia, the skeletal malformation Antley-Bixler syndrome, and polycystic ovary 

syndrome.  However, it is unclear whether or not genetic polymorphisms in the POR gene in the 

general population affect P450-catalyzed drug metabolism.  Here we report the identification of 

34 SNPs in the exons and surrounding introns of the POR gene in 100 human liver samples.  

Nine of these SNPs are novel.  

  

2.1.3. Materials and Methods 

DNA samples were isolated from 100 liver tissue lysates purchased from XenoTech 

(Lenexa, Kansas, USA) with ChargeSwitch
®
 gDNA Mini Tissue kit (Invitrogen, Carlsbad, 

California, USA).  This cohort consisted of samples from 77 Caucasians, 10 African-Americans, 

10 Hispanics, and 3 Asians.  The livers were initially harvested for transplantation purposes, but 

were not utilized and subsequently donated for research for varying reasons.  Target DNA 

molecules were amplified by PCR.  Forward and reverse primers were designed by DS Gene 

Software (Accelrys, Cambridge, UK).  The primer sequences and PCR product sizes are listed in 

Table 2.1.1.  The selected primer sequences were synthesized by Integrated DNA Technologies 
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(Coralville, Iowa, USA).  PCR reactions were performed at cycling conditions of 95 C for 10 

min, 40 cycles of 94 C for 15 seconds, 60 C for 30 seconds, and 72 C for 45 seconds, followed 

by 72 C for 5 min, with Go Taq Polymerase purchased from Promega (Madison, Wisconsin, 

USA).  PCR products were purified with the Pre-sequencing Kit provided by USB (Cleveland, 

Ohio, USA).  DNA sequencing reactions were carried out using BigDye Terminator V 3.1 Cycle 

Sequencing Kit (Applied Biosystems, Foster City, California, USA) with the forward primers.  

For dye terminator removal, PERFORMA® DTR Gel Filtration cartridges (Edge BioSystems, 

Gaithersburg, Maryland, USA) were used, and sequences were analyzed with a 3130 DNA 

Analyzer (Applied Biosystems, Foster City, California, USA). 
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Table 2.1.1 Primers used for PCR amplification and sequencing of the POR exons. 

 

Amplified 

Region Forward Primer (5' to 3') Reverse Primer (5' to 3') 

Fragment Size 

(bp) 

Exon 1 

GTGCAGTGACCATTTCC

TG 

AAACAGCAGATAGAAA

AGGGC 625 

Exon 2 

ACAAAGCTGGAATGTC

CCC 

GCAGCTCTGTGAGATTT

ACC 505 

Exon 3 

TGACAGTGAGAAGCAA

GTCC 

GTTTGGTTTGGGAGATG

TGG 580 

Exon 4 

TAACACGGGTGACCTT

GTC 

AGGAGAGGGTCTCACAA

GTG 503 

Exon 5 

TCTTCAGTGGCCCAGTG

TTC 

ACCCAGCGACATAAACC

CAG 518 

Exon 6 

CCCTGCCAGTTTTGCTT

TTC 

TTGAACCTAGCCACAGA

GCC 533 

Exon 7 

TTCTCCCAGATGGAAG

CCTG 

GCAGAGTAAGGTGGCTA

AGTG 571 

Exon 8,9 

GAGAGCCCTTGATGTA

ACCG 

GCCTAAGCAGAAGCTCA

ACC 571 

Exon 10 

TGCCTCTGATGAGGACT

TCC 

GTACAGCTCCTAAGAGA

CACG 500 

Exon 11 

ACTACCTGGACATCAC

CAAC 

ATGCTGAGAATCTCACA

AGC 557 

Exon 12 

TACTCCATCGCCTCATC

CTC 

AAGCCTATGAAGGGTGC

CAC 606 

Exon 13 

TGTGGAGTACGAGACC

AAGG 

TTAGCAGGTGCTGGACG

TAG 567 

Exon 14 

ACCCTTCATAGGCTTCA

TCC 

AAGGTGTTCTGCACATC

CC 573 

Exon 15 

GATGTGCAGAACACCT

TCTAC 

TCTACTCACACAATACC

AGGC 521 
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2.1.4. Results & Discussion 

 Genetic polymorphisms were identified by sequencing PCR amplicons from the exons 

and approximately 100 bp flanking intronic sequences.  The sequences were compared to the 

reference contig for human POR from the NCBI database (NT_007933.14).  We found 34 SNPs 

in the exons and the surrounding introns of the POR gene in the 100 human liver samples, 

including 9 novel SNPs (Table 2.1.2).  As expected, we did not observe any of the missense or 

frameshift mutations (T142A, Q153R, Y181D, M263V, A287P, R457H, Y459H, V492E, 

G539R, L565P, C569Y, Y578C, V608F, R616X, F646del, I444fs, and L612W620delinsR), 

which have been associated with POR deficiency.  Three novel nonsynonymous SNPs, 

817733G>C (K49N), 848661C>A (L420M), and 849577T>C (L577P) were found with minor 

allele frequencies of 0.005, 0.045, and 0.020, respectively (Figure 2.1.1).  Six other novel SNPs 

were observed in intron 7 (846457G>A, 846539C>T), intron 12 (848803T>A, 848832C>T), and 

the 3‟-UTR (850151G>A, 850197G>A) all with minor allele frequencies less than 0.010.  Five 

silent mutations (G5G, T29T, P129P, S485S, and S572S) and a missense mutation (A503V) 

were confirmed in these liver samples with similar allele frequencies reported in the NCBI 

dbSNP database (Table 2.1.2).  
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Table 2.1.2.  Summary of polymorphisms detected in this study 

 

  

SNP ID NCBI SNP ID Location in gene
DNA Position 

NT_007933.14
Nucleotide change 

mRNA Position 

NM_000941.2

Amino acid 

change 

NP_000932.3

Minor Allele 

Frequency

SNH_313001 rs10262966 Exon 2 817601 ATGATCAACATGGGA>GGACTCCCACGTGGA 97 G5G 0.045

SNH_313002 rs412952381 Exon 2 817673 CTTTTCAGCATGACG>AGACATGATTCTGTTT 169 T29T 0.010

SNH_313003 SNP1 Exon 2 817733 TTCCTCTTCAGAAAG>CAAAAAAGAAGAAGTC 229 K49N 0.005

SNH_313004 rs1135612 Exon 5 843953 CTGAGCAGCCTGCCA>GGAGATCGACAACGC 469 P129P 0.215

SNH_313005 rs2286819 Intron 6 845039 GGTGGGGTCGGGGCA>GTGCCTGGCACCAGG 0.070

SNH_313006 rs2286820 Intron 7 845084 GCCTCCCCTGAGCCA>GCTCCCCCTCTCCTC 0.010

SNH_313007 SNP2 Intron 7 846457 CCCTGCTTCTTGTCG>ATATGTACCTGGGAC 0.005

SNH_313008 SNP3 Intron 7 846539 GGACTGACCCCTGCC>TGCTTCCCGGCCTCA 0.010

SNH_313009 rs41299517 Intron 7 845954 GGGCAGACGGCTCTA>GTGGCCACTGGTGCA 0.030

SNH_313010 rs3815455 Intron 8 846032 CACCAGACCCCGTGC>TCCCGAGTGGGTGTG 0.225

SNH_313011 rs13223707 Intron 8 847046 TGTGCAACCAGAAGC>GGTCCTTGGAGACGG 0.035

SNH_313012 rs13240147 Intron 8 847059 GCGTCCTTGGAGACA>GGAGACTCAGATCAA 0.055

SNH_313013 rs41301394 Intron 8 847079 TCAGATCAAAGCCCC>TGGCCGCTCACTGTG 0.180

SNH_313014 rs4732514 Intron 10 848274 GGGGCACCTGTTGCC>TGCAGAGCTGGCCCA 0.170

SNH_313015 rs6971082 Intron 10 848304 GGTGTCACCCCCTCC>TCGCCGCAGCCACCC 0.010

SNH_313016 rs4732515 Intron 10 848305 GTGTCACCCCCTCCC>TGCCGCAGCCACCCA 0.060

SNH_313017 rs4732516 Intron 10 848358 CAAGTCCTGCCTGTC>GTCTTCCCTGCAGAG 0.045

SNH_313018 rs2286822 Intron 11 848564 AAGGTGCGCCCCCTC>TAGCCCCCGCAACCT 0.365

SNH_313019 rs2286823 Intron 11 848572 CCCCCTCAGCCCCCA>GCAACCTCCGCCCCG 0.380

SNH_313020 SNP4 Exon 12 848661 GCAAGGAGCTGTACC>ATGAGCTGGGTGGTG 1340 L420M 0.045

SNH_313021 SNP5 Intron 12 848803 CTCATCCTCCAAGGT>AGAGGGCCGGCACTG 0.005

SNH_313022 SNP6 Intron 12 848832 CCCTGCCAGCCACAC>TGCTGGAGGCCCAGC 0.010

SNH_313023 rs41301427 Intron 12 848833 CCTGCCAGCCACACG>ACTGGAGGCCCAGCC 0.095

SNH_313024 rs2302431 Intron 12 849139 GGCAAGGGCCTCGGC>TTTGGCGGTGGAGCT 0.066

SNH_313025 rs2302432 Intron 12 849140 GCAAGGGCCTCGGCG>TTGGCGGTGGAGCTC 0.035

SNH_313026 rs2228104 Exon 13 849229 TACGAGACCAAGGCT>CGGCCGCATCAACAA 1537 S485S 0.076

SNH_313027 rs1057868 Exon 13 849282 GGCCAAGGAGCCTGC>TCGGGGAGAACGGCG 1590 A503V 0.217

SNH_313028 rs1057870 Exon 14 849563 GGCTGCCGCCGCTCG>AGATGAGGACTACCT 1798 S572S 0.306

SNH_313029 SNP7 Exon 14 849577 GGATGAGGACTACCT>CGTACCGGGAGGAGC 1812 L577P 0.020

SNH_313030 rs41302345 3'-UTR 850126 CTGTAATCAGCTCTC>TCTGGCTCCCTCCCG 2176 0.005

SNH_313031 SNP8 3'-UTR 850151 CCCGTAGTCTCCTGG>AGTGTGTTTGGCTTG 2201 0.005

SNH_313032 SNP9 3'-UTR 850197 AGGCCCAGTGACAAA>GGACTCCTCTGGGCC 2246 0.005

SNH_313033 rs41302348 3'-UTR 850282 CAGCCCAGGGCCTGC>GATGGGGGCACCGGG 2332 0.010

SNH_313034 rs17685 3'-UTR 850381 CTCACTGGAAATCAC>TGTGGAGGGGCTGGG 2431 0.195
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Figure 2.1.1.  Electropherograms (sense strands) for the three novel non-synonymous SNPs: 

SNH313003 (817733G>C; K49N), SNH313020 (848661C>A; L420M), and SNH313029 

(849577T>C; L577P).  Wild type homozygous alleles are shown in the top row while the bottom 

row shows heterozygous mutants.  The SNP of interest is highlighted in yellow. 
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Based on the crystal structure of rat POR protein (Wang et al., 1997), which is 92% 

identical to the human POR, we predicted the locations of all identified POR polymorphisms 

with respect to the different functional domains.  We found one sample with a heterozygous G>C 

transversion at 817733, resulting in a missense mutation K49N.  This missense mutation is 

located in the amino-terminal tail of POR.  This terminal region is responsible for anchoring 

POR into the endoplasmic reticulum or into the plasma membrane (Osada et al., 2002) and is 

important for proper electron transfer function (Black et al., 1979; Bonina et al., 2005).  We 

found nine heterozygotes for a C>A transversion at 848661, which results in a leucine to 

methionine change at amino acid 420 (L420M).  This amino acid lies in the connecting domain.  

This domain is responsible for efficient electron transport (Wang et al., 1997).  Four 

heterozygotes were found with a T>C transition at 849577, leading to an amino acid change 

L577P, which is located in the NADPH-binding domain of POR (Wang et al., 1997).  An amino 

acid substitution in this region could potentially affect binding kinetics for NADPH.  Once 

NADPH releases its electrons, it becomes NADP
+
, an unusable metabolite.  POR must release 

NADP
+
 in order to bind NADPH for electron cycling to continue.  Neighboring mutations 

(G539R, L565P, C569Y, Y578C, and V608F) in the NADPH binding domain have been 

identified in POR deficiency patients (Arlt et al., 2004; Flück et al., 2004; Fukami et al., 2005).  

All these mutations showed significantly reduced POR activity in cytochrome c reduction assays 

(Huang et al., 2005).  Twenty-nine samples were heterozygous for a C>A transversion at 849282 

(rs1057868) and 6 were homozygous.  This A503V mutation was first uploaded to the NCBI 

dbSNP database in 2000, and was confirmed by the NIEHS Environmental Genome Project in 

2006.  This mutation occurs in the FAD binding domain of POR.  An in vitro experiment showed 
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that cytochrome c reduction by POR carrying this mutation was decreased 31% compared to 

wild type (Huang et al., 2005). 
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2.2. Genetic polymorphisms in cytochrome P450 oxidoreductase influence microsomal 

P450-catalyzed drug metabolism 

 

2.2.1. Abstract 

Cytochrome P450 oxidoreductase (POR) is the only flavoprotein that donates electrons to 

all microsomal P450 enzymes, which catalyze biosynthesis of steroids, fatty acids, and bile 

acids, as well as metabolism of more than 80% of prescription drugs.  Although mutations of 

POR have been identified in several disease states with disordered steroidogenesis, effects of 

polymorphisms on drug metabolism in the general population are unclear.  In this report, we 

performed a comprehensive study to correlate POR polymorphisms with POR gene expression, 

POR activity, and P450-catalyzed drug metabolism.  A set of human liver samples (n=99) were 

used in this study.  POR polymorphisms were identified by sequencing the exons and 

surrounding introns of the POR gene and mRNA levels were quantified by branched DNA 

technology.  POR activity was quantified by quantifying cytochrome c reduction in liver 

microsomes and activities of ten drug-metabolizing P450 enzymes were quantified by HPLC 

methods with drugs known to be specific for each enzyme.  Of the 34 polymorphisms identified 

in this cohort, four polymorphisms changed an amino acid: K49N, L420M, A503V, and L577P.  

L577P likely resulted in alpha helix changes, possible disruption of the NADPH interaction, and 

decreased POR activity (p=0.003) and several drug-metabolizing P450 activities.  We also found 

an intronic polymorphisms rs41301427, which is associated with altered POR, but not P450 

activities.  Polymorphisms in the POR gene can affect POR and P450-catalyzed drug oxidation.   
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2.2.2. Introduction 

Microsomal P450 enzymes are heme-containing proteins that catalyze biosynthesis of 

steroids, fatty acids, and bile acids (Guengerich, 2004), as well as metabolism of more than 80% 

of prescription drugs (Evans and Relling, 1999).  In the last few decades, pharmacogenomic 

studies have revealed that genetic polymorphisms and/or mutations can affect P450-catalyzed 

drug metabolism in various ways.  Importantly, the distinction between mutation and a 

polymorphism has only to do with how frequent the allele is in a given population.  To be 

classed as a polymorphism, the least common allele must have a frequency of 1% or more in the 

population, otherwise, the allele is regarded as a mutation.  One way either of these variations in 

a P450 enzyme can affect the metabolic rates for drugs oxidized by that P450 enzyme.  For 

example, mutations in CYP2C9 can decrease warfarin metabolism, leading to hemorrhagic 

complications (Rettie and Tai, 2006; Wadelius and Pirmohamed, 2007).  Second, because several 

P450 enzymes share the same mechanisms for activation, suppression, and regulation, then 

genetic polymorphisms in co-activators, co-suppressors, or regulators may affect metabolic 

capacity of P450 enzymes, which could in turn influence a larger set of drugs.  Genetic 

polymorphisms in the nuclear receptor pregnane x receptor (PXR) (Lamba et al., 2005) and the 

membrane transporter multidrug resistance 1 (MDR1) (Lamba et al., 2006) are two such 

examples.  PXR mutations have been shown in vivo to decrease midazolam clearance (He et al., 

2006).  MDR1 variations have been associated with drug response to anthracyclines and taxanes 

(Kafka et al., 2003).  Third, all microsomal P450 enzymes require co-factors for their functions.  

Genetic polymorphisms in the co-factor genes may influence metabolic rates of all P450-

catalyzed drugs.  Cytochrome P450 oxidoreductase (POR) is one such co-factor. 
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POR is the only flavoprotein that donates electrons to microsomal P450 enzymes (Porter 

and Coon, 1991).  Oxidation of drugs by the P450s requires two sequential one-electron 

donations, but the source of these electrons comes from nicotinamide adenine dinucleotide 

phosphate (NADPH), which gives up a pair of electrons.  POR compensates for this discrepancy 

by stabilizing the one-electron reduced form of the flavin cofactors of flavin adenine 

dinucleotide (FAD) and flavin mononucleotide (FMN).  Electrons pass from NADPH through 

FAD to FMN in the POR protein.  Following a conformational change, the FMN binding domain 

of the POR interacts with the oxidation/reduction-partner binding site of the P450 enzymes so 

that electrons reach the P450 heme iron (Fe
3+

) to achieve catalysis of drug oxidation.  

It is reasonable to assume that disruption of electron flow in the POR protein would have 

destructive effects on oxidation of drugs by all microsomal P450 enzymes.  This assumption has 

been supported by studies in animal models.  POR knock-out mice are embryonically lethal, 

giving rise to multiple developmental defects (Shen et al., 2002; Otto et al., 2003).  Mice with 

liver-specific deletion of POR are reproductively and morphologically normal, but they show a 

profound decrease of capabilities in the metabolism of steroids and drugs (Gu et al., 2003; 

Henderson et al., 2003; Wu et al., 2003).  

The gene encoding human POR is quite genetically polymorphic.  Located on 

chromosome 7q11.2 (Shephard et al., 1989), the POR gene (GeneID 5447 in the National Center 

for Biotechnology Information database, NCBI) is a 71753-bp gene (NT 007933) containing 15 

exons that transcribe a 2509-bp mRNA (NCBI NM_000941.2) and encodes an 82-kDa 

membrane-bound protein with 680 amino acids (NCBI NP_000932.3).  Currently, the NCBI 

dbSNP database has reported ~320 SNPs in the 72-kb genomic region (4.4 SNP per 1 kb, higher 

than 0.8 SNP per 1 kb, an estimate of the average density of SNPs in human genome (Zhao et al., 
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2003)).  Fifteen of these SNPs are located in the exonic regions, in which 8 are synonymous and 

7 are nonsynonymous.  Five of the SNPs, rs10262966 (G5G), rs1135612 (P129P), rs2228104 

(A485A), rs1057868 (A503V), and rs1057870 (S572S), have minor allele frequencies of more 

than 10% in at least one examined ethnic population 

(http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?locusId=5447&chooseRs=all). 

Genetic polymorphisms in the POR gene have recently been associated with an 

autosomal recessive genetic disease, P450 oxidoreductase deficiency (Arlt et al., 2004; Flück et 

al., 2004; Fukami et al., 2005; Huang et al., 2005; Flück and Miller, 2006; Krone et al., 2007).  

Its clinical phenotypes include ambiguous genitalia, congenital adrenal hyperplasia, Antley-

Bixler syndrome, and polycystic ovary syndrome.  These phenotypes typically link to abnormal 

steroid profiles with accumulation of steroid metabolites.  Molecular genetic analyses first 

focused on steroid 17α-hydroxylase (CYP17) and steroid 21-hydroxylase (CYP21), which are 

P450 enzymes involved in steroid metabolism.  Deficiencies of CYP17 and CYP21 were 

observed in patients with glucocorticoid deficiency, skeletal dysplasia and Antley-Bixler 

syndrome, but no mutations in the CYP17 and CYP21 genes could be identified (Adachi et al., 

1999; Reardon et al., 2000).  These findings suggested a defect in a cofactor that interacts with 

these P450 enzymes.  Flück et al. (2004) first reported five missense POR mutations (A287P, 

R457H, V492E, C569Y, and V608F) and a splicing mutation in an initial study with four 

patients who had disordered steroidogenesis and Antley-Bixler syndrome.  Later Arlt et al. 

(2004) identified another POR missense mutation (Y181D) in three patients who had congenital 

adrenal hyperplasia, and also reported three POR mutations (A287P, R457H, and C569Y) 

originally described by Flück et al (2004).  Furthermore, in a study with a larger patient sample 

size (32 individuals), Huang et al. (2005) identified additional missense and frameshift mutations 
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(A115V, T142A, Q153R, P228L, M263V, R316W, G413S, Y459H, A503V, G504R, G539R, 

L565P, R616X, V631I, and F646del) in the POR gene and recognized a distinct new disease: 

POR deficiency.  In that study, fifteen of nineteen patients having abnormal genitalia and 

disordered steroidogenesis were homozygous or heterozygous for POR mutations that eliminated 

or dramatically decreased POR activity.  The R457H mutation was found at very high allele 

frequency (62.5%) in a study with 10 Japanese patients from 8 families with Antley-Bixler 

syndrome, abnormal genitalia, and impaired steroidogenesis (Fukami et al., 2005).  Four other 

mutations were also identified in these patients: a missense mutation (Y578C), a silent transition 

(G5G), a 1-bp insertion (I444fs), and a 24-bp deletion (L612_W620delinsR).  The mutations of 

Y181D, A287P, R457H, V492E, and V608F also significantly increased cytotoxicity in cultured 

Chinese hamster ovary cells induced by paraquat, a widely used herbicide (Han et al., 2006), and 

mitomycin C, a highly active anticancer prodrug (Wang et al., 2007).  

POR deficiency is a very rare genetic disease.  Mutations causing the POR deficiency 

may not be common in the general population.  However, it is unclear whether genetic 

polymorphisms in the POR gene affect P450-catalyzed drug metabolism.  Recently, we 

identified novel SNPs in the POR gene in subjects without POR deficiency (Hart et al., 2007).  In 

this report, we performed a comprehensive study to establish correlations of genetic 

polymorphisms in the POR gene with POR gene expression, POR activity, and POR-assisted 

P450 activities using a set of human liver tissue samples.  Our data suggest that genetic 

polymorphisms in the POR gene may influence P450-catalyzed drug metabolism.  

 

2.2.3. Materials and Methods 
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2.2.3.1. Human livers  

Human liver tissue samples (n=99) were purchased from XenoTech LLC (Lenexa, Kansas, USA) 

in the form of three 5 mL lysates in DNA, RNA, and microsome isolation buffers.  The samples 

were acquired by XenoTech through the Midwest Transplant Network (Westwood, Kansas, 

USA), the National Disease Research Interchange (Philadelphia, Pennsylvania, USA) and the 

Anatomical Gift Foundation (Woodbine, Georgia, USA).  Livers were initially harvested for 

transplantation purposes, but were not used for various reasons and subsequently were donated 

for research.  The livers were cooled immediately after procurement with a cold perfusion 

solution and frozen within 1 to 36 hours.  All liver samples were tested for, and declared free of 

infectious agents, including human immunodeficiency virus (HIV), hepatitis B (HBV), and 

hepatitis C (HCV).  Demographic information such as gender, age, ethnicity, and confounding 

factors are listed in Table 2.2.1.  
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Table 2.2.1.  Demographic information of confounding factors in the human liver cohort 

Confounding factors Distributions (n) 

Gender Male (59) and female (40)  

Ethnicity 
Caucasian (77), African-American (9), Hispanic (10), 

and Asian (3)  

Age 
Year 0-1, (4); year 1-18, (7); year 18-45, (27); year 45-

60, (39); and year older than 60, (22) 

Smoking Non-smoker (61) and smoker (38)  

Alcohol drinking Non-drinker (47), drinker (51), and unknown (1)  

Reason for death 

Anoxia (18), aortic aneurysm (1), cerebrovascular 

aneurysm (61), head trauma (14), myocardial infarction 

(3), and motor vehicle accident (2). 

CMV infection Negative (67), positive (30), and not determined (2) 

CMV: cytomegalovirus 
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2.2.3.2. POR and P450 activities 

P450 enzyme profiles of this liver cohort were characterized by XenoTech LLC.  Liver 

microsomes were prepared by using differential ultracentrifugation (Dayer et al., 1987).  The rate 

of cytochrome c reduction by liver microsomes was determined spectrophotometrically based on 

a previously described method (Phillips and Langdon, 1962) with some modifications (Pearce et 

al., 1996).  The reaction was conducted in a 1 ml solution with 50 µM cytochrome c, 100 µM 

NADPH, and ~50 µg liver microsomal protein at room temperature for 10 min.  The rate of 

cytochrome c reduction was determined from the rate of increase in absorbance at 550 nm by 

reduced form of cytochrome c with a DW2C dual beam spectrophotometer (SLM-Aminco, 

Urbana, IL).  P450 enzyme activities were determined by measuring the rates of the following 

reactions with a spectrofluorometer or High-Performance Liquid Chromatography (HPLC) 

according to previously described procedures: 7-ethoxyresorufin O-dealkylation (CYP1A2) 

(Pearce et al., 1996), coumarin 7-hydroxylation (CYP2A6) (Pearce et al., 1996), S-mephenytoin 

N-demethylation (CYP2B6) (Pearce et al., 1996; Ko et al., 1998), paclitaxel hydroxylation 

(CYP2C8) (Robertson et al., 2000), diclofenac 4‟-hydroxylation (CYP2C9) (Robertson et al., 

2000), S-mephenytoin 4‟-hydroxylation (CYP2C19) (Pearce et al., 1996), dextromethorphan O-

demethylation (CYP2D6) (Pearce et al., 1996), chlorzoxazone 6-hydroxylation (CYP2E1) 

(Pearce et al., 1996), testosterone 6β-hydroxylation (CYP3A4/5) (Pearce et al., 1996), and lauric 

acid 12-hydroxylation (CYP4A9/11) (Pearce et al., 1996).  With the substrate concentrations and 

amount of liver microsomal protein used in each reaction (Table 2.2.2), the probe drugs are 

considered to be specific for each P450 enzyme. 
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Table 2.2.2.  The POR and P450 enzyme activities in the human liver cohort 

 

 

 

Enzyme and assay 

Substrate 

concen-

tration
#
  

(µM) 

Liver 

microsomal 

protein (µg) 

used in each 

reaction 

Enzyme activity  

(pmol/mg protein/min) 

    
Highest Lowest Mean SD 

POR: Cytochrome c reduction  50 502 343000 505 177382 53185 

CYP1A2: 7-ethoxyresorufin O-dealkylation 10 100 258 NPD 51 45 

CYP2A6: Coumarin 7-hydroxylation 50 100 7310 5 984 1167 

CYP2B6: S-mephenytoin N-demethylation 400 400 1280 10 107 160 

CYP2C8: Paclitaxel 6a-hydroxylation 10 50 2040 NPD 341 340 

CYP2C9: Diclofenac 4‟-hydroxylation 100 50 5870 127 1810 867 

CYP2C19: S-mephenytoin 4‟-hydroxylation 400 400 895 NPD 101 141 

CYP2D6: Dextromethorphan O-demethylation 80 500 1160 18 308 192 

CYP2E1: Chlorzoxazone 6-hydroxylation 500 200 11500 201 2109 1505 

CYP3A4/5: Testosterone 6β-hydroxylation 250 200 20300 NPD 3421 3670 

CYP4A9/11: Lauric acid 12-hydroxylation 100 400 4350 NPD 1699 818 

#The substrate concentration is near the 10 Km for the reaction and has been shown to be appropriate for metabolite 

formation.  

NPD: no catalyzed product detected. 
      SD: standard deviation. 
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2.2.3.3. Sequencing the POR gene  

Genomic DNA was isolated from liver tissue using the ChargeSwitch® gDNA Mini 

Tissue Kit from Invitrogen (Carlsbad, California, USA), following the manufacturers protocol.  

Exonic regions of POR were amplified by PCR from the genomic DNA using forward and 

reverse primers designed by DS Gene Software (Accelrys, Cambridge, UK).  Primer sequences 

and PCR product sizes have been previously reported by our lab (Hart et al., 2007), that flank the 

exons and ~200bp worth of introns.  Primers were synthesized by Integrated DNA Technologies 

(Coralville, Iowa, USA) and the subsequent PCR reactions were performed using Go Taq® 

DNA Polymerase (Promega, Madison, Wisconsin, USA), with cycling conditions of 95 C for 3 

min, 40 cycles of 94 C for 15 sec, 60 C for 30 sec, and 72 C for 45 sec, followed by 72 C for 5 

min.  PCR products were purified with the Pre-sequencing Kit provided by USB (Cleveland, 

Ohio, USA).  DNA sequencing reactions were carried out using BigDye Terminator V 3.1 Cycle 

Sequencing Kit (Applied Biosystems, Foster City, California, USA) with the forward primers.  

For dye terminator removal, PERFORMA® DTR Gel Filtration cartridges (Edge BioSystems, 

Gaithersburg, Maryland, USA) were used, and sequences were analyzed with a 3130 DNA 

Analyzer (Applied Biosystems, Foster City, California, USA). 

 

2.2.3.4. POR gene expression 

Total RNA was isolated from each liver tissue with TRIZOL® reagent (Invitrogen) 

following the manufacturer‟s protocols.  Human POR mRNA levels were assessed by branched 

DNA technique (Hartley and Klaassen, 2000; Czerwinski et al., 2002) with a Quantigene 

expression kit (Bayer, Walpole, Massachusetts, USA) as described
 
in the manufacturer's 
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protocol.  The specific oligonucleotide probe sets (capture extenders, label extenders, and 

blockers) were designed to have a melting temperature around 65°C using
 
the probe Designer 

software, version 1.0 (Bayer, Emeryville, California, USA).  A luminescent readout was 

measured with
 
a Quantiplex 320 Luminometer (Chiron Corp., Emeryville,

 
California, USA).  

 

2.2.3.5. Prediction of protein structure changes  

Amino acid sequences from POR homologs of human (NCBI NP_000932.3), rat 

(NP_113764.1), frog (Xenopus, AAH59318.1), fruit fly (Drosophila, NP_477158.1), and yeast 

(NP_596046.1) were aligned and displayed by ClustalW (Thompson et al., 1994).  Molecular 

modeling of the identified non-synonymous mutations were performed with ESyPred3D 

(Lambert et al., 2002) using the crystalline rat Por structure (PDB:1AMO) chain „A‟ as a 

template.  The rat Por protein shares 92.1% identity and 96.3% similarity with the human POR 

in alignment by the Needle EMBOSS pairwise tool (Needleman and Wunsch, 1970).  Models 

were visualized and displayed using PyMOL (Warren).  Protein secondary structure and 

membrane topology for the POR mutations were predicted by the Quick2D analysis tool with 

PSIPRED (Jones, 1999) and MEMSAT2 (Jones et al., 1994).    

 

2.2.3.6. Statistical analysis 

We used multiple linear regressions to assess the effect of POR SNPs on POR enzyme 

activity.  Age, gender, ethnicity, reason for death, smoking history, drinking history, and 

cytomegalovirus infection were included in the model to adjust for potential confounding effects.  
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The same linear regression was also applied to assess the association between POR gene 

expression and POR enzyme activity.  

 

2.2.4. Results 

2.2.4.1. Interindividual variation of POR enzyme activity 

Interindividual variation of the POR enzyme activity was observed in this liver cohort.  

Although cytochrome c has been shown not to be the natural substrate of POR as initially 

thought (Horecker, 1950; Williams and Kamin, 1962), cytochrome c reduction is still used by 

many researchers in the field to quantify POR activity (Reardon et al., 2000; Flück et al., 2004; 

Huang et al., 2005).  Cytochrome c reduction was also used to quantify the POR activity in this 

study.  Figure 2.2.1 shows the histogram of POR activity with a mean of 177 nmole/mg 

protein/min and a standard deviation of 53.  There were 75 individuals who had POR activity 

within one standard deviation (SD) around the mean, which was considered as normal POR 

activity.  There were 10 individuals who had POR activity between -1SD and -2SD, which was 

considered low POR activity.  One individual had extremely low POR activity (<-2SD).  In 

contrast, 10 individuals had high POR activity (between +1SD and +2SD) and 3 had extremely 

high POR activity (>+2SD).  Between +2SD and -2SD, there is about a 4-fold difference. 
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Figure 2.2.1.  Distribution of POR activity quantified by measuring cytochrome c reduction in 

the liver cohort. 

  



61 

 
 

2.2.4.2. Correlation of enzyme activities between POR and P450 enzymes 

 Significant associations between the activity of POR and activities of most drug-

metabolizing P450 enzymes were observed in this study.  Activities of ten P450 enzymes were 

quantified in the 99 liver microsomes using probe drugs known to be specific for each enzyme.  

Table 2.2.2 lists descriptive statistics for each P450 enzyme activity.  Pearson‟s correlations 

between POR activity and a P450 enzyme activity together with the p value (testing correlation 

equals 0) are summarized in Table 2.2.3.  Seven of the P450 enzyme activities (CYP2A6, 

CYP2B6, CYP2C8, CYP2C9, CYP2E1, CYP3A4/5, and CYP4A9/11) correlated with POR 

activity at significant levels of p<0.001.  CYP2D6 correlated with POR activity at a significant 

level of p<0.05.  Only CYP1A2 and CYP2C19 did not significantly correlate with POR 

(p>0.05).  As examples, Figure 2.2.2 shows the scatter plots of enzyme activity of POR versus 

CYP4A9/11 (p<0.001), CYP2D6 (p=0.043), and CYP2C19 (p=0.460). 
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Figure 2.2.2.  Scatter plots of POR activity versus P450 activity of CYP4A9/11 (A), CYP2D6 

(B), and CYP2C19 (C).  Pearson‟s correlations (R) and corresponding p-values are listed in the 

upper left portion of each plot. 
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Table 2.2.3.  Pearson‟s correlation between POR activity and P450 activity 

POR vs.  P450 enzyme Pearson’s correlation p-value 

CYP1A2 0.102 0.316 

CYP2A6*** 0.396 <0.001 

CYP2B6*** 0.354 <0.001 

CYP2C8*** 0.437 <0.001 

CYP2C9*** 0.482 <0.001 

CYP2C19 0.075 0.46 

CYP2D6* 0.204 0.043 

CYP2E1*** 0.414 <0.001 

CYP3A4/5*** 0.406 <0.001 

CYP4A9/11*** 0.5 <0.001 

*p<0.05, **p<0.01, ***p<0.001 
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2.2.4.3. Identification of genetic polymorphisms in the POR gene 

Genetic polymorphisms were identified in the exons and surrounding introns (~7.7 kb 

genomic sequences) in the POR gene by sequencing PCR products amplified from genomic 

DNAs isolated from the 99 human liver samples.  Thirty-four single nucleotide polymorphisms 

(SNPs) were identified in these areas.  Of these, 20 were in the introns, 5 in the 3‟-UTR, and 9 in 

the exons (Table 2.2.4).  Nine of the 34 SNPs were novel polymorphisms recently reported for 

the first time (Hart et al., 2007).  Of the 9 exonic polymorphisms, 5 were previously reported 

synonymous polymorphisms (G5G, T29T, P129P, S485S, and S572S) and 4 were 

nonsynonymous polymorphisms resulting in amino acid changes at K49N, L420M, A503V, and 

L577P that had minor allele frequencies of 0.005, 0.045, 0.219, and 0.020, respectively.  As 

expected, we did not observe any of the missense or frameshift mutations (T142A, Q153R, 

Y181D, M263V, A287P, R457H, Y459H, V492E, G539R, L565P, C569Y, Y578C, V608F, 

R616X, F646del, I444fs, and L612W620delinsR) that have been associated with POR 

deficiency.  All SNPs but rs2286816 in intron 6 had a Hardy-Weinberg p value greater than 

0.001.  
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Table 2.2.4.  Genetic polymorphisms in the POR gene identified in the liver cohort 
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Genotype
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67 

 
 

2.2.4.4. Prediction of functional influence of the POR mutations 

Four nonsynonymous SNPs, which result in the amino acid changes at K49N, L420M, 

A503V, and L577P, were identified in this liver cohort.  K49N resides in the amino-terminal tail, 

L420M in the connecting domain, A503V in the FAD binding domain, and L577P in the 

NADPH binding domain.  A503V has been reported in the NCBI dbSNP database and has 

moderate influence on POR activity (69% of wild type) (Huang et al., 2005).  We first reported 

K49N, L420M, and L577P (Hart et al., 2007).  To predict the potential influence of K49N, 

L420M, and L577P on POR functions, we performed a series of modeling analyses to establish 

conservation of residues and influence on secondary structures and 3 dimensional (3D) 

configurations, and interactions with cofactors. 

 

The amino acids are conserved at varying degrees: Human POR protein was aligned 

with homologues from the rat, frog, fruit fly, and yeast (Figure 2.2.3).  The rationale is that if an 

amino acid is highly conserved, then a change would likely have a greater impact on POR 

function because there would have been an evolutionary force to retain the amino acid.  The K49 

amino acid is located in a FRKKKEE motif that is conserved in human, rat, and frog, but not in 

fruit fly or yeast.  The L420 is also conserved among the human, rat, and frog in a LYLSWVVE 

motif, but almost no conservation is seen in fruit fly or yeast.  Unlike the previous two amino 

acids, the L577 is highly conserved in a DYLYR motif.  In the fruit fly, the leucine is replaced 

by an isoleucine, an isomeric form of leucine.  Because this residue is so highly conserved, it is 

predicted that a change at L577 may influence POR function.  
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Figure 2.2.3.  Alignment fragments of amino acid sequences of POR from five species.  

Representative amino acid sequences are human (NCBI NP_000932.3), rat (NP_113764.1), frog 

(AAH59318.1), fruit fly (NP_477158.1), and yeast (NP_596046.1).  Alignment was made by 

ClustalW and shown in default ClustalX color scheme. 
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The amino acid changes are predicted to affect helix or beta sheet formation: Given the 

sequence conservation throughout evolution, we sought predictive modeling to (1) identify 

secondary structures in areas where amino acid changes occur, and (2) predict the outcome of the 

changed amino acids on protein secondary structure.  PSIPRED (Jones, 1999) was used to 

predict helix or beta sheet structure and MEMSAT2 (Jones et al., 1994) was applied to identify 

transmembrane domains.  First, the full-length POR amino acid sequence with 100% major 

alleles was uploaded to the Quick2D analysis tool.  The major K49 allele was predicted to occur 

in a random coil directly adjacent to an alpha helical region from S16 to F47 and a 

transmembrane domain spanning from M31 to F47 (Figure 2.2.4A top row).  The L420 major 

allele was predicted to occur in the middle of an alpha helix that forms between K416 and E425 

(Figure 2.2.4B, top row).  The L577 major allele was found in an alpha helix beginning at Y576 

and ending at R587 (Figure 2.2.4C, top row).  When the major alleles of K49, L420, and L577 

were replaced by the minor alleles of N49, M420, and P577, the Quick2D analysis revealed 

some disparities between major and minor allele simulations in the prediction (Figure 2.2.4A, 

4B, and 4C bottom rows).  The L420M simulations did not predict any functional changes, but 

the K49N made F26 involving in an alpha helix from E17 to F47 and V9-D10 forming a β-sheet.  

In our prediction, the L577P replacement prevented the Y576 residue from participating in the 

alpha helix.   
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Figure 2.2.4.  Predicted secondary structures and membrane topology for K49N (A), L420M 

(B), and L577P (C).  † indicates difference between minor alleles and major alleles.  Protein 

alpha helix and beta sheet were predicted by SS PSIPRED and transmembrane helices were 

predicted by TM MEMSAT2-D.  Arrows indicate the positions of an amino acid change.  
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The amino acid changes are predicted to affect interaction with cofactors: A 3D structure 

of the human POR protein was predicted with the ESyPred3D modeling server and visualized 

with PyMOL, using the fully crystallized rat Por structure (PDB: 1AMO chain „A‟) as a template 

(Wang et al., 1997).  Crystallography methods used to generate the rat Por structure involve 

trypsinolysis, which truncates the protein at I53 (human V54).  Thus, our homology model 

begins at V67 and the K49N polymorphism could not be modeled and evaluated for its impact on 

structure and function.  Figure 2.2.5A shows a 3D structure of the human POR homolog and 

interactions with its cofactors of NADPH, FAD, and FMN predicted by the EsyPred3D server.  

Although the L420M polymorphism occurs in the K416- E425 alpha helix, compared to the 

L420 residue (Figure. 2.2.5B), the M420 does not disrupt the helix formation (Figure. 2.2.5C).  

Neither the L420 nor M420 residues participate in hydrophilic, hydrophobic, or hydrogen 

bonding with FAD or any other cofactor.  Figure 2.2.5D shows hydrogen bonding between the 

backbone nitrogen of L577 and a water molecule which likely also dynamically bonds to several 

other surrounding residues and stabilizes NADPH binding.  When L577 is replaced with P577 

(Figure. 2.2.5E), a hydrogen bond between the backbone nitrogen of P577 and the water 

molecule no longer forms due to the conformation and properties of proline.  Such change may 

destabilize NADPH binding.  
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Figure 2.2.5.  Effects of the polymorphisms on POR structure.  (A) EsyPred3d predicted 3D 

structure using rat Por (PDB: 1AMO chain „A‟) as a template and displayed by PyMOL.  

Functional domains are distinguished by coloration.  The FMN-binding domain is in red, FAD-

binding domain is green, the flexible hinge domain is colored blue, and the NADPH-binding 

domain is pink.  FAD, FMN, and NADPH cofactors are tan, brown, and orange, respectively.  (B 

and C)  Magnification around wild-type L420 and mutant M420 residues (respectively) shows 

this mutation occurs in an exposed region that is not involved in interactions with FAD or other 

cofactors.  (D) The backbone nitrogen of residue L577 is potentially involved in stabilizing a 

water molecule that interacts with several other residues and NADPH.  (E) In the case of the 

P577 mutation, its backbone nitrogen is unable to participate in this interaction with the water 

molecule due to the unique structure of proline. 
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2.2.4.5. Correlation of SNPs in the POR gene with POR activity 

SNPs in the POR gene had significant influence on the POR activity in this liver cohort.  

Assuming a dominant genetic model, we performed a multiple linear regression analysis on each 

SNP adjusting for gender, age, and ethnicity, reason for death, CMV infection, smoking, and 

drinking.  As an example, Table 2.2.5a summarizes the regression coefficients, standard error, t-

values, and p-values for SNP7, which causes the L577P amino acid change.  Gender, age, 

ethnicity, CMV infection, reason for death, smoking, and drinking were not associated with POR 

activity (p>0.05).  After adjusting for all confounding factors, we found that samples with 

L577/P577 had significantly lower POR activity than samples with L577/L577 (coefficient 

estimate=-101.152 and p=0.003).  Table 2.2.5b summarizes the effects of all 34 POR SNPs on 

POR activity after adjusting for all the above-mentioned confounders.  In addition to SNP7, 

samples with GA and AA genotypes of rs41301427 (a G>A change in intron 12 with a minor 

allele frequency of 0.096) was associated with decreased POR activity compared to samples with 

GG genotype (coefficient estimate=-32.409 and p=0.030) without influence from the 

confounders.   
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Table 2.2.5a.  Association of SNP7 (L577P) with POR activity after adjusting for possible 

confounders 

Factor Coefficient Estimate Std.  Error t-value p-value 

Intercept 176.331 36.679 4.807 0 

Gender M vs.  F 5.698 12.18 0.468 0.641 

Age -0.658 0.366 -1.799 0.076 

Ethnicity AA vs.  A 26.271 34.492 0.762 0.449 

Ethnicity C vs.  A 26.754 31.321 0.854 0.396 

Ethnicity H vs.  A 56.797 35.211 1.613 0.111 

Death AA vs.  A 59.706 55.452 1.077 0.285 

Death CVA vs.  A 9.483 17.911 0.529 0.598 

Death HT vs.  A -10.238 20.234 -0.506 0.614 

Death MI vs.  A 10.241 36.448 0.281 0.779 

Death MVA vs.  A -60.224 40.609 -1.483 0.142 

CMV positive vs. 

negative 
-5.779 12.976 -0.445 0.657 

Smoker yes vs. no -0.5 12.459 -0.04 0.968 

Alcohol yes vs. no 9.773 12.277 0.796 0.428 

L577/P577 vs.  

L577/L577** 
-101.152 32.776 -3.086 0.003 

Ethnicity: A: Asian, AA: African-American, C: Caucasian, H: Hispanic. 

Death: A: Anoxia, AA: Aortic aneurysm, CVA: Cerebrovascular aneurysm, HT: Head trauma, 

MI: Myocardial infarction.  MVA: Motor vehicle accident. 

** Significant level p<0.01. 
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Table 2.2.5b.  Association of POR SNPs with POR activity
1
 

SNP Coefficient Estimate Std.  Error t-value p-value 

rs10262966 39.997 25.69 1.557 0.124 

rs412952381 53.519 41.036 1.304 0.196 

SNP1 41.628 55.631 0.748 0.457 

rs1135612 18.7 12.465 1.5 0.138 

rs2286819 -4.208 20.492 -0.205 0.838 

rs2286820 -43.708 40.479 -1.08 0.284 

SNP2 72.665 58.322 1.246 0.217 

SNP3 66.196 40.19 1.647 0.104 

rs41299517 26.616 26.629 1 0.321 

rs3815455 -15.296 12.055 -1.269 0.208 

rs13223707 0.332 26.344 0.013 0.99 

rs13240147 4.096 22.362 0.183 0.855 

rs41301394 -6.677 12.923 -0.517 0.607 

rs4732514 -16.875 13.353 -1.264 0.21 

rs6971082 79.195 39.998 1.98 0.051 

rs4732515 11.014 23.103 0.477 0.635 

rs4732516 5.153 26.652 0.193 0.847 

rs2286822 13.34 11.823 1.128 0.263 

rs2286823 9.86 11.961 0.824 0.412 

SNP4 34.617 19.824 1.746 0.085 

SNP5 74.489 56.321 1.323 0.19 

SNP6 -25.56 49.912 -0.533 0.595 

rs41301427* -32.409 14.685 -2.207 0.03 

rs2302431 2.129 20.504 0.104 0.918 

rs2302432 -7.039 23.962 -0.294 0.77 

rs6950661 1.008 19.355 0.052 0.959 

rs1057868 -2.467 13.634 -0.181 0.857 

rs1057870 6.38 12.217 0.522 0.603 

SNP7** -101.152 32.776 -3.086 0.003 

rs41302345 131.3 67.637 1.941 0.056 

SNP8 131.3 67.637 1.941 0.056 

SNP9 86.951 56.308 1.544 0.127 

rs41302348 -11.587 46.209 -0.251 0.803 

rs17685 -17.435 11.956 -1.458 0.149 

1
Adjusted for age, gender, ethnicity, reason for death, smoking history, drinking history, and 

cytomegalovirus infection.  *p<0.05, **p<0.01 
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2.2.4.6. Correlation of SNPs in the POR gene with P450 activities 

 POR SNP7 had significant influence not only on the POR activity but also on most P450 

enzyme activities.  The influence of L577P is shown in Figure 2.2.6.  Four samples (L099, L078, 

L059, and L080) had heterozygous genotype of SNP7 encoding heterozygous L577/P577 POR 

protein.  The POR activity in the 4 samples with heterozygous L577/P577 was significantly 

lower than that in the 95 samples with homozygous L577/L577 (p=0.003, Figure 2.2.6A).  For 

10 drug-metabolizing P450 enzymes, the corresponding activities were lower for CYP2A6 and 

CYP2E1 at significant levels of p<0.01, lower for CYP2B6, CYP2C9, CYP3A4, and CYP4A9 at 

significant levels of p<0.05, and lower for CYP1A2 at p=0.09, but not significantly lower for 

CYP2C8, CYP2C19, and CYP2D6 (Figure 2.2.6B) when Student‟s t-tests were applied.  

Although rs41301427 correlated to decreased POR activity (coefficient estimate=-32.409 and 

p=0.030), Student‟s t-tests revealed this SNP did not influence all P450 activities (data are not 

shown).  
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Figure 2.2.6.  Effect of the L577P amino acid change on POR and P450 activities.   

A) Comparison of the POR activity between samples (n=4) with L577/P577 (left) and samples 

(n=95) with L577/L577 (right).  B) Comparison of the P450 activities between L577/P577 and 

L577/L577 samples using Student‟s t-tests.  To better meet normality assumption, logarithm 

transformation was applied to all P450 enzyme activities.  The samples with no detected enzyme 

activities therefore were removed for being undefined to take logarithm transformation.  There 

are 1 for CYP1A2, 2 for CYP2C8, 1 for CYP2C19, 1 for CYP3A4/5, and 1 for CYP4A9/11.  A 

black diamond and a grey bar in each right column represent the mean and standard deviation of 

the enzyme activity in 95 samples with L577/L577.  * p≤0.05, ** p≤0.01.   
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2.2.4.7. Correlation of POR gene expression with POR activity 

The POR activity was significantly associated with POR gene expression at mRNA levels 

in this liver cohort.  The POR mRNA levels were quantified by branch DNA (bDNA) 

technology.  A housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was 

simultaneously quantified by bDNA technology.  Relative POR mRNA levels were defined by 

normalizing with GAPDH.  Inter-individual variations of POR mRNA were observed in this 

liver cohort with a mean POR/GAPDH ratio of 0.195 and a standard deviation of 0.109.  

Correlation analysis of POR mRNA with POR activity was performed using the same multiple 

linear regression adjusting for all previously mentioned confounders.  None of the confounders 

had a significant effect on correlation between POR mRNA and POR activity in this liver cohort 

(Table 2.2.6).  A significant association (coefficient estimate=123.653 and p=0.041) was found 

between POR mRNA and POR activity.  
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Table 2.2.6.  Association of POR mRNA level with POR activity after adjusting for possible 

confounders. 

 

Factor 
Coefficient 

Estimate 
Std.  Error t-value p-value 

Intercept 225.483 45.175 4.991 4.21 × 10
-6

 

Gender M vs.  F 10.246 13.036 0.786 0.434 

Age -0.47 0.385 -1.218 0.227 

Ethnicity AA vs.  

A 
32.475 35.765 0.908 0.366 

Ethnicity C vs.  

A 
24.908 32.306 0.771 0.443 

Ethnicity H vs.  

A 
49.679 36.936 1.345 0.183 

Death AA vs.  A 11.164 62.369 0.179 0.858 

Death CVA vs.  

A 
-12.372 19.392 -0.638 0.525 

Death HT vs.  A -22.85 21.618 -1.057 0.294 

Death MI vs.  A -28.25 35.535 -0.795 0.429 

Death MVA vs.  

A 
-59.316 41.95 -1.414 0.162 

CMV positive 

vs. negative 
5.725 13.376 0.428 0.7 

Smoker yes vs. 

no 
1.128 12.966 0.087 0.931 

Alcohol yes vs. 

no 
10.455 12.703 0.823 0.413 

POR mRNA vs.  

POR activity* 
123.653 59.391 2.082 0.041 

Ethnicity: A: Asian, AA: African-American, C: Caucasian, H: Hispanic. 

Death: A: Anoxia, AA: Aortic aneurysm, CVA: Cerebrovascular aneurysm, HT: Head trauma, 

MI: Myocardial infarction, MVA: Motor vehicle accident. 

* significant (p<0.05) 
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Four samples (L099, L078, L059, and L080), which have the same heterozygous 

genotype of SNP7 and can produce both wild type L577 and mutant P577 POR proteins in their 

livers, had varied POR activities from 505 to 139,000 pmol/mg protein/min (Table 2.2.7).  If the 

average POR activity (181,000 pmol/mg protein/min) in the samples (n=95) with the wild type 

genotype of L577/L577 is considered as 100%, POR activity in L099, L078, L059, and L080 is 

0.2%, 45%, 61%, and 77% of the average, respectively.  An increasing trend from extremely low 

in L099 to close to the average in L080 maintains same in almost all examined P450 enzymes 

with p value all less than or close to 0.1 in a linear regression analysis (Table 2.2.7).  This trend 

was also observed between the POR activity and the POR mRNA level (p=0.083).  The liver of 

L099 was from a 58-year old Caucasian man who did not smoke or drink, was not infected by 

CMV, and died as a result of myocardial infarction.  The liver was removed after 5 hours of 

death and recorded having normal morphology.  His total P450 protein content and GAPDH 

mRNA were normal.  His extremely low POR activity (0.2%) and either no detectable or less 

than 10% of the average P450 activities may suggest a combinational effect of P577 mutation 

and low POR gene expression (9% of the average POR mRNA level).  The influence of P577 

mutation on POR and P450 activities in the sample L080 might be overcome by high POR gene 

expression (240% of the average POR mRNA level). 
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Table 2.2.7.  Comparison of POR activity with P450 activities and POR mRNA level in wild type 

samples with L577/L577 and mutant samples with L577/P577 

 

 

 

 

  

Enzyme activity
95 samples with wild 

type L577/L577

Sample L099 

L577/P577

Sample L078 

L577/P577

Sample L059 

L577/P577

Sample L080 

L577/P577

Linear 

Regression

(pmole/mg protein/min) Activity mean (%) Activity (%) Activity (%) Activity (%) Activity (%) p  value
#

Column1 Column2 Column3 Column4 Column5 Column6 Column7

POR activity 181000 (100) 505 (0.2) 82000 (45) 110000 (61) 139000 (77) 0

CYP1A2 52 (100) NPD 8 (16) 15   (29) 33   (63) p< 0.001

CYP2A6 1016 (100) 6 (0.6) 209 (21) 306   (30) 402   (40) 0.036

CYP2B6 110 (100) 10 (9.1) 29 (26) 40   (36) 48   (43) 0.006

CYP2C8 350 (100) NPD NPD 82   (24) 186   (53) 0.036

CYP2C9 1826 (100) 127 (7.0) 1540 (84) 1350   (74) 2750 (151) 0.032

CYP2C19 100 (100) NPD 91 (91) 119 (119) 95   (95) 0.078

CYP2D6 312 (100) 25 (8.0) 274 (88) 270   (87) 292   (94) 0.071

CYP2E1 2146 (100) 201 (9.4) 358 (17) 2400 (112) 1900   (89) 0.12

CYP3A4/5 3504 (100) NPD 207   (6) 268     (8) 1800   (51) 0.014

CYP4A9/11 1726 (100) NPD 805 (47) 987   (57) 710   (41) 0.087

POR mRNA 0.195 (100) 0.018 (9.2) 0.279 (143) 0.128 (66) 0.468 (240) 0.083

NPD: no product detected

# p  value for linear regression between POR activity and each P450 activity or between POR activity and POR mRNA. Due to abnormal distribution of P450 activities in this liver 

cohort, the linear regression was conducted with logarithm transformation of the P450 activities. Samples with NPD are considered as 0 after logarithm in the linear regression. 
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2.2.5. Discussion 

We have observed weak, yet significant associations between POR activity and most 

drug-metabolizing P450 enzyme activities in the study samples.  This finding suggests that these 

P450 enzymes are sensitive to the amount of POR available.  This phenomenon was also 

observed in microsomal P450 enzymes that are involved in steroid hormone biosynthesis 

(P450C17 and P450C21) (Yanagibashi and Hall, 1986; Lin et al., 1993).  

We observed less significant correlations between POR activity and CYP2D6, CYP2C19, 

or CYP1A2 activity in the study population, which may be due to the known genetic 

polymorphisms in these P450 enzyme genes.  Pharmacogenomic aspects of CYP2D6 and 

CYP2C19 have been well documented (Daly, 2004; Ingelman-Sundberg, 2005; Eichelbaum et 

al., 2006; Padol et al., 2007).  To date, more than 60 alleles for CYP2D6 and 20 alleles for 

CYP2C19 have been named by the Human Cytochrome P450 Allele Nomenclature Committee 

(http://www.cypalleles.ki.se/).  Genetic polymorphisms in CYP2D6 and CYP2C19 are found in 

all ethnic populations (Ozawa et al., 2004), though some are specific for only one or a few 

populations.  When individuals carry genetic mutations that decrease their CYP2D6 or 

CYP2C19 activity, these individuals in an examined population will likely have low CYP2D6 or 

CYP2C19 activities regardless of how high their POR activity is.  In Figure 2.2.2B and 2C, there 

are numerous individuals who have normal range, or even high POR activity, but very low 

CYP2D6 or CYP2C19 activity.  These samples are from subjects potentially carrying genetic 

mutations in CYP2D6 and CYP2C19 genes, which need to be analyzed.  

Our data show that the POR gene is quite polymorphic in the study population.  Within 

the 7.7 kb genomic area covering all POR exons and surrounding introns, we identified 34 SNPs, 

in which 9 are common with a minor allele frequency of >10%, 11 are rare with a minor allele 
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frequency of <1% and 14 are between (1-10%)  (Table 2.2.4).  The common SNPs include three 

exonic polymorphisms (rs1135612 A>G P129P, rs1057863 C>T A503V, and rs1057870 G>A 

S572S), but only rs1057863 results in an amino acid change, from alanine to valine, at position 

503.  A503V is a conservative change in an unstructured loop of the FAD binding domain.  The 

amino acid replacement from alanine to valine at 503 results in a minor decrease in cytochrome c 

reduction and P450C17 hydroxylase (Huang et al., 2005).  Because of the functional importance 

of the POR protein, we would not expect there to be common SNPs existing in the POR gene 

that could significantly affect POR functions.  All the common SNPs (>10%) identified in the 

study samples are not associated with decreased POR activity.  

Naturally existing POR mutations have been identified in POR deficiency patients (Arlt 

et al., 2004; Flück et al., 2004; Fukami et al., 2005; Huang et al., 2005), including the missense 

or frameshift mutations of T142A, Q153R, Y181D, M263V, A287P, R457H, Y459H, V492E, 

G539R, L565P, C569Y, Y578C, V608F, R616X, F646del, I444fs, and L612W620delinsR.  Site-

mutagenesis experiments demonstrated that mutations in the FMN (Q153R, Y181D), FAD 

(A287P, R457H, Y459H, V492E), and NADPH (G539R, L565P, C569Y, Y578C, V608F, 

R616X) binding domains had the most influence on POR functions (Huang et al., 2005; 

Marohnic et al., 2006).  Some mutations ablated virtually all measurable POR activity and 

caused serious human diseases.  However, these mutations occur at very low frequency.  As 

expected, none of these POR deficiency mutations were detected in the study population.   

  Three novel nonsynonymous polymorphisms, which result in amino acid changes at 

K49N, L420M, and L577P, are identified in this study.  K49N resides in the amino-terminal tail, 

L420M in the connecting domain, and L577P in the NADPH binding domain.  Molecular 

modeling predicts that L420M do not change secondary or 3D structure of POR protein, but 
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replacement of P577 prevents Y576 from participating in an alpha helix and may disrupt 

hydrogen bonding with a water molecule, destabilizing NADPH binding in POR 3D 

configuration.  The 3D configuration is very important for electron flow from NADPH through 

POR to P450.  Crystal structure of rat Por (Wang et al., 1997) shows that Por contains two 

distinct regions, one containing the NADPH-binding site and the FAD binding domain, and the 

other containing the FMN domain that eventually interacts with the redox-partner binding site of 

P450.  NADPH attaches to the NADPH-binding site where it releases an electron to FAD and 

becomes NADP
+
.  The NADPH-binding site and FAD-binding domain must be within 4 Å for 

this reaction to proceed (Wang et al., 1997).  Kinetics of NADPH binding, electron pass, and 

NADP
+
 release in POR are important for both POR and P450 enzyme functions.  Genetic 

mutations in the NADPH-binding site (G539R, L565P, Y578C, and V608F), which decrease 

cytochrome c reduction and P450 (CYPC17 and CYPC21) activities, have been identified in the 

POR deficiency patients (Fukami et al., 2005; Huang et al., 2005).  In this report, we demonstrate 

that L577P, which is adjacent to Y578C, correlates with decreased POR activity (cytochrome c 

reduction) and influences most drug-metabolizing P450 enzymes, except CYP1A2, CYP2D6, 

CYP2C19, and CYP2C8 (Figure 2.2.6).  Less correlation in CYP2D6 and CYP2C19 may be 

again due to genetic polymorphisms in these P450 genes.  We have also shown that the POR 

mutation that decreases POR activity do not necessarily lead to the POR deficiency disease.  The 

mechanisms as to how L5577P decreases POR activity merits further investigation. 

L577P has a minor allele frequency of 0.02 in the study population.  Its allele frequency 

in the general population needs to be investigated.  We expect that individuals carrying the 

homozygous mutation of P577/ P577 have decreased ability to metabolize almost all drugs 

primarily catalyzed by microsomal P450 enzymes.  However, this hypothesis needs to be 
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confirmed in future studies.  It is difficult to predict POR activity in an individual who carries 

heterozygous L577/ P577, because one copy of the POR gene encodes normal POR and another 

encodes mutant POR.  Large inter-individual variations of POR activity were observed in 4 

samples with heterozygous L577/ P577 in this study (Table 2.2.7).  Sample L099 had extremely 

low POR activity (<mean-2SD), samples L078 and L059 had low POR activity (between -2SD 

and -1SD), and sample L080 had normal POR activity (between -1SD and +1SD).  In these 

samples, most P450 enzyme activities correlated with POR activity.   

The variation in POR activity among the samples with the same L577/ P577 genotype 

lead us to hypothesize that the interindividual variations of POR activity are not solely dependent 

on genotype but may partially be due to variations of POR gene expression either among or 

within individuals.  Among individuals in a group, total POR expression may vary considerably, 

as POR mRNA varied 26-fold in our four samples with the P577 mutation.  Additionally, 

imbalanced allelic variation of POR gene expression may exist between the L577 and P577 

alleles in the individuals.  Imbalanced allelic variation of gene expression is a common 

phenomenon existing in more than 50% of human genes (Yan et al., 2002; Lo et al., 2003).  The 

expression ratio of normal to mutant alleles may vary from person to person.  An individual who 

expresses higher levels of the normal allele will ultimately have a greater enzyme activity than 

one who expresses more of the mutant allele.  Therefore, quantification of POR gene expression 

from the normal L577 allele will provide more accurate correlation with the POR activity in 

comparison to quantification of total POR mRNA levels from both L577 and P577 alleles.  

Genetic polymorphisms in the promoter, 5‟-untranslated region, 3‟-untranslated region, and 

introns, all can affect gene expression at levels of transcription, splicing, translation, RNA 

stability or protein modification and contribute to imbalanced allelic gene expression.  A 
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comprehensive analysis of genetic polymorphisms in the entire POR gene is needed to further 

understand influence of genetic polymorphisms on gene expression and functions of POR. 

An intronic polymorphism, rs41301427, was found to be associated with a decrease in 

POR activity (minor allele frequency 9.5%).  The mechanisms for the decrease of POR activity 

are unclear, although it is possible to speculate that it may interfere with pre-mRNA splicing or 

affect mRNA stability.  However, the degree to which it associates with decreasing POR activity 

(coefficient estimate = -32.409 and p=0.030) is much less significant than the L577P (coefficient 

estimate = -101.152 and p=0.003).  Such a small change may help to explain why rs41301427 

did not influence P450 activities. 

Overall, our data demonstrate several findings that may be important for the study of 

drug metabolism.  First, cytochrome P450 activities are significantly correlated to POR activity, 

suggesting that POR can be a rate-limiting step in P450-mediated catalysis.  Second, we have 

predicted the impact of novel nonsynonymous polymorphisms identified in the study population 

on protein structure and 3D configuration.  Finally, we have identified and characterized several 

known and novel polymorphisms, including L577P, which decreases POR activity and 

subsequent P450-catalyzed drug metabolism, but is not associated with the POR deficiency 

disease.  Such discoveries highlight the importance of POR on drug metabolism and warrant 

further investigation. 
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CHAPTER 3.  A  NEW CELL MODEL FOR STUDYING DRUG METABOLISM AND 

LIVER TOXICITY 

 

 

Chapter 3.1.  Reprinted with permission from the American Society for the Pharmacology and 

Experimental Therapeutics  
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3.1. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 

cells to primary human hepatocytes and human liver tissues  

 

3.1.1. Abstract 

 HepaRG cells, derived from a female hepatocarcinoma patient, are capable of 

differentiating into biliary epithelial cells and hepatocytes.  Importantly, differentiated HepaRG 

cells are able to maintain activities of many xenobiotic metabolizing enzymes and expression of 

the metabolizing enzyme genes can be induced by xenobiotics.  The ability of these cells to 

express and be able to induce xenobiotic-metabolizing enzymes is in stark contrast to the 

frequently used HepG2 cells.  The previous studies have mainly focused on a set of selected 

genes; therefore, it is of significant interest to know the extent of similarity of gene expression at 

whole genome levels in HepaRG cells and HepG2 cells compared to primary human hepatocytes 

and human liver tissues.  To accomplish this objective, we used Affymetrix U133 Plus 2.0 arrays 

to characterize the whole genome gene expression profiles in triplicate biological samples from 

HepG2 cells, and HepaRG cells (undifferentiated and differentiated cells), freshly isolated 

primary human hepatocytes, and frozen liver tissues.  After using similarity matrix, principal 

components, and hierarchical clustering methods, we found that HepaRG cells globally 

transcribe genes at the levels more similar to human primary hepatocytes and human liver than 

HepG2 cells.  Particularly, many genes encoding drug processing proteins are transcribed at a 

more similar level in HepaRG cells than in HepG2 cells compared to primary human hepatocytes 

and liver samples.  The transcriptomic similarity of HepaRG with primary human hepatocytes is 

encouraging for use of HepaRG cells in the study of drug metabolism, hepatotoxicology, and 

hepatocyte differentiation. 
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3.1.2. Introduction 

 Drug-induced liver injury is one of the leading causes for the failure of drug approval and 

the withdrawal of approved drugs from the market (Lasser et al., 2002).  Animal models are 

frequently used to identify potentially hazardous drugs for liver injury.  However, more than 

50% of drugs which induce liver injury in human clinical trials are not hepatotoxic to animals 

(Olson et al., 2000).  Therefore, human liver cells are needed for more accurate in vitro screening 

of drug toxicity.   

 Freshly isolated primary human hepatocytes are currently the “gold standard” as in vitro 

human liver cells for understanding the pathways and mechanisms influencing drug metabolism 

and disposition as well as hepatotoxicity (LeCluyse et al., 2000; Luo et al., 2004; Kato et al., 

2005).  These cells, however, are fraught with difficulties, including their scarce and 

unpredictable availability, limited growth potential, differences in batch to batch preparation, 

short life-span, and propensity to undergo early and variable phenotypic alterations.  CYP 

expression decreases quickly over time, likely due to the adaptation of cells to the culture 

environment (LeCluyse, 2001; Rodriguez-Antona et al., 2002).  Additionally, basal gene 

expression in freshly isolated primary human hepatocytes is also distinctively different from one 

culture to another, which can introduce additional bias (Richert et al., 2006).  

 To overcome these difficulties, researchers have been searching for human liver cell lines 

for a long time.  Currently used human liver cell lines are generally derived from hepatic tumors.  

Unfortunately, most of them have altered gene expression profiles that lack most liver-specific 

functions.  In particular, P450 gene expression and enzyme activities are usually very low or 

undetectable in these human liver cells.  For example, HepG2 cells,  the most frequently used 

human liver cell line, express many CYP genes at very low levels (Sassa et al., 1987).  Although 
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some CYP genes, such as CYP1A1 and CYP3A7, are expressed in HepG2 cells (Ogino et al., 

2002), these P450 members are fetal-specific and not expressed in most adult livers.  These facts 

suggest that many changes in gene expression have happened in HepG2 cells after they were 

derived from the liver tissue of a differentiated hepatocellular carcinoma, or that they represent 

more of a developmental phenotype.  

 Recently, a new human liver cell line, HepaRG, is available.  Although this cell line is 

also derived from a female hepatocarcinoma patient, unlike other human liver cell lines, HepaRG 

cells express many drug processing genes at similar levels compared to primary human 

hepatocytes under a certain
 
culture condition (Aninat et al., 2006).  These drug processing genes 

encode phase I drug metabolizing enzymes (CYP1A2, 2B6, 2C9, 2E1, and 3A4), phase II 

enzymes (UDP glucuronosyltransferase 1 family, polypeptide A1, UGT1A1; glutathione S-

transferase alpha 1,
 
GSTA1; GSTA4, and GSTM1), gene regulatory proteins (aryl-hydrocarbon 

receptor, AHR; pregnane x receptor, PXR; constitutive androstane receptor, CAR), liver-specific 

proteins (albumin,
 
haptoglobin, and aldolase B), as well as alpha-fetoprotein, glutathione-related

 

enzymes ( -glutamylcysteine synthase regulatory subunit, -glutamylcysteine
 
synthase catalytic 

subunit, glutathione synthase, and glutathione
 
reductase), and thioredoxin.  The activities of 

several phase I and phase II drug metabolizing enzymes were also comparable between HepaRG 

and freshly isolated human hepatocytes (Aninat et al., 2006).  HepaRG cells also respond to 

PXR,
 
CAR, and AhR activators, resulting in induction of CYP1A1, CYP1A2,

 
CYP2B6, 

CYP2C8, CYP2C9, CYP2C19, and CYP3A4 in vitro (Kanebratt and Andersson, 2008b; 

Lambert et al., 2009a; Lambert et al., 2009b; Lambert et al., 2009c).  

 HepaRG cells can maintain a proliferative status in an undifferentiated culture media for 

several weeks at sub-confluency.  At confluence, and with the addition of a differentiation-
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inducing culture medium, HepaRG cells are capable of differentiating into biliary epithelial cells 

and hepatocytes (Gripon et al., 2002).  The genes encoding liver-specific factors, drug-

metabolizing enzymes,
 
transporters, and transcription factors are stably expressed over a multi-

week
 
culture period.  Given the stable expression of these liver enriched factors over a long time 

in culture
 
and the activity of several drug-metabolizing enzymes,  HepaRG cells have been 

touted as surrogates to primary human hepatocytes
 
for drug metabolism and disposition studies 

(Guillouzo et al., 2007; Hewitt et al., 2007).
  
 

 The ability of the HepaRG cells to express and competently respond to drug-metabolizing 

gene inducing agents is in stark contrast to the frequently used human liver cell line, HepG2.  

Although HepaRG cells and HepG2 cells have been compared to human primary hepatocytes 

and liver tissues for their gene expression and enzyme activities of drug metabolism, the studies 

were done in a limited set of genes.  Therefore, it is of significant interest to know the extent of 

similarity of gene expression at whole genome levels of HepaRG cells and HepG2 cells 

compared to primary human hepatocytes and human liver tissues.   
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3.1.3. Materials and Methods 

3.1.3.1. Human liver tissues, primary human hepatocytes, and cultured cells 

Human liver tissues.  Three different human liver tissue samples were provided by 

XenoTech, LLC (Lenexa, Kansas).  These subjects were Caucasian females at ages of 42, 56, 

and 60, respectively.  The female samples were chosen because HepaRG cell line was derived 

from a female patient.  The samples were acquired by XenoTech through the Midwest 

Transplant Network (Westwood, Kansas).  The livers were cooled immediately after 

procurement with a cold perfusion solution and frozen within 6 h. 

Primary human hepatocytes.  Three different primary human hepatocyte samples were 

provided by Biopredic International (Rennes, France).  The primary human hepatocytes were 

isolated from livers donated by three Caucasian female patients undergoing resection for primary 

or secondary tumors at ages of 54, 65, and 76, respectively.  The hepatocytes were isolated by 

collagenase perfusion of histologically normal liver fragments and seeded overnight hepatocyte 

monolayers in seeding medium.  After two days culture in short term culture medium, total RNA 

was isolated from hepatocytes monolayer with Trizol.  All liver fragments were not infected by 

hepatitis B, hepatitis C, and HIV1 viruses.   

HepaRG cells.  HepaRG cells were obtained from Biopredic International (Rennes, 

France).  The cells in the original culture dish were detached by gentle trypsinization and seeded
 

at 1 × 10
5
 undifferentiated cells/cm

2
 (high density) in hepatocyte wash medium (Invitrogen 

Corporation, Carlsbad, CA) supplemented with additives for growth media (Biopredic 

International, Rennes, France).  The cells were incubated at 37°C and 5% CO2.  The medium was 

renewed
 
every 3 days.  After incubation for 14 days, the undifferentiated HepaRG cells were 
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induced to differentiate with additives for differentiation media (Biopredic International, Rennes, 

France) for another 14 days.  That medium was also renewed
 
every 3 days.     

HepG2 cells.  HepG2 cells were obtained from the ATCC Cell Biology Collection 

(Manassas, Virginia).  The cells were seeded at 1 × 10
5
 cells/cm

2
 in 75 cm

2
 flask with a 

minimum essential medium supplemented with 10% FBS (Sigma, St.  Louis, Missouri) and 5% 

of penicillin/streptomycin (Sigma, St.  Louis, Missouri).  The cells were incubated at 37°C and 

5% CO2.  The cells were used at the time of 90-100% confluence. 

 

3.1.3.2. Total RNA isolation 

Total RNAs of the liver tissues, primary human hepatocytes, undifferentiated and 

differentiated HepaRG cells, and HepG2 cells were isolated by using Invitrogen TRIZOL 

reagent (Invitrogen, Carlsbad, California) following the manufacturer‟s instructions.  RNA 

quality, quantity, and integrity were analyzed by utilizing the Agilent Bioanalyzer 2100 (Agilent 

Technologies, Amstelveen, The Netherlands). 

 

3.1.3.3. Whole genome gene expression 

The whole genome gene expression profiles of the adult liver tissues, primary human 

hepatocytes, differentiated and undifferentiated HepaRG cells, and HepG2 cells were determined 

by the Microarray Core Facility at the University of Kansas Medical Center using Affymetrix 

U133 Plus 2.0 arrays (Affymetrix, Santa Clara, California) in triplicate biological replicates of 

each sample type.  The target preparation, library labeling, hybridization, post wash, and signal 

scanning were performed based on the Affymetrix manufacturer‟s instructions.   



95 

 
 

3.1.3.4. Microarray data analysis.   

The raw microarray data in CEL files are available in the Gene Expression Omnibus with 

accession number GSE18269 at http://www.ncbi.nlm.nih.gov/geo/.  The microarray data were 

normalized using GC-RMA (GeneChip Robust Multichip Average) algorithm (Wu et al., 2004) 

implemented in the R package affylmGUI (Wettenhall et al., 2006) when any two or more data 

sets are compared.  “Present”, “Marginal” and “Absent” calls were made in R using the MAS5 

algorithm in the affy package (Irizarry et al., 2003).  A linear model was used to average data 

among three replicate arrays and also look for variability among them.  A probe was removed if 

it did not correspond to a mapped gene or not register at least 2 “Present” calls in triplicate data 

sets by the MAS5 algorithm for all five groups.  The remaining probes, hereafter defined as 

quality filtered probes, were used for further analysis.  The similarity of whole genome gene 

expression profiles of HepaRG cells and HepG2 cells compared to human liver tissue and 

primary human hepatocytes was analyzed by similarity matrix, principal components, and 

hierarchical clustering.  The similarity matrix between any two sets of the data was presented by 

the Pearson product-moment correlation coefficient (r) value which measured the strength of the 

linear relationship between two sets of variables.  Principal component analysis was applied to 

identify similarity and differences of the whole genome gene expression profiles among the 

different samples.  In addition to the whole genome gene expression profiles, some liver specific 

functional pathways, particularly the drug processing pathways were also compared among the 

different samples.   
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3.1.3.5. Pathway analysis 

To define significant pathway differences during differentiation of HepaRG cells, we 

used the Functional Annotation Clustering Tool in DAVID (Glynn et al., 2003).  Gene lists were 

made of Affymetrix IDs where the average replicate difference was greater or less than a log2 

value of 1.  Each gene list was uploaded using Affymetrix IDs and run against a background 

containing only the quality filtered probe sets.  The Group Enrichment Score, which represents 

the geometric mean (in log2 scale) of member's p-values in a corresponding annotation cluster, 

was used to rank biological significance.  Thus, the top ranked annotation groups most likely 

have consistent lower p-values for their annotation members.  For a pathway or process to be 

defined, the Enrichment Score was set at 2.   
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3.1.4. Results 

Whole genome gene expression profiles of HepG2 cells, undifferentiated and 

differentiated HepaRG cells, primary human hepatocytes, and human liver tissues were 

generated by using Affymetrix U133 Plus 2.0 arrays in triplicate samples.  A total of 54,675 

probe sets existed on each array.  After the probes which did not correspond to a mapped gene or 

not register at least 2 “Present” calls in the triplicate data sets for all five groups were removed, 

the remaining quality filtered 30,849 probe sets were selected for similarity and difference 

analysis by similarity matrix, principal components, and hierarchical clustering methods.  

Hybridization signal intensities in log2 scale on the 30,849 probe sets among the tested samples 

were presented in Supplemental Table 3.S1 (Hart et al., 2010). 

 

3.1.4.1. Similarity Matrix Analysis.  

A similarity matrix was constructed for each pairwise comparison of any two sets of the 

data (Figure 3.1A).  The Pearson product-moment correlation coefficient (r) was used to 

represent the strength of the linear relationship between any two sets of variables.  The relative 

higher r values (0.949-0.996) were found between any two replicates in each type of the five 

groups with a range between 0.991-0.995 in HepG2 cells, 0.995-0.996 in undifferentiated 

HepaRG cells, 0.989-0.995 in differentiated HepaRG cells, 0.979-0.984 in primary human 

hepatocytes, and 0.949-0.971 in human livers.  The relative lower r values (0.768-0.937) were 

observed between any two sets of the data from the different types of samples.  The r values in 

each group were then averaged to represent similarity of whole genome gene expression between 

any two groups of the samples (Figure 3.1B).  The highest r value (0.966) was found between 
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undifferentiated and differentiated HepaRG cells.  The second highest r value (0.920) existed 

between primary human hepatocytes and human livers.  The r value between human primary 

hepatocytes and undifferentiated HepaRG (0.887) or between human primary hepatocytes and 

differentiated HepaRG (0.891) was higher than the r value between human primary hepatocytes 

and HepG2 (0.813).  Similarly, the r value between human livers and undifferentiated HepaRG 

(0.883) or between human livers and differentiated HepaRG (0.881) was higher than the r value 

between human livers and HepG2 (0.791).  
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Figure 3.1.  A.  Similarity matrix of gene expression profiles for each pairwise comparison of 

HepG2 cells (HepG2-1, -2, -3), undifferentiated HepaRG cells (Undif HepaRG-1, -2, -3), 

differentiated HepaRG cells (Diff HepaRG-1, -2, -3), primary human hepatocytes (PHH-1, -2, -

3), and human liver tissues (Liver-1, -2, -3).  The number in each column represents Pearson‟s 

product-moment correlation coefficient r value.  B.  Average correlation coefficient r values for 

each type of the biological replicates within each group as well as between two groups.  Data 

based on 30,849 probe sets passing a quality filtering test.  The background colors in each 

column indicate different levels of the r values. 
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We further examined the number of probes with signal intensities different by more than 

2 fold between any two sets of the data.  Figure 3.2 shows that about 10% of the total quality 

filtered 30,849 probe sets expressed differently between undifferentiated and differentiated 

HepaRG cells.  The number of probes increased to approximate 22% between human liver 

tissues and primary human hepatocytes.  The differentially expressed probes were 26-28% 

between HepaRG cells and human liver tissues or primary human hepatocytes.  However, up to 

about 37-39% of the probes were differently expressed between HepG2 cells and human liver 

tissues or primary human hepatocytes or HepaRG cells. 
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Figure 3.2.  Numbers and percentages of probe sets with differential gene expression by more 

than two fold between any two groups of the samples.  The comparison was based on average 

signal intensities on each set of the probes from three replicates in each group of the samples.  

PHH: primary human hepatocytes. 
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 We further characterized the 10% of probes with expression levels different by more than 

2 fold between undifferentiated and differentiated HepaRG cells.  The probes were listed in 

Supplemental Table 3.S2.  A total of 1321 probes had 2-fold higher signal intensities in 

differentiated HepaRG cells than in undifferentiated HepaRG cells.  Pathways analysis indicated 

that the up-regulated genes included xenobiotic and steroid metabolism, cell cycle genes, DNA 

replication and repair, and nuclear and ER proteins.  Another 1831 probes had 2-fold lower 

signal intensities in differentiated HepaRG cells than in undifferentiated HepaRG cells.  The 

down-regulated genes during HepaRG differentiation were involved in developmental processes, 

extracellular signaling, actin binding, and amino acid metabolism. 

 

3.1.4.2. Principal Components Analysis 

The similarity and differences in whole genome gene expression among HepG2 cells, 

undifferentiated and differentiated HepaRG cells, primary human hepatocytes, and human liver 

tissues were further highlighted by Principal Components Analysis (PCA).  The intensities of the 

quality filtered 30,849 probe sets were first log2 transformed.  Three replicate sets of the data 

were averaged and then used in the PCA analysis.  The first three principal components (PC1, 

PC2, and PC3), which account for most of the variability, were plotted in three dimensions in 

Figure 3.3.  HepG2, undifferentiated and differentiated HepaRG, primary human hepatocytes, 

and human livers contributed nearly equal to the variations in PC1 (93.0%).  HepG2 made a 

major contribution to the variations in PC2 (3.3%).  Undifferentiated and differentiated HepaRG 

cells contributed the majority of the variations in PC3 which only counted 2.1% of total 

components.   
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Figure 3.3.  Principal components analysis on variations of gene transcription among HepG2 

cells (HepG2), undifferentiated HepaRG cells (Undif HepaRG), differentiated HepaRG cells 

(Diff HepaRG), primary human hepatocytes (PHH), and liver tissues (Liver).  For the 30,849 

probes passing quality filtering, the relative contribution of the variance is shown by the first 

three principal components plotted in three dimensions.   
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3.1.4.3. Hierarchical Clustering Analysis 

Hierarchical clustering of gene expression data is a more intuitive way to analyze the 

many different possible combinations of differentially expressed genes.  Figure 3.4A shows a 

two way clustering diagram of five groups of the triplicate samples based on the intensities of the 

quality filtered 30,849 probe sets on the arrays.  The data showed again that the relationship 

within each group was closer than the relationship between different groups.  Within each group, 

undifferentiated HepaRG cells had the least variation, whereas liver had the biggest variations.  

Between different groups, differentiated and undifferentiated HepaRG cells are more closely 

related to primary human hepatocytes than human liver tissues.  HepG2 cells have the farther 

clustering distances to all other groups.   

We further selected 115 genes annotated as being involved in xenobiotic metabolism, 

including the genes encoding phase I and phase II metabolizing enzymes and membrane 

transporters (a gene list and average signal intensities in log2 scale from the three replicate sets 

are provided in Supplemental Table 3.S3).  The average signal intensities on the probes 

annotated to the selected genes were clustered in Figure 3.4B shown in the groups of Phase I 

enzymes (ADHs, ALDHs, CYPs, and FMOs), Phase II enzymes (GSTs, NATs, SULTs, and 

UGTs), and transporters (ABCBs, ABCCs, ABCGs, and SLCOs).  A similar clustering pattern as 

in the whole genome analysis was observed in the phase I and phase II metabolizing enzymes, 

indicated that HepG2 cells are the most dissimilar to the rest of the groups.  A comparison of the 

expression values of these drug response genes among HepG2 cells, differentiated HepaRG cells, 

and primary human hepatocytes is also shown in Supplemental Figure S1 with means and 

standard deviations (Hart et al., 2010).  Differences of the expression levels between HepG2 

cells and primary human hepatocytes as well as between differentiated HepaRG cells and 
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primary human hepatocytes were determined by a student t test.  Overall, differences in gene 

expression from drug processing genes between HepG2 and primary human hepatocytes is much 

bigger than between HepaRG and primary human hepatocytes.  For examples, all drug 

metabolizing cytochrome P450 genes are expressed at a significantly different level of 

***p<0.001, except CYP3A43 at **p<0.01, in HepG2 than in primary human hepatocytes 

(Figure S1-A) (Hart et al., 2010), but only CYP2D6 is expressed at a significantly different level 

of ***p<0.001 in HepaRG than in primary human hepatocytes and CYP1A2, CYP2A6, and 

CYP2C8 are at a significantly different level of **p<0.01.  A similar situation is also found for 

many other drug response genes, such as ADH1A, ADH1B, ADH1C, ADH4, ALDH1L1, 

ALDH1L2, ALDH9A1, NAT1, NAT2, GSTA1, GSTA3, GSTK1, SULT1A1, SULT1A2, 

SULT2A1, UGT1A1, UGT1A6, UGT2B4, UGT2B15, UGT2B17, UGT3A1, ABCB1, ABCB4, 

ABCC10, and SLCO2B1. 
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Figure 3.4.  A.  Hierarchical clustering analysis of gene expression for HepG2 cells (HepG2-1, -

2, -3), undifferentiated HepaRG cells (Undif HepaRG-1, -2, -3), differentiated HepaRG cells 

(Diff HepaRG-1, -2, -3), primary human hepatocytes (PHH-1, -2, -3), and human liver tissues 

(Liver-1, -2, -3).  The clustering is based on the 30,849 probes passing quality filtering.  B.  

Hierarchical clustering analysis of expression of phase I drug metabolizing enzyme genes 

(ADHs, ALDHs, CYPs, and FMOs), phase II drug metabolizing enzyme genes (GSTs, NATs, 

SILTs, and UGTs), and membrane transporter genes (ABCBs, ABCCs, ABCGs, and SLCOs).  

The clustering is based on average signal intensities from the three replicates in each group of the 

samples.  
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HepaRG cells were derived from a human hepatocarcinoma liver tissue.  Abnormality of 

the karyotype in HepaRG cells has been identified with a trisomic chromosome 7 and a 

translocated chromosome from 22 to 12 (Gripon et al., 2002).  Here, we examined whether the 

karyotype abnormality has any influence on gene expression.  Gene expression profiles across 

each chromosome were compared between differentiated HepaRG cells and primary human 

hepatocytes.  Among all chromosomes, only chromosome 7 had a significant higher gene 

expression level (p<0.001 in a t-test) in differentiated HepaRG cells compared to primary human 

hepatocytes (Figure 3.5A).  The rest of the chromosomes, including the translocated 

chromosome 22 (Figure 3.5B, p=0.084 in a t-test), did not show significant difference of gene 

expression between differentiated HepaRG cells and primary human hepatocytes.   
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Figure 3.5.  Comparison of gene expression profiles across chromosome 7 (A) and 22 (B) 

between primary human hepatocytes (PHH) and differentiated HepaRG cells (Diff HepaRG).  In 

the first two panels, the Y axis represents the signal intensity levels in log2 scale and the × axis 

indicates the genomic positions along the chromosomes where the microarray probes are located, 

for PHH and Diff HepaRG, respectively.  The third panel was constructed by subtracting PHH 

values from Diff HepaRG signal values for each probe on the chromosome and then clustered as 

in the first two panels.  For example, if the expression of a given probe was 5 in PHH and 3 in 

Diff HepaRG, then that value would be 5-3=2.  Negative values indicate probes with lower 

expression in PHH than Diff HepaRG.  Blue areas represent few data points, whereas red areas 

indicate more data points.  In the forth panel, signal intensity levels from all probes on each 

chromosome are compared between Diff HepaRG and PHH with means and standard deviations.  

The differences are tested by a t-test.  ***p<0.001 indicates that a significant difference is 

identified between the two sets of samples. 



110 

 
 

 

3.1.5. Discussion 

The current study used Affymetrix gene expression arrays to establish genome-wide gene 

expression profiles of HepaRG cells at both undifferentiated and differentiated stages and 

compared the genome-wide gene expression profiles of HepaRG cells and HepG2 cells with 

human primary hepatocytes and human liver tissues using similarity matrix, principal 

components, and hierarchical clustering methods.  The comparison was also done for many drug 

processing genes.  These analyses conclude that the mRNA content in HepaRG cells more 

accurately reflects primary human hepatocytes and human liver tissues than HepG2 cells. 

The similarity matrix analysis shows the relative high r values (0.949-0.996) between any two 

replicates within a same type of the samples.  These high r values indicate that the gene 

expression profiles generated by the Affymetrix gene expression arrays are highly reproducible.  

It is not surprising that the r values between the replicate samples in the cultured HepG2 and 

HepaRG cells were higher than in primary human hepatocytes and human liver samples, because 

the cultured cells consisted of a highly homogenous cell population with little environment-

mediated perturbations, but primary human hepatocytes and human liver samples came from 

different individuals in which their gene expression could be influenced by many factors which 

cannot be controlled in the experiment.  Particularly, the r values within the liver tissue samples 

(0.949-0.971) are relatively lower than the r values within other groups, indicating that a certain 

degree of variations exists among the individual liver samples, which may be caused by 

interindividual variations or mRNA quality of the liver tissues. 

When similarity is compared between different groups of samples, differentiated 

HepaRG and undifferentiated HepaRG cells are still highly similar (r = 0.966 in Figure 3.1B) 
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with only a small proportion of the probes (~10% in Figure 3.2) expressed differentially by more 

than 2 fold.  A list of differentially expressed genes and pathways can be found in Supplemental 

Table 3.S2 (Hart et al., 2010).  Drug processing genes are the most significantly up-regulated 

genes during HepaRG differentiation, including many phase I enzymes (such as CYP2C9, 

CYP2C19, CYP2E1, and CYP3A4) and phase II enzymes (for example, UDP-

glucosyltransferases and glycosyltransferase).  Although both undifferentiated and differentiated 

HepaRG cells are very similar to primary human hepatocytes at whole genome gene expression, 

differentiated HepaRG cells express xenobiotic processing genes more similar to primary human 

hepatocytes than undifferentiated HepaRG cells. 

Similarity is also high between primary human hepatocytes and liver tissues (r=0.920 in 

Figure 3.1B), but with about 20% of probes expressed differentially (Figure 3.2).  Although 

hepatocytes are the major types of cells in liver, making up to 70-80% of the mass of the liver, 

liver also consists of several other types of cells, such as cholangiocytes, endothelial cells, 

hepatic stellate cells, and kupffer cells, which have different gene expression profiles than 

hepatocytes.  Other factors which can influence the measurement of gene expression in human 

livers are the procedures for harvest, treatment, and storage of liver tissue samples.  Therefore, 

freshly isolated primary human hepatocytes should be considered as the key reference for 

comparison of gene expression between the in vitro cultured liver cells and the in vivo liver cells. 

The similarity levels represented by the Pearson product-moment correlation coefficient 

(r) value and number of the non-differentially expressed probes were higher between HepaRG 

cells and primary human hepatocytes or liver tissues than between HepG2 cells and primary 

human hepatocytes or liver tissues, whereas the differences were lower between HepaRG cells 

and primary human hepatocytes or liver tissues than between HepG2 cells and primary human 



112 

 
 

hepatocytes or liver tissues.  These data indicated that HepaRG cells expressed genes at a 

genome-wide level were more similar to primary human hepatocytes and human livers than 

HepG2 cells.  

The above conclusion is also supported by principal component analysis, which confirms 

that the variations in gene expression at a whole genome level are contributed mainly from 

HepG2 cells compared to HepaRG cells, primary human hepatocytes, and liver tissues. 

Hierarchical clustering analysis also shows that the association of gene expression at genome 

levels is closer in each type of the groups than between different types of the groups (Figure 

3.4A).  Within each type of the groups (differentiated/undifferentiated HepaRG, primary 

hepatocytes, etc), undifferentiated HepaRG cells have the closest association, whereas liver 

tissue samples have the least association.  Between different groups, undifferentiated HepaRG 

and differentiated HepaRG cells are close each other, and primary human hepatocytes and liver 

tissues are close each other.  Then, HepaRG cells are closer to primary human hepatocytes and 

liver tissues than HepG2 cells.  When a set of genes involved in drug processing, including many 

phase I enzymes, phase II enzymes, and transporters were selected for a clustering analysis 

(Figure 3.4B), the gene expression profiles are also more similar between HepaRG cells and 

human primary hepatocytes or liver tissues than between HepG2 cells and human primary 

hepatocytes or liver tissues.  These findings are in agreement with several previous studies 

(Aninat et al., 2006; Le Vee et al., 2006; Richert et al., 2006; Kanebratt and Andersson, 2008a; 

Kanebratt and Andersson, 2008b).  When the differences in expression levels among HepG2, 

HepaRG, and primary human hepatocytes were compared in the major drug processing gene 

families, such as CYPs, ADHs, ALDHs, FMOs, NATs, GSTs, SULTs, UGTs, ABCBs, ABCCs, 
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ABCGs, and SLCOs, the differences between HepG2 and primary human hepatocytes are much 

larger than the differences between HepaRG and primary human hepatocytes for most genes. 

In conclusion, we used a high-throughput genome-wide approach to define gene 

transcriptional profiles of HepaRG cells at both differentiated and undifferentiated stages and 

compared the gene expression profiles of HepaRG cells and HepG2 cells with human primary 

hepatocytes and liver tissues.  We found gene transcription levels in HepaRG cells have a much 

higher level of similarity to human primary hepatocytes and liver tissues in comparison to 

HepG2 cells; the most commonly used cultured cells for studying liver biology.  The 

transcriptomic similarity of HepaRG with human primary hepatocytes is encouraging for use of 

the HepaRG cells in the study of drug metabolism, hepatotoxicology, and hepatocyte 

differentiation in the future.  These sets of data can also serve as a database for researchers who 

want to compare expression levels of any genes in HepaRG cells, HepG2 cells, primary human 

hepatocytes, and human liver tissues.  

The current study highlights the similarity of gene transcription between HepaRG cells 

and human primary hepatocytes or liver tissues in comparison with HepG2 cells.  The high 

similarity at mRNA levels between HepaRG cells and human primary hepatocytes or liver 

tissues does not necessarily mean that the similarity occurs also at protein levels.  Studies of 

genome-wide protein levels require high-throughput protein arrays which are not available yet. 

It is also worth noting that because a trisomic chromosome 7 exists in HepaRG cells, genes 

located on chromosome 7 may have higher expression levels in HepaRG cells than in primary 

human hepatocytes due to the extra copy of chromosome 7.  This factor should be taken into 

consideration when an experimental design in the use of HepaRG cells involves genes located on 

chromosome 7. 
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CHAPTER 4.  A NEW TOOL FOR PHARMACOGENOMICS. 
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4.1. SNP analysis from mRNA-Seq Data: a framework for implementing mRNA-Seq in 

Pharmacogenomics 

4.1.1. Abstract  

mRNA-Seq is an attractive tool for use in pharmacogenomics.  In a single experiment, 

one can theoretically quantify gene expression, identify and quantitate transcript variants on a 

genome-wide scale, and discover genetic variation that may underpin a phenotypic response.  

This represents an advantage over other assays such as whole genome or whole exome 

sequencing because with those approaches one could only discover genetic variation.  However, 

given the complexity of the data and the relative novelty of the technology, it is important to first 

assess the efficacy of RNA-Seq for pharmacogenomics.  In this study, we assessed the technical 

performance of current SNP-calling methods compared to genome-wide Affymetrix SNP arrays 

to yield measures of accuracy and performance.  We found a high rate of false positives (FDR = 

35%) were called when no filtering was applied to the sequencing dataset.  The false discovery 

rate was only marginally improved (FDR = 26%) by a low-stringency filter that required at least 

3-fold coverage and a minimum SNP quality of 25.  We then used these data, combined with the 

SNP array data, to train a logistic regression model to reduce the number of false positives, 

which greatly decreased the false discovery rate (FDR = 5%).  The reduction in the FDR 

concomitantly decreased the sensitivity to 26%, but increased the specificity to 99%.  No effect 

of RNA-Seq mapping alignment programs was observed if similar filtering conditions were 

applied to each.  Once SNP-calling parameters were optimized, we called 5,012 SNPs in the 

RNA from HepaRG cells and annotated those SNPs as either being known or predicted to have a 

significant effect on particular drugs.  321 SNPs are predicted to alter protein structure/function, 

and 24 SNPs have known associations with drug-response phenotypes.  In summary, we have 
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generated an accurate model (70%) for genotyping SNPs from mRNA-Seq data, and have laid 

the foundation for using mRNA-Seq in pharmacogenomics. 

 

4.1.2. Introduction 

There are two traditional ways to perform pharmacogenetic research, namely forward and 

reverse genetics.  In forward genetics, one starts with a phenotype of interest and moves toward 

finding the gene and mutations contributing to the phenotype, whereas reverse genetics starts 

with a particular gene and assays the effect of its disruption.  In terms of human studies, reverse 

genetics is useful for in vitro assays, but forward genetic screens are appropriate for in vivo 

studies.  The problem with the forward screen is that one must a priori identify a candidate gene 

that is suspected to be involved in the absorption, distribution, metabolism, or excretion of a 

drug.  Then, primers surrounding the exons of that gene are designed to amplify those regions by 

PCR from hundreds of genomic DNAs, and the amplicons are sequenced using the Sanger 

method.  Ideally, one would hope to discover enough genetic variation in that gene of interest 

and try to link individuals with different genotypes with some phenotypic measurement of drug 

response.  Using this approach, if the genetic variation lies outside the regions of the candidate 

gene that were selected to be sequenced (and is not in linkage disequilibrium with the causative 

gene/SNP), no association can be established.  Alternatively, no association can be established if 

the effect is cumulative with other genes because they were not sequenced in the original assay.  

One would have no way of knowing this and may come to an incorrect conclusion that variations 

in that gene are not responsible for the observed phenotype.    

Advances in technology have literally revolutionized the field in just a few years, which 

is rapidly making this approach obsolete.  Now the community is moving toward a more 
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comprehensive approach: next-generation sequencing.  Many chemical, methodological, and 

throughput differences set next-generation apart from Sanger sequencing.  One can now 

sequence more genes, faster, and cheaper than ever before on an unprecedented scale.  Rather 

than sequencing one template, next-generation sequencing instrument sequence millions of 

templates simultaneously.  With new technology, however comes new problems and one has to 

understand the technology before one can understand the problems.  With understanding of the 

principles of the experiment, one can optimize the performance to generate volumes of highly 

accurate data.  Failure to acknowledge the principles can and will lead to spurious, non-

reproducible conclusions.  

 Currently, it is still not feasible to sequence human genomes on a large scale for 

pharmacogenomics analysis (currently the reagent cost alone per sample hovers around 

$10,000), although this obstacle will inevitably be overcome.  Certain derivatives of whole 

genome sequencing, such as RNA-Seq (Wang et al., 2009), offer effective alternatives to whole 

genome sequencing and provide additional information that whole genomes cannot.  In a single 

experiment, one can quantify gene expression with digital resolution and genotype all expressed 

coding exons on a massive scale.  RNA-Seq is highly accurate for quantifying expression levels 

(Mortazavi et al., 2008; Nagalakshmi et al., 2008), and is highly reproducible for both technical 

and biological replicates (Cloonan et al., 2008; Nagalakshmi et al., 2008), with greater sensitivity 

than microarrays (Wang et al., 2009).  RNA-Seq has also been proposed as an effective tool to 

discover genetic polymorphisms in coding regions (Morin et al., 2008; Chepelev et al., 2009).  

However, several challenges exist in data analysis.     

In RNA-Seq experiments, one of the first and most critical steps is alignment.  Millions 

of sequence fragments must be mapped to the genome, that is to say that each fragment of DNA 



118 

 
 

sequenced (a.k.a. reads) must be assigned to chromosomal coordinates in order to “know” where 

that piece of DNA actually belongs.  The problem however, is that in order to align these 

sequenced fragments, they must uniquely match the reference genome or transcriptome 

(generally with less than 2 mismatches).  This is by no means a simple task, and is a very 

interesting and rapidly advancing field of research (Pepke et al., 2009; Trapnell and Salzberg, 

2009; Bryant et al., 2010; Wang et al., 2010).  Infomatically, there are many difficulties.  First, if 

aligning to a reference transcriptome, such as with the ERANGE package (Mortazavi et al., 

2008), one will not be able to identify novel exons or transcripts, including any underlying 

sequence information that may be contributing to those isoforms.  Secondly, when mapping 

directly to a genome, a read can sometimes map to more than one chromosomal coordinate, 

making it difficult to distinguish which particular genomic location it arises from.  Thirdly, if 

reads are mapped directly to the genome, the majority of reads spanning splicing junctions will 

not be mapped unless that particular program explicitly allows for split-read mapping.  Two of 

such read aligners, TopHat (Trapnell et al., 2009) and SOAPals [unpublished] , are able to 

directly map reads to the genome allowing for split-reads.   Given the differences in the 

underlying algorithms of these programs, the question remains as to whether or not those 

differences can significantly affect the outcomes of downstream genotyping programs.  

To study the effectiveness of RNA-Seq for pharmacogenomics, we present the current study.  

Our goals are 1) to determine the effect of RNA-Seq mapping alignment programs on 

genotyping, 2) assess the technical performance of current SNP-calling methods, 3) improve this 

performance, and 4) to provide a starting point going from generating data to understanding the 

biological consequences. 
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The first step in a line of many to achieve these goals, was to select HepaRG cells as a model 

system for the current study.  The mRNA content of HepaRG has been shown to replicate that of 

primary human hepatocytes and liver tissue better than the commonly used HepG2 cell (Hart et 

al., 2010), and this is supported by activities of several phase I and phase II drug metabolizing 

enzymes (Aninat et al., 2006), and thus are ideal for drug metabolism studies.  Because genes 

encoding drug metabolizing enzymes are expressed in these cells, and those would be critical 

targets of genotyping by RNA-Seq, this model is well suited for our analyses.  Finally, we need 

to use a cell line with a stable karyotype to keep the genomic content essentially constant, we 

that way we can reproduce the genetic variations we observe as many times as necessary.  In 

other words, we are decreasing the amount of heterogeneity in our system to test the accuracy of 

our statistical and algorithmic assumptions rather than on introduced biological variation. 

 

4.1.3. Methods 

4.1.3.1. HepaRG Cell culture 

 HepaRG cells and culture medium were provided by Biopredic International.  The 

undifferentiated HepaRG cells were seeded at 0.2 million cells/well in 6-well plates, maintained 

in the growth medium for two weeks, and then cultured in the differentiation medium containing 

2% dimethyl sulfoxide (DMSO) for two more weeks to obtain differentiated HepaRG cells (Hart 

et al., 2010).  The differentiated HepaRG cells were incubated with serum-free growth medium 

for 48 h.  Total RNA from HepaRG cells was prepared using TRIzol reagent according to the 

manufacturer‟s protocol.   
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4.1.3.2. Illumina Sequencing & Mapping  

We generated 2 × 36 bp sequence reads using the Illumina platform following the 

manufacturer‟s recommended protocol (Genpathway, San Diego, CA).  The paired-end reads 

were mapped to the human genome (hg19) in-house using TopHat or SOAPals with the 

following parameters.  For TopHat,   we specified the maximum number of multi-hits to 1, the 

inner-mate pair distance to 40 and solexa1.3 quality metrics.  For SOAPals we set the maximum 

number of mismatches for a one-segment alignment to 2, and then post-filtered the reads to only 

contain one possible mapping location.  We then used the soap2sam.pl script to convert the 

SOAP format to the widely adopted SAM format specifications (Li et al., 2009) so comparisons 

could be made.  Paired-end RNA-Seq data from six HepaRG samples were used.  For each 

sample, the data were aligned and filtered as described above, and reads of the same sequence 

(i.e. likely PCR artifacts) were removed.  These data sets were used to compare the performance 

of different read aligners.  For the final analysis, the unique data from each sample were 

combined together into one SAM file and converted to BAM (the binary equivalent to SAM, to 

improve computational speed) for subsequent analyses.  A general scheme for the data analysis 

was shown in Figure 4.1.1. 
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Figure 4.1.1.  Experimental scheme for calling SNPs from RNA-Seq reads.  Six lanes of RNA-

Seq data were filtered to remove PCR duplicates and then merged into a single file (MERGE).  

Next, genotyping of the DNAs was performed and compared to results from Affymetrix 6.0 SNP 

arrays to calculate True or False (Sequencing matches array data or not) and Positive or Negative 

(SNP or wild type).  A logistic regression model was implemented to improve SNP calling 

performance before generating a final list of SNPs that could be further annotated by SIFT or 

PharmGKB. 
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4.1.3.3. Affymetrix SNP and CNV Analysis 

  As a control method for genotyping SNPs and copy number variations in HepaRG cells, 

we first determined the genotypes on the Affymetrix 6.0 SNP arrays.  SNPs and copy number 

variations were determined using the Affymetrix 6.0 SNP array (processed at Washington 

University [St.  Louis, MO]).  Data were analyzed in-house using the Affymetrix Genotyping 

console (version 4.0), following the manufacturers specifications. 

 

4.1.3.4. SNP calling performance  

To assess the performance of the genotyping methods, the following guidelines were 

used.  If a nucleotide called by the sequencing agreed with the genotyping array, then that 

position would be treated as a TRUE event, with all others being FALSE.  If the genotype of the 

sequencing data was different from the reference allele, then that position would be treated as 

POSITIVE for a SNP with all others being NEGATIVE.  Sensitivity (SNS) is defined as true 

positives (TP) divided by the sum of true positives and false negatives (FN).  As such, specificity 

(SPC) is equivalent to TN / (FP + TN), accuracy (ACC) is (TP + TN) / (T + F), precision (PCN) 

is TP / (TP + FP), false discovery rate (FDR) = FP / (TP + FP), false positive rate (FPR) = FP/(T 

+ F), negative predictive value (NPV) = TN / (TN + FN), and false negative rate (FNR) = FN / 

(TP + FN) (Lu et al., 2004).  In other words, SNS is the percentage of SNPs correctly identified 

as being a SNP (i.e. power); SPC is the percentage of wild-type alleles correctly identified as 

being wild-type; ACC means the percentage of predictions that are correct; and PCN is the 

percentage of SNP predictions that are correct. 
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4.1.3.5. SNP Analysis 

 SNPs were called using SAMtools pileup with no filter, a minimum SNP score of 25 and 

3-fold coverage (25 × 3), or a refinement of the 25 × 3 using a logistic regression model.  In the 

pileup format, each line represents a genomic position, consisting of chromosome name, 

coordinate, reference base (the expected nucleotide), consensus base (the experimentally derived 

nucleotide), consensus quality (CNSq, a measure of confidence for the consensus call), SNP 

quality (SNPq, Phred-scaled probability of the consensus being identical to the reference) root 

mean square (RMS) mapping quality, the number of reads sequenced, and the actual bases called 

for each read along with information as to if the base was located at the end of the read.  We 

ignored base calls that were different from the reference if they occur at the end of a read 

because those are most likely due to splicing-induced mapping errors (see Figure 4.1.5).  The 

logistic regression model was performed using the built-in R function glm.  SNPs passing 

through the 25 × 3 filter from sequencing, that were also called on the array, were further 

described as being a FP or not.   

We built an additive logistic regression model using consensus base quality, SNP quality, 

and percent of reference allele (i.e. the percentage of reads at a single position that was the same 

as the reference allele).  If the probability of being a FP was greater than 90%, then that SNP was 

not allowed to pass through the filter.  The probability of being a FP was calculated using the 

following formula: 

  ,   

where z = β0 + β1x1 + β2x2 + β3x3  



124 

 
 

or 

z = 2.673 + 0.021(CNSq) -0.022(SNPq) -3.463(% Reads matching the reference) 

The values for the beta parameters were optimized from cross-referencing SNP calls from 

the genotyping array for known SNPs.  Each parameter was significant at p < 10
-5

.  The x 

parameters come directly from the SAMtools pileup for the unknown SNPs (i.e. those called by 

sequencing and not represented on the array).  Using this formula, we expect that our model will 

produce false positives 5% of the time (see Results). 

We used SIFT (Kumar et al., 2009) to evaluate the functional consequences of identified 

SNPs.  Most of the SNPs identified resulted from the genomic alignment of reads spanning 

different exons, and were present only due to the imperfections of the alignment to the reference 

genome.  Therefore, we used the SIFT coding filter to remove SNPs from these splice sites to 

give us only cSNPs (SNPs in cDNA regions).  We used SIFT to evaluate the functional 

consequences of identified SNPs.  When available, mutations were predicted to either be 

tolerated or damaging substitutions and if they changed an amino acid.  Known mutations were 

then cross referenced with all Variant Annotations from the PharmGKB website (downloaded 

6/6/10)(Klein et al., 2001). 

 

4.1.4. Results 

4.1.4.1. Affymetrix SNP array 

More than 600,000 genomic positions passed quality control checks from the array.  The 

distribution of genotypes was shown in Figure 4.1.2, with 18% homozygous non-reference (i.e. 
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not matching the reference allele), 67% heterozygous, and 15% were homozygous wild type.  

One percent of the probes were unable to produce genotype calls.  Copy number variation in 

these cells confirmed that these cells were derived from a female patient as well as the known 

cytogenetic abnormalities of trisomy chromosome 7 and deletion of the p arm of chromosome 

12.  An interesting and novel result was that we also saw an extra copy of chromosome 2, which 

had not been previously reported for these cells.  Genotypes from this array were used to assess 

the performance metrics for SNP quality filtering. 
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Figure 4.1.2.  A) Genotypes of SNPs passing quality filtering from Affymetrix 6.0 Array.  B)  

Karyogram representation of copy number variation in HepaRG. 
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4.1.4.2. Effect of Read Aligners on Genotype Calling 

To assess the impact of read alignment programs on SNP calling performance, we called 

SNPs from all 6 samples independently using the SAMtools pileup.  Average performance 

metrics for each aligner was given in Figure 4.1.3.  SOAPals was able to genotype more true 

positives and true negatives than TopHat, however total performance metrics such as SNS, SPC, 

ACC, PCN, and FDR were similar, with essentially no difference in performance (all values 

differed by less than 1%).  This suggested that the type of aligner, given comparable alignment 

parameters, did not significantly affect the performance of genotyping in RNA-Seq datasets. 
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Figure 4.1.3.  Performance metrics of split-read aligners TopHat and SOAPals.  (A) TP: true 

positive; FP: false positive; FN: false negative; TN: true negative; (B) SNS: sensitivity; SPC: 

specificity; ACC: accuracy; PCN; precision; FDR: false discovery rate.  
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4.1.4.3. Performance metrics 

When we combined the six RNA-Seq datasets from TopHat alignment results, SAMtools 

pileup found 1,882 out of the 7,077 cSNPs that were detected and passed QC filter on the 

Affymetrix array were expressed in HepaRG.  These 1,822 SNPs served to define the true 

genotypes of the HepaRG cSNPs.  We then compared three SNP filtering methods:  SAMtools 

pileup no filter, SAMtools pileup 25 × 3, or SAMtools pileup 25 × 3 plus a logistic regression 

model to decrease the number of FP (see Methods, Figure 4.1.4).  By implementing a basic filter 

(25x3), only marginal improvements to genotyping performance were observed.  SNS dropped 

from 89% to 64% and a concomitant increase in SPC from 85% to 91%.  The FDR, however, 

remained high at 26%.  At a higher cost of sensitivity, the specificity and precision increased, 

and importantly, the false discovery rate dropped from 35% to 5%.  A drop in accuracy was 

observed but it was complemented by an increase in precision (from 65% to 95%). 
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Figure 4.1.4.  Performance metrics for TopHat with three different filtering options.  TP: true 

positive; FP: false positive; FN: false negative; TN: true negative; SNS: sensitivity; SPC: 

specificity; ACC: accuracy; PCN; precision; FDR: false discovery rate. 
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4.1.4.4. Pharmacogenomics of HepaRG 

4.1.4.4.1. SIFT 

By applying the pileup 25 × 3 plus logistic regression model to all the sequencing 

datasets, we were able to identify 5,012 cSNPs in HepaRG cells.  Of these, functional predictions 

by SIFT could be made for 2,283 polymorphisms (Table 4.1.1).  85% of the SIFT predicted 

SNPs were unlikely to be damaging to protein function, but the remaining 15% (321) were 

potentially damaging.  We were able to cross-reference the coding SNPs with dbSNP130 to 

determine whether an individual SNP had previously been reported.  Only 18% of the 5,012 

SNPs were novel, which was surprising given that the origin of this cell line is from a hepatoma, 

and cancers are notorious for inducing somatic nucleotide changes.  Previous mRNA-Seq studies 

in HeLa cells revealed 5,928 SNPs of which 38% were not in dbSNP (Morin et al., 2008), 

although the authors also noted a high degree of false positives in their dataset as well.   In Jurkat 

T-cells, Chepelev et al. (2009) identified 12,176 variations of which 39% were novel.  These 

indicated that the mutation rate of HepaRG cells was relatively low compared to other cell lines, 

and most of the genetic variations were likely polymorphisms rather than mutations. 
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Table 4.1.1.  Results from SIFT. 

Number of input  100% 5,012 

Non-coding SNPs 1% (22 out of 5012) 

Coding variants 99% (4990 out of 5012)  

Coding variants predicted 45% (2283 out of 4990)  

          Tolerated 85% (1962 out of 2283)  

          Damaging 15%  (321 out of 2283)  

Non-synonymous 46% (2316 out of 4990)  

Synonymous 54% (2497 out of 4990)  

Novel 18% (914 out of 5012)  
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4.1.4.4.2. PharmGKB 

PharmGKB (Thorn et al., 2010) serves as a major repository for collecting and curating 

information linking genetic variation to altered drug response.  We took advantage of the variant 

annotations present in PharmGKB to rapidly discern any known pharmacogenetic implication for 

SNPs identified by RNA-Seq.  This approach was also recently used in the whole genome 

sequencing of patients with a family history of vascular disease and early sudden death (Ashley 

et al., 2010).  Table 4.1.2 shows a condensed version of the variant annotation report on HepaRG 

cells.  Several variants were observed in the ABCB1 gene that encodes the multi-drug resistance 

transporter MDR1.  Figure 4.1.5 shows an example of the RNA-Seq data alignment results.  The 

reference coordinates were present in the 1
st
 line, followed by the reference base, and the 

consensus base.  The remaining lines showed the alignment of individual reads.  The reference 

base was from GRCh37/hg19 genome assembly, whereas the consensus base was derived from 

the sequences present in HepaRG.  At position “A”, the SNP rs2032582 causes a serine to 

threonine change at amino acid position 893 in the ABCB1 gene (a.k.a.  MDR1, Pgp).  This 

particular base was sequenced 147 times with 146 individual reads calling the “C” allele, 

indicating a homozygous polymorphism.  This and other SNPs of HepaRG in the ABCB1 gene 

were present in the PharmGKB database (Table 4.1.2).  Closer inspection of the functionality of 

this SNP revealed its impact was obscure.  For example, both positive (Yamauchi et al., 2002) 

and negative (Mai et al., 2004) findings regarding its impact on pharmacokinetics and drug 

response phenotype for tacrolimus administration had been reported.  Importantly, we noted that 

the PharmGKB annotation of this polymorphism was an alanine, but the reference genome codon 

would be serine.  It was not known why this difference exists, but it was not due to different 

genomic assemblies (PharmGKB annotations use hg18 coordinates, whereas this study uses hg19 
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coordinates).  Also notice a “T” polymorphism in the consensus sequence (position “B”).  This 

particular SNP was at an exon boundary that was marked by a precipitous decline in sequence 

coverage, and it did not pass our filtering quality control.  This SNP calling was most likely a 

result of aligning cDNA reads to genome space; that is, if one allows for up to two mismatches 

in the alignment (as is the case in many experiments), several polymorphisms will be identified 

by mistake in and around the splice site of exons.  Therefore, when analyzing RNA-Seq data for 

genetic variations, it is imperative to remove SNPs that lie in splice sites or introns, unless that 

intron is aberrantly retained in the cDNA, and the entire intron is sequenced to a sufficient depth.  

Other polymorphisms linked with altered pharmacokinetics for several drug types were listed in 

Table 4.1.2.   
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Figure 4.1.5.  Representative example of sequencing alignment.  The reference coordinates were 

present in the 1
st
 line, followed by the reference base, and the consensus base.  The remaining 

lines showed the alignment of individual reads. 
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Table 4.1.2.  Results from PharmGKB 

Gene dbSNP ID Position AA Change 

Drugs influenced by 

change 

PubMed 

ID 

ABCB1 rs2032582 chr7:86998554 A893S/T atorvastatin 18851956 

ABCB1 rs1045642 chr7:86976581 I1145I atorvastatin 18851956 

ABCB1 rs1128503 chr7:87017537 G412G 
cyclosporine; digoxin; 

verapamil; vinblastine 
12781336 

ABCB1 rs2032582 chr7:86998554 A893S/T cytarabine; idarubicin 16331627 

ABCC1 rs35605 chr16:16069520 L562L irinotecan; SN-38 19940846 

ADRB2 rs1042713 chr5:148186633 R16G atenolol; verapamil 18615004 

CBR3 rs8133052 chr21:36429371 C4Y doxorubicin 18551042 

CYP2C8 rs10509681 chr10:96788739 K399R amodiaquine 18855526 

CYP2C8 rs11572080 chr10:96817020 R139K amodiaquine 18855526 

DCTD rs4742 chr4:184052682 V105V gemcitabine 15224082 

DPYD rs1801265 chr1:98121473 T85C fluorouracil 17848752 

F4 rs6025 chr1:167785673 R534R 
drotrecogin alfa; 

tamoxifen 
PGKB 

HNF1A rs2464196 chr12:119919810 S486D 
 

18439552 

HSPA1L rs2227956 chr6:31886251 T493M carbamazepine 16538175 

LRP2 rs2075252 chr2:169719231 K4094E cisplatin 17457342 

MTHFR rs4846051 chr1:11777044 F435F methotrexate 16439441 

NAT2 rs1208 chr8:18302596 R268K clonazepam 19356010 

SLC1A1 rs2228622 chr9:4554432 T138T 
clozapine; olanzapine; 

risperidone 
19884611 

SLC28A1 rs2242048 chr15:83279414 Q456Q gemcitabine 15224082 

SLCO1B1 rs2306283 chr12:21221005 N130D 

Associated with 

decreased pravastatin 

plasma AUC. 

PGKB 

SLCO1B1 rs11045819 chr12:21221080 P155T fluvastatin 18781850 

SLCO1B3 rs7311358 chr12:20907027 M233I 

cyclosporine; 

mycophenolate mofetil; 

sirolimus; tacrolimus 

198902

49 

SLCO1B3 rs4149117 chr12:20902747 S112A 

mycophenolate mofetil; 

mycophenolic acid; 

sirolimus; tacrolimus 

198902

49 

TGFB1 rs1800470 chr19:46550761 L10P 
 

117403

40 
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4.1.5. Discussion 

4.1.5.1. Limitations of RNA-Seq   

RNA-Seq holds significant promise for pharmacogenomics, however it does present 

inherent limitations, most notably if a gene is not expressed it will not be sequenced.  This could 

prevent the identification of very important genetic changes.  For example, CYP2D6 is not 

expressed in this cell line.  To ascertain whether there is a genetic origin for the failed expression 

of CYP2D6, we used the conventional sequencing strategy from Gaedigk et al (2005) (data not 

shown).  We found three polymorphisms in the CYP2D6 gene: rs16947, rs1135840, and 

rs5030656.  The rs16947 and rs1135840 SNPs resulted in amino acid changes R296C and 

S486T, respectively.  These two genotypes corresponded to the CYP2D6*2 haplotype.  The 

rs5030656 SNP resulted in a frame shift K281del responsible for the CYP2D6*9 haplotype.  If 

one is not careful, the absence of these mutations in a final SNP list generated from RNA-Seq 

might lead to faulty assumptions about CYP2D6 genotype and associated phenotype, although in 

this case we also used the expression information to flag this gene as not expressed and therefore 

were not expecting to identify mutations in the final SNP list.  SNP calling from RNA-Seq reads 

shows low sensitivity and a high false negative rate. 

The use of RNA-Seq for pharmacogenomics, like all assays, has its advantages and 

limitations.  Clearly, the sheer volume of sequence information is much more cost-effective than 

traditional Sanger sequencing, and one is not dependent a priori on knowledge of whether a 

particular gene is likely a contributing genetic factor to the response being measured.  Rather, a 

sequencing-based survey of expressed genes can offer new ways to understand complex 

genotype/phenotype relationships.  Increasing read length for sequencing and more advanced 
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algorithms for identifying genetic structure in individuals and populations are rapidly advancing 

our ability to analyze and interpret sequencing data, and will ultimately be a necessary tool in 

every geneticist‟s toolbox.  In the meantime, care should be taken to interpret SNP-calling from 

RNA-Sequencing results.   

Here, we show that many improvements can be made to SNP-calling algorithms that will 

be advantageous for RNA-Seq data analysis.  The performance of SNP-calling was improved by 

filtering out highly probable false positives, but at the same time increased the false negative 

prediction rate.  As with the example of CYP2D6, the absence of SNP data is not indicative of 

wild-type, rather it may be due to the lack of mRNA expression or more than 2 base differences 

between one‟s sample and the reference genome being used.  An alternative strategy to looking 

at cSNPs is to perform exome sequencing (Ng et al., 2010), which relies on hybridization of 

probes corresponding to exonic DNA sequences and then sequencing the interacting sequences.  

GC-rich exons do not hybridize well and are poor templates with current sequencing methods.  

Also, 17-23% of coding sequences in the RefSeq database are not targeted by commercial 

providers including insulin, ABO blood group genes, and many others 

[http://www.genomeweb.com/sequencing/current-whole-exome-capture-products-omit-

important-genes-nci-researchers-find].  Plus, this approach is not able to discern alternative 

splicing, quantitate gene expression, or identify cases of RNA-editing.  Regardless of its current 

difficulties, the power and unique data characteristics it provides make RNA-Seq an attractive 

tool that will be used more and more by many investigators. 
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4.2. mRNA-Seq Analysis of HepaRG treated with drugs 

4.2.1. Abstract  

The simplest way to calculate gene expression from mRNA-Seq data is to count the 

number of sequencing reads that lie in the genomic coordinates of a particular gene.  However, 

14% of human genes overlap in genomic coordinates due to them being coded for on both the 

sense and antisense strands.  Assigning reads to the correct genes to these overlapping 

coordinates therefore requires some adjustment.  In this subchapter, we present a custom 

program, PRUNE, to address this limitation.  We use in silico and in vitro methods to validate 

our program.  For the in silico approach, we simulated an mRNA-sequencing experiment with 10 

million paired end reads and compared the true gene expression level to gene expression 

estimates from PRUNE (r
2
 = 0.742) and another commonly used program, Cufflinks (r

2
 = 0.708).  

For the in vitro approach, we compared gene expression measurements and differential 

expression analysis between biological replicates in which very few genes should be 

differentially expressed.  Cufflinks and its differential expression tool CuffDiff called 37% of 

genes as differentially expressed, whereas PRUNE read allocation followed by DESeq 

differential expression testing found no genes differentially expressed between the replicates.  

Because PRUNE is more accurate in estimating gene expression and its coupling with DESeq 

produced no false positives, we used this strategy to induce gene expression in HepaRG cells 

using well-known nuclear receptor agonists (rifampicin, phenobarbital, and dexamethasone), and 

describe the HepaRG transcriptional response. 
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4.2.2. Introduction 

Unlike microarrays, there is no standard approach to analysis of mRNA-Seq.  This is 

highlighted in the many different approaches that existing analysis tools take to analyze and 

interpret data.  Alexa-Seq (Griffith et al., 2010) , Cufflinks (Trapnell et al., 2010) ERANGE 

(Mortazavi et al., 2008),  HT-Seq (Anders and Huber, 2010), and BEDtools (Quinlan and Hall, 

2010) are some of the available tools.  As warned by the authors, Alexa-Seq is computationally 

intensive software that requires highly paralleled computing and several ancillary programs that 

need to be managed by a dedicated network administrator.  Cufflinks and ERANGE do not 

report expression in units of raw tag counts; rather they use the RPKM unit (Reads  Per Kilobase 

of exon per Million fragments mapped).  The problem with RPKM is that it is heavily influenced 

by a small fraction of highly expressed genes (Bullard et al., 2010).  Furthermore, there are 

inherent differences in how these programs compute RPKM.  Cufflinks uses only standard 

annotated exon models to count reads belonging to a gene, but ERANGE includes new exon 

sizes and counts within them into total reads and exon length, thereby influencing RPKM (Pepke 

et al., 2009).  HT-Seq ignores reads lying in genes sharing chromosomal coordinates, whereas 

BEDtools will actually count them twice.  These discrepancies cause serious concern since 

approximately 14% of human genes in the RefSeq database fit this rule, usually one 5‟-UTR 

overlapping with a 3‟-UTR from a gene on the opposite strand.  For this reason, the purpose of 

this subchapter is to improve the quantitation of gene expression by developing a software 

program that will export read-level data to a given gene without duplicating the read counts or 

discarding ambiguous reads in exons that are overlapping in their genomic coordinates. 

In this study, we will examine the transcriptional response of HepaRG cells to 

prototypical nuclear receptor agonists using mRNA-Seq.  RNA-Seq is highly accurate for 
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quantifying expression levels (Mortazavi et al., 2008; Nagalakshmi et al., 2008), and is highly 

reproducible for both technical and biological replicates (Cloonan et al., 2008; Nagalakshmi et 

al., 2008), with greater sensitivity than microarrays (Wang et al., 2009).   Because this is a stable 

cell line, genetic heterogeneity is removed, as have been reported from one human hepatocyte 

population to another (Madan et al., 2003), which simplifies our understanding of the 

transcriptional response to these drugs. 

Some nuclear receptors, such as CAR and PXR, are ligand-dependent transcription 

factors that act as xenosensors to respond to environmental perturbations.  They are especially 

important in liver where they are master regulators of hepatic development and function.  

Pharmaceutical compounds, and other xeno- and endobiotics can serve as nuclear receptor 

ligands to induce expression of drug metabolizing enzyme gene expression such as Cytochromes 

P450.  Cytochrome P450 enzymes, which metabolize many drugs, are induced until drug 

concentration can longer induce gene expression through the nuclear receptors, at which time the 

cytochrome P450s return to basal expression state.   

Unlike other hepatocyte cell lines, HepaRG cells express nuclear receptors.  We treated 

the hepatoma cell line HepaRG with prototypical inducers of drug metabolizing genes.  

Rifampicin (Rif), Phenobarbital (PB), and Dexamethasone (Dex) are all potent xenobiotics that 

induce hepatocyte gene expression in vivo.  The mRNA content of HepaRG have been shown to 

replicate that of primary human hepatocytes and liver tissue better than the commonly used 

HepG2 cell (Hart et al., 2010), and this is supported by activity of several phase I and phase II 

drug metabolizing enzymes (Aninat et al., 2006).  HepaRG cells have been shown to respond 

appropriately to Rif and PB, resulting in induction of CYP1A1, CYP1A2,
 
CYP2B6, CYP2C8, 
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CYP2C9, CYP2C19, and CYP3A4 in vitro (Kanebratt and Andersson, 2008b; Lambert et al., 

2009a; Lambert et al., 2009b; Lambert et al., 2009c).   

 

4.2.3. Materials and Methods 

4.2.3.1. Chemicals. 

Rifampicin, phenobarbital, dexamethasone and DMSO were purchased from Sigma-

Aldrich (St.  Louis, MO).  Rifampicin, dexamethasone and phenobarbital were dissolved in 

DMSO to obtain stock solutions of 20 mM, 300 mM and 1500 mM, respectively.  The 

SuperScript III First-Strand Synthesis System for reverse transcription-polymerase chain reaction 

(PCR) and TRIzol were obtained from Invitrogen (Carlsbad, CA).  

4.2.3.2. HepaRG Cell culture.  

HepaRG cells and culture medium were provided by Biopredic International.  The 

undifferentiated HepaRG cells were seeded at 0.2 million cells/well in 6-well plates, maintained 

in the growth medium for two weeks, and then cultured in the differentiation medium containing 

2% dimethyl sulfoxide (DMSO) for two more weeks to obtain the differentiated HepaRG cells .  

The differentiated HepaRG cells were incubated with serum-free growth medium for 24 hours, 

then incubated with solvent control (0.1% DMSO), rifampicin (10 µM), phenobarbital (750 µM) 

and dexamethasone (200 µM), respectively, for 24 h.  Total RNA from HepaRG cells was 

prepared using TRIzol reagent according to the manufacturer‟s protocol.   
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4.2.3.3. Illumina Sequencing, Mapping, and Read Counting  

Total RNA from HepaRG cells was used for RNA-Seq.  The RNA-Seq experiments were 

performed by Genpathway Inc. (San Diego, CA, USA).  Briefly, a population of poly (A)+ RNA 

was selected and converted to a library of cDNA fragments (175 to 225 bp) with adaptors 

attached to both ends using an Illumina mRNA-Seq sample preparation kit (San Diego, CA, 

USA).  The quality of the library preparation was confirmed by analysis on a 2100 Bioanalyzer 

(Agilent Technologies, Santa Clara, CA, USA).  The cDNA fragments were then sequenced on 

an Illumina Genome Analyzer IIx to obtain 36-bp sequences from both ends.  Reads were 

mapped to the reference human genome hg19 using TopHat v.1.1.2 (Trapnell et al., 2009) with 

the following options:  --solexa1.3-quals, --mate-inner-distance 30, -G (RefSeq.GTF (hg19)), 

and --no-novel-juncs.  Then, Cufflinks and CuffDiff were used for transcript assembly using the 

same reference GTF file, minimum mapping value of 10, and the quantile normalization option. 

To overcome the problem of assigning reads to a given gene without duplicating the read 

counts or discarding ambiguous reads in exons that are overlapping in their genomic coordinates, 

we created a custom program.  The following paragraph describes what the program, called 

PRUNE, actually does.  Using a RefSeq GTF annotation file, overlapping exons from each 

transcript for each gene are collapsed with other exons on the same strand into a single feature to 

create a non-redundant set of exon features (using parts of BEDtools code (Quinlan and Hall, 

2010)).  Each non-redundant exon is then categorized as being unique (Uex) or non-unique 

(NUex) to a given gene (Figure 4.1).  Then, the number of times fragments were sequenced 

within the genomic intervals for Uex and NUex are counted and summed them for each gene, 

separately.  To allocate reads lying in non-unique exons, the unique reads per base (URpB) for 

the overlapping genes are calculated and summed.  The proportions of each gene‟s contribution 
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to the summed URpB is then used to allocate reads in NUex (NUex.rc).  To calculate gene 

expression, the sum of the read counts from Uex and NUex.rc is calculated for each gene.  The 

formula is given here: 

ji

i
ijii

 

where μ represents     

and η represents    

 

To calculate gene expression level counts, Γ, for gene i that overlaps with gene j, the 

number of reads in the non-unique exon, ηij, is multiplied by the ratio of the number of sequence 

counts per base in the unique exons, μ, of gene i to ratio of the number of sequence counts per 

base in the unique exons of gene j.  This ratio determines the proportion of reads in the non-

unique exons that belong to gene i.  Therefore, the total counts for gene i is the proportion of 

reads in the non-unique exons that belong to gene i plus the number of reads in all unique exons 

in gene i.  These read counts were used for statistical analysis in DESeq,  

 

4.2.3.4. Statistics  

To test for differential expression, the read counts from genes (allocated as described 

above) were used as input for the DESeq R package (Anders and Huber, 2010).  Unlike other 

tools for significance testing of RNA-Seq data, DESeq considers both biological and technical 

variance in determining whether a gene is differentially expressed.  In the case of phenobarbital 



145 

 
 

and dexamethasone treatment, only one replicate is available, so we use the variance implied 

from the DMSO or rifampicin treated samples (whichever is greater) as a surrogate parameter.  

Then means and variances from each sample are compared to one another and p-values are 

adjusted for multiple testing as described (Benjamini and Hochberg, 1995).  Significant 

pathways were interrogated for preferentially-induced transcripts using the Functional 

Annotation Clustering Tool in DAVID (Dennis et al., 2003) 

 

4.2.3.5. Simulating mRNA-Seq  

To assess the accuracy of PRUNE and Cufflinks, we simulated RNA-Seq experiments 

using the Flux Simulator (http://flux.sammeth.net/simulator.html). Flux Simulator provides an in 

silico production of the experimental pipelines for RNA-Seq, adopting a set of parameters. We 

set NB_MOLECULE (total number of RNA molecules in the sample) to be 50 million, reverse-

transcribed cDNA molecule range from 500 to 5500  bp and paired end 36bp reads.  Flux 

Simulator produced 10 million RNA-Seq reads from the UCSC hg19 mRNA isoform annotation 

(refGene).  The simulated reads were run on Cufflinks/CuffDiff and PRUNE/DESeq.   

 

4.2.4. Results 

4.2.4.1. Calculation of gene expression 

An example of difficulty assigning reads to individual genes is shown in Figure 4.17A.  

Here, the nuclear hormone receptor NR1I3 (a.k.a.  CAR) overlaps in genomic coordinates with 

TOMM40L.  Clearly, TOMM40L is expressed at a greater level than NR1I3, however, most tools 

count the number of reads that are found within the genomic coordinates of a given gene.  Two 
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possible scenarios will occur: either the reads will get counted twice (once for NR1I3 and once 

for TOMM40L), or the ambiguous reads will be discarded.  Either way, the expression level of 

NR1I3 is distorted.  If the reads are discarded, then the assessment of gene expression will be 

lower for NR1I3, but if the reads are counted, then NR1I3 will be reported as having higher 

expression than it actually does.  

To solve the problem, consider they toy example in Figure 4.16B.  For each gene, we 

distribute the reads in the contested exon based on the proportion of unique reads per base in 

each intersecting gene‟s unique exonic regions.  In this way, each read will only be counted 

once, and the final counting of reads aligning to exons can be calculated.   Reads not aligning to 

annotated exons were discarded. 

  



147 

 
 

 

  



148 

 
 

Figure 4.16.  A)  Example of difficulty assigning reads to individual genes.  Here, the nuclear 

hormone receptor NR1I3 (a.k.a.  CAR) overlaps in genomic coordinates with TOMM40L.  

Clearly, TOMM40L is expressed at a greater level than NR1I3, however, most tools count the 

number of reads that are found within the genomic coordinates of a given gene.  B) To allocate 

reads in overlapping exons, we propose a formula to allocate the reads relative to the 

proportional expression of reads from unique exons in the overlapping genes.  μi, unique reads 

per base for gene i; μj, unique reads per base for gene j; ηij, non-unique reads lying in coordinates 

shared by genes i & j; Γi, read counts allocated to Gene i.  
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Table 4.9.  Sequencing metrics 

 
DMSO_1 DMSO_2 Rif_1 Rif_2 PB  Dex 

Total Sequenced 45,261,906 70,807,932 67,209,866 71,941,568 61,016,010 70,566,746 

Total Mapped to Genome 

(PE-only) 
17,336,128 47,815,646 48,343,164 46,271,990 41,923,880 46,192,616 

Estimated From PRUNE 12,146,826 32,973,645 33,336,921 31,088,398 28,012,049 31,549,424 

Estimated From PRUNE 

(nonZero All Samples) 
12,142,748 32,954,453 33,314,822 31,065,813 27,994,169 31,529,914 

Estimated From PRUNE 

(Normalized) 
27,384,866 25,224,810 27,127,968 27,129,632 
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4.2.4.2. Comparing calculations of gene expression 

To validate to the optimal functionality of PRUNE, we used FluxSimulator to generate 10 

million artificial sequencing reads with a known origin and compared those data to what was 

observed from Cufflinks of PRUNE gene-level quantitation.  The results are shown in Figure 

4.17.  The r
2
 value for Cufflinks was 0.708, whereas it was 0.742 from PRUNE, indicating prune 

estimates are more reflective of the actual counts than Cufflinks.   
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Figure 4.17. Simulation comparison between Cufflinks FPKM Data (A) and PRUNE 

RPKM Data (B).  The x-axis is the values reported by each program, whereas thy Y axis reports 

the actual number reads.  Correlation coefficients (r
2
) are also given. 

 

  

A B
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4.2.4.3. Significance testing for transcript and gene expression 

Between 45 and 72 million reads were sequenced for each sample (average = 64,467,338; 

standard deviation = 10,213,244 (see Table 4.9).  Between 17M and 48M reads were mapped to 

the genome while retaining their paired-end properties.    Then all reads in all exons were added 

from all conditions to determine sequencing depth.  Genes were removed if they did not have at 

least one read in all samples.  Because depth varied considerably and raw tag counts are more 

accurate for differential expression testing than RPKM values (Oshlack and Wakefield, 2009), 

we required a normalization scheme that maintained the expression measurements in units of 

read counts.  Simply normalizing the expression level by the length of the gene will remove the 

bias for expression level but also introduces a bias toward giving longer genes an increased 

likelihood of being differentially expressed.  Thus, we used a linear scaling method to compare 

tag counts between samples.  DESeq was used to scale each library (Figure 4.18), capture the 

mean and variance within and among replicate samples, and to determine differential expression.   
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Figure 4.18.  Replication and Normalization of mRNA-Seq Gene Expression.  A)  The left panel 

shows raw gene expression levels in all 6 samples, while the right panel shows the gene 

expression levels for the four treatment groups normalized for sequencing depth.  Replicate 

samples were merged during the normalization procedure.  B) Assessment of the reproducibility 

of the raw tag count data.  Using read count expression measurements for each gene as a metric, 

the reproducibility of our experiments was assessed.  Even though the sequence depth for 

DMSO_1 is much lower than DMSO_2 (Figure 4.A, left panel), there is still a strong correlation 

between gene expression levels: R=.99.    
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4.2.4.4. Differential Gene Expression  

Because PRUNE represents a new method for quantifying gene expression, we compared 

our results with that of popular software:  Cufflinks and its differential expression testing suite 

CuffDiff (Trapnell et al., 2010).  We evaluated the false discovery rate of each pipeline by 

comparing the DMSO_1 sample against the DMSO_2 sample, under the assumption that no (or 

very few) genes would be differentially expressed because they were cultured under similar 

conditions (Figure 4.19).   Of the 15,432 genes reported by Cufflinks to have expression values 

greater than 0 in both DMSO replicates, CuffDiff was able to test the expression of 7,663 genes, 

2,852 of which were classified as being differentially expressed.  The remaining genes could not 

be tested by CuffDiff.  This represents a false discovery rate of 37%.  Using PRUNE read 

allocation followed by DESeq, we were able to detect and test the expression 21,974 genes, none 

of which were differentially expressed between the DMSO replicates.  Similar results were 

observed for Rifampicin replicates (data not shown).  Even though the same alignment data were 

used to estimate the expression of genes and their respective fold changes, the reported levels are 

strikingly different.  Figures 4.17 and 4.19 attempt to explain why such a disagreement exists 

between the two analysis tools.  In Figure 4.17, the gene expression values reported by Cufflinks 

show much more orthogonal variation then PRUNE.  If gene expression is not accurately 

assigned, it will ultimately affect downstream statistical interpretation.  Second, as shown in 

Figure 4.19, the normalization scheme in CuffDiff seems to be inadequate.  Again, using the 

DMSO-treated replicates as examples, there is a considerable amount of fold change for lowly 

expressed genes (with FPKMs <  0 ).  Perhaps more importantly is shown in the right panels of 

Figure 4.19, the fold change between the DMSO samples is not symmetrical about 0 in the 



155 

 
 

Cufflinks/CuffDiff group, but is in the PRUNE/DESeq set.  This bias of representation in one 

sample leads to the higher fold change, and thus lower p values. The cause of this bias is 

unknown, but it is likely due to inadequate normalization.  
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Figure 4.19.  DMSO_1 versus DMSO_2 treatment using Cufflinks FPKM Data (top panels) or 

PRUNE read count data (bottom panels).  For the left panels, the X-axis represents the average 

expression value between DMSO and Rif, while the Y-axis denotes the fold change in the two 

conditions. „M‟, log2 fold change; „A‟, log2 average expression.  The right panels are the log2 

fold change distributions from the data in the left panels.  The blue dotted line marks where the 

A

M

A

M
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log2 fold change is 0.  Boxplots are shown above each histogram.  The line inside the boxplot 

demarcates the mean log2 fold change. 
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Not surprisingly, if we continue to test the differential expression for DMSO replicates 

versus Rifampicin replicates, we also observe the same bias (Figure 4.20).  In the PRUNE 

dataset, CYP3A4 is clearly the most significantly influenced gene - showing induction of about 

100-fold.  No other gene induced more than CYP3A4 in the PRUNE set. 
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Figure 4.20. MA plots from DMSO versus rifampicin treatment using Cufflinks FPKM Data 

(left panel) or PRUNE Data (right panel).  For both figures, the X-axis represents the average 

expression value between DMSO and Rif, while the Y-axis denotes the fold change in the two 

conditions. „M‟, log2 fold change; „A‟, log2 average expression.  Red circles denote where p < 

0.05.  
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Now that we have an accurate estimation of differential expression, we can use the data 

from PRUNE analysis for further study.  The number of differentially expressed genes in each 

treatment was 212, 237, and 65 for rifampicin, phenobarbital, and dexamethasone, respectively.  

The overlaps of these gene alterations can be seen in a 3-way Venn diagram (Figure 4.21).  

Pathway analysis revealed several pathways differentially expressed, in particular drug 

metabolism and cell cycle.  Most of the pathways are functionally similar and are due to the 

induction of cytochrome P450 enzymes; the prototypical target genes of nuclear receptors.  As 

expected, ABCB1, CYP3A4, and UGT1A1 genes were induced by all 3 NR agonists.  These 

represent major pathways for efflux transport, phase I metabolism, and phase II metabolism, 

respectively.  CYP2E1 is repressed 3-fold by Rifampicin treatment. 
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Figure 4.21.  3-Way Venn diagram showing genes with significantly differential expression 

between treatment groups. 
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If we look at genes specifically induced by a given NR agonist, we see several pathways 

of interest.  For example, genes that were only induced by Rifampicin treatment were enriched 

for cell cycle genes, suggesting that Rifampicin promotes cell division (see Table 4.10). 
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Table 4.1.  Genes involved in the induction of cell cycle progression that are induced by Rif 

only.  Units of expression are reported in RPKM.  FC: fold change 

Gene Description DMSO Rif FC 

ANLN anillin, actin binding protein 15.5 29.0 1.88 

ASPM asp (abnormal spindle) homolog, microcephaly associated 

(Drosophila) 

3.5 7.5 2.14 

BARD1 BRCA1 associated RING domain 1 1.9 4.1 2.20 

BLM Bloom syndrome, RecQ helicase-like 0.5 1.3 2.78 

BRCA1 breast cancer 1, early onset 1.8 3.7 2.09 

BRCA2 breast cancer 2, early onset 0.7 1.5 2.13 

BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) 8.1 14.1 1.75 

BUB1B budding uninhibited by benzimidazoles 1 homolog beta 

(yeast) 

6.0 10.3 1.73 

CDCA2 cell division cycle associated 2 2.2 4.4 2.01 

CDK1 cell division cycle 2, G1 to S and G2 to M 5.1 10.6 2.09 

CENPE centromere protein E, 312kDa 1.8 3.9 2.18 

CENPF centromere protein F, 350/400ka (mitosin) 6.4 12.8 2.01 

CIT citron (rho-interacting, serine/threonine kinase 21) 2.5 4.5 1.78 

CLSPN claspin homolog (Xenopus laevis) 1.2 2.2 1.87 

E2F7 E2F transcription factor 7 1.2 2.7 2.18 

EGFR epidermal growth factor receptor (erythroblastic leukemia 

viral (v-erb-b) oncogene homolog, avian) 

14.7 23.6 1.60 

FANCA Fanconi anemia, complementation group A 0.9 1.6 1.84 

FANCD2 Fanconi anemia, complementation group D2 1.8 3.6 1.96 

GAS2L3 growth arrest-specific 2 like 3 1.5 3.4 2.26 

KIF11 kinesin family member 11 4.5 7.8 1.74 

KIF20B kinesin family member 20B 2.6 5.2 1.99 

KNTC1 kinetochore associated 1 1.7 4.2 2.43 

MCM8 minichromosome maintenance complex component 8 1.7 3.5 2.06 

MKI67 antigen identified by monoclonal antibody Ki-67 9.2 19.6 2.13 

MLL myeloid/lymphoid or mixed-lineage leukemia (trithorax 

homolog, Drosophila) 

3.5 5.9 1.70 

NCAPG non-SMC condensin I complex, subunit G 3.2 6.1 1.92 

NDC80 NDC80 homolog, kinetochore complex component (S. 

cerevisiae) 

4.7 9.2 1.96 

RBL1 retinoblastoma-like 1 (p107) 1.1 2.4 2.08 

RIF1 RAP1 interacting factor homolog (yeast) 5.3 9.2 1.73 

SGOL2 shugoshin-like 2 (S. pombe) 3.8 7.0 1.82 

SPAG5 sperm associated antigen 5 11.5 18.8 1.63 

TPX2 TPX2, microtubule-associated, homolog (Xenopus laevis) 14.5 23.5 1.62 

TTK TTK protein kinase 3.5 6.4 1.86 

TTN Titin 0.1 0.2 1.94 

ZWINT ZW10 interactor 12.0 21.1 1.75 
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Most surprisingly, phenobarbital treatment repressed more genes (n = 203) than it 

activated (n = 34), including major transcriptional regulators CEBPβ and CEBPδ.  Others also 

showed similar numbers of differentially expressed genes.  Lambert et al. (2009a) reported 128 

genes as differentially expressed by PB in HepaRG cells using microarrays.  Unlike our findings, 

they suggested that only 49 of the 128 genes were repressed, while the other 79 were induced 

(albeit in relatively small fold change).  This is likely due to the increased sensitivity and 

specificity of RNA-Seq over arrays because we had the most concordance with the microarray 

when the expression values were significantly higher than background (data not shown).  

Interestingly, the genes that it down-regulates include cell death genes, meaning that similar to 

Rifampicin, PB may act as a tumor promoter - though in a transcriptionally distinct way, by 

repressing the repressors of cell death (Table 4.11). 
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Table 4.2.  Genes involved in cell death are repressed by PB treatment.  Units of expression are 

reported in RPKM.  FC: fold change 

Gene Description DMSO Dex FC 

BOK BCL2-related ovarian killer 23.8 10.6 0.44 

FKBP8 FK506 binding protein 8, 38kDa 96.1 47.7 0.50 

HSPB1 
heat shock 27kDa protein-like 2 pseudogene; heat 

shock 27kDa protein 1 
223.6 111.0 0.50 

LRDD leucine-rich repeats and death domain containing 15.9 8.0 0.50 

MAP1S microtubule-associated protein 1S 10.3 4.2 0.41 

MAP3K11 mitogen-activated protein kinase kinase kinase 11 40.2 20.4 0.51 

MFSD10 major facilitator superfamily domain containing 10 15.2 7.0 0.46 

MRPL41 mitochondrial ribosomal protein L41 116.6 60.2 0.52 

NME3 non-metastatic cells 3, protein expressed in 26.8 11.8 0.44 

PHLDA3 pleckstrin homology-like domain, family A, member 3 76.5 37.0 0.48 

PPP1R13L 
protein phosphatase 1, regulatory (inhibitor) subunit 

13 like 
17.1 8.3 0.49 

SCRIB scribbled homolog (Drosophila) 19.4 9.8 0.50 

SHARPIN SHANK-associated RH domain interactor 25.1 11.6 0.46 

TNFSF9 tumor necrosis factor (ligand) superfamily, member 9 13.8 5.9 0.43 

TSPO translocator protein (18kDa) 129.6 52.4 0.40 
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In the Dex treatment group, pathways for steroid and bile acid synthesis were markedly 

up-regulated.  11 out of 17 genes involved in this pathway were significantly induced only by 

dexamethasone treatment.  The genes (and their location within the pathway) are shown in 

Figure 4.22.   

 

 

Figure 4.22.  KEGG pathway for steroid biosynthesis.  Red stars indicate genes that are induced 

by Dexamethasone. 
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4.2.4.4. Differential Transcript Expression 

Although CuffDiff reports several types of differential expression (i.e. isoform usage 

between/among conditions, differential promoter use, differential coding sequences, etc), we 

cannot use those information because they rely on gene expression levels to quantify transcripts.  

We have already shown in Figure 4.18 that Cufflinks - the precursor program to CuffDiff - is less 

accurate for quantifying gene expression under the conditions of our experimental design.  The 

37% false discovery rate we identified at the gene level would only be propagated to an even 

higher rate if we were to look at differential expression of transcripts because 1) there are 

significantly more transcripts than genes, and 2) expression measurements are separated between 

different isoforms of the same gene, in effect decreasing total gene expression and nearing limits 

of detection. 

 

PRUNE does not consider transcript-level expression, but can serve as an alternative 

starting point for such analysis.  

 

4.2.5. Discussion  

It is important to address the issue of genomic mapping for genes with overlapping 

exons, since significant alteration in gene expression may be present for only one of those genes, 

and the effects of this making is highlighted by the UGT1A1 gene.  UGT1A1 contains 5 exons; 

four of those exons are shared with others from the UGT1A gene family (e.g.  UGT1A3-10), and 

is known to be induced by Rif and PB in HepaRG cells (Anthérieu et al., 2010).  In RNA-Seq 

data, this gene is only significantly induced when we consider and correct for the properties of 

overlapping genes, because most of the read counts come from the highly expressed UGT1A6 
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gene.  Because of this, the relative fold change for UGT1A1 compared to the total reads in the 

remaining four exons of the gene get diluted to a point where the fold induction is minimal and 

thus does not reach statistical significance.  So far, PRUNE is the only program that we are 

aware of capable of allocating reads correctly to the UGT1A gene family. 

 

 4.2.5.1. How do these data compare to current methods? 

 We added two major concepts to consider for RNA-Seq Experiments.  First, we 

introduced PRUNE, a set of shell scripts that can perform read-count allocation for genes with 

overlapping exons.  This is an improvement over existing tools like HT-Seq (Anders et al., 

unpublished) and BEDtools (Quinlan and Hall, 2010) which disregard or count reads twice, 

respectively.  The other major concept we introduce is to test the empirical FDR for your tool of 

interest.  We tested these tools by comparing replicate samples to one another.  One should be 

able to assume that no (or very few) genes should be differentially expressed between replicate 

conditions.  Here, we showed that to not be the case with Cufflinks and CuffDiff, which showed 

an empirical false discovery rate of 37%, but could not identify any false positives with PRUNE 

and DESeq.  

 

4.2.5.2. What did we learn that we didn’t already know? 

 Biologically speaking, our data suggest that both Rifampicin and Phenobarbital are 

regulators of cell fate in HepaRG cells.  Rifampicin induced expression of many cell cycle 

regulated genes, whereas PB decreased expression of several repressors of cell death.  In fact, we 

show that PB down-regulates more genes than it activates suggesting that it is more of a 
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transcriptional repressor than a transcriptional activator.  Finally, we showed that many genes in 

the cholesterol/bile-acid synthesis pathway are induced by Dexamethasone.  
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CHAPTER 5.  FINAL THOUGHTS 

5.1. Chapters and their approaches 

Each of these chapters is divided in such a way that they each contain at least one new 

approach to help understand mechanism involved in hepatic drug response and biotransformation 

pathways.  However, even with the new approaches discussed throughout this text, many 

questions remain. 

 

5.2. Opinions on future promise and pitfalls of these new approaches 

5.2.1. POR  

POR represents a novel target for pharmacogenetic research.  Only in the past few years 

has POR been appreciated as a contributor to altered steroidogenesis pathways.  However, 

steroidogenesis is not the only pathway affected.  Several groups have confirmed that mutations 

in POR can affect its activity and disrupt interactions with several CYP isoforms.  Importantly, 

investigators are discovering novel polymorphisms and are learning how they affect CYP-

catalyzed drug metabolism.  These studies may help to establish correlation of genetic 

polymorphisms in the POR gene and variation of drug metabolism through CYP-catalyzed 

oxidation.  Additionally, the discovery of functional polymorphisms in the general population 

may provide a pharmacogenetic marker for drugs primarily metabolized by a one electron 

reduction from POR.  Of course, before POR becomes a pharmacogenetic predictor, extensive 

studies are required for clinical investigations into whether or not POR polymorphisms associate 

with decreased metabolic activity in vivo and if screening for these polymorphisms would be 
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efficacious in a clinical setting. 

Several challenges to understanding POR function and contribution to drug metabolism 

exist in current research.  First, POR activity is typically quantified by the reduction of 

cytochrome c, a non-physiological substrate.  Its affect on electron donation to CYP enzymes 

need to be simultaneously investigated with CYP catalysis assays.  Second, effects of POR 

polymorphisms on CYP activities may vary markedly between different CYP enzymes, so in 

determining the consequences of POR mutations, several CYP isoforms should be tested to 

provide more robust confirmation of altered protein activity.  Third, because the amino-terminal 

tail of POR is necessary for physiological activity, experiments to characterize functional 

polymorphisms should use a full length construct embedded into membranes instead of a partial 

construct that have been used in many studies.  Finally, very little is known about how POR is 

regulated in humans.  Understanding the regulation of this gene will be important knowledge if 

POR becomes a viable pharmacogenetic marker, because increased gene expression can have the 

ability to abrogate functionally deficient polymorphisms in heterozygous samples by 

simultaneously increasing the expression of the wild-type allele.  Further research is needed to 

overcome these obstacles and to address the clinical significance of POR polymorphisms. 

Soon after our 2008 publication in Pharmacogenetics and Genomics, Miller‟s group 

published a similar study that sequenced POR genes of 842 healthy individuals belonging to four 

different ethnic groups (Huang et al., 2008).  Some of the genotypes we observed in our study 

were also found by them.  Later, that same group showed that the A503V supports normal 

activity by CYP1A2 and CYP2C19 (Agrawal et al., 2008).  Our study directly led Gomes et al. 

(2009) to do a similar study with 150 human liver microsomes - identifying other POR 
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polymorphisms that link to CYP activity.  Similarly to our findings, they also show that POR can 

be more limiting for some CYPs than others. 

 These and other studies prompted the Human CYP Allele Nomenclature Chair and 

Committee to devise a system for the designation of POR alleles that follows the guidelines for 

CYP allelic star (CYP*) nomenclature (http://www.cypalleles.ki.se/criteria.htm)(Sim et al., 

2009).  The POR allele nomenclature web page (http://www.cypalleles.ki.se/por.htm) was 

launched in September 2008, listing 35 different alleles.  On this POR web page, the alleles are 

presented together with their corresponding nucleotide and amino acid changes, and the 

phenotypic consequences observed by in vitro and in vivo studies.  Three polymorphisms we 

identified are now named by that committee: POR*25, *26, & *27 (K49N, L420M, L577P, 

respectively). 

Studies are still ongoing to identify relationships between POR polymorphisms and CYP 

activity.  Recently, Miller's group showed the A503V POR polymorphism can decrease the 

activity of CYP3A4 by 67% (Agrawal et al., 2010), and will continue to explore the 

pharmacogenomics of POR at least until 2012 when that grant will expire (5R01GM073020-07). 

 

5.2.2. HepaRG Cells  

A major obstacle in drug discovery is the lack of an adequate model to predict xenobiotic 

metabolism, drug-drug interactions, and hepatotoxicity of drug candidates.  Poor correlation 

exists between animals and humans regarding drug-drug interactions and drug-induced toxicity, 

mainly caused by the significant species difference in metabolic transformation and toxic effects 

of drug candidates.  Primary human hepatocytes are approved by FDA and are the “gold 

http://www.cypalleles.ki.se/criteria.htm
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standard” model for CYP-mediated drug-drug interactions, whereas cyropreserved primary 

human hepatocytes are widely accepted to be advantageous for short-term biotransformation 

studies (Silva et al., 1999).  However, limited availability and short lifespan are fatal flaws in 

these two models, and consequently make them not feasible to be used in high-throughput 

systems for drug candidate screening.  Our work has shown HepaRG cells are more similar to in 

vivo hepatocytes that the commonly used cell line HepG2 at the level of gene expression.  

Therefore, it is logical to hypothesize that they can also predict hepatotoxicity and metabolism.   

The introduction of HepaRG cell line into drug metabolism, drug-drug interaction, and 

hepatotoxicity fields constitutes a breakthrough in drug discovery field.  Because HepaRG cells 

mimic biological performance in gene expression and functional activities of liver specific 

proteins, they exhibit the consistent intrinsic clearance capacity and responsiveness to well-

defined inducers to a comparable level to that seen in primary human hepatocytes.  The stability 

of HepaRG cells in long-term cultivation provides the base for sub-chronic and chronic exposure 

to chemicals for drug safety evaluation.  Aninat et al. (2006) were the first to claim HepaRG 

could act as surrogates for primary human hepatocytes in the context of drug metabolism.  This 

claim was a bit premature because it was based only on mRNA content and protein activity from 

just a handful of genes.  We expanded on this claim by demonstrating the transcriptome wide 

similarity between HepaRG and primary hepatocytes. 

As a stable hepatic cell line, HepaRG cells are applicable for widespread usage as an in 

vitro cell model for high-throughput screening, however many improvements can be made.  

First, they do not express CYP2D6.  Current work in our lab is aiming to introduce a stably 

expressed CYP2D6 cDNA to overcome this problem.  If one wants to use these cells to identify 
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genes that metabolize a specific drug, several deletions of each P450 can be made so that a panel 

of HepaRG cells could be available, each one lacking a member of the Cytochrome P450 family.  

In the same context, genetic variants of many different cytochromes P450 could be introduced, 

thereby creating a cell-based “population” that could be used for pharmacogenetic research. 

 

5.2.3. mRNA-Seq  

Scientific discovery is an evolving process.  New ideas, techniques, and perspectives 

continually change the dynamic of our understanding of how biological systems really work, 

especially with regard to new algorithms for RNA-Seq experiments.  The instrumentation for 

such experiments is only four years old.  The first RNA-Seq experiment was performed only two 

years ago, and many of the algorithms for making sense of the data are still undergoing 

development.  Already, new methods in sample preparation are incorporating strand-specific 

information - which is why PRUNE was initially developed.  PRUNE still has an advantage in 

this respect though.  There are cases such as the UGT1A family where strand information will 

not solve the problem, because the gene family members are all on the same strand.  Until longer 

read lengths are possible (especially when they are long enough to span the entire cDNA), 

PRUNE remains a viable option.   

There are few analysis options available for quantitating gene expression and no single 

package is capable of extracting all the information contained in a single mRNA-Seq experiment.  

Although we made PRUNE to remedy the issue of assigning sequencing reads to overlapping 

genomic coordinates, many difficulties still exist, including accurate SNP-calling and transcript-

level quantitation.   
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No clear consensus has been made on how to best define transcript isoforms from short-

read data, a prerequisite for quantitation.  New methods, such as de novo assembly should 

overcome these issues may overcome this issue in the near future, however this strategy also has 

its limitations.  Recently, Trans-Abyss, a de novo assembly strategy, was compared to reference-

based assemblers such as Cufflinks, but measures of sensitivity and specificity were 

unimpressively different by the two methods (Robertson et al., 2010).  Moreover, the 

computational cost of the de novo assembler was high 370 CPU hours for Trans-Abyss compared 

to 12 CPU hours for cufflinks.  Regardless, these issues are well known and new methods are in 

development to overcome their algorithmic limitations.  

 Genotyping from mRNA-Seq  is the second difficult task.  Our work and that of others 

show evidence of a high false discovery rate in the sequencing data (Morin et al., 2008; Chepelev 

et al., 2009; Cirulli et al., 2010).  One way to overcome the high number of false positives is to 

train a logistic regression model using a set of known SNPs - as was the case in Chapter 4.  

However, cost to sensitivity was great even though our specificity was high.  This means that 

when a SNP is called using our logistic regression model, then it is highly likely to be a real 

SNP, but we only catch < 30% of all the true SNPs in the dataset.  Therefore, more algorithms 

are needed to have both high sensitivity and specificity. 

Currently, we are working on a project to leverage expertise from the whole genome 

resequencing community.  That community is more developed than the RNA-Seq community 

and have experienced and overcome first-hand some of the problems with short-read sequencing.  

For example, one way to decrease the false discovery rate in mRNA Seq data would be to 

recalibrate quality values.  Recalibration is simply modifying the quality values output from the 
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sequencing instrument to values based on empirical data.  A pre-calibrated file could contain 

many reported Q25 bases, (or  = 3 mistakes in 1000 total reads) which seems 

good.  However, it may be that these bases actually mismatch the reference at a 1 in 100 rate 

empirically, so they are actually Q20.  These higher-than-empirical quality scores provide false 

confidence in the base calls resulting in higher false discovery rates.  Moreover, base mismatches 

with the reference occur at the end of the reads more frequently than at the beginning and 

differences in dinucleotide calling quality.  These re-calibration adjustments are an absolute 

requirement for large-scale DNA sequencing studies such as the 1000 Genomes Project (Durbin 

et al., 2010), Pediatric Cancer Genome Project 

(http://www.pediatriccancergenomeproject.org/site/), and the Cancer Genome Atlas 

(http://cancergenome.nih.gov).  However, using the tools from whole genome or whole exome 

sequencing projects, such as those listed, require different assumptions about the data than those 

from mRNA-Seq, many of which have yet to be worked out.  Therefore, tools will need to 

continue to be developed to convert the knowledge gained from these sequencing projects into 

the mRNA-Seq realm.  Another way to improve SNP calling is to adjust instrument-specific 

error profiles.  Sequencing errors for the Illumina are dependent on the local sequence context of 

the base being read, the position of the base in the read, etc. which can all result in increasing the 

number of false positive SNP calls (Dohm et al., 2008; Erlich et al., 2008). 

 

5.3. Final thoughts  

 From new genetic targets to advances in resources and technology, the field of 

pharmacogenomics is moving rapidly.  The application of whole genome sequencing is likely to 
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become part of routine clinical practice.  When this happens, researchers will not need to use 

candidate gene approaches as we have in chapter 2.  The combination of electronic medical 

records with every patient‟s genome to identify genetic variants without a priori bias, will allow 

rapid significant medical advancements.  

 Once genotypes or haplotypes are inferred as having clinically significant impact, cell 

lines such as HepaRG could be genetically modified to recapitulate the haplotype to 

mechanistically explain genotype-phenotype relationships.  As mentioned in chapter 3, our group 

is already modifying the genetic structure of HepaRG by introducing CYP2D6*1.  Perhaps it will 

not be long before hundreds of mutations are introduced in HepaRG so that it would be possible 

to do a cell-based population study.  Whole genome sequencing will give us a detailed schematic 

of nuclear DNA organization, but it cannot tell us the outcomes of that organization, e.g. is the 

gene is expressed or if RNA editing is involved.  Therefore, there will be a continued need for 

mRNA-Seq to complement whole genome DNA sequencing.  The computational algorithms for 

interpreting mRNA-Seq, as discussed in chapter 4, are continually improving and will continue 

to improve in the near future.  Given these recent advances, this is an exciting time to be a 

pharmacogenomicist. 
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