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Abstract 

 

Novobiocin, a known DNA gyrase inhibitor, binds to a nucleotide-binding site located on 

the Hsp90 C-terminus and induces degradation of Hsp90-dependent client proteins at ~700 μM 

in breast cancer cells (SKBr3). Although many analogues of novobiocin have been synthesized 

in an attempt to improve upon this activity, it was only recently demonstrated that monomeric 

species can exhibit antiproliferative activity against various cancer cell lines. To further refine 

the essential elements of the coumarin core, a series of modified coumarin derivatives was 

synthesized and evaluated. Structure–activity relationships for novobiocin as an anti-cancer 

agent were elucidated through analogues that manifest low micromolar to nanomolar activity 

against several cancer cell lines. The compound that exhibited the best and most consistent 

activity has been further evaluated against a broader panel of cancers as well as taken into an in 

vivo model. Studies are ongoing to further refine the coumarin core, with the potential to replace 

it with a more suitable heterocyclic ring system. 

In addition to the coumarin portion, a noviose sugar and benzamide side chain are 

appended to the natural product. Because limited information exists regarding the role of the 

sugar appendage, a series of non-sugar derivatives was synthesized and evaluated to establish 

structure–activity relationships for the noviose region of novobiocin. These studies have 

produced simplified novobiocin analogues that manifest low micromolar activity against a panel 

of cancer cell lines. Likewise, studies have been executed to elucidate details concerning the 

benzamide side chain and its potential to make hydrophobic interactions with the binding pocket. 

The most promising compound from each of these series has demonstrated impressive activity 

against several cancer cell lines and have been evaluated in vivo. 



 v 

 Efforts to understand the mechanism of action manifested by these diverse Hsp90 

modulators are ongoing and have resulted in the existence of at least three distinct classes of 

Hsp90 C-terminal modulators. Moreover, collaborative studies with the NCI have revealed 

promising results with a compound that modulates Hsp90 through yet another disparate, but 

synergistic, mechanism. Through current studies, we hope to better solubilize the most potent 

compounds and advance novel Hsp90 modulators into clinical development. 
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Chapter I 

Novobiocin and Additional Inhibitors of the Hsp90 

C-terminal Nucleotide-binding Pocket 

I. Introduction 

The goal of several research groups, internationally, has been to better understand the 

ubiquitously expressed 90 kDa heat shock proteins (Hsp90). Many studies have been published, 

revealing these proteins to be integrally involved in cell signaling, proliferation and survival. 

This family of proteins plays an essential role as molecular chaperones and is responsible for the 

conformational maturation of nascent polypeptides and the refolding of denatured proteins.1 

More than 150 Hsp90-dependent client proteins have been identified,2,3 many of which are 

associated with cellular signaling networks such as steroid hormone receptors, transcription 

factors and protein kinases, which represent individually sought after targets for the development 

of cancer chemotherapeutics.1,4-8 Hsp90 is an abundant molecular chaperone and is constitutively 

expressed in eukaryotic cells. Under homeostatic conditions, this protein accounts for nearly 1% 

of the total cellular protein in eukaryotic cells.9 Cells exposed to heat shock and other stressed 

conditions, such as in the case of cancer, overexpress Hsp90.10 Many proteins in tumor cells are 

dependent upon the Hsp90 protein folding machinery for their maturation, stability and 

activation.2,3 Since Hsp90 inhibition uniquely targets client proteins associated with all six 

hallmarks of cancer, Hsp90 has emerged as a promising target for cancer chemotherapy.11,12 

Moreover, this molecular chaperone has exhibited exceptional neuroprotective properties due to 

its essential role in the refolding of aggregated proteins associated with several 

neurodegenerative diseases.13,14 
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 Human Hsp90 exists as a homodimer, which contains three highly conserved domains. 

These regions consist of a 25 kDa N-terminal ATP-binding domain, a 35 kDa middle domain, 

and a 12 kDa C-terminal dimerization domain (Figure 1). Inhibitors that bind to the various 

Hsp90 domains block the ability of the chaperone to stabilize and/or fold client proteins, leading 

to an unproductive heteroprotein complex that is degraded by the ubiquitin-proteasome 

pathway.15-20 Natural products geldanamycin (GDA) and radicicol (Figure 2), for example, are 

known to bind the N-terminal ATP-binding site.21-24 These molecules inhibit the ability of the 

Hsp90 N-terminus to bind and hydrolyze ATP, which is essential for its chaperoning function.25-

27 While the solution structure of Hsp90 exists as a continuum of C-terminally dimerized 

conformations, the ATP-bound state is a highly constrained structure.28 The formation of this 

structure involves coupled conformational switches to position the catalytic apparatus for ATP 

hydrolysis.25 An unstructured, highly charged linker joins the N-terminus to the middle domain.14 

 

Figure 1. Structure of Hsp90 in open state.14 

The middle domain exhibits high affinity for co-chaperones as well as client proteins.29-35 

Structural and functional analyses have demonstrated that the middle domain of Hsp90 contains 

a catalytic loop which may serve as an acceptor for the γ-phosphate of ATP, when it is bound to 

the N-terminus.33 The structure of the C-terminus of Hsp90 is characterized by the MEEVD 

sequence, which is known to bind co-chaperones that contain multiple copies of the 

tetratricopeptide repeat (TPR), a 34 amino acid sequence. Chadli and co-workers recently 
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identified a second, novel site near the N-terminus that also binds TPR proteins. This second site 

is either within or near the ATP-binding pocket at the N-terminus of Hsp90 and thus is strongly 

regulated by nucleotide binding.14,36  

 

Figure 2. Structures of GDA and radicicol.14 

 Initial studies by Csermely and co-workers suggested a second ATP-binding site located 

in the Hsp90 C-terminus.37 This C-terminal nucleotide binding pocket has been shown to not 

only bind ATP, but also novobiocin, cisplatin, epilgallocatechin-3-gallate (EGCG) and Taxol.21 

This review examines the different classes of Hsp90 C-terminal inhibitors, with specific 

emphasis on structure-activity relationships for novobiocin and their implications for 

neuroprotection and/or anti-cancer activity.14 

 

II. The Hsp90 Family 

Heat shock proteins consist of several subfamilies of molecular chaperones classified by 

their molecular weights. These subfamilies include Hsp90, Hsp70, Hsp60 and the small Hsps.38 

Each of these subfamilies plays critical cellular roles, such as the prevention of protein 
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aggregation and the direction of misfolded and transient proteins to proteasomal degradation.39 

Hsp90 proteins are highly conserved and four isoforms have been identified. The two major 

cytosolic isoforms include the major, inducible Hsp90α and the minor, constitutively expressed, 

Hsp90β.40-43 Although there is a relatively high conservation within these two isoforms (85% 

sequence identity), it is suggested that they may display altering chaperone activity.44 Due to 

slight perturbations in amino acid sequence, it has been proposed that the α and β forms may 

exhibit differential binding to client protein substrates.14,40  

Millson and co-workers used yeast to show that activation of certain Hsp90 clients, such 

as heat shock transcription factor and v-src were more efficient with Hsp90α, rather than 

Hsp90β. In contrast, activation of other clients, such as glucocorticoid receptor and extracellular 

signal-regulated kinase-5 mitogen-activated protein kinase, demonstrated less dependence on the 

human Hsp90 isoform expressed. Differential expression patterns were observed when 

inhibitors, such as radicicol, were selectively introduced to each isoform. It was concluded that 

in yeast and mammalian systems, cellular susceptibility to Hsp90 inhibitors may be dependent on 

alternations to the Hsp90α/β ratio. Heat shock is known to induce such an alteration in this 

isoform ratio.14,45 

Other Hsp90 isoforms include glucose-regulated protein 94 (Grp94) in the endoplasmic 

reticulum and Hsp75/TRAP1 in the mitochondrial matrix.46,47 Hsp75 is unique in both its 

expression of a LxCxE motif,42 which is absent in all other Hsp90 family members, as well as its 

dependence on stress kinases for transcriptional activation.48 Moreover, Hsp75 is structurally 

unique because it lacks the highly charged hinge region located in the N-terminal domain of the 

other isoforms.42,47 A recent report added Hsp90N to the Hsp90 family and revealed its role to be 

associated with cellular transformation. It has been proposed that the newly discovered Hsp90N 
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represents a recent Hsp90α gene rearrangement.49 Although Hsp90N shares high sequence 

homology with the α and β isoforms, it lacks the 25 kDa N-terminus.49 Structures of the five 

Hsp90 isoforms are summarized and compared in Figure 3.14 

 

Figure 3. Summary of various Hsp90 isoforms.14,40 

There is selective dimerization amongst the two cytosolic isoforms. The two dominant 

isoforms differ in their ability to dimerize, with the α form doing so readily and the β with much 

less efficiency.40 Upon dimerization, Hsp90 exists mainly as a constitutive dimer (αα or ββ), but 

monomers (α or β), heterodimers (αβ) and higher oligomers of both isoforms may also exist.40 

Dimerization is dependent upon the last 190 amino acids in the C-terminus.47,49 This C-terminal 

dimerization is essential for efficient ATP hydrolysis and dependent on both intra- and inter-

domain interactions for its formation and stability.50 16 amino acids located in the 561-685 

amino acid region of the C-terminal dimerization domain were suggested to be responsible for 

dimerization of Hsp90β.51 Kobayakawa and co-workers defined which specific amino acid 

substitutions impeded dimerization and explained the results in terms of the differences between 

the two major isoforms.14,52 

In addition to the structures of the isolated domains have been published previously, the 

full length crystal structure of the closed chaperone complex of yeast Hsp90 bound to nucleotide-
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p23/Sba1 was published in 2006 by Ali and associates. The crystal structure was solved in 

complex with a non-hydrolyzable ATP analogue and the Hsp90 co-chaperone p23/Sba1. This 

crystal structure revealed several novel aspects of Hsp90 which were previously unknown. 

Firstly, the complex architecture of the ‘closed’ state of Hsp90 was elucidated. In addition, the 

experimentally described interactions between Hsp90 and partner proteins were confirmed. 

Moreover, a detailed conformational change in the N-terminal domain was demonstrated to 

result from ATP binding in the closed, ATP-bound state. Finally, the structural and stabilizing 

role of co-chaperone p23/Sba1 in the ATP-bound closed dimer state was clarified. This closed 

Hsp90 state was shown to provide a binding surface for protein substrates rather than enclosing 

them. Formation and disruption of this surface was found to be directly coupled to the Hsp90 

ATPase cycle. The full-length crystal structure verified the widely accepted ATPase-coupled 

molecular clamp mechanism and structurally elucidated the ATP-dependent activation of Hsp90 

client proteins. In contrast to the closed ATP-bound state, the relaxed, structurally unconstrained 

structure was described as a continuum between C-terminally dimerized conformations.14,25 

In addition to the crystal structure of Hsp90 bound to p23/Sba1, the structures of other 

Hsp90 complexes have been published. The structure of the Hsp90-Cdc37-Cdk4 complex was 

published by Vaughan and co-workers in 2005. The 3D structure of this complex was 

determined by single-particle electron microscopy. This study helped elucidate the locations of 

Cdc37 and Cdk4 in the complex as well as the link between conformational changes in the 

kinase and the Hsp90 ATPase cycle.53 Another important structure, solved by Meyer and co-

workers, was that of Aha1 bound to Hsp90. Aha1 plays an important role in stimulating the 

ATPase activity of Hsp90. Through a crystal structure of the N-terminal domain of Aha1 in 

complex with the middle segment of Hsp90, it was confirmed that this activity is mediated 
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through an interaction between Aha1 and the central segment of Hsp90. This binding promotes a 

conformational switch in the middle-segment catalytic loop and enables the interaction of the N-

terminus with ATP.14,33 

More recently, Bron and co-workers reported the solution structures of two open 

conformational states of eukaryotic Hsp90. This group presented the first nucleotide-free 

structure of the full-length chaperone and confirmed that, in solution, apo-Hsp90 is in 

conformational equilibrium between two states. Switching between the two Hsp90 

conformations was described to require movement of the N-terminal and middle domains around 

two flexible hinge regions. Due to the intrinsic flexibility and dynamic nature of the Hsp90 dimer 

observed, Bron and associates challenged the accepted ATPase cycle and proposed an alternative 

mechanism for chaperone activity.14,54 

 

III. Hsp90 as a Molecular Chaperone 

 Eukaryotic Hsp90 is constitutively expressed under normal conditions,55 and significantly 

overexpressed upon exposure to stress. Stress to the cell, including elevated temperature, non-

physiological pH, nutrient deprivation and malignancy, results in the accumulation of misfolded 

proteins and increased translation of new proteins.21 Heat shock proteins are overexpressed to 

refold both denatured and newly synthesized polypeptides into their native conformation.14,55-57 

The induction of the molecular chaperones Hsp27, Hsp40 and Hsp70 depends on Hsp90.4 

Release of heat-shock transcription factor 1 (HSF1) is responsible for this Hsp upregulation. 

While Hsp90 is bound to HSF1 in resting cells, it dissociates upon cellular stress and is 

translocated to the cell nucleus. Once in the nucleus, HSF1 is phosphorylated and then undergoes 
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trimerization.58,59 The activated HSF1 trimer binds to heat shock response elements (HSE), the 

consensus sequence for Hsp promoters,60 and elicits transcription of Hsps.14 

 After the synthesis of single-stranded polypeptides by the ribosome, nascent polypeptides 

have the propensity to aggregate through interactions between amino acid side chains. This 

aggregation is prevented through the action of molecular chaperones. Because of their role in the 

transformation of linear polypeptides into tertiary and quaternary structures, chaperones are 

considered essential for the second half of the genetic code.61 Linear polypeptides released from 

the ribosome are subsequently bound by the promiscuous molecular chaperone, Hsp70, in 

complex with ATP and Hsp40. The bound ATP is then hydrolyzed to stabilize and prevent 

aggregation of these proteins.14,61 

Hsp70 interacting protein (HIP), subsequently, binds to and stabilizes the Hsp70-ADP-

client complex. BAG (Bcl2-associated athanogene) homologues, on the contrary, cause the 

dissociation of this Hsp70-protein complex by stimulating exchange of ATP for ADP and 

polypeptide release.21 Hsp90-Hsp70 organizing protein (HOP), which contains highly conserved 

tetratricopeptide repeats (TPRs), unites the Hsp70-protein complex with Hsp90, thus forming a 

multiprotein complex .62 HOP has been shown to interact with the Hsp90 C-terminus through its 

TPR domain as well as at additional sites in the middle domain of Hsp90. Onuoha and co-

workers utilized biophysical analysis of the structure and binding of HOP to Hsp90 using a 

variety of truncation mutants of both the client and chaperone. Their results confirmed that while 

the primary binding site of HOP is the C-terminal MEEVD peptide, binding also occurs at 

additional sites in the C-terminal and middle domains.63 Immunophilins, co-chaperones, and 

partner proteins bind to the newly formed heteroprotein complex and facilitate the transfer of 

client proteins from Hsp70 to Hsp90. Simultaneously, Hsp70, HIP and HOP are released from 
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the complex.64 The action of immunophilins, such as FKBP51, FKBP52 and CyP-40, or PP5 

enable cis/trans peptidylprolylisomerase activity and form a heteroprotein complex that 

represents the activated Hsp90 protein folding machine.64-66 Figure 4 summarizes essential co-

chaperones and partner proteins involved in the protein folding mechanism of Hsp90 and 

highlights those participants containing a TPR domain.14 
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Figure 4. Co-chaperones and partner proteins involved in Hsp90 protein folding.14,67,68 

At this point of the folding process, ATP binds to the open conformation and Hsp90 

clamps around the client protein substrate resulting in a closed clamp.69 It is at this stage of the 

folding process that an inhibitor, instead of ATP, can bind competitively to the multiprotein 

complex, and cause destabilization of the heteroprotein complex, which will transform it into a 

substrate for the ubiquitin-proteasome pathway. During the protein folding cycle, ATP 

hydrolysis occurs through the binding co-chaperone p23 to the ATP-bound Hsp90 multiprotein 
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complex. Co-chaperone p23 is also responsible for stabilizing this clamped, high-affinity client-

bound Hsp90 conformation. The bound client protein is then folded into its three-dimensional 

structure by this complex. Release of the folded protein has not been fully characterized, but is 

thought to also be stimulated by p23.2 Once the mature protein is released, Hsp90 can reenter the 

next catalytic protein folding cycle. The schematic diagram shown in Figure 5 represents a 

simplified Hsp90-mediated protein folding mechanism. This process has been shown to utilize 

more than 20 associated proteins for the maturation of various clients.1,14,21,70-76 

 

Figure 5. Proposed Hsp90-mediated protein folding mechanism.14 
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IV. Description of the C-terminal ATP Binding Pocket 

 The existence of a second ATP binding site on the Hsp90 carboxyl terminus, separate 

from the well-documented N-terminal ATP binding site, has only recently been reported.9,77,78 

Since no co-crystal structure of the Hsp90 C-terminus bound to inhibitors has been published, 

knowledge of the binding pocket is limited, but many hypotheses have been proposed to account 

for its function. The Hsp90 C-terminal domain is known to display chaperone activity 

independent of the N-terminus, as well as mediate dimerization and oligimerization of Hsp90 

monomeric species. Structurally, the C-terminus of Hsp90 contains a conserved pentapeptide 

sequence (MEEVD) that is recognized by co-chaperones.9,79 The co-chaperones that recognize 

this sequence all contain multiple copies of the tetratricopeptide repeat (TPR), a 34 amino acid 

sequence that elicits specific binding to Hsp90.65,80-82 This sequence, though conserved, has been 

reported as dispensable for activity.14,83  

Many groups have used novobiocin to study Hsp90 C-terminal binding, as it was the first 

and remains the most studied inhibitor of the Hsp90 carboxyl terminus.84 Neckers and co-

workers revealed via truncation studies that the novobiocin binding site resides in the Hsp90 C-

terminus, in a region that is proximal to the carboxyl-terminal dimerization domain. Several 

amino-terminal point mutations known to disrupt binding of geldanamycin and radicicol were 

tested for their ability to perturb binding to immobilized novobiocin. These mutants bound 

novobiocin-Sepharose as well as or better than did wild type Hsp90. Moreover, the N-terminal 

Hsp90 fragment containing the ATP-binding site of GDA and radicicol failed to bind. Upon 

demonstration that the amino-terminus did not bind novobiocin, several C-terminal fragments 

were analyzed for novobiocin binding. These fragments revealed that novobiocin binds to a 

carboxyl-terminal Hsp90 fragment containing amino acids 538–728. Moreover, this group 
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demonstrated that novobiocin competes with ATP for binding and that association of the co-

chaperones Hsc70 and p23 with Hsp90 is disrupted by novobiocin. Through immobilization of 

ATP, the same fragments that demonstrated binding to immobilized novobiocin were tested for 

ATP binding. The same fragments that bound novobiocin were also shown to bind ATP, 

demonstrating a competitive nature between the two small molecules. Finally, novobiocin 

preincubation with rabbit reticulocyte lysate, which contains Hsc70- and p23-Hsp90-

multichaperone complexes, caused a marked decrease in the amounts of both p23 and Hsc70 

when co-precipitated with Hsp90. This study confirmed the disruption of co-chaperone binding 

by novobiocin.14,77 

Csermely and co-workers reported that the C-terminal site becomes available for binding 

only after occupancy of the N-terminal site. Moreover, through oxidative nucleotide affinity 

cleavage, this group characterized that while the N-terminal binding site is fairly specific for 

adenine nucleotides, the C-terminus binds both purines and pyrimidines (GTP and UTP 

preferentially).37 Garnier and co-workers utilized isothermal titration calorimetry, scanning 

differential calorimetry and fluorescence spectroscopy to study the interaction of ATP with 

native Hsp90 and its recombinant C-terminal domain. Results clearly demonstrated that a second 

ATP-binding site is present in the carboxyl terminus and that the secondary structure of this site 

may resemble a Rossmann fold.9,85 Garnier and co-workers concluded that the nucleotide-

binding site overlaps with the dimerization domain, which explains the close relationship 

between ATP binding, dimerization, and magnesium-dependent oligomerization.9,14 

Although the Hsp90 C-terminus does not exhibit ATPase activity, it is involved in the 

conformational rearrangement of Hsp90 upon ATP binding.79,86 The ATPase activity of Hsp90, 

which leads to a conformational change of the entire homodimer, is dependent upon the Hsp90 
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C-terminal region to trap the nucleotide during the ATPase cycle.9 Yun and co-workers 

suggested that the conformational switch upon novobiocin binding causes changes to 

Hsp90/cochaperone/client interactions and may be responsible for the observed biological 

activities.86 Complex interactions between the N- and C-terminus is a critical regulatory 

component of chaperone function. Garnier and co-workers have alluded to the cross-talk 

observed as allosteric interactions between the two termini.9,37,87-90 Garnier also observed that 

when a nucleotide is bound to the N-terminus, the molecule exhibits a strong negative impact on 

the binding of nucleotides to the C-terminus. Furthermore, affinity of the truncated C-terminus 

for ATP was higher than that of the entire protein. This result confirms that the presence of the 

amino-terminus negatively affects binding to the carboxyl-terminus and that interdomain cross-

talk occurs. The development of improved analogues should further refine knowledge on the 

Hsp90 C-terminal nucleotide-binding pocket and provide insight into the unique mechanism 

exhibited by Hsp90 during the protein folding process.14,79 

 

V. Inhibitors of the C-terminal ATP Binding Pocket 

A. Novobiocin and analogues 

The coumarin antibiotics novobiocin, chlorobiocin, and coumermycin A1 (Figure 6) have 

been isolated from several streptomyces strains and all exhibit potent activity against Gram-

positive bacteria. These compounds bind to type II topoisomerases, including DNA gyrase, and 

inhibit the enzyme-catalyzed hydrolysis of ATP.79,91-94 As a result, novobiocin analogues have 

garnered the attention of numerous researchers as attractive agents for the treatment of bacterial 

infections. In addition, novobiocin was reported to bind weakly to the newly discovered Hsp90 



 14 

C-terminal nucleotide-binding site (~700 �M in SKBr3 cells) and induce degradation of Hsp90 

client proteins. Structural modification of this compound has led to analogues with 1000-fold 

greater efficacy in anti-proliferative assays against various cancer cell lines.14  

 

Figure 6. Structures of novobiocin, chlorobiocin and coumermycin A1.14 

Co-crystal structures of GyrB bound to novobiocin and ADP revealed that both small 

molecules bind GyrB in a bent conformation,95-97 exactly as Hsp90 binds ADP.23 With the 

observations that novobiocin binds in this bent conformation and also exhibits cytotoxicity,94,98-

101 Neckers and co-workers hypothesized and subsequently proved that it also binds Hsp90. It is 

through binding to Hsp90 that novobiocin exerts its anti-tumor activity against breast cancer 

cells. Using SKBr3 breast cancer cells, Neckers and co-workers demonstrated that 16-hour 

exposure to novobiocin induces degradation of Hsp90-dependent clients ErbB2, mutant p53 and 

Raf-1 in a concentration-dependent manner. The same laboratory eluted truncated Hsp90 from 
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an immobilized novobiocin solid-support and led to the conclusion that, in contrast to all other 

Hsp90 inhibitors that bind to the well-established N-terminal ATP-binding site, only the Hsp90 

C-terminus is capable of binding novobiocin.84 Binding of novobiocin to the C-terminus was 

found to displace inhibitors bound to the Hsp90 N-terminus, a phenomenon that is not reciprocal 

with N-terminal inhibitors.77,84 Allan and co-workers proposed that novobiocin may lead to 

substrate release by inducing a conformational change that results in separation of the 

homodimeric C-terminal domains.14,79  

 

Figure 7. Structural analysis of novobiocin.14 

Two research laboratories have synthesized analogues of novobiocin in an attempt to 

improve upon its poor Hsp90 inhibitory activity.84 Novobiocin is composed of three distinct parts 

upon which modifications can be made: the benzamide side chain, the coumarin core and the 

noviose sugar (Figure 7). The role of each contributing part can be studied through the 

development of analogues to probe specific structure-activity relationships for this molecule. To 

this end, a library of novobiocin analogues published in 2005 reported that A4 (Figure 8), with a 

shortened N-acyl side chain, an absent 4-hydroxy substituent and a missing carbamoyl group on 

the noviose appendage, induced degradation of Hsp90-dependent client proteins at ~70-fold 

lower concentration than novobiocin.15 This study demonstrated that attachment of the noviose 

appendage to the 7-position and an amide linker at the 3-position of the coumarin ring are 
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essential for Hsp90 inhibition.15 To confirm the observed SAR trends elucidated from this 

library, the natural product analogues DHN1 and DHN2 (Figure 8) were prepared and evaluated. 

These molecules were evaluated in several assays, which confirmed that while the 4-hydroxyl 

and 3’-carbamate are essential for DNA gyrase inhibition, they are detrimental to Hsp90 

inhibitory activity.18 Thus, the first selective inhibitors of the Hsp90 C-terminus were born.14 

 

Figure 8. Structures of A4, DHN1 and DHN2.14 

 Compound A4 was found to exhibit unique properties unbenounced previously. A4 

induced Hsp90 levels at concentrations 1000–10000-fold lower than that required for client 

protein degradation and was thus evaluated for neuroprotective activity. A4 was found to 

produce an EC50 at 6 nM and exhibited no toxicity at any concentration tested in a model for 

Alzheimer’s disease.15,102 In contrast to the monomeric species, dimers of A4 (based on the 

structure of coumermycin A1, Figure 9) were found to manifest anti-proliferative activity. This 

study sought to fully investigate variants of A4 through preparation of dimers that were linked 

through meta- and para-phthalic acids and others that contained methylene spacers in the tether. 
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The phthalic acid derivatives were proposed to represent steric mimics of the pyrrole linker 

found in the natural product, coumermycin A1. Unfortunately, the phthalic acid-linked 

derivatives manifested no activity against cell cultures.14 

 

Figure 9. Structures of coumermycin A1 and A4-dimers.14 

Through the synthesis and biological evaluation of methylene linked dimers, the optimal 

tether length and degree of unsaturation were determined. The saturated A4-dimer with a tether 

length of eight carbons was found to be the most potent compound in this series and exhibited 

anti-proliferative activity against two different breast cancer cell lines at low micromolar 

concentrations. The fact that the dimeric species exhibited anti-proliferative activity led to the 

hypothesis that conversion of a nontoxic molecule into a potent anti-proliferative agent was 

accomplished through modification of the amide side chain.103 Consequently, a series of 

monomeric species based on A4 were synthesized and evaluated against a series of cancer cell 

lines. Both biaryl and heterocyclic amide derivatives were prepared to explore potential 

hydrogen-bonding interactions with the putative novobiocin binding pocket that is responsible 

for binding the prenylated benzamide of the natural product. This study led to the first SAR for 
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the amide side chain and led to identification of the biaryl and the 2-indolyl side chains (Figure 

10), both of which exhibited anti-proliferative activity.14,102 

 
 

Figure 10. SAR elucidated for novobiocin.14 

A paper published by Huang and co-workers in 2007 represented the first combinatorial 

library of coumarin analogues aimed at Hsp90 inhibition. The library was designed to probe 

hydrophobic and hydrogen bonding interactions produced by the binding pocket. The analogues 

incorporated previously determined SAR trends as well as strategically placed H-bond 

donors/acceptors.14,104 

Renoir and co-workers were the first to publish studies on the role of noviose in Hsp90 

inhibition. Their structure–activity relationship studies demonstrated that when analogues lack 

the noviose moiety, the inclusion of a tosyl substituent at C-4 or C-7 of the coumarin results in 

Hsp90 inhibition. These analogues were more potent than novobiocin and manifested mid-

micromolar IC50 values.105 A subsequent paper by the same group suggested that Hsp90 
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inhibition can be enhanced by removal of C7/C8 substituents in desnoviose analogues bearing a 

tosyl group at the 4-position. These studies produced inhibitors with simplified coumarins that 

also exhibited mid-micromolar IC50 values.106 A summary of the novobiocin SAR determined 

thus far is summarized in Figure 11.14 

To extend SAR for novobiocin, modified coumarin derivatives of A4 were designed to 

complement and probe interactions typically manifested by the purine ring of ATP. These 

coumarin-modified ring systems possess hydrogen bonding capabilities that mimic those of the 

nucleotide bases, adenine and guanine. In addition, these derivatives contain strategically placed 

hydrogen bond acceptors and donors and alkyl groups of variable size to probe the size and 

nature of the binding pocket. The results from such studies are currently under review and should 

be available in the near future.14 

 
 

Figure 11. Summary of SAR between novobiocin and Hsp90.14 

B. Cisplatin  

Cisplatin (Figure 12) is a platinum-containing chemotherapeutic used to treat various 

types of cancers, including testicular, ovarian, bladder, and small cell lung cancer.107 Most 

notably, cisplatin coordinates to DNA bases, resulting in cross-linked DNA, which prohibits 

rapidly dividing cells from duplicating DNA during mitosis.108-110 In addition to its DNA-
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mediated effects, Sreedhar and co-workers reported that cisplatin binds to the Hsp90 C-terminal 

domain and interferes with nucleotide binding.111 Rosenhagen points to physiological effects as 

indicators of the interaction between cisplatin and Hsp90. The hyperactive Hsp90-androgen 

receptor (AR) in prostate cancer is treated with cisplatin through Hsp90 inhibition. Likewise, 

Hsp90 inhibitors can be used to treat cisplatin-resistance in cells transfected with the Hsp90-

dependent protein kinase v-src.14,112 

 

Figure 12. Structure of cisplatin.14 

Itoh and co-workers reported that cisplatin decreases Hsp90 chaperone activity. They 

applied bovine brain cytosol to a cisplatin-affinity column, eluted with cisplatin and detected 

Hsp90 in the eluent. The results of this study indicated that cisplatin has a high affinity for 

Hsp90. Moreover, through the use of proteolyzed Hsp90 fragments and affinity purification, it 

was demonstrated that cisplatin binds near the C-terminus.113 Upon treatment of neuroblastoma 

cells with cisplatin, Rosenhagen and co-workers observed degradation of the androgen and 

glucocorticoid steroid receptors but not other Hsp90 clients, such as raf-1, lck and c-src. The 

steroid-receptor-specific proteolysis induced by cisplatin suggests that the compound does not 

complex Hsp90 and other client proteins, but rather it specifically inhibits steroid receptor-Hsp90 

complexes.112 Csermely and co-workers determined that the cisplatin binding site is located 

proximal to the C-terminal nucleotide binding site. This study concluded that cisplatin can be 

used to inhibit the in vitro chaperone activity of Hsp90 as well as to efficiently and selectively 

block C-terminal nucleotide binding.14,78 

Acquired resistance to cisplatin can limit its therapeutic potential and many resistance 

mechanisms have been reported.114 These pathways include decreased intracellular drug 
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accumulation, enhanced cellular detoxification by glutathione and metallothionein, altered DNA 

repair and inhibition of apoptosis.114,115 The observed in vivo unresponsiveness of certain tumors 

to cisplatin cannot be explained by these mechanisms, however, pointing to novel pathways 

mediating cisplatin resistance.116,117 Genomic screening in vivo has helped to elucidate the 

mechanisms of both cisplatin toxicity and acquired cisplatin resistance.14,118 

 

Figure 13. Structure of EGCG.14 

C. Epigallocatechin-3-gallate 

EGCG (Figure 13) is a one of the active polyphenolic components found in green tea. EGCG is 

known to inhibit the activity of many Hsp90 client proteins, including telomerase, multiple 

kinases, and the aryl hydrocarbon receptor (AhR). EGCG is also involved in growth factor 

signaling, which involves epidermal and vascular endothelial growth factors as well as 

transcription factors such as AP-1 and NF-κB. Recently Palermo and co-workers demonstrated 

via affinity chromatography that EGCG manifests its antagonistic activity against AhR through 

Hsp90 binding.119 Affinity purification of Hsp90 fragments from immobilized EGCG revealed 

that EGCG binds to the Hsp90 C-terminus. This interaction was reported to occur specifically 

with amino acids 538–728, suggesting that binding takes place at the C-terminal ATP-binding 

site. Unlike previously identified N-terminal Hsp90 inhibitors, EGCG does not appear to prevent 

Hsp90 from forming heteroprotein complexes. Studies are currently underway to determine 

whether EGCG competes with novobiocin or cisplatin binding.14,119 
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Figure 14. Structure of taxol.14 

D. Taxol 

Taxol (Figure 14), a well-known drug for the treatment of cancer, is responsible for the 

stabilization of microtubules and blockage of mitosis.120 Previous studies have shown that Taxol 

induces transcription factors and kinase activation, mimicking the effect of bacterial 

lipopolysaccharide (LPS), an attribute unrelated to its tubulin-binding properties.121 A significant 

amount of evidence suggests that the LPS-mimetic activity of Taxol is independent of β-tubulin 

binding. Thus, Rosen and co-workers prepared a biotinylated Taxol derivative and performed 

affinity chromatography experiments with lysates from both mouse brain and macrophage cell 

lines. These studies led to affinity purification of two chaperones, Hsp70 and Hsp90, by mass 

spectrometry from the mouse brain. In contrast to typical Hsp90-binding drugs, Taxol exhibits a 

stimulatory response, mediating the activation of macrophages and exerting the LPS-mimetic 

effects observed.14,122 

Recently it was reported that the geldanamycin derivative 17-AAG (Figure 15) behaves 

synergistically with Taxol-induced apoptosis. The mechanism by which these two interact is best 

explained as sensitization of tumor cells to Taxol-induced apoptosis by 17-AAG through 

suppression of Akt kinase.123 The use of Hsp90 inhibitors in combination with proapoptotic 

therapies represents an exciting new strategy for chemotherapy.14 
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Figure 15. Structure of 17-AAG.14 

VI. Implications for Hsp90 Inhibitors 

Key roles of Hsp90 involve the folding of client proteins and refolding of aggregated or 

misfolded proteins. These functions of Hsp90 make it an attractive target for the development of 

potential therapeutics. By taking advantage of these roles, Hsp90 can be transformed from a 

mechanism for protein folding to a means of therapy delivery. Moreover, the divergence of these 

functions makes Hsp90 amenable to the treatment of a broad range of disease states (Figure 16). 

Also included in Figure 16 is a summary of the structural modifications to novobiocin that have 

been shown to convert it between a cytotoxic and non-toxic agent.14 

 

Figure 16. Bidirectional approach to Hsp90 modulation.14 
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A. Cancer 

Many proteins responsible for malignant progression within tumor cells are Hsp90-

dependent and more than 40 oncogenic substrates have been identified to date.124 Therefore, 

targeting Hsp90 can simultaneously disrupt all six hallmarks of cancer (Figure 18) and offer a 

unified mechanism for chemotherapy.11 Moreover, Hsp90 is overexpressed in malignant cells, 

and its expression correlates directly with the proliferation of these cells.41,125-127 Hsp90 

inhibitors represent a unique class of compounds that demonstrate high differential selectivity for 

malignant versus normal cells10 at concentrations that are well tolerated by humans.128,129 There 

are currently more than 20 Hsp90-targeted clinical trials in progress and many more inhibitors 

are in preclinical development.14 

The mechanism by which Hsp90 inhibitors exert their anti-cancer effect is by 

competitively binding in the nucleotide binding site. Upon inhibitor binding, the heteroprotein 

complex becomes unable to fold or stabilize client proteins. This unproductive complex becomes 

ubiquitinylated and marked for degradation by the ubiquitin-proteasome pathway. Figure 17 

demonstrates at which step this disruption of the protein folding process occurs.14 

 

Figure 17. Hsp90 inhibition by anti-cancer agents.14 
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Figure 18. Hallmarks of cancer and corresponding Hsp90 client proteins.14,16,130-133 

Figure 18 lists the six hallmarks of cancer as defined by Weinberg as well as associated 

client proteins for each.11 A cell is defined as cancerous only if all six of these hallmarks are 

present. The manifestation of each is mediated through a number of proteins, many of which are 

Hsp90-dependent. The proteins associated with the first two hallmarks are those which facilitate 

and/or inhibit mitogenic signaling. Those listed with the third hallmark inhibit programmed cell 

death by preventing normal apoptotic pathways from killing the transformed cell. Telomerase 

enables DNA replication without harming valuable genetic material and thus provides 
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immortality.134 Hallmark five is related to the recruitment of vasculature, a process which is 

directly regulated by several Hsp90 clients. Finally, several Hsp90-dependent clients enable 

metastasis, leading to the spread of cancer from the initial tumor site to other parts of the body.14 

While many of these proteins are associated with only one hallmark of cancer, other 

Hsp90-dependent proteins fall into many. The Hsp90 client HDAC6 is involved with the control 

of gene expression through deacetylation of histones, many of which are Hsp90 clients as well. 

Deacetylation of histones causes DNA to become too tightly wound, inhibiting gene expression. 

Therefore, inhibition of this deacetylation may lead to the increased expression of genes 

responsible for tumor suppression. Moreover, HDAC6 inhibition can inhibit cancer cell 

proliferation, induce apoptosis and block tumor angiogenesis.135 Similarly, the SMYD family of 

proteins also contains several Hsp90-dependent clients which are directly related to modification 

of histones. SMYD1, SMYD2 and SMYD3 are histone methyltransferases which act much like 

HDACs in their ability to alter gene expression.136,137 Inhibition of these Hsp90-dependent 

proteins will lead to the same anti-cancer effects as associated with histone deacetylase 

inhibition.14 

Akt is another Hsp90-dependent protein which is associated with several hallmarks of 

cancer. Akt (protein kinase B) is a serine/threonine kinase involved in signal transduction 

pathways that has implications in self-sufficiency of growth signals, evasion of apoptosis and 

sustained angiogenesis. Inhibition of apoptosis by Akt is accomplished through inhibition of a 

number of proapoptotic proteins, such as kinase ASK1,138 glycogen synthase kinase 3, BAD, 

caspase 9 and Forkhead transcription factors.139-142 Moreover, through interaction with 

phosphatidylinositol-3 kinase (PI3K), Akt signaling regulates many angiogenic growth factors 

involved with recruitment of vasculature.143 The PI3K-Akt interaction is responsible for an 
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important cell survival signal pathway that is targeted by many anti-cancer drugs.144 The ability 

of Hsp90 inhibitors to disrupt the many associations of Akt with oncogenic pathways has 

generated much interest in studying the interaction between Akt and Hsp90.14 

The receptor tyrosine kinase c-Met is another example of an Hsp90-client that is involved 

with several of the hallmarks defined by Weinberg. This kinase plays important roles in cell 

growth, apoptosis, angiogenesis and apoptosis145 and thus can be categorized as fitting into 

several hallmarks. Met is overexpressed and mutated in a variety of cancers, and its function and 

stability depend on Hsp90. Hsp90 inhibitors, such as geldanamycin, have been shown to block c-

Met oncogenic signaling.146-148 Clinical trials are under way to study the effects of such 

inhibitors in a variety of cancers that demonstrate an overactive c-Met pathway.14,149 

Although the anti-cancer drug effects of many Hsp90 inhibitors have been previously 

ascribed to the specific inhibition of growth-related (tyrosine) protein kinases, a more 

complicated mechanism has been recently suggested. MAP kinases, which play an important role 

in cellular signaling, have been known to be activated by various stresses and growth stimuli.150-

157 The recently identified and cloned member of the MAP kinase superfamily, MOK, was found 

to be Hsp90-dependent for its intracellular stability and solubility. The Hsp90/Cdc37 complex 

that binds MOK specifically binds closely related protein kinases MAK and MRK, but not 

conventional MAP kinases, such as ERK, p38 and JNK.158 With the knowledge that Hsp90 

inhibition leads to degradation of certain other kinases, such as MOK, it was concluded that 

molecular chaperones play an essential role in the stability of signal transuding protein kinases. 

This role may be directly related to the anti-cancer effects observed upon introduction of Hsp90 

inhibitors.14 
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The more than 40 client proteins associated with oncogenesis include proteins from the 

classes of transcription factors, kinases, and other proteins..21,47,125-127 Many of these proteins are 

individually sought after anti-cancer targets for which therapies have been developed. While 

many of these proteins can be associated with a specific hallmark of cancer as defined by 

Weinberg, other examples exist that regulate factors upstream to cancer development. Oncogenic 

proteins like Mdm2 and SV40 large T-antigen are associated with tumor suppressor genes. These 

Hsp90-dependent proteins play essential roles in regulating p53, a tumor suppressor which is 

commonly mutated in many cancers. Ral-binding protein 1 is another example of an oncogenic 

Hsp90-dependent protein. This protein interacts with RalA and RalB, both or which are 

associated with Ras and many signaling pathways directly related to the malignant phenotype. 

Hsp90 inhibitors, therefore, offer the opportunity to treat cancer through disrupting many targets 

at different stages as it advances, further increasing their utility to treat a variety of cancers. The 

possibility to disrupt many targets is also what gives Hsp90 inhibition its seemingly divergent 

role in the treatment of neurodegenerative diseases.14 

 
 

Figure 19. Hsp90 inhibition by neuroprotective agents.14 
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B. Neurodegenerative diseases 

The accumulation of misfolded proteins that result in plaque formation causes 

neurodegenerative diseases including Alzheimer’s, Parkinson’s, Huntington’s, and prion 

disease.13 Hsp90 is a major molecular chaperone responsible for the rematuration, 

disaggregation, and resolubilization of these misfolded proteins and their aggregates. Hsp90 

inhibitors can lead to Hsp induction, refolding of aggregated proteins and provide 

neuroprotective activities via this mechanism.159 Figure 19 summarizes this role of Hsp90 as it 

fits into the generally accepted protein folding scheme.14 

 There are several Hsp90-dependent proteins with roles within the central nervous system 

related to disease states. Tau proteins are associated with microtubules and are abundant in 

neurons within the central nervous system. These proteins promote tubulin assembly into 

microtubules and the different Tau isoforms stabilize these microtubules, often after 

phosphorylation by a series of kinases. Hyperphosphorylation of the Tau protein results in the 

self-assembly of filament tangles, which are involved in the pathogenesis of Alzheimer’s 

disease.160 This aggregation of Tau protein into neurofibrillary tangles has also been associated 

with diseases such as progressive supranuclear palsy, corticobasal degeneration, and Pick’s 

disease.14,161 

 Soluble protein levels correlate well with high levels of Hsp90. In contrast, high levels of 

granular Tau oligomers (Tau filaments and intermediates) have been observed when Hsp levels 

are low. Although it has been suggested that Hsp90 functions to regulate levels of soluble Tau 

levels, the chaperone system can become saturated.162 Chiosis and co-workers studied Tau 

hyperphosphorylation as the direct result of the aberrant activation of several kinases, such as 

cyclin-dependent protein kinase 5 (cdk5) and glycogen synthase kinase-3β. The group 
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specifically studied the cdk5/p35 kinase complex, demonstrating in mice that cdk5 inhibitors 

reduce Tau hyperphosphorylation and apoptosis in neurons.163,164 In addition to abnormal 

phosphorylation of Tau by kinases, the accumulation of aggregated Tau in several tauopathies 

has been linked to mutations in human Tau isoforms on chromosome 17.164-166 Chiosis and co-

workers demonstrated that the expression of the most common mutation, TauP301L, can be 

suppressed to inhibit neuronal loss and led to function improvement in mice. Both cdk5/p35 and 

TauP301L were cited as clients that require Hsp90 assistance for their stability and proper 

function.14,167 

Another Hsp90-dependent client associated with neurological disease is alpha-synuclein. 

This protein is found predominantly at presynaptic terminals in neural tissue, but its primary 

function remains unknown. Although it is usually a soluble protein, alpha-synuclein can 

aggregate to form insoluble fibrils in diseases characterized by Lewy bodies, such as Parkinson’s 

disease, dementia with Lewy bodies and multiple system atrophy.168 An alpha-synuclein 

fragment, the non-Abeta component (NAC), is also found in the amyloid plaques associated with 

Alzheimer’s disease.14,169 

Hsp90 offers a new range of therapies for treating neurodegenerative diseases. Whether 

through the induction of Hsp90 to allow refolding of denatured or aggregated proteins or through 

directly inhibiting clients related to neurodegeneration, Hsp90 offers a unique target for therapy. 

Hsp90 modulators have already demonstrated efficacy in the treatment of neurodegenerative 

diseases and represent an exciting avenue for the development of clinical drugs to slow the 

progression of and cure these debilitating diseases.14 
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VII. Conclusion and Future Directions in the Field of C-terminal Inhibition 

 Mechanistic implications for targeting the Hsp90 protein folding machinery continue to 

evolve at a high rate. Newly identified client proteins and co-chaperones have led to additional 

biological targets that can be modulated by small molecules that bind Hsp90. Crystal and co-

crystal structures of nearly the entire Hsp90 scaffold have provided significant advancements in 

the field. These structures allow for a more precise understanding of the protein and provide a 

scaffold upon which rationally-designed inhibitors can be developed. Biochemical and 

spectroscopic techniques, molecular modeling and inhibitor design have indirectly revealed 

much about the C-terminus, but much remains speculative without confirmation through co-

crystal structures. The mechanism of action for C-terminal inhibitors will finally be clarified 

through further understanding of the C-terminal structure and its nucleotide binding site. Thus, 

although considerable advancements have been made, continued efforts that focus on the Hsp90 

C-terminus are required to fully understand the Hsp90 protein folding machine and its potential 

role against various diseases.14 
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Chapter II 

Studies on the Novobiocin Coumarin Core 

I. Introduction 

 Research groups have attempted to develop analogues of novobiocin that improve its 

comparatively poor Hsp90 inhibitory activity.84 A library of novobiocin analogues disclosed in 

2005 demonstrated that A4 (Figure 20) induced degradation of Hsp90-dependent client proteins 

at ~70-fold lower concentration than novobiocin.15 Notably, this study highlighted that 

attachment of the noviose moiety to the 7-position and an amide linker at the 3-position of the 

coumarin ring are critical for anti-Hsp90 activity.15 To confirm the observed SAR trends 

elucidated from this library, two natural product analogues were prepared and evaluated, DHN1 

and DHN2 (Figure 20). Upon evaluation of these molecules in several assays, it was confirmed 

that the 4-hydroxyl and the 3’-carbamate are detrimental to Hsp90 inhibitory activity, but critical 

for DNA gyrase inhibition.18 

 

Figure 20. Structures of A4, DHN1, and DHN2 versus novobiocin. 15,18 
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 While several publications have focused on the goal of enhancing the understanding of 

the benzamide side chain, these initial reports involving A4, DHN1 and DHN2 represent the 

only reports to examine specifically the coumarin core.102,103 The goal of expanding our 

knowledge and the development of SAR for the novobiocin coumarin core, a rational approach 

toward coumarin analogues was proposed. It was anticipated that manipulation of the coumarin 

nucleus could result in enhanced potency and efficacy, leading to the development of novel 

novobiocin analogues with greater promise. 

 
 

Figure 21. Summary of coumarin-replacement strategy.170 

II. Initial efforts to explore the novobiocin coumarin core 

 Although the Hsp90 C-terminus does not exhibit ATPase activity, it does play a critical 

role in conformational rearrangement upon ATP binding.79 To further explore SAR, derivatives 

of A4 with variations to the coumarin scaffold were designed to probe the importance of 

interactions typically manifested by the purine ring (Figure 21). A purine ring was chosen as the 

model system since the C-terminal site is known to bind nucleotides, with a partiality for GTP 

and UTP.37 The coumarin-derived motifs possess hydrogen bonding capabilities similar to the 

nucleotide bases adenine and guanine, and contain strategically placed hydrogen bond acceptors 

and donors and alkyl groups of variable size to probe the size and nature of the complementary 
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binding pocket. The design, synthesis and evaluation of such compounds are described in the 

next section. 

 

A. Design of novobiocin analogues with modified coumarin cores 

 To elucidate structure-activity relationships for the coumarin ring system of novobiocin, 

we envisioned construction of novobiocin analogues with modified coumarin cores. As shown in 

Scheme 1, the derivatives were assembled in a modular fashion allowing sequential coupling of 

noviose and a series of benzoic acids with the modified coumarin cores.170 We previously 

demonstrated that the trichloroacetimidate of noviose carbonate couples readily to coumarin 

phenols in good yield, to afford the corresponding α-anomer.171 The benzoic acids selected were 

based upon previously obtained SAR for the amide side chain as described by Burlison and co-

workers.102 

 

Scheme 1. Retrosynthesis of novobiocin analogues.170 

 The coumarin scaffolds were designed to complement interactions present on the purine 

nucleus, via probing the importance of hydrogen bond donor and acceptors in positions 

surrounding the aromatic ring system. Rationale for these analogues is based on the identification 

of additional interactions with the nucleotide-binding domain that typically binds the 
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corresponding purine substrate and may lead to enhanced inhibitory affinity for these 

compounds.170 Minor perturbations were made on each analogue; however, the addition of one 

hydrogen bond can produce 1-2 kcal/mol of binding energy and thus increase binding by 10-

fold.172 Therefore, these complementary interactions can exhibit a substantial impact on binding 

and subsequent inhibition. While it has been demonstrated that the N-terminal site is fairly 

specific for adenine nucleotides, the C-terminal site has been shown to be more promiscuous, 

and binds both purines and pyrimidines. Unlike the N-terminus, which specifically binds 

adenine, GTP and UTP are specific C-terminal substrates.37 Based on these previous studies, 

mimics of the guanosine nucleus were chosen to take advantage of this differential. Hydrogen-

bond acceptors were placed at the 5-, 6- and 8-positions of the coumarin ring to mimic those at 

the 6-, 7- and 3-positions of guanine, respectively (Figure 22). Additionally, analogues bearing 

modification to the coumarin lactone were constructed to probe the importance of hydrogen bond 

donors/acceptors as well as to potentially improve upon the solubility of the novobiocin scaffold. 

The activity of such compounds is likely to provide insight into the interactions that are essential 

or those that can be further optimized.170 

 

Figure 22. Complementarity of GTP and coumarin analogues.170 

 There is limited knowledge regarding the shape and dimension of the pocket since 

discovery of the C-terminal binding site is a recent achievement, and no Hsp90 co-crystal 
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structure bound to C-terminal inhibitors exists. Therefore, several analogues were designed to 

probe the pocket at positions that potentially project into unoccupied regions. Alkyl and aryl 

groups of variable size were attached at the 5-, 6- and 8-positions of the coumarin ring to 

maximize putative hydrophobic interactions and to optimize affinity. A methoxy group was 

attached at the 5-position of the coumarin ring, while methoxy, propoxy, and isopropoxy ethers 

were installed at the 6-position. Methyl, methoxy, benzyl and phenyl substituents were placed at 

the 8-position, offering a variety of possible interactions with residues within this region of the 

pocket. The culmination of structure–activity relationships elucidated by such compounds is 

likely to provide a platform upon which improved analogues can be sought.170 

 

Figure 23. Proposed coumarin, quinoline and naphthalene analogues. 

 As seen in Figure 23, great diversity was incorporated into the various analogues 

designed as part of this study. While R1 groups were selected based upon their demonstrated 

cytotoxic efficacy in the aforementioned benzamide study, rationale for substituents installed at 

the other positions varies.102 A methoxy group was placed at the 5-position of the coumarin ring, 

corresponding to the 6-position carbonyl of the guanine ring, to probe if there is a potential 

hydrogen bonding network in this portion of the binding pocket. Choices for R3 were focused on 
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investigating the space into which the 6-position of the coumarin and 7-position of guanine 

extend. Firstly, ethers were chosen because of their incorporation of an electronegative oxygen, 

which can accept hydrogen bonds like the nitrogen found at the corresponding position of the 

purine ring. Moreover, groups of increasing bulk were incorporated to explore the space and 

potentially capitalize on interactions with hydrophobic residues. 

 Next, R4, which corresponds to the 8-position of the coumarin ring and 3-position of 

guanine, was outfitted with a number of substituents with variable goals. While a methyl group is 

consistent with the substituent found at this position in novobiocin, a methoxy group more 

closely mimics the hydrogen bonding capability of the nitrogen found at the corresponding 

position of the guanine ring. In contrast, bulky ethyl, phenyl and benzyl substituents were 

installed with the aim of capitalizing on additional interactions with hydrophobic residues to gain 

binding affinity. Within the naphthalene and quinoline systems, R7 sought to explore the 

importance of hydrogen bonding to the amide nitrogen and whether another bulky substituent 

was well tolerated at this position. Position X was varied to probe the importance of the 

coumarin lactone in binding. While it is envisioned that the quinoline would exclude one 

potential hydrogen bond, the naphthalene core would offer a comparison that lacked the ability 

to hydrogen bond at this position. 

 

1. Syntheses of 5-, 6-, and 8-alkyl(oxy) novobiocin analogues 

 To prepare the resorcinol precursors with substitutions at the 4-position, which result in 

coumarin ring systems with appendages at the 6-position, the phenols of benzaldehyde 1 were 

protected as the corresponding ethers (Scheme 2). The resulting benzaldehydes (2a–b)173 were 

converted to their formate esters via Dakin oxidation, and then hydrolyzed to afford phenols 3a–
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b.174,175 O-Alkylation with the requisite alkyl iodide proceeded in good yield and generated a 

series of protected 4-substituted resorcinolic ethers (4a–c). Ortho-lithiation of 4a–c, followed by 

alkylation with methyl iodide provided the 2-methyl protected resorcinols, 5a–c.176 

Deprotection177 of the alkoxy ethers by exposure to acidic conditions gave resorcinols 6a–c.170 

 

Scheme 2. Syntheses of 4-substituted resorcinols. OEOM = OCH2OEt.170 

 To generate resorcinol precursors with substitutions at the 5-position, the phenols of 5-

methoxy resorcinol 7 were once again protected as the corresponding alkoxy ethers, 8 (Scheme 

3). Ortho-lithiation of 8, followed by treatment with methyl iodide, led to installation of a methyl 

group at the 2-position of 9.176 Acidic deprotection177 was employed to afford resorcinol 10.170 

 

Scheme 3. Synthesis of 5-substituted resorcinol.170 

 To synthesize the resorcinol precursors with aryl substituents at the 2-position, the 

phenols of resorcinol 11 were protected as the corresponding alkoxy ethers, 12 (Scheme 4). 
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Subsequent ortho-lithiation of 12, followed by the addition of benzyl bromide provided the 

benzyl derivative, 13.176 Removal of the ether protecting groups177 gave diphenol 14.176 The 

anion of resorcinol 12 was also employed to construct the corresponding 2-iodide via reaction 

with iodine to yield 15.178 A Suzuki coupling in the presence of biaryl ligand S-Phos,179 was used 

to generate biaryl 16, which underwent deprotection177 to provide 17.170 

 

Scheme 4. Syntheses of 2-substituted resorcinols.170 

 To generate resorcinol precursors with alkyl substitutions at the 2-position, pyragallol 

(18) was O-alkylated with methyl iodide to generate 2-methoxy resorcinol amongst an 

inseparable mixture of regioisomers (Scheme 5). The mixture was subsequently subjected to 

coumarin formation and the corresponding products isolated.170 Preparation of 2-ethyl resorcinol 

(21) from 2,6-dihydroxyacetophenone (20) was accomplished according to published 

procedures.180 
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Scheme 5. Synthesis of 2-methoxy resorcinol and 2-ethyl resorcinol.170,180 

 
 Once resorcinols 6a–c, 10, 14, 17, 19, and 21 were obtained, the corresponding 

coumarins 23a–h were synthesized through a modified Pechmann condensation with eneamine 

22 as previously described.181,182 The resulting coumarin phenols were noviosylated with the 

trichloroacetimidate of noviose cyclic carbonate (24) in the presence of catalytic boron 

trifluoride etherate to generate scaffolds 25a–h in good yield.171 The benzyl carbamate was 

removed via hydrogenolysis to produce the aminocoumarin, which was readily coupled with 

preselected benzoic acids in the presence of N-(3-dimethylamino-propyl)-N’-ethylcarbodiimide 

hydrochloride (EDCI) and pyridine. Benzoic acids were chosen based on previously determined 

SAR trends reported by Burlison and co-workers.102 The cyclic carbonates were treated with 

triethylamine in methanol to give the solvolyzed products, 26a–p in moderate to good yield over 

three steps (Scheme 6). The ethyl coumarin and corresponding derivatives were synthesized by a 

co-worker as part of this study.170  
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Scheme 6. Preparation of 5-, 6-, and 8-modified novobiocin analogues.170 

2. Syntheses of quinoline- and naphthalene-containing novobiocin analogues 

 Novobiocin analogues containing a quinoline or naphthalene ring in lieu of the 8-

methylcoumarin of novobiocin were synthesized to probe the importance of the coumarin lactone 

moiety in binding the Hsp90 C-terminus, as well as to potentially circumvent the limited 

solubility of coumarin-containing analogues. Preparation of the quinolone and naphthalene cores, 

followed by appendage of the biaryl side chain and noviose was accomplished by a co-worker as 

part of this study.170 

 

3. Biological evaluation of novobiocin analogues with modified coumarins 

 Upon construction of the library of novobiocin analogues, the compounds were evaluated 

for anti-proliferative activity against SKBr3 (estrogen receptor negative, Her2 over-expressing 

breast cancer cells), MCF-7 (estrogen receptor positive breast cancer cells), LNCaP (androgen 

receptor sensitive prostate cancer cells) and PC-3 (androgen receptor insensitive prostate cancer 
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cells) cell lines. As shown in Table 1, the 6-substituted analogues containing the biaryl side chain 

(26a–26c) were 3- to 7-fold less active against the two breast cancer cells than analogues 

containing hydrogen at this position.38 These analogues were more active against prostate cancer 

cells than breast cancer cells versus the corresponding 6-H derivative. For reasons that remain 

unclear, the putative binding pocket for biaryl-containing analogues does not appear to tolerate 

incorporation of steric bulk at the 6-position. Analogues containing the 2-indole side chain (26i–

26k) were consistently more active than their corresponding biaryl derivatives, in-line with 

previously-observed trends.38 Analogue 26j, containing a 6-propoxy-coumarin, was consistently 

the most potent derivative in this library exhibiting 2-fold enhanced potency relative to its 6-H 

analogue against LNCaP cells.170  
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Table 1. Anti-proliferative activities of coumarin-derived novobiocin analogues.170 

Compound R1 R2 R3 R4 MCF-7      

(IC50, μM) 

SKBr3      

(IC50, μM)   

PC-3         

(IC50, μM) 

LNCaP     

(IC50, μM) 

26a biaryl H OMe Me > 100a 58.8 ± 1.3 35.4 6.6 

26b biaryl H OPr Me > 100 > 100 5.6 ± 5.7 3.0 ± 0.6 

26c biaryl H OiPr Me 66.9 ± 3.1 58.6 ± 5.4 60.7 ± 9.1 14.4 ± 4.2 

26d biaryl OMe H Me 82.8 55.7 ± 6.9 11.3 ± 2.0 2.0 ± 0.8 

26e biaryl H H Bn > 100 > 100 > 100 49.7 ± 25.0 

26f biaryl H H Ph > 100 17.3 ± 3.4 > 100 1.0 ± 0.1 

26g biaryl H H OMe 9.0 ± 5.4 13.9 ± 1.2 2.3 ± 2.9 1.1 ± 0.1 

26h biaryl H H Et 41.7 ± 14.0 28.6 ± 1.1 1.8 ± 0.6 1.6 ± 0.3 

26i 2-indole H OMe Me 24.4 ± 1.2 25.1 ± 7.7 20.2 ± 9.8 10.5 ± 0.3 
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26j 2-indole H OPr Me 2.1 ± 0.1 2.1 ± 0.8 6.2 ± 1.8 1.8 ± 0.7 

26k 2-indole H OiPr Me 20.0 ± 1.0 20.7 ± 0.4 11.9 11.4 

26l 2-indole OMe H Me 6.1 ± 1.7 9.0 ± 0.8 11.8 ± 1.3 12.9 ± 4.4 

26m 2-indole H H Bn 13.2 ± 0.6 38.0 ± 3.0 73.3 ± 3.7 67.6 ± 6.3 

26n 2-indole H H Ph 22.9 ± 2.1 38.8 ± 8.3 28.0 ± 12.1 27.6 ± 10.8 

26o 2-indole H H OMe > 100 9.7 ± 1.0 > 100 > 100 

26p 2-indole H H Et 4.3 ± 2.5 4.3 ± 3.4 > 100 > 100 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 

 

 By comparison, incorporation of a hydrogen-bond acceptor at the 5-position (26d, 26l) 

resulted in equivalent or decreased activity versus corresponding 6-H analogues, especially 

against both breast cancer cell lines.38 In general, 5-methoxy functionalized coumarins do not 

appear beneficial for anti-proliferative activity.170 

It was previously demonstrated that 8-methyl analogues were ~10-fold more active than 

the corresponding 8-hydrogen derivatives.38 To further elaborate upon this trend, a larger 

selection of 8-fuctionalized coumarins were evaluated. Incorporation of an 8-methoxy (26g) led 

to 2-fold improved activity over its 8-methyl counterpart, and 5-fold increased activity over the 

similarly-sized 8-ethyl derivative 26h. Introduction of steric bulk (26e, 26f) generally decreased 

anti-proliferative activity, especially against MCF-7 cells. It appears that while short alkoxy side 

chains take advantage of putative interactions, steric bulk appears detrimental to inhibitory 

activity at this location. A similar trend was observed against prostate cancer cells, with 26g and 

26h exhibiting 10-fold increased activity versus their 8-methyl counterparts.38 Surprisingly, 8-

benzyl 26e was more than twice as active as the 8-methyl derivative against LNCaP cells. In 

contrast, 8-position analogues containing the 2-indole side chain (26m–26p) did not exhibit 
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similar, consistent trends against prostate and breast cancer cells. Against breast cancer cells, 

compounds 26m, 26n, and 26p exhibited significantly reduced activity versus the 8-methyl 

derivative. The 8-methoxy 26o was inactive against MCF-7 cells, while both 26o and 26p were 

inactive against both PC-3 and LNCaP cells. The selectivity of 26o and 26p for breast cancer 

cells versus prostate cancer cells is intriguing and requires further investigation.170 
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Table 2. Anti-proliferative activities of quinoline and naphthalene novobiocin analogues.170 

Compound R1 R7 X MCF-7      

(IC50, μM) 

SKBr3        

(IC50, μM) 

PC-3           

(IC50, μM) 

LNCaP       

(IC50, μM) 

29a biaryl 4-OMe-Bn N > 100a > 100 > 100 > 100 

29b biaryl H N 13.1 ± 4.1 16.5 ± 6.2 17.6 ± 4.6 14.2 ± 0.4 

29c biaryl 4-OMe-Bn CH > 100 > 100 > 100 > 100 

29d biaryl H CH 46.4 ± 5.3 38.9 ± 2.4 10.9 ± 0.7 19.6 ± 1.6 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 

 

As shown in Table 2, compounds 29a and 29c containing the p-MeOBn-alkylated amides 

did not exhibit anti-proliferative activity against the cell lines tested. This is in contrast to 

analogues 29b and 29d lacking the p-MeOBn functionality, which manifested modest 

antiproliferative activity. This stark difference suggests one of two scenarios regarding the role 

of the p-MeOBn functionality; either the p-MeOBn group of tertiary amides 29a and 29c is 

unable to occupy the same pocket as the 4-aryloxy substituted novobiocin analogues60,61 or more 

simply, the secondary amide is required for benzamide-containing novobiocin analogues to 

manifest anti-proliferative activity, an observation consistent with prior structure–activity 
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trends.38 It is plausible that the steric congestion of amides 29a and 29c forces adoption of a 

more static conformation that disallows cis/trans isomerization of the amide, a feature that has 

been hypothesized to be essential for anti-proliferative activity of novobiocin analogues against 

bacteria. Further evidence was gathered upon realization that the lack of reactivity for tertiary 

amides 29a and 29c to all but the harshest conditions for p-MeOBn removal58,62,63 suggest these 

compounds may adopt a highly-organized and stable conformation.170 

 

Figure 24. SAR observed for the novobiocin coumarin scaffold.170 

Against breast cancer cells, analogue 29b exhibited similar anti-proliferative activities as 

the corresponding 8-methylcoumarin analogue, while 29d was between 2- and 5-fold less 

active.38 In contrast, both 29b and 29d were significantly more active against PC-3 cells than the 

corresponding 8-methylcoumarin; 29b and 29d exhibited between 7- to 9-fold reduced activity 

against LNCaP cells. Given that both 29b and 29d lack the 8-methyl feature that yields an 

increased activity of ~10-fold, it is reasonable to hypothesize that the quinoline- and 

naphthalene-derived analogues that include an 8-methyl substituent could exhibit anti-

proliferative activities between 1-5 μM against breast cancer cells and 1-2 μM against prostate 

cancer cells, approximately an order of magnitude less than the novobiocin analogue containing 

a coumarin. These results suggest that, while the lactone moiety may provide beneficial 

hydrogen-bonding interactions with the novobiocin binding pocket, these interactions may not be 

required to manifest anti-proliferative activity. More importantly, these results implicate that 
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continued optimization of the coumarin scaffold connecting the sugar and benzamide motifs is 

likely to produce compounds with enhanced anti-proliferative activity. A summary of the 

observed trends for anti-proliferative activities of coumarin-derived novobiocin analogues is 

depicted in Figure 24.170 

 

Figure 25. Western blot analyses of Hsp90 client protein degradation assays against MCF-7 cells 

following treatment with coumarin analogues. Concentrations (in μM) of 26g (top), 26j (middle), 

and 29d (bottom) are indicated above each lane. GDA (geldanamycin, 500 nM) and DMSO were 

respectively.170 

 

To provide additional support that the anti-proliferative activities exhibited by coumarin-

derived novobiocin analogues results from Hsp90 inhibition, analogues 26g, 26j, and 29d were 

evaluated for their abilities to induce degradation of Hsp90-dependent client proteins. As shown 

in Figure 25, the Hsp90 client proteins Her2 and Raf were degraded in MCF-7 cells in a 

concentration-dependent manner upon treatment with coumarin-derived novobiocin analogs. 

Moreover, Hsp90 client protein degradation correlates well with observed anti-proliferative 
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IC50s; 26g (IC50 = 9.0 μM) and 26j (IC50 = 2.1 μM) induced client degradation at ~10 μM, while 

29d, with its more modest anti-proliferative activity (IC50 = 46.4 μM), induced client degradation 

at ~50 μM. Since actin, a non-Hsp90-dependent protein, is not affected by these analogues, anti-

proliferative activities of these analogues correlate directly with Hsp90-client protein 

degradation.170  

 Compound 26g and 26j demonstrated the most potent anti-proliferative activity against 

the cancer cell lines tested and represent scaffolds that will be further probed to improve activity. 

Derivatives 26f and 26o appear to represent compounds that exhibit differential selectivity for 

one cancer cell lines versus another, for reasons that remain unclear. Since these compounds 

demonstrated low micromolar activity against one cell line and are inactive against others, they 

may provide a tool for further exploration and perhaps unraveling of the complicated processes 

affected. The activities of analogues 29b and 29d, the first documented novobiocin analogues 

lacking the coumarin functionality, implicate that, while the coumarin ring may participate in 

hydrogen bonding interactions with Hsp90 that abrogate activity, these interactions are not 

essential for anti-proliferation activity through inhibition of Hsp90. These analogues provide 

sufficient evidence to continue the search for optimal ring systems that bridge the benzamide and 

noviose functionalities.170 

 

B. Neuroprotection studies using modified coumarins 

 As previously discussed, Hsp90 modulation has demonstrated efficacy in the treatment of 

neurodegenerative diseases. Notably, the C-terminal Hsp90 modulator A4, that contains a 

shortened N-acyl side chain, lacks of the 4-hydroxy substituent and the carbamoyl group on the 

noviose appendage, was found to induce Hsp90 at concentrations 1000–10000-fold lower than 
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that required for client protein degradation. This induction of the heat shock response was 

hypothesized to possess potential utility in the refolding of denatured proteins, such as the 

amyloid plaques associated with Alzheimer’s disease (Figure 26). Due to this unique activity, A4 

was tested in a model for Alzheimer’s disease, in which it was found to produce an EC50 at 6 nM 

and exhibit no toxicity at any concentration.15 This study, in conjunction with studies involving 

the benzamide side chain, suggested that modification of the amide side chain results in 

conversion of a nontoxic molecule into an anti-proliferative agent and visa versa.103 

Consequently, the set of coumarin analogues described in Section I were outfitted with an 

acetamide side chain in an attempt to convert them into potential neuroprotective agents (Figure 

16).170  

 

Figure 26. Induction of the heat shock response. 

1. Syntheses of 5-, 6-, and 8-alkyl(oxy) acetamide-containing analogues 

 As previously shown, coumarins modified at the 5-, 6-, and 8-modified with protected 

noviose appended at the 7-position (25a–g) were obtained in good yield (Scheme 6).170,171 The 
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benzyl carbamate was subsequently removed via hydrogenolysis to produce the corresponding 

aminocoumarin, which was readily coupled with acetic anhydride in the presence of pyridine 

(Scheme 7). The cyclic carbonates were exposed to triethylamine in methanol to give the 

solvolyzed products 30a–g over three steps. 

 

Scheme 7. Synthesis of 5-, 6-, and 8-modified acetamide-containing novobiocin analogues. 

2. Biological evaluation of acetamide-containing novobiocin analogues 

 Upon preparation, analogues 30a–g were submitted to a range of biological assays. An 

assay was developed in collaboration with Dr. Chaguturu in the KU high throughput screening 

(HTS) lab to evaluate these compounds for their potential neuroprotective activity. Based on an 

assay previously developed in collaboration between the Blagg and Michaelis labs at KU, the 

dose-dependent protection that these compounds offer against Aβ25-35 toxicity in SH-SY5Y 

neuroblastoma cells was to be evaluated in a high throughput screen.183 Unfortunately, the HTS 

laboratory was unable to perform this assay in an HTS format that was reproducible. 

 Recent studies have implicated that Hsp70 plays a key regulatory role in colonic 

tumorigenesis.184 Therefore, induction of Hsp70, potentially through small molecules, is thought 

to exhibit the potential to reverse this oncogenic progression. Since analogues 30a–g were 

designed to mimic A4 in both structure and function, these compounds were perceived to be 
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inducers of Hsp70 levels. Due to their interest in the underlying mechanisms for growth control 

of normal intestinal tissue and explaining how disruption of this normal state leads to tumor 

formation, the Neufeld lab at KU demonstrated interest in compounds of this type. The Neufeld 

lab used Western blot analyses to examine the ability of these compounds, as well as a collection 

of structurally related analogues, to induce Hsp70 levels. Although this study is ongoing, several 

Hsp90 C-terminal modulators have been identified to induce Hsp70 at the same or greater levels 

than A4. These compounds represent promising tools in understanding the progression of colon 

cancer, with the potential to become therapeutic agents in the future. 

 

Figure 27. Structure of KU32 versus A4. 

 Another recent publication, resulting from a collaborative effort between the Blagg and 

Dobrowsky laboratories, highlighted the role of Hsp70 in the inhibition of sensory neuron 

degeneration after axotomy. Since the onset of DPN (diabetic peripheral neuropathy) is 

associated with the gradual decline of sensory neuron function, it was proposed that increasing 

Hsp70 levels could improve several indices of neuronal function. KU-32 (Figure 27), which is a 

structurally related analogue of A4, was shown to protect against glucose-induced death of 

embryonic DRG (dorsal root ganglia) neurons cultured for 3 days in vitro.185 The success of KU-

32 in this assay, as well as in in vivo models, has generated interest in screening compounds of 

similar origins. As part of continued collaborative studies, the Dobrowsky lab assays novobiocin-
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derived compounds, including analogues 30a–g, for their potential to protect against glucose-

induced death of embryonic DRG neurons.  

 

Figure 28. Complementarity of 6-alkoxy and 6-amino groups.170 

III. Further exploration of the 6-, and 8-position of the coumarin core 

A. Modifications to the 6-position 

 Initial studies of coumarin-derived novobiocin analogues revealed that the 6-position was 

tolerant of alkoxy substituents. Although alkoxy substituents offered insight about the steric 

environment and a potential hydrogen bonding network, it was envisioned that other analogues 

could be proposed to capitalize upon additional interactions within this area of the binding 

pocket. These analogues were designed to make similar interactions with polar residues in the 

area as well as probe the impact of an additional hydrogen bond donor. Moreover, through 

incorporation of functionalities containing variable bulk and electrostatics and the potential to pi-

stack at the 6-position, further insights could be gained. As seen in Figure 28, the 6-alkoxy and 

6-amino coumarins would complement each other, and the 6-amino group would provide a 

handle upon which to build more diversity. 
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1. Synthesis of 6-amino coumarins 

 Installation of a nitro group at the 6-position of the coumarin ring was proposed as a 

method to access 6-amide and 6-amino groups. As seen in Scheme 8, 8-methyl coumarin 31102 

was treated with zirconyl nitrate in acetone, then heated at reflux overnight to yield 6-nitro 

coumarin 32 in good yield.186 Nitration at the desired position was confirmed by HMBC NMR 

spectroscopy. Following acetylation, 6-nitro coumarin 33 was subjected to a variety of 

conditions in an attempt to cleave the benzyl carbamate. Since removal of the benzyl carbamate 

proved problematic, the nitro group of coumarin 33 was instead reduced to the corresponding 

aniline using tin (II) chloride dihydrate in methanol at reflux.187 6-Aniline coumarin 34 was 

treated with benzyl chloride in the presence of cesium chloride and potassium iodide to install a 

single benzyl group. Although compound 35 was not carried on further, it is envisioned that this 

methodology could be utilized to access amines, amides and carbamates at the 6-position of the 

coumarin ring. 

 

Scheme 8. Synthesis of 6-amino coumarins. 
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 Due to the difficulties encountered with cleavage of the benzyl carbamate from 6-nitro 

coumarin 33, it was proposed that a more amenable group should be installed at the 4-position of 

the coumarin. As seen in Scheme 9, the benzyl carbamate of 8-methyl coumarin 31102 was 

removed via hydrogenolysis to produce the corresponding aminocoumarin, which was 

sequentially treated with allyl carbonochloridate in the presence of pyridine to afford the Alloc-

protected 8-methyl coumarin.188 Nitration was carried out as previously described with zirconyl 

nitrate in acetone, leading to quantitative conversion to 6-nitro coumarin, 37.186 While 

acetylation of the 7-position yielded compound 38 in modest yield, attempts to noviosylate the 7-

position of coumarin 37 proved unsuccessful due to loss of the nitro group. 

 
Scheme 9. Synthesis of 6-nitro 4-alloc coumarins. 

B. Incorporation of GTP structural elements 

 As previously discussed, it has been demonstrated that unlike the N-terminal site, which 

is fairly specific for adenine nucleotides, the C-terminal site is more promiscuous, binding both 

purines and pyrimidines. Moreover, GTP and UTP are specific C-terminal substrates.37 Based on 

these studies and the studies with GTP-complementarity as described in Section I, a coumarin-

containing guanosine nucleus was designed (Figure 29).170 It was envisioned that the key 

structural elements preserved by the purine-like coumarin would offer selectivity for binding to 

the Hsp90 C-terminus. 
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Figure 29. Complementarity of GTP and purine-like coumarin scaffold. 

1. Synthesis of GTP mimic coumarin 

 

Scheme 10. Synthesis of purine-like coumarin. 

 As shown in Scheme 10, phenol 39 was quantitatively protected as the corresponding 

benzyl ether 40. A benzyl group was selected to protect the phenol because of its stability to a 

variety of conditions and to assist in preventing its ortho nitration. Benzyl-protected nitroarene 

40 was reduced using a bromoethanol-assisted phthalocyanatoiron/sodium borohydride 

protocol.189 It was predicted that the mechanism that drives nitration ortho to a phenol with 

zirconyl nitrate would also have efficacy in nitrating the position ortho to aniline 41. Thus, 

zirconyl nitrate was employed for this purpose, yielding the desired product, as confirmed by 

HSQC and HMBC experiments, in good yield.186 Next, nitrated aniline 42 was treated with tin 

(II) chloride dihydrate in formic acid to execute a one-pot in situ reduction and cyclization under 

microwave conditions.190 These microwave conditions also resulted in cleavage of the benzyl 

ether to yield phenol 43 in good yield. The corresponding coumarin 44 was synthesized through 
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a modified Pechmann condensation with eneamine 22 as previously described.181,182 Finally, the 

benzyl carbamate was removed via hydrogenolysis to produce the corresponding 

aminocoumarin, which was coupled with biaryl acid 27 in the presence of EDCI and pyridine to 

afford compound 45. 

 

2. Biological evaluation of coumarin 45 

Upon construction of analogue 45, it was evaluated for anti-proliferative activity against 

SKBr3 and MCF-7 breast cancer cell lines. This compound proved to be inactive against both 

cell lines in these assays. It is hypothesized that attachment of a sugar to scaffold 45 may result 

in modest gains in anti-proliferative activity. 

 

C. Modifications to the 8-position 

 The coumarin-derived novobiocin analogues study revealed that an 8-methoxy group was 

a favorable substitution versus the 8-hydrogen and 8-methyl group. Moreover, this group was 

much better tolerated than benzyl and phenyl substituents, which implied a smaller binding 

pocket with potential polar residues. This finding was also in agreement with the ~12-fold 

improvement in activity when compared to novobiocin, which has an 8-methyl group, and 

chlorobiocin, bearing an 8-chloro substituent. Several additional 8-position analogues of the 

coumarin ring were proposed to further probe this position. These analogues were designed with 

the potential to interact with surrounding polar residues as well as to probe for additional 

hydrogen bonds. As seen in Figure 30, the 8-amino, 8-acetyl, and 8-amide were designed to 

complement interactions made by the 8-methoxy group, while exploring other potential features 
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of this cavity into which the 8-substituent projects. Finally, while it has been shown that 8-acetyl 

coumarins demonstrate a wide range of biological activities, most are reported to exhibit modest 

anti-cancer activity. This finding further supports the design of structurally-related coumarins 

modified at the 8-position. 

 

Figure 30. Complementarity of various 8-position substituents.  

1. Synthetic steps toward 8-amino coumarins 

 As seen in Scheme 11, repeated attempts to employ a modified Pechmann condensation 

between eneamine 22 and resorcinol 46 proved to be problematic, as loss of the nitro group was 

observed.181,182 As an alternative, 2-nitroresorcinol 46 was quantitatively reduced using hydrogen 

and palladium on carbon to afford aniline 47. Molecular iodine was used to catalyze the 

protection of the aniline as the corresponding benzyl carbamate, 48.191 Although further steps to 

cyclize to the corresponding coumarin were not attempted, it is envisioned that a modified 
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Pechmann condensation using an alternatively functionalized eneamine, potentially bearing the 

desired amide functionality, would yield the desired coumarin. Subsequent cleavage of the 

benzyl carbamate would then yield a free aniline that could be used to gain access to the 

proposed functionalized anilines, amides and carbamates. Moreover, this aniline could be 

converted to a variety of 8-position halogens, which has proven problematic in prior studies, 

enlisting Sandmeyer chemistry to prepare analogues that bear resemblance to chlorobiocin. 

 

Scheme 11. Efforts toward 8-amino analogues. 

2. Synthesis of 8-acetyl coumarins 

  As shown in Scheme 12, coumarin 50 was obtained in modest yield through employment 

of a modified Pechmann condensation between eneamine 22 and resorcinol 49.181,182 While 

acetylation of coumarin 50 proceeded in good yield, noviosylation was low yielding and the two 

anomers were collected as an inseparable mixture of 51. The benzyl carbamate of acetylated 

coumarin 52 was removed via hydrogenolysis to produce the corresponding aminocoumarin, 

which was readily coupled with biaryl acid 27 in the presence of EDCI and pyridine to afford 

compound 53. Following deacetylation, compound 54 was prepared for biological evaluation. 
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Scheme 12. Synthesis of 8-acetyl analogues. 

3. Biological evaluation of 8-acetyl coumarin 54 

Upon construction of analogue 54, this compound was evaluated for anti-proliferative 

activity against SKBr3 and MCF-7 breast cell lines. Although this compound proved inactive in 

these assays, it is hypothesized it has the potential to be transformed into an active agent through 

appendage of a sugar moiety. 

 

4. Synthesis toward 8-amido coumarins 

 As shown in Scheme 13, coumarin 56 was obtained through employment of a modified 

Pechmann condensation between eneamine 22 and resorcinol 55.181,182 Formation of coumarin 56 

was confirmed by crude 1HNMR and mass spectrometry studies, but was difficult to purify 

further. Thus, this coumarin was taken on crude into an acetylation reaction, yielding compound 

57 in modest yield over both steps. It was envisioned that conversion of the 8-acid to the 

corresponding ester would enable functionalization of the 7-position without difficulty. Attempts 

to esterify the 8-position resulted in loss of the acetate protecting group, despite our efforts to 

keep the reaction under anhydrous conditions. The desired compounds could be easily accessed 

through coupling of compound 57 to a variety of amines to yield 8-amide coumarins. In addition, 
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functionalization of the 7-position of compound 58, followed by hydrolysis to liberate the free 8-

acid and subsequent coupling reactions would also provide a route to the desired analogues. 

 

Scheme 13. Synthesis toward 8-amide analogues. 

 This study enabled the development of methodologies toward the preparation of 

molecules that probe the 6- and 8-positions of the coumarin ring. Moreover, these synthetic 

methods demonstrate the broad applicability of the modified Pechmann condensation towards 

coumarin-ring formation. Due to the creation of a binding model, these efforts were abandoned 

in favor of a more rational approach to the design of analogues that probe this region of the 

binding pocket. 

 

IV. Coumarin-replacement study 

A. Molecular modeling 

 These preliminary studies on the coumarin core generated several interesting compounds 

with a broad range of activities that add to a growing library of novobiocin analogues. Addition 

of these compounds to the library enabled a co-worker in the Blagg group to create a CoMFA 

model for the compilation of novobiocin-based congeners. Through overlaying the presumed 

conformations of the biologically active compounds, a correlation between the anti-proliferative 

activity of the novobiocin analogues and their 3D shape, electrostatic and hydrogen bonding 

characteristics was derived. This CoMFA study was pivotal toward the development of an 
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HTPG-based docking model with Dr. Verkhivker on campus.192 Since its development, this 

model for novobiocin binding the Hsp90 C-terminus has been instrumental towards rational 

inhibitor design and has enabled a better understanding of observed trends in biological activity. 

 

 

Figure 31. Novobiocin versus 26g bound to Hsp90α model. 

1. Docking of novobiocin versus 26g 

Promising compounds that were synthesized prior to the creation of the model, such as 

those that are part of the coumarin study in Section I, have been docked and examined for key 

interactions. Due to the promising activity that 26g (KU174) manifested, it was one of the 

compounds that has been docked and studied extensively as part of the modeling studies. The 

conformation exhibited by novobiocin versus that which 26g, adopts is shown in Figure 31. It 

was observed that the two compounds assume similar orientations within the binding pocket and 

that structural features within the two congeners overlap. Key hydrogen bonds within the noviose 
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binding pocket are proposed to anchor these compounds deep within the cavity, while the 

benzamide side chain resides in a largely hydrophobic region. Interactions with the 8-position 

and lactone moiety of the coumarin core have also been proposed as important in binding. 

 

2. Specific interactions made by the coumarin core of novobiocin 

 Confirmation that novobiocin and 26g bind in similar orientations within the proposed 

binding site was an important finding. This discovery verified that analogues like 26g manifest 

the same interactions as novobiocin within the pocket and that the slight perturbations to the 

coumarin core that lead to improvements in activity could be due its ability to make additional 

interactions. With the model verified, it was important to explore the area around the coumarin 

and to identify key residues that could offer additional interactions and further improve binding 

affinity. 

 As shown in Figure 32, the novobiocin coumarin core makes several important 

interactions with surrounding residues. Firstly, Glu-537, an acidic glutamic acid residue is 

located in the vicinity of the 8-methyl group of novobiocin. The two oxygens that make up the 

carboxylic acid of this residue are 3.6, 2.9, and 2.9 Å away from the three hydrogens attached to 

the 8-methyl group. It is hypothesized that since these interactions are within 4.0 Å, hydrogen 

bonds could be made between the coumarin and this part of the pocket. The existence of these H-

bonds confirms the importance of the 8-position and explains the 10-fold increase in activity 

when a methyl group replaces the 8-hydrogen.170 Moreover, the steric clash between this residue 

and bulkier aryl groups explains the inactivity of compounds bearing an 8-aryl substituent. 
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Figure 32. Novobiocin bound to model. 

 Next, Tyr-492, a tyrosine residue, is located in the proximity of the coumarin lactone. 

The free phenol of this tyrosine residue is 3.1 and 3.3 Å away from the two oxygens that 

comprise the coumarin lactone. It is proposed that the phenolic hydrogen on this tyrosine could 

hydrogen bond with the lactone, making it an essential portion of the structure. Although the 

lactone was deemed ‘not essential’ as part of the first coumarin study, there is a definitive 2-4-

fold loss in activity when comparing the quinoline directly to the naphthalene in breast cancer 

cells. While the quinoline could potentially preserve this hydrogen bond to Tyr-492, the 

naphthalene does not contain a heteroatom capable of making such an interaction. This potential 

H-bond offers an explanation for the trends in activity and is believed to be essential in binding 

analogues of this type. 

 Finally, His-490, a histidine residue, resides proximal to the northern region of the 

coumarin lactone ring. This histidine could potentially make several interactions with this part of 

the coumarin. The nitrogen of the amide backbone, which connects His-490 to the neighboring 

residue, is 3.3 Å away from the hydrogen connected to the 4-hydroxyl group of novobiocin. A 
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hydrogen bond could exist between this backbone amide and the hydroxyl group on novobiocin. 

Moreover, the amide that connects the coumarin core to the prenylated side chain of novobiocin 

also has the potential to interact with this histidine residue. While the hydrogen attached to the 

amide is 3.9 Å from one of the nitrogens that makes up the imidazole core, the amide nitrogen is 

3.3 Å from the protonated imidazole nitrogen. These potential interactions confirm what has 

been shown through synthesis of analogues lacking the amide linkage, that the amide bond is 

essential in attaching a side chain to the coumarin core.15 

Upon identification of the important interactions made by novobiocin, it was a logical 

next step to examine the effect of structural changes on the ability of various analogues to 

preserve these essential contacts. 

 

3. Specific interactions made by the coumarin core of 59 

 Compound 59 (Figure 33) was a promising compound developed as part of the 

benzamide side chain study by Burlison and co-workers.102 This novobiocin analogue was 

designed with the knowledge that the 4-hydroxyl group on the coumarin and 3’-carbamate on the 

noviose sugar were detrimental to Hsp90 inhibition.18 In addition to these structural deviations 

from novobiocin, the biaryl acid 27, also found in 26g, was appended in place of the prenylated 

side chain of novobiocin.102 

 

Figure 33. Structure of 59.102 
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 As seen in Figure 34, this simplified coumarin structure can still capitalize on the same 

hydrogen bonding network as novobiocin. Glu-537 interacts with the 8-methyl group of 

analogue 59 in an analogous fashion, making multiple hydrogen bond contacts between the 

glutamic acid oxygens and methyl group hydrogens. Although the compound is skewed slightly, 

possibly due to the sugar reorienting and extending deeper into the pocket due to excision of the 

bulky carbamate, two of the three contacts are preserved and are actually in closer proximity to 

this residue than in novobiocin.  

Next, like with the glutamic acid residue, 59 is in closer contact with Tyr-492 as well. 

Both oxygens of the lactone ring are within 3.2 Å of the phenolic hydrogen of this tyrosine 

residue, preserving those hydrogen bonds found when novobiocin is docked. When 59 is docked, 

His-490 is just outside of hydrogen bonding distance for the same interaction made by the amide 

nitrogen of novobiocin to the imidazole ring. Finally, the 4-position of novobiocin versus that 

found in 59 differs greatly and was examined for potential different interactions. Like the amide 

nitrogen, the 4-hydrogen is just outside of the distance required for it to hydrogen bond to the 

imidazole ring of histidine 490. Despite the predicted distances, it is likely that the hydrogen 

bond is preserved between the amide side chain and His-490, while it is possible that an 

additional contact is made between the 4-hydrogen and the same residue. Preservation of many 

of the proposed coumarin interactions for compound 59 may contribute to the remarkable 70-

fold improvement in activity observed for this compound versus novobiocin.102 
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Figure 34. 59 bound to the model. 

 Overall, these slight structural perturbations to the coumarin core and sugar, combined 

with a major change to the side chain, did not augment many of the potential interactions. This 

finding supports that major changes can be made to the benzamide side chain, potentially to 

capitalize on additional interactions, without disruption of coumarin binding. Moreover, the 

slight modifications to the coumarin and sugar were well tolerated. One final analogue was 

docked to examine the combined effect of major changes to both the sugar and benzamide side 

chain, while maintaining the same coumarin core as 59. 

 

4. Specific interactions made by the coumarin core of 60 

 While the development of compound 60 (Figure 35) will discussed in more detail as part 

of Chapter 2, it was identified as a promising compound as part of a study of possible sugar 

surrogates by Zhao and co-workers.193 This novobiocin analogue maintains the excised 4-

hydroxyl group on the coumarin and biaryl side chain found in compound 59.18,102 In contrast, 
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compound 60 lacks the noviose sugar found in the natural product, bearing an N-methyl 

piperidine in its place. 

 

Figure 35. Structure of 60.194 

 As seen in Figure 36, despite more modest structural changes, the energy-minimized 

conformation of compound 60 still adopts a similar binding orientation to novobiocin. Glu-537 

interacts with the 8-methyl group of analogue 60 in an analogous fashion to novobiocin, making 

the same number of potential hydrogen bond contacts between the glutamic acid oxygens and 

methyl group hydrogens. Despite obvious changes in the sugar orientation, the three contacts are 

preserved and are all within the proper distance to hydrogen bond.  

Likewise, 60 mimics the interactions that novobiocin makes with Tyr-492 almost exactly. 

Both oxygens of the lactone ring are within 3.4 Å of the phenolic hydrogen of this tyrosine 

residue, suggesting that these hydrogen bonds are made when 60 binds to the putative pocket. 

Like when 59 is docked, His-490 is the same distance, just outside of hydrogen bonding range, 

for the same interaction made by the amide nitrogen of novobiocin to the imidazole ring. 

Moreover, the 4-position hydrogen is just outside of the distance required for it to hydrogen bond 

to the imidazole ring of histidine 490, but slightly closer than when analogue 59 is bound. It is 

proposed that analogue 60 could augment its position slightly to take advantage of these 

additional hydrogen bonds with His-490. Since this compound manifests another 10-fold 

improvement in activity versus compound 59 and 700-fold versus novobiocin, it is believed that 

key coumarin interactions are preserved while additional contacts are made within the sugar 

binding region. 
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Figure 36. 60 bound to the model. 

B. Rational design of coumarin-core replacements 

 For many reasons, including difficulty of synthesis, limited solubility, and potential rapid 

metabolism by cytochromes P450, there was interest in moving away from the coumarin ring as 

the core structure of novobiocin analogues. A suitable replacement ring system would maintain 

the same essential interactions as the most promising coumarin cores, while improving upon the 

aforementioned shortcomings. Although two potential substitute cores were explored during the 

initial studies described in Section I, neither the quinoline nor the naphthalene matched the 

activity of the coumarins.170 Moreover, elucidation of the binding model has enabled the rational 

design of alternative ring systems, while more comprehensive sugar and benzamide studies have 

elucidated the most promising. 
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Scheme 14. Retrosynthesis coumarin-replacement analogues. 

1. Design of novobiocin-derived analogues lacking a coumarin core 

 Based on molecular modeling studies, we envisioned construction of novobiocin 

analogues that contain modified core structures. As shown in Scheme 14, the derivatives were 

designed for assembly in modular fashion, allowing for the sequential coupling of either noviose 

or an N-methylated piperidine, sugar surrogate and a series of benzoic acids with the modified 

nuclei.170 We previously demonstrated that the trichloroacetimidate of noviose carbonate couples 

readily to coumarin phenols in good yields, to afford the corresponding α-anomer.171 It was 

proposed that this same chemistry could be employed on the new ring systems to afford the 

noviosylated scaffolds. In addition, the N-methyl piperidine shown, installed via Mitsunobu 

etherification, was chosen as a suitable sugar replacement.194 The benzoic acids were selected 

based upon previously obtained SAR for the amide side chain as described by Burlison and co-

workers and Zhao and co-workers.102,195 
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Figure 37. Complementarity of novobiocin and proposed analogues.  

 The coumarin replacement scaffolds were selected to complement interactions made by 

novobiocin and optimized analogues with the desired sugar and benzamide side chains in 

molecular modeling studies. While the western portion of the bicyclic core was explored in detail 

as part of the initial coumarin study, the eastern portion is being examined herein. In designing 

analogues that probe the eastern hemisphere, the exact left-hand ring from novobiocin was 

maintained. The 8-methyl group has been shown to make essential interactions with Glu-537 in 

molecular modeling studies. Moreover, this finding has been confirmed by the 10-fold 

improvement in activity when comparing the 8-desmethyl to the same 8-methyl and 8-methoxy 

analogues.102 The potential introduction of additional hydrogen bonds, capable of producing 1-2 

kcal/mol of binding energy and thus increasing binding by 10-fold, were incorporated into the 

design strategy.172 Within the modified eastern portion, hydrogen bond donors and acceptors 

were placed in positions X, Y, and Z (Figure 37). It is envisioned that while position X and Y 

would reside proximal to the lactone binding region, Z would extend into the area where the 4-

hydroxyl group of novobiocin is located. With this rationale, X and Y have the potential to 

interact with Tyr-492 while Z can make contacts with His-490. The activity of such compounds 
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is likely to provide insight into which additional interactions lead to favorable increases in 

binding affinity.170 

 

Figure 38. Coumarin ring replacement core structures.  

 A quinoline, cinnoline, and quinazoline were proposed as core structures that would place 

hydrogen-bond accepting nitrogens at X, Y, and Z around the ring. 4-quinolone, 2-quinolone, 

and 4-(3H)-quinazolinone structures exist in multiple tautomeric forms, offering the possibility 

to hydrogen bond via donating or accepting groups at the same three positions. These ring 

systems would be compared to a naphthalene nucleus that would fill the same space without 

offering heteroatoms capable of creating additional hydrogen bonds. These seven different ring 

systems, shown in Figure 38, would probe the impact of introducing additional hydrogen bonds 

at various positions around the ring. In contrast, a naphthalene core would investigate whether 

hydrophobic bulk was sufficient. Overall, these ring systems would identify those interactions 

that are essential and which replacement ring systems maintain them.  
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 Sugars and benzamide side chains were prepared based upon prior studies. Molecular 

modeling studies, as discussed in the previous section, confirmed that replacement of the noviose 

sugar with the N-methyl piperidine sugar surrogate did not perturb interactions made by the 

coumarin core. Likewise, the coumarin interactions were maintained despite replacement of the 

prenylated side chain with the biaryl acid 27. Finally, structural modifications at both termini 

were also well tolerated. The noviose sugar and N-methyl piperidine will be appended as sugars, 

while the prenylated and biaryl side chains will serve as the choices of benzamide side chains. 

As shown in Figure 39, the rationale for these choices of sugars and benzamides are based upon 

favorable gains in activity associated with their prior incorporation. Moreover, through 

incorporation of a noviose sugar and prenylated side chain to each of the ring replacement 

systems, it can be compared directly with the parent natural product, novobiocin. 

 

Figure 39. Structures of novobiocin, 59, 60 and 61. 
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2. Efforts toward ring system precursors 

 As seen in Scheme 15, it was envisioned that four of seven ring systems could be 

accessed through a common precursor. Since making this intermediate was a priority, several 

routes have been designed and attempted. 

 

Scheme 15. Common intermediate for several ring systems. 

 As seen in Scheme 16, phenol 61 was protected as the corresponding methoxy methyl 

ether in good yield. Nitroarene 62 was quantitatively reduced to the corresponding aniline. 

Attempts to brominate aniline 63 were not selective for the desired regioisomer and most often 

led to bromination at multiple sites. It was proposed that incorporation of a bulkier phenolic 

protecting group would preclude ortho bromination and allow access to the desired regioisomer. 

 

Scheme 16. Synthesis of MOM-protected precursor. 

 To this end, benzyl-protected aniline 41 was prepared once again from the nitroarene 40 

synthesized in making the purine-like coumarin. As shown in Scheme 17, prior to reduction, an 

unsuccessful Vilsmeier-Haack reaction was attempted to formylate the deactivated system.196 

Next, much simpler reducing conditions were employed than previously described, using 

platinum on carbon and hydrogen, to afford aniline 41 in nearly quantitative yield. Although it 
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was proposed that a Vilsmeier-Haack reaction could be exploited for regioselective formylation 

of this intermediate aniline, the only product observed in this reaction was due to N-formylation, 

yielding the formamide adduct.196 Simultaneous efforts to brominate ortho to the aniline were 

based upon literature precedence.197 N-bromosuccinimide was used to install the desired bromine 

group, leading to one major product in good yield. Attempts to characterize product 64 by 

1HNMR, 13CNMR, COSY, HSQC, NOESY and HMBC NMR spectroscopy experiments were 

not definitive, as either compound would yield nearly indistinguishable perturbations to the 

spectra. It was believed that conversion of the aryl bromide to the corresponding benzaldehyde 

would provide definitive spectral characteristics that would enable identification of the product 

obtained. Despite literature reports, initial efforts to convert the brominated aniline directly to the 

desired benzaldehyde through lithium–halogen exchange were unsuccessful, exclusively leading 

to the formamide instead.198  

 
Scheme 17. Synthesis of benzyl-protected precursor. 
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 Two parallel approaches were undertaken toward the benzaldehyde product. Firstly, 

aniline 64 was protected as the corresponding benzyl carbamate as previously described.191 The 

protected aniline 65 was then exposed to lithium–halogen exchange conditions, quenching with 

N,N-dimethylformamide. An attempt to selectively cleave the benzyl carbamate while 

maintaining the benzyl ether group through poisoning the palladium catalyst with 2,2-dipyridyl 

did not allow for cleavage of either group.199 Hydrogen and palladium on carbon were used to 

simultaneously cleave both groups of benzaldehyde 66, affording compound 67 in modest yield. 

Simultaneously, a pivaloyl group was used to protect aniline 64, generating protected aniline 68 

in good yield. The pivaloyl group was chosen based upon its known directing ability in ortho-

lithiations. Lithium–halogen exchange, as previously described, was employed to yield protected 

benzaldehyde 69. With compound 67 in hand, there was no need to go through the steps to 

deprotect 69 until after 1HNMR, 13CNMR, COSY, HSQC, NOESY and HMBC NMR 

spectroscopy experiments were used to characterize compound 67. These experiments, namely 

correlation between the phenolic carbon and the aldehyde proton in the HMBC spectrum and 

correlation between the aromatic proton and adjacent aniline protons in the NOESY spectrum, 

identified 67 as the undesired regioisomer. 

 Subsequent efforts toward this common precursor once again employed the known 

directing ability of the pivaloyl group in ortho-lithiations. As seen in Scheme 18, aniline 41 was 

protected as the corresponding pivaloyl amide 70 in good yield. It was proposed that the pivaloyl 

group would guide formylation at the desired position through directed ortho-lithiation and 

subsequent quenching with N,N-dimethylformamide. Although several organolithium bases, 

solvents and temperatures were tried, the desired product was not obtained in appreciable yield. 

It is likely that the desired reaction competed with abstraction of a benzylic proton from the 
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methyl group ortho to the pivaloyl amide. This route was abandoned in favor of installing the 

methyl group, rather than the formyl group, as the last substituent, analogous to the approach 

used in the initial coumarin study. 

 

Scheme 18. Efforts to exploit a pivaloyl amide as an ortho-lithiation directing group. 

To facilitate installation of the methyl group as the final step, attempts to attach the other 

three groups on the ring were undertaken. As seen in Scheme 19, benzaldehyde 71 was treated 

with phosphorus pentoxide mixed with silica in the presence of nitric acid, but the desired 

nitration did not take place.200 Next, phenol 72 was treated with dimethyl amine and 

formaldehyde to try and install the dimethyl amine group, which could be reduced to the methyl 

group through subsequent steps.201 This reaction was also unsuccessful, as only starting material 

remained after several hours. Attempted bromination of phenol 72 between the nitro and phenol 

groups was not selective, yielding many undesired inseparable products. Subsequently, phenol 

72 was quantitatively protected as the corresponding methoxy methyl ether 73. Next, N,N-

dimethylformamide dimethyl acetal (DMF-DMA) in the presence of pyrrolidine was used to 
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convert the methyl group to an eneamine, which was subsequently oxidized to benzaldehyde 74 

in good yield.202,203 Although the DMF-DMA would mediate formation of an eneamine 

intermediate, the addition of pyrrolidine reduced reaction temperature and time through 

formation of a more stable pyrrolidine-containing eneamine. Benzaldehyde 74 was subsequently 

reduced to aniline 75 using hydrogen in the presence of palladium on carbon. An attempt to 

brominate aniline 75 between the protected phenol and aniline was unsuccessful. Finally, the 

same aniline was deprotected through heating with 3M HCl and the procedure to install a 

dimethyl amine group on phenol 76 was repeated unsuccessfully. Since late-stage methylation 

proved problematic, focus was redirected toward the preparation of other precursors. 

 

Scheme 19. Efforts toward late-stage methylation. 
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Scheme 20. Common intermediate for remaining heteroaromatic ring systems. 

 As seen in Scheme 20, a second precursor was designed to represent a common 

intermediate towards the syntheses of the remaining heteroaromatic ring systems. Initial attempts 

aimed at installing the fourth functionality with the other three in place were pursued. As seen in 

Scheme 21, nitration of carboxylic acid 77 did not proceeding the conditions provided. With the 

goal of late-stage methylation, benzaldehyde 78 was protected as the corresponding methoxy 

methyl ether in good yield. Next, a Pinnick oxidation was employed to afford carboxylic acid 80. 

Despite the known directing effect of both the methoxy methyl ether and carboxylic acid groups, 

methylation did not occur. Rather, the tBu ketone was the sole product isolated from this 

reaction. 

 

Scheme 21. Efforts toward second common precursor. 



 78 

Attempts to make the second precursor were not fruitful, and led to a unified route toward 

all heteroaromatic systems through common intermediate 83/89. It was proposed that preparation 

of this common ring system would be rather straightforward, allowing for late-stage 

diversification to several core structures in relatively few steps overall. As shown in Scheme 22, 

a fully functionalized intermediate was designed to allow access to each synthon required for 

cyclization in order to access the corresponding heteroaromatic ring system. 

 

Scheme 22. Utility of common intermediate 83/89. 

Synthesis of the MOM-protected precursor is outlined in Scheme 23. Carboxylic acid 77 

was converted to the methyl ester using thionyl chloride in methanol. Simultaneous acetate 

cleavage was observed to yield the phenolic methyl ester, 81. Next, bromination was carried out 

at -42oC using a 0.75M solution of bromine in methylene chloride.204-206 The bromine solution 

was added portionwise, over more than an hour, to avoid over bromination of the ring. 

Functionalized intermediate 82 was next protected as the methoxy methyl ether, yielding ester 83 

in good yield. Attempts to hydrolyze methyl ester 83 with lithium hydroxide were unsuccessful 

and it was soon discovered that more harsh conditions were required. Carboxylic acid 84 was 
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quantitatively obtained through treatment of the aforementioned ester with a 40% potassium 

hydroxide solution in refluxing ethanol.207 

Scheme 23. Synthesis of functionalized universal precursor 83. 

Intermediate 83 could be envisioned to undergo a number of palladium-mediated cross-

coupling reactions would furnish the desired synthons for cyclization (Scheme 24). Coupling of a 

vinyl group or substituted alkene was attempted to furnish the benzaldehyde (synthon A) or 

carboxylic acid (synthon D) at the position of the aryl bromide. However, Stille cross-coupling 

conditions with tributyl(vinyl) tin and tetrakis(triphenyl-phosphine)palladium in toluene or DMF, 

failed to convert the aryl bromide to the desired olefinic product. Moreover, dehalogenation did 

not occur, but rather unreacted starting material remained. Simultaneously, a Suzuki cross-

coupling reaction was attempted using (E)-styrylboronic acid and the same palladium catalyst, 

yielding only undesired side products and recovered starting material. Several different 

Buchwald-Hartwig cross-coupling reactions were attempted with the goal of converting the aryl 

bromide to a protected aniline species toward preparation of synthons B and C. Initial attempts to 

couple (4-methoxyphenyl)methanamine utilized various bases, ligands and palladium sources, 

but none resulted in successful product formation. Likewise, attempts to couple benzyl 

carbamate to aryl bromide 86 did not occur, despite changes in the palladium source and ligand.  

It was proposed that since unrecovered starting material was recovered in nearly every 

cross-coupling attempted, that the palladium did not insert into the carbon-halogen bond. In an 

attempt to facilitate insertion, a more robust palladium source was employed. In addition to being 

air and water stable, the PEPPSI (pyridine-enhanced precatalyst preparation stabilization and 
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initiation) catalyst is known to improve reductive elimination, increase turnover numbers, and 

bind the metal more tightly than traditional phosphines and thus prevent metal dissociation.208 A 

PEPPSI-catalyzed Stille coupling with tributyl(vinyl) tin was attempted, along with two different 

PEPPSI-catalyzed Suzuki coupling reactions with (E)-styrylboronic acid. Unfortunately, use of 

this improved catalyst did not furnish the desired products. It was proposed that an alternative 

strategy would be required to convert aryl bromide 83 to the desired synthons. 

 

Scheme 24. Attempted Pd-catalyzed cross-coupling reactions with 83. 

Due to the problems encountered with palladium-catalyzed cross-coupling reactions, 

copper catalysis was employed to prepare the desired synthons. As seen in Scheme 25, it was 

first proposed that the aryl bromide could be converted to the corresponding nitrile, which would 
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then be reduced to the corresponding aldehyde (synthons A and D after oxidation) or aniline 

(synthons B and C). Attempted copper-catalyzed cyanations were not successful. Despite 

different copper sources, additives, solvents and temperatures, starting material remained largely 

unchanged after these reactions. Based on work done by Paul Knochel, it was proposed that 

vinylmagnesium bromide could be added to a THF-soluble copper salt CuI•2LiI at low 

temperature to convert it to the corresponding organocuprate. Next, the aryl bromide would be 

displaced by the organocuprate to yield the desired vinyl product.209 Although this reaction was 

unsuccessful it is believed that the age of the vinyl Grignard reagent may have contributed to its 

failure. In contrast, a copper-mediated reductive amination of aryl bromide 83 with trimethylsilyl 

azide yielded aniline 85 in good yield.210 With a robust reaction to convert the bromide to 

aniline, efforts were directed at strategies to convert carboxylic acid 84 to an aniline, an 

important reaction toward synthons A and D.  

 

Scheme 25. Attempted copper-catalyzed conversions with 83. 

As part of the original design strategy to use a universal precursor to all synthons, a 

Curtius rearrangement was planned for conversion of the carboxylic acid to an aniline. Toward 

this end, several conditions (as seen in Scheme 26), were explored to effect this transformation. 



 82 

Conversion directly to benzyl carbamate was attempted using a literature protocol that reports a 

mechanism involving azidoformate formation.211 Simultaneously, an attempt to quench the 

isocyanate formed in the first step of the Curtius rearrangement with benzyl alcohol was also 

attempted toward formation of the Cbz-protected aniline. While the first trial yielded residual 

starting material, the second reaction demonstrated limited conversion to the desired product, 86. 

The modest yield observed for the latter reaction was partially due to a difficult separation. 

 

 
Scheme 26. Curtius and Hofmann rearrangements and Schmidt chemistry with acid 84. 

Next, conversion to the tbutyloxy carbamate (Boc) was attempted through the addition of 

tbutanol to trap the isocyanate intermediate, much like that described previously. This attempt 

was not as effective and did not yield the desired product. Conversion directly to the aniline was 

attempted through formation of the isocyanate intermediate, followed by hydrolysis. The basic 

conditions in the second step were chosen over the often utilized acidic conditions to preserve 

the methoxy methyl protecting group, however the desired product was not formed. In contrast, 

harsh Schmidt conditions were employed as another method to elicit conversion from the acid to 

the aniline, knowing that cleavage of the ether would likely take place as well. Although these 
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reagents formed aniline 87 in modest yield, the reaction was not reproducible, and unreacted 

starting material often dominated these conditions. Finally, conversion to the precursor of the 

Hofmann rearrangement was attempted through conversion to the acid chloride, followed by 

treatment with ammonium hydroxide. This reaction, however, did not lead to the desired amide 

and thus, the rearrangement could not be attempted. It was proposed that the environment in 

which the carboxylic acid resides, ortho to a large and electron-withdrawing bromine, could be 

contributing to the observed failures. Focus was again returned to replacing the bromine, with 

intensions of returning to Curtius/Schmidt/Hofmann reactions on a different substrate. 

 

Scheme 27. Conversion to aryl vinyl group via diazonium salt intermediate. 

Since conversion of aryl bromide 83 to aniline 85 was robust, this aniline was looked at 

as a possible handle for the incorporation of desired functionalities. As seen in Scheme 27, the 

aniline was converted to a diazonium tetrafluoroborate salt through treatment with boron 

trifluoride etherate, followed by addition of tBu nitrite.212,213 Although the reaction was kept 

below 5oC throughout, aromatic diazonium tetrafluoroborates are know to be much more stable 

than typical diazonium salts, and have even been reported stable at room temperature. The 

conditions employed, while much less harsh than those typically used in diazotization of 

aromatic amines, were predicted to cleave the methoxy methyl ether in situ. After removal of 

solvents, the crude salt was taken into a Stille coupling using bis(dibenzylideneacetone)-

palladium and tributyl(vinyl) tin. Albeit in a very modest yield, conversion of the aryl aniline to 

vinyl ester 88 was confirmed. It was proposed that liberation of the phenol due to the reaction 
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conditions may impede the reaction due to consumption of the boron trifluoride etherate or 

presence of a competing nucleophile. To test this hypothesis, a protecting group that is stable to 

these conditions was employed. 

 
 

Scheme 28. Preparation of universal intermediate 89.  

A benzyl ether was proposed as a more stable protecting group that would survive the 

diazotization conditions. As seen in Scheme 28, functionalized phenol 82 was quantitatively 

protected as the corresponding benzyl ether to afford compound 89. Like its MOM-protected 

precursor, this intermediate was labeled as a universal predecessor of the desired synthons. This 

intermediate allows for direct conversion to the desired benzaldehyde was attempted. Despite 

trials with both nbutyllithium and tbutyllithium, the reaction exhibited the same fate, which was 

nucleophilic addition of the organolithium base to afford the corresponding ketones. Rather than 

attempt the same chemical transformations that had failed with the MOM-protected aryl 

bromide, high-yielding conversion directly to aniline 90 was employed as described 
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previously.210 Next, the same conversion from the aniline to vinyl ester through a diazonium 

tetrafluoroborate salt intermediate was attempted with aniline 90. As predicted, the benzyl ether 

survived the required conditions, yielding the desired product 91 in higher yield than previously 

observed.212,213 In order to explore conversion to the desired aniline, as required for synthons A 

and D, hydrolysis of ester 91 was carried out. Although lithium hydroxide was initially employed 

to convert to carboxylic acid 92, these conditions did not work. Just as before, treatment of the 

ester with a 40% potassium hydroxide solution in refluxing ethanol resulted in conversion to acid 

92 in good yield.207 

 
 

Scheme 29. Attempted Curtius and Hofmann rearrangements on vinyl precursor. 

Several of the same conditions as discussed earlier with acid 84 were attempted for 

conversion of vinyl acid 92 to the corresponding aniline (Scheme 29). As before, conversion to 

the Boc-protected aniline through trapping of the isocyanate intermediate with tbutanol was 

unsuccessful. Likewise, direct conversion to the desired aniline through conventional conditions 

was also not fruitful. Next, a more lengthy series of steps was employed to furnish the acid 

chloride, then substitute for the acyl azide, rearrange to the isocyanate and finally hydrolyze to 

the free aniline. Like the other attempted reactions, this series of transformations did not yield 
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the desired aniline product. Finally, two different reaction conditions were used toward 

preparation of the precursor for a Hofmann rearrangement. Unfortunately, neither attempt was 

successful so this route was not pursued further. While some of the conversions to aniline 

attempted with the MOM-protected aryl bromide were successful, none with vinyl acid 92 

yielded product. 

 

Scheme 30. Attempted Curtius and Schmidt reactions on acid 93. 

It was envisioned that benzyl-protected aryl bromide 89 may be more fruitful than 

reactions with the corresponding vinyl acid. As seen in Scheme 30, ester 89 was hydrolyzed with 

a 40% potassium hydroxide solution in refluxing ethanol to yield acid 93 in good yield. Next, the 

Schmidt chemistry that was somewhat successful with MOM-protected intermediate 84 was 

employed, but proved to be inconsistent, once again. A slightly different procedure was also 

tried, involving low temperature (0oC) throughout the course of the reaction, but it too, failed to 

convert the acid to desired aniline. Next, the opportunity to convert directly to a protected aniline 
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was once again considered. The same paper that described conversion of the acid to the Cbz-

protected aniline through an azidoformate intermediate, also described using di-tert-butyl 

dicarbonate and 2,2,2-trichloroethyl (Troc) chloroformate in place of benzyl chloroformate. 

Moreover, examples involving an ortho-bromo substituent were included in the discussion.211 

While attempted conversion directly to the Boc-protected aniline was not successful, the Troc-

protected aniline 94 was produced in modest yield. Attempts to repeat this reaction on larger 

scale were unsuccessful, despite changes in order and method of reagent addition, proving it to 

be an unreliable method for the preparation of the desired synthons. Other attempted methods to 

prepared Troc-protected aniline 94 included trapping the isocyanate intermediate with 2,2,2-

trichloroethanol and preparation of the ethyl anhydride, rearrangement to the isocyanate and 

another attempt to trap with 2,2,2-trichloroethanol. While the first reaction gave a new undesired 

side product, the second failed to react at all. 

 

Scheme 31. Endgame toward final functionalized precursor. 

 Despite its inconsistency, small-scale conversions to protected aniline 94 afforded 

enough material to carry on toward synthons A and D. As seen in Scheme 31, an attempted Stille 

coupling on a small amount of aniline 94 in toluene provided installation of the desired vinyl 

group in modest yield. In contrast, coupled product 95 was not obtained using the same 
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conditions when N,N-dimethylformamide was used as the solvent. A more reproducible route 

toward synthons A and D was required to complete its synthesis. 

 

Scheme 32. Bromination and subsequent steps toward synthons A and D. 

 As a final attempt to access the desired precursors, bromination of previously prepared 

intermediates was reconsidered as an option. As shown in Scheme 32, bromination was initially 

attempted ortho to the nitro group on nitroarene 40. According to a literature protocol, thallic 

acetate and bromine were employed to effect the desired transformation, but this method led to 

multiple brominated products.214 Diprotected aniline 70, originally prepared with the goal of 

executing ortho-lithiation, was treated with N-bromosuccinimide in methanol, leading to 

conversion to the desired product in good yield within 15 minutes.215 Confirmation that the 

desired regioisomer was obtained through comparison with the spectra associated with the 
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undesired regioisomer, as prepared before, and through spectral analysis of its own. After 

1HNMR, 13CNMR, COSY, HSQC, NOESY and HMBC NMR spectroscopy experiments, 

namely a correlation between the aromatic proton adjacent to the benzyl ether and the benzylic 

protons in both COSY and NOESY, it was confirmed that the desired regioisomer was obtained. 

Next, chemistry that was useful for conversion of the undesired regioisomer to the corresponding 

benzaldehyde proved unsuccessful for this system. Attempts to convert aryl bromide 96 to the 

corresponding benzaldehyde 97 using various organolithium bases were not fruitful, leaving only 

residual starting material as the major reaction component. As an alternative strategy executed by 

a co-worker, a Stille cross-coupling reaction proved to be a robust method for installation of the 

vinyl group, which was subsequently oxidized to benzaldehyde 97 using sodium periodate and 

osmium tetroxide. Finally, cleavage of the pivaloyl group in the presence of the benzyl ether 

could be accomplished by heating under either acidic or basic conditions to furnish the desired 

precursor that allows access to synthons A and D. This common intermediate is pivotal, as it can 

be used in cyclization reactions to form four of the desired ring systems, as shown back in 

Scheme 22. 

 

3. Cyclization attempts 

 With the desired precursors in hand, known cyclization procedures were employed to 

gain access to the proposed core systems. The quinazoline core (Scheme 33), ester 93 was 

reduced to the corresponding benzyl alcohol using lithium aluminum hydride to afford 

compound 99 in nearly quantitative yield. Next, activated manganese oxide was used to oxidize 

99 to benzaldehyde 100 in good yield. Finally, cyclization to quinazoline 101, in modest yield, 

was accomplished using guanidine hydrochloride in decalin at high temperature.216 
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Scheme 33. Synthesis of quinazoline core. 

 As seen in Scheme 34, several possible routes were attempted toward the 4-(3H)-

quinazolinone core. Firstly, using a known procedure, cyanamide (102) was converted to 

chloroformamide hydrochloride and used without further characterization.217 A mixture of ester 

93 and salt 103 were heated at reflux in digylme to yield the desired ring system by crude 

1HNMR spectroscopy and mass spectrometry.218,219  

 
Scheme 34. Synthesis of 4-(3H)-quinazolinone core. 

 Conversion of aniline 89 to the corresponding acid for use in another 4-(3H)-

quinazolinone ring-forming reaction was attempted through two routes. First, the aniline was 

Boc-protected in quantitative yield, then hydrolyzed to afford acid 105 in modest yield.220 An 

attempt to cleave the Boc protecting group using trifluoroacetic acid in methylene chloride was 

unsuccessful. A second attempt to gain access to this desired precursor began with quantitative 

oxidation of aniline 89 to nitroarene 107. Next, 40% potassium hydroxide solution in refluxing 

ethanol was used to hydrolyze the ester to produce acid 108.207 Subsequent reduction of the 
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nitroarene using platinum on carbon and hydrogen yielded the aniline 109, which was subjected 

to cyclization conditions without further purification. Cyanamide and aniline 109 were heated to 

reflux under acidic conditions, according to literature protocol, but the desired product was not 

obtained.221 The strongly acidic conditions at high temperatures likely cleaved the benzyl ether 

group, leading to undesired competing reactions.  

 An attempt to employ the conditions used in coumarin ring formation toward synthesis of 

the 2-quinolone nucleus is shown in Scheme 35. Rather than forming the desired ring system, the 

reaction conditions led to formation of the product shown in good yield. Although the aniline 

attacked the eneamine, cyclization to the desired 2-quinolone did not take place. 

 

Scheme 35. Efforts toward 2-quinolone core. 

 A rather straightforward method for synthesizing 4-quinolone derivatives was reported in 

a recent patent. This method involves heating cyclo-isopropylidene malonate with 

triethylorthoformate for several hours to yield compound 112 (Scheme 36). Dione 112 was 

carried on without further purification and mixed with aniline 41 in refluxing ethanol to afford 

intermediate 113 in good yield over two steps. Conjugated dione 113 was cyclized to 4-

quinolone in the presence of diphenyl ether and biphenyl over the course of an hour.222 Although 

an attempt was made to nitrate 4-quinolone 114, the desired reaction did not take place. 
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Scheme 36. Efforts toward 4-quinolone system. 

 Like with the 4-quinolone, a patented procedure was crucial in the development of a 

route toward the methylated naphthalene core. Following the patented protocol (Scheme 37), 

naphthol 115 was treated with dimethylamine in the presence of formaldehyde to afford 

intermediate 116 in nearly quantitative yield within 2 hours. Naphthol 116 was next acetylated, 

and then sodium borohydride in refluxing ethanol was used to reductively eliminate the 

dimethylamino group, furnishing the desired methyl substituent.201 Methylated naphthol 118 was 

exposed to Mitsunobu conditions to install the desired sugar surrogate, in accordance with 

modeling studies and toward the final proposed analogues.193 Next, Buchwald-Hartwig coupling 

conditions were employed to convert aryl bromide 119 to the corresponding PMB-protected 

aniline. Although a diverse set of conditions was utilized in an attempt to cleave the PMB group, 

none proved effective. While the customary oxidative removal using DDQ resulted in a messy 

mixture of various products, reductive conditions failed completely, leaving predominantly 

starting material after several days. Since PMB cleavage proved problematic, an alternative route 

was sought to avoid this transformation. 
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Scheme 37. Efforts toward methylated naphthalene analogues. 

 As a more unified approach to all desired naphthalene-containing derivatives, allowing 

the incorporation of various sugars after coupling of desired benzamides, naphthol 118 was 

protected as the methoxy methyl ether (Scheme 38). Rather than introducing a PMB-protected 

aniline, it was proposed that chemistry used in constructing the ring system precursors could be 

applied toward the desired aniline product. To this end, naphthalyl bromide 121 was successfully 

converted to the corresponding aniline using the copper-mediated reductive amination with 

trimethylsilyl azide.210 Next, aniline 122 was readily coupled with either biaryl acid 27 or 

prenylated acid 126 in the presence of EDCI and pyridine. To explore the potential of sugar 

attachment to the functionalized biaryl scaffold 123, the MOM group was cleaved under acidic 

conditions. Attempted coupling reactions with the N-methyl piperidine sugar mimic proved 

problematic with this late-stage analogue and were not pursued further. Rather, this phenol was 

envisioned as a handle for noviosylation, leading to two of the four proposed naphthalene-

containing derivatives. Intermediate 119 was used as a means toward the piperidine-containing 

analogues and the copper-mediated reductive amination has since been successfully employed to 



 94 

access the desired aniline, which can be readily coupled to furnish the last two naphthalene-

containing analogues. 

 

Scheme 38. Late-stage diversification of methylated naphthalene analogues.  

 With synthon 98 in hand, the four remaining ring systems can be accessed in relatively 

few steps. As shown in Scheme 39, synthon 98 can be used diazotized and then treated with 

nitromethane under basic conditions to afford the corresponding phenylhydrazone, which would 

also exist as its azo tautomer. Exposure to basic conditions, once again, has been reported to 

induce cyclization to the 3-nitrocinnoline in modest yield.223 Synthon 98 can also be utilized 

directly towards the formation of the desired quinoline scaffold. As previously described, freshly 

prepared methazonic acid and amino benzaldehyde 98 can be condensed in the presence of acid 

to form the desired 3-nitroquinoline in modest yield.224 Likewise, common precursor 98 can be 

heated with ethyl-2-nitroacetate in N,N-dimethylformamide overnight to form the desired 3-

nitro-2-quinolone.225 Finally, the 3-nitro-4-quinolone scaffold can be accessed from pivaloyl 

amide 97. This benzaldehyde can be oxidized to the corresponding carboxylic acid using Pinnick 

conditions prior to pivaloyl cleavage. Much like the protocol used with the quinoline core, 

condensation of the amino carboxylic with methazonic acid should yield the phenylhydrazone 

intermediate, which can be subsequently dehydrated to the desired scaffold using acetic 

anhydride in the presence of sodium acetate.226,227 
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Scheme 39. Proposed preparations of four remaining ring systems. 

 Through the chemistry developed and shown in Scheme 33 and Scheme 34, the 

quinazoline and 4-(3H)-quinazolinone core systems can be prepared and coupled to the desired 

sugars and side chains. Moreover, the synthetic steps developed toward the naphthalene-

containing scaffold have enabled the preparation of final analogues with relatively few 

manipulations. Finally, from key intermediate 98 and its predecessor 97, these final ring systems 

can be each be prepared in less than four steps. The proposed intermediate of each core can be 

easily diversified through sequential coupling of the desired sugars and benzoic acids to afford 

the final proposed analogues. The desired outcome of these studies is to identify a rationally 

designed replacement of the coumarin core that manifests equivalent or improved potency over 

the corresponding coumarin-containing analogue, but lacks its detrimental attributes. Thus, with 

these final analogues in hand, anti-proliferation assays and subsequent Western blot analyses will 

examine their potency and specificity for Hsp90, respectively. A potently cytotoxic novobiocin 
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analogue that lacks a coumarin core will represent a novel contribution to the Hsp90 field and a 

promising new lead scaffold in the development of C-terminal Hsp90 modulators. 

 

V. Conclusion 

 The studies discussed herein have focused on modifications to the novobiocin coumarin 

core. Rational design of coumarin cores that mimic GTP resulted in several new potent 

novobiocin analogues with unique substitution about the coumarin ring system. Likewise, these 

coumarins inspired the development of other uniquely substituted coumarins and structurally 

related neuroprotective analogues. Quinoline and naphthalene cores, also examined as part of the 

initial study, proved that the coumarin core can be replaced with retention of anti-Hsp90 activity. 

Moreover, these non-coumarin ring systems provided a foundation on which to begin the final 

study involving the design of other rationally designed coumarin ring surrogates. Overall these 

research endeavors have elucidated much SAR for the largely unexamined coumarin core of the 

novobiocin structure, leading to the development of several promising compounds that have 

moved into advanced studies. 

  

VI. Experimental Protocols 

 

2a 
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2,4-Bis(ethoxymethoxy)benzaldehyde (2a):173 N,N-diisopropylethylamine (25.3 mL, 145 

mmol) was slowly added to 2,4-dihydroxybenzaldehyde (5.00 g, 36.2 mmol) in anhydrous N,N-

dimethylformamide (100 mL) over 5 min at rt. After 30 min, the solution was cooled to 0°C and 

chloromethyl ethyl ether (14.2 mL, 145 mmol) was added and the mixture warmed to rt over 12 

h. The reaction was quenched by the addition of saturated aqueous NH4Cl solution and extracted 

with EtOAc (3 × 50 mL). The combined organic fractions were washed with saturated aqueous 

NaCl, dried (Na2SO4), filtered, and concentrated. The residue was purified via column 

chromatography (SiO2, 5:1 → 1:1 Hexane:EtOAc) to give 2a as a brown amorphous solid (9.10 

g, 99%): 1H NMR (CDCl3, 400 MHz) � 10.34 (d, J = 2.4 Hz, 1H), 7.81 (dd, J = 8.7, 2.8 Hz, 1H), 

6.89 (t, J = 2.5 Hz, 1H), 6.74 (s, 1H), 5.34 (d, J = 2.8, 2H), 5.28 (d, J = 2.8, 2H), 3.81–3.71 (m, 

4H), 1.28–1.22 (m, 6H). 

 

2b 

2,4-bis(methoxymethoxy)benzaldehyde (2b).228 2,4-dihydroxybenzaldehyde (5.00 g, 36.2 

mmol) in anhydrous N,N-dimethylformamide (101 mL) was treated with NaH (3.48 g, 145 

mmol), portionwise over several minutes at 0°C. After 30 minutes had elapsed, the mixture was 

cooled to 0°C and methoxy methyl ether (11.0 mL, 145 mmol) was added slowly, and then the 

mixture was allowed to warm to rt and stir for 12 h. The mixture was quenched with saturated 

NaHCO3 at 0°C and extracted with ethyl acetate (3 × 50 mL). The combined organic fractions 

were washed with saturated NaCl, dried (Na2SO4), filtered and concentrated. The residue was 

purified by chromatography (5:1 → 3:1; Hexane:EtOAc) to afford 2b (6.45 g, 80%) as a white 
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solid: 1H NMR (CDCl3, 400 MHz) � 1H NMR (CDCl3, 400 MHz) � 11.37 (s, 1H), 7.45 (d, J = 

8.6 Hz, 1H), 6.65 (dd, J = 8.6, 2.2 Hz, 1H), 6.60 (d, J = 2.0 Hz, 1H), 5.22 (s, 4H), 3.47 (s, 6H). 

  

3a 

2,4-Bis(ethoxymethoxy)phenol (3a): A solution of 2a (3.78 g, 12.0 mmol) in anhydrous 

CH2Cl2 (4.0 mL) was slowly added to mCPBA (70%) (3.26 g, 13.2 mmol) in anhydrous CH2Cl2 

(16.3 mL) at 0°C. The resulting solution was warmed to rt, then refluxed for 12 h. After cooling 

to rt, the resulting solution was washed with saturated aqueous NaHCO3 solution (3 × 20 mL) 

and 10% aqueous Na2S2O3 (30 mL). Combined organic fractions were dried (Na2SO4), filtered, 

and concentrated. The residue was re-dissolved in MeOH (5 mL) and stirred with excess 10% 

aqueous NaOH for 3 h at rt. The pH was adjusted to 2 with 6M HCl and the solution was 

extracted with CH2Cl2 (3 × 10 mL). Combined organic fractions were dried (Na2SO4), filtered, 

and concentrated to give 3a as an orange oil (8.21 g, 94%): 1H NMR (CDCl3, 500 MHz) ��6.89–

6.85 (m, 2H), 6.67 (dd, J = 8.8, 2.7 Hz, 1H), 5.81 (d, J = 6.6 Hz, 1H), 5.23 (s, 2H), 5.15 (s, 2H), 

3.80–3.73 (m, 4H), 1.29–1.24 (m, 6H); 13C NMR (CDCl3, 125 MHz) δ 151.0, 145.0, 141.5, 

115.2, 110.6, 106.0, 94.9, 94.2, 64.8, 64.1, 15.1, 15.1; IR (film) νmax 3362, 2887, 1460, 1286, 

1162, 735 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for C12H18NaO5, 265.1052; found, 

265.1045. 

 

3b 
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2,4-Bis(methoxymethoxy)phenol (3b):175 Benzaldehyde 2b (700 mg, 3.11 mmol) in CHCl3 

(1.80 mL) at 0°C was treated with mCPBA (70% w/w, 1.61 g, 9.33 mmol). After 10 min, the 

solution was warmed to rt, then refluxed for 12 h. Upon cooling to rt, the solution was washed 

with saturated aqueous NaHCO3 (3 × 10 mL), saturated aqueous Na2SO3 (20 mL), saturated 

aqueous NaCl, was dried (Na2SO4), filtered, and concentrated. The residue was dissolved in 

MeOH (5 mL) and stirred with excess triethylamine for 3 h at rt. The solvent was concentrated 

and the residue purified by column chromatography (SiO2, 4:1 → 3:1 Hexane:EtOAc) to afford 

3b as a yellow oil (320 mg, 50%): 1H NMR (CDCl3, 400 MHz) � 6.87 (d, J = 8.9 Hz, 1H), 6.86 

(s, 1H), 6.67 (dd, J = 11.5, 2.8 Hz, 1H), 5.21 (s, 2H), 5.11 (s, 2H), 3.54 (s, 3H), 3.50 (s, 3H). 

 

4a 

2,4-Bis(ethoxymethoxy)-1-methoxybenzene (4a): Potassium carbonate (14.3 g, 103 mmol) 

was added to 3a (2.50 g, 10.3 mmol) in N,N-dimethylformamide (103 mL). After 10 min, methyl 

iodide (6.43 mL, 103 mmol) was added and the solution was heated to reflux for 12 h. Upon 

cooling to rt, the solution was extracted with EtOAc (3 × 50 mL); combined organic fractions 

were washed with saturated aqueous NaCl, dried (Na2SO4), and concentrated. The residue was 

purified by column chromatography (SiO2, 4:1 Hexane:EtOAc) to afford 4a as a yellow oil (2.40 

g, 91%): 1H NMR (CDCl3, 500 MHz) � 6.87 (d, J = 2.8 Hz, 1H), 6.72 (d, J = 8.9 Hz, 1H), 6.60 

(dd, J = 13.3, 1.7 Hz, 1H), 5.18 (s, 2H), 5.07 (s, 2H), 3.76 (s, 3H), 3.72–3.69 (m, 2H), 3.68–3.63 

(m, 2H), 1.17–1.13 (m, 6H); 13C NMR (CDCl3, 125 MHz) δ 150.7, 146.2, 143.9, 111.2, 107.9, 

105.8, 93.2, 93.0, 63.3, 63.0, 55.4, 14.1, 14.0; IR (film) νmax 2976, 2932, 2899, 2835, 1595, 1508, 
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1393, 1227, 1153, 1103, 1080, 1009, 847 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for 

C13H20NaO5, 279.1208; found, 279.1181. 

 

4b 

2,4-Bis(methoxymethoxy)-1-propoxybenzene (4b): Potassium carbonate (322 mg, 2.33 

mmol) was added to 3b (50 mg, 0.233 mmol) in N,N-dimethylformamide (2.33 mL) at rt. After 

10 min, iodopropane (226 μL, 2.33 mmol) was added and the solution was heated to reflux for 

12 h. Upon cooling to rt, the solution was extracted with EtOAc (3 × 10 mL); combined organic 

fractions were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. 

The residue was purified by column chromatography (SiO2, 5:1 Hexane:EtOAc) to afford 4b as a 

yellow oil (36.4 mg, 61%): 1H NMR (CD2Cl2, 400 MHz) ��6.87 (s, 1H), 6.84 (d, J = 2.9 Hz, 1H), 

6.68 (dd, J = 11.7, 2.8 Hz, 1H), 5.19 (s, 2H), 5.12 (s, 2H), 3.93 (t, J = 6.6 Hz, 2H), 3.53 (s, 3H), 

3.49 (s, 3H), 1.86–1.78 (m, 2H), 1.06 (t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 125 MHz) δ 150.6, 

146.5, 143.8, 113.7, 108.5, 106.6, 94.7, 94.2, 70.3, 55.2, 54.9, 21.6, 9.5; IR (film) νmax 2961, 

2826, 1595, 1506, 1400, 1261, 1154, 1013, 1076, 924, 800 cm-1; HRMS (ESI+) m/z: [M + H]+ 

calcd for C13H20O5, 257.1389; found, 257.1410; [M + Na]+ calcd for C13H20NaO5, 279.1208; 

found, 279.1165. 

 

4c 

2,4-Bis(ethoxymethoxy)-1-isopropoxybenzene (4c): Potassium carbonate (2.85 g, 20.7 

mmol) was added to 3a (500 mg, 2.07 mmol) in N,N-dimethylformamide (4.10 mL) at rt. After 
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10 min, 2-iodopropane (2.06 mL, 20.7 mmol) was added and the solution was heated to reflux 

for 12 h. Upon cooling to rt, the solution was extracted with EtOAc (3 × 20 mL); combined 

organic fractions were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and 

concentrated. The residue was purified via column chromatography (SiO2, 5:1 → 1:1 

Hexane:EtOAc) to afford 4c as a yellow oil (0.32 g, 55%): 1H NMR (CD2Cl2, 400 MHz) � 6.87 

(s, 1H), 6.86 (d, J = 4.9 Hz, 1H), 6.66 (dd, J = 11.6, 3.4 Hz, 1H), 5.23 (s, 2H), 5.17 (s, 2H), 4.44–

4.38 (m, 1H), 3.83–3.72 (m, 4H), 1.33 (s, 3H), 1.31 (s, 3H), 1.27–1.23 (m, 6H); 13C NMR 

(CDCl3, 125 MHz) δ 152.4, 149.1, 143.2, 118.6, 109.5, 107.5, 94.4, 93.9, 72.8, 64.3, 64.1, 22.2 

(2C), 15.1, 15.1; IR (film) νmax 2976, 1591, 1504, 1528, 1391, 1258, 1217, 1107, 1011, 847 cm-1; 

HRMS (ESI+) m/z: [M + H]+ calcd for C15H24O5, 285.1702; found, 285.1746; [M + Na]+ calcd 

for C15H24NaO5, 307.1522; found, 307.1310. 

 

 

5a 

1,3-Bis(ethoxymethoxy)-4-methoxy-2-methylbenzene (5a): A solution of 4a (632 mg, 2.27 

mmol) in anhydrous THF (1.94 mL) was added dropwise to a solution of nBuLi (2.5 M in 

hexanes, 1.48 mL, 3.70 mmol) in anhydrous THF (1.62 mL) at rt. After 1 h, the solution was 

cooled to -78° C and methyl iodide (620 μL, 9.87 mmol) was added. The resulting solution was 

warmed to rt over 12 h, and the reaction was quenched by the addition of saturated aqueous 

NH4Cl. Water (5 mL) was added and the solution was extracted with CH2Cl2 (3 × 10 mL). 

Combined organic fractions were dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 8:1 → 5:1 Hexane:EtOAc) to afford 5a as a yellow 
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oil (353 mg, 53%): 1H NMR (CDCl3, 500 MHz) ��6.74 (d, J = 9.0 Hz, 1H), 6.60 (d, J = 9.0 Hz, 

1H) 5.10 (s, 2H), 5.05 (s, 2H), 3.78 (q, J = 7.1 Hz, 2H), 3.72 (s, 3H), 3.67 (q, J = 7.1 Hz, 2H), 

2.14 (s, 3H), 1.18–1.15 (m, 6H); 13C NMR (CDCl3, 125 MHz) δ 149.1, 146.5, 121.7, 109.0, 

108.4, 96.2, 93.0, 64.3, 63.1, 55.1, 28.7, 14.2, 14.1, 8.8; IR (film) νmax 2918, 2359, 1487, 1260, 

1248, 1082, 1055, 945, 798 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for C14H22NaO5, 

293.1365; found, 293.1357. 

 

5b 

1,3-Bis(methoxymethoxy)-2-methyl-4-propoxybenzene (5b): A solution of 4b (165 mg, 

0.64 mmol) in anhydrous THF (520 μL) was added dropwise to a solution of nBuLi (2.5 M in 

hexanes, 390 μL, 0.97 mmol) in anhydrous THF (420 μL) at rt. After 1 h, the solution was 

cooled to -78° C and methyl iodide (160 μL, 2.58 mmol) was added. The resulting solution was 

warmed to rt over 12 h, and the reaction was quenched by the addition of saturated aqueous 

NH4Cl. Water (5 mL) was added and the solution was extracted with CH2Cl2 (3 × 10 mL). 

Combined organic fractions were dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 6:1 Hexane:EtOAc) to afford 5b as a yellow oil (166 

mg, 95%): 1H NMR (CDCl3, 500 MHz) ��6.66 (d, J = 9.0 Hz, 1H), 6.60 (d, J = 9.0 Hz, 1H), 5.02 

(s, 2H), 5.00 (s, 2H), 3.80–3.77 (m, 2H), 3.49 (s, 3H), 3.47 (s, 3H), 2.14 (d, J = 7.1 Hz, 3H), 

1.73–1.69 (m, 2H), 0.94 (t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 125 MHz) δ 148.5, 148.5, 147.3, 

145.6, 126.7, 123.0, 112.8, 110.8, 110.4, 99.2, 57.7, 57.6, 21.2, 10.9, 10.0; IR (film) νmax 2957, 

2924, 2853, 1738, 1597, 1487, 1468, 1391, 1335, 1231, 1157, 974, 798 cm-1; HRMS (ESI+) m/z: 

[M + H]+ calcd for C14H23O5, 271.1545; found, 271.1558. 
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5c 

1,3-Bis(ethoxymethoxy)-4-isopropoxy-2-methylbenzene (5c): A solution of 4c (190 mg, 

0.67 mmol) in anhydrous THF (530 μL) was added dropwise to a solution of nBuLi (2.5 M in 

hexanes, 410 μL, 1.00 mmol) in anhydrous THF (440 μL) at rt. After 1 h, the solution was 

cooled to -78° C and methyl iodide (170 μL, 2.67 mmol) was added. The resulting solution was 

warmed to rt over 12 h, and the reaction was quenched by the addition of saturated aqueous 

NH4Cl. Water (5 mL) was added and the solution was extracted with CH2Cl2 (3 × 10 mL). 

Combined organic fractions were dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 6:1 Hexane:EtOAc) to afford 5c as a yellow oil (157 

mg, 79%): 1H NMR (CDCl3, 500 MHz) ��6.70 (d, J = 9.0 Hz, 1H), 6.61 (d, J = 9.0 Hz, 1H), 5.10 

(s, 2H), 5.08 (s, 2H),4.34 (quintet, J = 6.1 Hz, 1H), 3.78 (q, J = 7.1 Hz, 2H), 3.67 (q, J = 7.1 Hz, 

2H), 2.13 (s, 3H), 1.23 (d, J = 6.1 Hz, 6H), 1.24–1.15 (m, 6H); 13C NMR (CDCl3, 125 MHz) δ 

150.3, 146.6, 145.3, 122.7, 113.7, 110.1, 97.3, 94.0, 71.5, 65.4, 64.2, 29.4, 22.2, 15.2, 15.2, 9.9; 

IR (film) νmax 2924, 2853, 2359, 2339, 1591, 1483, 1113, 1057, 974 cm-1; HRMS (ESI+) m/z: [M 

+ H]+ calcd for C16H27O5, 299.1858; found, 299.1909. 

 

6a 

4-Methoxy-2-methylbenzene-1,3-diol (6a): A solution of 5a (910 mg, 3.37 mmol) in MeOH 

(28.0 mL) at rt was treated dropwise with 3M HCl (9.00 mL, 26.9 mmol), then heated to reflux 
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for 1 h. Water (30 mL) was added and the solution was extracted with EtOAc (3 × 30 mL). 

Combined organic fractions were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, 

and concentrated. The residue was purified via column chromatography (SiO2, 6:1 

Hexane:EtOAc) to afford 6a as a red amorphous solid (509 mg, 98%): 1H NMR (Acetone-d6, 

500 MHz) ��7.68 (s, 1H), 7.24 (s, 1H), 6.60 (d, J = 11 Hz, 1H), 6.29 (d, J = 11 Hz, 1H), 3.74 (s, 

3H), 2.09 (s, 3H); 13C NMR (CDCl3, 125 MHz) δ 144.7, 142.1, 139.7, 115.6, 110.2, 108.6, 55.6, 

7.6; IR (film) νmax 3583, 2920, 2359, 1616, 1259, 1090, 1020, 798 cm-1. HRMS (ESI+) m/z: [M + 

Na]+ calcd for C8H11NaO3, 177.0528; found, 177.0522. 

 

6b 

2-Methyl-4-propoxybenzene-1,3-diol (6b): A solution of 5b (580 mg, 2.15 mmol) in MeOH 

(17.9 mL) was treated dropwise with 3M HCl (630 μL, 17.2 mmol), then heated to reflux for 1 h. 

Water (20 mL) was added and the solution was extracted with EtOAc (3 × 20 mL). Combined 

organic fractions were washed with saturated aqueous NaCl, dried (Na2SO4), and concentrated to 

afford 6b as a red amorphous solid (387 mg, 99%). 1H NMR (CDCl3, 500 MHz) ��6.51 (d, J = 

8.7 Hz, 1H), 6.21 (d, J = 8.6 Hz, 1H), 5.74 (s, 1H), 4.36 (s, 1H), 3.87–3.85 (m, 2H), 2.09 (s, 3H), 

1.75–1.71 (m, 2H), 0.96 (t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 125 MHz) δ 147.5, 143.8, 139.0, 

109.8, 108.4, 103.8, 70.2, 21.6, 9.5, 7.3; IR (film) νmax 3520, 3360, 2966, 2880, 2359, 2341, 

1636, 1236, 1068, 785, 750 cm-1. HRMS (ESI+) m/z: [M + H]+ calcd for C10H15O3, 183.1021; 

found, 183.0950. 
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6c 

4-methoxy-2-methylbenzene-1,3-diol (6c): A solution of 5c (157 mg, 0.53 mmol) in MeOH 

(4.40 mL) at rt was treated dropwise with 3M HCl (1.40 mL, 4.21 mmol), then heated to reflux 

for 1 h. Water (5 mL) was added and the solution was extracted with EtOAc (3 × 10 mL). 

Combined organic fractions were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, 

and concentrated to afford 6c as a red amorphous solid (95 mg, 99%): 1H NMR (CDCl3, 500 

MHz) ��6.54 (d, J = 8.7 Hz, 1H), 6.21 (d, J = 8.7 Hz, 1H), 5.78 (s, 1H), 4.37–4.32 (m, 1H), 2.09 

(s, 3H), 1.25 (d, J = 6.1 Hz, 6H); 13C NMR (CDCl3, 125 MHz) δ 147.7, 144.9, 137.5, 110.8, 

109.8, 104.0, 71.7, 21.3 (2C); IR (film) νmax 3526, 2974, 2924, 2853, 1717, 1607, 1475, 1238, 

1113, 1067, 928, 887, 791 cm-1. HRMS (ESI+) m/z: [M + H]+ calcd for C10H11O3, 183.1021; 

found, 183.0963. 

 

8 

1-Methoxy-3,5-bis(methoxymethoxy)benzene (8): N,N-diisopropylethylamine (3.15 mL, 

18.1 mmol) was added to 5-methoxybenzene-1,3-diol (634 mg, 4.52 mmol) in anhydrous N,N-

dimethylformamide (12.6 mL) over 5 min at rt. After 30 min, the solution was cooled to 0°C, 

methoxy methylchloride (3.02 mL, 18.1 mmol) was added, and the solution was warmed to rt 

over 12 h. The reaction was quenched by the addition of saturated aqueous NaHCO3 at 0°C and 

extracted with EtOAc (3 × 10 mL). Combined organic fractions were washed with saturated 

aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue was purified via column 
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chromatography (SiO2, 6:1→ 4:1 Hexane:EtOAc) to afford 8 as a yellow amorphous solid (441 

mg, 43%): 1H NMR (CDCl3, 500 MHz) � 6.29 (t, J = 2.2 Hz, 1H), 6.21 (d, J = 2.2 Hz, 2H), 5.07 

(s, 4H), 3.69 (s, 3H), 3.40 (s, 6H); 13C NMR (CDCl3, 125 MHz) � 161.394, 159.0 (2C), 97.2, 

96.2 (2C), 94.5 (2C), 56.1, 55.4 (2C); IR (film) νmax 2997, 2955, 2903, 2827, 1601, 1475, 1400, 

1215, 1194, 1146, 1032, 991, 924, 829, 685 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for 

C11H16NaO5, 251.0895; found, 251.0910. 

 

9 

5-methoxy-1,3-bis(methoxymethoxy)-2-methylbenzene (9): A solution of 8 (441 mg, 1.93 

mmol) in anhydrous THF (1.55 mL) was added dropwise to a solution of nBuLi (2.5 M in 

hexanes, 1.16 mL, 2.90 mmol) in anhydrous THF (1.26 mL) at rt. After 1 h, the solution was 

cooled to -78° C and methyl iodide (480 μL, 7.73 mmol) was added. The resulting solution was 

warmed to rt over 12 h, and the reaction was quenched by the addition of saturated aqueous 

NH4Cl. Water (5 mL) was added and the solution was extracted with CH2Cl2 (3 × 10 mL). 

Combined organic fractions were dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 6:1 → 4:1; Hexane:EtOAc) to afford 9 as a yellow 

oil (314 mg, 67%): 1H NMR (CDCl3, 500 MHz) � 6.38 (d, J = 2.2 Hz, 1H), 6.24 (d, J = 2.1 Hz, 

1H), 5.08 (d, J = 3.6 Hz, 2H), 5.06 (d, J = 2.6 Hz, 2H), 3.72 (s, 3H), 3.40 (s, 6H), 1.97 (s, 3H); 

13C NMR (CDCl3, 125 MHz) � 160.3, 157.8, 155.4, 108.2, 93.9, 93.8, 93.7, 92.9, 55.0, 55.0, 

54.6, 7.0; IR (film) νmax 2953, 2934, 2905, 1597, 1497, 1396, 1215, 1144, 1126, 1074, 1059, 
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1028, 922, 822 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for C12H19O5, 243.1233; found, 

243.1223. 

 

10 

5-Methoxy-2-methylbenzene-1,3-diol (10): A solution of 9 (314 mg, 1.30 mmol) in MeOH 

(10.8 mL) at rt was treated dropwise with 3M HCl (3.46 mL, 10.3 mmol), then heated to reflux 

for 1 h. Water (11 mL) was added and the solution was extracted with EtOAc (3 × 15 mL). 

Combined organic fractions were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, 

and concentrated to afford 10 as a red amorphous solid (177 mg, 99%): 1H NMR (CDCl3, 500 

MHz) � 8.17 (s, 1H), 6.09 (d, J = 1.6 Hz, 1H), 6.04 (s, 1H), 3.67 (d, J = 9.9 Hz, 3H), 2.08 (d, J = 

4.1 Hz, 3H); 13C NMR (CDCl3, 125 MHz) � 160.3, 157.8, 155.4, 108.4, 93.9, 93.8, 55.0, 7.0; IR 

(film) νmax 3445, 2924, 2853, 2359, 2332, 1653, 1636, 1456, 1080, 1022, 798, 669 cm-1; HRMS 

(ESI+) m/z: [\M + H]+ calcd for C8H11O3, 309.1338 found, 309.1332. 

 

12 

1,3-Bis(methoxymethoxy)benzene (12):229 Sodium hydride (872 mg, 36.3 mmol) was added 

to resorcinol (1.00 g, 9.08 mmol) in anhydrous N,N-dimethylformamide (25.4 mL) at 0°C. After 

30 min, methoxy methylchloride (2.76 mL, 36.3 mmol) was added and the resulting solution was 

warmed to rt over 12 h. The reaction was cooled to 0°C, quenched by the addition of saturated 

aqueous NaHCO3, and extracted with EtOAc (3 × 30 mL). Combined organic fractions were 

washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue 
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was purified via column chromatography (SiO2, 4:1 Hexane:EtOAc) to afford 12 as a yellow oil 

(1.75 g, 97%): 1H NMR (CDCl3, 400 MHz) � 7.25–7.20 (m, 1H), 6.80 (d, J = 2.3 Hz, 1H), 6.75 

(dd, J = 8.2, 2.4 Hz, 2H), 5.20 (s, 4H), 3.51 (s, 6H). 

 

13 

2-Benzyl-1,3-bis(methoxymethoxy)benzene (13): A solution of 12 (500 mg, 2.52 mmol) in 

anhydrous THF (2.02 mL) was added dropwise to a solution of nBuLi (2.5 M in hexanes, 1.51 

mL, 3.78 mmol) in anhydrous THF (1.65 mL) at rt. After 1 h, the solution was cooled to -40°C 

and benzyl bromide (1.22 mL, 10.10 mmol) was added. The resulting solution was warmed to rt 

over 12 h, and the reaction was quenched by the addition of saturated aqueous NH4Cl. Water (5 

mL) was added and the solution was extracted with CH2Cl2 (3 × 10 mL). Combined organic 

fractions were dried (Na2SO4), filtered, and concentrated. The residue was purified via column 

chromatography (SiO2, 4:1; Hexane:EtOAc) to afford 13 as a yellow oil (214 mg, 30%): 1H 

NMR (CDCl3, 500 MHz) � 7.17 (d, J = 7.9 Hz, 2H), 7.17–7.12 (m, 2H), 7.06–7.02 (m, 2H), 6.71 

(d, J = 8.3 Hz, 2H), 5.09 (s, 4H), 4.00 (s, 2H), 3.29 (s, 6H); 13C NMR (CDCl3, 125 MHz) � 155.9 

(2C), 141.6, 128.5 (2C), 128.0 (2C), 127.5, 125.4, 119.4, 107.7 (2C), 94.3 (2C), 56.0 (2C), 29.1; 

IR (film) νmax 2953, 2930, 1595, 1470, 1452, 1254, 1153, 1097, 1043, 941, 922, 727, 698 cm-1; 

HRMS (ESI+) m/z: [M + Na]+ calcd for C17H20NaO4, 311.1259; found, 311.1201. 
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14 

2-Benzylbenzene-1,3-diol (14):230 A solution of 13 (214 mg, 0.74 mmol) in MeOH (6.20 mL) 

was treated dropwise with 3M HCl (0.22 mL, 5.92 mmol), then heated to reflux for 1 h. Water 

(10 mL) was added and the solution was extracted with EtOAc (3 × 15 mL). Combined organic 

fractions were washed with saturated aqueous NaCl, dried (Na2SO4), and concentrated to afford 

14 as a red amorphous solid (149 mg, 99%). 1H NMR (CDCl3, 400 MHz) � 7.31 (d, J = 6.6 Hz, 

4H), 7.25–7.19 (m, 1H), 7.01 (t, J = 8.1 Hz, 1H), 6.44 (d, J = 8.1 Hz, 2H), 4.82 (s, 2H), 4.09 (s, 

2H). 

 

15 

2-Iodo-1,3-bis(methoxymethoxy)benzene (15): n-Butyllithium (nBuLi, 2.5M in hexanes, 

0.22 mL, 0.56 mmol) was added to a solution of 12 (100 mg, 0.50 mmol) in anhydrous THF (790 

μL) at 0°C. After 5 min, iodine (141 mg, 0.56 mmol) in anhydrous THF (320 μL) was added. 

After 2 h at rt, the reaction was quenched via dropwise addition of MeOH and the solvent was 

concentrated. Water (5 mL) was added and the solution was extracted with EtOAc (3 × 10 mL). 

Combined organics were washed with saturated aqueous Na2S2O3, saturated aqueous NaCl, dried 

(Na2SO4), filtered, and concentrated to afford 15 as a brown oil (129 mg, 79%): 1H NMR 

(CDCl3, 100 MHz) � 7.25–7.18 (m, 1H), 6.79–6.71 (m, 2H), 5.27 (s, 2H), 5.18 (s, 2H), 3.54 (s, 

3H), 3.50 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 160.3, 160.2, 130.2, 108.2 (2C), 93.9, 93.8, 
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74.0, 55.0 (2C); IR (film) νmax 2953, 2924, 2853, 1458, 1377 cm-1. HRMS (ESI+) m/z: [M + H]+ 

calcd for C10H14IO4, 324.9937; found, 325.0054. 

 

16 

2,6-Bis(methoxymethoxy)biphenyl (16): Anhydrous toluene (2.0 mL) was added to a flask 

charged with tris(dibenzylideneacetone)dipalladium (56.3 mg, 0.062 mmol), dicyclohexyl(2',6'-

dimethoxybiphenyl-2-yl)phosphine (50.5 mg, 0.12 mmol), phenylboronic acid (281 mg, 2.31 

mmol), and potassium phosphate (979 mg, 4.61 mmol) at rt. After 15 min, a solution of 15 (500 

mg, 1.54 mmol) in anhydrous toluene (1.0 mL) was added and the resulting solution was heated 

to reflux for 12 h. Upon cooling to rt, ether was added, the solution was filtered through SiO2 and 

concentrated to give 16 as a colorless amorphous solid (418 mg, 99%): 1H NMR (CDCl3, 500 

MHz) � 7.35–7.28 (m, 2H), 7.28–7.25 (m, 2H), 7.18–7.15 (m, 2H), 6.83 (d, J = 8.3 Hz, 2H), 4.96 

(s, 4H), 3.24 (s, 6H); 13C NMR (CDCl3, 125 MHz) � 155.3, 155.0, 134.3, 130.8, 129.5, 128.7, 

128.0, 127.6, 126.8, 122.6, 109.4 (2C), 94.9 (2C), 56.0 (2C); IR (film) νmax 2955, 2928, 2901, 

2359, 2341, 1587, 1466, 1439, 1400, 1244, 1153, 1099, 1080, 1041, 922, 764, 733, 700 cm-1; 

HRMS (ESI+) m/z: [M + Na]+ calcd for C16H18NaO4, 297.1103; found, 297.1052. 

 

17 
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Biphenyl-2,6-diol (17):231 A solution of 16 (400 mg, 1.46 mmol) in MeOH (12.0 mL) at rt 

was treated dropwise with 3M HCl (430 μL, 11.7 mmol), then heated to reflux for 1 h. Water (15 

mL) was added and the solution was extracted with EtOAc (3 × 20 mL). Combined organic 

fractions were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated 

to afford 17 as an orange amorphous solid (269 mg, 99%): 1H NMR (CDCl3, 400 MHz) � 7.60 

(d, J = 7.6 Hz, 2H), 7.53–7.49 (m, 1H), 7.46–7.44 (m, 2H), 7.18 (t, J = 8.2 Hz, 1H), 6.62 (d, J = 

8.2 Hz, 2H), 4.84 (s, 1H), 4.83 (s, 1H). 

 

19 

2-Methoxybenzene-1,3-diol (19):232 Lithium carbonate (281 mg, 1.98 mmol) was added to 

pyrogallol (100 mg, 0.79 mmol) in N,N-dimethylformamide (3.0 mL) at rt. After 5 min, methyl 

iodide (130 μL, 1.98 mmol) was added and the resulting solution was heated to 50°C for 48 h. 

Upon cooling to rt, water (20 mL) was added and the solution was extracted with EtOAc (3 × 20 

mL). Combined organic fractions were dried (Na2SO4), filtered, and concentrated. The residue 

was purified via column chromatography (SiO2, 5:1 → 1:1 Hexane:EtOAc) to afford 19 as a 

colorless amorphous solid (44.2 mg, 34%): 1H NMR (CDCl3, 400 MHz) � 6.89 (td, J = 8.0, 0.9 

Hz, `H), 6.53 (dd, J = 8.2, 0.8 Hz, 2H), 5.83 (bs, 2H), 3.90 (s, 3H). 

 

23a 

Benzyl 7-hydroxy-6-methoxy-8-methyl-2-oxo-2H-chromen-3-ylcarbamate (23a): A 

solution of 6a (183 mg, 1.19 mmol) and eneamine 22102 (331 mg, 1.19 mmol) in glacial acetic 
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acid (7.40 mL) was heated to reflux for 40 h. Upon cooling to rt, the solution was extracted with 

EtOAc (3 × 20 mL); combined organic fractions were dried (Na2SO4), filtered, and concentrated. 

The residue was purified via column chromatography (SiO2, 100:1 CH2Cl2:Acetone) to afford 

23a as a yellow amorphous solid (195 mg, 46%): 1H NMR (CDCl3, 400 MHz) ��8.27 (s, 1H), 

7.54 (s, 1H), 7.43–7.37 (m, 4H), 6.77 (s, 1H), 6.07 (s, 1H), 5.25 (s, 2H), 3.96 (s, 3H), 2.37 (s, 

3H); 13C NMR (CDCl3, 125 MHz) δ 159.0, 153.3 (2C), 145.7, 144.1, 144.0, 135.7, 128.7, 128.5, 

128.2 (2C), 122.5, 121.6, 112.1, 111.6, 104.5, 67.4, 56.3, 8.2; IR (film) νmax 2910, 2359, 2339, 

1693, 1537, 1354, 1209, 1078, 1024 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for C19H17NNaO6, 

378.0954; found, 378.0936. 

 

23b 

Benzyl 7-hydroxy-8-methyl-2-oxo-6-propoxy-2H-chromen-3-ylcarbamate (23b): A 

solution of 6b (390 mg, 2.14 mmol) and eneamine 22 (596 mg, 2.14 mmol) in glacial acetic acid 

(13.4 mL) was heated to reflux for 36 h. Upon cooling to rt, the precipitated yellow solid was 

collected by filtration, washed with water, recrystallized from MeOH/water, and extracted with 

EtOAc (3 × 20 mL). Combined organic fractions were washed with saturated aqueous NaCl, 

dried (Na2SO4), filtered, and concentrated. The residue was purified via column chromatography 

(SiO2, 100:1 CH2Cl2:Acetone) and recrystallized from MeOH/water to afford 23b as a yellow 

amorphous solid (278 mg, 34%): 1H NMR (CD2Cl2, 400 MHz) ��8.26 (s, 1H), 7.56 (s, 1H), 

7.47–7.38 (m, 5H), 6.84 (s, 1H), 6.28 (s, 1H), 5.25 (s, 2H), 4.09 (t, J = 6.6 Hz, 2H), 2.36 (s, 3H), 

1.93–1.88 (m, 2H), 1.10 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl3, 125 MHz) δ 158.0, 152.2, 144.9, 

142.9, 142.3, 134.6, 129.0, 127.6, 127.5 (2C), 127.2 (2C), 121.5, 120.5, 110.9, 110.5, 104.4, 
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69.8, 66.3, 21.4, 9.4, 7.1; IR (film) νmax 2957, 2920, 2851, 2359, 2341, 1693, 1537, 1358, 1277, 

1080, 1024, 910 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for C21H22NO6, 384.1447; found, 

384.1447. 

 

23c 

Benzyl 7-hydroxy-6-isopropoxy-8-methyl-2-oxo-2H-chromen-3-ylcarbamate (23c): A 

solution of 6c (142 mg, 0.78 mmol) and eneamine 22 (217 mg, 0.78 mmol) in glacial acetic acid 

(4.90 mL) was heated to reflux for 40 h. Upon cooling to rt, the solution was extracted with 

EtOAc (3 × 10 mL); combined organic fractions were dried (Na2SO4), filtered, and concentrated. 

The residue was purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 23c 

as a yellow amorphous solid (159 mg, 53%): 1H NMR (CD2Cl2, 400 MHz) ��8.26 (s, 1H), 7.56 

(s, 1H), 7.44–7.38 (m, 5H), 6.85 (s, 1H), 6.31 (s, 1H), 5.25 (s, 2H), 4.66 (quintet, J = 6.1 Hz, 

1H), 2.35 (s, 3H), 1.42 (d, J = 6.0 Hz, 6H); 13C NMR (CDCl3, 125 MHz) δ 159.1, 154.9, 146.7, 

143.9 (2C), 142.0, 135.7, 128.7 (2C), 128.5 128.2 (2C), 122.6 (2C), 111.6, 107.0, 72.3, 67.4, 

22.1 (2C), 8.2; IR (film) νmax 3400, 2924, 2853, 2359, 1817, 1699, 1524, 1412, 1354, 1300, 

1221, 1204, 1113, 1076, 1022, 824 cm-1 ; HRMS (ESI+) m/z: [M + H]+ calcd for C21H22NO6, 

384.1447; found, 384.1452. 

 

23d 
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Benzyl 7-hydroxy-5-methoxy-8-methyl-2-oxo-2H-chromen-3-ylcarbamate (23d): A 

solution of 10 (251 mg, 1.63 mmol) and eneamine 22 (680 mg, 2.44 mmol) in glacial acetic acid 

(10.2 mL) was heated to reflux for 40 h. Upon cooling to rt, the solution was extracted with 

EtOAc (3 × 15 mL); combined organic fractions were dried (Na2SO4), filtered, and concentrated. 

The residue was purified via column chromatography (SiO2, 40:1 → 20:1; CH2Cl2:Acetone) to 

afford 23d as a yellow amorphous solid (204 mg, 35%): 1H NMR (CD2Cl2, 400 MHz) � 8.48 (s, 

1H), 7.46–7.38 (m, 6H), 6.38 (s, 1H), 5.25 (s, 2H), 5.15 (s, 1H), 3.87 (s, 3H), 2.23 (s, 3H); 13C 

NMR (CDCl3, 125 MHz) � 159.1, 155.8, 154.3, 153.2, 149.8, 137.0, 128.7, 128.6, 128.6, 128.2, 

128.2, 109.3, 109.0, 108.5, 105.6, 96.9, 70.8, 60.2, 7.3; IR (film) νmax 3406, 2935, 2837, 1713, 

1670, 1607, 1529, 1501, 1364, 1242, 1101, 1051, 991, 966, 735 cm-1; HRMS (ESI+) m/z: [M + 

Na]+ calcd for C19H17NNaO6, 378.0954; found, 378.0974. 

 

23e 

Benzyl 8-benzyl-7-hydroxy-2-oxo-2H-chromen-3-ylcarbamate (23e): A solution of 14 (115 

mg, 0.57 mmol) and eneamine 22 (160 mg, 0.57 mmol) in glacial acetic acid (4.00 mL) was 

heated to reflux for 40 h. Upon cooling to rt, the solution was extracted with EtOAc (3 × 10 mL); 

combined organic fractions were dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 100:1; CH2Cl2:Acetone), followed by 

recrystallization from MeOH to afford 23e as an orange amorphous solid (296 mg, 48%): 1H 

NMR (CD2Cl2, 400 MHz) � 8.29 (s, 1H), 7.53 (s, 1H), 7.46–7.38 (m, 4H), 7.37–7.27 (m, 4H), 

7.23–7.19 (m, 2H), 7.01 (t, J = 8.1 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 6.46 (d, J = 8.1 Hz, 1H), 
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5.25 (s, 2H), 4.25 (s, 2H), 4.06 (s, 1H); 13C NMR (CDCl3, 125 MHz) � 157.7, 154.3, 153.9, 

152.2, 148.0, 137.9, 134.5, 127.6, 127.6, 127.6, 127.6, 127.5, 127.3, 127.2, 127.4, 126.6, 125.4, 

125.3, 121.4, 120.4, 114.0, 112.6, 66.5, 27.5; IR (film) νmax 3381, 2957, 2928, 2359, 2341, 1693, 

1607, 1526, 1466, 1454, 1383, 1366, 1219, 1204, 1076, 1045, 764, 737, 700 cm-1; HRMS (ESI+) 

m/z: [M + H]+ calcd for C24H20NO5, 402.1341; found, 402.1341. 

 

23f 

Benzyl 7-hydroxy-2-oxo-8-phenyl-2H-chromen-3-ylcarbamate (23f): A solution of 17 (400 

mg, 2.15 mmol) and eneamine 22 (598 mg, 2.15 mmol) in glacial acetic acid (14.3 mL) was 

heated to reflux for 40 h. Upon cooling to rt, the solution was extracted with EtOAc (3 × 30 mL); 

combined organic fractions were dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 100:1; CH2Cl2:Acetone), then recrystallized from 

MeOH to afford 23f as an orange amorphous solid (264 mg, 27%): 1H NMR (CDCl3, 500 MHz) 

� 8.25 (s, 1H), 7.51–7.48 (m, 2H), 7.43–7.40 (m, 2H), 7.35–7.29 (m, 8H), 6.94 (d, J = 8.6 Hz, 

1H), 5.16 (s, 2H); 13C NMR (CDCl3,125 MHz) � 158.5 (2C), 154.3, 153.2, 147.7, 135.6, 130.9, 

130.6, 130.5, 129.8, 129.4, 129.2 (2C), 128.7 (2C), 128.6, 128.3, 127.8, 122.2, 121.6, 113.3, 

113.5, 67.5; IR (film) νmax 3398, 2957, 2926, 2854, 1815, 1699, 1601, 1524, 1383, 1366, 1308, 

1215, 1045, 1009, 764, 750, 698 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for C24H18NO5, 

388.1185; found, 388.1214.  



 116 

 

23g 

Benzyl 7-hydroxy-8-methoxy-2-oxo-2H-chromen-3-ylcarbamate (23g): A solution of 19 

(1.10 g, 7.86 mmol) and eneamine 22 (2.18 g, 7.86 mmol) in glacial acetic acid (60.0 mL) was 

heated to reflux for 90 h. Upon cooling to rt, the solution was extracted with EtOAc (3 × 50 mL); 

combined organic fractions were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, 

and concentrated. The residue was purified via column chromatography (SiO2, 11:1; 

Hexane:EtOAc → EtOAc) then recrystallized from MeOH/water to afford 23g as a colorless 

amorphous solid (207 mg, 7.7%): 1H NMR (CDCl3, 400 MHz) � 8.30 (s, 1H), 7.50 (s, 1H), 7.43–

7.36 (m, 5H), 7.13 (d, J = 8.6 Hz, 1H), 6.97 (d, J = 7.9 Hz, 1H), 6.04 (s, 1H), 5.21 (s, 2H), 4.13 

(s, 3H); 13C NMR (Acetone-d6, 100 MHz) � 157.3, 153.3, 151.5 (2C), 144.1, 136.5, 134.4, 128.4 

(2C), 128.1, 128.0 (2C), 122.7, 121.6, 113.6, 113.2, 66.7, 60.7; IR (film) νmax 2920, 2851, 2405, 

2357, 1707, 1605, 1522, 1458, 1385, 1364, 1275, 1259, 1213, 1088, 1047, 750 cm-1; HRMS 

(ESI+) m/z: [M + Na]+ calcd for C18H15NNaO6, 364.0797; found, 364.0776. 

 

25a 

Benzyl 6-methoxy-7-((3aR,4S,7R,7aR)-7-methoxy-6,6-dimethyl-2-oxotetrahydro-3aH-

[1,3]dioxolo[4,5-c]pyran-4-yloxy)-8-methyl-2-oxo-2H-chromen-3-ylcarbamate (25a): Boron 

trifluoride etherate (5.30 �L, 0.042 mmol) was added to 23a (50.0 mg, 0.14 mmol) and 
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(3aR,4S,7R,7aR)-7-methoxy-6,6-dimethyl-2-oxo-tetrahydro-3aH-[1.3]dioxolo[4,5-c]pyran-4-yl 

2,2,2-trichloroacetimidate (171 mg, 0.47 mmol) in anhydrous CH2Cl2 (3.00 mL). After stirring at 

rt for 14 h, triethylamine (150 �L) was added and the solvent was concentrated. The residue was 

purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to give 25a as a colorless 

foam (74.0 mg, 95%): 1H NMR (CD2Cl2, 400 MHz) � 8.29 (s, 1H), 7.64 (s, 1H), 7.47–7.39 (m, 

5H), 6.91 (s, 1H), 5.52 (d, J = 3.4 Hz, 1H), 5.26 (s, 2H), 5.23 (dd, J = 8.4, 3.5 Hz, 1H), 4.95 (t, J 

= 8.2 Hz, 1H), 3.92 (s, 3H), 3.60 (s, 3H), 3.33 (d, J = 8.0 Hz, 1H), 2.42 (s, 3H), 1.38 (s, 3H), 1.33 

(s, 3H); 13C NMR (CDCl3, 125 MHz) δ 157.6, 152.7, 152.1, 148.1, 144.8, 141.8, 134.5, 127.8, 

127.7, 127.5, 127.3, 122.3, 120.2, 119.8, 115.1. 109.6, 105.2, 98.3, 82.0, 77.1, 66.5, 65.5, 59.4, 

57.4, 55.1, 26.0, 20.9, 8.9; IR (film) νmax 2957, 2928, 2854, 2359, 2341, 1817, 1709, 1522, 1464, 

1389, 1371, 1205, 1174, 1111, 1072, 1034, 957, 800 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for 

C28H30NO11, 556.1819; found, 556.1822. 

 

25b 

Benzyl 7-((3aR,4S,7R,7aR)-7-methoxy-6,6-dimethyl-2-oxotetrahydro-3aH-

[1,3]dioxolo[4,5-c]pyran-4-yloxy)-8-methyl-2-oxo-6-propoxy-2H-chromen-3-ylcarbamate 

(25b): Boron trifluoride etherate (16.7 �L, 0.13 mmol) was added to 23b (170 mg, 0.44 mmol) 

and (3aR,4S,7R,7aR)-7-methoxy-6,6-dimethyl-2-oxo-tetrahydro-3aH-[1.3]dioxolo[4,5-c]pyran-

4-yl 2,2,2-trichloroacetimidate (643 mg, 1.77 mmol) in anhydrous CH2Cl2 (11.1 mL). After 

stirring at rt for 48 h, triethylamine (150 �L) was added and the solvent was concentrated. The 
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residue was purified via column chromatography (SiO2, 100:1 → 40:1 CH2Cl2:Acetone) to give 

25b as a colorless foam (246 mg, 95%): 1H NMR (CDCl3, 500 MHz) � 8.17 (s, 1H), 7.35–7.27 

(m, 5H), 6.84 (s, 1H), 5.96 (s, 1H), 5.15 (s, 2H), 4.99 (d, J = 7.5 Hz, 1H), 4.59 (d, J = 9.7 Hz, 

1H), 4.23 (d, J = 9.6 Hz, 1H), 3.97 (t, J = 6.6 Hz, 1H), 3.82–3.75 (m, 2H), 3.37 (s, 3H), 1.84–

1.79 (m, 2H), 1.51 (s, 3H), 1.41 (s, 3H), 1.18 (s, 3H), 1.00 (t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 

125 MHz) δ 157.8, 154.3, 152.2, 151.8, 146.7, 144.2, 142.9, 134.6, 127.8, 127.6, 127.5, 127.5, 

127.2, 121.0, 120.9, 111.1, 105.3, 101.7, 91.6, 85.7, 82.8, 80.0, 69.8, 58.1, 54.8, 28.3, 28.2, 22.4, 

21.3, 9.4; IR (film) νmax 2961, 2939, 2906, 2359, 2341, 1811, 1757, 1726, 1522, 1445, 1371, 

1267, 1175, 1113, 1086, 825, 768 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for C30H33NNaO11, 

606.1952; found, 606.1950. 

 

25c 

Benzyl 6-isopropoxy-7-((3aR,4S,7R,7aR)-7-methoxy-6,6-dimethyl-2-oxotetrahydro-3aH-

[1,3]dioxolo[4,5-c]pyran-4-yloxy)-8-methyl-2-oxo-2H-chromen-3-ylcarbamate (25c): Boron 

trifluoride etherate (1.30 �L, 0.010 mmol) was added to 23c (13.0 mg, 0.034 mmol) and 

(3aR,4S,7R,7aR)-7-methoxy-6,6-dimethyl-2-oxo-tetrahydro-3aH-[1.3]dioxolo[4,5-c]pyran-4-yl 

2,2,2-trichloroacetimidate (83.0 mg, 0.23 mmol) in anhydrous CH2Cl2 (1.30 mL). After stirring 

at rt for 1.5 h, triethylamine (150 �L) was added and the solvent was concentrated. The residue 

was purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to give 25c as a colorless 

foam (19.0 mg, 95%): 1H NMR (CDCl3, 500 MHz) � 8.17 (s, 1H), 7.51 (s, 1H), 7.35 (s, 1H), 

7.34–7.33 (m, 4H), 6.74 (s, 1H), 5.54 (dd, J = 9.2, 1.2 Hz, 1H), 5.16 (s, 2H), 4.87–4.84 (m, 1H), 
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4.73 (dd, J = 7.9, 1.9 Hz, 1H), 4.51 (quintet, J = 6.0 Hz, 1H), 3.52 (s, 3H), 3.28 (d, J = 4.8 Hz, 

1H), 2.33 (s, 3H), 1.80–1.77 (m, 6H), 1.30 (s, 3H), 1.27 (s, 3H); 13C NMR (CDCl3, 125 MHz) δ 

161.6, 158.6, 153.2 153.1, 147.1, 146.8, 142.5, 135.5, 128.7, 128.6, 128.3, 123.3, 121.4, 121.1, 

116.2, 108.6, 99.4, 83.1, 79.9, 76.1, 74.7, 72.2, 68.0, 60.5, 27.1, 25.6, 21.9, 21.6, 21.0, 10.1; IR 

(film) νmax 2955, 2922, 2853, 2359, 2339, 1819, 1711, 1520, 1464, 1375, 1171, 1111, 1034, 962, 

822, 766 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for C30H34NO11, 584.2132; found, 584.2111. 

 

25d 

Benzyl 5-methoxy-7-((3aR,4R,7R,7aR)-7-methoxy-6,6-dimethyl-2-oxotetrahydro-3aH-

[1,3]dioxolo[4,5-c]pyran-4-yloxy)-8-methyl-2-oxo-2H-chromen-3-ylcarbamate (25d): Boron 

trifluoride etherate (18.5 �L, 0.15 mmol) was added to 23d (174 mg, 0.49 mmol) and 

(3aR,4S,7R,7aR)-7-methoxy-6,6-dimethyl-2-oxo-tetrahydro-3aH-[1.3]dioxolo[4,5-c]pyran-4-yl 

2,2,2-trichloroacetimidate (621 mg, 1.71 mmol) in anhydrous CH2Cl2 (11.0 mL). After stirring at 

rt for 14 h, triethylamine (150 �L) was added and the solvent was concentrated. The residue was 

purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to give 25d as a colorless 

foam (200 mg, 74%): 1H NMR (CDCl3, 500 MHz) � 8.49 (s, 1H), 7.34–7.27 (m, 5H), 6.67 (s, 

1H), 6.60 (s, 1H), 5.69 (s, 2H), 5.16 (d, J = 5.3 Hz, 1H), 4.89 (t, J = 7.8 Hz, 1H), 4.63 (dd, J = 

7.9, 2.4 Hz, 1H), 3.83 (s, 3H), 3.37 (s, 3H), 3.15 (d, J = 8.0 Hz, 1H), 2.16 (s, 3H), 2.16 (s, 3H), 

2.12 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 158.9, 156.0, 155.2, 154.2, 153.1 (2C), 149.4, 

135.7, 128.7 (2C), 128.5, 128.2 (2C), 120.8, 117.4, 106.6, 105.4, 94.6, 94.1, 82.9, 67.4, 60.6, 

60.6, 56.1, 56.0, 22.2, 22.0, 7.9; IR (film) νmax 2955, 2924, 2853, 1817, 1713, 1526, 1209, 1105, 
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1072, 1034, 976, 808 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for C28H30NO11, 556.1819; found, 

556.1826. 

 

25e 

Benzyl 8-benzyl-7-((3aR,4R,7R,7aR)-7-methoxy-6,6-dimethyl-2-oxotetrahydro-3aH-

[1,3]dioxolo[4,5-c]pyran-4-yloxy)-2-oxo-2H-chromen-3-ylcarbamate (25e): Boron trifluoride 

etherate (7.80 �L, 0.062 mmol) was added to 23e (80.0 mg, 0.21 mmol) and (3aR,4S,7R,7aR)-7-

methoxy-6,6-dimethyl-2-oxo-tetrahydro-3aH-[1.3]dioxolo[4,5-c]pyran-4-yl 2,2,2-

trichloroacetimidate (299 mg, 0.83 mmol) in anhydrous CH2Cl2 (5.20 mL). After stirring at rt for 

48 h, triethylamine (150 �L) was added and the solvent was concentrated. The residue was 

purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to give 25e as a colorless 

foam (47.0 mg, 39%): 1H NMR (CDCl3, 500 MHz) � 8.22 (s, 1H), 7.46 (s, 1H), 7.35–7.27 (m, 

5H), 7.17–7.06 (m, 5H), 6.86 (d, J = 10 Hz, 1H), 6.01 (d, J = 10 Hz, 1H), 5.65 (d, J = 1.6 Hz, 

1H), 5.23 (s, 2H), 5.16 (s, 2H), 4.77–4.70 (m, 1H), 4.10 (s, 1H), 3.50 (s, 3H), 3.28 (s, 1H), 3.16 

(d, J = 7.4 Hz, 1H), 1.25 (s, 3H), 1.18 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 155.1, 153.2 (2C), 

153.1, 148.6 (2C), 139.6 (2C), 128.7, 128.6 (2C), 128.4 (2C), 128.3 (2C), 128.3 (2C), 126.5, 

126.2, 123.1, 122.4, 121.7, 117.6, 114.9, 111.5, 94.7, 82.8, 67.6, 60.6 (2C), 29.7, 27.6, 21.9; IR 

(film) νmax 2926, 2854, 2359, 2341, 1811, 1709, 1607, 1522, 1456, 1381, 1366, 1259, 1209, 

1171, 1078, 1049, 968, 766, 700 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for C33H32NO10, 

602.2026; found, 602.2053. 
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25f 

Benzyl 7-((3aR,4R,7R,7aR)-7-methoxy-6,6-dimethyl-2-oxotetrahydro-3aH-

[1,3]dioxolo[4,5-c]pyran-4-yloxy)-2-oxo-8-phenyl-2H-chromen-3-ylcarbamate (25f): Boron 

trifluoride etherate (14.6 �L, 0.12 mmol) was added to 23f (155 mg, 0.39 mmol) and 

(3aR,4S,7R,7aR)-7-methoxy-6,6-dimethyl-2-oxo-tetrahydro-3aH-[1.3]dioxolo[4,5-c]pyran-4-yl 

2,2,2-trichloroacetimidate (560 mg, 1.55 mmol) in anhydrous CH2Cl2 (9.70 mL). After stirring at 

rt for 48 h, triethylamine (150 �L) was added and the solvent was concentrated. The residue was 

purified via column chromatography (SiO2, 100:1 → 40:1 CH2Cl2:Acetone) to give 25f as a 

colorless foam (225 mg, 99%): 1H NMR (CD2Cl2, 400 MHz) � 8.37 (s, 1H), 7.75–7.73 (m, 2H), 

7.60–7.36 (m, 10H), 7.32 (d, J = 8.8 Hz, 1H), 5.77 (d, J = 1.7 Hz, 1H), 5.26 (s, 2H), 4.76–4.68 

(m, 1H), 4.36–4.28 (m, 1H), 3.56 (s, 3H), 3.28 (d, J = 7.2 Hz, 1H), 1.37 (s, 3H), 1.31 (s, 3H); 13C 

NMR (CDCl3, 125 MHz) � 157.2, 153.0 (2C), 152.1 (2C), 152.1, 134.4, 129.9, 129.8, 129.4, 

127.7 (2C), 127.5, 127.2 (2C), 127.1 (2C), 127.0, 126.3, 121.5 (2C), 120.3, 111.2 (2C), 93.9, 

81.9, 66.5, 59.4 (3C), 20.9 (2C); IR (film) νmax 3400, 2959, 2926, 2853, 2359, 2341, 1819, 1715, 

1601, 1522, 1381, 1366, 1261, 1215, 1173, 1111, 1059, 970, 800, 700 cm-1; HRMS (ESI+) m/z: 

[M + H]+ calcd for C32H30NO10, 588.1870; found, 588.1846. 
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25g 

Benzyl 8-methoxy-7-((3aR,4S,7R,7aR)-7-methoxy-6,6-dimethyl-2-oxotetrahydro-3aH-

[1,3]dioxolo[4,5-c]pyran-4-yloxy)-2-oxo-2H-chromen-3-ylcarbamate (25g): Boron trifluoride 

etherate (17.3 �L, 0.14 mmol) was added to 23g (157 mg, 0.46 mmol) and (3aR,4S,7R,7aR)-7-

methoxy-6,6-dimethyl-2-oxo-tetrahydro-3aH-[1.3]dioxolo[4,5-c]pyran-4-yl 2,2,2-

trichloroacetimidate (665 mg, 1.83 mmol) in anhydrous CH2Cl2 (11.5 mL). After stirring at rt for 

24 h, triethylamine (150 �L) was added and the solvent was concentrated. The residue was 

purified via column chromatography (SiO2, 40:1 → 10:1 CH2Cl2:Acetone) to give 25g as a 

colorless foam (237 mg, 95%): 1H NMR (CDCl3, 500 MHz) � 8.20 (s, 1H), 7.48 (s, 1H), 7.33–

7.29 (m, 5H), 7.09 (dd, J = 14.2, 8.8 Hz, 2H), 5.72 (d, J = 1.8 Hz, 1H), 5.16 (s, 2H), 5.02 (dd, J = 

7.8, 1.8 Hz, 1H), 4.89 (t, J = 7.8 Hz, 1H), 3.88 (s, 3H), 3.52 (s, 3H), 3.21 (d, J = 7.8 Hz, 1H), 

1.27 (s, 3H) 1.17 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 158.0, 153.3, 153.2, 153.1, 149.8, 

143.8, 137.1, 135.5, 128.7 (2C), 128.6, 128.3 (2C), 122.7, 122.2, 121.4, 116.1, 113.7, 95.3, 74.7, 

72.9, 67.6, 61.9, 60.7, 60.6, 29.7, 29.4; IR (film) νmax 3400, 3319, 2984, 2935, 2359, 1815, 1715, 

1609, 1526, 1464, 1383, 1364, 1285, 1213, 1175, 1111, 1063, 968, 764, 737, 700 cm-1; HRMS 

(ESI+) m/z: [M + Na]+ calcd for C27H27NNaO11, 564.1482; found, 564.1455. 

 

26a 
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N-(7-((2S,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yloxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-

carboxamide (26a): Palladium on carbon (20%, 20.0 mg) was added to 25a (100 mg, 0.18 

mmol) in anhydrous THF (5.00 mL) and the solution was placed under an atmosphere of H2. 

After 6.5 h, the solution was filtered through SiO2 (1:1 CH2Cl2:Acetone) and the eluent was 

concentrated to afford a yellow solid, which was used without further purification (56.0 mg, 

75%).  

EDCI (21.4 mg, 0.11 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (23.1 mg, 0.089 

mmol) were added to the amine (18.7 mg, 0.045 mmol) in 30% pyridine/CH2Cl2 (0.70 mL). 

After 12 h, the solvent was concentrated and the residue purified via column chromatography 

(SiO2, 40:1 CH2Cl2:Acetone) to afford a colorless solid, which was used without further 

purification (10.5 mg, 36%). 

Triethylamine (250 �L) was added to the carbonate (10.4 mg, 0.016 mmol) in MeOH (2.50 

mL). After 12 h, the solvent was concentrated and the residue purified via column 

chromatography (SiO2, 20:1; CH2Cl2:MeOH) to afford 26a as a colorless amorphous solid (2.00 

mg, 20%, 5% over 3 steps): 1H NMR (CDCl3, 500 MHz) � 8.73 (s, 1H), 8.70 (d, J = 5.4 Hz, 1H), 

7.84 (td, J = 6.2, 2.4 Hz, 1H), 7.82 (s, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 

7.03–7.00 (m, 2H), 6.88–6.86 (m, 1H), 6.81 (s, 1H), 4.99 (d, J = 6.6 Hz, 1H), 4.24 (t, J = 4.2 Hz, 

1H), 4.00 (dd, J = 6.5, 3.7 Hz, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.83 (s, 3H), 3.80 (d, J = 7.4 Hz, 

1H), 3.45 (s, 3H), 3.08 (d, J = 4.7 Hz, 1H), 2.67 (s, 1H), 2.42 (s, 3H), 1.28 (d, J = 8.1 Hz, 3H), 

1.18 (s, 3H); 13C NMR (CDCl3, 125 MHz) δ 164.6, 158.9, 158.3, 158.2, 148.2, 145.6, 142.5, 

137.5, 130.1, 129.0, 128.2, 127.2, 124.9, 122.5, 122.2, 121.2, 121.0, 115.1, 144.2, 112.1, 110.0, 

105.4, 101.3, 81.7, 76.8, 69.0, 68.0, 59.1, 55.3, 54.9, 54.3, 28.3, 28.2, 9.1; IR (film) νmax 2961, 
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2928, 1713, 1670, 1601, 1464, 1383, 1261, 1094, 1022, 798, 700 cm-1; HRMS (ESI+) m/z: [M + 

H]+ calcd for C34H38NO11, 636.2445; found, 636.2477. 

 

26b 

N-(7-((2S,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yloxy)-8-methyl-2-oxo-6-propoxy-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-

carboxamide (26b): Palladium on carbon (20%, 85.0 mg) was added to 25b (425 mg, 0.7283 

mmol) in anhydrous THF (4.90 mL) and the solution was placed under an atmosphere of H2. 

After 6.5 h, the solution was filtered through SiO2 (1:1 CH2Cl2:Acetone) and the eluent was 

concentrated to afford a yellow solid, which was used without further purification (325 mg, 

99%).  

EDCI (116 mg, 0.60 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (125 mg, 0.48 

mmol) were added to the amine (108 mg, 0.24 mmol) in 30% pyridine/CH2Cl2 (6.70 mL). After 

12 h, the solvent was concentrated and the residue purified via column chromatography (SiO2, 

3:1 Hexane:Ether → 20:1 CH2Cl2:Acetone) to afford a colorless solid, which was used without 

further purification (51.0 mg, 31%). 

Triethylamine (250 �L) was added to the carbonate (51.0 mg, 0.074 mmol) in MeOH (2.50 

mL). After 48 h, the solvent was concentrated and the residue purified via column 

chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 26b as a colorless amorphous solid (22.8 

mg, 47%, 14% over 3 steps): 1H NMR (CD2Cl2, 400 MHz) � 8.79 (s, 1H), 8.78 (s, 1H), 7.96 (dd, 

J = 8.6, 2.4 Hz, 1H), 7.91 (d, J = 2.4 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.16–7.11 (m, 2H), 6.97–
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6.94 (m, 2H), 5.97 (s, 1H), 5.14 (d, J = 6.5 Hz, 1H), 4.31 (t, J = 3.5 Hz, 1H), 4.12–4.06 (m, 2H), 

4.03 (dd, J = 6.8, 1.8 Hz, 1H), 3.93 (s, 3H), 3.88 (s, 3H), 3.65 (s, 1H), 3.53 (s, 3H), 3.17 (d, J = 

4.8 Hz, 1H), 2.80 (s, 1H), 2.48 (s, 3H), 1.95–1.90 (m, 2H), 1.37 (s, 3H), 1.35 (s, 3H), 1.11 (t, J = 

7.4 Hz, 3H); 13C NMR (CDCl3, 125 MHz) � 165.0, 164.6, 158.8, 158.3, 147.7, 145.7, 142.3, 

137.8, 137.5, 131.3, 129.0, 128.2, 127.2, 124.9, 122.3, 121.2, 121.0, 115.111, 114.2, 112.1, 

110.0, 106.2, 101.1, 81.7, 70.0, 69.0, 68.0, 64.8, 59.1, 54.9, 54.3, 24.7, 24.0, 21.3, 9.5, 9.1; IR 

(film) νmax 3398, 3196, 2964, 2935, 2359, 2330, 1705, 1580, 1526, 1504, 1381, 1242, 1124, 

1094, 939, 808, 760, 735 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for C36H42NO11, 664.2758; 

found, 664.2754. 

 

26c 

N-(7-((2S,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yloxy)-6-isopropoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-

carboxamide (26c): Palladium on carbon (20%, 11 mg) was added to 25c (54.5 mg, 0.093 

mmol) in anhydrous THF (600 μL) and the solution was placed under an atmosphere of H2. After 

12 h, the solution was filtered through SiO2 (1:1 CH2Cl2:Acetone) and the eluent was 

concentrated to afford a yellow solid, which was used without further purification (42.0 mg, 

99%).  

EDCI (14.9 mg, 0.078 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (16 mg, 0.062 

mmol) were added to the amine (14.0 mg, 0.031 mmol) in 30% pyridine/CH2Cl2 (900 μL). After 

12 h, the solvent was concentrated and the residue purified via column chromatography (SiO2, 
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3:1 Hexane:Ether → 40:1 CH2Cl2:Acetone) to afford a colorless solid, which was used without 

further purification (17.5 mg, 82%). 

Triethylamine (250 �L) was added to the carbonate (17.5 mg, 0.025 mmol) in MeOH (2.50 

mL) and CH2Cl2 (2.50 mL). After 12 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 10:1 CH2Cl2:Acetone) to afford 26c as a colorless amorphous 

solid (6.0 mg, 35%, 28% over 3 steps): 1H NMR (CD2Cl2, 500 MHz) � 8.69 (s, 1H), 8.67 (s, 1H), 

7.84 (dd, J = 8.6, 2.4 Hz, 1H), 7.80 (d, J = 2.4 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.25 (t, J = 7.9 

Hz, 1H), 7.03–7.01 (m, 2H), 6.87 (s, 1H), 6.87–6.83 (m, 1H), 4.96 (d, J = 6.8 Hz, 1H), 4.61–4.56 

(m, 1H), 4.19 (t, J = 4.0 Hz, 1H), 3.89 (dd, J = 6.8, 3.7 Hz, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 3.75 

(s, 1H), 3.41 (s, 3H), 3.34 (s, 1H), 3.03 (d, J = 4.5 Hz, 1H), 2.36 (s, 3H), 1.33 (t, J = 6.2 Hz, 6H), 

1.25 (s, 3H), 1.23 (s, 3H); 13C NMR (CD2Cl2, 125 MHz) � 164.6, 159.1, 158.6, 158.3, 146.7, 

146.3, 142.5, 138.1, 130.2, 129.1, 128.3, 127.4, 125.2, 122.8, 122.2, 121.2, 121.1, 115.5, 144.5, 

112.1, 110.2, 108.4, 101.4, 81.9, 77.0, 71.1, 69.2, 68.3, 59.1, 55.1, 54.5, 28.7, 28.6, 20.8, 20.8, 

9.1; IR (film) νmax 2924, 2854, 2359, 2341, 1734, 1684, 1653, 1558, 1541, 1522, 1506, 1458, 

1387, 1339, 1286, 1244, 1113, 912, 797 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for 

C36H41NNaO11, 686.2578; found, 686.2610. 

 

26d 

N-(7-((2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yloxy)-5-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-

carboxamide (26d): Palladium on carbon (20%, 40 mg) was added to 25d (200 mg, 0.36 mmol) 
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in anhydrous THF (2.40 mL) and the solution was placed under an atmosphere of H2. After 12 h, 

the solution was filtered through SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to 

afford a yellow solid, which was used without further purification (150 mg, 99%).  

EDCI (57.5 mg, 0.30 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (62 mg, 0.24 

mmol) were added to the amine (50.6 mg, 0.12 mmol) in 30% pyridine/CH2Cl2 (3.30 mL). After 

12 h, the solvent was concentrated and the residue purified via column chromatography (SiO2, 

3:1 Hexane:Ether → 40:1 → 10:1 CH2Cl2:Acetone) to afford a colorless solid, which was used 

without further purification (25.2 mg, 32%). 

Triethylamine (200 �L) was added to the carbonate (25.2 mg, 0.038 mmol) in MeOH (2.0 mL) 

and CH2Cl2 (2.0 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 26d as a colorless amorphous 

solid (17.0 mg, 70%, 22% over 3 steps): 1H NMR (CD2Cl2, 400 MHz) � 9.02 (s, 1H), 8.97 (s, 

1H), 8.66 (s, 1H), 7.96 (dd, J = 8.6, 2.4 Hz, 1H), 7.91–7.90 (m, 1H), 7.39 (t, J = 7.9 Hz, 1H), 

7.16–7.11 (m, 2H), 6.96 (dd, J = 8.3, 2.6 Hz), 6.85 (d, J = 5.5 Hz, 1H), 5.70 (d, J = 2.1 Hz, 1H), 

4.36–4.33 (m, 1H), 4.27 (m, 1H), 3.99 (s, 3H), 3.93 (s, 3H), 3.88 (s, 3H), 3.62 (s, 3H), 3.41–3.38 

(m, 1H), 2.24 (s, 3H), 1.41 (s, 3H), 1.19 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 164.2, 158.7, 

158.6, 158.3, 155.3, 153.5, 148.6, 137.6, 129.9, 128.9, 128.1, 127.1, 125.1, 121.0, 119.4, 118.9, 

114.2, 114.2, 112.1, 110.0, 104.9, 103.7, 96.7, 92.9, 83.2, 70.1, 67.5, 60.9, 60.8, 54.8, 54.3, 21.9, 

21.4, 6.8; IR (film) νmax 3405, 2986, 2934, 1713, 1609, 1528, 1383, 1250, 1213, 1053, 999, 914, 

878, 737 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for C34H38NO11, 636.2445; found, 636.2482. 
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26e 

N-(8-benzyl-7-((2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-

pyran-2-yloxy)-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (26e): 

Palladium on carbon (20%, 46 mg) was added to 25e (230 mg, 0.38 mmol) in anhydrous THF 

(2.50 mL) and the solution was placed under an atmosphere of H2. After 12 h, the solution was 

filtered through SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow 

solid, which was used without further purification (177 mg, 99%).  

EDCI (61.5 mg, 0.32 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (66.3 mg, 0.26 

mmol) were added to the amine (60.0 mg, 0.13 mmol) in 30% pyridine/CH2Cl2 (3.50 mL). After 

12 h, the solvent was concentrated and the residue purified via column chromatography (SiO2, 

3:1 Hexane:Ether → 20:1 CH2Cl2:Acetone) to afford a colorless solid, which was used without 

further purification (12.3 mg, 14%). 

Triethylamine (150 �L) was added to the carbonate (12.3 mg, 0.017 mmol) in MeOH (1.5 mL) 

and CH2Cl2 (1.5 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 26e as a colorless amorphous 

solid (6.00 mg, 51%, 7.1% over 3 steps): 1H NMR (CD2Cl2, 400 MHz) � 8.84 (s, 1H), 8.72 (s, 

1H), 7.96 (dd, J = 10, 2.4 Hz, 1H), 7.91 (d, J = 2.4 Hz, 1H), 7.50 (d, J = 8.8 Hz, 1H), 7.39 (t, J = 

7.9 Hz, 1H), 7.31 (d, J = 8.8 Hz, 1H), 7.28–7.25 (m, 5H), 7.21–7.18 (m, 1H), 7.15–7.11 (m, 2H), 

6.97–6.94 (m, 1H), 5.54 (d, J = 2.7 Hz, 1H), 4.25 (t, J = 15.1 Hz, 2H), 4.17–4.11 (m, 1H), 4.05 
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(d, J = 2.6 Hz, 1H), 3.93 (s, 3H), 3.88 (s, 3H), 3.58 (s, 3H), 3.31 (d, J = 8.7 Hz, 1H), 2.64 (s, 1H), 

2.04 (s, 1H), 1.40 (s, 3H), 1.03 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 165.5, 159.8, 159.3, 

159.3, 156.4, 148.9, 140.0 (2C), 138.6, 131.1, 130.0, 129.2, 128.5, 128.3, 128.2, 127.0, 126.2 

(2C), 126.0 (2C), 124.1, 122.2, 122.0, 117.2, 115.2, 114.4, 113.2, 111.7, 111.0, 98.0, 70.6 (2C), 

68.6, 61.6, 55.9, 55.4, 29.3, 28.9, 28.3; IR (film) νmax 3404, 2930, 2359, 2341, 1713, 1670, 1605, 

1526, 1502, 1367, 1244, 1180, 1134, 1076, 1026, 960 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd 

for C39H40NO10, 682.2652; found, 682.2653. 

 

26f 

N-(7-((2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yloxy)-2-oxo-8-phenyl-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (26f): 

Palladium on carbon (20%, 14 mg) was added to 25f (68.0 mg, 0.12 mmol) in anhydrous THF 

(800 μL) and the solution was placed under an atmosphere of H2. After 12 h, the solution was 

filtered through SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow 

solid, which was used without further purification (52.0 mg, 99%).  

EDCI (18.5 mg, 0.096 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (19.9 mg, 0.077 

mmol) were added to the amine (17.5 mg, 0.039 mmol) in 30% pyridine/CH2Cl2 (1.10 mL). 

After 12 h, the solvent was concentrated and the residue purified via column chromatography 

(SiO2, 40:1 CH2Cl2:Acetone) to afford a colorless solid, which was used without further 

purification (14.0 mg, 52%). 
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Triethylamine (150 �L) was added to the carbonate (14.0 mg, 0.020 mmol) in MeOH (1.5 mL) 

and CH2Cl2 (1.5 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 26f as a colorless amorphous 

solid (5.20 mg, 39%, 20% over 3 steps): 1H NMR (CD2Cl2, 500 MHz) � 8.85 (s, 1H), 8.65 (s, 

1H), 7.92 (d, J = 2.4 Hz, 1H), 7.90 (d, J = 2.4 Hz, 1H), 7.86 (d, J = 2.4 Hz, 1H), 7.57–7.43 (m, 

3H), 7.36–7.33 (m, 4H), 7.11–7.06 (m, 3H), 6.92 (d, J = 0.8 Hz, 1H), 5.52 (d, J = 2.4 Hz, 1H), 

4.08 (q, J = 7.2, Hz, 1H), 3.89 (s, 3H), 3.83 (s, 3H), 3.74 (dd, J = 9.0, 3.5 Hz, 1H), 3.50 (s, 3H), 

3.23 (d, J = 9.0 Hz, 1H), 2.12 (s, 1H), 2.00 (s, 1H), 1.33 (s, 3H), 1.04 (s, 3H); 13C NMR (CD2Cl2, 

125 MHz) � 164.5, 159.0 (2C), 158.6, 158.1, 154.4, 147.2, 138.0 (2C), 130.7, 130.1, 129.7, 

129.1, 128.7, 128.3, 127.4, 127.2, 127.0, 127.0, 125.2, 122.6, 121.6, 121.1, 118.6, 114.5, 113.8, 

112.1, 111.3, 110.2, 97.5, 70.1 (2C), 67.4, 60.8, 55.0, 54.5, 21.9, 21.6; IR (film) νmax 3402, 2932, 

2359, 2341, 1713, 1603, 1524, 1500, 1367, 1267, 1086, 1040, 964, 750 cm-1; HRMS (ESI+) m/z: 

[M + H]+ calcd for C38H38NO10, 668.2496; found, 668.2485. 

 

26g 

N-(7-((2S,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yloxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (26g): 

Palladium on carbon (20%, 47 mg) was added to 25g (237 mg, 0.44 mmol) in anhydrous THF 

(2.93 mL) and the solution was placed under an atmosphere of H2. After 12 h, the solution was 

filtered through SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow 

solid, which was used without further purification (177 mg, 99%).  



 131 

EDCI (69.4 mg, 0.36 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (74.8 mg, 0.29 

mmol) were added to the amine (59.0 mg, 0.14 mmol) in 30% pyridine/CH2Cl2 (4.00 mL). After 

12 h, the solvent was concentrated and the residue purified via column chromatography (SiO2, 

3:1 Hexane:Ether → 40:1 CH2Cl2:Acetone) to afford a colorless solid, which was used without 

further purification (26.0 mg, 28%). 

Triethylamine (200 �L) was added to the carbonate (26.0 mg, 0.040 mmol) in MeOH (2.0 mL) 

and CH2Cl2 (2.0 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 26g as a colorless amorphous 

solid (15.7 mg, 63%, 18% over 3 steps): 1H NMR (CD2Cl2, 400 MHz) � 8.82 (s, 1H), 8.73 (s, 

1H), 7.96 (dd, J = 8.6, 2.4 Hz, 1H), 7.91 (d, J = 2.4 Hz, 1H) 7.39 (t, J = 7.9 Hz, 1H), 7.30 (s, 

2H), 7.14 (d, J = 8.6 Hz, 2H), 7.12 (d, J = 2.2 Hz, 1H), 6.96 (dd, J = 8.3, 2.5 Hz, 1H), 5.61 (d, J 

= 2.4 Hz, 1H), 4.29 (t, J = 4.0 Hz, 1H), 4.27–4.25 (m, 1H), 3.98 (s, 3H), 3.93 (s, 3H), 3.88 (s, 

3H), 3.62 (s, 3H), 3.47 (s, 1H), 3.37 (d, J = 8.8 Hz, 1H), 2.62 (s, 1H), 1.30 (s, 3H), 1.24 (s, 3H); 

13C NMR (CDCl3, 125 MHz) � 164.5, 158.8, 158.3, 157.8, 150.2 (2C), 142.9, 137.5, 135.6, 

130.0, 128.9, 128.2, 127.2, 127.2, 124.9, 122.8, 121.6, 121.0, 114.3, 114.2, 112.3, 112.1, 110.0, 

97.7, 70.0 (2C), 67.5, 60.8 (2C), 54.9, 54.3, 28.7, 28.3; IR (film) νmax3402, 2961, 2928, 2853, 

1713, 1672, 1607, 1526, 1504, 1462, 1367, 1263, 1248, 1086, 1040, 953, 798, 735, 700 cm-1; 

HRMS (ESI+) m/z: [M + H]+ calcd for C33H36NO11, 622.2288; found, 622.2307. 

 

26i 
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N-(7-((2S,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yloxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-1H-indole-2-carboxamide (26i): 

Palladium on carbon (20%, 15 mg) was added to 25a (74.0 mg, 0.13 mmol) in anhydrous THF 

(5.00 mL) and the solution was placed under an atmosphere of H2. After 12 h, the solution was 

filtered through SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow 

solid, which was used without further purification (60.0 mg, 99%).  

EDCI (69.0 mg, 0.36 mmol) and 1H-indole-2-carboxylic acid (46.4 mg, 0.29 mmol) were 

added to the amine (60.0 mg, 0.14 mmol) in 30% pyridine/CH2Cl2 (3.50 mL). After 12 h, the 

solvent was concentrated and the residue purified via column chromatography (SiO2, 3:1 

Hexane:Ether → 40:1 CH2Cl2:Acetone) to afford a colorless solid, which was used without 

further purification (68.0 mg, 85%). 

Triethylamine (250 �L) was added to the carbonate (68.0 mg, 0.12 mmol) in MeOH (2.5 mL) 

and CH2Cl2 (2.50 mL). After 12 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 26i as a colorless amorphous 

solid (12.6 mg, 19%, 16% over 3 steps): 1H NMR (CD2Cl2, 400 MHz) � 8.29 (s, 1H), 7.63 (s, 

1H), 7.45–7.39 (m, 3H), 6.92 (s, 1H), 6.85 (s, 1H), 6.19 (s, 1H), 5.09 (d, J = 6.5 Hz, 1H), 4.31–

4.28 (m, 1H), 4.01–3.97 (m, 1H), 3.94 (s, 3H), 3.62 (s, 1H), 3.56 (s, 3H), 3.15 (d, J = 4.9 Hz, 

1H), 2.46 (s, 3H), 2.36 (s, 1H), 1.38 (d, J = 11.5 Hz, 3H), 1.32 (s, 3H); 13C NMR (CDCl3, 125 

MHz) δ 157.6, 152.1, 148.2, 145.4, 142.2, 134.5, 129.9, 127.8, 127.7, 127.5, 127.3, 122.3, 121.2, 

120.2, 115.0, 105.3, 105.1, 101.3, 81.7, 69.0, 68.0, 66.5, 59.1, 55.2, 28.7, 24.6, 24.1, 9.1; IR 

(film) νmax 2926, 1707, 1526, 1464, 1391, 1340, 1296, 1231, 1207, 1086, 1024, 943, 739, 700, 

623 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for C28H30N2NaO9, 561.1849; found, 561.1781. 
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26j 

N-(7-((2S,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yloxy)-8-methyl-2-oxo-6-propoxy-2H-chromen-3-yl)-1H-indole-2-carboxamide (26j): 

Palladium on carbon (20%, 85 mg) was added to 25b (425 mg, 0.729 mmol) in anhydrous THF 

(4.90 mL) and the solution was placed under an atmosphere of H2. After 12 h, the solution was 

filtered through SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow 

solid, which was used without further purification (325 mg, 99%).  

EDCI (116 mg, 0.6026 mmol) and 1H-indole-2-carboxylic acid (77.7 mg, 0.4821 mmol) were 

added to the amine (108 mg, 0.2410 mmol) in 30% pyridine/CH2Cl2 (6.70 mL). After 12 h, the 

solvent was concentrated and the residue purified via column chromatography (SiO2, 3:1 

Hexane:Ether → 40:1 CH2Cl2:Acetone) to afford a colorless solid, which was used without 

further purification (91.0 mg, 64%). 

Triethylamine (250 �L) was added to the carbonate (91.0 mg, 0.1536 mmol) in MeOH (2.5 

mL) and CH2Cl2 (2.50 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 26j as a colorless amorphous 

solid (17.5 mg, 20%, 13% over 3 steps): 1H NMR (CD2Cl2, 400 MHz) � 9.32 (s, 1H), 8.80 (s, 

1H), 8.76 (s, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.40–7.36 (m, 1H), 7.24–

7.20 (m, 1H), 6.98 (s, 1H), 6.01 (s, 1H), 5.15 (d, J = 6.5 Hz, 1H), 4.32–4.25 (m, 1H), 4.11–4.04, 

(m, 1H), 3.62–3.59 (m, 2H), 3.53 (s, 3H), 3.18–3.12 (m, 1H), 2.64 (s, 1H), 2.49 (s, 3H), 2.18 (s, 

1H), 1.95–1.91 (m, 2H), 1.36 (d, J = 9.6 Hz, 3H), 1.29 (d, J = 9.8 Hz, 3H), 1.12 (t, J = 7.4 Hz, 
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3H); 13C NMR (CDCl3, 125 MHz) � 160.1, 159.0, 148.8, 146.9, 143.4, 136.9, 129.8, 127.6, 

125.5, 123.5, 123.0, 122.6, 122.3, 121.2, 116.0, 112.0, 107.3, 104.3, 102.2, 82.8, 71.0, 70.1, 69.1, 

60.2, 59.7, 25.7, 23.1, 23.4, 10.5, 10.2; IR (film) νmax 3630, 3304, 2926, 2854, 2359, 2332, 1713, 

1705, 1539, 1387, 1240, 1103, 947, 930, 822, 739 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for 

C30H35N2O9, 567.2342; found, 567.2367. 

 

26k 

N-(7-((2S,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yloxy)-6-isopropoxy-8-methyl-2-oxo-2H-chromen-3-yl)-1H-indole-2-carboxamide (26k): 

Palladium on carbon (20%, 4 mg) was added to 25c (19.0 mg, 0.033 mmol) in anhydrous THF 

(220 μL) and the solution was placed under an atmosphere of H2. After 12 h, the solution was 

filtered through SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow 

solid, which was used without further purification (14.5 mg, 99%).  

EDCI (15.6 mg, 0.081 mmol) and 1H-indole-2-carboxylic acid (10.5 mg, 0.065 mmol) was 

added to the amine (14.5 mg, 0.033 mmol) in 30% pyridine/CH2Cl2 (1.00 mL). After 12 h, the 

solvent was concentrated and the residue purified via column chromatography (SiO2, 40:1 

CH2Cl2:Acetone) to afford a colorless solid, which was used without further purification (10.0 

mg, 50%). 

Triethylamine (250 �L) was added to the carbonate (10.0 mg, 0.017 mmol) in MeOH (2.5 mL) 

and CH2Cl2 (2.50 mL). After 12 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 10:1 CH2Cl2:Acetone) to afford 26k as a colorless amorphous 
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solid (6.00 mg, 46%, 23% over 3 steps): 1H NMR (CDCl3, 500 MHz) � 8.16 (s, 1H), 7.52 (s, 

1H), 7.34–7.30 (m, 5H), 6.75 (s, 1H), 4.93 (d, J = 5.0 Hz, 1H), 4.56–4.51 (m, 1H), 4.23 (t, J = 

4.0 Hz, 1H), 3.98–3.96 (m, 1H), 3.76 (s, 1H), 3.43 (s, 3H), 3.06 (d, J = 4.3 Hz, 1H), 2.65 (s, 1H), 

2.38 (s, 3H), 1.33 (dd, J = 11.2, 6.1 Hz, 6H), 1.29 (s, 3H), 1.27 (s, 3H); 13C NMR (CDCl3, 125 

MHz) � 157.6, 152.1, 146.6, 146.0, 142.1, 134.5, 127.7, 127.5, 127.2, 122.2, 121.3 (2C), 120.2 

(2C), 115.0 (2C), 108.1 (2C), 101.2, 81.6, 71.2, 68.9, 68.1, 66.5, 59.0, 24.8, 23.6, 20.8 (2C), 9.1; 

IR (film) νmax cm-1 3406, 2930, 2375, 1705, 1522, 1394, 1229, 1205, 1111, 1078, 1049, 933, 793, 

739, 698; HRMS (ESI+) m/z: [M + Na]+ calcd for C30H34N2NaO9, 589.2162; found, 589.2111. 

 

26l 

N-(7-((2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yloxy)-5-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-1H-indole-2-carboxamide (26l): 

Palladium on carbon (20%, 40 mg) was added to 25d (200 mg, 0.36 mmol) in anhydrous THF 

(2.40 mL) and the solution was placed under an atmosphere of H2. After 12 h, the solution was 

filtered through SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow 

solid, which was used without further purification (150 mg, 99%).  

EDCI (57.5 mg, 0.30 mmol) and 1H-indole-2-carboxylic acid (38.7 mg, 0.24 mmol) were 

added to the amine (50.6 mg, 0.12 mmol) in 30% pyridine/CH2Cl2 (3.30 mL). After 12 h, the 

solvent was concentrated and the residue purified via column chromatography (SiO2, 40:1 

CH2Cl2:Acetone) to afford a colorless solid, which was used without further purification (26.3 

mg, 39%). 
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Triethylamine (200 �L) was added to the carbonate (26.3 mg, 0.047 mmol) in MeOH (2.00 

mL) and CH2Cl2 (2.00 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 26l as a colorless amorphous 

solid (6.60 mg, 26%, 10% over 3 steps): 1H NMR (CD2Cl2, 400 MHz) � 9.26 (s, 1H), 8.96 (s, 

1H), 8.68 (s, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.38–7.34 (m, 1H), 7.22–

7.16 (m, 1H), 6.84 (s, 1H), 6.00 (s, 1H), 5.65 (d, J = 1.7 Hz, 1H), 4.26–4.21 (m, 2H), 3.96 (s, 

3H), 3.59 (s, 3H), 3.35 (d, J = 8.6 Hz, 1H), 2.25 (s, 3H), 1.53 (s, 3H), 1.20 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 165.1, 157.4, 156.5, 149.7, 136.7, 134.7, 127.7, 125.3, 122.5, 121.1, 120.0, 

111.9, 104.6, 103.8, 97.7, 94.0, 84.3, 84.2, 82.6, 69.6, 69.1, 66.1, 62.2, 62.0, 59.7, 23.1, 22.7, 

14.2; IR (film) νmax 3389, 2924, 2853, 1697, 1605, 1535, 1460, 1340, 1211, 1101, 1088, 962, 729 

cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for C28H31N2O9, 539.2030; found, 539.2056. 

 

26m 

N-(8-benzyl-7-((2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-

pyran-2-yloxy)-2-oxo-2H-chromen-3-yl)-1H-indole-2-carboxamide (26m): Palladium on 

carbon (20%, 46 mg) was added to 25e (230 mg, 0.38 mmol) in anhydrous THF (2.50 mL) and 

the solution was placed under an atmosphere of H2. After 12 h, the solution was filtered through 

SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow solid, which was 

used without further purification (177 mg, 99%).  
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EDCI (61.5 mg, 0.32 mmol) and 1H-indole-2-carboxylic acid (41.4 mg, 0.26 mmol) were 

added to the amine (60.0 mg, 0.13 mmol) in 30% pyridine/CH2Cl2 (3.50 mL). After 12 h, the 

solvent was concentrated and the residue purified via column chromatography (SiO2, 3:1 

Hexane:Ether → 40:1 CH2Cl2:Acetone) to afford a yellow solid, which was used without further 

purification (66.2 mg, 85%). 

Triethylamine (250 �L) was added to the carbonate (66.2 mg, 0.11 mmol) in MeOH (2.50 mL) 

and CH2Cl2 (2.50 mL). After 12 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 26m as a colorless amorphous 

solid (6.50 mg, 10%, 8.4% over 3 steps): 1H NMR (CD2Cl2, 500 MHz) � 8.68 (s, 1H), 8.62 (s, 

1H), 7.63–7.61 (m, 1H), 7.47 (dd, J = 5.7, 3.3 Hz, 1H), 7.16–7.10 (m, 4H), 7.10–7.04 (m, 4H), 

6.99 (t, J = 8.2 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 6.43 (dd, J = 8.1, 0.7 Hz, 1H), 5.31 (d, J = 2.9 

Hz, 1H), 4.17 (t, J = 6.8 Hz, 1H), 4.01 (dd, J = 8.5, 2.9 Hz, 1H), 3.90 (d, J = 13.1 Hz, 2H), 3.45 

(s, 3H), 3.16 (d, J = 8.6 Hz, 1H), 2.43 (s, 1H), 2.21 (s, 1H), 1.25 (s, 3H), 0.95 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 166.8, 155.4, 153.8, 140.2, 131.6, 130.2, 128.0, 127.6, 127.5 (2C), 127.4 

(2C), 126.9, 125.1 (2C), 115.2, 108.3 (2C), 105.8 (2C), 97.1 (2C), 83.3 (2C), 77.2, 70.2, 67.9 

(2C), 65.0, 60.6, 21.9, 13.1, 13.0; IR (film) νmax 3333, 2961, 2926, 2854, 1717, 1601, 1466, 

1261, 1090, 1076, 1041, 800, 750 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for C33H32N2NaO8, 

607.2056; found, 607.2056. 

 

26n 
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N-(7-((2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yloxy)-2-oxo-8-phenyl-2H-chromen-3-yl)-1H-indole-2-carboxamide (26n): Palladium on 

carbon (20%, 14 mg) was added to 25f (68.0 mg, 0.12 mmol) in anhydrous THF (800 μL) and 

the solution was placed under an atmosphere of H2. After 12 h, the solution was filtered through 

SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow solid, which was 

used without further purification (52.0 mg, 99%).  

EDCI (18.5 mg, 0.096 mmol) and 1H-indole-2-carboxylic acid (12.4 mg, 0.077 mmol) were 

added to the amine (17.5 mg, 0.039 mmol) in 30% pyridine/CH2Cl2 (1.10 mL). After 12 h, the 

solvent was concentrated and the residue purified via column chromatography (SiO2, 40:1 

CH2Cl2:Acetone) to afford a colorless solid, which was used without further purification (8.20 

mg, 36%). 

Triethylamine (100 �L) was added to the carbonate (8.2 mg, 0.014 mmol) in MeOH (1.00 mL) 

and CH2Cl2 (1.00 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 26n as a colorless amorphous 

solid (4.00 mg, 51%, 18% over 3 steps): 1H NMR (CD2Cl2, 500 MHz) � 9.23 (s, 1H), 8.80 (s, 

1H), 8.67 (s, 1H), 7.71 (dd, J = 8.0, 0.7 Hz, 1H), 7.57 (d, J = 8.8 Hz, 1H), 7.51–7.48 (m, 3H), 

7.46–7.44 (m, 1H), 7.37–7.32 (m, 4H), 7.19–7.17 (m, 2H), 5.53 (d, J = 2.4 Hz, 1H), 3.86 (s, 1H), 

3.76–3.73 (m, 2H), 3.51 (s, 3H), 3.23 (d, J = 9.1 Hz, 1H), 2.41 (s, 1H), 1.34 (s, 3H), 1.05 (s, 3H); 

13C NMR (CD2Cl2, 125 MHz) � 159.1, 157.9, 154.5, 147.3, 136.0 (2C), 130.7 (2C), 129.8, 

129.2,. 127.3, 127.1, 127.0, 126.9, 124.5, 122.8, 121.6, 121.2, 120.3, 113.7, 111.4, 111.1, 103.1 

(2C), 97.5, 83.2, 77.7, 70.1, 67.5, 60.8, 21.9, 21.7; IR (film) νmax 3427, 2961, 2924, 2853, 2062, 

1643, 1614, 1537, 1362, 1236, 1094, 1041, 962, 791, 739, 698 cm-1; HRMS (ESI+) m/z: [M + 

Na]+ calcd for C32H30N2NaO8, 593.1900; found, 593.1890. 
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26o 

N-(7-((2S,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yloxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-1H-indole-2-carboxamide (26o): Palladium on 

carbon (20%, 47 mg) was added to 25g (237 mg, 0.44 mmol) in anhydrous THF (2.93 mL) and 

the solution was placed under an atmosphere of H2. After 12 h, the solution was filtered through 

SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow solid, which was 

used without further purification (177 mg, 99%).  

EDCI (69.4 mg, 0.36 mmol) and 1H-indole-2-carboxylic acid (46.7 mg, 0.29 mmol) were 

added to the amine (59.0 mg, 0.14 mmol) in 30% pyridine/CH2Cl2 (4.00 mL). After 12 h, the 

solvent was concentrated and the residue purified via column chromatography (SiO2, 3:1 

Hexane:Ether → 40:1 CH2Cl2:Acetone) to afford a colorless solid, which was used without 

further purification (32.0 mg, 49%). 

Triethylamine (200 �L) was added to the carbonate (32.0 mg, 0.071 mmol) in MeOH (2.00 

mL) and CH2Cl2 (2.00 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 3:1 CH2Cl2:Acetone) to afford 26o as a colorless amorphous 

solid (22.1 mg, 73%, 35% over 3 steps): 1H NMR (CD2Cl2, 400 MHz) � 9.28 (s, 1H), 8.78 (s, 

1H), 7.77 (d, J = 8.1 Hz, 1H), 7.53 (dd, J = 8.3, 0.8 Hz, 1H), 7.38 (m, 1H), 7.31 (s, 2H), 7.24 (d, 

J = 0.9 Hz, 1H), 7.22–7.20 (m, 1H), 6.02 (s, 1H), 5.62 (d, J = 2.3 Hz, 1H), 4.25 (t, J = 3.5 Hz, 

1H), 3.99 (s, 3H), 3.75 (dd, J = 9.0, 3.6 Hz, 1H), 3.62 (s, 3H), 3.13 (d, J = 3.6 Hz, 1H), 1.30 (s, 

3H), 1.27 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 163.8, 159.1, 157.7, 150.6, 143.3, 136.0, 
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135.8, 129.2, 126.9, 124.6, 122.8, 121.8, 121.6, 121.4, 120.3, 114.4, 112.5, 111.2, 103.1, 98.0, 

83.2, 77.9, 74.0, 60.9, 58.7, 22.3, 21.8; IR (film) νmax 3420, 2957, 2924, 2854, 2359, 1653, 1558, 

1541, 1246, 1001, 798 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for C27H29N2O9, 525.1873; 

found, 525.1875. 

 

30a 

N-(7-(((2S,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yl)oxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)acetamide (30a): Palladium on carbon 

(20%, 20.0 mg) was added to 25a (100 mg, 0.18 mmol) in anhydrous THF (5.00 mL) and the 

solution was placed under an atmosphere of H2. After 6.5 h, the solution was filtered through 

SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow solid, which was 

used without further purification (56.0 mg, 74%).  

Acetic anhydride (8.4 μL, 0.089 mmol) was added to the amine (18.7 mg, 0.045 mmol) in 50% 

pyridine/CH2Cl2 (0.70 mL). After 12 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford a colorless solid, which was used 

without further purification (11.2 mg, 54%). 

Triethylamine (250 �L) was added to the carbonate (10.4 mg, 0.016 mmol) in MeOH (2.50 

mL). After 12 h, the solvent was concentrated and the residue purified via column 

chromatography (SiO2, 20:1; CH2Cl2:MeOH) to afford 30a as a colorless amorphous solid (2.0 

mg, 19%, 8% over 3 steps): 1H NMR (CDCl3, 500 MHz) � 8.54 (s, 1H), 7.98 (s, 1H), 6.77 (s, 

1H), 4.98 (d, J = 6.6 Hz, 1H), 4.24 (t, J = 4.2 Hz, 1H), 3.99 (dd, J = 6.5, 3.7 Hz, 1H), 3.84 (s, 

3H), 3.61 (s, 1H), 3.44 (s, 3H), 3.08 (d, J = 4.7 Hz, 1H), 2.67 (s, 1H), 2.39 (s, 3H), 2.17 (s, 3H), 
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1.28 (d, J = 8.1 Hz, 6H); 13C NMR (CDCl3, 125 MHz) δ 169.4, 159.0, 149.3, 146.7, 143.5, 123.4, 

123.2, 122.2, 116.0, 106.4, 102.3, 82.8, 77.9, 70.0, 69.1, 60.1, 56.3, 25.7, 25.1, 24.8, 10.1; IR 

(film) νmax 2930, 1710, 1660, 1516, 1464, 1385, 1270, 1090, 1026, 750, 700 cm-1; HRMS (ESI+) 

m/z: [M + Na]+ calcd for C21H27NNaO9, 460.1584; found, 460.1524. 

 

30b 

N-(7-(((2S,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yl)oxy)-8-methyl-2-oxo-6-propoxy-2H-chromen-3-yl)acetamide (30b): Palladium on carbon 

(20%, 85.0 mg) was added to 25b (425 mg, 0.73 mmol) in anhydrous THF (4.90 mL) and the 

solution was placed under an atmosphere of H2. After 6.5 h, the solution was filtered through 

SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow solid, which was 

used without further purification (325 mg, 99%).  

Acetic anhydride (46.0 μL, 0.48 mmol) was added to the amine (108 mg, 0.24 mmol) in 50% 

pyridine/CH2Cl2 (6.70 mL). After 12 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 3:1 Hexane:Ether → 40:1 CH2Cl2:Acetone) to afford a colorless 

solid, which was used without further purification (23.0 mg, 20%). 

Triethylamine (300 �L) was added to the carbonate (23.0 mg, 0.047 mmol) in 50% 

MeOH/CH2Cl2 (3.00 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 30b as a colorless amorphous 

solid (7.70 mg, 35%, 7% over 3 steps): 1H NMR (CD2Cl2, 400 MHz) � 8.62 (s, 1H), 8.08, (s, 

1H), 6.91 (s, 1H), 5.12 (d, J = 6.5 Hz, 1H), 4.30 (t, J = 3.6 Hz, 1H), 4.10–3.98 (m, 3H), 3.62 (s, 
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1H), 3.52 (s, 3H), 3.15 (d, J = 4.7 Hz, 1H), 2.76 (s, 1H), 2.46 (s, 3H), 2.23 (s, 3H), 1.94–1.89 (m, 

2H), 1.36 (s, 3H), 1.34 (s, 3H), 1.10 (t, J = 7.3 Hz, 3H); 13C NMR (CDCl3, 125 MHz) � 169.4, 

159.0, 148.7, 146.8, 143.3, 123.5, 123.1, 122.2, 116.0, 107.2, 102.1, 82.7, 77.8, 71.0, 70.0, 69.1, 

60.1, 25.8, 24.9, 24.8, 22.4, 10.5, 10.2; IR (film) νmax 2964, 2918, 2359, 2343, 1707, 1684, 1533, 

1437, 1383, 1292, 1244, 1124, 1082, 941, 771 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for 

C23H31NNaO9, 488.1897; found, 488.1873. 

 

30c 

N-(7-(((2S,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yl)oxy)-6-isopropoxy-8-methyl-2-oxo-2H-chromen-3-yl)acetamide (30c): Palladium on 

carbon (20%, 35 mg) was added to 25c (175 mg, 0.31 mmol) in anhydrous THF (2.10 mL) and 

the solution was placed under an atmosphere of H2. After 12 h, the solution was filtered through 

SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow solid, which was 

used without further purification (133 mg, 99%).  

Acetic anhydride (20.0 μL, 0.21 mmol) was added to the amine (44.0 mg, 0.10 mmol) in 50% 

pyridine/CH2Cl2 (900 μL). After 12 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 3:1 Hexane:Ether → 40:1 → 5:1 CH2Cl2:Acetone) to afford a 

colorless solid, which was used without further purification (20.0 mg, 41%). 

Triethylamine (7.1 �L) was added to the carbonate (3.5 mg, 0.0071 mmol) in 50% 

MeOH/CH2Cl2 (71 �L). After 12 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 10:1 CH2Cl2:Acetone) to afford 30c as a colorless amorphous 
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solid (1.6 mg, 48%, 19% over 3 steps): 1H NMR (CD2Cl2, 500 MHz) � 8.50 (s, 1H), 7.96 (s, 1H), 

6.81 (s, 1H), 4.94 (d, J = 6.9 Hz, 1H), 4.57 (dd, J = 12.2, 6.1 Hz, 1H), 4.19–4.16 (m, 1H), 3.87 

(dd, J = 6.8, 3.7 Hz, 1H), 3.67 (s, 1H), 3.40 (s, 3H), 3.34 (s, 1H), 3.02 (d, J = 4.5 Hz, 1H), 2.34 

(s, 3H), 2.12 (s, 3H), 1.30 (t, J = 6.0 Hz, 6H), 1.24 (s, 3H), 1.22 (s, 3H); 13C NMR (CD2Cl2, 125 

MHz) � 168.5, 158.0, 146.7, 146.3, 142.4, 122.6, 122.1, 121.1, 115.3, 108.3, 101.4, 81.8, 77.0, 

71.1, 69.2, 68.3, 59.0, 28.9, 28.6, 20.8 (2C), 23.8, 23.7; IR (film) νmax 2955, 2926, 2854, 1717, 

1697, 1684, 1522, 1437, 1387, 1375, 1339, 1292, 1259, 1113, 929, 766, 750 cm-1; HRMS (ESI+) 

m/z: [M + Na]+ calcd for C23H31NNaO9, 488.1897; found, 488.1861. 

 

30d 

N-(7-(((2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yl)oxy)-5-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)acetamide (30d): Palladium on carbon 

(20%, 40 mg) was added to 25d (200 mg, 0.36 mmol) in anhydrous THF (2.40 mL) and the 

solution was placed under an atmosphere of H2. After 12 h, the solution was filtered through 

SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow solid, which was 

used without further purification (150 mg, 99%).  

Acetic anhydride (23 μL, 0.24 mmol) was added to the amine (50.6 mg, 0.12 mmol) in 50% 

pyridine/CH2Cl2 (3.30 mL). After 12 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford a colorless solid, which was used 

without further purification (16.0 mg, 29%). 
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Triethylamine (35 �L) was added to the carbonate (16.0 mg, 0.035 mmol) in 50% 

MeOH/CH2Cl2 (0.35 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 30d as a colorless amorphous 

solid (13.5 mg, 89%, 26% over 3 steps): 1H NMR (CD2Cl2, 400 MHz) � 8.82 (s, 1H), 7.94 (s, 

1H), 6.82 (s, 1H), 5.64 (d, J = 1.9 Hz, 1H), 4.28–4.24 (m, 2H), 3.96 (s, 3H), 3.62 (s, 3H), 3.38 (d, 

J = 6.4 Hz, 1H), 2.20 (s, 6H), 1.41 (s, 3H), 1.18 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 168.9, 

159.4, 156.4, 154.5, 149.6, 120.1, 105.9, 104.6, 97.7, 94.0, 84.3, 78.6, 71.1, 68.6, 62.0, 56.0, 

53.5, 29.4, 29.1, 24.7, 22.5; IR (film) νmax 3398, 2974, 2930, 2910, 2840, 1717, 1605, 1528, 

1367, 1344, 1250, 1103, 1051, 991, 966, 926, 802 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for 

C21H27NNaO9, 460.1584; found, 460.1530. 

 

30e 

N-(8-benzyl-7-(((2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-

pyran-2-yl)oxy)-2-oxo-2H-chromen-3-yl)acetamide (30e): Palladium on carbon (20%, 46 mg) 

was added to 25e (230 mg, 0.38 mmol) in anhydrous THF (2.50 mL) and the solution was placed 

under an atmosphere of H2. After 12 h, the solution was filtered through SiO2 (1:1 

CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow solid, which was used 

without further purification (177 mg, 99%).  

Acetic anhydride (24.3 μL, 0.26 mmol) was added to the amine (60.0 mg, 0.13 mmol) in 50% 

pyridine/CH2Cl2 (3.50 mL). After 12 h, the solvent was concentrated and the residue purified via 
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column chromatography (SiO2, 3:1 Hexane:Ether → 20:1 → 4:1 CH2Cl2:Acetone) to afford a 

colorless solid, which was used without further purification (10.4 mg, 16%). 

Triethylamine (20 �L) was added to the carbonate (10.4 mg, 0.020 mmol) in 50% 

MeOH/CH2Cl2 (0.20 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 30e as a colorless amorphous 

solid (7.50 mg, 76%, 12% over 3 steps): 1H NMR (CD2Cl2, 500 MHz) � 8.60 (s, 1H), 7.96 (s, 

1H), 7.38 (d, J = 8.5 Hz, 1H), 7.23–7.13 (m, 6H), 5.46 (d, J = 2.5 Hz, 1H), 4.17 (d, J = 14.5 Hz, 

1H), 4.11 (d, J = 14.5 Hz, 1H), 4.08 (dd, J = 8.5, 3.5 Hz, 1H), 3.99 (t, J = 3.0 Hz, 1H), 3.52 (s, 

3H), 3.25 (d, J = 8.5 Hz, 1H), 2.58 (s, 3H), 1.33 (s, 3H), 0.97 (s, 3H); 13C NMR (CD2Cl2, 125 

MHz) � 168.4, 158.0, 155.4, 148.1, 139.3, 127.5, 126.0, 125.3, 122.8, 121.3, 116.2, 113.5, 110.8, 

97.5, 83.2, 77.7, 70.1, 67.8, 60.7, 30.8, 28.9, 28.3, 27.9, 27.6, 23.7, 21.7; IR (film) νmax 3391, 

3329, 2976, 2932, 2359, 2332, 1715, 1684, 1605, 1526, 1375, 1259, 1130, 1113, 1076, 1036, 

960, 746 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for C26H29NNaO8, 506.1791; found, 

506.1792. 

 

30f 

N-(7-(((2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yl)oxy)-2-oxo-8-phenyl-2H-chromen-3-yl)acetamide (30f): Palladium on carbon (20%, 14 mg) 

was added to 25f (68.0 mg, 0.12 mmol) in anhydrous THF (0.80 mL) and the solution was 

placed under an atmosphere of H2. After 12 h, the solution was filtered through SiO2 (1:1 
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CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow solid, which was used 

without further purification (52.0 mg, 99%).  

Acetic anhydride (7.30 �L, 0.077 mmol) was added to the amine (17.5 mg, 0.039 mmol) in 

50% pyridine/CH2Cl2 (1.10 mL). After 12 h, the solvent was concentrated and the residue 

purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford a colorless solid, 

which was used without further purification (12.1 mg, 63%). 

Triethylamine (24 �L) was added to the carbonate (12.1 mg, 0.024 mmol) in 50% 

MeOH/CH2Cl2 (0.24 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 30f as a colorless amorphous 

solid (9.0 mg, 79%, 49% over 3 steps): 1H NMR (CD2Cl2, 400 MHz) � 8.70 (s, 1H), 7.98 (s, 1H), 

7.55–7.45 (m, 3H), 7.37 (dd, J = 6.9, 1.6 Hz, 2H), 5.54 (d, J = 2.5 Hz, 1H), 3.88 (t, J = 1.6 Hz, 

1H), 3.77 (dd, J = 9.0, 3.4 Hz, 1H), 3.54 (s, 3H), 3.25 (d, J = 9.0 Hz, 1H), 2.22 (s, 3H), 1.32 (s, 

3H), 1.30 (s, 3H), 1.07 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 169.3, 158.7, 155.2, 148.0, 131.1, 

130.4, 128.1, 127.9, 127.7, 123.9, 122.0, 119.7, 114.6, 112.4, 98.3, 84.0, 78.5, 70.8, 68.3, 61.8, 

29.7, 28.8, 24.8, 22.7, 14.2; IR (film) νmax 3369, 3331, 2924, 2853, 2359, 2332, 1713, 1682, 

1599, 1524, 1375, 1261, 1177, 1115, 1045 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for 

C25H28NO8, 470.1815; found, 470.1806. 

 

30g 

N-(7-(((2S,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-

yl)oxy)-8-methoxy-2-oxo-2H-chromen-3-yl)acetamide (30g): Palladium on carbon (20%, 50 
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mg) was added to 25g (249 mg, 0.46 mmol) in anhydrous THF (3.1 mL) and the solution was 

placed under an atmosphere of H2. After 12 h, the solution was filtered through SiO2 (1:1 

CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow solid, which was used 

without further purification (187 mg, 99%).  

Acetic anhydride (29.0 �L, 0.31 mmol) was added to the amine (62.4 mg, 0.15 mmol) in 50% 

pyridine/CH2Cl2 (4.20 mL). After 12 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 3:1 Hexane:Ether → 40:1 → 10:1 CH2Cl2:Acetone) to afford a 

colorless solid, which was used without further purification (32.0 mg, 47%). 

Triethylamine (71 �L) was added to the carbonate (26.0 mg, 0.040 mmol) in 50% 

MeOH/CH2Cl2 (0.71 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 3:1 CH2Cl2:Acetone) to afford 30g as a colorless amorphous 

solid (22.1 mg, 73%, 34% over 3 steps): 1H NMR (CDCl3, 500 MHz) � 8.54 (s, 1H), 7.94 (s, 

1H), 7.16 (d, J = 8.5 Hz, 1H), 7.10 (d, J = 9.0 Hz, 1H), 5.50 (s, 1H), 5.23 (s, 1H), 4.20 (d, J = 

10.5 Hz, 1H), 3.87 (s, 3H), 3.53 (s, 3H), 3.29 (d, J = 8.5 Hz, 1H), 2.82 (s, 1H), 2.63 (s, 1H), 2.16 

(s, 3H), 1.32 (s, 3H), 1.14 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 169.3, 158.5, 151.2, 143.9, 

136.6, 124.0, 122.6, 122.1, 115.2, 113.3, 98.7, 84.1, 78.7, 71.0, 68.5, 61.8 (2C), 28.9, 24.7, 22.9; 

IR (film) νmax 3391, 3323, 3273, 2934, 2359, 2332, 1607, 1458, 1375, 1275, 1254, 1132, 1088, 

1040, 951, 798 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for C20H25NNaO9, 446.1427; found, 

446.1430. 

 

32 
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Benzyl (7-hydroxy-8-methyl-6-nitro-2-oxo-2H-chromen-3-yl)carbamate (32): Zirconyl 

nitrate (35%) (0.63 mL, 1.36 mmol) was added to a solution of coumarin 31102 (448 mg, 1.36 

mmol) in acetone (2.0 mL), then heated to reflux for 12 h. Once cool, the solution was 

concentrated, then water (30 mL) was added and the solution was extracted with EtOAc (3 × 30 

mL). Combined organic fractions were dried (Na2SO4), filtered, and concentrated to afford 32 as 

a yellow amorphous solid (411 mg, 81%): 1H NMR (CDCl3, 400 MHz) � 11.13 (s, 1H), 8.29 (s, 

1H), 8.20 (s, 1H), 7.54 (bs, 1H), 7.44–7.39 (m, 5H), 5.27 (s, 2H), 2.43 (s, 3H); 13C NMR (CDCl3, 

125 MHz) � 155.8, 152.3, 151.3, 151.2, 133.6, 129.4, 127.1, 127.1, 126.8, 121.7, 119.7, 118.5, 

114.6, 111.4, 66.2, 28.1, 27.8, 6.7; HRMS (ESI+) m/z: [M + Na]+ calcd for C18H14N2NaO7, 

393.0699; found, 393.0652. 

 

33 

3-(((Benzyloxy)carbonyl)amino)-8-methyl-6-nitro-2-oxo-2H-chromen-7-yl acetate (33): ): 

A solution of coumarin 32 (150 mg, 0.41 mmol) in pyridine (3.0 mL) was treated with acetic 

anhydride (1.0 mL). After 12 h, the solvent was concentrated and the residue purified via column 

chromatography (SiO2, 100:1 CH2Cl2:Acetone) to afford 33 as a yellow amorphous solid (140 

mg, 84%): 1H NMR (CDCl3, 400 MHz) � 8.35 (s, 1H), 8.15 (s, 1H), 7.65 (s, 1H), 7.43–7.37 (m, 

5H), 5.27 (s, 2H), 2.46 (s, 3H), 2.37 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 168.2, 157.1, 152.8, 

150.6, 143.0, 139.0, 135.1, 128.8, 128.7, 128.5, 128.4, 125.3, 122.8, 122.0, 119.1, 117.6, 68.0, 

29.7, 20.6, 9.5; HRMS (ESI+) m/z: [M + Na]+ calcd for C20H16N2NaO8, 435.0804; found, 

435.0841. 
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34 

6-amino-3-(((benzyloxy)carbonyl)amino)-8-methyl-2-oxo-2H-chromen-7-yl acetate (34): 

Tin (II) chloride dihydrate (137 mg, 0.61 mmol) was added to was added to a solution of 

coumarin 33 (25 mg, 0.061 mmol) in MeOH (1.20 mL), then heated to reflux for 30 min. Once 

cool, the solution was concentrated, then saturated NaHCO3 (10 mL) and EtOAc (10 mL) and 

the biphasic solution was filtered through Celite. Next, the filtrate was extracted with EtOAc (3 x 

30 mL) and the combined organic fractions were dried (Na2SO4), filtered, and concentrated to 

afford 34 as a yellow amorphous solid (21.5 mg, 93%): 1H NMR (Acetone-d6, 400 MHz) � 9.74 

(bs, 1H), 8.17 (s, 1H), 8.12 (bs, 1H), 7.43–7.39 (m, 2H), 7.37–7.32 (m, 5H), 5.25 (s, 2H), 2.29 (s, 

3H), 2.26 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 171.2, 158.7, 153.2., 149.3, 147.2, 135.5 (2C), 

128.7 (2C), 128.6 (2C), 128.2, 123.6, 122.0, 121.4, 116.9, 112.4, 56.0, 29.8, 8.8; HRMS (ESI+) 

m/z: [M + H]+ calcd for C20H19N2O6, 383.1243; found, 383.1286. 

 

35 

6-(benzylamino)-3-(((benzyloxy)carbonyl)amino)-8-methyl-2-oxo-2H-chromen-7-yl 

acetate (35): A solution of benzyl chloride, in 42 μL anhydrous N,N-dimethylformamide, was 

added dropwise to a solution of cesium carbonate (34 mg, 0.10 mmol), potassium iodide (35 mg, 

0.21 mmol), and coumarin 34 (40 mg, 0.10 mmol) in anhydrous N,N-dimethylformamide (0.17 

mL), then heated to 95oC for 4 h. Water (30 mL) was added and the solution was extracted with 
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EtOAc (3 × 10 mL). Combined organic fractions were washed with saturated aqueous NaCl, 

dried (Na2SO4), filtered, and concentrated. The residue was purified via column chromatography 

(SiO2, 40:1; CH2Cl2:Acetone) to afford 35 as a yellow amorphous solid (44 mg, 90%): 1H NMR 

(CDCl3, 400 MHz) � 8.37 (s, 1H), 8.33 (s, 1H), 7.57 (s, 1H), 7.46–7.42 (m, 10H), 7.33 (s, 1H), 

5.26 (s, 2H), 4.95 (s, 2H), 2.48 (s, 3H), 1.91 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 168.1, 

158.6, 153.0, 147.5, 144.7, 136.2, 135.5, 129.3, 129.2 (2C), 129.0, 128.7 (2C), 128.5 (3C), 128.4, 

127.8, 123.3, 122.0, 118.9, 116.2, 115.2, 67.6, 29.7, 24.5, 9.6; HRMS (ESI+) m/z: [M + H]+ calcd 

for C27H25N2O6, 473.1713; found, 473.1723. 

 

36 

Allyl (7-hydroxy-8-methyl-2-oxo-2H-chromen-3-yl)carbamate (36): Palladium on carbon 

(20%, 50 mg) was added to coumarin 31102 (250 mg, 0.77 mmol) in anhydrous THF (5.0 mL) 

and the solution was placed under an atmosphere of H2. After 12 h, the solution was filtered 

through SiO2 (40:1 CH2Cl2:Acetone) and the eluent was concentrated to afford a yellow solid, 

which was used without further purification (147 mg, 99%).  

A solution of allyl chloroformate (0.10 mL, 0.96 mmol), in anhydrous THF (0.37 mL), was 

added dropwise to a solution of the aminocoumarin (147 mg, 0.77 mmol) and pyridine (77 μL, 

0.96 mmol) in anhydrous THF (2.8 mL) at 0oC, then warmed to rt slowly over 2 h. The reaction 

mixture was filtered to remove insoluble salts, eluting with EtOAc, and then water (30 mL) was 

added to the filtrate and the solution was extracted with EtOAc (3 x 30 mL) and the combined 

organic fractions were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and 

concentrated. The residue was purified via column chromatography (SiO2, 40:1 → 20:1 
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CH2Cl2:Acetone) to afford 36 as a colorless amorphous solid (175 mg, 83%): 1H NMR (CDCl3, 

400 MHz) � 8.27 (s, 1H), 7.49 (s, 1H), 7.22 (d, J = 8.4 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.04–

5.94 (m, 1H), 5.72 (s, 1H), 5.43–5.29 (m, 2H), 4.72–4.71 (m, 2H), 2.36 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 160.1, 157.3, 153.0, 151.8, 149.5, 135.0, 128.0, 122.3, 120.1, 115.2, 112.6, 

111.0, 67.0, 9.1; HRMS (ESI+) m/z: [M + Na]+ calcd for C14H13NNaO5, 298.0691; found, 

298.0706. 

 

37 

Allyl (7-hydroxy-8-methyl-6-nitro-2-oxo-2H-chromen-3-yl)carbamate (37): Zirconyl 

nitrate (35%) (21.7 μL, 0.054 mmol) was added to a solution of coumarin 36 (15.0 mg, 0.054 

mmol) in acetone (0.27 mL), then heated to reflux for 1 h. Once cool, the solution was 

concentrated, then water (10 mL) was added and the solution was extracted with EtOAc (3 × 10 

mL). Combined organic fractions were dried (Na2SO4), filtered, and concentrated to afford 37 as 

a yellow amorphous solid (17.5 mg, 99%): 1H NMR (CDCl3, 400 MHz) � 11.12 (s, 1H), 8.28 (s, 

1H), 8.19 (s, 1H), 7.51 (bs, 1H), 6.04–5.94 (m, 1H), 5.44–5.40 (m, 1H), 5.33 (dd, J = 10.4, 1.2 

Hz, 1H), 4.74 (dd, J = 9.7, 1.2 Hz, 2H), 2.43 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 156.4, 

152.9, 151.8, 130.6, 122.3, 120.3, 119.1, 118.0, 115.2, 112.0, 65.6, 7.3; HRMS (ESI+) m/z: [M + 

H]+ calcd for C14H13N2O7, 321.0723; found, 321.0707. 
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38 

3-(((Allyloxy)carbonyl)amino)-8-methyl-6-nitro-2-oxo-2H-chromen-7-yl acetate (38): A 

solution of coumarin 37 (17.5 mg, 0.055 mmol) in pyridine (0.5 mL) was treated with acetic 

anhydride (0.17 mL). After 12 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 100:1 CH2Cl2:Acetone) to afford 38 as a yellow amorphous solid 

(9.9 mg, 50%): 1H NMR (CDCl3, 400 MHz) � 8.28 (s, 1H), 8.19 (s, 1H), 7.54 (s, 1H), 6.03–5.95 

(m, 1H), 5.42 (d, J = 16.0 Hz, 1H), 5.33 (d, J = 8.0 Hz, 1H), 4.73 (d, J = 8.0 Hz, 2H), 2.42 (s, 

3H) 2.12 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 167.1, 155.5, 151.7, 149.6, 141.9, 130.8, 124.2, 

122.1, 121.9, 121.7, 118.2, 118.1, 117.7, 67.3, 22.0, 9.9; HRMS (ESI+) m/z: [M + Na]+ calcd for 

C16H14N2NaO8, 385.0648; found, 385.0655. 

 

40 

1-(Benzyloxy)-2-methyl-3-nitrobenzene (40):233 Benzyl bromide (4.70 mL, 39.2 mmol) was 

added dropwise to a solution of 2-methyl-3-nitrophenol (2.0 g, 13.1 mmol) and potassium 

carbonate (9.0 g, 65.3 mmol) in anhydrous N,N-dimethylformamide (26.0 mL), then stirred for 

12 h. Water (50 mL) was added and the solution was extracted with EtOAc (3 × 50 mL). 

Combined organic fractions were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, 

and concentrated. The residue was purified via column chromatography (SiO2, 100% Hexane, 

8:1 → 3:1 Hexane:EtOAc) to afford 40 as a yellow oil (3.07 g, 97%): 1H NMR (CDCl3, 500 
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MHz) � 7.40–7.37 (m, 6H), 7.27 (t, J = 8.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 5.16 (s, 2H), 2.46 

(s, 3H). 

 

41 

3-(Benzyloxy)-2-methylaniline (41):234 Preparation 1: 2-bromoethanol (0.29 mL, 4.11 

mmol) was added to a solution of nitroarene 40 (1.0 g, 4.11 mmol) and phthalocyanatoiron (47 

mg, 0.082 mmol) in diglyme (23 mL). After several minutes, sodium borohydride (311 mg, 8.22 

mmol) was added and the solution was stirred for 12 h. Water (30 mL) was added and the 

solution was extracted with EtOAc (3 x 30 mL). Combined organic fractions were dried 

(Na2SO4), filtered, and concentrated. The residue was purified via column chromatography 

(SiO2, 6:1 Hexane:EtOAc) to afford 41 as a red oil (262 mg, 79%). 

Preparation 2: Platinum on carbon (20%, 200 mg) was added to nitroarene 40 (1.0 g, 4.11 

mmol) in anhydrous THF (27.0 mL) and the solution was placed under an atmosphere of H2. 

After 12 h, the solution was filtered through SiO2 (40:1 CH2Cl2:Acetone) and the eluent was 

concentrated to afford 41 as a red oil (864 mg, 99%): 1H NMR (CDCl3, 400 MHz) � 7.48–7.32 

(m, 5H), 6.99 (t, J = 8.0 Hz, 1H), 6.44 (d, J = 8.0 Hz, 1H), 6.40 (d, J = 8.0 Hz, 1H), 5.08 (s, 2H), 

3.65 (bs, 2H), 2.15 (s, 3H). 

 

42 

3-(Benzyloxy)-2-methyl-6-nitroaniline (42): Zirconyl nitrate (35%) (7.44 mL, 14.0 mmol) 

was added to a solution of aniline 41 (2.0 g, 9.33 mmol) in acetone (47.0 mL), then heated to 
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reflux for 12 h. Once cool, the solution was concentrated, then water (30 mL) was added and the 

solution was extracted with EtOAc (3 × 30 mL). Combined organic fractions were dried 

(Na2SO4), filtered, and concentrated. The crude solid residue was washed with hexanes, allowing 

collection of 42 as a gray amorphous solid (2.0 g, 83%): 1H NMR (Acetone-d6, 400 MHz) � 7.54 

(s, 1H), 7.52 (s, 1H), 7.42 (t, J = 7.2 Hz, 1H), 7.35 (t, J = 7.2 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 

7.16 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 5.22 (s, 2H), 2.07 (s, 3H); 13C NMR (CDCl3, 

125 MHz) � 155.7, 141.3, 136.8, 127.5, 127.4, 126.6, 126.2, 126.1, 125.7, 124.9, 120.4, 99.5, 

69.0, 7.6; HRMS (ESI+) m/z: [M + Na]+ calcd for C14H14N2NaO3, 281.0902; found, 281.0933. 

 

43 

7-Methyl-1H-benzo[d]imidazol-6-ol (43): Tin (II) chloride dihydrate (41.5 mg, 0.18 mmol) 

was added to was added to a solution of aniline 42 (10.3 mg, 0.061 mmol) in 88% formic acid 

(0.20 mL), then heated to 130oC for 30 min in the microwave. Once cool, water (5 mL) was 

added and the solution was neutralized using 50% aqueous NaOH. Next, the solution was 

extracted with EtOAc (3 x 15 mL), and then the combined organic fractions were dried 

(Na2SO4), filtered, and concentrated. The residue was purified via column chromatography 

(SiO2, 5:1 Hexane:EtOAc) to afford 43 as a red oil (7.0 mg, 77%): 1H NMR (CDCl3, 400 MHz) 

� 6.89 (t, J = 8.0 Hz, 1H), 6.34 (d, J = 8.0 Hz, 1H), 6.25 (d, J = 8.0 Hz, 1H), 4.66 (bs, 1H), 3.66 

(bs, 1H), 2.09 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 154.2, 146.1, 128.6, 126.7, 122.8, 107.9, 

105.6, 9.2; HRMS (ESI+) m/z: [M + Na]+ calcd for C8H8N2NaO, 171.0534; found, 171.0586. 
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44 

Benzyl (4-methyl-6-oxo-3,6-dihydrochromeno[6,7-d]imidazol-7-yl)carbamate (44): A 

solution of 43 (387 mg, 2.61 mmol) and eneamine 22 (1.09 g, 3.92 mmol) in glacial acetic acid 

(16.3 mL) was heated to reflux for 40 h. Upon cooling to rt, the yellow precipitate was collected 

by vacuum filtration and recrystallized from MeOH/H2O. The filtrate was extracted with EtOAc 

(3 x 15 mL), and then the combined organic fractions were dried (Na2SO4), filtered, and 

concentrated. The residue was recrystallized as described above and combined with the previous 

obtained product, to afford 44 as a yellow amorphous solid (171 mg, 19%): 1H NMR (CDCl3, 

400 MHz) � 10.15 (s, 1H), 7.97 (d, J = 8.7 Hz, 1H), 7.45–7.39 (m, 5H), 7.12 (dd, J = 8.7, 1.8 Hz, 

1H), 6.97 (d, J = 2.0 Hz, 1H), 5.19 (s, 2H), 1.59 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 159.3, 

154.2, 148.0, 146.4, 141.3, 138.8, 134.2 (2C), 128.7 (4C), 128.3, 122.0, 121.9, 119.9, 113.0, 

68.0, 10.1; [M + Na]+ calcd for C19H15N3NaO4, 372.0960; found, 372.0953. 

 

45 

3',6-Dimethoxy-N-(4-methyl-6-oxo-3,6-dihydrochromeno[6,7-d]imidazol-7-yl)-[1,1'-

biphenyl]-3-carboxamide (45): Palladium on carbon (20%, 12 mg) was added to 44 (60 mg, 

0.17 mmol) in anhydrous THF (4.0 mL) and the solution was placed under an atmosphere of H2. 

After 12 h, the system was evacuated and an Ar atmosphere was introduced. EDCI (82.3 mg, 

0.43 mmol), pyridine (1.7 mL), and 3',6-dimethoxybiphenyl-3-carboxylic acid (88.7 mg, 0.34 
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mmol) were added and the solution was stirred for 12 h. Next, solvent was removed and the 

residue purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 45 as a 

yellow amorphous solid (15.6 mg, 20%): 1H NMR (CDCl3, 400 MHz) � 8.86 (s, 1H), 8.77 (s, 

1H), 8.03 (d, J = 8.5 Hz, 1H), 7.96–7.92 (m, 1H), 7.87 (d, J = 12.5 Hz, 1H), 7.46 (d, J = 8.5 Hz, 

1H), 7.39 (t, J = 8.0 Hz, 1H), 7.16–7.09 (m, 3H), 6.95 (d, J = 8.3 Hz, 1H), 3.93 (s, 3H), 3.88 (d, J 

= 2.2 Hz, 3H), 3.81 (s, 1H), 2.46 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 165.6, 165.2, 159.8, 

159.3, 148.4, 138.6, 137.6, 129.8, 129.2 (2C), 128.3, 125.8, 123.7, 122.0 (2C), 120.0, 116.8, 

115.4, 115.2, 113.2, 113.0, 111.1, 111.0, 55.9, 55.3, 29.7; HRMS (ESI+) m/z: [M + H]+ calcd for 

C26H22N3O5, 456.1559; found, 456.1627. 

 

48 

Benzyl (2,6-dihydroxyphenyl)carbamate (48): Palladium on carbon (5%, 50 mg) was added 

to 2-nitroresorcinol (1.0 g, 6.45 mmol) in EtOAc (65 mL) and the solution was placed under an 

atmosphere of H2. After 12 h, the solution was filtered through SiO2 (1:3 Hexane:EtOAc) and the 

eluent was concentrated to afford 47225 as a brown amorphous solid (800 mg, 99%), which was 

used without further purification. 

Benzyl chloroformate (28 μL, 0.20 mmol) was added dropwise to a solution of aniline 47 (25 

mg, 0.20 mmol) in MeOH (0.40 mL). After several minutes, iodine (1 mg, 0.0040 mmol) was 

added and the solution was stirred for 1.5 h. Et2O (30 mL) was added and the organic layer was 

washed with saturated aqueous Na2S2O3, saturated aqueous NaHCO3, dried (Na2SO4), filtered, 

and concentrated. The residue was purified via column chromatography (SiO2, 2:1 

Hexane:EtOAc) to afford 48 as a brown amorphous solid (33 mg, 64%): 1H NMR (CDCl3, 400 



 157 

MHz) � 7.45–7.38 (m, 5H), 7.16 (bs, 1H), 6.92 (t, J = 8.0 Hz, 1H), 6.52 (d, J = 8.0 Hz, 2H), 5.26 

(s, 2H); 13C NMR (CDCl3, 125 MHz) � 154.5, 146.4 (2C), 133.5, 127.1 (3C), 127.0 (3C), 112.2, 

108.0 (2C), 66.9; HRMS (ESI+) m/z: [M + H]+ calcd for C14H14NO4, 260.0923; found, 260.0939. 

 

50 

Benzyl (8-acetyl-7-hydroxy-2-oxo-2H-chromen-3-yl)carbamate (50): A solution of 1-(2,6-

dihydroxyphenyl)ethanone (500 mg, 3.29 mmol) and eneamine 22 (915 mg, 3.29 mmol) in 

glacial acetic acid (22.0 mL) was heated to reflux for 48 h. Upon cooling to rt, the orange 

precipitate was collected by vacuum filtration and recrystallized from MeOH/H2O. The filtrate 

was extracted with EtOAc (3 x 15 mL), and then the combined organic fractions were dried 

(Na2SO4), filtered, and concentrated. The residue was recrystallized as described above and 

combined with the previous obtained product, to afford 50 as a yellow amorphous solid (450 mg, 

40%): 1H NMR (CDCl3, 500 MHz) � 8.23 (bs, 1H), 7.47 (d, J = 9.0 Hz, 1H), 7.37–7.29 (m, 6H), 

6.88 (d, J = 8.5 Hz, 1H), 5.17 (s, 2H), 2.88 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 203.7, 165.2, 

157.3, 153.1, 150.4, 135.4, 134.4, 128.7 (2C), 128.6 (2C), 128.3, 122.4, 121.3, 116.5, 111.6, 

109.2, 67.7, 33.8; HRMS (ESI+) m/z: [M + Na]+ calcd for C19H15NNaO6, 376.0797; found, 

376.0821. 

 

52 
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8-Acetyl-3-(((benzyloxy)carbonyl)amino)-2-oxo-2H-chromen-7-yl acetate (52): A solution 

of coumarin 50 (50 mg, 0.15 mmol) in pyridine (2.25 mL) was treated with acetic anhydride 

(0.75 mL). After 12 h, the solvent was concentrated and the residue purified via column 

chromatography (SiO2, 100:1 CH2Cl2:Acetone) to afford 52 as a colorless amorphous solid (36.7 

mg, 65%): 1H NMR (CDCl3, 400 MHz) � 8.35 (s, 1H), 7.59 (bs, 1H), 7.57 (d, J = 8.5 Hz, 1H), 

7.45–7.38 (m, 5H), 7.10 (d, J = 8.5 Hz, 1H), 5.27 (s, 2H), 2.70 (s, 3H), 2.31 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 197.4, 169.0, 157.0, 153.0, 147.5, 146.7, 135.3, 129.2, 128.7 (3C), 128.3, 

124.0, 122.9 (2C), 120.3, 120.2, 118.0, 67.8, 32.0, 20.9; HRMS (ESI+) m/z: [M + Na]+ calcd for 

C21H17NNaO7, 418.0903; found, 418.0952. 

 

54 

N-(8-acetyl-7-hydroxy-2-oxo-2H-chromen-3-yl)-3',6-dimethoxy-[1,1'-biphenyl]-3-

carboxamide (54): Palladium on carbon (20%, 30 mg) was added to 52 (149 mg, 0.37 mmol) in 

anhydrous THF (2.60 mL) and the solution was placed under an atmosphere of H2. After 12 h, 

the solution was filtered through SiO2 (1:1 CH2Cl2:Acetone) and the eluent was concentrated to 

afford a yellow solid, which was used without further purification (97.0 mg, 99%).  

EDCI (178 mg, 0.93 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (192 mg, 0.74 

mmol) were added to the amine (97 mg, 0.37 mmol) in 30% pyridine/CH2Cl2 (5.60 mL). After 

12 h, the solvent was concentrated and the residue purified via column chromatography (SiO2, 

40:1 CH2Cl2:Acetone) to afford 53 as a colorless solid (51 mg, 27%), which was used without 

further purification. 



 159 

A solution of 53 (30 mg, 0.060 mmol) in MeOH (0.6 mL) at rt was treated with triethylamine 

(60 μL). After 12 h, the solvent was removed and the residue purified via column 

chromatography (SiO2, 2:1, Hexane:EtOAc) to afford 54 as a yellow amorphous solid (27 mg, 

99%): 1H NMR (CDCl3, 400 MHz) � 13.46 (s, 1H), 8.85 (s, 1H), 8.62 (s, 1H), 7.95–7.91 (m, 

2H), 7.63 (d, J = 8.8 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.15–7.10 (m, 3H), 7.01–6.95 (m, 2H), 

3.93 (s, 3H), 3.88 (s, 3H), 3.00 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 202.4, 164.4, 164.2, 

158.7, 158.1, 156.7, 149.5, 137.3, 133.6, 129.9, 128.7, 128.0, 127.0, 124.5, 123.2, 120.7, 120.3, 

115.4, 114.1, 111.9, 110.5, 109.9, 108.0, 54.7, 54.1, 32.6; HRMS (ESI+) m/z: [M + H]+ calcd for 

C26H22NO7, 460.1396; found, 460.1346. 

 

57 

7-Acetoxy-3-(((benzyloxy)carbonyl)amino)-2-oxo-2H-chromene-8-carboxylic acid (57): A 

solution of 2,6-dihydroxybenzoic acid (554 mg, 3.60 mmol) and eneamine 22 (1.0 g, 3.60 mmol) 

in glacial acetic acid (18.7 mL) was heated to reflux for 48 h. Upon cooling, the solution was 

extracted with EtOAc (3 × 50 mL); combined organic fractions were washed with saturated 

aqueous NaCl, dried (Na2SO4), filtered, and concentrated to afford a brown solid, which was 

used without further purification (1.28 g, 99%). 

A solution of the crude coumarin (22.0 mg, 0.062 mmol)in pyridine (1.50 mL) was treated 

with acetic anhydride (0.5 mL). After 12 h, the solvent was concentrated and the residue purified 

via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 57 as a yellow amorphous 

solid (13.0 mg, 53% over 2 steps): 1H NMR (CDCl3, 400 MHz) � 8.33 (s, 1H), 7.60 (s, 1H), 

7.51–7.40 (m, 5H), 7.14 (s, 1H), 7.11–7.07 (m, 2H), 5.26 (s, 2H), 2.37 (s, 3H); 13C NMR 
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(CDCl3, 125 MHz) � 168.9, 158.2, 153.1, 151.1, 149.9, 135.4, 128.8, 128.7, 128.6, 128.5, 128.3, 

128.0, 123.8, 120.6, 119.0, 117.6, 115.5, 110.0, 67.7, 21.1; HRMS (ESI+) m/z: [M + H]+ calcd 

for C20H16NO8, 398.0876; found, 398.0882. 

 

58 

Methyl 3-(((benzyloxy)carbonyl)amino)-7-hydroxy-2-oxo-2H-chromene-8-carboxylate 

(58): Thionyl chloride (3 μL, 0.035 mmol) was added dropwise to a solution of 57 (7.0 mg, 

0.018 mmol) and 4Å molecular sieves in anhydrous MeOH (0.18 mL) at 0oC, then warmed to rt 

slowly over 12 h. The reaction mixture was filtered through SiO2 (EtOAc) and the eluent was 

concentrated. The residue purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to 

afford 58 as a yellow amorphous solid (4.5 mg, 69%): 1H NMR (Acetone-d6, 400 MHz) � 8.26 

(s, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.47 (d, J = 7.4 Hz, 2H), 7.42–7.35 (m, 3H), 6.89 (dd, J = 8.5, 

2.4 Hz, 1H), 6.79 (d, J = 2.3 Hz, 1H), 5.63 (s, 3H), 5.24 (s, 2H); 13C NMR (CDCl3, 125 MHz) � 

162.9, 159.3, 158.2, 153.1 (2C), 149.9, 135.4, 128.8 (2C), 128.7, 128.6, 128.5, 128.3, 121.9, 

113.6 (2C), 103.1, 67.5, 29.7; HRMS (ESI+) m/z: [M + Na]+ calcd for C19H15NNaO7, 392.0746; 

found, 392.0794. 

 

62 

1-(Methoxymethoxy)-2-methyl-3-nitrobenzene (62): N,N-diisopropylethylamine (2.30 mL, 

13.1 mmol) was slowly added to 2-methyl-3-nitrophenol (500 mg, 3.27 mmol) in anhydrous 
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N,N-dimethylformamide (9.30 mL) over 5 min at rt. After 30 min, the solution was cooled to 

0°C and chloromethyl methyl ether (1.0 mL, 13.1 mmol) was added and the mixture warmed to 

rt over 12 h. The reaction was quenched by the addition of saturated aqueous NH4Cl solution and 

extracted with EtOAc (3 × 30 mL). The combined organic fractions were washed with saturated 

aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue was purified via column 

chromatography (SiO2, 15:1 Hexane:EtOAc) to give 62 as a yellow oil (576 mg, 89%): 1H NMR 

(CDCl3, 400 MHz) � 7.49 (d, J = 8.0 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.26 (d, J = 8.4 Hz, 1H), 

5.27 (s, 2H), 3.52 (s, 3H), 2.42 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 156.2, 151.1, 126.7, 

122.7, 117.8, 117.1, 94.9, 56.3, 11.8; HRMS (ESI+) m/z: [M + H]+ calcd for C9H12NO4, 

198.0766; found, 198.0759. 

 

63 

3-(Methoxymethoxy)-2-methylaniline (63): Palladium on carbon (5%, 24 mg) was added to 

nitroarene 62 (482 mg, 2.44 mmol) in EtOAc (31.0 mL) and the solution was placed under an 

atmosphere of H2. After 12 h, the solution was filtered through SiO2 (3:1 Hexane:EtOAc) and the 

eluent was concentrated to afford 63 as a red oil (415 mg, 99%): 1H NMR (CDCl3, 500 MHz) � 

6.88 (t, J = 8.0 Hz, 1H), 6.46 (d, J = 8.0 Hz, 1H), 6.32 (dd, J = 8.0, 0.5 Hz, 1H), 5.10 (s, 2H), 

3.54 (bs, 2H), 3.41 (s, 3H), 2.01 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 155.8, 145.8, 126.6, 

111.6, 109.2, 104.8, 94.8, 56.0, 9.2; HRMS (ESI+) m/z: [M + H]+ calcd for C9H14NO2, 168.1025; 

found, 168.1015. 
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64 

3-(Benzyloxy)-4-bromo-2-methylaniline (64): N-bromosuccinimide (92 mg, 0.52 mmol) was 

added to a solution of aniline 41 (100 mg, 0.47 mmol) and H2SO4 (2.5 μL, 0.047 mmol) in 

anhydrous THF (2.30 mL) at -78oC. After 1.5 h, a 1:1 mixture of saturated aqueous 

Na2S2O3:saturated aqueous NaHCO3 (5 mL) was added at -78oC and the solution was extracted 

with EtOAc (3 x 30 mL). The combined organic fractions were dried (Na2SO4), filtered, and 

concentrated. The residue was purified via column chromatography (SiO2, 3:1 Hexane:EtOAc) 

to afford 64 as a yellow oil (110 mg, 81%): 1H NMR (CDCl3, 400 MHz) � 7.57 (d, J = 7.2 Hz, 

2H), 7.45–7.36 (m, 3H), 7.23 (d, J = 8.4 Hz, 1H), 6.43 (d, J = 8.8 Hz, 1H), 4.92 (s, 2H), 3.68 (bs, 

2H), 2.13 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 154.1, 145.5, 137.0, 130.4, 128.6, 128.5, 128.3 

(2C), 128.2, 117.9, 112.3, 105.6, 74.8, 10.8; HRMS (ESI+) m/z: [M + H]+ calcd for C14H15BrNO, 

292.0337; found, 292.0349. 

 

65 

Benzyl (3-(benzyloxy)-4-bromo-2-methylphenyl)carbamate (65): Benzyl chloroformate (12 

μL, 0.086 mmol) was added dropwise to a solution of aniline 64 (25 mg, 0.086 mmol) in MeOH 

(0.17 mL). After several minutes, iodine (1 mg, 0.0017 mmol) was added and the solution was 

stirred for 1.5 h. Et2O (30 mL) was added and the organic layer was washed with saturated 

aqueous Na2S2O3, saturated aqueous NaHCO3, dried (Na2SO4), filtered, and concentrated. The 

residue was purified via column chromatography (SiO2, 6:1 Hexane:EtOAc) to afford 65 as a 
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colorless amorphous solid (29 mg, 79%): 1H NMR (CDCl3, 400 MHz) � 7.55–7.52 (m, 2H), 

7.46–7.36 (m, 10H), 6.44 (bs, 1H), 5.23 (s, 2H), 4.93 (s, 2H), 2.18 (s, 3H); 13C NMR (CDCl3, 

125 MHz) � 153.9, 153.4, 136.6, 136.4, 135.8, 130.8, 128.7 (3C), 128.6 (2C), 128.5 (3C), 128.3 

3C), 118.2 (2C), 75.0, 67.4, 11.2; HRMS (ESI+) m/z: [M + Na]+ calcd for C22H20BrNNaO3, 

448.0524; found, 448.0535. 

 

66 

Benzyl (3-(benzyloxy)-4-formyl-2-methylphenyl)carbamate (66): nBuLi (2.5M in hexanes, 

0.14 mL, 0.35 mmol) was added to a solution of 65 (100 mg, 0.24 mmol) in anhydrous THF 

(2.40 mL) at -78° C. After 10 min, anhydrous N,N-dimethylformamide (91 μL, 1.18 mmol) was 

added dropwise over several minutes. After 2 h at rt, the reaction was poured into saturated 

aqueous NaCl and the solution was extracted with Et2O (3 × 10 mL). The combined organic 

extracts were dried (Na2SO4), filtered, and concentrated. The residue was purified via column 

chromatography (SiO2, 3:1 Hexane:EtOAc) to afford 66 as a colorless amorphous solid (57 mg, 

65%): 1H NMR (CDCl3, 400 MHz) � 10.19 (s, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.8 Hz, 

1H), 7.47–7.38 (m, 10H), 6.74 (bs, 1H), 5.26 (s, 2H), 4.96 (s, 2H), 2.19 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 189.1, 160.3, 152.8, 143.1, 135.8, 135.5, 128.8 (4C), 128.7 (3C), 128.4 

(3C), 127.8, 125.0, 119.7, 115.4 (2C), 67.7, 10.0; HRMS (ESI+) m/z: [M + H]+ calcd for 

C23H22NO4, 376.1549; found, 376.1565. 
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67 

4-Amino-2-hydroxy-3-methylbenzaldehyde (67): Palladium on carbon (20%, 17 mg) was 

added to 67 (83 mg, 0.22 mmol) in anhydrous THF (1.50 mL) and the solution was placed under 

an atmosphere of H2. After 12 h, the solution was filtered through SiO2 (1:1 CH2Cl2:Acetone) 

and the eluent was concentrated. The residue was purified via column chromatography (SiO2, 3:1 

→ 2:1 Hexane:EtOAc → 100% EtOAc) to afford 67 as a red amorphous solid (13 mg, 39%): 1H 

NMR (CDCl3, 400 MHz) � 11.90 (s, 1H), 9.56 (s, 1H), 7.19 (d, J = 8.4 Hz, 1H), 6.29 (d, J = 8.4 

Hz, 1H), 4.37 (bs, 2H), 2.05 (s, 3H); 13C NMR (CDCl3,125 MHz) � 193.3, 161.8, 152.8, 133.1, 

113.1, 107.0, 106.7, 7.7; HRMS (ESI+) m/z: [M + H]+ calcd for C8H10NO2, 152.0712; found, 

152.0703. 

 

68 

N-(3-(benzyloxy)-4-bromo-2-methylphenyl)pivalamide (68): Pivaloyl chloride (0.48 mL, 

3.91 mmol) was added dropwise to a solution of aniline 64 (950 mg, 3.26 mmol), pyridine (0.53 

mL, 6.52 mmol) and 4-dimethylaminopyridine (DMAP, 4.0 mg, 0.033 mmol) in CH2Cl2 (6.50 

mL) at 0oC. After stirring for 1 h at 0oC, the reaction mixture was poured into ice-cooled aqueous 

1M HCl and the solution was extracted with EtOAc (3 × 30 mL). The combined organic extracts 

were washed with aqueous 1M HCl, saturated aqueous NaHCO3, saturated aqueous NaCl, dried 

(Na2SO4), filtered, and concentrated. The residue was purified via column chromatography 
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(SiO2, 4:1 → 3:1 Hexane:EtOAc → 100% EtOAc) to afford 68 as a colorless amorphous solid 

(1.15 g, 94%): 1H NMR (CDCl3, 400 MHz) � 7.63 (d, J = 8.8 Hz, 1H), 7.57–7.55 (m, 2H), 7.47–

7.37 (m, 4H), 7.22 (bs, 1H), 4.93 (s, 2H), 2.22 (s, 3H), 1.36 (s, 9H); 13C NMR (CDCl3, 125 

MHz) � 176.5, 154.0, 136.7, 136.4, 130.7, 128.6 (2C), 128.3 (3C), 125.0, 120.3, 113.3, 75.0, 

39.8, 27.7 (3C), 11.2; HRMS (ESI+) m/z: [M + Na]+ calcd for C19H22BrNNaO2, 398.0732; found, 

398.0723. 

 

69 

N-(3-(benzyloxy)-4-formyl-2-methylphenyl)pivalamide (69): nBuLi (2.5M in hexanes, 40 

μL, 0.10 mmol) was added to a solution of 68 (25 mg, 0.067 mmol) in anhydrous THF (0.70 mL) 

at -78° C. After 30 min, anhydrous N,N-dimethylformamide (51 μL, 0.67 mmol) was added 

dropwise over several minutes. After 30 min at -78° C, the reaction was quenched with saturated 

aqueous NH4Cl at -78° C and then gradually warmed to rt. The solution was extracted with 

EtOAc (3 × 10 mL), and then the combined organic extracts were dried (Na2SO4), filtered, and 

concentrated. The residue was purified via column chromatography (SiO2, 6:1 → 3:1 

Hexane:EtOAc) to afford 69 as a colorless amorphous solid (15.3 mg, 71%): 1H NMR (CDCl3, 

400 MHz) � 10.19 (s, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.48–7.42 (m, 6H), 

4.97 (s, 2H), 2.24 (s, 3H), 1.39 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 189.2, 176.2, 160.3, 

143.1, 135.8, 128.8 (2C), 128.7, 128.4 (2C), 127.7, 125.7, 121.2, 117.6, 78.5, 40.2, 27.7 (3C), 

10.1; HRMS (ESI+) m/z: [M + H]+ calcd for C20H24NO3, 326.1756; found, 326.1771. 
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70 

N-(3-(benzyloxy)-2-methylphenyl)pivalamide (70): Pivaloyl chloride (0.76 mL, 6.19 mmol) 

was added dropwise to a solution of aniline 41 (1.10 g, 5.16 mmol), pyridine (0.83 mL, 10.3 

mmol) and 4-dimethylaminopyridine (DMAP, 6.0 mg, 0.052 mmol) in CH2Cl2 (10.3 mL) at 0oC. 

After stirring for 1 h at 0oC, the reaction mixture was poured into ice-cooled aqueous 1M HCl 

and the solution was extracted with EtOAc (3 × 30 mL). The combined organic extracts were 

washed with aqueous 1M HCl, saturated aqueous NaHCO3, saturated aqueous NaCl, dried 

(Na2SO4), filtered, and concentrated. The residue was purified via column chromatography 

(SiO2, 6:1 Hexane:EtOAc) to afford 70 as a colorless amorphous solid (143 g, 93%): 1H NMR 

(CDCl3, 400 MHz) � 7.52 (d, J = 8.4 Hz, 1H), 7.47–7.39 (m, 4H), 7.37–7.33 (m, 1H), 7.17 (t, J = 

8.0 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 5.10 (s, 2H), 2.20 (s, 3H), 1.37 (s, 9H); 13C NMR 

(CDCl3,125 MHz) � 176.5, 156.9, 137.3, 136.8, 128.6 (2C), 127.8, 127.2 (2C), 126.6, 118.3, 

116.0, 108.7, 70.4, 39.8, 27.8 (3C), 9.9; HRMS (ESI+) m/z: [M + H]+ calcd for C19H24NO2, 

298.1807; found, 298.1815. 

 

73 

4-(Methoxymethoxy)-1-methyl-2-nitrobenzene (73): N,N-diisopropylethylamine (4.55 mL, 

26.1 mmol) was slowly added to 4-methyl-3-nitrophenol (1.0 g, 6.53 mmol) in anhydrous N,N-

dimethylformamide (21.8 mL) over 5 min at rt. After 30 min, the solution was cooled to 0°C and 

chloromethyl methyl ether (1.98 mL, 26.1 mmol) was added and the mixture warmed to rt over 
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12 h. The reaction was quenched by the addition of saturated aqueous NH4Cl solution and 

extracted with EtOAc (3 × 30 mL). The combined organic fractions were washed with saturated 

aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue was purified via column 

chromatography (SiO2, 40:1 Hexane:EtOAc) to give 73 as a yellow oil (1.28 g, 99%): 1H NMR 

(CDCl3, 400 MHz) � 7.68 (d, J = 2.4 Hz, 1H), 7.27 (d, J = 5.2 Hz, 1H), 7.20 (dd, J = 8.8, 2.4 Hz, 

1H), 5.22 (s, 2H), 3.50 (s, 3H), 2.55 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 155.6, 149.4, 133.4, 

126.6, 121.4, 112.2, 94.6, 56.2, 19.8; HRMS (ESI+) m/z: [M + H]+ calcd for C9H12NO4, 

198.0766; found, 198.0739. 

 

74 

4-(Methoxymethoxy)-2-nitrobenzaldehyde (74): N,N-dimethylformamide dimethyl acetal 

(0.41 mL, 3.04 mmol) was added to a solution of nitroarene 73 (500 mg, 2.54 mmol) and 

pyrrolidine (0.25 mL, 3.04 mmol) in anhydrous N,N-dimethylformamide (1.40 mL), then heated 

to 110oC for 4 h. Once cool, the solution was concentrated to remove volatile organics. Next, the 

residue was dissolved in anhydrous THF (1.70 mL) and added dropwise to a solution of sodium 

periodate (1.63 g, 7.61 mmol) in 50% aqueous THF (11.3 mL) at 0oC, then warmed slowly to rt 

over 8 h. The reaction mixture was filtered to remove insoluble salts, eluting with EtOAc, and 

the filtrate was washed with water, dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 10:1 → 3:1 Hexane:EtOAc) to give 74 as a yellow 

oil (431 mg, 80%): 1H NMR (CDCl3, 400 MHz) � 10.32 (s, 1H), 7.99 (d, J = 8.8 Hz, 1H), 7.70 

(d, J = 2.4 Hz, 1H), 7.40 (dd, J = 8.8, 2.4 Hz, 1H), 5.33 (s, 2H), 3.53 (s, 3H); 13C NMR (CDCl3, 
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125 MHz) � 187.0, 161.3, 151.5, 131.4, 124.3, 120.9, 111.8, 94.6, 56.7; HRMS (ESI+) m/z: [M + 

H]+ calcd for C9H10NO5, 212.0559; found, 212.0623. 

 

75 

2-Amino-4-(methoxymethoxy)benzaldehyde (75): Palladium on carbon (5%, 5 mg) was 

added to nitroarene 74 (100 mg, 0.47 mmol) in EtOAc (5.90 mL) and the solution was placed 

under an atmosphere of H2. After 12 h, the solution was filtered through SiO2 (1:3 

Hexane:EtOAc) and the eluent was concentrated. The residue was purified via column 

chromatography (SiO2, 3:1 Hexane:EtOAc) to afford 75 as a red amorphous solid (31 mg, 36%): 

1H NMR (CDCl3, 400 MHz) � 9.74 (s, 1H), 7.40 (d, J = 8.8 Hz, 1H), 6.43 (dd, J = 8.8, 2.0 Hz, 

1H), 6.28 (d, J = 1.6 Hz, 1H), 6.23 (bs, 2H), 5.20 (s, 2H), 3.50 (s, 3H); 13C NMR (CDCl3, 125 

MHz) � 191.2, 157.6, 156.2, 153.1, 120.5, 119.6, 93.0, 92.3, 55.3; HRMS (ESI+) m/z: [M + H]+ 

calcd for C9H12NO3, 182.0817; found, 182.0862. 

 

76 

4-Hydroxy-2-nitrobenzaldehyde (76):200 A solution of 74 (100 mg, 0.47 mmol) in MeOH 

(4.70 mL) was treated dropwise with 3M HCl (1.30 mL, 3.79 mmol), then heated to reflux for 1 

h. Water (15 mL) was added and the solution was extracted with EtOAc (3 × 15 mL). Combined 

organic fractions were washed with saturated aqueous NaHCO3, saturated aqueous NaCl, dried 

(Na2SO4), and concentrated to afford 76 as a red amorphous solid (79 mg, 99%): 1H NMR 
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(CDCl3, 500 MHz) � 10.17 (s, 1H), 7.85 (d, J = 9.0 Hz, 1H), 7.37 (d, J = 2.0 Hz, 1H), 7.09 (dd, J 

= 8.5, 2.0 Hz, 1H). 

 

79 

5-(Methoxymethoxy)-2-nitrobenzaldehyde (79):235 N,N-diisopropylethylamine (4.20 mL, 

23.9 mmol) was slowly added to 5-hydroxy-2-nitrobenzaldehyde (1.0 g, 5.98 mmol) in 

anhydrous N,N-dimethylformamide (20.0 mL) over 5 min at rt. After 30 min, the solution was 

cooled to 0°C and chloromethyl methyl ether (1.80 mL, 23.9 mmol) was added and the mixture 

warmed to rt over 12 h. The reaction was quenched by the addition of saturated aqueous NH4Cl 

solution and extracted with EtOAc (3 × 50 mL). The combined organic fractions were washed 

with saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 5:1 Hexane:EtOAc) to give 79 as a yellow 

amorphous solid (1.21 g, 96%): 1H NMR (CDCl3, 500 MHz) � 10.40 (s, 1H), 8.09 (d, J = 9.0 Hz, 

1H), 7.41 (d, J = 2.5 Hz, 1H), 7.23 (dd, J = 9.0, 3.0 Hz, 1H), 5.23 (s, 2H), 3.42 (s, 3H). 

 

80 

5-(Methoxymethoxy)-2-nitrobenzoic acid (80): Monosodium phosphate (NaH2PO4, 588 mg, 

4.26 mmol) was added to a solution of aqueous 0.4M NaClO2 (8.10 mL, 3.22 mmol). This 

aqueous solution was subsequently added to a solution of benzaldehyde 79 (100 mg, 0.47 mmol) 

and 2-methyl-2-butene (1.81 mL, 17.1 mmol) in tert-butanol (2.40 mL), then stirred for 12 h. 
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Saturated aqueous NaH2PO4 was added and the solution was extracted with EtOAc (3 x 30 mL). 

The combined organic fractions were washed with saturated aqueous NaCl, dried (Na2SO4), 

filtered, and concentrated. The residue was then resuspended in CH2Cl2 and saturated aqueous 

NaHCO3 was used to extract the desired product, washing with CH2Cl2. The combined aqueous 

extracts were acidified and extracted with EtOAc (3 x 30 mL), and then dried (Na2SO4), filtered, 

and concentrated to afford 80 as a yellow amorphous solid (106 mg, 99%): 1H NMR (CDCl3, 

400 MHz) � 8.03 (dd, J = 8.8, 1.6 Hz, 1H), 7.39 (d, J = 2.8 Hz, 1H), 7.28–7.24 (m, 1H), 5.31 (s, 

2H), 3.53 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 170.2, 160.8, 141.2, 129.5, 126.6, 118.4, 

116.8, 94.5, 56.6; HRMS (ESI+) m/z: [M + Na]+ calcd for C9H9NNaO6, 250.0328; found, 

250.0345. 

 

81 

Methyl 3-hydroxy-2-methylbenzoate (81):236 Thionyl chloride (1.44 mL, 19.8 mmol) was 

added dropwise to a solution of 3-acetoxy-2-methylbenzoic acid (3.50 g, 18.0 mmol) in 

anhydrous MeOH (77.0 mL) at 0oC, then warmed to rt slowly over 12 h. Solvent was 

concentrated and the residue was resuspended in EtOAc (50 mL), washed with saturated aqueous 

NaHCO3, saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated to afford 81 as a 

colorless amorphous solid (2.67 g, 89%): 1H NMR (CDCl3, 400 MHz) � 7.45–7.43 (m, 1H), 7.14 

(t, J = 8.0 Hz, 1H), 6.97–6.95 (m, 1H), 5.02 (bs, 1H), 3.91 (s, 3H), 2.48 (s, 3H). 

 

82 



 171 

Methyl 6-bromo-3-hydroxy-2-methylbenzoate (82):205 A 0.75 M solution of bromine in 

CH2Cl2 (8.82 mL, 6.62 mmol) was added portionwise to solution of 81 (1.0 g , 6.02 mmol) in 

CH2Cl2 (60.0 mL) at -42oC in a flask wrapped in foil. Initially, 4.0 mL (0.5 eq.) of the 0.75M 

solution was added, which was followed by another 0.8 mL (0.1 eq) every 10 minutes until 

addition was complete. Several minutes after addition was complete, saturated aqueous Na2S2O3 

was added at -42oC. The solution was extracted with CH2Cl2 (3 x 50 mL), washed with water, 

dried (Na2SO4), filtered, and concentrated. The residue was purified via column chromatography 

(SiO2, 100% Hexane → 6:1 Hexane:EtOAc → 100% EtOAc) to give 82 as a yellow oil (1.39 g, 

95%): 1H NMR (CDCl3, 400 MHz) � 7.24 (d, J = 8.4 Hz, 1H), 6.70 (d, J = 8.8 Hz, 1H), 5.51 (s, 

1H), 3.98 (s, 3H), 2.20 (s, 3H). 

 

83 

Methyl 6-bromo-3-(methoxymethoxy)-2-methylbenzoate (83): N,N-diisopropylethylamine 

(3.28 mL, 18.8 mmol) was slowly added to phenol 82 (1.15 g, 4.71 mmol) in anhydrous N,N-

dimethylformamide (16.0 mL) over 5 min at rt. After 30 min, the solution was cooled to 0°C and 

chloromethyl methyl ether (3.14 mL, 18.8 mmol) was added and the mixture warmed to rt over 

12 h. The reaction was quenched by the addition of saturated aqueous NH4Cl solution and 

extracted with EtOAc (3 × 50 mL). The combined organic fractions were washed with saturated 

aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue was purified via column 

chromatography (SiO2, 20:1 Hexane:EtOAc) to give 83 as a colorless oil (1.31 g, 97%): 1H NMR 

(CDCl3, 400 MHz) � 7.34 (d, J = 9.2 Hz, 1H), 7.01 (d, J = 8.8 Hz, 1H), 5.21 (s, 2H), 3.97 (s, 

3H), 3.48 (s, 3H), 2.22 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 168.3, 154.5, 137.0, 130.2, 126.6, 
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116.1, 110.3, 94.5, 56.1, 52.6, 13.6; HRMS (ESI+) m/z: [M + H]+ calcd for C11H14BrO4, 

289.0075; found, 289.0089. 

 

84 

6-Bromo-3-(methoxymethoxy)-2-methylbenzoic acid (84): An aqueous solution of 40% 

KOH (3.16 mL, 22.6 mmol) was added to a solution of 83 (130 mg, 0.45 mmol) in EtOH (11.3 

mL), then heated to reflux for 12 h. Once cool, the solution was concentrated and the aqueous 

residue was acidified, and then extracted with EtOAc (3 x 25 mL). The combined organic layers 

were next extracted with saturated aqueous NaHCO3 (3 x 30 mL), and then the aqueous extracts 

were acidified. Finally, EtOAc (3 x 30 mL) was used to extract the acid product, and the 

combined organic extracts were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, 

and concentrated to afford 84 as a colorless amorphous solid (124 mg, 99%): 1H NMR (CDCl3, 

400 MHz) � 7.38 (d, J = 8.8 Hz, 1H), 7.05 (d, J = 8.8 Hz, 1H), 5.23 (s, 2H), 3.50 (s, 3H), 2.33 (s, 

3H); 13C NMR (CDCl3, 125 MHz) � 172.4, 154.5, 136.0, 130.7, 126.6, 116.5, 110.0, 94.5, 56.1, 

13.5; HRMS (ESI+) m/z: [M + H]+ calcd for C10H12BrO4, 274.9919; found, 274.9992. 

 

85 

Methyl 6-amino-3-(methoxymethoxy)-2-methylbenzoate (85): Trimethylsilyl azide (0.22 

mL, 1.70 mmol) was added to a solution of 83 (245 mg, 0.85 mmol), copper (108 mg, 1.70 

mmol), and ethanolamine (0.13 mL, 2.13 mmol) in dimethylacetamide (1.70 mL), then heated to 
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95oC for 12 h. Once cool, the solution was extracted with EtOAc (3 x 30 mL), washing with 

water, saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 5:1 Hexane:EtOAc) to give 85 as a red oil (145 mg, 

76%): 1H NMR (CDCl3, 400 MHz) � 7.03 (d, J = 8.8 Hz, 1H), 6.53 (d, J = 8.4 Hz, 1H), 5.08 (s, 

2H), 4.52 (bs, 2H), 3.93 (s, 3H), 3.51 (s, 3H), 2.31 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 169.4, 

147.8, 142.2, 128.6, 120.7 (2C), 114.8, 96.1, 56.1, 51.7, 14.2; HRMS (ESI+) m/z: [M + H]+ calcd 

for C11H16NO4, 226.1079; found, 226.1055. 

 

86 

Benzyl (6-bromo-3-(methoxymethoxy)-2-methylphenyl)carbamate (86): 

Diphenylphosphoryl azide (0.10 mL, 0.47 mmol) was added to a solution of 84 (100 mg, 0.36 

mmol) and N,N-diisopropylethylamine (0.11 mL, 0.62 mmol) in toluene (15.0 mL), then heated 

at reflux for 3 h. Once cool, benzyl alcohol (64 μL, 0.62 mmol) was added and the solution was 

stirred for 12 h. Solvent was removed and the residue was purified via column chromatography 

(SiO2, 30:1 → 5:1 Hexane:EtOAc) to give 86 as a colorless oil (28 mg, 33%): 1H NMR (CDCl3, 

400 MHz) � 7.40–7.36 (m, 6H), 6.95 (d, J = 9.2 Hz, 1H), 5.24 (s, 2H), 5.22 (s, 2H), 3.49 (s, 3H), 

2.20 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 155.3, 154.0, 136.2, 134.3, 129.8, 129.5, 128.8, 

128.6, 128.3, 127.8, 120.1, 116.3, 114.1, 94.7, 67.4, 56.1, 12.4; HRMS (ESI+) m/z: [M + Na]+ 

calcd for C17H18BrNNaO4, 402.0317; found, 402.0320. 

 

87 
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3-Amino-4-bromo-2-methylphenol (87): A solution of carboxylic acid 84 (77.0 mg, 0.28 

mmol) in H2SO4 (0.70 mL) was heated at 60oC for 1.5 h. Once cool, sodium azide (365 mg, 5.62 

mmol) was added portionwise over 30 min, and then the solution was stirred for 42 h. Sodium 

hydroxide was added at 0oC to neutralize and then the solution was extracted with EtOAc (3 x 30 

mL), washed with water, saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. 

The residue was purified via column chromatography (SiO2, 8:1 Hexane:EtOAc) to give 87 as a 

colorless amorphous solid (15 mg, 27%): 1H NMR (CDCl3, 400 MHz) � 7.15 (d, J = 8.8 Hz, 

1H), 6.17 (d, J = 8.8 Hz, 1H), 4.59 (s, 1H), 4.12 (bs, 2H), 2.13 (s, 3H); 13C NMR (CDCl3, 125 

MHz) � 153.2, 143.3, 129.5, 109.6, 106.4, 101.0, 10.1; HRMS (ESI+) m/z: [M + H]+ calcd for 

C7H9BrNO, 201.9868; found, 201.9858. 

 

88 

Methyl 3-hydroxy-2-methyl-6-vinylbenzoate (88): A solution of aniline 85 (39 mg, 0.17 

mmol) in anhydrous CH2Cl2 (0.35 mL) was added to a solution of boron trifluoride etherate 

(32.0 �L, 0.26 mmol) at -15oC in an ice-acetone bath. Next, a solution of tert-butyl nitrite (25.0 

�L, 0.21 mmol) in anhydrous CH2Cl2 (0.18 mL) was added dropwise over several minutes, then 

stirred at -15oC for 10 min before warming to 5oC over 20 min in an ice-water bath. Solvent was 

removed under vacuum, without heat, and the crude residue was used without further 

purification (56 mg, 99%) 

 Bis(dibenzylideneacetone)palladium (1.0 mg, 0.0017 mmol) was added to a solution of 

diazonium salt (56 mg, 0.17 mmol) and tributyl(vinyl) tin (100 �L, 0.35 mmol) in anhydrous 

MeCN (0.70 mL). After gas evolution has ceased, solvent was removed and the residue was 



 175 

purified via column chromatography (SiO2, 10:1 Hexane:EtOAc) to give 88 as a colorless oil 

(4.0 mg, 12%): 1H NMR (CDCl3, 400 MHz) � 7.34 (d, J = 8.4 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 

6.63 (dd, J = 17.2, 10.8 Hz, 1H), 5.60 (dd, J = 17.2, 0.8 Hz, 1H), 5.22 (dd, J = 10.8, 0.8 Hz, 1H), 

4.96 (bs, 1H), 3.95 (s, 3H), 2.20 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 169.9, 153.3, 133.5, 

127.9 (2C), 126.2, 124.2, 120.8, 114.6, 52.3, 12.7; HRMS (ESI+) m/z: [M + H]+ calcd for 

C11H13O3, 193.0865; found, 193.0868. 

 

89 

Methyl 3-(benzyloxy)-6-bromo-2-methylbenzoate (89): Benzyl bromide (3.02 mL, 25.4 

mmol) was added dropwise to a solution of 82 (2.07 g, 8.47 mmol) and potassium carbonate 

(5.85 g, 42.3 mmol) in anhydrous N,N-dimethylformamide (17.0 mL), then stirred for 12 h. 

Water (50 mL) was added and the solution was extracted with EtOAc (3 × 30 mL). Combined 

organic fractions were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and 

concentrated. The residue was purified via column chromatography (SiO2, 100% Hexane, 30:1 

Hexane:EtOAc) to afford 89 as a yellow amorphous solid (2.83 g, 99%): 1H NMR (CDCl3, 400 

MHz) � 7.41–7.35 (m, 5H), 7.34 (d, J = 8.8 Hz, 1H), 6.81 (d, J = 8.8 Hz, 1H), 5.10 (s, 2H), 3.98 

(s, 3H), 2.26 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 168.3, 155.9, 137.0, 136.5, 130.4, 128.7, 

128.2, 128.1, 127.1 (2C), 126.4, 113.8, 109.3, 70.4, 52.6, 13.7; HRMS (ESI+) m/z: [M + Na]+ 

calcd for C16H15BrNaO3, 357.0102; found, 357.0117. 
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90 

Methyl 6-amino-3-(benzyloxy)-2-methylbenzoate (90): Trimethylsilyl azide (0.16 mL, 1.20 

mmol) was added to a solution of 89 (200 mg, 0.60 mmol), copper (76 mg, 1.20 mmol), and 

ethanolamine (90 μL, 1.50 mmol) in dimethylacetamide (1.20 mL), then heated to 95oC for 12 h. 

Once cool, the solution was extracted with EtOAc (3 x 30 mL), washing with water, saturated 

aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue was purified via column 

chromatography (SiO2, 5:1 Hexane:EtOAc) to give 90 as a red oil (141 mg, 87%): 1H NMR 

(CDCl3, 400 MHz) � 7.40–7.34 (m, 5H), 6.89 (d, J = 8.8 Hz, 1H), 6.53 (d, J = 8.4 Hz, 1H), 4.99 

(s, 2H), 4.45 (bs, 2H), 3.93 (s, 3H), 2.34 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 169.4, 149.6, 

140.8, 137.5, 128.5, 128.3, 128.0, 127.8, 127.5, 127.3, 127.1, 118.3, 114.8, 71.9, 51.8, 14.2; 

HRMS (ESI+) m/z: [M + H]+ calcd for C16H18NO3, 272.1287; found, 272.1258. 

 

91 

Methyl 3-(benzyloxy)-2-methyl-6-vinylbenzoate (91): A solution of aniline 90 (40 mg, 0.15 

mmol) in anhydrous CH2Cl2 (0.30 mL) was added to a solution of boron trifluoride etherate 

(27.0 �L, 0.22 mmol) at -15oC in an ice-acetone bath. Next, a solution of tert-butyl nitrite (21.0 

�L, 0.18 mmol) in anhydrous CH2Cl2 (0.15 mL) was added dropwise over several minutes, then 

stirred at -15oC for 10 min before warming to 5oC over 20 min in an ice-water bath. Solvent was 
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removed under vacuum, without heat, and the crude residue was used without further 

purification (55 mg, 99%) 

 Bis(dibenzylideneacetone)palladium (1.0 mg, 0.0015 mmol) was added to a solution of 

diazonium salt (55 mg, 0.15 mmol) and tributyl(vinyl) tin (87.0 �L, 0.30 mmol) in anhydrous 

MeCN (0.60 mL). After gas evolution has ceased, solvent was removed and the residue was 

purified via column chromatography (SiO2, 30:1 Hexane:EtOAc) to give 91 as a colorless oil 

(18.0 mg, 43%): 1H NMR (CDCl3, 400 MHz) � 7.37–7.35 (m, 6H), 6.93 (d, J = 8.8 Hz, 1H), 6.64 

(dd, J = 17.4, 11.2, 1H), 5.61 (dd, J = 17.4, 0.8, 1H), 5.22 (dd, J = 10.8, 0.8, 1H), 5.13 (s, 2H), 

3.95 (s, 3H), 2.24 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 168.9, 155.2, 135.9, 133.3, 127.8, 

127.9, 127.0 (2C), 126.5, 126.1, 125.3, 122.9, 122.8, 113.6, 111.8, 69.2, 51.2, 12.2; HRMS 

(ESI+) m/z: [M + Na]+ calcd for C18H18NaO3, 305.1154; found, 305.1184. 

 

92 

3-(Benzyloxy)-2-methyl-6-vinylbenzoic acid (92): An aqueous solution of 40% KOH (1.86 

mL, 13.3 mmol) was added to a solution of 91 (75.0 mg, 0.27 mmol) in EtOH (6.60 mL), then 

heated to reflux for 12 h. Once cool, the solution was concentrated and the aqueous residue was 

acidified, and then extracted with EtOAc (3 x 15 mL). The combined organic layers were next 

extracted with saturated aqueous NaHCO3 (3 x 20 mL), and then the aqueous extracts were 

acidified. Finally, EtOAc (3 x 20 mL) was used to extract the acid product, and the combined 

organic extracts were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and 

concentrated to afford 92 as an orange amorphous solid (51.0 mg, 72%): 1H NMR (CDCl3, 400 

MHz) � 7.38–7.34 (m, 6H), 6.97 (d, J = 8.4 Hz, 1H), 6.85 (dd, J = 17.2, 10.8, 1H), 5.65 (dd, J = 
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17.6, 0.8, 1H), 5.26 (d, J = 11.6, 1H), 5.14 (s, 2H), 2.36 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 

172.9, 156.3, 136.9 (2C), 130.4, 130.0, 128.6 (2C), 128.0, 127.7, 127.2, 127.1, 126.1, 115.0, 

113.2, 70.3, 13.3; HRMS (ESI+) m/z: [M + Na]+ calcd for C17H16NaO3, 291.0997; found, 

291.1006. 

 

93 

3-(Benzyloxy)-6-bromo-2-methylbenzoic acid (93): An aqueous solution of 40% KOH (84.0 

mL, 598 mmol) was added to a solution of 89 (2.0 g, 5.98 mmol) in EtOH (150 mL), then heated 

to reflux for 12 h. Once cool, the solution was concentrated and the aqueous residue was 

acidified, and then extracted with EtOAc (3 x 50 mL). The combined organic layers were next 

extracted with saturated aqueous NaHCO3 (3 x 50 mL), and then the aqueous extracts were 

acidified. Finally, EtOAc (3 x 50 mL) was used to extract the acid product, and the combined 

organic extracts were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and 

concentrated to afford 93 as a colorless amorphous solid (1.75 g, 91%): 1H NMR (CDCl3, 500 

MHz) � 7.35–7.26 (m, 6H), 6.75 (d, J = 9.0 Hz, 1H), 5.02 (s, 2H), 2.27 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 171.5, 155.9, 136.4, 135.8, 130.6, 128.7, 128.3, 128.1, 127.1 (2C), 126.4, 

114.1, 108.9, 70.4, 13.8; HRMS (ESI+) m/z: [M + Na]+ calcd for C15H13BrNaO3, 342.9946; 

found, 342.9968. 

 

94 
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2,2,2-Trichloroethyl (3-(benzyloxy)-6-bromo-2-methylphenyl)carbamate (94): ,2,2-

trichloroethyl (Troc) chloroformate (46 μL, 0.34 mmol) was added to a solution of carboxylic 

acid 93 (100 mg, 0.31 mmol), sodium azide (35 mg, 0.53 mmol) and sodium tert-butoxide in 

dimethoxyethane (3.10 mL), then heated at reflux for 12 h. Once cool, solvent was removed and 

the residue was purified via column chromatography (SiO2, 20:1 Hexane:EtOAc) to give 94 as a 

colorless amorphous solid (49.0 mg, 35%): 1H NMR (CDCl3, 500 MHz) � 7.40–7.37 (m, 6H), 

6.89 (d, J = 9.0 Hz, 1H), 5,12 (s, 2H), 4.94 (s, 2H), 2.35 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 

160.5, 156.0, 147.6, 136.2, 133.7, 130.8, 128.7 (2C), 128.2, 127.5, 127.1 (2C), 115.0, 109.1, 

93.5, 70.5, 13.7; HRMS (ESI+) m/z: [M + H]+ calcd for C17H16BrCl3NO3, 465.9379; found, 

465.9367. 

 

95 

2,2,2-Trichloroethyl (3-(benzyloxy)-2-methyl-6-vinylphenyl)carbamate (95): A flame-

dried flask was charged with 94 (20 mg, 0.044 mmol), tributyl(vinyl) tin (14 μL, 0.049 mmol) 

and tetrakis(triphenyl-phosphine)palladium (3.0 mg, 0.0022 mmol), then degassed. Anhydrous 

toluene (2.20 mL) was added and the solution was heated at reflux for 2 h. Once cool, solvent 

was removed and the residue was purified via column chromatography (SiO2, 20:1 

Hexane:EtOAc) to give 95 as a colorless oil (4.0 mg, 23%): 1H NMR (CDCl3, 400 MHz) � 7.40–

7.37 (m, 5H), 6.89 (d, J = 10.4 Hz, 1H), 6.60 (dd, J = 35.2, 10.4 Hz, 1H), 6.14 (dd, J = 10.4, 0.8 

Hz, 1H), 5.93 (dd, J = 17.6, 0.8 Hz, 1H), 5.57 (d, J = 17.6 Hz, 1H), 5.14 (s, 2H), 4.88 (s, 2H), 

2.13 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 156.3 (2C), 138.3 (2C), 133.5 (2C), 128.6 (2C), 
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128.0, 127.6, 127.1 (2C), 123.8 (2C), 114.4, 112.3, 76.7, 70.2, 12.9; HRMS (ESI+) m/z: [M + H]+ 

calcd for C19H19Cl3NO3, 414.0431; found, 414.0461. 

 

96 

N-(3-(benzyloxy)-6-bromo-2-methylphenyl)pivalamide (96): N-bromosuccinimide (15 mg, 

0.084 mmol) was added to a solution of amide 73 (25 mg, 0.080 mmol) in MeOH (0.16 mL). 

After 15 min, the reaction was poured into a 1:1 mixture of saturated aqueous Na2S2O3:saturated 

aqueous NaHCO3 (10 mL) and the solution was extracted with EtOAc (3 x 15 mL). The 

combined organic extracts were dried (Na2SO4), filtered, and concentrated to afford 96 as a 

yellow amorphous solid (31 mg, 99%): 1H NMR (CDCl3, 400 MHz) � 7.52 (d, J = 8.4 Hz, 1H), 

7.47–7.33 (m, 5H), 7.15 (s, 1H), 6.72 (d, J = 6.8 Hz, 1H), 5.07 (s, 2H), 2.17 (s, 3H), 1.38 (s, 9H); 

13C NMR (CDCl3, 125 MHz) � 156.7, 154.0, 136.7, 134.6, 129.3, 128.6, 128.3, 127.9, 127.8, 

127.1, 113.3, 112.7, 111.7, 70.5, 39.5, 27.7 (3C), 12.5; HRMS (ESI+) m/z: [M + Na]+ calcd for 

C19H22BrNNaO2, 398.0732; found, 398.0726. 

 

99 

(6-Amino-3-(benzyloxy)-2-methylphenyl)methanol (99): A solution of ester 90 (150 mg, 

0.55 mmol) in anhydrous THF (2.00 mL) was added to a solution of lithium aluminum hydride 

(42 mg, 1.11 mmol) in anhydrous THF (3.50 mL) at 0oC, then warmed to rt over 1.5 h. Water (5 

mL) was added dropwise to quench, and then Na2SO4 was added. The reaction mixture was 

filtered through Celite (2:1, Hexane:EtOAc) and the eluent was concentrated to afford 99 as a 
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yellow amorphous solid (130 mg, 96%): 1H NMR (CDCl3, 400 MHz) � 7.42–7.34 (m, 5H), 6.78 

(d, J = 8.8 Hz, 1H), 6.57 (d, J = 8.8 Hz, 1H), 5.00 (s, 2H), 4.80 (s, 2H), 2.32 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 150.2, 150.1, 140.2, 128.5 (2C), 127.7, 127.3, 126.5, 126.4, 125.5, 114.2, 

114.0, 71.4, 59.2, 11.7; HRMS (ESI+) m/z: [M + H]+ calcd for C15H18NO2, 244.1338; found, 

244.1335. 

 

100 

6-Amino-3-(benzyloxy)-2-methylbenzaldehyde (100): Activated magnesium oxide (455 mg) 

was added to a solution of alcohol 99 (130 mg, 0.53 mmol) in CH2Cl2 (3.80 mL), then warmed to 

35oC for 12 h. Once cool, the reaction mixture was filtered through Celite (Acetone) and the 

eluent was concentrated to afford 100 as a red amorphous solid (113 mg, 91%): 1H NMR 

(CDCl3, 400 MHz) � 10.42 (s, 1H), 7.47–7.33 (m, 5H), 7.07 (d, J = 9.2 Hz, 1H), 6.48 (d, J = 9.2 

Hz, 1H), 6.12 (bs, 2H), 4.98 (s, 2H), 2.53 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 192.9, 147.2, 

146.2, 137.4, 131.4, 128.6 (2C), 128.0, 127.6, 127.2, 124.9, 116.9, 114.8, 73.1, 10.6; HRMS 

(ESI+) m/z: [M + H]+ calcd for C15H16NO2, 242.1181; found, 242.1187. 

 

101 

6-(Benzyloxy)-5-methylquinazolin-2-amine (101): Guanidine hydrochloride (80.0 mg, 0.84 

mmol) was added to a solution of benzaldehyde 100 (100 mg, 0.41 mmol) and sodium carbonate 

(89 mg, 0.84 mmol) in decalin (0.92 mL), then heated at 190oC for 2.5 h. Once cool, solvent was 
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removed and the residue was purified via column chromatography (SiO2, 10:1 CH2Cl2:MeOH) to 

afford 101 as a brown amorphous solid (25 mg, 23%): 1H NMR (CDCl3, 400 MHz) � 9.25 (d, J 

= 4.0 Hz, 1H), 7.53 (d, J = 9.2 Hz, 1H), 7.48–7.36 (m, 6H), 5.17 (s, 2H), 2.58 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 159.2, 158.8, 153.0, 151.4, 137.1, 128.6, 128.3, 128.0, 127.4, 127.8, 127.2, 

124.9, 120.1, 114.8, 77.0, 9.8; HRMS (ESI+) m/z: [M + H]+ calcd for C16H16N3O, 266.1293; 

found, 266.1285. 

 

104 

2-Amino-6-(benzyloxy)-5-methylquinazolin-4(3H)-one (104): HCl gas was bubbled through 

a solution of cyanamide (1.0 g, 23.8 mmol) in Et2O (75.0 mL) for 10 min, and then the resultant 

solution was capped and stirred for 12 h. The white precipitate was collected by filtration, 

washing with Et2O, to afford chloroformamide hydrochloride 103 (1.59 g, 58%), which was used 

without further purification. 

 Chloroformamide hydrochloride (21 mg, 0.18 mmol) was added to a solution of ester 90 

(50 mg, 0.18 mmol) in anhydrous diglyme (0.37 mL), then heated at reflux for 1 h. After time 

had elapsed, the solution was cooled to 0oC and insoluble salts were removed by filtration, 

washing with Et2O. Concentration of the filtrate revealed crude 104 by 1HNMR. 1H NMR 

(CDCl3, 400 MHz) � 7.43–7.34 (m, 5H), 6.89 (d, J = 8.8 Hz, 1H), 6.53 (d, J = 8.8 Hz, 1H), 5.11 

(s, 2H), 4.99 (s, 2H), 3.41 (s, 1H), 2.34 (s, 3H); HRMS (ESI+) m/z: [M + Na]+ calcd for 

C16H15N3NaO2, 304.1062; found, 304.1064. 
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105 

Methyl 3-(benzyloxy)-6-((tert-butoxycarbonyl)amino)-2-methylbenzoate (105): Di-tert-

butyl dicarbonate (84 mg, 0.39 mmol) was added to a solution of aniline 90 (100 mg, 0.37 mmol) 

in 1% Et3N/THF (7.47 mL), and then stirred for 12 h. Solvent was removed, then the residue was 

diluted with water (20 mL), and then extracted with EtOAc (3 x 30 mL), dried (Na2SO4), filtered, 

and concentrated. The residue was purified via column chromatography (SiO2, 15:1 → 10:1 → 

5:1 Hexane:EtOAc) to afford 105 as a colorless amorphous solid (139 mg, 99%): 1H NMR 

(CDCl3, 400 MHz) � 7.80 (d, J = 8.8 Hz, 1H), 7.75 (bs, 1H), 7.43–7.32 (m, 5H), 6.99 (d, J = 8.8 

Hz, 1H), 5.08 (s, 2H), 3.97 (s, 3H), 2.32 (s, 3H), 1.52 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 

169.1, 153.2, 152.7, 137.1 (2C), 128.6 (3C), 127.9, 127.2 (3C), 115.2 (2C), 80.3, 70.8, 52.3, 28.3 

(3C), 14.2; HRMS (ESI+) m/z: [M + Na]+ calcd for C21H25NNaO5, 394.1630; found, 394.1628. 

 

106 

3-(Benzyloxy)-6-((tert-butoxycarbonyl)amino)-2-methylbenzoic acid (106): Lithium 

hydroxide (157 mg, 1.87 mmol) was added to a solution of 105 (139 mg, 0.37 mmol) in 3:1:1 

THF:MeOH:H2O (3.70 mL). After 12 h, the solution was concentrated and the aqueous residue 

was acidified, and then extracted with EtOAc (3 x 15 mL). The combined organic layers were 

next extracted with saturated aqueous NaHCO3 (3 x 15 mL), and then the aqueous extracts were 

acidified. Finally, EtOAc (3 x 15 mL) was used to extract the acid product, and the combined 
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organic extracts were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and 

concentrated to afford 106 as a colorless amorphous solid (57 mg, 43%): 1H NMR (CDCl3, 400 

MHz) � 8.01 (bs, 1H), 7.43–7.35 (m, 6H), 7.02 (d, J = 8.8 Hz, 1H), 5.09 (s, 2H), 2.43 (s, 3H), 

1.53 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 169.1, 153.1 (2C), 137.0 (2C), 128.6 (3C), 128.0, 

127.2 (3C), 115.2 (2C), 80.3, 70.8, 28.3 (3C), 14.2; HRMS (ESI+) m/z: [M + Na]+ calcd for 

C20H23NNaO5, 380.1474; found, 380.1441. 

 

107 

Methyl 3-(benzyloxy)-2-methyl-6-nitrobenzoate (107): mCPBA (70%) (102 mg, 0.44 mmol) 

was added to a solution of aniline 90 (30 mg, 011 mmol) in dichloroethane (0.22 mL), then 

heated at 70oC for 2 h in a flask wrapped in foil. Once cool, EtOAc (20 mL) was added and the 

organic layer was washed with aqueous 0.1M NaOH until the aqueous layer was nearly 

colorless, followed by saturated aqueous NaCl. The combined organic extracts were dried 

(Na2SO4), filtered, and concentrated to afford 107 as a yellow amorphous solid (34 mg, 99%): 1H 

NMR (CDCl3, 400 MHz) � 8.10 (d, J = 9.2 Hz, 1H), 7.44–7.38 (m, 5H), 6.99 (d, J = 9.2 Hz, 1H), 

5.23 (s, 2H), 4.01 (s, 3H), 2.29 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 167.1, 161.5, 138.5, 

135.4, 131.7, 128.9 (2C), 128.5, 127.2 (2C), 126.2, 124.5, 111.1, 70.9, 53.2, 13.1; HRMS (ESI+) 

m/z: [M + Na]+ calcd for C16H15NNaO5, 324.0848; found, 324.0847. 

 

108 
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3-(Benzyloxy)-2-methyl-6-nitrobenzoic acid (108): An aqueous solution of 40% KOH (0.75 

mL, 5.31 mmol) was added to a solution of 107 (32.0 mg, 0.11 mmol) in EtOH (2.66 mL), then 

heated to reflux for 12 h. Once cool, the solution was concentrated and the aqueous residue was 

acidified, and then extracted with EtOAc (3 x 10 mL). The combined organic layers were next 

extracted with saturated aqueous NaHCO3 (3 x 10 mL), and then the aqueous extracts were 

acidified. Finally, EtOAc (3 x 10 mL) was used to extract the acid product, and the combined 

organic extracts were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and 

concentrated to afford 108 as a colorless amorphous solid (30.5 mg, 99%): 1H NMR (Acetone-

d6, 400 MHz) � 7.85 (d, J = 7.5 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 7.27 (t, J = 7.5 Hz, 1H), 7.23–

7.17 (m, 2H), 7.07 (d, J = 8.5 Hz, 1H), 6.96 (d, J = 8.5 Hz, 1H), 6.54 (dd, J = 9.0, 4.5 Hz, 1H), 

3.84 (d, J = 7.0 Hz, 2H), 2.37 (s, 3H); 13C NMR (Acetone-d6, 125 MHz) � 167.6, 162.9, 131.3, 

130.2, 129.1 (2C), 128.5 (2C), 127.4, 125.2 (2C), 115.5, 111.8, 65.8, 14.8; HRMS (ESI+) m/z: 

[M + Na]+ calcd for C15H13NNaO5, 310.0691; found, 310.0625. 

 

110 

(Z)-methyl 3-(4-amino-2-(benzyloxy)-3-methylphenyl)-2-(((benzyloxy)carbonyl)-amino)-

3-(dimethylamino)acrylate (110): A solution of 41 (27 mg, 0.13 mmol) and eneamine 22 (42 

mg, 0.15 mmol) in glacial acetic acid (0.84 mL) was heated to reflux for 40 h. Upon cooling to 

rt, the solution was extracted with EtOAc (3 × 15 mL); combined organic fractions were dried 

(Na2SO4), filtered, and concentrated. The residue was purified via column chromatography 

(SiO2, 3:1 Hexane:EtOAc) to afford 110 as a gray amorphous solid (40 mg, 71%): 1H NMR 

(CDCl3, 400 MHz) � 8.02 (bs, 1H), 7.79–7.71 (m, 1H), 7.48–7.34 (m, 10H), 7.15 (t, J = 8.0 Hz, 
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1H), 6.78–6.72 (m, 1H), 6.68 (t, J = 8.0 Hz, 1H), 5.95 (bs, 1H), 5.22 (s, 2H), 5.11 (s, 2H), 3.80 

(s, 6H), 2.28 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 166.2, 157.4, 154.9, 137.3, 137.2, 136.0, 

128.6 (2C), 128.4 (2C), 128.3, 128.2, 128.1, 128.0, 127.9, 127.2 (3C), 114.5, 107.2, 106.2, 102.1, 

70.4, 67.7, 51.9 (2C), 9.3; HRMS (ESI+) m/z: [M + H]+ calcd for C27H30N3O4, 460.2236; found, 

460.2215. 

 

113 

5-(((3-(Benzyloxy)-2-methylphenyl)amino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione 

(113): A solution of 2,2-dimethyl-1,3-dioxane-4,6-dione (100 mg, 0.69 mmol) in 

triethylorthoformate (0.35 mL, 2.08 mmol) was heated at 80oC for 3 h. Once cool, solvent was 

removed to afford dione 112 as a yellow solid (139 mg, 99%), which was used without further 

purification. 

 A solution of aniline 41 (148 mg, 0.69 mmol) and dione 112 (139 mg, 0.69 mmol) in 

EtOH (1.50 mL) was heated at reflux for 2 h. Once cool, the precipitate was collected and 

washed with EtOH to afford 113 as a yellow amorphous solid (210 mg, 82% over 2 steps): 1H 

NMR (CDCl3, 400 MHz) � 11.49 (d, J = 12.4 Hz, 1H), 8.66 (d, J = 12.4 Hz, 1H), 7.47–7.37 (m, 

5H), 7.25 (d, J = 8.0 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 5.14 (s, 2H), 

2.35 (s, 3H), 1.79 (s, 6H); 13C NMR (CDCl3, 125 MHz) � 165.9, 163.7, 157.6, 153.4 (2C), 137.6, 

136.7, 128.7 (2C), 128.1, 127.7, 127.2 (2C), 117.7, 110.0, 109.3, 105.2, 70.5, 27.1 (2C), 9.8; 

HRMS (ESI+) m/z: [M + Na]+ calcd for C21H21NNaO5, 390.1317; found, 390.1341. 
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114 

7-(Benzyloxy)-8-methylquinolin-4(1H)-one (114): Biphenyl (764 mg, 4.95 mmol) was added 

to a solution of dione 114 (182 mg, 0.50) in phenyl ether (1.96 mL, 12.4 mmol), then heated at 

190oC for 1 h. After cooling to 60oC, the reaction mixture was poured into heptane and the 

precipitate was collected by filtration, washing with heptane and Et2O. The solid collected was 

purified via column chromatography (SiO2, 20:1 → 10:1 CH2Cl2:MeOH) to afford 114 as a 

yellow amorphous solid (73 mg, 56%): 1H NMR (CDCl3, 400 MHz) � 8.55 (bs, 1H), 8.27 (d, J = 

9.2 Hz, 1H), 7.65 (t, J = 7.2 Hz, 1H), 7.48–7.35 (m, 5H), 7.10 (d, J = 9.2 Hz, 1H), 6.26 (d, J = 

7.2 Hz, 1H), 5.23 (s, 2H), 2.40 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 179.0, 158.7, 139.6, 

137.7, 136.6, 128.7, 128.2, 127.8, 127.6, 127.3, 125.5, 120.9, 113.9, 110.8, 109.7, 70.7, 8.9; 

HRMS (ESI+) m/z: [M + H]+ calcd for C17H16NO2, 266.1181; found, 266.1183. 

 

119 

4-((6-Bromo-1-methylnaphthalen-2-yl)oxy)-1-methylpiperidine (119): 

Diisopropylazodicarboxylate (1.29 mL, 6.67 mmol) was added to a solution of 1-

methylpiperidin-4-ol (768 mg, 6.67 mmol), phenol 118201 (790 mg, 3.33 mmol) and 

triphenylphosphine (1.75 g, 6.67 mmol) in anhydrous THF (33.0 mL). After 2 h, the solvent was 

removed and the residue was purified via column chromatography (SiO2, 10:1 CH2Cl2:MeOH) to 

afford compound 119 as a yellow amorphous solid (1.11 g, 99%): 1H NMR (CDCl3, 500 MHz) � 
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7.94 (dd, J = 5.0, 2.0 Hz, 1H), 7.82 (dd, J = 9.0, 5.0 Hz, 1H), 7.62–7.55 (m, 2H), 7.25 (dd, J = 

9.0, 5.0 Hz, 1H), 4.51 (bs, 1H), 2.89 (bs, 2H), 2.66 (s, 2H), 2.58 (s, 3H), 2.49 (bs, 2H), 2.20 (s, 

3H), 2.03 (bs, 2H); 13C NMR (CDCl3, 125 MHz) � 152.4, 132.4, 130.5, 130.1, 129.3, 126.2, 

125.5, 121.7, 118.0, 117.4, 73.6, 52.6 (2C), 46.1, 31.1 (2C), 11.1; HRMS (ESI+) m/z: [M + Na]+ 

calcd for C17H20BrNNaO, 356.0626; found, 356.0612. 

 

120 

N-(4-methoxybenzyl)-5-methyl-6-((1-methylpiperidin-4-yl)oxy)naphthalen-2-amine (120): 

A solution of Xantphos (4.0 mg, 0.0064 mmol) and tris(dibenzylideneacetone)dipalladium (6.0 

mg, 0.0064 mmol) in anhydrous toluene (0.17 mL) was stirred at rt. After several minutes, 

naphthalene 119 (43 mg, 0.13 mmol), (4-methoxyphenyl)methanamine (18 μL, 0.14 mmol), 

sodium tert-butoxide (17.0 mg, 0.18 mmol), and an additional portion of anhydrous toluene (0.17 

mL) were added, and the solution was heated at reflux for 12 h. Once cool, water (20 mL) was 

added and the solution was extracted with EtOAc (3 x 20 mL), then dried (Na2SO4), filtered, and 

concentrated. The residue was purified via column chromatography (SiO2, 20:1 → 10:1, 

CH2Cl2:MeOH) to afford compound 120 as a yellow amorphous solid (45 mg, 99%): 1H NMR 

(CDCl3, 400 MHz) � 7.78 (d, J = 9.2 Hz, 1H), 7.45 (d, J = 8.8 Hz, 1H), 7.35 (d, J = 8.4 Hz, 1H), 

7.14 (d, J = 9.2 Hz, 1H), 6.97 (dd, J = 8.8, 2.4 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.85 (d, J = 2.0 

Hz, 1H), 4.37 (s, 2H), 4.26 (bs, 1H), 3.83 (s, 3H), 2.79 (bs, 2H), 2.61 (s, 3H), 2.54 (s, 3H), 2.36 

(bs, 5H), 1.96–1.91 (bs, 4H); 13C NMR (CDCl3, 125 MHz) � 158.9, 149.6, 144.3, 133.9, 131.3, 

131.2, 129.5, 129.4, 128.9, 127.6, 125.0, 124.8, 123.7, 118.1, 114.1 (2C), 105.6, 55.3, 53.8, 52.7, 
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48.0, 46.0, 31.1, 31.0, 11.3; HRMS (ESI+) m/z: [M + H]+ calcd for C25H31N2O2, 391.2386; 

found, 391.2326. 

 

121 

6-Bromo-2-(methoxymethoxy)-1-methylnaphthalene (121): N,N-diisopropylethylamine 

(2.90 mL, 16.9 mmol) was slowly added to phenol 118 (1.0 g, 4.22 mmol) in anhydrous N,N-

dimethylformamide (14.0 mL) over 5 min at rt. After 30 min, the solution was cooled to 0°C and 

chloromethyl methyl ether (2.8 mL, 16.9 mmol) was added and the mixture warmed to rt over 12 

h. The reaction was quenched by the addition of saturated aqueous NH4Cl solution and extracted 

with EtOAc (3 × 30 mL). The combined organic fractions were washed with saturated aqueous 

NaCl, dried (Na2SO4), filtered, and concentrated. The residue was purified via column 

chromatography (SiO2, 50:1 Hexane:EtOAc → 100% EtOAc) to give 121 as a colorless 

amorphous solid (871 mg, 74%): 1H NMR (CDCl3, 500 MHz) � 7.86 (d, J = 2.0 Hz, 1H), 7.75 

(d, J = 9.0 Hz, 1H), 7.53–7.46 (m, 2H), 7.33 (d, J = 9.0 Hz, 1H), 5.21 (s, 2H), 3.47 (s, 3H), 2.49 

(s, 3H); 13C NMR (CDCl3, 125 MHz) � 152.4, 132.2, 130.8, 130.2, 129.3, 126.3, 125.6, 121.0, 

117.7, 117.6, 95.5, 56.3, 10.9; HRMS (ESI+) m/z: [M + Na]+ calcd for C13H13BrNaO2, 302.9997; 

found, 303.0040. 

 

122 

6-(Methoxymethoxy)-5-methylnaphthalen-2-amine (122): Trimethylsilyl azide (0.10 mL, 

0.79 mmol) was added to a solution of 121 (110 mg, 0.39 mmol), copper (50 mg, 0.79 mmol), 
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and ethanolamine (59 μL, 0.99 mmol) in dimethylacetamide (0.79 mL), then heated to 95oC for 

12 h. Once cool, the solution was extracted with EtOAc (3 x 30 mL), washing with water, 

saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue was purified via 

column chromatography (SiO2, 5:1 Hexane:EtOAc) to give 122 as a red oil (66.0 mg, 77%): 1H 

NMR (CDCl3, 500 MHz) � 7.82 (d, J = 6.8 Hz, 1H), 7.47 (d, J = 7.2 Hz, 1H), 7.30 (d, J = 9.2 

Hz, 1H), 7.01 (d, J = 8.8 Hz, 2H), 5.24 (s, 2H), 3.78 (bs, 2H), 3.57 (s, 3H), 2.56 (s, 3H); 13C 

NMR (CDCl3, 125 MHz) � 150.0, 142.4, 131.3, 128.0, 125.0 (2C), 121.3, 118.6, 118.1, 109.5, 

96.2, 56.2, 11.0; HRMS (ESI+) m/z: [M + H]+ calcd for C13H16NO2, 218.1181; found, 218.1163. 

 

123 

3',6-Dimethoxy-N-(6-(methoxymethoxy)-5-methylnaphthalen-2-yl)-[1,1'-biphenyl]-3-

carboxamide (123): EDCI (180 mg, 0.94 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid 

(194 mg, 0.75 mmol) were added to aniline 122 (81 mg, 0.37 mmol) in 30% pyridine/CH2Cl2 

(5.60 mL). After 12 h, the solvent was concentrated and the residue purified via column 

chromatography (SiO2, 5:1 → 3:1 Hexane:EtOAc) to afford 123 as a colorless amorphous solid 

(158 mg, 92%): 1H NMR (CDCl3, 400 MHz) � 8.29 (s, 1H), 8.00–7.96 (m, 2H), 7.91 (s, 1H), 

7.88 (d, J = 2.0 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.63 (dd, J = 9.2, 2.0 Hz, 1H), 7.42 (t, J = 8.0 

Hz, 2H), 7.13–7.10 (m, 2H), 7.11 (d, J = 8.8 Hz, 1H), 6.96 (dd, J = 8.0, 2.4 Hz, 1H), 5.30 (s, 

2H), 3.93 (s, 3H), 3.89 (s, 3H), 3.57 (s, 3H), 2.61 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 165.2, 

159.4 (2C), 151.8, 138.9, 133.9, 130.9, 130.7, 130.1, 129.5, 129.2, 128.4, 127.2, 126.9, 124.7, 
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122.0, 120.9, 120.3, 117.7, 117.5, 115.3, 113.0, 111.1, 95.7, 56.3, 55.9, 55.4, 10.9; HRMS (ESI+) 

m/z: [M + H]+ calcd for C28H28NO5, 458.1967; found, 458.1986. 

 

124 

4-((6-(Methoxymethoxy)-5-methylnaphthalen-2-yl)carbamoyl)-2-(3-methylbut-2-en-1-

yl)phenyl acetate (124): EDCI (146 mg, 0.76 mmol) and 4-acetoxy-3-(3-methylbut-2-en-1-

yl)benzoic acid (152 mg, 0.61 mmol) were added to aniline 122 (66 mg, 0.31 mmol) in 30% 

pyridine/CH2Cl2 (4.60 mL). After 12 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 6:1 Hexane:EtOAc) to afford 124 as a colorless amorphous solid 

(92.0 mg, 67%): 1H NMR (CDCl3, 400 MHz) � 8.28 (s, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.88 (s, 

1H), 7.83 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.60 (d, J = 9.2 Hz, 1H), 

7.41 (d, J = 9.2 Hz, 1H), 7.19 (d, J = 8.4 Hz, 1H), 5.30 (s, 2H), 5.27 (s, 1H), 3.58 (s, 3H), 3.34 

(d, J = 6.8 Hz, 2H), 2.61 (s, 3H), 2.37 (s, 3H), 1.78 (s, 3H), 1.75 (s, 3H); 13C NMR (CDCl3, 125 

MHz) � 169.1, 165.3, 151.8, 151.6, 134.6, 134.1, 133.6, 133.0, 131.0, 130.1, 129.4, 127.0, 125.6, 

124.7, 122.7, 120.9, 120.8, 120.2, 117.7, 117.6, 95.7, 56.3, 29.3, 25.8, 20.9, 17.9, 10.9; HRMS 

(ESI+) m/z: [M + Na]+ calcd for C27H29NNaO5, 470.1943; found, 470.1937. 

 

125 
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N-(6-Hydroxy-5-methylnaphthalen-2-yl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide 

(125): A solution of 123 (30.0 mg, 0.066 mmol) in MeOH (0.70 mL) at rt was treated dropwise 

with 3M HCl (0.18 mL, 0.53 mmol), then heated to reflux for 1 h. Water (15 mL) was added and 

the solution was extracted with EtOAc (3 × 20 mL). Combined organic fractions were washed 

with saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated to afford 125 as gray 

amorphous solid (30 mg, 99%): 1H NMR (CDCl3, 400 MHz) � 8.24 (s, 1H), 7.98 (dd, J = 8.8, 

2.4 Hz, 1H), 7.92 (s, 1H), 7.90–7.88 (m, 2H), 7.61–7.58 (m, 2H), 7.39 (t, J = 8.0 Hz, 1H), 7.16 

(d, J = 8.0 Hz, 1H), 7.13 (t, J = 2.0 Hz, 1H), 7.09 (t, J = 8.4 Hz, 2H), 6.97–6.94 (m, 1H), 5.05 

(bs, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 2.54 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 164.3, 158.3, 

149.1, 137.8, 132.1, 130.5, 130.1, 129.8, 129.7, 128.5, 128.4, 128.2, 127.4, 126.1, 123.1, 121.0, 

119.6, 117.4, 117.1, 114.4, 114.3, 112.0, 110.1, 54.8, 54.3, 9.5; HRMS (ESI+) m/z: [M + Na]+ 

calcd for C26H23NNaO4, 436.1525; found, 436.1515. 

 

VII. Common biological evaluation procedures: 

A. Anti-proliferation assays 

Cells were maintained in a 1:1 mixture of Advanced DMEM/F12 (Gibco) supplemented with 

non-essential amino acids, L-glutamine (2 mM), streptomycin (500 μg/mL), penicillin (100 

units/mL), and 10% FBS. Cells were grown to confluence in a humidified atmosphere (37° C, 

5% CO2), seeded (2000/well, 100 μL) in 96-well plates, and allowed to attaché overnight. 

Compound or GDA at varying concentrations in DMSO (1% DMSO final concentration) was 

added, and cells were returned to the incubator for 72 h. At 72 h, the number of viable cells was 
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determined using an MTS/PMS cell proliferation kit (Promega) per the manufacturer’s 

instructions. Cells incubated in 1% DMSO were used at 100% proliferation, and values were 

adjusted accordingly. IC50 values were calculated from separate experiments performed in 

triplicate using GraphPad Prism. 

 

B. Western blot analyses 

MCF-7 cells were cultured as described above and treated with various concentrations of drug, 

GDA in DMSO (1% DMSO final concentration), or vehicle (DMSO) for 24 h. Cells were 

harvested in cold PBS and lysed in RIPA lysis buffer containing 1 mM PMSF, 2 mM sodium 

orthovanadate, and protease inhibitors on ice for 1 h. Lysates were clarified at 14000g for 10 min 

at 4° C. Protein concentrations were determined using the Pierce BCA protein assay kit per the 

manufacturer’s instructions. Equal amounts of protein (20 μg) were electrophoresed under 

reducing conditions, transferred to a nitrocellulose membrane, and immunoblotted with the 

corresponding specific antibodies. Membranes were incubated with an appropriate horseradish 

peroxidase-labeled secondary antibody, developed with a chemiluminescent substrate, and 

visualized. 
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Chapter III 

Examination of the Sugar Appendage on Novobiocin 

 

I. Introduction 

Although many novobiocin analogues have been synthesized, the noviose sugar requires 

the most synthetic steps, as the assembly of this complex pyranose is not trivial. Even the most 

efficient syntheses of noviose require more than 10 synthetic procedures, and the overall yield is 

less than desirable.237 It was proposed that while the sugar moiety plays a critical role in the 

presentation of binding interactions to Hsp90, not all functionalities of the complex sugar are 

essential.15,18 To further elucidate structure–activity relationships and identify key interactions, 

while simplifying the overall inhibitor synthesis, a library of sugar and non-sugar analogues was 

prepared.  

Simplified sugars and related azasugars were designed to conserve structural motifs 

present in noviose, while allowing identification of essential interactions with the putative 

binding pocket. These analogues were designed to probe potential hydrogen bonds as well as to 

identify spatial constraints. In addition to these simplified or modified sugars, alternative groups 

were explored at the 7-position of the coumarin ring wherein noviose is typically attached. These 

non-sugar analogues incorporate heteroatoms alongside steric bulk, to probe both the hydrogen 

bonding capabilities and pocket dimensions, respectively. Exploration of these diverse 

compounds provides the opportunity to simplify the novobiocin scaffold, while maintaining or 

improving solubility, absorption and activity.238-240 Identification of a simplified noviose 

surrogate will enable the expeditious synthesis of novobiocin-derived Hsp90 inhibitors. 
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II. Identification of KU135 (128a) as a potential lead 

A. 7-Acetyl Analogues 

 A series of analogues derived from the initial coumarin study was designed to probe the 

tolerance of the sugar binding pocket for non-sugar moieties. Rather than substituting the 

noviose sugar for another complex sugar or similar surrogate, an acetyl group was installed at the 

7-position of the coumarin ring. It was proposed that an acetylated phenol would be capable of 

participating in hydrogen bonding, but lack complexity of the noviose. 

 

1. Syntheses of 5-, 6-, and 8-alkyl(oxy) 7-acetyl novobiocin analogues 

 Preparation of the previously described acetylated compounds is outlined in Scheme 40. 

Coumarin phenols 23a–g were treated with acetic anhydride in pyridine to furnish acetylated 

scaffolds 127a–g. Next, the benzyl carbamate was removed via hydrogenolysis to produce the 

corresponding aminocoumarin, which was readily coupled with biaryl acid 27 in the presence of 

EDCI and pyridine. 

 

Scheme 40. Synthesis of 7-acetyl biaryl analogues.194 
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2. Biological evaluation of 5-, 6-, and 8-alkyl(oxy) 7-acetyl novobiocin analogues 

Upon construction of this library of acetylated novobiocin analogues, the compounds 

were evaluated for anti-proliferative activity against SKBr3 and MCF-7 breast cell lines. As 

shown in Table 3, the binding pocket was very exclusive, only tolerating specific modifications 

to the coumarin ring system. With respect to the 6-position, groups larger than a methoxy group 

were not tolerated when the 7-position is acetylated. The 6-methoxy 7-acetyl compound 128a 

(KU135) manifested notable activity, representing the most active compound from the study and 

a 10-fold improved potency over its noviosylated counterpart (26a). Although its activity was 

modest, the 5-position analogue showed some selectivity for SKBr3 cells over MCF-7 cells. This 

difference in activity could be the result of isoform selectivity, but would require further studies 

to confirm this hypothesis. Finally, like with the 6-position analogues, the 8-position was only 

tolerant of the methoxy group, as all other groups resulted in completely inactive compounds. 

The SAR trends observed are consistent with the noviosylated scaffolds, implying that binding 

orientation may not be perturbed.  

 

Table 3. Anti-proliferative activities of 7-acetyl biaryl analogues.  

Compound    R2 R3 R4 SKBr3           

(IC50, μM) 

MCF-7            

(IC50, μM) 

128a H OMe Me 5.72 ± 0.03a 1.5 ± 0.3 

128b H OPr Me >100 >100 

128c H OiPr Me >100 >100 

128d OMe H Me 48.0 ± 0.4 >100 
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128e H H Bn >100 >100 

128f H H Ph >100 1.79 ± 0.7 

128g H H OMe 20.5 ± 1.6 8.62 ± 2.5 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 

 

Figure 40. Western blot analyses of Hsp90 client protein degradation assays against MCF-7 cells 

after 48 h incubation with 128a. Concentrations (in μM) of 128a (KU135) are indicated above 

each lane. GDA (geldanamycin, 500 nM) and DMSO were respectively employed as positive 

and negative controls.241 

 
As the 6-methoxy containing compound was the most intriguing, it was taken on into 

subsequent studies. To confirm that the observed anti-proliferative activities exhibited by 128a 

(KU135) results from Hsp90 inhibition, it was evaluated through Western blot analyses in MCF-

7 cells by a co-worker in the laboratory. As seen in Figure 40, the ability of 128a to induce 

degradation of Hsp90-dependent client proteins Akt and Her2 in a concentration-dependent 

manner was confirmed. Moreover, this degradation correlates well with the observed anti-

proliferative IC50 value of 1.5 μM against MCF-7 cells, clearly linking Hsp90 inhibition to cell 

viability. In addition, Hsp70 levels remained constant at all concentrations tested, which is a 

hallmark of C-terminal Hsp90 inhibition and in contrast to the induction observed upon 

treatment with N-terminal inhibitors. Finally, since actin, a non-Hsp90-dependent protein, is not 
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affected by this compound, anti-proliferative activity correlates directly with Hsp90-client 

protein degradation. 

 

3. Novobiocin versus 128a 

 Confirmation that the anti-proliferative activity of 128a was due to Hsp90 inhibition, 

generated interest in pursuing other simplified sugars. Although the binding model was not in 

existence at the onset of this project, 128a has since been docked into the Hsp90α model.192 The 

conformation exhibited by novobiocin versus that which 128a adopts is shown in Figure 41. 

Although the two compounds assume similar orientations within the binding pocket, the 

simplified acetyl group allows 128a to fit much deeper into the cleft where the noviose portion of 

novobiocin extends. Due to this shift, it is perceived that many important interactions with the 

coumarin and benzamide portions may be sacrificed. 

 

Figure 41. Novobiocin versus 128a bound to Hsp90α model. 
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 It was proposed that 128a may exert its anti-Hsp90 through a distinct mechanism, 

potentially involving acetylation of a key residue on Hsp90. Studies using 14C-labeled 128a, and 

incorporation of the 14C within the acetyl group, to examine potential Hsp90 acetylation through 

2D-gel electrophoresis and subsequent mass spectrometry are under investigation. Although 

these studies have not been executed, a synthetic variant of 128a was designed to probe the 

specific mechanism by which 128a inhibits Hsp90. 

 

B. 7-homologated analogue of 128a 

 To explore the possibility that 128a was not exhibiting its activity due to acetylation, but 

rather was making important interactions and binding in the pocket much like other novobiocin 

analogues, several congeners were designed. The first 128a analogue was designed to add a 

single methylene unit between the coumarin 7-position and the oxygen to which the acetyl group 

would be attached. This derivative would reduce the lability of the acetyl group and could 

potentially extend the group back into the sugar binding region, allowing the analogue to adopt a 

similar binding orientation as other novobiocin analogues. 

 

1. Synthesis of 7-alcohol-containing coumarin 

 Attempted synthesis of the desired coumarin scaffold is shown in Scheme 41. Starting 

from benzaldehyde 129, a known procedure was followed to install the chloromethyl group using 

formaldehyde, zinc (II) chloride and bubbling HCl gas. Formation of the undesired regioisomer, 

due to installation of the chloromethyl group at both positions ortho to the methoxy group, 

explains the ~50% yield.242 Next, calcium carbonate in aqueous medium was used to displace the 
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benzyl chloride and install the desired benzyl alcohol functionality. Benzaldehyde 131 was next 

converted, to phenol 132 using Dakin oxidation conditions in good yield. An attempt to cyclize 

intermediate 132 using a modified Pechmann condensation led to formation of an undesired side 

product, caused by transesterification of the benzyl alcohol. Although this reaction is reversible, 

the desired product was not formed. It was proposed that oxidation directly to the corresponding 

acid would eliminate the potential for the competing reaction in coumarin ring formation. Thus, 

two oxidation conditions were employed, but neither yielded the desired product. Likewise, 

attempted oxidation to the corresponding aldehydes using Dess Martin periodinane was not 

fruitful. It is proposed that hydrogen bonding between the methoxy and alcohol groups may lock 

this system into a stable six-membered hydrogen-bonding ring, making it unreactive to typical 

oxidation conditions. Alternative routes toward this important analogue were sought. 

 

Scheme 41. Attempts to homologate the 7-position of 6-methoxy coumarin scaffold. 
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Scheme 42. Other efforts to homologate the 7-position of 6-methoxy coumarin scaffold. 

Other strategies to install the desired functionality at the 7-position are outlined in 

Scheme 42. Starting from phenol 133, a modified Pechmann condensation was attempted to 

construct a coumarin lacking functionality at the 7-position. Although it was envisioned that this 

coumarin ring, 134, could then be functionalized to install the chloromethyl group, an attempt to 

do so did not lead to desired product. As part of an alternative strategy, hydroquinone 135 was 

converted to methyl ester 136 using a known procedure.243 Next, exclusively one phenol was 

protected as the methoxy methyl ether. Phenol 137 was next methylated and the crude 

intermediate was taken on to hydrolysis, furnishing carboxylic acid 138 in good yield over three 

steps. Next, ortho-lithiation conditions were employed to install the requisite methyl group 
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between the directing MOM group and acid. Several attempts using different organolithium 

bases, with and without the addition of TMEDA, were unsuccessful. Although efforts to make 

this homologated coumarin did not continue, it is perceived that this compound would be 

instrumental in understanding the unique activity exhibited by analogue 128a. 

 

C. Excision of 7-position oxygen 

 As another strategy to explore the activity exhibited by 128a, analogues that lack the 7-

position oxygen were proposed. While the carbonyl oxygen would still be available for hydrogen 

bonding, these proposed analogues would not contain a labile acetyl. Thus, simple 7-ester and 7-

acid analogues of 8-methyl coumarins were constructed. 

 

1. Synthesis of 7-ester and 7-acid coumarins 

 Starting from acid 139, modified Pechmann condensation conditions were employed to 

produce coumarin 140 (Scheme 43). Due to difficulty in isolation and purification, this coumarin 

was taken on crude to functionalization attempts. Esterification of the 7-position acid proceeded 

with partial cleavage of the benzyl carbamate in situ, to yield aminocoumarin 142. Alternatively, 

the benzyl carbamate was cleaved prior to esterification, to afford esterified coumarin 142 in 

better yield than observed using the former strategy. Aminocoumarin 142 was next coupled with 

biaryl acid 27 in the presence of EDCI to afford ester 143. While some of ester 143 could be 

isolated, separation from the biproduct formed due to self condensation of the acid was difficult. 

Purification was eased greatly by hydrolysis to acid-containing coumarin, 144. Upon preparation, 

both coumarins 143 and 144 were subjected to anti-proliferation assays. 



 203 

 

Scheme 43. Synthesis of 7-position analogues. 

2. Biological evaluation of analogues 143 and 144 

 Upon construction of compounds lacking the 7-position oxygen linkage, they were 

evaluated for anti-proliferative activity against SKBr3 and MCF-7 breast cancer cell lines. While 

free acid 144 proved inactive against both cell lines, ester 143 showed specificity for one cell 

line, exhibiting an IC50 of 9.39 ± 0.31 μM against MCF-7 cells and proving inactive against 

SKBr3 cells. Thus, while the acid is not tolerated, potentially due to solubility issues, the ester 

demonstrates modest, and potentially isoform-specific, activity. However, neither is as active as 

128a and this oxygen linkage may be important to its observed potency. Moreover, these 

analogues do not discount the possibility of acetylation as the mechanism through which 128a 

exerts its activity. Further studies into the mechanism of 128a are discussed in the next chapter. 

 

III. Survey of potential sugar surrogates on simple coumarin 

Because of the novel and exciting activity of 128a, it was proposed that complementary 

analogues, built upon an optimized novobiocin scaffold, could lead to more efficacious 
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compounds. Because it has been extensively studied and prepared in relatively few steps, the 8-

methyl coumarin scaffold outfitted with the biaryl benzamide side chain, as is found in 

compound 59, was selected as the scaffold upon which to append various sugar replacements 

(Figure 42). The design and synthesis of these non-sugar analogues are discussed in the 

following sections, as well as the anti-proliferative activities manifested by such compounds.194 

 

Figure 42. Summary of sugar surrogate strategy.194 

A. Design of sugar analogues of novobiocin 

To extend upon our knowledge of 128a and its SAR, several simplified non-sugar 

moieties were appended to the 7-position of the coumarin ring. Chemistry developed by our lab 

was used to construct the coumarin core and attach the desired biaryl benzamide side chain, 

while acetylation protected the phenol until subsequent modification.170 Phenol 148 was chosen 

as the scaffold upon which to build these analogues, because of its expeditious synthesis and to 

explore whether the activity of 128a can be further attenuated.102 Most analogues were designed 

with a sugar replacement that maintained interactions proposed to be manifested by noviose. In 

addition to probing the dimensions and electronic environment, functionalities that exhibit 

improved solubility profiles were incorporated. Denoviosylated phenol 148, which lacks the 

sugar functionality and corresponds to a potential metabolite upon cleavage of the glycosidic 

bond, was also evaluated. Many bioactive natural products bearing carbohydrates are often 
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rendered inactive upon removal of their sugar moieties.244-249 However, Le Bras and co-workers 

recently reported that disruption of the Hps90 heteroprotein complexes occurs by a compound 

bearing a free phenol at the 7-position of a novobiocin-derived scaffold.105 Although this 

compound did not demonstrate remarkable activity, it was notable that it maintained Hsp90 

inhibition despite removal of noviose.194 

 

Scheme 44. Synthesis of phenol 148 and non-sugar analogues 149–151.102,170,194 
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1. Synthesis of derivatives with sugar replacement 

Previously reported coumarin 145 was acetylated, and then the benzyl carbamate was 

cleaved and the aminocoumarin was coupled to biaryl acid chloride 157, prepared from biaryl 

acid 27, in good yield (Scheme 44).102,170 For direct comparison to 128a, acetylated scaffold 147 

was also evaluated. Next, 147 was hydrolyzed to phenol 148, which acted as the precursor used 

in all subsequent coupling reactions. A methylated carbamate was chosen to compliment the size 

of the acetate group, while providing additional stability, as carbamates are not readily cleaved in 

vivo. The methylated carbamate was installed on phenol 148 via the carbamoyl chloride to 

further probe dimensions of the pocket. Methyl and toluene sulfonic esters were also appended to 

the 7-position to explore both hydrogen bonding interactions, while simultaneously probing 

pocket dimensions. It was envisioned that the sulfonic ester is capable of participating as a 

hydrogen bond acceptor, while the alkyl/aryl appendages probe the ability of the pocket to 

encapsulate hydrophobic bulk. Moreover, the 7-tolylsulfonate ester has been shown by the 

Renoir group to maintain Hsp90 inhibition and demonstrate modest potency when attached to a 

novobiocin-derived scaffold.106 The desired functional group was installed onto the 7-phenol 

using the requisite sulfonyl chloride, in the presence of pyridine.194 

While the planar aromatic tolyl group offers a rigid six-membered ring, the pyranose of 

noviose represents a flexible ring system. Thus, heterocyclic six-membered rings were 

investigated to serve as simplified mimics of noviose. Substituted piperidines were synthesized 

by a co-worker as simplified azasugars to probe essential substituents on the noviose ring. 

Azasugars were selected due to the prevalence of N-heterocycles in a wide variety of bioactive 

compounds with diverse therapeutic applications.250-252 An unsubstituted 3-piperidine (153) 

represents an aza-surrogate to probe essential hydrogen bonds, such as those potentially made by 
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the noviose diol. In contrast, the acetylated 3-piperidine (154), while still capable of maintaining 

hydrogen bonds, introduces steric bulk. It is proposed that this acetylated amine, which 

introduces bulk into the gem-dimethyl region on noviose, should be tolerated. Finally, a 

methylated 4-piperidine (154) was introduced to replace the sugar. The methylated amine was 

introduced to project this moiety into the same cavity as the 4’-methoxy group on noviose. 

Synthesis of the piperidine-containing analogues shown in Figure 43 was accomplished using 

Mitsunobu conditions.194  

 

Figure 43. Structures of piperidine-containing analogues.194 

In addition to the piperidines, simplified pyranoses were appended in lieu of noviose. 

Pyranoses are attached to several clinically prescribed anticancer drugs, such as bleomycin, 

doxorubicin and etoposide, in addition to novobiocin.253 The simple 2- and 3-hydroxy pyranoses 

were chosen as each could maintain similar hydrogen bonds as found in noviose. Through 

systematic removal of each hydroxyl, identification of which hydroxy group is essential could be 

ascertained. Once attached, the α anomer of each of the pyranoses was evaluated (156 and 157), 

as this is the anomer present in novobiocin.254,255 Finally, a syn-diol-containing cyclohexane was 

chosen as the final non-sugar moiety (158). This sugar alternative maintains the diol of noviose, 
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but does not contain the labile hemi-acetal linkage. These final pyranose- and cyclohexyl-

containing analogues, shown in Figure 44, were prepared by colleagues using Mitsunobu 

conditions.194 

 

Figure 44. Structures of pyranose- and cyclohexyl-containing analogues.194 

2. Biological evaluation of sugar analogues of 59 

Upon construction of the non-sugar and modified sugar analogues of novobiocin, the 

compounds were evaluated for anti-proliferative activity against SKBr3 and MCF-7 breast 

cancer cells. Compounds with an asymmetric center were tested as a mixture of compounds to 

explore general trends in activity, with plans to resolve the two compounds and test them 

individually if promising results were obtained. Results of these assays are presented in Table 4, 

along with values for acetylated 128a and noviosylated 59 as comparisons.194 
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Table 4. Anti-proliferative activities of non-sugar and modified sugar analogues.194 

Compound R R1 SKBr3                  

(IC50, μM) 

MCF-7             

(IC50, μM) 

128a OMe Ac 5.72 1.50 ± 0.3 

59 H Noviose 7.50 ± 1.0 18.70 ± 1.8 

147 H Ac 0.98 1.40 ± 0.0 

148 H H 8.88 ± 0.6 6.93 ± 0.6 

149 H Me carbamate 2.40 ± 0.2 1.72 ± 0.2 

150 H Ms 7.33 ± 1.2 8.85 ± 1.1 

151 H Ts >100 >100 

153 H 3-NH piperidine 1.16 ± 0.2 1.63 ± 0.4 

154 H 3-NAc piperidine 10.79 ± 0.1 9.18 ± 0.8 

155 H 4-NMe piperidine 1.34 ± 0.2 1.51 ± 0.3 

156 H 2’-OH pyranose >100 >100 

157 H 3’-OH pyranose 9.28 ± 0.1 11.20 ± 0.6 

158 H Cyclohexyl diol >100 >100 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 

 

Upon examination of the non-sugar analogues, some interesting trends were observed. 

Despite complete excision of the noviose sugar, the free phenol 148 demonstrated comparable 

activity to the corresponding noviosylated scaffold (59). Also, the acetylated and methylated 

carbamate scaffolds, 147 and 149, respectively, demonstrated comparable activity to 128a, and 

the latter represents an exciting analogue that maintains activity without the labile acetate group. 
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While the methyl sulfonic ester 150 maintained similar activity to its noviosylated counterpart, 

the toluene sulfonic ester 151 was inactive, indicating the toluene-containing compound 

exceeded the limits tolerated by the binding pocket. 

 Much like the non-sugar analogues, the piperidine scaffolds manifested a broad range of 

activities. While the unsubstituted 3-piperidine 153 demonstrated low-micromolar activity, 

acetylation (154) compromised its activity. Transposition of the amine to the 4-position and 

subsequent methylation (155) returned low-micromolar activity. The various hydroxylated 

pyranoses demonstrated intriguing activity. While the 3’-hydroxylated pyranose 157 maintained 

the activity of noviosylated 59, the 2’-hydroxylated pyranose 156 was completely inactive. 

Similarly, the syn-diol-containing cyclohexane 158 did not display measurable activity in the 

anti-proliferation assay, indicating a hydrogen-bond acceptor adjacent to the phenolic oxygen is 

needed. 

The SAR trends observed for the non-sugar analogues offer insight into the nature of the 

binding pocket. As mentioned previously, sugars are known to play important roles in both 

solubility and transport.254,255 The potency of compounds containing a hydrogen bond donor, 

such as the carbamate and unsubstituted piperidine, affirms the need for hydrogen bonds with the 

pocket. Furthermore, activity of the 3-piperidine correlates well with the data from the set of 

pyranoses, supporting an essential hydrogen bond donor at the 3-position of the ring, while a 

hydrogen-bond at the 2-position is dispensable. In contrast, it appears that within this hydrogen 

bonding network, a simple syn-diol cyclohexane system cannot take advantage of such 

interactions, suggesting an essential role of the hemi-acetal linkage made by the pyranose 

systems. It is possible that the endocyclic oxygen of the pyranose ring provides interactions with 

the binding pocket that properly orients the hydroxy groups. Another important observation from 
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this series of sugar mimics is that steric bulk is selectively tolerated. When comparing the 

methylated 4-piperidine and acetylated 3-piperidine, it becomes clear that bulk is much better 

tolerated at the 4-position than the 3-position. Moreover, when comparing the methyl and 

toluene sulfonic ester, the methyl-containing compound, despite its poor solubility, maintains 

activity, while the corresponding toluene derivative does not. SAR for this series of compounds 

is summarized in Figure 45.  

 

Figure 45. SAR summary for non-sugar analogues. 

To confirm that the anti-proliferative activities exhibited by the sugar and non-sugar 

analogues result from Hsp90 inhibition, analogues 149 and 155 were evaluated by Western blot 

analyses. It was essential that these analogues demonstrate selective Hsp90-dependent client 

protein degradation, versus a loading control. Figure 46 shows that in MCF-7 cells, the Hsp90-

dependent client proteins Akt, Raf, and Her2 were degraded in a concentration-dependent 

manner upon treatment with the compounds. Hsp90 client protein degradation occurred at 

concentrations that paralleled the observed anti-proliferative IC50 values of 1.72 ± 0.2 μM, for 

149, and 1.51 ± 0.30 μM, for 155, confirming that Hsp90-dependent client protein degradation is 

causative for inhibition of cell growth. Moreover, Hsp90 remained constant at all concentrations 

tested, which is a hallmark of C-terminal Hsp90 inhibition. Since the non-Hsp90-dependent 
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protein, actin, was not affected by these analogues, selective degradation of Hsp90-dependent 

proteins occurred directly through Hsp90 inhibition.  

 

 

Figure 46. Western blot analyses of Hsp90 client protein degradation assays against MCF-7 cells 

after 24 hours incubation with non-sugar analogues. Concentrations (in μM) of 149 (top blot) and 

155 (lower blot) are indicated above each lane. GDA (geldanamycin, 500 nM) and DMSO were 

respectively employed as positive and negative controls. 
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The studies described sought to elucidate the potential role of the noviose sugar in the 

binding of novobiocin-derived compounds to Hsp90. SAR for the noviose appendage has been 

presented and important interactions highlighted. Essential interactions, which can be maintained 

by simplified scaffolds, as well as those that are dispensable were identified. In addition, the 

steric environment into which the sugar is presented was explored and insight was gained into 

which groups are best tolerated. Small changes in substitution resulted in significant changes in 

activity, reflecting a sensitive steric environment within this binding pocket. Capitalization on 

key interactions and steric bulk resulted in the preparation of several low-micromolar Hsp90 

inhibitors that exhibit improved activity versus the parent noviosylated compounds and lack 

complexity. The analogues described benefit from facile preparation, and offer the potential for 

the more efficient synthesis of Hsp90 C-terminal inhibitors. 

 

IV. Survey of potential sugar surrogates on optimized coumarin scaffolds 

A. Molecular modeling 

 Since completion of the study in Section II, development of the Hsp90α model has 

enabled a better understanding of how noviosylated compounds bind the C-terminal site. 

Moreover, through docking of compounds similar to 59, the SAR trends have been confirmed 

and can be rationalized.  
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1. Specific interactions made by the sugar of 59 

 Since it represented the basis for comparison of the compounds described in Section II, 

key interactions made by noviose when 59 is docked into the model were examined. As seen in 

Figure 47, the noviose sugar sits in a hydrogen bond rich portion of the binding pocket, flanked 

by several polar amino acids. Key interactions are made with several residues from each of the 

two monomers that make up the Hsp90α homodimer. Hydrogen bonds are proposed between 

Thr-540 and the 2’-OH of the noviose ring system. The secondary alcohol on the threonine side 

chain is within 4 Å of two potential hydrogen bonds, involving the oxygen and hydrogen of the 

2’-OH on the noviose sugar. Likewise, it is proposed that the nitrogen from the Asn-686 amide 

backbone hydrogen bonds to the 2’- and 3’-hydroxyls. This aspartic acid residue offers a 

hydrogen bond acceptor, capable of interacting with the proton on each of these two hydroxyl 

groups as well. 

 

Figure 47. 59 bound to the model. 

Moreover, Gln-682 is another polar residue that provides several hydrogen bonds with 

the pyranose system. Like with the previously discussed aspartic acid residue, the amide 
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backbone nitrogen of the glutamine residue is within distance to elicit hydrogen bonds with the 

hydrogens of the 4’-methoxy group. In addition, the adjacent amide carbonyl can act as a 

hydrogen bond acceptor. The gem-dimethyl group on the noviose ring appears to interact with 

Pro-596 at the top of the pocket. 

These key hydrogen bonds made between noviose and the putative binding pocket 

correlate well with the SAR trends determined through the study in Section II (Figure 45). 

Although the orientation may be slightly altered when the non-sugar derivatives bind, several 

trends are explained by this model. Firstly, the highly charged nature of this pocket would likely 

favor the incorporation of a heterocycle. Next, the analogues in the prior section including the 

simplified pyranose systems, which revealed the 2’-OH to be dispensable, are likely to bind in a 

different orientation because they lack the bulky gem-dimethyl functionality. This slightly altered 

or potentially flipped conformation would not allow the 2’-OH to make favorable contacts with 

Thr-540. The proximity of Gln-682 to the putative 4’-position explains the favorable contacts 

made by the methyl group of the N-methyl piperidine. Finally, it is proposed that, depending on 

the analogue, the 5’-position could flip and become the putative 3’-position in order to capitalize 

on hydrogen bonding with Asn-686. This is likely the case with the unsubstituted 3-piperidine. In 

contrast, the acetylated 3-piperidine is too bulky and likely clashes with either Asn-686 or Pro-

596. Validation through modeling of the trends observed experimentally, the focus was moved to 

optimization of these non-sugar containing analogues through subsequent studies. 
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B. Rational design of optimized non-sugar containing novobiocin scaffolds 

As discussed in Section I of this chapter, incorporation of a non-sugar group at the 7-

position was only synergistic with installation of a 6- or 8-methoxy group on the coumarin ring. 

As shown in Section II, several non-sugar surrogates can be installed in lieu of the noviose sugar 

to improve activity, while simplifying analogue synthesis, and these derivatives still maintain 

Hsp90 as their target.194 Combination of the results derived from each of these initial studies 

provided the rationale needed for the subsequent design of optimized non-sugar novobiocin 

analogues (Figure 48). 

 

Figure 48. Summary of optimized non-sugar novobiocin scaffolds.193  

The most potent coumarin scaffolds obtained from the coumarin studies were coupled 

with the optimal biaryl side chain to yield a scaffold upon which sugar surrogates were 

appended.102,170 Based on the inhibitory activity manifested by the biaryl analogues, the most 

promising sugar surrogates were coupled with coumarins containing the 2-indole side chain.102 

The simplified sugars and related azasugars were found to conserve structural units present in 

noviose, but lacked the complexity of multi-step synthesis. These and several other sugar 
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surrogates were designed to probe potential hydrogen bonds as well as to determine the 

dimensions of the pocket. In addition to simplified sugars, several surrogates containing 

heteroatoms and various appendages were also explored. These diverse sugar and non-sugar 

analogues simplify the preparation of novobiocin analogues, while providing a handle to 

improve both solubility and efficacy.193  

 

Figure 49. 5-, 6-, and 7-membered noviose alternatives.193  

1. Design and synthesis of modified sugar and cyclohexyl analogues 

Numerous biologically active natural products contain carbohydrates appended to their 

scaffolds that serve to increase solubility and provide interactions with their cognate receptor. In 

many cases, removal of the carbohydrate moiety renders the aglycon inactive, whereas alteration 

of the sugar ring size can drastically alter affinity of the compounds toward specific targets.256-258 

Modifications to the noviose pyranose ring were proposed to elucidate functionalities required 

for inhibitory activity, as well as to determine whether different sized sugars can be utilized as 

replacements for noviose. Thus, 5-, 6- and 7-membered sugars were synthesized and coupled to 

the aforementioned scaffolds to determine optimal interactions. When available, the α- and β-

anomers were also evaluated. A set of protected mono-, di- and trihydroxylated furanoses, 
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pyranoses and oxepanose sugars previously synthesized by Yu and coworkers240 (E-L, Figure 

49) was chosen based on these considerations.193  

The analogues were assembled in modular fashion, allowing sequential coupling of 

sugars and the biaryl acid side chain with the desired scaffold. As shown in the retrosynthetic 

analysis (Scheme 45), the biaryl acid side chain was assembled through a Suzuki coupling 

reaction, as described previously.170 Next, the biaryl acid was converted to its corresponding acid 

chloride (152) and then, following hydrogenolysis, coupled with protected coumarins, 147, 128a, 

and 128g. Finally, Mitsunobu etherification between coumarin phenols 148, 159 and 160 and 

sugars E–L yielded the desired analogues in good yields.193  

 

Scheme 45. Retrosynthesis of novobiocin biaryl analogues with sugars E–L.193  

Synthesis of the scaffolds required for these and related analogues, as described in 

Scheme 47, began via protection of phenols 145, 23a and 23g102,170 as the corresponding esters, 

146, 127a and 127g. Next, hydrogenolysis was employed to liberate the corresponding 

vinylogous amides, which were subsequently coupled with biaryl acyl chloride, 152. The biaryl 

acid chloride was generated from the corresponding biaryl acid 27, as described previously 
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(Scheme 46).170 Finally, solvolysis of esters 147, 128a, and 128g afforded phenols 148, 159 and 

160 in good yield.193  

 

Scheme 46. Synthesis of phenols 148, 159, and 160.193  

The various coumarin phenols (148, 159, and 160) and protected pyranoses E–H were 

coupled via a Mitsunobu etherification and subsequently submitted to deprotection protocols to 

afford the analogues shown in Figure 50. Preparation of these compounds was carried out by a 

co-worker as part of this study.193  

 

Figure 50. Pyranose-containing compounds prepared.193  

As with the pyranose-containing analogues, Mitsunobu etherification was enlisted to 

couple coumarin phenols 148, 159, and 160 to protected sugars I–L. These couplings and 

subsequent deprotections were executed by a co-worker to afford compounds 166–171 (Figure 

51).193  
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Figure 51. Furanose- and oxepanose-containing compounds prepared.193  

In addition to the variable-sized sugar-containing analogues, cyclohexyl analogues were 

designed to examine if a sugar was necessary. Additionally, to probe the tolerance of steric bulk, 

analogues with and without alkyl substituents were pursued. Many of the simplified cyclohexyl 

sugar mimics were accessed using common procedures, then coupled via Mitsunobu conditions 

and further functionalized by a co-worker (Figure 52).193  

 

Figure 52. Cyclohexyl-containing compounds prepared.193  

2. Biological evaluation of modified sugar and cyclohexyl analogues 

Upon construction of the sugar and cyclohexyl sugar analogues of novobiocin, the 

compounds were evaluated for anti-proliferative activity against SKBr3, MCF-7, LNCaP-LN3 

(androgen-dependent human prostate cancer cells) and PC3-MM2 (androgen-independent 

prostate cancer cells) cell lines. As shown in Table 5, analogues containing six-membered 

pyranose moieties (scaffold A) were found to be the most active compounds against the two 

breast cancer cell lines. Analogues containing dihydroxyl groups consistently exhibited good to 
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modest anti-proliferative activities against both breast cancer cell lines. In contrast, analogues 

that contained a single hydroxyl at the 2’-position proved inactive, while most analogues with a 

3’-hydroxyl exhibited modest activity. These data indicate that the 3’-position hydroxy group is 

essential for anti-proliferative activity. Interestingly, the natural substrate for the C-terminal 

pocket of Hsp90, ATP/ADP, also contains a 3’-hydroxyl. Although the β epimer exhibited better 

activity than its α counterpart (160a–c vs. 161a–c) for most analogues, this was not a general 

trend observed throughout the series (156, 163b,c vs. 164a–c). In addition, the majority of the 

compounds from this series demonstrated modest activity against the prostate cancer cell lines. 

Notably, however, some compounds (163a) that were completely inactive against both breast 

cancer cells lines were efficacious against prostate cancer.193  

 
Table 5. Anti-proliferative activities of various sugar analogues.193  

Compound  R R1 R2 R3 Anomer SKBr3        

(IC50, μM)  

MCF7       

(IC50, μM) 

LNCaP-LN3   

(IC50, μM) 

PC3-MM2     

(IC50, μM) 

160a A OH OH H β 6.23 ± 0.52a,c 2.56 ± 0.08a 3.59 ± 3.40b NTb 

161a A OH OH H α 6.71± 0.80 42.56 ± 2.48 1.20 ± 0.83 12.88 ± 9.30 

160b A OH OH H β 1.46 ± 0.46 17.46 ± 1.22 2.29 ± 1.25 10.72 ± 10.85 

161b A OH OH H α 11.10 ± 0.43 10.85 ± 0.18 NT NT 

160c A OH OH H β 7.18 ± 0.20 9.50 ± 0.16 12.76 ± 5.12 24.03 ± 17.14 

161c A OH OH H α 12.52 ± 0.54 64.51 ± 3.52 14.93 ± 9.24 25.37 ± 7.26 

162a A OH H H β >100 >100 3.75 ± 0.01d 10.05 ± 0.01d 

156194 A OH H H α >100 >100 7.34 ± 11.82 NT 
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163a A H OH H β >100 >100 3.11 ± 2.58 >100 

157194 A H OH H α 9.28 ± 0.04 11.20 ± 0.49 8.56 ± 9.00 NT 

163b A H OH H β 8.75 ± 0.49 95.77 ± 3.21 11.50 ± 5.66 NT 

163c A H OH H β >100 >100 1.49 ± 0.51 1.24d 

164c A H OH H α 1.37 ± 0.14 >100 3.27 ± 0.09d 2.35 ± 1.11 

165a A OH OH CH2OH β 9.59 ± 0.42 11.07 ± 0.47 3.23 ± 3.76 4.58 ± 2.78 

165b A OH OH CH2OH β 11.76 ± 0.06 14.34 ± 0.16 6.78 ± 2.25 17.94 ± 10.33 

165c A OH OH CH2OH β 9.45 ± 0.19 3.37 ± 0.06 4.66 ± 1.48 5.90 ± 2.58 

166a B OH OH H β 12.46 ± 0.52 37.17 ± 1.68 3.65 ± 2.83 NT 

166b B OH OH H β 7.57 ± 1.05 11.73 ± 0.78 2.60 ± 1.51 10.64 ± 20.83 

166c B OH OH H β 9.45 ± 0.19 3.37 ± 0.07 4.72 ± 1.48 9.56 ± 2.58 

167a B OH H -- β >100 >100 NT NT 

168a B OH H -- α >100 >100 5.34 ± 4.76 NT 

169a B H OH -- β 35.24 ± 1.76 >100 3.72d 10.05 ± 6.75d 

170a B H OH -- α >100 >100 4.96 ± 10.58 26.79 ± 58.24 

171a C OH OH -- β 2.38 ± 0.06 >100 >100 NT 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 
b Values represent mean ± standard deviation from dose response curves for at least two separate 
experiments performed in duplicate. 
c All error values listed represent 95% confidence intervals throughout the manuscript except 
where indicated 
d Error values listed as standard deviations 

 

As shown in Table 6, analogues containing a cyclohexyl moiety in lieu of the sugar 

demonstrated a range of activities. While analogues containing an 8-methyl group (172a, 173a, 

158) were inactive against breast cancer, those with an 8-methoxy group (172b, 173b, 174b) 

exhibited an IC50 value of ~10 μM, which is comparable to its noviosylated counterpart.170 



 223 

Interestingly, the gem-dimethyl group is well tolerated in the case of the 8-methoxy coumarin 

(172b), but detrimental in the case of the 6-methoxy coumarin (172c). This finding suggests a 

mutually exclusive orientation between the gem-dimethyl group and substituents on the 

coumarin, which may preclude proper binding orientation.193  

 

Table 6. Anti-proliferative activities of cyclohexyl analogues.193  

Compound R1 R2 SKBr3        

(IC50, μM) 

MCF-7         

(IC50, μM) 

LNCaP-LN3     

(IC50, μM) 

PC3-MM2      

(IC50, μM) 

172a CH3 CH3 >100a >100a 1.24 ± 0.17b,d 2.49 ± 1.70b 

172b CH3 CH3 3.45 ± 1.73 1.56 ± 0.03 NT NT 

172c CH3 CH3 >100 >100 NT NT 

173a H CH3 >100 >100 1.14 ± 0.67 4.09 ± 1.63 

173b H CH3 6.38 ± 0.71 8.52 ± 0.36 NT NT 

173c H CH3 >100 >100 NT NT 

158194 H H >100a >100 1.58 ± 0.75 4.04 ± 0.38d 

174b H H 7.44 ± 0.36 5.46 ± 0.36 NT NT 

174c H H 8.18 ± 0.79 10.13± 1.04 NT NT 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 
b Values represent mean ± standard deviation from dose response curves for at least two separate 
experiments performed in duplicate. 

 

Overall, this library containing sugar surrogates and cyclohexyl groups confirmed the 3’-

hydroxy as the most important functional group. Moreover, the 4’-methoxy, 5’-gem-dimethyl 
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and anomeric oxygen found in noviose were identified as dispensable moieties. Several 

analogues exhibited low micromolar anti-proliferative activity against SKBr3 cells, which makes 

them ~500-fold more active than novobiocin.193 Moreover, subsequent studies have been 

proposed to examine the role that stereochemistry plays since several of the cyclohexyl-

containing analogues contain an asymmetric center. 

 

Scheme 47. Retrosynthesis of azasugar-containing biaryl analogues.193  

3. Design and synthesis of azasugar analogues 

After evaluation of the initial library, it was proposed that other six-membered 

heteroatom-containing ring systems may serve as replacements for noviose. N-heterocycles are 

found in a wide variety of biologically active compounds, imparting solubility to otherwise 

insoluble aglycons. Several heterocycles were designed to probe hydrogen-bonding interactions 

with the binding pocket as well as to improve solubility.193  

The analogues were assembled similarly to those described previously, in modular 

fashion, allowing sequential coupling of various sugar surrogates and the biaryl side chain. As 

shown in the retrosynthetic analysis depicted in Scheme 47, following hydrogenolysis, the biaryl 
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acid chloride was coupled with coumarins 147, 128a, and 128g. Following solvolysis, coumarin 

phenols 148, 159 and 160 were etherified using Mitsunobu conditions.193  

Through application of Mitsunobu conditions, protected piperidines were coupled to the 

coumarin phenols. After subsequent deprotections and appropriate functionalization, where 

applicable, the 1,3-azasugar-containing compounds shown in Figure 53 were prepared by a 

colleague.193  

 

Figure 53. 1,3-azasugar-containing analogues prepared.193  

In addition, compounds lacking the diol functionality and containing a transposed 

nitrogen within the heterocycle were selected for investigation. A co-worker coupled, then 

deprotected 1,4-azasugars as described previously to yield the compounds shown in Figure 54.193  

 

Figure 54. 1,4-azasugar-containing analogues prepared.193  
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4. Biological evaluation of azasugar analogues 

Upon construction of the azasugar-containing analogues, they were evaluated for anti-

proliferative activity against two breast and two prostate cancer cell lines. As shown in Table 7, 

the activity against breast cancer cells exhibited by the majority of these secondary and tertiary 

amines varied between 1-3 μM, making them ~700-fold more active than novobiocin. Although 

dihydroxylation of the piperidine ring is well-tolerated when appended to the 8-methyl scaffold 

(178a), this is not the case for the other two scaffolds (178b and 178c). These data suggest that 

dihydroxylation of the piperidine ring is not essential for anti-proliferative activity. Inclusion of 

unsaturation within the piperidine ring is also well tolerated (scaffold A vs. C and D, Table 7) 

while methylation of the amine within this unsaturated ring decreases activity (175 vs. 177). It 

was observed that acetylation of the amine functionality (176a, 154, 179a) severely decreased 

solubility in organic solvents, and produced inactive compounds. Although insolubility can be 

overcome through dihydroxylation of the piperidine ring (179a), the resulting compound is ~5-

fold less active than secondary or tertiary amines. There is no significant effect when the 

nitrogen is transposed within the piperidine ring, as all of the analogues exhibited activity 

between ~1-3 μM. In addition, secondary amines exhibited comparable activity to methylated 

tertiary amines (181 vs. 183, 153/182 vs. 155/184). Overall, these azasugar analogues 

consistently exhibited low micromolar anti-proliferative activity, representing an improved sugar 

mimic.193 Subsequent studies that probe the influence of fixed stereochemistry on the activity of 

these piperidine-containing compounds have been proposed. 
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Table 7. Anti-proliferative activities of azasugar analogues.193  

Compound R R’ SKBr3            

(IC50, μM) 

MCF-7             

(IC50, μM) 

LNCaP-LN3      

(IC50, μM) 

PC3-MM2      

(IC50, μM) 

175a A H 1.61 ± 0.05a 1.73a 4.27 ± 0.05b,d 4.40 ± 0.06b,d 

175b A H 3.07 ± 0.78 1.43 ± 0.37 6.45 ± 2.70d 4.88 ± 2.20 

175c A H 1.21 ± 0.07 1.68 ± 0.04 5.40 ± 9.99 3.57 ± 0.71d 

176a A Ac >50 >50 0.90 ± 0.59 3.73 ± 0.67 

177a A CH3 2.92 ± 1.33 5.29 ± 0.23 1.22d 1.73 ± 1.80 

177b A CH3 3.42 ± 0.45 1.65 ± 0.28 0.36 ± 0.14 0.98 ± 0.40 

177c A CH3 1.96 ± 0.48 5.27 ± 0.22 4.49 ± 0.17d 3.87 ± 0.03d 

178a B H 2.91 ± 0.90 2.07 ± 0.86 4.90 ± 9.16 6.33 ± 4.12 

178b B H 8.98 ± 0.44 10.17 ± 0.02 12.19 ± 6.30 14.43 ± 7.39 

178c B H 3.65 ± 0.22 3.34 9.45 ± 5.90 6.84 ± 2.80 

154194 C Ac >50 >50 1.23 ± 0.67 3.42 ± 1.24 

179a B Ac 10.79 ± 0.08 9.18 ± 0.60 0.71 ± 0.54 2.22 ± 1.04 

180a B CH3 3.92 ± 0.32 1.85 ± 0.02 0.59 ± 0.54 2.99 ± 1.27 

180b B CH3 6.64 ± 0.54 11.02 ± 1.12 1.50 ± 0.62 3.52 ± 1.43 

180c B CH3 2.77 ± 0.90 2.01 ± 0.46 4.69 ± 0.57d 4.17 ± 0.16d 

181a C H 1.16 ± 0.16 1.63 ± 0.28 3.02 ± 0.97d 2.57 ± 1.13 

181b C H 2.61 ± 0.37 3.29 ± 0.42 12.72 ± 3.25 10.43 ± 2.15 

181c C H 2.27 ± 0.61 2.90 ± 0.67 3.66d 2.59 ± 13.91 

153194 D H 1.19 ± 0.06 1.47 ± 0.02 3.38 ± 1.25 4.12 ± 1.29 



 228 

182b D H 1.79 3.23 ± 0.20 10.85 ± 5.92 8.47 ± 4.28 

182c D H 1.20 ± 0.08 2.82 ± 1.10 5.27 ± 22.18 4.02 ± 2.13 

183a C CH3 2.06 ± 0.57 5.04 ± 0.02 1.22 ± 0.17d 4.23 ± 1.68 

183b C CH3 1.40 ± 0.14 1.38 ± 0.14 1.78 ± 0.80 2.16 ± 1.28 

183c C CH3 1.49 ± 0.06 1.41 ± 0.13 10.48 ± 5.46d 6.86 ± 2.92d 

155194 D CH3 1.34 ± 0.18 1.51 ± 0.24 4.12 ± 0.16d 3.13 ± 0.67 

184b D CH3 0.97 ± 0.07 1.39 ± 0.28 4.75 ± 2.03 3.71 ± 1.27 

184c D CH3 1.19 ± 0.17 1.79 ± 0.09 4.17 ± 0.15d 2.84 ± 1.88 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 
b Values represent mean ± standard deviation from dose response curves for at least two separate 
experiments performed in duplicate. 

 

5. Design and synthesis of novobiocin analogues with acyclic sugar replacements  

The promising results obtained when azasugars were appended to these scaffolds 

encouraged the synthesis of acyclic nitrogen-containing replacements. To probe the importance 

of a constrained ring system, a library of ring-opened, amine-containing sugar surrogates was 

designed. A series of heteroatom-containing aliphatic chains were synthesized to impart 

flexibility and explore the potential of additional interactions with the binding pocket.193  

 

Figure 55. Alkyl sugar analogues prepared.193  
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Aliphatic amines, either commercially available or prepared over a modest number of 

steps, were appended to the biaryl coumarin cores through standard Mitsunobu coupling to yield 

compounds 185–188. These compounds, prepared by a colleague, are depicted in Figure 55.193 

In addition to the aliphatic amine analogues synthesized, several simplified non-sugar 

molecules were appended in lieu of the noviose sugar. These non-sugars include simplified 

functionalities based upon 128a, a recently described inhibitor of the Hsp90 C-terminus.259 

Substitutions were selected to probe hydrogen-bonding interactions and pocket dimensions, with 

the aim of increasing favorable interactions with residues within the binding pocket. Carbamates 

with variable substitution were installed through Lewis acid catalysis. A phosphate ester (192) 

was introduced through an esterification reaction to increase the hydrophilicity of the inhibitor 

and finally, methyl and toluene sulfonic esters were incorporated using the corresponding 

sulfonic chlorides to explore potential interactions within the pocket, like those reported by 

Renoir and co-workers (Scheme 48).105,193 

 

Scheme 48. Synthesis of non-sugar biaryl analogues.193  
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6. Biological evaluation of novobiocin analogues with acyclic sugar replacements  

Upon construction of these alkyl and non-sugar compounds, they were evaluated for anti-

proliferative activity against various cancer cell lines. The anti-proliferative data are summarized 

in Table 8 and Table 9. All of the tertiary amine analogues demonstrated notable anti-

proliferative activity of ~1 μM, while the secondary amine analogues maintained activity of ~3–5 

μM against both breast cancer cell lines. The tertiary amine analogues homologated by two 

methylene groups (186a–c) exhibited activity of 1–3 μM, which is comparable to the piperidine 

analogues. Moreover, homologation by three methylene groups (187a–c) resulted in compounds 

that manifested anti-proliferative activity in the mid-nanomolar range, a finding that is consistent 

with the piperidine ring analogues. In contrast, the diol-containing analogues, when appended to 

the 8-methyl (188a) or 8-methoxy (188b) coumarin scaffolds were inactive, but resulted in 

modest activity when appended to the 6-methoxy coumarin (188c). Furthermore, the aliphatic 

amine and corresponding dihydroxylated analogues manifested modest activities against the 

prostate cancer cell lines.193 As discussed previously, plans to prepare promising analogues as 

single stereoisomers will reveal the role that stereochemistry plays in dictating the activity of 

these compounds.  

 

Table 8. Anti-proliferative activities of analogues with acyclic sugar replacements.193  

Compound     R R’ SKBr3         

(IC50, μM)  

MCF-7         

(IC50, μM) 

LNCaP-LN3        

(IC50, μM) 

PC3-MM2        

(IC50, μM) 
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185a A H 5.36 ± 0.08a 9.80 ± 0.11a >100b 14.01 ± 0.28b,d 

185b A H 3.60 ± 0.28 4.32 ± 0.32 15.24 ± 7.96 9.12 ± 5.92 

185c A H 3.15 ± 0.54 6.23 ± 0.14 >100 11.77 ± 5.94 

186a A CH3 1.02 ± 0.13 1.46 ± 0.08 6.65 ± 12.43 4.17 ± 19.64 

186b A CH3 1.77 ± 0.12 3.08 ± 0.08 5.22 ± 3.25 6.20 ± 2.22 

186c A CH3 1.42 ± 0.21 1.29 ± 0.17 6.28 ± 2.22d 4.87 ± 2.91 

187a B -- 0.60 ± 0.01 0.50 ± 0.03 37.51 ± 54.24 12.85 ± 11.42 

187b B -- 0.91 ± 0.14 1.53 ± 0.14 8.03 ± 7.93 4.08 ± 1.83 

187c B -- 0.49 ± 0.20 0.70 ± 0.15 4.71 ± 0.21d 5.40 ± 3.15 

188a C -- >50 >50 NT 0.19 ± 0.33 

188b C -- >50 >50 0.96 ± 1.20 1.66 ± 6.05 

188c C -- >50 >50 NT NT 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate.  
b Values represent mean ± standard deviation from dose response curves for at least two separate 
experiments performed in duplicate. 

 

The anti-proliferative data for the non-sugar analogues revealed several interesting 

trends. The free phenol of each scaffold was nearly equal in activity to its noviosylated 

counterpart. Moreover, the acetylated phenols, in the case of the 8-methyl (147) and 6-methoxy 

coumarins (128a), displayed activities of ~1 μM against breast cancer cells. Similarly, the 

carbamate and methylated carbamate were well tolerated when appended to 8-methyl and 6-

methoxy coumarins, resulting in low micromolar analogues. Addition of another methyl group to 

the carbamate severely compromised activity. The methyl sulfonic ester was only tolerated when 

appended to the 8-methyl scaffold (150), while the toluene sulfonic ester was not tolerated by 

any analogue. Likewise, addition of the phosphate ester decreased activity of the analogues. 
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Overall, it was concluded that hydrogen bonding and limited hydrophobic bulk govern optimal 

binding.193  

 

Table 9. Anti-proliferative activity of non-sugar analogues.193  

Compound  R SKBr3         

(IC50, μM) 

MCF-7          

(IC50, μM) 

LNCaP-LN3       

(IC50, μM) 

PC3-MM2        

(IC50, μM) 

148194 H 8.88 ± 0.48a 6.93 ± 0.48a 3.21 ± 1.78b 5.36 ± 2.71b 

147194 COCH3 0.98 ± 0.02 1.40 1.50 ± 1.00 2.85 ± 1.66 

59102 Noviose 7.50 ± 0.80 18.70 ± 1.44 NT NT 

150194 Ms 7.33 ± 0.96 8.85 ± 0.88 19.96 ± 42.67 >100 

151194 Ts > 100 > 100 0.58 ± 1.34 >100 

189a CONH2 3.02 ± 0.56 1.16 ± 0.08 2.61 ± 1.09 6.37 ± 4.31 

149194 CONHMe 2.40 ± 0.16 1.72 ± 0.16 3.75 ± 0.76 5.22 ± 2.16 

191a CONMe2 39.85 ± 0.48 74.35 ± 3.92 5.40 ± 6.58 >100 

192a PO(OMe)2 > 100 > 100 3.65 ± 5.73 >100 

159 H 3.23 ± 1.20 11.70 ± 1.92 15.79 ± 32.60 11.23 ± 30.70 

128a COCH3 5.72 ± 0.02 1.50 ± 0.24 1.05 ± 0.59 1.69 ± 2.05 

26a170 Noviose 58.80 ± 1.04 > 100 26.57 ± 67.44 >100 

193b Ms > 100 > 100 >100 NT 

194b Ts > 100 > 100 NT >100 

189b CONH2 6.83 ± 0.24 6.29 ± 0.88 3.55 ± 3.44 2.62 ± 2.04 

190b CONHMe 1.53 ± 0.16 7.78 ± 1.68 4.77 ± 8.37 3.13 ± 2.34 

191b CONMe2 6.17 ± 1.68 34.4 ± 7.20 12.75 ± 0.32d 4.04 ± 16.68 
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192b PO(OMe)2 26.48 ± 0.80 24.22 ± 2.40 1.36 ± 2.80 31.32 ± 54.87 

160 H > 100 5.32 ± 0.08 6.18 ± 7.43 >100 

128g COCH3 20.50 ± 1.28 8.62 ± 2.00 14.62 ± 23.63 19.33 ± 50.90 

26g170 Noviose 13.90 ± 0.96 9.00 ± 4.32 0.11 ± 0.02 1.44 ± 0.32 

193c Ms >100 >100 0.87 ± 1.32 NT 

194c Ts >100 >100 0.11 ± 4.68 NT 

189c CONH2 76.83 ± 1.84 5.56 ± 0.24 4.83 ± 3.87 >100 

190c CONHMe >100 6.54 ± 1.84 2.37 ± 1.44 1.68 ± 1.89 

191c CONMe2 >100 >100 15.73 ± 14.09 11.57 ± 10.04 

192c PO(OMe)2 18.07 ± 2.88 >100 6.58 ± 4.14 11.46 ± 6.54 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 
b Values represent mean ± standard deviation from dose response curves for at least two separate 
experiments performed in duplicate. 

 

Scheme 49. Retrosynthesis of azasugar indole novobiocin analogues.193  

7. Design and synthesis of optimized scaffolds using most promising surrogates 

Based on the biological evaluation discussed thus far, we identified the N-methyl-4-

hydroxy-piperidine and 3-(dimethylamino)propan-1-ol as optimal noviose replacements. 

Therefore, these surrogates were appended to three previously identified and optimized coumarin 

scaffolds, containing either the 2-indole or prenylated benzamide side chain in lieu of the biaryl 
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system.102,195 As detailed earlier, the analogues were assembled in a modular fashion, allowing 

sequential coupling of sugar mimics and the indole acid chloride or prenylated acid chloride with 

the desired scaffold (Scheme 49). Unlike previously discussed scaffolds, the Mitsunobu ether 

coupling was performed prior to amide coupling due to solubility issues arising from the indole-

containing free phenol. These optimized analogues, shown in Figure 56, were synthesized by a 

co-worker.193  

 

Figure 56. Optimized compounds prepared.193  

8. Biological evaluation of optimized scaffolds 

As described previously, these compounds were evaluated for their anti-proliferative 

activities against a panel of breast and prostate cancer cell lines (Table 10). The piperidine-

containing analogues with an indole side chain (195a–c) exhibited increased anti-proliferative 

activity when attached to the 8-methyl and 6-methoxy coumarin (195a and 195c). 195c was 

notably 10-fold more active against SKBr3 cells when compared to its biaryl counterpart 184c. 

In contrast, attachment of this sugar surrogate to the 8-methoxy coumarin (195b) compromised 

its activity versus the biaryl-containing analogue 184b. In the case of the prenylated benzamide 

side chain (196a–c and 197a–c), attachment of the azasugar increased activity against both cell 
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lines, with the 6-methoxy coumarin manifesting superior activity (196c and 196c). In addition, 

the intermediate acetylated phenols 196a–c demonstrated comparable activity to the hydrolyzed 

phenol products 197a–c. Based on the results obtained with the biaryl containing analogues, it 

was proposed that appendage of the aliphatic amine to the coumarins with an indole side chain 

would result in increased activity. However, the anti-proliferative activity of these indole 

analogues (198a–c) was maintained or slightly decreased in nearly every case. When these alkyl 

sugars were attached to the coumarins containing a prenylated benzamide side chain, the 

compounds manifested anti-proliferative activity in the mid-nanomolar range against SKBr3 

cells. Moreover, compounds built upon the 6-methoxy coumarin scaffold (199c and 200c) 

exhibited the best activity against both cell lines.193 Future plans involving these optimized 

scaffolds will focus on examining the role that stereochemistry plays in dictating their activity. 

 
Table 10. Anti-proliferative activity of optimized analogues.193  

Compound  R R’ R” SKBr3          

(IC50, μM) 

MCF-7         

(IC50, μM) 

LNCAP-LN3      

(IC50, μM) 

PC3-MM2          

(IC50, μM) 

195a A C -- 0.48 ± 0.09a 0.57 ± 0.03a 11.83 ± 0.54b 11.40 ± 5.25b 

195b A C -- 2.58 ± 0.28 1.86 ± 0.08 12.64 ± 0.32d 7.93 ± 4.18 

195c A C -- 0.11 ± 0.01 0.52 ± 0.04 1.47 ± 0.53 0.87 ± 0.46 

196a A D Ac 0.58 ± 0.04 1.18 ± 0.16 NT 2.12 ± 3.32 

196b A D Ac 1.07 ± 0.14 1.64 ± 0.24 NT 3.98 ± 0.06d 

196c A D Ac 0.42 ± 0.01 0.58 ± 0.02 NT 1.41 ± 0.04d 

197a A D H 0.76 ± 0.14 1.09 ± 0.08 NT 1.37 ± 1.42 
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197b A D H 0.92 ± 0.01 1.54 ± 0.21 NT 3.53 ± 0.01d 

197c A D H 0.42 ± 0.01 0.54 ± 0.02 NT 2.26 ± 1.43 

198a B C -- 1.13 ± 0.01 5.23 ± 0.22 NT 13.69 ± 0.18d 

198b B C -- 1.50 ± 0.13 1.41 ± 0.09 4.71 ± 1.23d 8.95 ± 6.11 

198c B C -- 0.57 ± 0.09 0.56 NT 2.58 ± 4.47 

199a B D Ac 0.46 ± 0.15 1.18 ± 0.02 NT 1.42 ± 0.05d 

199b B D Ac 0.78 ± 0.17 2.14 ± 0.22 NT 4.59 ± 4.23 

199c B D Ac 0.36 ± 0.03 0.70 ± 0.03 NT 1.46 ± 0.03d 

200a B D H 0.44 ± 0.02 1.35 ± 0.30 NT 1.81 ± 1.22 

200b B D H 0.77 ± 0.08 3.26 ± 0.26 NT 9.24 ± 17.79 

200c B D H 0.39 ± 0.06 0.80 ± 0.07 NT 1.38 ± 0.02d 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 
b Values represent mean ± standard deviation from dose response curves for at least two separate 
experiments performed in duplicate. 

 

To confirm that the anti-proliferative activities exhibited by the optimized sugar 

analogues result from Hsp90 inhibition, analogues 197c and 199c were evaluated by Western 

blot analyses (Figure 57). It was essential that these optimized derivatives demonstrate selective 

Hsp90-dependent client protein degradation, versus a loading control, to confirm the compounds 

reported herein also manifest Hsp90 inhibition. Figure 57 shows that in MCF-7 cells, the Hsp90-

dependent client proteins Akt, Raf-1, and Her2 were degraded in a concentration-dependent 

manner upon treatment with the compounds. Hsp90 client protein degradation occurred at 

concentrations that paralleled the observed anti-proliferative IC50 values of 0.54 ± 0.03 μM, for 

197c and 0.70 ± 0.04 μM for 199c confirming that Hsp90-dependent client protein degradation is 

causative for inhibition of cell growth. Furthermore, Hsp90 protein levels remained constant at 
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all concentrations tested, which is consistent with C-terminal Hsp90 inhibition. Since the non-

Hsp90-dependent protein, actin, was not affected by these analogues, it was concluded that 

selective degradation of Hsp90-dependent proteins occurred.193  
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Figure 57. Western blot analyses of Hsp90 client protein degradation assays against MCF-7 cells 

following treatment with 197c and 199c. Concentrations (in μM) of 197c (top) and 199c 

(bottom) are indicated above each lane. G (geldanamycin, 500 nM) and D (DMSO) were 

respectively employed as positive and negative controls.193  

C. Subsequent biological testing 

 Due to the promise of several compounds from this study of optimized scaffolds, 

subsequent studies were designed to test their promise against other cancer cell lines. It was 

proposed that these rationally designed analogues may demonstrate efficacy against tumors that 

were not examined in the previously described studies. Moreover, efforts were undertaken to 

better understand the mechanism through which these compounds act. 
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1. Biological evaluation against melanoma and HNSCC 

Finally, several analogues from each of the libraries were selected for testing against a 

panel of melanoma and head and neck squamous cell carcinoma cell lines (Table 11). In 

preliminary studies, C-terminal Hsp90 inhibitors have demonstrated modest activity against 

melanoma cells and have shown promise in treating head and neck cancers as well. Unpublished 

in vivo data produced by the Cohen lab at the KU Medical Center has demonstrated tumor 

regression upon sustained treatment with a C-terminal Hsp90 inhibitor previously synthesized.170 

Analogues were selected that exhibited diverse structural features to probe the efficacy of these 

analogues against these cancers. B16F10 (murine melanoma), SKMEL28 (human melanoma), 

MDA1986 (human head and neck squamous cell carcinoma (HNSCC)), and JMAR (human oral 

squamous cell carcinoma) were selected for this panel of testing. The majority of the analogues 

tested manifested mid to low micromolar activity against these cell lines. While some of the 

compounds exhibited better activity against melanoma than head and neck cancers (184b), others 

were potent in a specific melanoma (181b) or a specific head and neck (162a) cell line. The low 

micromolar activity of 195c and 198c against all of the cell lines warrants further 

investigation.193  

 

Table 11. Anti-proliferative activity of selected analogues against melanoma and HNSCC.193  

Compound  B16F10            

(IC50, μM) 

SKMEL28            

(IC50, μM) 

MDA1986          

(IC50, μM) 

JMAR              

(IC50, μM) 

159 5.77 ± 0.96a 12.40 ± 0.64a 6.70 ± 1.20a 24.60 ± 1.92a 

147194 2.30 ± 0.32 2.14 ± 0.08 1.67 ± 0.16 12.60 ± 0.40 

160a 37.50 ± 6.56 14.90 ± 2.88 13.40 ± 4.24 2.79 ± 0.64 

161a 8.56 ± 2.16 15.80 ± 0.48 3.70 ± 0.64 6.14 ± 1.28 
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162a 1.01 ± 0.48 1.47 ± 0.24 0.81 ± 0.40 16.10 ± 2.16 

156194 10.40 ± 1.20 19.60 ± 2.48 18.80 ± 3.68 3.60 ± 0.40 

165a 9.60 ± 1.12 10.65 ± 0.40 5.70 ± 0.56 5.80 ± 1.04 

166a 4.55 ± 1.20 5.74 ± 2.08 1.94 ± 0.40 12.64 ± 1.28 

166b 1.30 ± 0.16 6.41 ± 0.56 5.73 ± 0.96 2.71 ± 0.32 

167a 42.70 ± 3.36 18.40 ± 2.96 21.40 ± 3.12 14.90 ± 3.68 

169a 12.70 ± 1.44 21.40 ± 3.28 6.90 ± 2.08 24.10 ± 3.28 

170a 9.37 ± 1.04 12.40 ± 2.48 18.80 ± 3.76 6.19 ± 2.48 

171a >50 18.50 ± 5.76 22.90 ± 4.96 7.40 ± 1.68 

172a 15.90 ± 2.16 3.47 ± 1.20 18.80 ± 0.64 8.50 ± 1.68 

173a 2.50 ± 0.48 11.41 ± 1.28 6.74 ± 2.08 2.73 ± 0.32 

158194 14.10 ± 2.08 2.94 ± 1.20 17.90 ± 1.44 13.90 ± 2.00 

175a 2.94 ± 0.08 5.41 ± 0.08 6.54 ± 0.56 3.40 ± 0.16 

175b 3.41 ± 0.32 5.49 ± 1.12 5.97 ± 0.40 6.71 ± 0.24 

175c 2.86 ± 0.24 5.41 ± 0.16 5.90 ± 0.40 11.60 ± 0.32 

176c 21.40 ± 1.28 27.60 ± 1.20 25.10 ± 2.08 35.10 ± 1.20 

177a 6.40 ± 1.92 10.79 ± 0.64 7.70 ± 0.56 11.40 ± 1.20 

177b 6.47 ± 2.80 1.48 ± 0.48 2.36 ± 0.08 1.94 ± 0.16 

177c 6.14 ± 0.64 31.50 ± 1.84 16.40 ± 1.68 18.40 ± 2.56 

178a 2.80 ± 0.40 6.14 ± 1.28 5.60 ± 1.04 5.89 ± 0.48 

178b 11.75 ± 0.40 11.40 ± 2.56 21.70 ± 1.12 11.60 ± 1.92 

178c 5.04 ± 0.32 13.80 ± 2.56 13.80 ± 3.44 11.50 ± 0.72 

154194 12.40 ± 2.00 20.9 ± 2.56 22.40 ± 1.36 15.14 ± 1.84 

179c 23.90 ± 2.88 29.40 ± 3.36 36.40 ± 1.20 32.80 ± 3.36 

179b 6.58 ± 0.48 5.90 ± 1.68 5.90 ± 0.48 6.70 ± 0.24 

180c 2.81 ± 0.32 5.73 ± 0.32 12.80 ± 1.28 24.50 ± 0.72 

181a 1.90 ± 0.24 2.79 ± 0.96 23.60 ± 2.88 >50 
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181b 0.64 ± 0.08 14.67 ± 0.40 12.80 ± 1.92 12.70 ± 1.44 

181c 1.84 ± 0.08 7.19 ± 0.24 6.40 ± 0.96 5.70 ± 0.32 

153194 2.76 ± 0.32 5.19 ± 0.16 2.74 ± 0.08 5.91 ± 0.40 

182b 2.14 ± 0.08 16.45 ± 1.36 10.90 ± 0.64 12.60 ± 0.32 

182c 1.84 ± 0.16 5.75 ± 0.24 14.60 ± 1.20 10.90 ± 0.48 

183a 2.60 ± 0.32 6.14 ± 0.56 4.50 ± 0.08 12.60 ± 0.32 

183b 1.51 ± 0.24 7.14 ± 0.40 11.40 ± 2.56 7.50 ± 0.64 

183c 2.67 ± 0.32 5.86 ± 1.20 13.20 ± 0.72 19.10 ± 2.56 

184b 0.41 ± 0.08 6.14 ± 0.32 13.10 ± 1.68 13.10 ± 0.64 

184c 36.73 ± 0.64 3.74 ± 0.24 1.54 ± 0.08 1.84 ± 0.08 

185a 37.40 ± 2.16 25.60 ± 2.96 21.90 ± 2.56 35.10 ± 2.16 

186a 15.70 ± 4.56 14.70 ± 1.92 17.50 ± 3.28 18.40 ± 2.00 

195c 1.19 ± 0.32 1.47 ± 0.08 1.42 ± 0.16 1.24 ± 0.24 

198c 2.03 ± 0.08 1.35 ± 0.08 1.81 ± 0.32 2.65 ± 0.24 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 

 

2. NCI 60 cell line screen of most promising compounds 

 Results from these initial studies led to our interest in submitting these compounds to 

more thorough analyses, involving cancer cell lines not previously examined. This goal was 

accomplished through submitting 147, 195a, and 195b to the NCI 60 human tumor cell line 

screen. Testing of these compounds was reported against leukemia, non-small cell lung, colon, 

CNS, melanoma, ovarian, renal, prostate, and breast cancers.  

147 was shown to demonstrate broad efficacy against these cell lines, with values 

consistently in the nanomolar to low micromolar range (Figure 58). This compound was most 

potent, with some high-nanomolar GI50 values towards the inhibition of leukemia and colon 
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cancer cells. The most remarkable activity this compound exhibited was a mid-nanomolar value 

against MDA-MB-435 melanoma cancer cells. These melanoma cells were thought to be 

metastatic human breast cancer cells until recent advances in gene expression analysis proved 

otherwise. 

 

Figure 58. Results of testing 147 against NCI 60 human tumor cell line screen. 

 When the results from the screen of analogue 195a were examined, some trends become 

apparent (Figure 59). Firstly, while this compound exhibited consistent GI50 values in the low 

micromolar range for all cancer cell lines tested, it was significantly more active against 

leukemia than other cancers. Notably, this compound exhibited mid- to low-nanomolar activity 

against the CCRF-CEM (human acute T-cell lymphoblastic leukemia cells), K-562 

(erythroleukamia, the first human immortalized myelogenous leukemia line) and SR (acute 
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lymphoblastic leukemia cells) leukemia cancer cell lines. Due to its consistent efficacy, this 

compound warrants further study in the area of leukemia. 

 
 

Figure 59. Results of testing 195a against NCI 60 human tumor cell line screen. 

 Finally, compound 195b, like its predecessors, exhibited consistently remarkable potency 

against several of the cancer cell lines tested (Figure 60). Notably, 195b manifested mid-

nanomolar GI50 values against several leukemia, colon, melanoma, and ovarian cancer cell lines. 

Although this compound demonstrates broad applicability to a range of cancers, like 147, it is 

most consistently potent against melanoma cell lines with GI50 values ranging from ~190 nM–

1.8 μM against the panel of melanomas tested. 
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Figure 60. Results of testing 195b against NCI 60 human tumor cell line screen. 

3. Mechanistic studies 

 Since 197a represented one of the most potent compounds evaluated as part of the study 

in Section III, there was interest in further probing its mechanism of action. It was proposed that 

synthesis of a TAMRA-based probe linked to the 197a scaffold would enable visualization of 

where this compound localizes. TAMRA was selected as the fluorophore based upon a recent 

collaborative study, involving our laboratory and several others at KU, that identified the most 

uniform intracellular distribution and best cytosolic diffusivity when a TAMRA probe was 

employed.260 Through visualization of specific compound localization, potential Hsp90 isoforms 
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targeted by this compound could be identified and a better understanding of its mechanism of 

action would be gained. 

 
 

Scheme 50. Synthesis of fluorescent probe. 

4. Synthesis of TAMRA-197a 

 As seen in Scheme 50, alkyl bromide salt 201 was treated with di-tert-butyl dicarbonate 

with catalytic 4-dimethylaminopyridine (DMAP) to afford compound 202 in good yield. Next, 

prenylated ester 203, prepared as previously described by Burlison and co-workers,18 was 

quantitatively alkylated with protected alkyl bromide 202.261 Hydrolysis of ester 204 furnished 
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the desired acid precursor that was readily coupled with functionalized aminocoumarin 206.193 

Coupled product 207 was treated with trifluoroacetic acid to liberate the amine used for coupling 

with commercially available TAMRA probe 208. Although coupling proceeded, as confirmed by 

mass spectrometry studies, 209 could not be isolated in a pure form. Silica column 

chromatography and a variety of HPLC conditions were employed in an attempt to isolate pure 

compound, but neither proved successful due to the zwitterionic and extremely polar nature of 

this analogue. Without the ability to obtain 209 in its pure form, the intended localization studies 

could not be executed. Studies similar to the one designed herein have great potential in 

understanding the involvement of promising compounds with cellular targets and will be pursued 

in the future. 

 

V. Conclusion 

Several libraries of novobiocin analogues with various structural features were designed, 

synthesized and evaluated. From the library of sugar mimics, we identified the pyranose as 

optimal and that a 2’-hydroxy group is indispensable. Several low micromolar analogues 

containing modified sugars were also identified. From the series of azasugar-containing 

analogues, we concluded that replacement of noviose with a piperidine ring resulted in consistent 

low micromolar anti-proliferative activities. The piperidine sugars confirmed that interactions 

made between noviose and the binding pocket could also be maintained with azasugars. In 

addition, the acyclic library produced several aliphatic sugar surrogates that manifested mid-

nanomolar activity. This library confirmed that flexibility is tolerated and that noviose can be 

replaced with a simple acyclic moiety to maximize the potency of novobiocin analogues. Finally, 
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the synthesis of optimized scaffolds with various cytotoxic benzamide side chains identified 

several novobiocin analogues that exhibited low nanomolar anti-proliferative activity. These 

analogues confirmed that results obtained from earlier studies could be applied to these 

appendages and produce compounds that warrant further study.193  

 

VI. Experimental Protocols 

 

127a 

3-(((Benzyloxy)carbonyl)amino)-6-methoxy-8-methyl-2-oxo-2H-chromen-7-yl acetate 

(127a): A solution of 23a14 (195 mg, 0.55 mmol) in anhydrous pyridine (3.0 mL) was treated 

with acetic anhydride (1.0 mL). After 12 h, the solvent was removed and the residue purified via 

column chromatography (SiO2, 100:1, CH2Cl2:Acetone) to afford 127a as a colorless amorphous 

solid (216 mg, 99%): 1H NMR ((CD3)2CO, 400 MHz) � 8.31 (s, 1H), 8.22 (bs, 1H), 7.48 (d, J = 

8.0 Hz, 2H), 7.42–7.33 (m, 3H), 7.25 (s, 1H), 5.26 (s, 2H), 3.89 (s, 3H), 2.33 (s, 3H), 2.22 (s, 

3H); 13C NMR (CDCl3, 125 MHz) � 168.6, 158.5, 153.2, 148.8, 142.6, 139.7, 135.6, 128.8 (2C), 

128.7, 128.4 (2C), 124.0, 121.3, 120.6, 117.6, 106.2, 67.7, 56.3, 20.5, 9.3; IR (film) �max 3306, 

2924, 2853, 1759, 1703, 1531, 1393, 1205, 1088, 1026, 914, 764, 698 cm-1; HRMS (ESI+) m/z: 

[M + H]+ calcd for C21H20NO7, 398.1240; found, 398.1258. 
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127b 

3-(((Benzyloxy)carbonyl)amino)-8-methyl-2-oxo-6-propoxy-2H-chromen-7-yl acetate 

(127b): A solution of 23b (50 mg, 0.13 mmol) in anhydrous pyridine (0.75 mL) was treated with 

acetic anhydride (0.25 mL). After 12 h, the solvent was removed and the residue purified via 

column chromatography (SiO2, 100:1, CH2Cl2:Acetone) to afford 127b as a colorless amorphous 

solid (55 mg, 99%): 1H NMR (CDCl3, 500 MHz) � 8.19 (s, 1H), 7.53 (s, 1H), 7.34–7.29 (m, 5H), 

6.75 (s, 1H), 5.16 (s, 2H), 3.88 (t, J = 6.5 Hz, 2H), 2.29 (s, 3H), 2.22 (s, 3H), 1.76–1.72 (m, 2H), 

0.96 (t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 125 MHz) � 168.5, 158.4, 153.1, 148.1, 142.3, 139.9, 

135.5, 128.7 (2C), 128.6, 128.3 (2C), 123.8, 121.2, 120.3, 117.4, 107.0, 70.5, 67.6, 22.5, 20.3, 

10.4, 9.1; IR (film) �max 3315, 2964, 2930, 1767, 1713, 1526, 1406, 1371, 1231, 1192, 1084, 

1024, 903, 752 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for C23H24NO7, 426.1553; found, 

426.1549. 

 

127c 

3-(((Benzyloxy)carbonyl)amino)-6-isopropoxy-8-methyl-2-oxo-2H-chromen-7-yl acetate 

(127c): A solution of 23c (30.0 mg, 0.078 mmol) in anhydrous pyridine (0.75 mL) was treated 

with acetic anhydride (0.25 mL). After 12 h, the solvent was removed and the residue purified 

via column chromatography (SiO2, 40:1, CH2Cl2:Acetone) to afford 127c as a colorless 
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amorphous solid (29.0 mg, 87%): 1H NMR (CD2Cl2, 400 MHz) � 8.29 (s, 1H), 7.65 (s, 1H), 

7.47–7.39 (m, 5H), 6.94 (s, 1H), 5.26 (s, 2H), 4.58–4.53 (m, 1H), 2.36 (s, 3H), 2.29 (s, 3H), 1.36 

(s, 3H), 1.35 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 168.5, 158.4, 153.1, 146.9, 142.3, 140.8, 

135.5, 128.7 (2C), 128.6, 128.3 (2C), 123.7, 121.3, 120.5, 117.4, 108.7, 71.7, 67.6, 21.9 (2C), 

20.4, 9.17; IR (film) �max 2978, 2930, 2359, 2341, 1767, 1711, 1524, 1398, 1232, 1192, 1080, 

1022, 903 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd for C23H24NO7, 426.1553; found, 426.1549. 

 

127d 

3-(((Benzyloxy)carbonyl)amino)-5-methoxy-8-methyl-2-oxo-2H-chromen-7-yl acetate 

(127d): A solution of 23d (30.0 mg, 0.084 mmol) in anhydrous pyridine (0.75 mL) was treated 

with acetic anhydride (0.25 mL). After 12 h, the solvent was removed and the residue purified 

via column chromatography (SiO2, 40:1, CH2Cl2:Acetone) to afford 127d as a colorless 

amorphous solid (18.2 mg, 54%): 1H NMR (CDCl3, 500 MHz) � 7.47 (s, 1H), 7.36–7.28 (m, 

5H), 6.61 (s, 1H), 6.42 (s, 1H), 5.16 (s, 2H), 3.81 (s, 3H), 2.29 (s, 3H), 2.11 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 168.9, 158.5, 153.0, 150.1, 149.1, 144.9, 135.6, 128.7, 128.6, 128.5, 128.3, 

128.2, 122.1, 116.8, 110.7, 67.5, 56.0, 29.7, 21.0, 20.8, 8.5; IR (film) �max 3402, 3319, 2953, 

2926, 1767, 1715, 1524, 1360, 1204, 1095, 1022, 765 cm-1; HRMS (ESI+) m/z: [M + H]+ calcd 

for C21H20NO7, 398.1240; found, 398.1263. 
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127e 

8-Benzyl-3-(((benzyloxy)carbonyl)amino)-2-oxo-2H-chromen-7-yl acetate (127e): A 

solution of 23e (50.0 mg, 0.12 mmol) in anhydrous pyridine (0.75 mL) was treated with acetic 

anhydride (0.25 mL). After 12 h, the solvent was removed and the residue purified via column 

chromatography (SiO2, 100:1, CH2Cl2:Acetone) to afford 127e as a colorless amorphous solid 

(48.0 mg, 87%): 1H NMR (CDCl3, 500 MHz) � 8.23 (bs, 1H), 7.49 (s, 1H), 7.34–7.24 (m, 5H), 

7.23–7.15 (m, 2H), 7.11–7.08 (m, 1H), 7.04–7.02 (m, 2H), 7.00 (d, J = 8.5, 1H), 6.94 (d, J = 8.5, 

1H), 5.23 (s, 2H), 5.16 (s, 2H), 2.19 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 168.9, 158.1, 153.1, 

150.1, 148.3, 139.2, 138.7, 135.4, 128.6, 128.5 (2C), 128.3, 128.2, 127.4, 126.2, 125.9, 123.6, 

121.5, 121.1, 120.4, 120.0, 67.7, 30.7, 29.5, 20.9, 20.8; IR (film) �max 3400, 3285, 3030, 2939, 

2359, 2341, 1767, 1710, 1693, 1522, 1366, 1198, 1173, 1038, 1030, 696 cm-1; HRMS (ESI+) 

m/z: [M + H]+ calcd for C26H22NO6, 444.1447; found, 444.1476. 

 

127f 

3-(((Benzyloxy)carbonyl)amino)-2-oxo-8-phenyl-2H-chromen-7-yl acetate (127f): A 

solution of 23f (50.0 mg, 0.13 mmol) in anhydrous pyridine (0.75 mL) was treated with acetic 

anhydride (0.25 mL). After 12 h, the solvent was removed and the residue purified via column 

chromatography (SiO2, 100:1, CH2Cl2:Acetone) to afford 127f as a yellow amorphous solid 



 250 

(46.0 mg, 83%): 1H NMR (CD2Cl2, 400 MHz) � 8.40 (s, 1H), 7.61 (s, 1H), 7.58 (d, J = 8.5 Hz, 

1H), 7.55–7.37 (m, 5H), 7.26–7.24 (m, 2H), 7.17 (d, J = 8.5 Hz, 1H), 7.11 (d, J = 8.2 Hz, 1H), 

5.27 (s, 2H), 2.03 (s, 3H), 1.98 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 169.2, 158.1, 153.1, 

150.1, 149.1, 130.4, 130.0, 129.6, 128.7, 128.6 (2C), 128.3, 128.0, 127.8, 127.0, 123.7, 120.8, 

120.5 (2C), 120.0, 118.2, 67.7, 29.5, 20.5 (2C); IR (film) �max 2920, 2851, 2359, 1767, 1717, 

1520, 1366, 1196, 1043, 750 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for C25H19NNaO6, 

452.1110; found, 452.1111. 

 

127g 

3-(((Benzyloxy)carbonyl)amino)-8-methoxy-2-oxo-2H-chromen-7-yl acetate (127g): A 

solution of 23g14 (60 mg, 0.18 mmol) in anhydrous pyridine (2.25 mL) was treated with acetic 

anhydride (0.75 mL). After 12 h, the solvent was removed and the residue purified via column 

chromatography (SiO2, 40:1, CH2Cl2:Acetone) to afford 127g as a colorless amorphous solid (67 

mg, 99%): 1H NMR (CDCl3, 500 MHz) � 8.29 (s, 1H), 7.59 (s, 1H), 7.42–7.34 (m, 5H), 7.18 (d, 

J = 8.5 Hz, 1H), 7.00 (d, J = 8.5 Hz, 1H), 5.23 (s, 2H), 4.01 (s, 3H), 2.36 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 168.9, 157.6, 153.2, 144.0, 143.5, 139.5, 135.5, 128.8 (2C), 128.7, 128.4 

(2C), 123.8, 121.8, 121.2, 119.8, 119.2, 67.8, 61.8, 20.8; IR (film) �max 3409, 3352, 3312, 3088, 

3038, 2945, 2837, 2359, 2332, 1765, 1710, 1533, 1383, 1366, 1238, 1202, 1045, 698 cm-1; 

HRMS (ESI+) m/z: [M + Na]+ calcd for C20H17NNaO7, 406.0903; found, 406.0928. 
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128a 

3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl acetate (128a): Palladium on carbon (10%, 43 mg) was added to 127a (216 mg, 

0.54 mmol) in anhydrous THF (3.6 mL) and the solution was placed under an atmosphere of H2. 

After 12 h, the solution was filtered through SiO2 (40:1, CH2Cl2:Acetone) and the eluent was 

concentrated to afford a yellow solid, which was used without further purification (142 mg, 

99%).  

A solution of 3',6-dimethoxy-[1,1'-biphenyl]-3-carbonyl chloride170 (130 mg, 0.47 mmol), in 

anhydrous THF (2.7 mL), was added to a solution of the amine (123 mg, 0.47 mmol) and 

anhydrous triethylamine (0.13 mL, 0.94 mmol) in anhydrous THF (2.7 mL). After 12 h, the 

solvent was removed and the residue purified via column chromatography (SiO2, 40:1, 

CH2Cl2:Acetone) to afford 128a as a colorless amorphous solid (129 mg, 55%): 1H NMR 

(CD2Cl2, 400 MHz) � 8.84 (s, 1H), 8.80 (s, 1H), 7.97 (dd, J = 8.5, 2.5 Hz, 1H), 7.92 (d, J = 2.5 

Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.16–7.11 (m, 3H), 7.01 (s, 1H), 6.97–6.95 (m, 1H), 3.94 (s, 

3H), 3.90 (s, 3H), 3.88 (s, 3H), 2.38 (s, 3H), 2.32 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 168.6, 

165.8, 160.0, 159.5, 159.2, 148.9, 142.8, 140.0, 138.7, 131.2, 130.2, 129.3, 128.4, 126.0, 124.2, 

123.3, 122.2, 120.6, 117.8, 115.4, 113.3, 111.2, 106.6, 56.4, 56.1, 55.5, 20.6, 9.3; IR (film) �max 

3404, 2926, 2853, 1765, 1713, 1670, 1603, 1522, 1385, 1242, 1204, 1180, 1094, 1022, 571 cm-1; 

HRMS (ESI+) m/z: [M + H]+ calcd for C28H26NO8, 504.1658; found, 504.1625. 
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128b 

3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-6-propoxy-2H-

chromen-7-yl acetate (128b): Palladium on carbon (20%, 11 mg) was added to 127b (56 mg, 

0.13 mmol) in anhydrous THF (0.90 mL) and the solution was placed under an atmosphere of 

H2. After 12 h, the solution was filtered through SiO2 (40:1, CH2Cl2:Acetone) and the eluent was 

concentrated to afford a yellow solid, which was used without further purification (38.0 mg, 

99%).  

EDCI (62.5 mg, 0.33 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (67.4 mg, 0.26 

mmol) were added to the amine (38.0 mg, 0.13 mmol) in 30% pyridine/CH2Cl2 (2.00 mL). After 

12 h, the solvent was concentrated and the residue purified via column chromatography (SiO2, 

100:1 CH2Cl2:Acetone) to afford a 128b as a colorless solid (34.0 mg, 49%): 1H NMR (CD2Cl2, 

400 MHz) � 8.82 (s, 1H), 8.80 (s, 1H), 7.96 (dd, J = 8.6, 2.4 Hz, 1H), 7.91 (d, J = 2.3 Hz, 1H), 

7.39 (t, J = 7.8 Hz, 1H), 7.15–7.11 (m, 3H), 6.99–6.95 (m, 2H), 4.02 (t, J = 8.0 Hz, 2H), 3.94 (s, 

3H), 3.83 (s, 3H), 2.38 (s, 3H), 2.33 (s, 3H), 1.86–1.81 (m, 2H), 1.07 (t, J = 7.4 Hz, 3H); 13C 

NMR (CDCl3, 125 MHz) � 167.4, 164.5, 158.8, 158.3, 158.0, 147.1, 141.5, 139.1, 137.5, 130.0, 

129.0, 128.2, 127.2, 124.9, 122.8, 122.2, 121.0, 119.3, 116.5, 114.2, 112.1, 110.0, 106.2, 69.4, 

54.9, 54.3, 21.4, 19.3, 9.4, 8.1; IR (film) �max 3404, 2964, 2935, 2837, 1765, 1711, 1672, 1603, 

1526, 1501, 1443, 1242, 1204, 1180, 1094, 1022, 906, 735 cm-1; HRMS (ESI+) m/z: [M + H]+ 

calcd for C30H30NO8, 532.1971; found, 532.1970. 
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128c 

3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-isopropoxy-8-methyl-2-oxo-2H-

chromen-7-yl acetate (128c): Palladium on carbon (20%, 5.80 mg) was added to 127c (29.0 mg, 

0.068 mmol) in anhydrous THF (0.50 mL) and the solution was placed under an atmosphere of 

H2. After 12 h, the solution was filtered through SiO2 (40:1, CH2Cl2:Acetone) and the eluent was 

concentrated to afford a yellow solid, which was used without further purification (20.0 mg, 

99%).  

EDCI (32.7 mg, 0.17 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (35.3 mg, 0.14 

mmol) were added to the amine (20.0 mg, 0.068 mmol) in 30% pyridine/CH2Cl2 (1.00 mL). 

After 12 h, the solvent was concentrated and the residue purified via column chromatography 

(SiO2, 40:1 CH2Cl2:Acetone) to afford a 128c as a colorless solid (16.4 mg, 45%): 1H NMR 

(CD2Cl2, 400 MHz) � 8.82 (s, 1H), 8.80 (s, 1H), 7.96 (dd, J = 8.8, 2.4 Hz, 1H), 7.91 (d, J = 2.4 

Hz, 1H), 7.41–7.36 (m, 2H), 7.14 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 2.4 Hz, 1H), 7.01 (s, 1H), 6.96 

(dd, J = 8.8, 2.4 Hz, 1H), 4.62–4.56 (m, 1H), 3.94 (s, 3H), 3.88 (s, 3H), 2.37 (s, 3H), 2.32 (s, 

3H), 1.38 (s, 3H), 1.36 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 167.5, 164.6, 158.9, 158.3, 145.9, 

141.5, 140.0, 137.5, 131.9, 130.6, 130.1, 129.0, 128.2, 127.2, 124.9, 122.8, 122.3, 121.0, 119.5, 

116.5, 114.2, 112.1, 111.9, 110.0, 70.6, 54.9, 54.3, 20.9, 19.3, 8.2; IR (film) �max 2976, 2932, 

2837, 2359, 1767, 1713, 1674, 1603, 1526, 1501, 1391, 1242, 1204, 1182, 908, 735 cm-1; HRMS 

(ESI+) m/z: [M + H]+ calcd for C30H30NO8, 532.1971; found, 532.1982. 
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128d 

3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-5-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl acetate (128d): Palladium on carbon (20%, 3.64 mg) was added to 127d (18.2 

mg, 0.046 mmol) in anhydrous THF (0.31 mL) and the solution was placed under an atmosphere 

of H2. After 12 h, the solution was filtered through SiO2 (40:1, CH2Cl2:Acetone) and the eluent 

was concentrated to afford a yellow solid, which was used without further purification (12.1 mg, 

99%).  

EDCI (22.0 mg, 0.11 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (23.7 mg, 0.092 

mmol) were added to the amine (12.1 mg, 0.046 mmol) in 30% pyridine/CH2Cl2 (1.00 mL). 

After 12 h, the solvent was concentrated and the residue purified via column chromatography 

(SiO2, 40:1 CH2Cl2:Acetone) to afford a 128d as a colorless solid (9.0 mg, 39%): 1H NMR 

(CD2Cl2, 400 MHz) � 9.06 (s, 1H), 8.73 (s, 1H), 7.96 (dd, J = 8.5, 2.4, 1H), 7.93–7.89 (m, 1H), 

7.39 (t, J = 8.0, 1H), 7.18–7.12 (m, 3H), 6.97–6.95 (m, 1H), 6.60 (s, 1H), 3.97 (s, 3H), 3.95 (s, 

3H), 3.88 (s, 3H), 2.38 (s, 3H), 2.22 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 167.9, 164.3, 158.8, 

158.1, 153.0, 149.3, 148.3, 144.2, 137.5, 130.1, 130.0, 128.9, 128.2, 127.1, 125.0, 121.0, 117.8, 

114.2, 112.2, 110.8, 100.0, 55.0, 54.9, 54.3, 54.2, 28.7, 19.8, 7.5; IR (film) �max 3404, 2961, 

2934, 2841, 2359, 2332, 1767, 1717, 1605, 1526, 1362, 1240, 1204, 1095, 1022 cm-1; HRMS 

(ESI+) m/z: [M + Na]+ calcd for C28H25NNaO8, 526.1478; found, 526.1468. 
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128e 

8-Benzyl-3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-2-oxo-2H-chromen-7-yl 

acetate (128e): Palladium on carbon (20%, 9.6 mg) was added to 127e (48.0 mg, 0.11 mmol) in 

anhydrous THF (1.30 mL) and the solution was placed under an atmosphere of H2. After 12 h, 

the solution was filtered through SiO2 (40:1, CH2Cl2:Acetone) and the eluent was concentrated to 

afford a yellow solid, which was used without further purification (33.5 mg, 99%).  

EDCI (51.9 mg, 0.27 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (55.9 mg, 0.22 

mmol) were added to the amine (33.5 mg, 0.11 mmol) in 30% pyridine/CH2Cl2 (2.00 mL). After 

12 h, the solvent was concentrated and the residue purified via column chromatography (SiO2, 

100:1 CH2Cl2:Acetone) to afford a 128e as a colorless solid (13.1 mg, 22%): 1H NMR (Acetone-

d6, 400 MHz) � 8.87 (s, 1H), 8.68 (s, 1H), 8.04 (dd, J = 8.6, 2.2, 1H), 7.98 (d, J = 2.2, 2H), 7.59 

(d, J = 8.5, 1H), 7.35 (t, J = 8.0, 1H), 7.29–7.08 (m, 7H), 6.95–6.92 (m, 2H), 4.14 (s, 2H), 3.92 

(s, 3H), 3.84 (s, 3H), 2.26 (s, 3H); 13C NMR (500, 125 MHz) � 168.3, 167.8, 157.4, 148.8, 147.5, 

137.6, 129.9 (2C), 127.8 (2C), 127.5 (2C), 127.4 (4C), 125.4 (4C), 125.2 (4C), 122.4, 122.2, 

120.5, 119.0, 116.8, 28.7, 28.4, 23.7, 19.8; IR (film) �max 3339, 3084, 3030, 2959, 2359, 2330, 

1749, 1713, 1674, 1599, 1531, 1364, 1209, 1184, 1028, 798 cm-1; HRMS (ESI+) m/z: [M + Na]+ 

calcd for C33H27NNaO7, 572.1685; found, 550.1738. 
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128f 

3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-2-oxo-8-phenyl-2H-chromen-7-yl 

acetate (128f): Palladium on carbon (20%, 9.20 mg) was added to 127f (46 mg, 0.11 mmol) in 

anhydrous THF (0.72 mL) and the solution was placed under an atmosphere of H2. After 12 h, 

the solution was filtered through SiO2 (40:1, CH2Cl2:Acetone) and the eluent was concentrated to 

afford a yellow solid, which was used without further purification (31.6 mg, 99%). 

EDCI (51.3 mg, 0.27 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic acid (55.3 mg, 0.21 

mmol) were added to the amine (31.6 mg, 0.11 mmol) in 30% pyridine/CH2Cl2 (2.00 mL). After 

12 h, the solvent was concentrated and the residue purified via column chromatography (SiO2, 

100:1 CH2Cl2:Acetone) to afford a 128f as a colorless solid (6.70 mg, 12%): 1H NMR (Acetone-

d6, 400 MHz) � 9.12 (s, 1H), 8.83 (s, 1H), 8.03 (dd, J = 8.6, 2.4, 1H), 7.95 (d, J = 2.4, 1H), 7.79 

(d, J = 8.6, 1H), 7.52–7.34 (m, 8H), 7.27 (dd, J = 8.6, 3.2, 2H), 6.95–6.91 (m, 1H), 3.91 (s, 3H), 

3.83 (s, 3H), 1.99 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 168.1, 164.7, 158.9, 158.3, 157.6, 

148.1, 146.6, 137.5, 130.1 (2C), 129.4 (2C), 129.0, 128.2, 127.8, 127.3 (2C), 127.2, 126.3, 124.8, 

123.0, 122.9, 121.8, 121.0, 119.0, 117.4, 114.2, 112.2, 110.0, 54.9, 54.3, 19.5; IR (film) �max 

2961, 2930, 2359, 2341, 1765, 1717, 1672, 1601, 1522, 1501, 1366, 1259, 1202, 1180, 1080, 

1020, 908, 698 cm-1; HRMS (ESI+) m/z: [M + Na]+ calcd for C32H25NNaO7, 558.1529; found, 

558.1538. 
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128g 

3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl 

acetate (128g): Palladium on carbon (10%, 5 mg) was added to 127g (25 mg, 0.065 mmol) in 

anhydrous THF (0.44 mL) and the solution was placed under an atmosphere of H2. After 12 h, 

the solution was filtered through SiO2 (40:1, CH2Cl2:Acetone) and the eluent was concentrated to 

afford a yellow solid, which was used without further purification (16 mg, 99%).  

A solution of 3',6-dimethoxy-[1,1'-biphenyl]-3-carbonyl chloride170 (18 mg, 0.064 mmol), in 

anhydrous THF (0.37 mL), was added to a solution of the amine (16 mg, 0.064 mmol) and 

anhydrous triethylamine (18 μL, 0.13 mmol), dissolved in anhydrous THF (0.37 mL). After 12 h, 

the solvent was removed and the residue purified via column chromatography (SiO2, 40:1, 

CH2Cl2:Acetone) to afford 128g as a colorless amorphous solid (16 mg, 50%): 1H NMR (CDCl3, 

500 MHz) � 8.83 (s, 1H), 8.75 (s, 1H), 7.92 (dd, J = 8.5, 2.5 Hz, 1H), 7.89 (d, J = 2.5 Hz, 1H), 

7.36 (t, J = 8.0 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.13–7.02 (m, 4H), 6.94–6.92 (m, 1H), 4.04 (s, 

3H), 3.90 (s, 3H), 3.86 (s, 3H), 2.37 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 169.0, 165.8, 160.1, 

159.5, 158.3, 144.3, 143.7, 139.6, 138.6, 131.3, 130.2, 129.4, 128.4, 125.9, 124.0, 123.2, 122.3, 

122.1, 120.0, 119.4, 115.4, 113.3, 111.2, 61.8, 56.0, 55.5, 20.9; IR (film) �max 3398, 3097, 2993, 

2926, 2853, 2357, 2339, 1765, 1666, 1599, 1520, 1456, 1362, 1244, 1202, 1078, 1022, 905, 802, 

734 cm-1; HRMS (ESI+) m/z: [M + 2H]+ calcd for C27H25NO8, 491.1580; found, 491.1537. 
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130 

3-(Chloromethyl)-4-methoxy-2-methylbenzaldehyde (130): Zinc (II) chloride (219 mg, 1.61 

mmol) was added to a solution of 4-methoxy-2-methylbenzaldehyde (161 mg, 1.07 mmol) in 

37% formaldehyde (2.0 mL), then heated at reflux, while bubbling HCl gas into the solution, for 

10 min. Once cool, the reaction mixture was poured into ice and Et2O (3 x 15 mL) was used to 

extract the solution. The combined organic extracts were washed with saturated aqueous 

NaHCO3, saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 6:1 Hexane: EtOAc) to afford 130 as a colorless 

amorphous solid (105 mg, 49%): 1H NMR (CDCl3, 400 MHz) � 10.12 (s, 1H), 7.80 (s, 1H), 6.74 

(s, 1H), 4.63 (s, 2H), 3.95 (s, 3H), 2.67 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 191.3, 161.7, 

135.2, 134.0, 128.3, 125.7, 108.4, 56.0, 37.0, 14.0; HRMS (ESI+) m/z: [M + H]+ calcd for 

C10H12ClO2, 199.0526; found, 199.0560. 

 

131 

3-(Hydroxymethyl)-4-methoxy-2-methylbenzaldehyde (131): Calcium carbonate (459 mg, 

4.58 mmol) was added to a solution of benzaldehyde 130 (455 mg, 2.29 mmol) in 40% aqueous 

acetone (10.2 mL), then heated at reflux for 1 h. Once cool, solvent was removed and the residue 

was resuspended in Et2O, washed with water, dried (Na2SO4), filtered, and concentrated. The 

residue was purified via column chromatography (SiO2, 6:1 → 1:1 Hexane: EtOAc) to afford 



 259 

131 as a colorless amorphous solid (333 mg, 81%): 1H NMR (CDCl3, 400 MHz) � 10.21 (s, 1H), 

7.82 (d, J = 8.6 Hz, 1H), 6.92 (d, J = 8.6 Hz, 1H), 4.84 (s, 2H), 3.97 (s, 3H), 2.76 (s, 3H); 13C 

NMR (CDCl3, 125 MHz) � 191.6, 162.1, 141.5, 134.6 (2C), 128.4, 108.1, 56.2, 55.8, 14.2; 

HRMS (ESI+) m/z: [M + H]+ calcd for C10H13O3, 181.0865; found, 181.0864. 

 

132 

3-(Hydroxymethyl)-4-methoxy-2-methylphenol (132): A solution of 131 (1.54 g, 10.3 

mmol) in anhydrous CH2Cl2 (3.30 mL) was slowly added to mCPBA (70%) (3.79 g, 15.4 mmol) 

in anhydrous CH2Cl2 (19.2 mL) at 0°C. The resulting solution was warmed to rt, then refluxed 

for 12 h. After cooling to rt, the resulting solution was washed with saturated aqueous NaHCO3 

solution (3 × 30 mL) and 10% aqueous Na2S2O3 (30 mL). Combined organic fractions were 

dried (Na2SO4), filtered, and concentrated. The residue was re-dissolved in MeOH (10.0 mL) and 

stirred with excess 10% aqueous NaOH for 3 h at rt. The pH was adjusted to 2 with 6M HCl and 

the solution was extracted with CH2Cl2 (3 × 30 mL). Combined organic fractions were dried 

(Na2SO4), filtered, and concentrated. The residue was purified via column chromatography 

(SiO2, 3:1 → 1:1 Hexane: EtOAc) to afford 132 as a colorless amorphous solid (1.15 g, 81%): 1H 

NMR (CDCl3, 400 MHz) � 6.71 (d, J = 8.7 Hz, 1H), 6.63 (d, J = 8.7 Hz, 1H), 5.18 (bs, 1H), 4.78 

(s, 2H), 3.82 (s, 3H), 2.28 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 152.3, 147.9, 127.6, 124.4, 

114.5, 108.6, 57.6 (2C), 11.5; HRMS (ESI+) m/z: [M + Na]+ calcd for C9H12O3, 191.0684; found, 

191.0694. 
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134 

Benzyl (6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)carbamate (134): A solution of 4-

methoxy-2-methylphenol (584 mg, 4.22 mmol) and eneamine 22 (1.47 g, 5.28 mmol) in glacial 

acetic acid (26.3 mL) was heated to reflux for 40 h. Upon cooling to rt, the solution was 

extracted with EtOAc (3 × 30 mL); combined organic fractions were dried (Na2SO4), filtered, 

and concentrated. The residue was purified via column chromatography (SiO2, 40:1 

CH2Cl2:Acetone) to afford 134 as a red amorphous solid (106 mg, 7.0%): 1H NMR (CDCl3, 400 

MHz) � 7.41–7.36 (m, 5H), 6.73 (d, J = 8.7 Hz, 2H), 6.66–6.63 (m, 1H), 5.13 (s, 2H), 4.45 (s, 

1H), 3.77 (s, 3H), 2.26 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 160.2, 158.2, 152.1, 151.0, 146.8, 

138.1, 136.0, 127.7, 127.5, 127.4, 127.3, 127.2, 123.9, 121.6, 114.5, 100.1, 66.6, 54.6, 13.1; 

HRMS (ESI+) m/z: [M + Na]+ calcd for C19H17NNaO5, 362.1004; found, 362.0995 

 

137 

Methyl 2-hydroxy-5-(methoxymethoxy)benzoate (137):243 Chloromethyl methyl ether (0.18 

mL, 2.38 mmol) was added dropwise to a solution of 136262 (200 mg, 1.19 mmol) and potassium 

carbonate (164 mg, 1.19 mmol) in anhydrous N,N-dimethylformamide (3.30 mL) at 0oC, then 

warmed to rt over 12 h. The reaction was quenched by the addition of saturated aqueous NH4Cl 

solution and extracted with EtOAc (3 × 20 mL). The combined organic fractions were washed 

with saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 3:1 Hexane:EtOAc) to give 137 as a colorless oil (92 
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mg, 36%): 1H NMR (CDCl3, 400 MHz) � 10.46 (s, 1H), 7.51 (d, J = 3.0 Hz, 1H), 7.20 (dd, J = 

9.0, 3.0 Hz, 1H), 6.93 (d, J = 9.0 Hz, 1H), 5.14 (s, 2H), 3.96 (s, 3H), 3.50 (s, 3H). 

 

139 

2-Methoxy-5-(methoxymethoxy)benzoic acid (139): Sodium hydride (121 mg, 3.02 mmol) 

was added to phenol 137 (320 mg, 1.51 mmol) in anhydrous N,N-dimethylformamide (4.20 mL) 

at 0°C. After 30 min, iodomethane (0.19 mL, 3.02 mmol) was added at -78oC and the resulting 

solution was warmed to rt over 12 h. The reaction was cooled to 0°C, quenched by the addition 

of saturated aqueous NaHCO3, and extracted with EtOAc (3 × 30 mL). Combined organic 

fractions were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. 

The residue was purified via column chromatography (SiO2, 4:1 Hexane:EtOAc) to afford the 

benzoate as a yellow oil (312 mg, 91%), which was used without further purification. 

Lithium hydroxide (154 mg, 6.41 mmol) was added to a solution of benzoate (290 mg, 1.28 

mmol) in 3:1:1 THF:MeOH:H2O (12.9 mL). After 12 h, the solution was concentrated and the 

aqueous residue was acidified, and then extracted with EtOAc (3 x 15 mL). The combined 

organic layers were next extracted with saturated aqueous NaHCO3 (3 x 15 mL), and then the 

aqueous extracts were acidified. Finally, EtOAc (3 x 15 mL) was used to extract the acid 

product, and the combined organic extracts were washed with saturated aqueous NaCl, dried 

(Na2SO4), filtered, and concentrated to afford 139 as a colorless amorphous solid (255 mg, 94%, 

86% over 3 steps): 1H NMR (CDCl3, 400 MHz) � 7.84 (d, J = 3.0 Hz, 1H), 7.27 (dd, J = 9.0, 3.0 

Hz, 1H), 7.01 (d, J = 9.0 Hz, 1H), 5.17 (s, 2H), 4.06 (s, 3H), 3.49 (s, 3H); 13C NMR (CDCl3, 125 
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MHz) � 165.0, 153.0, 151.9, 123.4, 119.7, 118.3, 112.7, 95.2, 57.2, 56.0; HRMS (ESI+) m/z: [M 

+ Na]+ calcd for C10H12NaO5, 235.0582; found, 235.0596. 

 

143 

Methyl 3-amino-8-methyl-2-oxo-2H-chromene-7-carboxylate (143): A solution of 3-

hydroxy-2-methylbenzoic acid (547 mg, 3.59 mmol) and eneamine 22 (1.0 g, 3.59 mmol) in 

glacial acetic acid (18.7 mL) was heated to reflux for 40 h. Upon cooling to rt, the solution was 

extracted with EtOAc (3 × 30 mL); combined organic fractions were dried (Na2SO4), filtered, 

and concentrated to afford a brown solid, which was used without further purification (1.27 g, 

99%). 

Thionyl chloride (10.3 μL, 0.14 mmol) was added dropwise to a solution of crude coumarin 

(25 mg, 0.071 mmol) in anhydrous MeOH (0.7 mL) at 0oC, then warmed to rt slowly over 12 h. 

Solvent was concentrated and the residue was resuspended in EtOAc (15 mL), washed with 

saturated aqueous NaHCO3, saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. 

The residue was purified via column chromatography (SiO2, 3:1 Hexane: EtOAc) to afford 143 

as a colorless amorphous solid (10.3 mg, 52% over 2 steps): 1H NMR (CDCl3, 400 MHz) � 7.41 

(d, J = 6.7 Hz, 1H), 7.10 (s, 1H), 6.99 (s, 1H), 6.09 (bs, 2H), 3.92 (s, 3H), 2.47 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 167.0, 152.7, 130.1, 124.6 (2C), 123.9, 121.0 (2C), 116.8, 50.5, 11.0; 

HRMS (ESI+) m/z: [M + Na]+ calcd for C12H11NNaO4, 256.0586; found, 256.0570. 
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145 

3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromene-7-

carboxylic acid (145): EDCI (821 mg, 4.28 mmol) and 3',6-dimethoxybiphenyl-3-carboxylic 

acid (1.11 g, 4.28 mmol) were added to aniline 142 (397 mg, 1.43 mmol) in 30% 

pyridine/CH2Cl2 (28.5 mL). After 12 h, the solvent was concentrated to afford 144 as a colorless 

amorphous solid (732 mg, 99%), which was used without further purification. 

Lithium hydroxide (704 mg, 9.40 mmol) was added to a solution of benzoate (975 mg, 1.88 

mmol) in 3:1:1 THF:MeOH:H2O (18.8 mL). After 12 h, the solution was concentrated and the 

aqueous residue was acidified, and then extracted with EtOAc (3 x 25 mL). The combined 

organic layers were next extracted with saturated aqueous NaHCO3 (3 x 25 mL), and then the 

aqueous extracts were acidified. Finally, EtOAc (3 x 25 mL) was used to extract the acid 

product, and the combined organic extracts were washed with saturated aqueous NaCl, dried 

(Na2SO4), filtered, and concentrated to afford 145 as a colorless amorphous solid (151 mg, 23% 

over 2 steps): 1H NMR (CDCl3, 400 MHz) � 7.43 (d, J = 7.8 Hz, 1H), 7.17–7.11 (m, 3H), 6.96 

(d, J = 7.8 Hz, 1H), 6.53–6.50 (m, 2H), 6.47–6.45 (m, 3H), 3.92 (s, 3H), 3.80 (s, 3H), 2.48 (s, 

3H); 13C NMR (CDCl3, 125 MHz) � 168.6. 160.9, 156.8, 154.3, 131.8 (3C), 130.1, 126.2, 125.5, 

122.7, 118.4, 107.8 (4C), 106.4 (4C), 101.5 (3C), 55.3 (2C), 12.6; HRMS (ESI+) m/z: [M + H]+ 

calcd for C26H22NO7, 460.1396; found, 460.1376. 
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146 

3-(((Benzyloxy)carbonyl)amino)-8-methyl-2-oxo-2H-chromen-7-yl acetate (146): A 

solution of coumarin 31102 (182 mg, 0.56 mmol) in pyridine (4.2 mL) was treated with acetic 

anhydride (1.4 mL). After 12 h, the solvent was concentrated and the residue purified via column 

chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 146 as a colorless amorphous solid (203 

mg, 99%): 1H NMR (CDCl3, 400 MHz) � 8.32 (s, 1H), 7.61 (s, 1H), 7.43–7.34 (m, 6H) 7.03 (d, J 

= 8.8 Hz, 1H), 5.26 (s, 2H), 2.39 (s, 3H), 2.30 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 168.9, 

158.3, 153.1, 149.8 (2C), 148.5, 135.4, 128.7, 128.6, 128.3 (2C), 125.1, 123.4, 121.1, 119.2, 

119.0, 117.6, 67.6, 20.8, 9.0; HRMS (ESI+) m/z: [M + Na]+ calcd for C20H17NNaO6, 390.0954; 

found, 390.0957. 

 

147 

3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yl 

acetate (147): Palladium on carbon (10%, 160 mg) was added to 146 (1.6 g, 4.36 mmol) in 

anhydrous THF (50 mL) and the solution was placed under an atmosphere of H2. After 12 h, the 

solution was filtered through SiO2 (40:1 CH2Cl2:Acetone) and the eluent was concentrated to 

afford a yellow solid, which was used without further purification (1.01 g, 99%).  

A solution of 3',6-dimethoxy-[1,1'-biphenyl]-3-carbonyl chloride170 (1.2 g, 4.36 mmol), in 

anhydrous THF (25 mL), was added to a solution of the amine (1.01 g, 4.31 mmol) and 
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anhydrous triethylamine (6.0 mL, 8.72 mmol) in anhydrous THF (25 mL). After 12 h, the solvent 

was concentrated and the residue purified via column chromatography (SiO2, 40:1 

CH2Cl2:Acetone) to afford 147 as a colorless amorphous solid (1.68 g, 81%): 1H NMR (CDCl3, 

500 MHz) � 8.84 (s, 1H), 8.76 (s, 1H), 7.93 (dd, J = 8.5, 2.5 Hz, 1H), 7.90 (d, J = 2.5 Hz, 1H), 

7.41 (d, J = 8.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.14–7.12 (m, 1H), 7.10–7.09 (m, 2H), 7.07–

7.03 (m, 1H), 6.95–6.93 (m, 1H) 3.91 (s, 3H), 3.86 (s, 3H), 2.37 (s, 3H), 2.31 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 168.9, 165.6, 159.9, 159.3, 159.0, 150.0, 148.7, 138.5, 131.1, 130.0, 129.2, 

128.3, 125.8, 125.5, 123.6, 123.2, 122.0, 119.3, 119.0, 117.8, 115.2, 113.2, 111.0, 55.9, 55.3, 

20.8, 9.1; HRMS (ESI+) m/z: [M + Na]+ calcd for C27H23NNaO7, 496.1372; found, 496.1338. 

 

148 

N-(7-hydroxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxy-[1,1'-biphenyl]-3-

carboxamide (148): A solution of 147 (1.68 g, 3.55 mmol) in MeOH (36 mL) at rt was treated 

with triethylamine (3.6 mL, 10%). After 12 h, the solvent was concentrated and the residue 

purified via column chromatography (SiO2, 10:1 CH2Cl2:Acetone) to afford 148 as a yellow 

amorphous solid (1.45 g, 93%): 1H NMR (CDCl3, 500 MHz) � 8.80 (s, 1H), 8.69 (s, 1H), 7.92 

(dd, J = 8.5, 2.0 Hz, 1H), 7.89 (d, J = 2.5 Hz, 1H), 7.37 (t, J = 8.5 Hz, 1H), 7.28 (s, 1H), 7.12 (d, 

J = 8.5 Hz, 1H), 7.10–7.07 (m, 2H), 6.93 (dd, J = 8.5, 2.0 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H), 5.31 

(s, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 2.36 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 165.6, 159.8, 

159.5, 159.3, 155.5, 149.5, 138.6, 131.0, 130.0, 129.2, 128.2, 126.0, 125.9, 124.6, 122.0, 121.5, 

115.2, 113.4, 113.2, 113.0, 111.7, 111.0, 55.9, 55.3, 7.9; HRMS (ESI+) m/z: [M + H]+ calcd for 



 266 

C25H22NO6, 432.1447; found, 432.1443. [M + Na]+ calcd for C25H21NNaO6, 454.1267; found, 

454.1232. 

 

149 

3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yl 

methylcarbamate (149): A solution of 148 (30 mg, 0.070 mmol) in a 1:1 mixture of anhydrous 

CH2Cl2 (1.6 mL) and anhydrous pyridine (1.6 mL) at rt was treated with methylcarbamic 

chloride (9.8 mg, 0.10 mmol). After 12 h, the solvent was concentrated and the residue purified 

via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 149 as a yellow amorphous 

solid (33 mg, 99%): 1H NMR (CDCl3, 500 MHz) � 8.80 (s, 1H), 8.69 (s, 1H), 7.92 (dd, J = 2.5, 

8.8 Hz, 1H), 7.89 (d, J = 2.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.27 (d, J = 8.5 Hz, 1H), 7.12 (dd, 

J = 1.0, 7.5 Hz, 1H) 7.10–7.07 (m, 2H), 6.94 (td, J = 0.5, 2.5 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H), 

5.32 (bs, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.37 (s, 3H), 2.36 (s, 3H); 13C NMR (CDCl3, 125 MHz) 

� 165.6, 159.8, 159.5, 159.3, 155.5, 149.5, 138.6, 131.0, 130.0, 129.2, 128.2, 126.0, 125.9, 124.5, 

122.0, 121.5, 115.2, 113.4, 113.2, 113.0, 111.7 (2C), 111.0, 55.9, 55.3, 29.7, 7.9; HRMS (ESI+) 

m/z: [M + H]+ calcd for C27H25N2O7, 489.1662; found, 489.1674. 

 

150 
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3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yl 

methanesulfonate (150): Methanesulfonyl chloride (22 μL, 0.28 mmol) was added to 148 (30 

mg, 0.070 mmol) in anhydrous pyridine (0.4 mL) at 0°C. The resulting solution was warmed to 

rt and stirred overnight, then diluted with H2O. The desired product was extracted with EtOAc (3 

× 10 mL); combined organic fractions were dried (Na2SO4), filtered, and concentrated. The 

residue was purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 150 as a 

yellow amorphous solid (35 mg, 99%): 1H NMR (CDCl3, 500 MHz) � 8.85 (s, 1H), 8.78 (s, 1H), 

7.93 (dd, J = 8.5, 2.5 Hz, 1H), 7.89 (d, J = 2.5 Hz, 1H), 7.44 (d, J = 8.5 Hz, 1H), 7.38 (t, J = 8.0 

Hz, 1H), 7.31 (d, J = 8.5 Hz, 1H), 7.13 (dd, J = 1.5, 1.0 Hz, 1H), 7.12–7.08 (m, 2H), 6.95 (dd, J 

= 2.5, 0.5 Hz, 1H), 3.91 (s, 3H), 3.86 (s, 3H), 3.27 (s, 3H), 2.49 (s, 3H); 13C NMR (CDCl3, 125 

MHz) � 165.7, 160.0, 159.3, 158.7, 148.7, 147.7, 138.5, 131.1, 130.0, 129.2, 128.3, 125.8, 125.6, 

124.2, 122.5, 122.0, 120.4, 119.3, 118.9, 115.3, 113.1, 111.0, 55.9, 55.3, 38.5, 9.7; HRMS (ESI+) 

m/z: [M + Na]+ calcd for C26H23NNaO8S, 532.1042; found, 532.1031. 

 

151 

3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yl 4-

methylbenzenesulfonate (151): 4-methylbenzene-1-sulfonyl chloride (53 mg, 0.28 mmol) was 

added to 148 (30 mg, 0.070 mmol) in anhydrous pyridine (0.4 mL) at 0°C. The resulting solution 

was warmed to rt and stirred overnight, then diluted with H2O. The desired product was 

extracted with EtOAc (3 × 10 mL); combined organic fractions were dried (Na2SO4), filtered, 

and concentrated. The residue was purified via column chromatography (SiO2, 40:1 
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CH2Cl2:Acetone) to afford 151 as a colorless amorphous solid (40 mg, 99%): 1H NMR (CDCl3, 

500 MHz) � 8.81 (s, 1H), 8.75 (s, 1H), 7.92 (dd, J = 9.0, 2.5 Hz, 1H), 7.88 (d, J = 2.0 Hz, 1H), 

7.75 (dd, J = 6.5, 1.5 Hz, 2H), 7.39–7.33 (m, 4H), 7.13–7.11 (m, 1H), 7.09–7.05 (m, 3H), 6.95–

6.93 (m, 1H), 3.91 (s, 3H), 3.86 (s, 3H), 2.48 (s, 3H), 2.15 (s, 3H); 13C NMR CDCl3, 500 MHz) � 

; 165.6, 160.0, 159.3, 158.8, 148.5 (2C), 145.9, 138.5, 132.5, 131.1, 130.1, 130.0, 129.2, 128.5, 

128.3, 125.6, 125.4, 124.0, 122.7, 122.0, 120.6, 119.6, 118.6, 115.3 (2C), 113. 1 (2C), 111.0, 

55.9, 55.3, 21.8, 9.3; HRMS (ESI+) m/z: [M + H]+ calcd for C32H28NO8S, 586.1536; found, 

586.1500. [M + Na]+ calcd for C32H27NNaO8S, 608.1355; found, 608.1345. 

 

159 

N-(7-hydroxy-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxy-[1,1'-

biphenyl]-3-carboxamide (159): A solution of 128a (174 mg, 0.35 mmol) in MeOH (3.5 mL) 

was treated with triethylamine (0.35 mL). After 12 h, the solvent was removed and the residue 

purified via column chromatography (SiO2, 10:1, CH2Cl2:Acetone) to afford 159 as a yellow 

amorphous solid (158 g, 99%): 1H NMR (CDCl3, 500 MHz) � 8.79 (s, 1H), 8.71 (s, 1H), 7.92 

(dd, J = 8.5, 2.5 Hz, 1H), 7.89 (d, J = 2.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.14–7.06 (m, 3H), 

6.94–6.92 (m, 1H), 6.81 (s, 1H), 6.11 (s, 1H), 3.96 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 2.37 (s, 

3H); 13C NMR (CDCl3, 125 MHz) � 165.7, 159.9, 159.7, 159.5, 146.2, 144.5, 144.2, 138.8, 

131.1, 130.1, 129.3, 128.3, 126.3, 124.7, 122.2, 122.0, 115.4, 113.3, 112.3, 111.9, 111.1, 104.5, 

56.5, 56.0, 55.5, 8.3; IR (film) �max 3408, 2980, 2843, 2359, 2341, 1636, 1533, 1356, 1244, 1015, 

918; HRMS (ESI+) m/z: [M + H]+ calcd for C26H24NO7, 462.1553; found, 462.1529. 
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160 

N-(7-hydroxy-8-methoxy-2-oxo-2H-chromen-3-yl)-3',6-dimethoxy-[1,1'-biphenyl]-3-

carboxamide (160): A solution of 128g (63 mg, 0.13 mmol) in MeOH (1.3 mL) at rt was treated 

with triethylamine (0.13 mL). After 12 h, the solvent was removed and the residue purified via 

column chromatography (SiO2, 10:1, CH2Cl2:Acetone) to afford 160 as a yellow amorphous 

solid (57 mg, 99%): 1H NMR (CDCl3, 500 MHz) � 8.82 (s, 1H), 8.66 (s, 1H), 7.92 (dd, J = 8.5, 

2.5 Hz, 1H), 7.88 (d, J = 2.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 8.5 Hz, 1H), 7.13–

7.07 (m, 3H), 6.97–6.92 (m, 2H), 6.03 (bs, 1H), 4.13 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H); 13C 

NMR (CDCl3, 125 MHz) � 165.7, 160.0, 159.5, 158.7, 150.4, 143.1, 138.7, 133.7, 131.2, 130.1, 

129.4, 128.3, 126.1, 124.8, 123.3, 122.1, 121.7, 115.4, 114.1, 113.3, 113.1, 111.2, 62.1, 56.1, 

55.5; IR (film) �max 3348, 3038, 2970, 2847, 2093, 1643, 1014, 795; HRMS (ESI+) m/z: [M + 

H]+ calcd for C25H22NO7, 448.1396; found, 448.1381. 

 

189a 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yl 

carbamate (189a): A solution of sulfurisocyanatidic chloride (6.0 μL, 0.070 mmol), dissolved in 

anhydrous CH2Cl2 (0.20 mL), was slowly added to 148 (30 mg, 0.070 mmol) in anhydrous 

CH2Cl2 (1.20 mL) at rt. After 2 h, the solvent was removed and the residue was stirred with cold 
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H2O overnight. The solid was collected by filtration, washing with H2O, and thoroughly dried to 

afford 189a as a yellow amorphous solid (19 mg, 56%): 1H NMR (DMSO-d6, 500 MHz) � 9.77 

(s, 1H), 8.59 (s, 1H), 8.01 (dd, J = 9.0, 2.5 Hz, 1H), 7.93 (d, J = 2.5 Hz, 1H), 7.62 (d, J = 8.5 Hz, 

1H), 7.43 (bs, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.27 (d, J = 9.0 Hz, 1H), 7.14–7.09 (m, 4H), 6.97–

6.94 (m, 1H), 3.87 (s, 3H), 3.80 (s, 3H), 2.21 (s, 3H); 13C NMR (DMSO-d6, 125 MHz) � 168.5, 

165.3, 159.2, 159.0, 154.2, 149.1, 138.7, 136.7, 130.1, 129.4, 129.3, 129.2, 127.9, 125.7, 125.6, 

123.2, 121.8, 119.8, 118.4, 116.6, 115.3, 112.6, 111.6, 56.0, 55.2, 8.7; IR (film) �max 3053, 2986, 

2305, 1713, 1603, 1522, 1421, 1367, 1265, 897, 748; HRMS (ESI+) m/z: [M + 2H]+ calcd for 

C26H24N2O7, 476.1584; found, 476.1514. 

 

189b 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl carbamate (189b): A solution of sulfurisocyanatidic chloride (3.8 μL, 0.043 

mmol), dissolved in anhydrous CH2Cl2 (0.12 mL), was slowly added to 159 (20 mg, 0.043 

mmol) in anhydrous CH2Cl2 (0.75 mL) at rt. After 2 h, the solvent was removed and the residue 

was stirred with cold H2O overnight. The solid was collected by filtration, washing with H2O, 

and thoroughly dried to afford 189b as a yellow amorphous solid (11 mg, 50%): 1H NMR 

(CDCl3, 500 MHz) � 8.81 (s, 1H), 8.78 (s, 1H), 7.92 (dd, J = 8.5, 2.5 Hz, 1H), 7.90 (d, J = 2.5 

Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.14–7.07 (m, 4H), 6.95–6.93 (m, 1H), 6.91 (s, 1H), 3.90 (s, 

6H), 3.86 (s, 3H), 2.36 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 165.8, 160.0, 159.5, 159.2, 153.8, 

149.6, 142.8, 139.7, 138.7, 131.2, 130.2, 129.3, 128.4, 126,1, 124.1, 123.3, 122.1, 121.3, 117.8, 
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115.4, 113.3, 111.1, 106.6, 56.5, 56.0, 55.5, 9.2; IR (film) �max 3053, 2986, 2684, 2305, 1421, 

1265, 895, 750, 706; HRMS (ESI+) m/z: [M + 2H]+ calcd for C27H26N2O8, 506.1689; found, 

506.1637. 

 

189c 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl 

carbamate (189c): A solution of sulfurisocyanatidic chloride (11 μL, 0.13 mmol), dissolved in 

anhydrous CH2Cl2 (0.4 mL), was slowly added to 160 (30 mg, 0.066 mmol) in anhydrous 

CH2Cl2 (1.6 mL) at rt. After 2 h, the solvent was removed and the residue was stirred with cold 

H2O overnight. The solid was collected by filtration, washing with H2O, and thoroughly dried to 

afford 189c as a colorless amorphous solid (22 mg, 68%): 1H NMR (DMSO-d6, 500 MHz) � 

9.78 (s, 1H), 8.58 (s, 1H), 8.01 (dd, J = 8.5, 2.5 Hz, 1H), 7.93 (d, J = 2.5 Hz, 1H), 7.49 (d, J = 

8.5 Hz, 1H), 7.46 (bs, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.27 (d, J = 8.5 Hz, 1H), 7.16–7.10 (m, 4H), 

6.97–6.94 (m, 1H), 3.91 (s, 3H), 3.87 (s, 3H), 3.80 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 

165.8, 160.1, 159.5, 158.4, 154.1, 144.3, 143.7, 140.0, 138.7, 131.3, 130.1, 129.3, 128.4, 125.9, 

123.9, 123.2, 122.2, 122.1, 120.3, 119.3, 115.4, 113.3, 111.2, 62.0, 56.1, 55.5; IR (film) �max 

3406, 3271, 3053, 2986, 2359, 2339, 1715, 1672, 1603, 1531, 1502, 1366, 1265, 1082, 897, 737, 

704; HRMS (ESI+) m/z: [M + H]+ calcd for C26H23N2O8, 491.1454; found, 491.1432. 
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190b 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl methylcarbamate (190b): A solution of 159 (20 mg, 0.043 mmol) in anhydrous 

pyridine (2.1 mL) was treated with methylcarbamic chloride (4.4 mg). After 12 h, the solvent 

was removed and the residue purified via column chromatography (SiO2, 40:1, CH2Cl2:Acetone) 

to afford 190b as a yellow amorphous solid (21 mg, 95%): 1H NMR (CDCl3, 500 MHz) � 8.79 

(s, 1H), 8.71 (s, 1H), 7.92 (dd, J = 8.5, 2.5 Hz, 1H), 7.89 (d, J = 2.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 

1H), 7.13–7.06 (m, 3H), 6.95–6.92 (m, 1H), 6.81 (s, 1H), 6.11 (s, 1H), 3.96 (s, 3H), 3.90 (s, 3H), 

3.86 (s, 3H), 3.37 (s, 3H), 2.37 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 165.7, 159.9, 159.7, 

159.4, 146.1, 144.5, 144.2, 138.7 (2C), 131.1, 130.1, 129.3, 128.3, 126.3, 124.7, 122.1, 122.0, 

115.4, 113.3, 112.2, 111.9, 111.1, 105.0, 56.4, 56.0, 55.5, 29.6, 8.3; IR (film) �max 3053, 2986, 

2685, 2359, 2341, 2307, 1684, 1421, 1265, 1022, 897, 746, 704; HRMS (ESI+) m/z: [M + H]+ 

calcd for C28H27N2O8, 519.1767; found, 519.1839. 

 

190c 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl 

methylcarbamate (190c): A solution of 160 (33 mg, 0.074 mmol) in anhydrous pyridine (3.5 
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mL) was treated with methylcarbamic chloride (7.4 mg). After 12 h, the solvent was removed 

and the residue purified via column chromatography (SiO2, 40:1, CH2Cl2:Acetone) to afford 

190c as a yellow amorphous solid (34 mg, 90%): 1H NMR (CDCl3, 500 MHz) � 8.81 (s, 1H), 

8.65 (bs, 1H), 7.97 (bs, 1H), 7.92 (dd, J = 8.5, 2.5 Hz, 1H), 7.88 (d, J = 2.5 Hz, 1H), 7.37 (t, J = 

8.0 Hz, 1H), 7.18 (d, J = 8.5 Hz, 1H), 7.13–7.07 (m, 3H), 6.96 (d, J = 8.5 Hz, 1H), 6.95–6.93 (m, 

1H), 4.12 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 165.7, 160.0, 159.5, 

158.7, 150.4, 143.1, 141.6, 138.7, 133.7, 131.2, 130.1, 129.3, 128.3, 126.1, 124.8, 123.3, 122.1, 

121.7, 115.4, 114.1, 113.3, 113.1, 111.2, 62.1, 56.0, 55.5, 29.9; IR (film) �max 3030, 2851, 2284, 

1693, 1668, 1599, 1520, 1495, 1487, 1371, 1342, 1231, 1161, 1078, 964, 901, 856, 795; HRMS 

(ESI+) m/z: [M + Na]+ calcd for C27H24N2NaO8, 527.1430; found, 527.1403. 

 

191a 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yl 

dimethylcarbamate (191a): A solution of 148 (30 mg, 0.070 mmol) in pyridine (3.0 mL) at rt 

was treated with dimethylcarbamyl chloride (1.0 mL). After 12 h, the solvent was removed and 

the residue purified via column chromatography (SiO2, 40:1, CH2Cl2:Acetone) to afford 191a as 

a colorless amorphous solid (31 mg, 89%): 1H NMR (CDCl3, 500 MHz) � 8.84 (s, 1H), 8.75 (s, 

1H), 7.93 (dd, J = 8.5, 2.5 Hz, 1H), 7.90 (d, J = 2.0 Hz, 1H), 7.40–7.35 (m, 2H), 7.14–7.07 (m, 

4H), 6.95–6.92 (m, 1H), 3.91 (s, 3H), 3.86 (s, 3H), 3.17 (s, 3H), 3.05 (s, 3H), 2.34 (s, 3H); 13C 

NMR (CDCl3, 125 MHz) � 165.8, 160.0, 159.5, 159.3, 154.2, 151.0, 148.9, 138.7, 131.2, 130.1, 

129.3, 128.4, 126.1, 125.5, 123.6, 123.5, 122.2, 119.9, 119.3, 117.4, 115.4, 113.3, 111.2, 56.1. 
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55.5, 37.0, 36.7, 9.1; IR (film) �max 3053, 2986, 2305, 1724, 1421, 1265, 1163, 895, 746, 706; 

HRMS (ESI+) m/z: [M + 2H]+ calcd for C28H28N2O7, 504.1897; found, 504.1822. 

 

191b 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl dimethylcarbamate (191b): A solution of 159 (25 mg, 0.054 mmol) in pyridine 

(2.25 mL) at rt was treated with dimethylcarbamyl chloride (0.75 mL). After 12 h, the solvent 

was removed and the residue purified via column chromatography (SiO2, 40:1, CH2Cl2:Acetone) 

to afford 191b as a yellow amorphous solid (25 mg, 85%): 1H NMR (CDCl3, 500 MHz) � 8.81 

(s, 1H), 8.77 (s, 1H), 7.92 (dd, J = 8.5, 2.5 Hz, 1H), 7.90 (d, J = 2.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 

1H), 7.14–7.07 (m, 3H), 6.95–6.92 (m, 1H), 6.89 (s, 1H), 3.90 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H), 

3.18 (s, 3H), 3.04 (s, 3H), 2.34 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 165.7, 160.0, 159.5, 

159.3, 154.0, 149.7, 143.0, 140.8, 138.7, 131.2, 130.2, 129.3, 128.4, 126.1, 123.9, 123.6, 122.2, 

121.1, 117.3, 115.4, 113.3, 111.1, 106.5, 56.5, 56.0, 55.5, 37.1, 36.8, 9.3; IR (film) �max 3053, 

2986, 2305, 1724, 1713, 1672, 1603, 1522, 1501, 1421, 1383, 1267, 1163, 897, 739, 704; HRMS 

(ESI+) m/z: [M + H]+ calcd for C29H29N2O8, 533.1924; found, 533.1841. 

 

191c 
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3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl 

dimethylcarbamate (191c): A solution of 160 (25 mg, 0.056 mmol) in pyridine (2.25 mL) at rt 

was treated with dimethylcarbamyl chloride (0.75 mL). After 12 h, the solvent was removed and 

the residue purified via column chromatography (SiO2, 40:1, CH2Cl2:Acetone) to afford 191c as 

a colorless amorphous solid (19 mg, 65%): 1H NMR (CDCl3, 500 MHz) � 8.84 (s, 1H), 8.74 (s, 

1H), 7.92 (dd, J = 8.5, 2.5 Hz, 1H), 7.90 (d, J = 2.5 Hz, 1H), 7.38–7.35 (m, 2H), 7.13–7.07 (m, 

4H), 6.95–6.93 (m, 1H), 4.05 (s, 3H), 3.91 (s, 3H), 3.86 (s, 3H), 3.16 (s, 3H), 3.05 (s, 3H); 13C 

NMR (CDCl3, 125 MHz) � 165.8, 160.0, 158.6, 156.5, 153.0, 149.9, 145.5, 144.0, 142.6, 140.0, 

135.6, 130.1, 129.3, 128.4 (2C), 126.0, 123.5, 122.1, 120.5, 118.9, 115.4, 113.3, 111.2, 61.9, 

56.0, 55.5, 36.8 (2C); IR (film) �max 3053, 2986, 2930, 2685, 2305, 1603, 1421, 1265, 1157, 

1024, 895, 737, 704; HRMS (ESI+) m/z: [M + H]+ calcd for C28H27N2O8, 519.1767; found, 

519.1750. 

 

192a 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yl 

dimethyl phosphate (192a): Dimethyl phosphorochloridate (6.3 μL, 0.058 mmol) was slowly 

added to 148 (25 mg, 0.058 mmol) and 4-dimethylaminopyridine (7.1 mg, 0.058 mmol) in 

anhydrous CH2Cl2 (1.2 mL) at rt. After 12 h, the solvent was removed and the residue purified 

via column chromatography (SiO2, 40:1 → 10:1 CH2Cl2:Acetone) to afford 192a as a colorless 

amorphous solid (17 mg, 54%): 1H NMR (CDCl3, 500 MHz) � 8.83 (s, 1H), 8.74 (s, 1H), 7.93 

(dd, J = 8.5, 2.5 Hz, 1H), 7.89 (d, J = 2.0 Hz, 1H), 7.39–7.36 (m, 2H), 7.32 (d, J = 9.0 Hz, 1H), 
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7.13–7.07 (m, 3H), 6.95–6.93 (m, 1H), 3.92 (s, 3H), 3.91 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 2.44 

(s, 3H); 13C NMR (CDCl3, 125 MHz) � 165.7, 160.0, 159.5, 159.1, 149.9, 149.8, 149.0, 138.7, 

131.2, 130.1, 129.3, 128.4, 125.9, 125.8, 123.5, 123.3, 122.1, 118.1, 117.2, 115.4, 113.3, 111.2, 

56.0, 55.5, 55.3 (2C), 9.0; IR (film) �max 3404, 3053, 2986, 2930, 2854, 2305, 1715, 1674, 1605, 

1522, 1501, 1421, 1366, 1265, 1055, 897, 725, 704; HRMS (ESI+) m/z: [M + 2H]+ calcd for 

C27H28NO9P, 541.1502; found, 541.1454. 

 

192b 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl dimethyl phosphate (192b): Dimethyl phosphorochloridate (7.0 μL, 0.065 

mmol) was slowly added to 159 (30 mg, 0.065 mmol) and 4-dimethylaminopyridine (8 mg, 

0.065 mmol) in anhydrous CH2Cl2 (1.3 mL) at rt. After 12 h, the solvent was removed and the 

residue purified via column chromatography (SiO2, 40:1 → 10:1 CH2Cl2:Acetone) to afford 

192b as a colorless amorphous solid (14 mg, 41%): 1H NMR (CDCl3, 500 MHz) � 8.79 (s, 1H), 

8.77 (s, 1H), 7.92 (dd, J = 8.5, 2.5 Hz, 1H), 7.89 (d, J = 2.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 

7.13–7.06 (m, 3H), 6.94–6.92 (m, 1H), 6.90 (s, 1H), 3.95 (s, 3H), 3.93 (s, 3H), 3.93 (s, 3H), 3.90 

(s, 3H), 3.86 (s, 3H), 2.46 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 165.8, 160.0, 159.5, 159.2, 

148.9 (2C), 138.7, 131.2, 130.2, 129.3, 128.4, 126.0, 124.0, 123.2, 122.1, 120.4, 117.1 (2C), 

115.4, 113.3, 111.1, 106.9, 56.5, 56.0, 55.5, 55.3, 55.2, 9.7; IR (film) �max 3053, 2986, 2685, 



 277 

2305, 1713, 1522, 1501, 1421, 1385, 1265, 897, 746, 704; HRMS (ESI+) m/z: [M + Na]+ calcd 

for C28H28NNaO10P, 592.1349; found, 592.1341. 

 

192c 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl 

dimethyl phosphate (192c): Dimethyl phosphorochloridate (4.0 μL, 0.038 mmol) was slowly 

added to 1c (17 mg, 0.038 mmol) and 4-dimethylaminopyridine (5 mg, 0.038 mmol) in 

anhydrous CH2Cl2 (0.8 mL) at rt. After 12 h, the solvent was removed and the residue purified 

via column chromatography (SiO2, 40:1) to afford 192c as a yellow amorphous solid (6.0 mg, 

30%): 1H NMR (CDCl3, 500 MHz) � 8.82 (s, 1H) 8.74 (s, 1H), 7.92 (dd, J = 8.5, 2.5 Hz, 1H), 

7.88 (d, J = 2.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.29 (dd, J = 8.5, 1.0 Hz, 1H), 7.25–7.23 (m, 

1H), 7.13–7.07 (m, 3H), 6.95–6.93 (m, 1H) 4.09 (s, 3H), 3.94 (s, 3H), 3.92 (s, 3H), 3.91 (s, 3H), 

3.86 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 165.7, 160.1, 159.5, 158.4, 144.4, 144.0, 138.6, 

131.3, 130.1, 129.3, 128.4, 125.8, 123.8, 123.1, 122.4, 122.1, 118.6, 118.5, 118.4, 115.4, 113.3, 

111.2, 62.2, 56.0, 55.5, 55.3 (2C); IR (film) �max 3053, 2959, 2928, 2854, 2361, 2307, 1718, 

1674, 1605, 1522, 1501, 1462, 1366, 1265, 1207, 1180, 1038, 1024, 916, 858, 735, 704; HRMS 

(ESI+) m/z: [M + Na]+ calcd for C27H26NNaO10P, 578.1192; found, 578.1147. 

 

193b 
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3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl methanesulfonate (193b): Methanesulfonyl chloride (10 μL, 0.13 mmol) was 

added to 159 (15 mg, 0.033 mmol) in anhydrous pyridine (0.20 mL) at 0°C. The resulting 

solution was warmed to rt and stirred overnight, then diluted with H2O. The desired product was 

extracted with EtOAc (3 × 10 mL); combined organic fractions were dried (Na2SO4), filtered, 

and concentrated. The residue was purified via column chromatography (SiO2, 40:1, 

CH2Cl2:Acetone) to afford 193b as a yellow amorphous solid (13 mg, 97%): 1H NMR (DMSO-

d6, 500 MHz) � 9.77 (s, 1H), 8.64 (s, 1H), 8.01 (dd, J = 8.5, 2.5 Hz, 1H), 7.92 (d, J = 2.5 Hz, 

1H), 7.49 (s, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.27 (d, J = 9.0 Hz, 1H), 7.12–7.10 (m, 2H), 6.97–

6.95 (m, 1H), 3.91 (s, 3H), 3.87 (s, 3H), 3.80 (s, 3H), 3.54 (s, 3H), 2.36 (s, 3H); 13C NMR 

(DMSO-d6, 125 MHz) � 165.4, 159.3, 159.0, 157.7, 149.2, 148.9, 139.1, 138.7, 130.1, 129.3, 

129.2, 128.9, 126.2, 124.6, 121.8, 121.2, 118.1, 115.3 (2C), 112.6, 111.5, 108.0, 55.1 (2C), 54.8, 

29.1, 10.0; IR (film) �max 3053, 2986, 2928, 2685, 2305, 1717, 1601, 1421, 1383, 1265, 1153, 

895, 737, 704; HRMS (ESI+) m/z: [M + H]+ calcd for C27H26NO9S, 540.1328; found, 540.1395. 

 

193c 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl 

methanesulfonate (193c): Methanesulfonyl chloride (17 μL, 0.22 mmol) was added to 160 (25 

mg, 0.056 mmol) in anhydrous pyridine (0.40 mL) at 0°C. The resulting solution was warmed to 

rt and stirred overnight, then diluted with H2O. The desired product was extracted with EtOAc (3 

× 10 mL); combined organic fractions were dried (Na2SO4), filtered, and concentrated. The 
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residue was purified via column chromatography (SiO2, 40:1, CH2Cl2:Acetone) to afford 193c as 

a yellow amorphous solid (29 mg, 99%): 1H NMR (CDCl3, 500 MHz) � 8.80 (s, 1H), 8.73 (s, 

1H), 7.88 (dd, J = 8.5, 2.0 Hz, 1H), 7.85 (d, J = 2.5 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.26–7.23 

(m, 2H), 7.09–7.04 (m, 3H), 6.91–6.89 (m, 1H), 4.09 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.23 (s, 

3H); 13C NMR (CDCl3, 125 MHz) � 165.7, 160.2, 159.5, 158.0, 143.6, 142.4, 140.0, 138.6, 

131.2, 130.1, 129.3, 128.4, 125.7, 124.6, 122.5 (2C), 122.1, 121.1, 120.6, 115.4, 113.2, 111.2, 

62.6, 56.0, 55.4, 38.6; IR (film) �max 2928, 2359, 2341, 1720, 1676, 1603, 1521, 1501, 1464, 

1364, 1242, 1180, 1078, 970, 860; HRMS (ESI+) m/z: [M + H]+ calcd for C26H24NO9S, 

526.1172; found, 526.1179. 

 

194b 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl 4-methylbenzenesulfonate (194b): 4-methylbenzene-1-sulfonyl chloride (50 μL, 

0.26 mmol) was added to 159 (30 mg, 0.065 mmol) in anhydrous pyridine (0.40 mL) at 0°C. The 

resulting solution was warmed to rt and stirred overnight, then diluted with H2O (10 mL). The 

desired product was extracted with EtOAc (3 × 10 mL); combined organic fractions were dried 

(Na2SO4), filtered, and concentrated. The residue was purified via column chromatography 

(SiO2, 40:1, CH2Cl2:Acetone) to afford 194b as a yellow amorphous solid (39 mg, 98%): 1H 

NMR (CDCl3, 500 MHz) � 8.79 (s, 1H), 8.78 (s, 1H), 7.92 (dd, J = 8.5, 2.5 Hz, 1H), 7.89 (d, J = 

2.5 Hz, 1H), 7.86 (d, J = 8.5 Hz, 1H), 7.39–7.36 (m, 3H), 7.13–7.07 (m, 3H), 6.95–6.93 (m, 1H), 

6.81 (s, 1H), 3.91 (s, 3H), 3.86 (s, 3H), 3.59 (s, 3H), 2.49 (s, 3H), 2.37 (s, 3H); 13C NMR 
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(CDCl3, 125 MHz) � 165.8, 160.0, 159.4, 159.0, 149.8, 145.3, 142.6, 138.7, 138.6, 134.3, 131.2, 

130.2, 129.7 (2C), 129.3, 128.5 (2C), 128.4, 125.8, 124.6, 123.0, 122.7, 122.1, 118.6, 115.4, 

113.2, 111.1, 106.6, 56.0, 55.9, 55.4, 21.9, 10.4; IR (film) �max 3053, 2986, 2685, 2305, 1713, 

1601, 1421, 1383, 1265, 1163, 895, 739, 706; HRMS (ESI+) m/z: [M + H]+ calcd for 

C33H30NO9S, 616.1641; found, 616.1676. 

 

194c 

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl 4-

methylbenzenesulfonate (194c): 4-methylbenzene-1-sulfonyl chloride (43 μL, 0.22 mmol) was 

added to 160 (25 mg, 0.056 mmol) in anhydrous pyridine (0.40 mL) at 0°C. The resulting 

solution was warmed to rt and stirred overnight, then diluted with H2O (10 mL). The desired 

product was extracted with EtOAc (3 × 10 mL); combined organic fractions were dried 

(Na2SO4), filtered, and concentrated. The residue was purified via column chromatography 

(SiO2, 40:1, CH2Cl2:Acetone) to afford 194c as a colorless amorphous solid (33 mg, 99%): 1H 

NMR (CDCl3, 500 MHz) � 8.80 (s, 1H), 8.74 (s, 1H), 7.91 (dd, J = 8.5, 2.5 Hz, 1H), 7.88 (d, J = 

2.5 Hz, 1H), 7.81–7.79 (m, 2H), 7.38–7.34 (m, 3H), 7.19 (d, J = 8.5 Hz, 1H), 7.12–7.07 (m, 4H), 

6.95–6.92 (m, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 2.47 (s, 3H); 13C NMR (CDCl3, 125 

MHz) � 165.7, 160.2, 159.5, 158.1, 145.9, 143.5, 142.6, 140.5, 138.6, 132.9, 131.3, 130.1, 130.0 

(2C), 129.3, 128.6 (2C), 128.4, 125.7, 124.4, 122.7, 122.1, 121.9, 120.5, 120.2, 115.4, 113.3, 

111.2, 62.1, 56.0, 55.5, 21.9; IR (film) �max 3053, 2927, 2359, 2341, 1720, 1676, 1603, 1522, 
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1501, 1462, 1364, 1265, 1178, 1078, 1007, 858, 818, 737, 706; HRMS (ESI+) m/z: [M + H]+ 

calcd for C32H28NO9S, 602.1485; found, 602.1494. 

 

202 

Tert-butyl (3-bromopropyl)carbamate (202):263 Di-tert-butyl dicarbonate (1.25 g, 5.71 

mmol) was added to a solution of 3-bromopropan-1-aminium bromide (500 mg, 2.28 mmol) and 

DMAP (279 mg, 2.28 mmol) in anhydrous N,N-dimethylformamide (22.8 mL), and then stirred 

for 12 h. Water (50 mL) was added and the solution was extracted with EtOAc (3 x 30 mL), 

washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue 

was purified via column chromatography (SiO2, 6:1 Hexane:EtOAc) to afford 202 as a yellow oil 

(448 mg, 82%): 1H NMR (CDCl3, 400 MHz) � 4.68 (bs, 1H), 3.46 (t, J = 6.4 Hz, 2H), 3.29 (d, J 

= 6.0 Hz, 2H), 2.07 (t, J = 6.4 Hz, 2H), 1.46 (s, 9H). 

 

204 

Methyl 4-(3-((tert-butoxycarbonyl)amino)propoxy)-3-(3-methylbut-2-en-1-yl)benzoate 

(204): Alkyl bromide 202 (257 mg, 1.08 mmol) was added to a solution of methyl 4-hydroxy-3-

(3-methylbut-2-en-1-yl)benzoate18 (100 mg, 0.45 mmol) and potassium carbonate (188 mg, 1.36 

mmol) in MeCN (2.30 mL), then heated at reflux for 12 h. Once cool, solvent was removed and 

the residue was resuspended in EtOAc, washed with saturated aqueous NaCl, dried (Na2SO4), 

filtered, and concentrated. The residue was purified via column chromatography (SiO2, 3:1 

Hexane:EtOAc) to afford 204 as a yellow oil (171 mg, 99%): 1H NMR (CDCl3, 500 MHz) � 8.5 
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(d, J = 8.5 Hz, 1H), 7.85 (s, 1H), 6.87–6.85 (m, 1H), 5.30 (d, J = 4.0 Hz, 1H), 4.78 (bs, 2H), 3.90 

(d, J = 5.5 Hz, 3H), 3.35 (d, J = 6.5 Hz, 4H), 2.07–2.05 (m, 2H), 1.77 (s, 3H), 1.74 (s, 3H), 1.46 

(s, 9H); 13C NMR (CDCl3, 125 MHz) � 167.1, 160.2, 156.0, 133.0, 130.9, 130.1, 129.4, 122.3, 

121.8, 110.2, 79.3, 66.0, 51.8, 38.0, 29.7, 29.5, 29.3, 28.6, 28.4, 25.8, 17.9; HRMS (ESI+) m/z: 

[M + Na]+ calcd for C21H31NNaO5, 400.2100; found, 400.2091. 

 

205 

4-(3-((Tert-butoxycarbonyl)amino)propoxy)-3-(3-methylbut-2-en-1-yl)benzoic acid (205): 

Lithium hydroxide (14.0 mg, 0.17 mmol) was added to a solution of 204 (15.0 mg, 0.040 mmol) 

in 3:1:1 THF:MeOH:H2O (0.34 mL). After 12 h, the solution was concentrated and the aqueous 

residue was acidified, and then extracted with EtOAc (3 x 10 mL). The combined organic layers 

were next extracted with saturated aqueous NaHCO3 (3 x 10 mL), and then the aqueous extracts 

were acidified. Finally, EtOAc (3 x 10 mL) was used to extract the acid product, and the 

combined organic extracts were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, 

and concentrated to afford 205 as a colorless amorphous solid (14.0 mg, 97%): 1H NMR (CDCl3, 

400 MHz) � 7.94 (s, 1H), 7.89 (s, 1H), 6.97 (d, J = 8.0 Hz, 1H), 5.31 (t, J = 7.6 Hz, 1H), 4.82 

(bs, 1H), 4.13 (t, J = 5.6 Hz, 2H), 3.35 (d, J = 7.2 Hz, 4H), 2.07 (bs, 2H), 1.77 (s, 3H), 1.73 (s, 

3H), 1.46 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 171.5, 160.9, 156.0, 133.2 (2C), 131.5, 130.2, 

121.6, 121.4, 110.2, 79.4, 66.1, 38.0, 29.5 (4C), 28.4, 25.8, 17.9; HRMS (ESI+) m/z: [M + H]+ 

calcd for C20H30NO5, 364.2124; found, 364.2126. 
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207 

Tert-butyl (3-(4-((8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-oxo-2H-chromen-3-yl)-

carbamoyl)-2-(3-methylbut-2-en-1-yl)phenoxy)propyl)carbamate (207): EDCI (80 mg, 0.42 

mmol) and 205 (110 mg, 0.30 mmol) were added to aminocoumarin 206 (48 mg, 0.17 mmol), 

freshly prepared from hydrogenolysis of 210, in 30% pyridine/CH2Cl2 (2.10 mL). After 12 h, the 

solvent was concentrated and the residue was purified via column chromatography (SiO2, 10:1 

CH2Cl2:MeOH) to afford 207 as a colorless oil (45 mg, 43%): 1H NMR (CDCl3, 400 MHz) � 

8.81 (s, 1H), 8.70 (s, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.74 (s, 1H), 7.35 (d, J = 8.8 Hz, 1H), 6.93 

(d, J = 8.8 Hz, 1H), 6.89 (d, J = 8.8 Hz, 1H), 5.33 (t, J = 7.6 Hz, 1H), 4.80 (bs, 1H), 4.59 (bs, 

1H), 4.14 (t, J = 5.6 Hz, 2H), 3.39 (d, J = 7.2 Hz, 4H), 2.84 (bs, 2H), 2.71 (bs, 2H), 2.50 (bs, 

3H), 2.37 (s, 3H), 2.20 (bs, 2H), 2.06 (bs, 4H), 1.79 (s, 3H), 1.75 (s, 3H), 1.46 (s, 9H); 13C NMR 

(CDCl3, 125 MHz) � 165.9, 159.9, 159.5, 156.0, 149.4, 133.2, 130.7, 128.6, 126.6 (2C), 125.7, 

125.6, 124.0, 121.9, 121.4, 115.1, 113.7, 110.5, 110.3, 79.5 (2C), 66.2, 52.1 (2C), 45.1, 38.0, 

29.7, 29.5, 28.5, 28.4 (3C), 25.8, 17.9, 14.1, 8.4; HRMS (ESI+) m/z: [M + Na]+ calcd for 

C36H47N3NaO7, 656.3312; found, 656.3330. 
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209 

2-(3,6-Bis(dimethylamino)-3H-xanthen-9-yl)-5-((3-(4-((8-methyl-7-((1-methylpiperidin-4-

yl)oxy)-2-oxo-2H-chromen-3-yl)carbamoyl)-2-(3-methylbut-2-en-1-

yl)phenoxy)propyl)carbamoyl)benzoate, and 2-(3,6-bis(dimethylamino)-3H-xanthen-9-yl)-6-

((3-(4-((8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-oxo-2H-chromen-3-yl)carbamoyl)-2-(3-

methylbut-2-en-1-yl)phenoxy)propyl)carbamoyl)benzoate (209): Trifluoroacetic acid (10 μL) 

was added to a solution of 207 (8.0 mg, 0.013 mmol) in CH2Cl2 (0.1 mL) and stirred for 12 h. 

Solvent was removed and the residue was purified via column chromatography (SiO2, 10:1 

CH2Cl2:MeOH) to afford amine (5.50 mg, 82%), which was used without further purification. 

 N,N-diisopropylethylamine (1 μL) was added to a solution of 5-(and-6)-

carboxytetramethylrhodamine, succinimidyl ester 208 (4.9 mg, 0.0094 mmol) and amine (5.50 

mg, 0.010 mmol) in 10:1 CH2Cl2:DMF (94 μL) at rt for 12 h. Water (10 mL) was added and the 

solution was extracted with EtOAc (3 x 15 mL), dried (Na2SO4), filtered, and concentrated to 

afford 209 as confirmed by mass spectrometry. HRMS (ESI+) m/z: [M + H]+ calcd for 

C56H60N5O9, 946.4391; found, 946.4355. 
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Chapter IV 

Studies on the Novobiocin Benzamide Side Chain 

I. Introduction 

 Modifications to the benzamide side chain of novobiocin analogues have yielded some of 

the most remarkable improvements in activity. While various analogues have explored important 

interactions (Figure 61), none have probed the limits of the site into which this side chain 

extends. Although no co-crystal structure of the C-terminal binding site has been reported, recent 

collaborative studies have yielded a C-terminal Hsp90 binding model. Examination of this model 

revealed a number of hydrophobic residues surrounding the cavity into which the benzamide 

portion projects. Using this model, in addition to previously determined SAR for the coumarin 

and sugar portions, several rationally designed compounds that manifest low micromolar 

antiproliferative activity have been produced.  

 

Figure 61. Key SAR from benzamide study.102 
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II. Rational design of tBu and OtBu benzamide-containing novobiocin analogues 

 As previously discussed, elucidation of a binding model for the Hsp90 C-terminal 

nucleotide binding site has enabled the rational design of novobiocin analogues. Due to the 

importance of the benzamide side chain, such as the ability to inter convert between non-toxic 

and cytotoxic agents through simple modification, it was believed that further studies are needed 

to further probe its nature. Rather than taking advantage of the hydrogen bonding network, these 

analogues sought to probe the hydrophobicity of the region into which the prenyl side chain of 

novobiocin extends. 

 

A. Molecular modeling studies with novobiocin 

 As seen in Figure 62, the novobiocin prenyl side chain sits in a pocket flanked with 

residues of diverse nature. While the region of the pocket wherein the amide and phenol bind is 

largely dominated by polar and charged residues, whereas the prenyl group folds back into a 

hydrophobic region. The predominance of polar and charged residues in this benzamide binding 

portion explains the success of compounds like those shown in Figure 61, which are capable of 

producing key hydrogen bonds. In contrast, it is proposed that favorable interactions between the 

prenyl group with Leu-714 and Val-715, two amino acids with hydrophobic side chains found in 

its vicinity, contribute to the binding affinity of novobiocin. Moreover, it is hypothesized that 

hydrophobic groups installed on the benzamide side chain would increase the affinity of 

novobiocin analogues for this binding pocket, allowing the analogues to interact with this 

hydrophobic cleft similar to the prenyl group on novobiocin. 
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Figure 62. Examination of novobiocin prenyl side chain docked in Hsp90α model. 

B. Design of aryl tBu benzamide-containing novobiocin analogues 

 In order to capitalize on interactions with these key hydrophobic residues, a tBu group 

was installed at various positions around the aryl ring. Based on the molecular modeling studies 

with novobiocin, it was proposed that placement of the hydrophobic tBu substituent would be 

most favorable at the meta and para positions. The 8-methyl coumarin was chosen as the scaffold 

upon which to append these side chains because of its ease of synthesis and the many studies in 

which it has been used, offering several compounds for comparison. Moreover, since the 

coumarin core and benzamide side chain remained largely unperturbed by variation of the sugar 

(Section II-3.A), the optimal sugar surrogates from the studies outlined in Chapter III were 

installed on the final analogues. 
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Scheme 51. Retrosynthetic analysis of aryl tBu analogues. 

 The coumarin and acids were prepared independently, and then coupled as shown in 

Scheme 51. While the piperidine-containing analogues could be readily obtained by coupling 

with the aminocoumarin functionalized at the 7-position piperidine ring, the alkyl sugar was 

installed after amide coupling. These 3-(dimethylamino)propane-containing analogues were 

accessed through coupling the desired sugars to the 7-acetate protected aminocoumarin, then 

solvolysis and subsequent Mitsunobu coupling to the coumarin phenol. The preparation 

protocols were employed due to difficulties encountered during purification. 

 

Scheme 52. Synthesis of 7-piperidine and 7-acetyl aminocoumarins. 
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1. Synthesis of aryl tBu benzamide-containing novobiocin analogues 

 As seen in Scheme 52, 8-methyl coumarin phenol 145 was subjected to Mitsunobu 

etherification to afford functionalized coumarin 210 in good yield. Next, cleavage of the benzyl 

carbamate liberated aminocoumarin 206 for use in coupling reactions. As previously described, 

coumarin phenol 145 was also quantitatively protected as the corresponding acetylated phenol, 

and then the aminocoumarin was liberated to furnish scaffold 211. While aminocoumarin 206 

has proven to be stable upon benzyl carbamate cleavage, vinylogous amide 211 was always 

carried on without purification into subsequent coupling reactions. 

 

Scheme 53. Synthesis of meta- and para-tBu analogues. 
 While the desired para-tBu acid was commercially available, the meta-tBu acid required 

preparation prior to coupling. As seen in Scheme 53, the meta-tBu acid 213 was prepared from 

the corresponding methyl group through oxidation with potassium permanganate. Subsequent 
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coupling with piperidine-containing aminocoumarin 206 proceeded in good yield using both 

acids in the presence of EDCI and pyridine to afford analogues 215 and 216. Likewise, EDCI-

mediated coupling of the two tBu acids with freshly prepared acetate-protected aminocoumarin 

211 was high yielding. Intermediate esters 217 and 218 were subjected to solvolysis to afford the 

requisite coumarin phenols, which were then etherified with 3-(dimethylamino)propan-1-ol using 

Mitsunobu conditions to afford final compounds 221 and 222 in good yields. 

 

2. Biological evaluation of aryl tBu benzamide-containing novobiocin analogues 

 Upon construction of these aryl tBu-containing compounds, they were evaluated for anti-

proliferative activities against MCF-7 and SKBr3 breast cancer cell lines. The IC50 values 

manifested by these analogues are outlined in Table 12. Examination of the data generated by 

these compounds suggests several conclusions. 

 

Table 12. Biological evaluation of aryl tBu analogues. 

Compound  R Substitution MCF-7             

(IC50, μM) 

SKBr3              

(IC50, μM) 

219 H m-tBu 17.11 ± 3.56a 40.09 ± 1.39 

217 OAc m-tBu 18.19 ± 1.13 40.22 ± 0.81 

215 Piperidine m-tBu 1.94 ± 0.26 1.81 ± 0.51 

221 Alkyl amine m-tBu 1.91 ± 0.23 1.73 ± 0.15 

220 H p-tBu 9.42 ± 0.43 12.72 ± 2.1 
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218 OAc p-tBu >100 >100 

216 Piperidine p-tBu 1.34 ± 0.27 1.65 ± 0.08 

222 Alkyl amine p-tBu 1.62 1.28 ± 0.12 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 
 

 Along with the proposed final analogues, functionalized intermediates with variable 

substitution at the 7-position were also tested. While these phenolic and acetylated compounds 

were modestly active, the designed analogues were significantly more potent. When considering 

the designed compounds with meta substitution, variation between the piperidine and alkyl 

amine sugars did not result in statistical differences in activity. Likewise, this same observation 

was seen with the para substituted compounds, which both showed activity between 1-2 μM 

regardless of the azasugar at the 7-position. Moreover, when considering para versus meta 

substitution, it was concluded that the pocket was tolerant of either attachment at either location 

on the aryl ring. When compared to the analogous compounds containing the biaryl side chain, 

these analogues closely mimicked the activity of the piperidine-containing compound (155) but 

lost ~3-4-fold activity versus the acyclic biaryl analogue. Overall, hydrophobic substitution was 

well tolerated, producing compounds that manifested low micromolar activity against both 

cancer cell lines.  

To confirm that the anti-proliferative activity exhibited by the most promising compound 

from the series, 216, was due to Hsp90 inhibition, it was evaluated by Western blot analyses 

(Figure 63). Selective Hsp90-dependent client protein degradation, versus a loading control, 

would confirm that this compound also causes Hsp90 inhibition. Figure 63 shows that in MCF-7 

cells, the Hsp90-dependent client proteins Her2, Akt and Raf were degraded in a concentration-

dependent manner upon treatment with the analogue. Although at a concentration slightly higher 
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than the observed anti-proliferative IC50 value, Hsp90 client protein degradation was observed. 

Furthermore, Hsp90 protein levels remained constant at all concentrations tested, which is 

consistent with C-terminal Hsp90 inhibition. Since the non-Hsp90-dependent protein, actin, was 

not affected by these analogues, it was concluded that selective degradation of Hsp90-dependent 

proteins occurred. 

  

Figure 63. Western blot analyses of Hsp90 client protein degradation assay against MCF-7 cells 

following treatment with 216. Concentrations (in μM) of 216 are indicated above each lane. 

GDA (500 nM) and DMSO were respectively employed as positive and negative controls. 

 

3. Molecular modeling of 216 

 Due to its promising activity against both breast cancer cell lines and confirmation of 

Hsp90 inhibitory activity, there was interest in examining the conformation that analogue 216 

adopts in the binding model. This compound was selected due to its consistent activity and 

because the piperidine-containing compounds more closely mimicked the activity observed with 
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the benzamide and biaryl side chain, suggesting a similar binding orientation. As seen in Figure 

64, the sugar and coumarin cores of novobiocin and compound 216 fit into the same general 

regions of the binding pocket, although the two compounds have adopted inverted 

conformations. As a result, instead of extending into the same region as the prenyl side chain of 

novobiocin, the tBu group bends away from the intended residues, opting to interact with a 

hydrophobic methionine (Met-606) instead. This binding orientation is perceived unlikely, due to 

an expected loss of key interactions with the sugar and coumarin core that would be associated 

with this inversion that is not consistent with the observed potency. This modeling does, 

however, demonstrate that a single aryl ring containing a tBu group does not have the potential to 

extend and make contacts with the proposed residues or effectively fill the space. Thus, two 

libraries of compounds were proposed, one built with a tert-butoxy rather than tert-butyl group 

to impart flexibility, and the second with biaryl tBu-containing benzamide side chains to better 

fill the space. 

 

Figure 64. Novobiocin versus 216 bound to Hsp90α model. 
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C. Design of aryl OtBu benzamide-containing novobiocin analogues 

 Based upon the rationale derived from docking analogue 216 to the model, it was 

proposed that insertion of an oxygen between the aryl ring and tBu group would impart 

conformational flexibility. This added flexibility enables the hydrophobic tBu group to freely 

rotate, allowing it to properly orient itself in the pocket and make favorable hydrophobic 

interactions with Leu-714 and Val-715. As with the aryl systems, the butoxy group was placed at 

the meta and para positions on the ring to determine which position was better tolerated.  

 Similar to the preparation of the aryl tBu analogues, the coumarins and acids were 

prepared independently, and then coupled to the corresponding OtBu acids (Scheme 54). The 

order of amide coupling and Mitsunobu etherification varied for the piperidine- and acyclic 

amine-containing analogues, as described previously. While Mitsunobu coupling was executed 

to install the piperidine prior to amide coupling, amide coupling with the protected 

aminocoumarin 211 preceded etherification in the case of those analogues. 

 

Scheme 54. Retrosynthetic analysis of aryl OtBu analogues. 
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1. Synthesis of aryl OtBu benzamide-containing novobiocin analogues 

 As seen in Scheme 55, commercially available phenols 223 and 224 can be converted to 

the corresponding tBu ethers using a recently reported mild methodology. Through a potential 

mechanism involving magnesium perchlorate chelation and resultant loss of carbon dioxide, 

addition of di-tert-butyl dicarbonate to the various phenols in the presence of heat-activated 

magnesium perchlorate afforded the desired OtBu ethers in good yields.264 225 and 226 were 

subsequently hydrolyzed to the requisite acids, 227 and 228. Coupling of the acids with 

aminocoumarin 206 using EDCI in the presence of pyridine afforded analogues 229 and 230. 

Similarly, EDCI was employed to couple the OtBu acids with freshly prepared aminocoumarin 

211. Coupled 231 and 232 were subsequently hydrolyzed and Mitsunobu etherification was 

employed to install the desired alkyl amine at the 7-position of each coumarin phenol. 

 

Scheme 55. Synthesis of meta- and para-OtBu analogues. 
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2. Biological evaluation of aryl OtBu benzamide-containing novobiocin analogues 

 Once prepared, the aryl OtBu-containing analogues were evaluated for anti-proliferative 

activities against MCF-7 and SKBr3 breast cancer cell lines. The IC50 values manifested by these 

analogues are outlined in Table 13 and analysis follows the table. 

 
 

Table 13. Biological evaluation of aryl OtBu analogues. 

Compound 

 

R Substitution MCF-7             

(IC50, μM) 

SKBr3              

(IC50, μM) 

233 H m-OtBu 12.28 ± 1.71a 23.68 ± 3.18 

231 OAc m-OtBu >100 52.93 ± 1.21 

229 Piperidine m-OtBu 1.94 ± 0.38 2.04 ± 0.16 

235 Alkyl amine m-OtBu 5.18 ± 0.25 2.41 ± 0.10 

234 H p-OtBu 8.87 ± 1.29 15.05 ± 0.97 

232 OAc p-OtBu 48.36 ± 0.41 53.06 ± 1.03 

230 Piperidine p-OtBu 1.93 ± 0.24 2.44 ± 0.42 

236 Alkyl amine p-OtBu 1.74 ± 0.32 3.37 ± 0.82 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 
 

 Like with the aryl tBu analogues, functionalized intermediates with variable substitution 

at the 7-position were tested along with the designed compounds. These phenolic and acetylated 

compounds were modestly active, manifesting comparable values to the tBu analogues with the 

same 7-position functionality. When considering the designed compounds with meta 
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substitution, the piperidine analogue was more active than the corresponding acyclic amine 

analogue against MCF-7 cells. There was no statistical difference between the two against 

SKBr3 cells. This trend was the same as that observed with the para-OtBu analogues, which 

demonstrated better potency against SKBr3 cells when the piperidine azasugar was appended. 

Once again, the two para-substituted analogues were equally active against MCF-7 cells. When 

para versus meta substitution was considered with a common piperidine sugar, it became obvious 

that the pocket was tolerant of either attachment point on the aryl ring system. This is consistent 

with the trend observed with the tBu analogues. In comparing the two libraries, with and without 

the oxygen inserted, the tBu analogues are more consistent in potency despite sugar substitution, 

and insertion of an oxygen does not significantly change the observed IC50 values. The para-tBu 

analogues with either sugar were still the most active compounds from these two series, 

discounting insertion of an oxygen as a potential mechanism through which to access the desired 

hydrophobic network. A new design strategy was employed to gain access to these hydrophobic 

residues. 

 

D. Design of biaryl tBu benzamide-containing novobiocin analogues 

 Based upon the rationale derived from docking analogue 216 to the model, it was 

proposed that a biaryl system would be more capable than a single aryl ring of making the 

desired hydrophobic interactions. The designed analogues would place a tBu substituent at 

various positions around a second aryl ring, connected meta to the one directly attached to the 

coumarin core, in an analogous fashion to the biaryl system. This second ring would be placed at 

the proper distance to extend into the area of Leu-714 and Val-715. Moreover, in accordance 
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with the novobiocin binding orientation (Figure 62), the ring directly connected to the coumarin 

core was designed to include a group capable of hydrogen bonding (methoxy group) to the 

second ring. 

 As with the aryl systems, the coumarins and acids were prepared independently, and then 

coupled as shown in Scheme 56. Moreover, the same approach was adopted to prepare the 

piperidine-containing analogues directly through coupling with functionalized aminocoumarin 

206. In addition, as before, the alkyl sugar was installed during the final step, after amide 

coupling. 

 

Scheme 56. Retrosynthetic analysis of biaryl tBu analogues. 

1. Synthesis of biaryl tBu benzamide-containing novobiocin analogues 

 As outlined in Scheme 57, synthesis of the tBu biaryl analogues began with preparation 

of the requisite acids. Starting from aryl halide 237, Suzuki coupling with either the meta or para 

boronic acid yielded the desired biaryl systems. Since separation of 240 and 241 from residual 

boronic acid proved difficult, the crude esters were directly subjected to hydrolysis conditions, 

affording the desired acids in good yields over two steps. EDCI-mediated coupling of acids 242 

and 243 with piperidine-containing aminocoumarin 206 in the presence of pyridine was 
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employed toward the synthesis of analogues 244 and 245. Similarly, coupling to freshly prepared 

aminocoumarin 211 using the same conditions proceeded in good yield. Intermediate esters 246 

and 247 were subjected to solvolysis, and the resulting phenol coupled via Mitsunobu conditions 

to the appropriate alkyl amine, to afford final analogues 250 and 251. 

 

Scheme 57. Synthesis of meta- and para-tBu biaryl analogues. 

 In addition to the meta and para tBu-containing biaryl analogues, ortho-tBu biaryl 

systems were sought. It was proposed that, according to the model, an ortho tBu group on the 

second aryl ring would orient interactions with hydrophobic residues. Attempts make the 

requisite ortho-substituted tBu biaryl acid are outlined in Scheme 58. Starting from aniline 252, 

1-bromo-2-tert-butylbenzene was prepared via Sandmeyer chemistry, specifically employing 

tert-butyl nitrite and copper (II) bromide. Next, a previously reported protocol was used to 
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convert aryl bromide 253 to the corresponding boronic acid, through a lithium–halogen exchange 

followed by trapping of the anion with triisopropylborate.265  

 

Scheme 58. Attempted reactions toward ortho-tBu biaryl analogues. 

Several Suzuki coupling reaction protocols were attempted between boronic acid 254 and 

aryl iodide 237. Despite the use of different palladium catalysts, solvents, ligands, additives and 

temperatures, the desired coupling reaction did not take place. It was proposed that steric 

repulsion between the two ortho substituted rings prevented the aryl iodide and boronic acid 
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from coupling with one another. Moreover, dehalogenation often occurred during these Suzuki 

reaction trials, which reveals oxidative addition into the palladium source occurs, but 

transmetallation does not. 

 

2. Biological evaluation of biaryl tBu benzamide-containing novobiocin analogues 

 Upon preparation, the biaryl tBu-containing analogues were evaluated for anti-

proliferative activities against MCF-7 and SKBr3 breast cancer cell lines. The IC50 values 

generated in these assays are summarized in Table 14. 

 
 

Table 14. Biological evaluation of biaryl analogues. 

Compound  R Substitution MCF-7             

(IC50, μM) 

SKBr3              

(IC50, μM) 

248 H m-tBu 19.54 ± 4.73a 44.53 ± 1.13 

246 OAc m-tBu 3.72 ± 1.66 6.18 ± 0.19 

244 Piperidine m-tBu 3.57 ± 0.48 1.77 

250 Alkyl amine m-tBu 8.57 ± 1.62 5.28 ± 0.35 

249 H p-tBu 8.49 ± 2.66 10.24 ± 0.83 

247 OAc p-tBu 6.10 ± 4.53 12.51 ± 1.21 

245 Piperidine p-tBu 1.65 ± 0.11 1.35 ± 0.08 

251 Alkyl amine p-tBu 2.46 ± 0.23 1.90 ± 0.31 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 
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 In examining the data generated by this set of biaryl compounds, several trends can be 

observed. Consistent with the previous libraries, biaryl tBu-containing analogues with a 7-

position phenol or 7-acetylated phenol demonstrated modest activity. When the meta-tBu biaryl 

analogues are considered, it becomes apparent that the piperidine-containing compounds are 

more active than those with an alkyl amine at the same position. This trend follows in the para 

series, but is not as pronounced, with only slight differences in potency. When comparing the 

meta- and para-tBu biaryl compounds to one another, para-substitution consistently resulted in 

better potency. Moreover, the activity of the analogue with the para-substituted biaryl ring 

system and piperidine azasugar (245) manifested comparable activity to the most active 

compound in the initial series (216), also with a para-tBu group and piperidine ring system. 

Likewise, when compared to the analogous compound containing the biaryl side chain (155), 

245 closely mimicked its activity against the same cancer cell lines. Addition of this second ring 

system with a meta-tBu substituent was not well tolerated, causing significant decreases in 

potency when compared to the single substituted aryl rings. In contrast, the biaryl system was 

well tolerated when the tBu group was installed at the para position, leading to compounds that 

exhibited equivalent potency to the aryl tBu analogues. However, since no significant potency 

gains were observed, it was perceived that these biaryl analogues, like their predecessors, were 

unable to access the hydrophobic residues in the pocket. 

 Collaborative studies with the Cohen laboratory at the KU Medical Center identified 

analogue 245 as an interesting lead worth pursuing towards Head and Neck Squamous Cell 

Carcinoma. A large quantity of compound 245 was prepared for use in an in vivo model. 

Although these studies are in their infancy, promising in vivo results are being generated. 

 



 303 

E. Design of multifunctional biaryl tBu benzamide side chains 

 It was proposed that other biaryl ring systems containing an OtBu group on one ring and 

a hydrogen bond donating phenol on the other could be potentially potent compounds. As part of 

the benzamide study executed by Burlison and co-workers, phenols were appended on the side 

chains of some of the most potent analogues.102 Moreover, a free phenol is present on the 

prenylated side chain of novobiocin and docking studies have shown that it sits in a portion of 

the binding pocket that flanked by charged and polar residues (Figure 62). Incorporation of a 

polar substituent and hydrophobic group on the same biaryl system could potentially enable such 

a system to capitalize on the diverse interactions offered by the binding pocket. 

 

Scheme 59. Efforts toward other biaryl OtBu acids. 
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1. Synthesis of multifunctional biaryl tBu benzamide side chains 

 As seen in Scheme 59, initial efforts toward the synthesis of the requisite side chains that 

would allow access to these analogues are described. Addition of di-tert-butyl dicarbonate to 

phenol 255 in the presence of heat-activated magnesium perchlorate afforded the desired OtBu 

ester.264 The resultant aryl iodide was coupled to (4-hydroxyphenyl)boronic acid using Suzuki 

coupling conditions to afford ester 258. Following protection of the free phenol as the methoxy 

methyl ether, ester 259 was subsequently hydrolyzed to acid 260. It is envisioned that this acid 

could be coupled to various aminocoumarins and, after cleavage of the MOM group, would 

represent interesting scaffolds to test for anti-proliferative activity. Likewise, starting from 

phenol 255, etherification conditions were used to install a methoxy methyl ether group in good 

yield. Next, protected aryl iodide 261 was coupled with both meta- and para-hydroxyl 

phenylboronic acids to yield esters 263 and 264, respectively. Although these intermediates were 

not taken on into further development, it was envisioned that the free phenol could be converted 

to the corresponding OtBu group and then hydrolyzed to afford the desired acid. Coupling of 

these acids to selected aminocoumarins would yield several rationally designed analogues with 

the potential to exhibit promising activity. 

 

III. Conclusion 

 Several libraries of compounds were designed to explore the potential to capitalize on 

hydrophobic interactions with residues that line the portion of the binding pocket into which the 

benzamide side chain extends. Synthesis and testing of these analogues revealed that the binding 

pocket is tolerant of limited hydrophobic bulk. When a hydrophobic substituent is appended, 
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analogues bearing a single aryl ring were more potent than those coupled to a biaryl system. 

Moreover, the pocket was more sensitive to substitution patterns when the larger biaryl system 

was incorporated. Overall, this study has produced several novel novobiocin analogues with low 

micromolar activity, including some that have been taken on into advanced studies. Likewise, the 

compounds described affirm the importance of the benzamide side chain in dictating potency. 

 

IV. Experimental Protocols 

 

210 

Benzyl 8-methyl-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3-ylcarbamate (210). 

Diisopropylazodicarboxylate (4.17 mL, 21.5 mmol) was added to a solution of 1-

methylpiperidin-4-ol (2.48 g, 21.5 mmol), coumarin 145 (3.50 g, 10.8 mmol) and 

triphenylphosphine (5.64 g, 21.5 mmol) in anhydrous THF (54 mL). After 12 h, the solvent was 

removed and the residue purified via column chromatography (SiO2, 10:1, CH2Cl2:MeOH) to 

afford compound 210 as a colorless amorphous solid (4.50 g, 99%). 1H NMR (400 MHz, CDCl3) 

δ 8.25 (s, 1H), 7.55 (s, 1H), 7.40–7.34 (m, 5H), 7.24 (d, J = 8.0 Hz, 1H), 6.84 (d, J = 8.0 Hz, 

1H), 5.22 (s, 2H), 4.48 (bs, 1H), 2.71 (bs, 2H), 2.52–2.49 (m, 2H), 2.38 (s. 3H), 2.11–2.07 (m, 

2H), 1.98–1.89 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 158.8, 156.5, 153.2, 149.2, 135.6, 128.7, 

128.5, 128.2, 125.1, 122.2, 121.4, 115.2, 113.0, 110.4, 72.4, 67.4, 52.0 (2C), 46.0, 30.3 (2C), 8.4. 

IR (film) �max 3406, 3319, 2939, 2849, 2791, 1711, 1609, 1524, 1366, 1271, 1227, 1204, 1103, 

1038, 1024 cm-1. HRMS (ESI+) m/z: [M + H+] calcd for C24H27N2O5, 423.1920; found 423.1920. 
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213 

3-(Tert-butyl)benzoic acid (213):266 Potassium permanganate (80 mg, 0.51 mmol) was added 

portionwise to a solution of 1-(tert-butyl)-3-methylbenzene (25 mg, 0.17 mmol) and pyridine (68 

μL, 0.84 mmol) in water (0.20 mL) at 50oC. After 12 h at 50oC, the solution was cooled, basified 

with NaOH to pH 12, and washed with EtOAc. The combined aqueous extracts were acidified 

with 6M HCl to pH 2 and then the solution was extracted with EtOAc (3 x 15 mL), dried 

(Na2SO4), filtered, and concentrated to afford 213 as a colorless amorphous solid (6.0 mg, 20%): 

1H NMR (CDCl3, 400 MHz) � 8.18 (s, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 

7.44 (t, J = 7.8 Hz, 1H), 1.39 (s, 9H). 

 

215 

3-(Tert-butyl)-N-(8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-oxo-2H-chromen-3-

yl)benzamide (215): EDCI (52 mg, 0.27 mmol) and 213 (39 mg, 0.22 mmol) were added to 

aminocoumarin 206 (32 mg, 0.11 mmol), freshly prepared from hydrogenolysis of 210, in 30% 

pyridine/CH2Cl2 (1.60 mL). After 12 h, the solvent was concentrated and the residue was 

purified via column chromatography (SiO2, 10:1 CH2Cl2:MeOH) to afford 215 as a colorless 

amorphous solid (29.0 mg, 58%): 1H NMR (MeOD, 400 MHz) � 8.63 (s, 1H), 7.99 (t, J = 1.6 

Hz, 1H), 7.74–7.72 (m, 1H), 7.70–7.68 (m, 1H), 7.49–7.43 (m, 2H), 7.08 (d, J = 8.4 Hz, 1H), 

4.73 (bs, 1H), 3.09 (bs, 2H), 2.93 (bs, 2H), 2.65 (bs, 3H), 2.32 (s, 3H), 2.16 (bs, 2H), 2.04 (bs, 



 307 

2H), 1.39 (s, 9H); 13C NMR (MeOD, 125 MHz) � 168.9, 160.5, 158.3, 153.3, 151.2, 135.0, 

130.7, 129.7, 128.1 (2C), 127.2, 125.6, 125.5, 122.8, 115.7, 114.6, 111.7, 52.8, 45.5, 35.8, 31.6 

(5C), 30.7, 8.4; HRMS (ESI+) m/z: [M + H]+ calcd for C27H33N2O4, 449.2440; found, 449.2411. 

 

216 

4-(Tert-butyl)-N-(8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-oxo-2H-chromen-3-

yl)benzamide (216): EDCI (52 mg, 0.27 mmol) and 4-(tert-butyl)benzoic acid (39 mg, 0.22 

mmol) were added to aminocoumarin 206 (32 mg, 0.11 mmol), freshly prepared from 

hydrogenolysis of 210, in 30% pyridine/CH2Cl2 (1.60 mL). After 12 h, the solvent was 

concentrated and the residue was purified via column chromatography (SiO2, 10:1 

CH2Cl2:MeOH) to afford 216 as a colorless amorphous solid (29.0 mg, 58%): 1H NMR (MeOD, 

400 MHz) � 8.67 (s, 1H), 7.89 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.8 Hz, 

1H), 7.10 (d, J = 8.8 Hz, 1H), 4.79 (bs, 1H), 3.23 (bs, 2H), 3.13 (bs, 2H), 2.78 (bs, 3H), 2.35 (s, 

3H), 2.19 (bs, 2H), 2.11 (bs, 2H), 1.37 (s, 9H); 13C NMR (MeOD, 125 MHz) � 168.2, 160.2, 

157.4, 152.1 (2C), 132.2, 128.4 (2C), 127.6, 127.3, 126.9 (2C), 123.0, 115.8, 115.0, 111.6, 54.0, 

44.4, 36.0, 31.5 (5C), 29.8, 8.4; HRMS (ESI+) m/z: [M + Na]+ calcd for C27H32N2NaO4, 

471.2260; found, 471.2213. 

 

217 
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3-(3-(Tert-butyl)benzamido)-8-methyl-2-oxo-2H-chromen-7-yl acetate (217): EDCI (83 

mg, 0.44 mmol) and 213 (62 mg, 0.35 mmol) were added to aminocoumarin 211 (39 mg, 0.17 

mmol), freshly prepared from hydrogenolysis of 147, in 30% pyridine/CH2Cl2 (2.60 mL). After 

12 h, the solvent was concentrated and the residue was purified via column chromatography 

(SiO2, 40:1 CH2Cl2:Acetone) to afford 217 as a colorless amorphous solid (59.0 mg, 58%): 1H 

NMR (CDCl3, 400 MHz) � 8.87 (s, 1H), 8.81 (s, 1H), 8.00 (s, 1H), 7.71–7.64 (m, 2H), 7.49–7.41 

(m, 2H), 7.06 (d, J = 8.4 Hz, 1H), 2.39 (s, 3H), 2.33 (s, 3H), 1.40 (s, 9H); 13C NMR (CDCl3, 125 

MHz) � 168.9, 166.7, 158.9, 152.3, 150.1, 148.8, 133.3, 129.8, 128.7, 125.6, 124.5, 123.8, 123.6, 

123.4, 119.3, 119.1, 117.8, 35.0, 31.3 (3C), 20.8, 9.1; HRMS (ESI+) m/z: [M + H]+ calcd for 

C23H24NO5, 394.1654; found, 394.1667. 

 

218 

3-(4-(Tert-butyl)benzamido)-8-methyl-2-oxo-2H-chromen-7-yl acetate (218): EDCI (167 

mg, 0.87 mmol) and 4-(tert-butyl)benzoic acid (124 mg, 0.70 mmol) were added to 

aminocoumarin 211 (77 mg, 0.35 mmol), freshly prepared from hydrogenolysis of 147, in 30% 

pyridine/CH2Cl2 (5.20 mL). After 12 h, the solvent was concentrated and the residue was 

purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 218 as a colorless 

amorphous solid (105 mg, 79%): 1H NMR (CDCl3, 400 MHz) � 8.87 (s, 1H), 8.81 (s, 1H), 7.90–

7.87 (m, 2H), 7.57–7.54 (m, 2H), 7.42 (d, J = 8.4 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 2.39 (s, 3H), 

2.33 (s, 3H), 1.39 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 168.9, 166.1, 158.9, 156.3, 150.1, 
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148.8, 130.7, 127.1, 126.9, 126.1, 125.9, 125.5, 123.6, 123.2, 119.3, 119.2, 117.8, 35.1, 31.1 

(3C), 20.8, 9.1; HRMS (ESI+) m/z: [M + H]+ calcd for C23H24NO5, 394.1654; found, 394.1689. 

 

219 

3-(Tert-butyl)-N-(7-hydroxy-8-methyl-2-oxo-2H-chromen-3-yl)benzamide (219): A 

solution of 217 (43.0 mg, 0.11 mmol) in MeOH (1.10 mL) was treated with triethylamine (0.11 

mL, 10%). After 12 h, the solvent was concentrated and the residue purified via column 

chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 219 as a yellow amorphous solid (35.0 

mg, 91%): 1H NMR (Acetone-d6, 500 MHz) � 8.79 (bs, 1H), 8.59 (s, 1H), 7.91 (d, J = 1.5 Hz, 

1H), 7.66 (dd, J = 8.0, 1.0 Hz, 1H), 7.58 (dd, J = 8.0, 1.0 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.28 

(d, J = 8.0 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 2.16 (s, 3H), 1.26 (s, 9H); 13C NMR (Acetone-d6, 

125 MHz) � 166.7, 159.6, 158.3, 152.7, 150.9, 134.9, 130.1, 129.5, 126.7, 125.8, 125.7, 125.1, 

122.1, 113.6, 113.2, 112.3, 35.5, 31.5 (3C), 8.1; HRMS (ESI+) m/z: [M + H]+ calcd for 

C21H22NO4, 352.1549; found, 352.1566. 

 

220 

4-(Tert-butyl)-N-(7-hydroxy-8-methyl-2-oxo-2H-chromen-3-yl)benzamide (220): A 

solution of 218 (55.0 mg, 0.14 mmol) in MeOH (1.40 mL) was treated with triethylamine (0.14 

mL, 10%). After 12 h, the solvent was concentrated and the residue purified via column 
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chromatography (SiO2, 40:1 → 10:1 CH2Cl2:Acetone) to afford 220 as a yellow amorphous solid 

(43.0 mg, 88%): 1H NMR (Acetone-d6, 400 MHz) � 9.14 (bs, 1H), 8.87 (s, 1H), 8.72 (d, J = 3.2 

Hz, 1H), 7.95–7.93 (m, 2H), 7.64–7.62 (m, 2H), 7.42 (d, J = 8.4 Hz, 1H), 6.96 (d, J = 8.4 Hz, 

1H), 2.29 (s, 3H), 1.37 (s, 9H); 13C NMR (Acetone-d6, 125 MHz) � 164.3, 157.8, 156.4, 154.7, 

149.0, 130.4, 126.1, 124.9, 124.8, 123.6, 120.3, 111.8, 111.4, 110.4, 33.8, 30.8, 30.0, 28.9, 21.5, 

12.5, 6.3; HRMS (ESI+) m/z: [M + H]+ calcd for C21H22NO4, 352.1549; found, 352.1561. 

 

221 

3-(Tert-butyl)-N-(7-(3-(dimethylamino)propoxy)-8-methyl-2-oxo-2H-chromen-3-

yl)benzamide (221): Diisopropylazodicarboxylate (42.0 μL, 0.22 mmol) was added to a solution 

of 3-(dimethylamino)propan-1-ol (26.0 μL, 0.22 mmol), 219 (37 mg, 0.11 mmol) and 

triphenylphosphine (57.0 mg, 0.22 mmol) in anhydrous THF (1.10 mL). After 12 h, the solvent 

was removed and the residue purified via column chromatography (SiO2, 10:1, CH2Cl2:MeOH) 

to afford compound 221 as a colorless amorphous solid (25.0 mg, 54%): 1H NMR (CDCl3, 400 

MHz) � 8.83 (s, 1H), 8.75 (s, 1H), 7.99 (s, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.64 (d, J = 7.6 Hz, 

1H), 7.46 (t, J = 8.0 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 4.15 (t, J = 6.0 

Hz, 2H), 2.66 (bs, 2H), 2.41 (bs, 6H), 2.35 (s, 3H), 2.12 (t, J = 6.0 Hz, 2H), 1.40 (s, 9H); 13C 

NMR (CDCl3, 125 MHz) � 166.6, 159.5, 158.4, 152.2, 149.2, 133.6, 129.6, 128.6, 125.8, 124.6, 

124.5, 123.8, 121.5, 114.1, 113.4, 108.9, 66.7, 56.2 (2C), 45.1, 34.9, 31.2 (3C), 27.1, 8.2; HRMS 

(ESI+) m/z: [M + H]+ calcd for C26H33N2O4, 437.2440; found, 437.2418. 
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222 

4-(Tert-butyl)-N-(7-(3-(dimethylamino)propoxy)-8-methyl-2-oxo-2H-chromen-3-

yl)benzamide (222): Diisopropylazodicarboxylate (33.0 μL, 0.17 mmol) was added to a solution 

of 3-(dimethylamino)propan-1-ol (20.0 μL, 0.17 mmol), 220 (29 mg, 0.085 mmol) and 

triphenylphosphine (45.0 mg, 0.17 mmol) in anhydrous THF (0.85 mL). After 12 h, the solvent 

was removed and the residue purified via column chromatography (SiO2, 10:1, CH2Cl2:MeOH) 

to afford compound 222 as a colorless amorphous solid (35.0 mg, 96%): 1H NMR (CDCl3, 400 

MHz) � 8.82 (s, 1H), 8.75 (s, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 

8.4 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 4.15 (t, J = 6.0 Hz, 2H), 2.68 (t, J = 6.8 Hz, 2H), 2.42 (bs, 

6H), 2.34 (s, 3H), 2.13 (t, J = 6.8 Hz, 2H), 1.38 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 166.0, 

159.5, 158.3, 156.1, 149.2, 130.9, 127.0 (2C), 125.9 (2C), 125.7, 124.5, 121.5, 114.0, 113.4, 

108.9, 66.6, 56.2, 45.1, 35.1, 31.1 (3C), 27.0, 14.2, 8.1; HRMS (ESI+) m/z: [M + H]+ calcd for 

C26H33N2O4, 437.2440; found, 437.2443  

 

225 

Methyl 3-(tert-butoxy)benzoate (225): Di-tert-butyl dicarbonate (825 mg, 3.78 mmol) was 

added to a solution of methyl 3-hydroxybenzoate (250 mg, 1.64 mmol) and activated magnesium 

perchlorate (37 mg, 0.16 mmol, heated at 130oC for 1.5 under vacuum prior to the reaction) in 
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CH2Cl2 (2.50 mL), then heated at reflux for 12 h. Once cool, water (15 mL) was added and 

CH2Cl2 (3 x 15 mL) was used to extract the product. The combined organic extracts were dried 

(Na2SO4), filtered, and concentrated and the residue was purified via column chromatography 

(SiO2, 12:1, Hexane:EtOAc) to afford compound 225 as a colorless amorphous solid (209 mg, 

61%): 1H NMR (CDCl3, 400 MHz) � 7.78 (dt, J = 7.6, 1.2 Hz, 1H), 7.68 (t, J = 2.0 Hz, 1H), 7.35 

(t, J = 8.0 Hz, 1H), 7.20 (ddd, J = 8.0, 2.4, 1.2 Hz, 1H), 3.93 (s, 3H), 1.39 (s, 9H); 13C NMR 

(CDCl3, 125 MHz) � 166.9, 155.5, 131.0, 128.9, 128.8, 125.0, 124.5, 79.1, 52.2, 28.8 (3C); 

HRMS (ESI+) m/z: [M + Na]+ calcd for C12H16NaO3, 231.0997; found, 231.0958. 

 

226 

Methyl 4-(tert-butoxy)benzoate (226):267 Di-tert-butyl dicarbonate (825 mg, 3.78 mmol) was 

added to a solution of methyl 4-hydroxybenzoate (250 mg, 1.64 mmol) and activated magnesium 

perchlorate (37 mg, 0.16 mmol, heated at 130oC for 1.5 under vacuum prior to the reaction) in 

CH2Cl2 (2.50 mL), then heated at reflux for 12 h. Once cool, water (15 mL) was added and 

CH2Cl2 (3 x 15 mL) was used to extract the product. The combined organic extracts were dried 

(Na2SO4), filtered, and concentrated and the residue was purified via column chromatography 

(SiO2, 12:1, Hexane:EtOAc) to afford compound 226 as a colorless amorphous solid (197 mg, 

58%): 1H NMR (CDCl3, 500 MHz) � 7.98 (dd, J = 7.0, 1.5 Hz, 2H), 7.04 (dd, J = 7.0, 1.5 Hz, 

2H), 3.91 (s, 3H), 1.43 (s, 9H). 

 

227 
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3-(Tert-butoxy)benzoic acid (227):268 Lithium hydroxide (399 mg, 4.76 mmol) was added to 

a solution of 225 (198 mg, 0.95 mmol) in 3:1:1 THF:MeOH:H2O (9.50 mL). After 12 h, the 

solution was concentrated and the aqueous residue was acidified, and then extracted with EtOAc 

(3 x 15 mL). The combined organic layers were next extracted with saturated aqueous NaHCO3 

(3 x 15 mL), and then the aqueous extracts were acidified. Finally, EtOAc (3 x 15 mL) was used 

to extract the acid product, and the combined organic extracts were washed with saturated 

aqueous NaCl, dried (Na2SO4), filtered, and concentrated to afford 227 as a colorless amorphous 

solid (158 mg, 99%): 1H NMR (CDCl3, 400 MHz) � 7.86 (dt, J = 6.0, 0.8 Hz, 1H), 7.58 (t, J = 

1.6 Hz, 1H), 7.40 (t, J = 6.0 Hz, 1H), 7.28–7.26 (m, 1H), 1.41 (s, 9H). 

 

228 

4-(Tert-butoxy)benzoic acid (228):269 Lithium hydroxide (399 mg, 4.76 mmol) was added to 

a solution of 225 (198 mg, 0.95 mmol) in 3:1:1 THF:MeOH:H2O (9.50 mL). After 12 h, the 

solution was concentrated and the aqueous residue was acidified, and then extracted with EtOAc 

(3 x 15 mL). The combined organic layers were next extracted with saturated aqueous NaHCO3 

(3 x 15 mL), and then the aqueous extracts were acidified. Finally, EtOAc (3 x 15 mL) was used 

to extract the acid product, and the combined organic extracts were washed with saturated 

aqueous NaCl, dried (Na2SO4), filtered, and concentrated to afford 228 as a colorless amorphous 

solid (158 mg, 99%): 1H NMR (CDCl3, 400 MHz) � 8.05 (dd, J = 6.8, 2.0 Hz, 2H), 7.06 (dd, J = 

6.8, 2.0 Hz, 2H), 1.45 (s, 9H). 
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229 

3-(Tert-butoxy)-N-(8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-oxo-2H-chromen-3-

yl)benzamide (229): EDCI (50.0 mg, 0.26 mmol) and 227 (40.0 mg, 0.21 mmol) were added to 

aminocoumarin 206 (30.0 mg, 0.10 mmol), freshly prepared from hydrogenolysis of 210, in 30% 

pyridine/CH2Cl2 (1.60 mL). After 12 h, the solvent was concentrated and the residue was 

purified via column chromatography (SiO2, 10:1 CH2Cl2:MeOH) to afford 229 as a colorless 

amorphous solid (17.0 mg, 35%): 1H NMR (CDCl3, 400 MHz) � 8.83 (s, 1H), 8.74 (s, 1H), 7.62–

7.58 (m, 2H), 7.43 (t, J = 8.0 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 6.89 (d, 

J = 8.4 Hz, 1H), 4.60 (bd, 1H), 2.84 (bs, 2H), 2.66 (bs, 2H), 2.52 (bs, 3H), 2.38 (s, 3H), 2.22 (bs, 

2H), 2.05 (bs, 2H), 1.42 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 165.8, 159.4 (2C), 156.1, 149.5, 

134.7, 129.4, 128.0, 125.7, 124.5, 122.7 (2C), 121.6, 121.5, 115.2, 113.5, 110.3, 79.4, 51.8 (2C), 

45.5, 28.9 (3C), 28.8 (2C), 8.4; HRMS (ESI+) m/z: [M + H]+ calcd for C27H33N2O5, 465.2389; 

found, 465.2373. 

 

230 

4-(Tert-butoxy)-N-(8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-oxo-2H-chromen-3-

yl)benzamide (230): EDCI (50.0 mg, 0.26 mmol) and 228 (40.0 mg, 0.21 mmol) were added to 

aminocoumarin 206 (30.0 mg, 0.10 mmol), freshly prepared from hydrogenolysis of 210, in 30% 
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pyridine/CH2Cl2 (1.60 mL). After 12 h, the solvent was concentrated and the residue was 

purified via column chromatography (SiO2, 10:1 CH2Cl2:MeOH) to afford 230 as a colorless 

amorphous solid (11.0 mg, 23%): 1H NMR (CDCl3, 400 MHz) � 8.82 (s, 1H), 8.71 (s, 1H), 7.87 

(d, J = 8.8 Hz, 2H), 7.36 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.4 Hz, 1H), 

4.57 (bs, 1H), 2.82 (bs, 2H), 2.66 (bs, 2H), 2.49 (bs, 3H), 2.39 (s, 3H), 2.20 (bs, 2H), 2.03 (bs, 

2H), 1.45 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 165.7, 159.7, 159.5 (2C), 149.4, 128.4 (2C), 

128.0, 125.7, 124.2, 123.1 (2C), 121.7 (2C), 115.2, 113.6, 110.3, 79.7, 51.8 (2C), 45.7, 28.9 

(5C), 8.4; HRMS (ESI+) m/z: [M + H]+ calcd for C27H33N2O5, 465.2389; found, 465.2404. 

 

231 

3-(3-(Tert-butoxy)benzamido)-8-methyl-2-oxo-2H-chromen-7-yl acetate (231): EDCI (82 

mg, 0.43 mmol) and 227 (67 mg, 0.34 mmol) were added to aminocoumarin 211 (40 mg, 0.17 

mmol), freshly prepared from hydrogenolysis of 147, in 30% pyridine/CH2Cl2 (2.60 mL). After 

12 h, the solvent was concentrated and the residue was purified via column chromatography 

(SiO2, 40:1 CH2Cl2:Acetone) to afford 231 as a colorless amorphous solid (49.0 mg, 70%): 1H 

NMR (CDCl3, 400 MHz) � 8.87 (s, 1H), 8.80 (s, 1H), 7.63–7.59 (m, 2H), 7.44 (t, J = 8.4 Hz, 

2H), 7.24 (dd, J = 8.0, 2.4 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 2.40 (s, 3H), 2.33 (s, 3H), 1.43 (s, 

9H); 13C NMR (CDCl3, 125 MHz) � 168.9, 165.9, 158.9, 156.2, 150.2, 148.8, 134.5, 129.5, 

128.1, 125.6, 123.5 (2C), 122.8, 121.5, 119.4, 119.1, 117.7, 79.4, 28.8 (3C), 20.8, 9.1; HRMS 

(ESI+) m/z: [M + Na]+ calcd for C23H23NNaO6, 432.1423; found, 432.1398. 
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232 

3-(4-(Tert-butoxy)benzamido)-8-methyl-2-oxo-2H-chromen-7-yl acetate (232): EDCI (82 

mg, 0.43 mmol) and 228 (67 mg, 0.34 mmol) were added to aminocoumarin 211 (40 mg, 0.17 

mmol), freshly prepared from hydrogenolysis of 147, in 30% pyridine/CH2Cl2 (2.60 mL). After 

12 h, the solvent was concentrated and the residue was purified via column chromatography 

(SiO2, 40:1 CH2Cl2:Acetone) to afford 232 as a colorless amorphous solid (32.5 mg, 46%): 1H 

NMR (CDCl3, 400 MHz) � 8.86 (s, 1H), 8.78 (s, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 

Hz, 1H), 7.13 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 1H), 2.40 (s, 3H), 2.33 (s, 3H), 1.45 (s, 

9H); 13C NMR (CDCl3, 125 MHz) � 168.9, 165.8, 159.8, 159.0, 150.1, 148.8, 128.5, 127.7 (2C), 

125.5, 123.6, 123.2 (2C), 123.1, 119.3, 119.0, 117.8, 79.8, 28.9 (3C), 20.8, 9.1; HRMS (ESI+) 

m/z: [M + Na]+ calcd for C23H23NNaO6, 432.1423; found, 432.1413. 

 

233 

3-(Tert-butoxy)-N-(7-hydroxy-8-methyl-2-oxo-2H-chromen-3-yl)benzamide (233): A 

solution of 231 (32.0 mg, 0.078 mmol) in MeOH (0.80 mL) was treated with triethylamine (80 

μL, 10%). After 12 h, the solvent was concentrated and the residue purified via column 

chromatography (SiO2, 40:1 → 10:1 CH2Cl2:Acetone) to afford 233 as a yellow amorphous solid 

(28.6 mg, 99%): 1H NMR (CDCl3, 400 MHz) � 8.83 (s, 1H), 8.73 (s, 1H), 7.60 (t, J = 8.4 Hz, 
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2H), 7.43 (t, J = 7.6 Hz, 1H), 7.29–7.27 (m, 1H), 7.23 (d, J = 7.6 Hz, 1H), 6.84 (d, J = 8.4 Hz, 

1H), 5.24 (bs, 1H), 2.39 (s, 3H), 1.42 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 165.9, 159.4, 

156.1, 155.6, 134.8, 129.5, 128.0, 125.9 (2C), 124.8, 122.7, 121.5, 121.4, 113.3, 113.0, 111.8, 

79.4, 28.8 (3C), 7.9; HRMS (ESI+) m/z: [M + H]+ calcd for C21H22NO5, 368.1498; found, 

368.1477. 

 

234 

4-(Tert-butoxy)-N-(7-hydroxy-8-methyl-2-oxo-2H-chromen-3-yl)benzamide (234): A 

solution of 232 (12.0 mg, 0.029 mmol) in MeOH (0.29 mL) was treated with triethylamine (29 

μL, 10%). After 12 h, the solvent was concentrated and the residue purified via column 

chromatography (SiO2, 40:1 → 10:1 CH2Cl2:Acetone) to afford 234 as a yellow amorphous solid 

(10.0 mg, 93%): 1H NMR (CDCl3, 400 MHz) � 8.82 (s, 1H), 8.70 (s, 1H), 7.87 (d, J = 8.8 Hz, 

2H), 7.29 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.4 Hz, 1H), 5.27 (s, 1H), 

2.39 (s, 3H), 1.45 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 165.7, 159.7, 159.5, 155.4, 149.5, 

128.4 (2C), 127.9, 125.9, 124.5, 123.1 (2C), 113.4, 113.0, 111.7, 28.9 (5C), 7.9; HRMS (ESI+) 

m/z: [M + H]+ calcd for C21H22NO5, 368.1498; found, 368.1484. 

 

235 
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3-(Tert-butoxy)-N-(7-(3-(dimethylamino)propoxy)-8-methyl-2-oxo-2H-chromen-3-

yl)benzamide (235): Diisopropylazodicarboxylate (24.0 μL, 0.13 mmol) was added to a solution 

of 3-(dimethylamino)propan-1-ol (15.0 μL, 0.13 mmol), 233 (23 mg, 0.063 mmol) and 

triphenylphosphine (33.0 mg, 0.13 mmol) in anhydrous THF (0.63 mL). After 12 h, the solvent 

was removed and the residue purified via column chromatography (SiO2, 10:1, CH2Cl2:MeOH) 

to afford compound 235 as a colorless amorphous solid (23.0 mg, 81%): 1H NMR (CDCl3, 500 

MHz) � 8.83 (s, 1H), 8.74 (s, 1H), 7.62–7.58 (m, 2H), 7.43 (t, J = 8.0 Hz, 1H), 7.37 (d, J = 8.5 

Hz, 1H), 7.24 (dd, J = 8.0, 2.0 Hz, 1H), 6.90 (d, J = 8.5 Hz, 1H), 4.18 (t, J = 6.0 Hz, 2H), 2.84 

(bs, 2H), 2.56 (bs, 6H), 2.35 (s, 3H), 2.22 (bs, 2H), 1.43 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 

165.8, 159.4, 156.1, 149.2, 134.8, 129.5 (2C), 128.0, 125.9, 124.6, 122.8, 121.6, 121.5, 114.0 

(2C), 108.8, 79.4, 66.2, 56.2, 44.4, 28.9 (5C), 8.2; HRMS (ESI+) m/z: [M + Na]+ calcd for 

C26H32N2NaO5; 475.2209; found, 475.2218. 

 

236 

4-(Tert-butoxy)-N-(7-(3-(dimethylamino)propoxy)-8-methyl-2-oxo-2H-chromen-3-

yl)benzamide (236): Diisopropylazodicarboxylate (18.0 μL, 0.093 mmol) was added to a 

solution of 3-(dimethylamino)propan-1-ol (11.0 μL, 0.093 mmol), 234 (17.0 mg, 0.046 mmol) 

and triphenylphosphine (24.0 mg, 0.093 mmol) in anhydrous THF (0.50 mL). After 12 h, the 

solvent was removed and the residue purified via column chromatography (SiO2, 10:1, 

CH2Cl2:MeOH) to afford compound 236 as a colorless amorphous solid (8.0 mg, 38%): 1H NMR 

(CDCl3, 400 MHz) � 8.81 (s, 1H), 8.70 (s, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 
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1H), 7.12 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.4 Hz, 1H), 4.18 (t, J = 6.0 Hz, 2H), 2.92 (bs, 2H), 

2.62 (bs, 6H), 2.34 (s, 3H), 2.26 (bs, 2H), 1.45 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 165.7, 

159.7, 159.5, 157.8, 149.1, 128.4 (2C), 128.0, 125.9, 124.3 (2C), 123.1, 121.7, 114.0, 113.7, 

108.8, 79.7, 66.1, 56.1, 44.4, 28.9 (5C), 8.2; HRMS (ESI+) m/z: [M + Na]+ calcd for 

C26H32N2NaO5; 475.2209; found, 475.2228. 

 

242 

3'-(Tert-butyl)-6-methoxy-[1,1'-biphenyl]-3-carboxylic acid (242): 1,1'-bis(diphenyl-

phosphino)ferrocene-palladium(II)dichloride dichloromethane complex (16.8 mg, 0.021 mmol) 

was added to a solution of methyl 3-iodo-4-methoxybenzoate (200 mg, 0.68 mmol), (3-(tert-

butyl)phenyl)boronic acid (366 mg, 2.05 mmol) and 2M K2CO3 (1.0 mL, 2.05 mmol) in dioxane 

(9.3 mL). After 1 h at rt, the solution was heated to 50oC for 12 h. Once cool, solvent was 

removed and the residue was resuspended in EtOAc, washed with water, dried (Na2SO4), filtered 

and concentrated. The residue was purified via column chromatography (SiO2, 6:1, 

Hexane:EtOAc) to afford benzoate as a colorless oil (204 mg, 99%), which was used without 

further purification. 

Lithium hydroxide (269 mg, 3.20 mmol) was added to a solution of benzoate (191 mg, 0.64 

mmol) in 3:1:1 THF:MeOH:H2O (6.40 mL). After 12 h, the solution was concentrated and the 

aqueous residue was acidified, and then extracted with EtOAc (3 x 15 mL). The combined 

organic layers were next extracted with saturated aqueous NaHCO3 (3 x 15 mL), and then the 

aqueous extracts were acidified. Finally, EtOAc (3 x 15 mL) was used to extract the acid 
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product, and the combined organic extracts were washed with saturated aqueous NaCl, dried 

(Na2SO4), filtered, and concentrated to afford 242 as a colorless amorphous solid (152 mg, 78%): 

1H NMR (CDCl3, 400 MHz) � 8.13 (s, 1H), 8.11 (s, 1H), 7.56 (s, 1H), 7.44–7.37 (m, 3H), 7.06 

(d, J = 9.2 Hz, 1H), 3.92 (s, 3H), 1.39 (s, 9H);13C NMR (CDCl3, 125 MHz) � 170.8, 160.9, 

150.9, 136.9, 133.1, 131.4, 131.3, 127.7, 126.7, 126.6, 124.4, 121.5, 110.6, 55.8, 34.8, 31.4 (3C); 

HRMS (ESI+) m/z: [M + H]+ calcd for C18H21O3, 285.1491; found, 285.1494. 

 

243 

4'-(Tert-butyl)-6-methoxy-[1,1'-biphenyl]-3-carboxylic acid (243): 1,1'-bis(diphenyl-

phosphino)ferrocene-palladium(II)dichloride dichloromethane complex (16.8 mg, 0.021 mmol) 

was added to a solution of methyl 3-iodo-4-methoxybenzoate (200 mg, 0.68 mmol), (4-(tert-

butyl)phenyl)boronic acid (366 mg, 2.05 mmol) and 2M K2CO3 (1.0 mL, 2.05 mmol) in dioxane 

(9.3 mL). After 1 h at rt, the solution was heated to 50oC for 12 h. Once cool, solvent was 

removed and the residue was resuspended in EtOAc, washed with water, dried (Na2SO4), filtered 

and concentrated. The residue was purified via column chromatography (SiO2, 6:1, 

Hexane:EtOAc) to afford benzoate as a colorless oil (204 mg, 99%), which was used without 

further purification. 

Lithium hydroxide (339 mg, 4.53 mmol) was added to a solution of benzoate (270 mg, 0.91 

mmol) in 3:1:1 THF:MeOH:H2O (9.10 mL). After 12 h, the solution was concentrated and the 

aqueous residue was acidified, and then extracted with EtOAc (3 x 15 mL). The combined 

organic layers were next extracted with saturated aqueous NaHCO3 (3 x 15 mL), and then the 
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aqueous extracts were acidified. Finally, EtOAc (3 x 15 mL) was used to extract the acid 

product, and the combined organic extracts were washed with saturated aqueous NaCl, dried 

(Na2SO4), filtered, and concentrated to afford 243 as a colorless amorphous solid (190 mg, 98%): 

1H NMR (Acetone-d6, 400 MHz) � 8.03 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 2.0 Hz, 1H), 7.48 (d, J 

= 1.2 Hz, 4H), 7.21 (d, J = 8.4 Hz, 1H), 3.92 (d, J = 1.6 Hz, 3H), 1.36 (d, J = 1.6 Hz, 9H); 13C 

NMR (Acetone-d6, 125 MHz) � 167.3, 161.3, 150.8, 135.8, 132.9, 131.5, 131.2, 130.0, 127.0, 

125.8, 123.8, 112.0, 56.2, 35.1, 31.9, 31.6 (3C); HRMS (ESI+) m/z: [M + H]+ calcd for C18H21O3, 

285.1491; found, 285.1495. 

 

244 

3'-(Tert-butyl)-6-methoxy-N-(8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-oxo-2H-

chromen-3-yl)-[1,1'-biphenyl]-3-carboxamide (244): EDCI (50.0 mg, 0.26 mmol) and 242 (59 

mg, 0.21 mmol) were added to aminocoumarin 206 (30.0 mg, 0.10 mmol), freshly prepared from 

hydrogenolysis of 210, in 30% pyridine/CH2Cl2 (1.60 mL). After 12 h, the solvent was 

concentrated and the residue was purified via column chromatography (SiO2, 10:1 

CH2Cl2:MeOH) to afford 244 as a colorless amorphous solid (46.0 mg, 80%): 1H NMR (CDCl3, 

400 MHz) � 8.83 (s, 1H), 8.74 (s, 1H), 7.95–7.92 (m, 2H), 7.58 (s, 1H), 7.43–7.35 (m, 4H), 7.10 

(d, J = 8.4 Hz, 1H), 6.89 (d, J = 8.8 Hz, 1H), 4.60 (bs, 1H), 3.92 (s, 3H), 2.85 (bs, 2H), 2.72 (bs, 

2H), 2.52 (bs, 3H), 2.37 (s, 3H), 2.23 (bs, 2H), 2.05 (bs, 2H), 1.40 (s, 9H); 13C NMR (CDCl3, 

125 MHz) � 165.6, 159.9, 159.5, 156.4, 151.0, 149.4, 136.8, 131.7, 130.1, 127.9, 127.8, 126.7, 

126.6, 126.0, 125.7, 124.6, 124.1, 121.8, 115.2, 113.7, 111.0, 110.3, 70.5, 55.9 (2C), 51.6, 45.6, 
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34.8, 31.8, 31.7, 31.4 (2C), 31.3, 8.4; HRMS (ESI+) m/z: [M + Na]+ calcd for C34H38N2NaO5; 

577.2678; found, 577.2661. 

 

245 

4'-(Tert-butyl)-6-methoxy-N-(8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-oxo-2H-

chromen-3-yl)-[1,1'-biphenyl]-3-carboxamide (245): EDCI (34.0 mg, 0.18 mmol) and 243 (40 

mg, 0.14 mmol) were added to aminocoumarin 206 (20.3 mg, 0.070 mmol), freshly prepared 

from hydrogenolysis of 210, in 30% pyridine/CH2Cl2 (1.10 mL). After 12 h, the solvent was 

concentrated and the residue was purified via column chromatography (SiO2, 10:1 

CH2Cl2:MeOH) to afford 245 as a colorless amorphous solid (20.0 mg, 52%): 1H NMR (CDCl3, 

400 MHz) � 8.83 (s, 1H), 8.72 (s, 1H), 7.94 (d, J = 2.4 Hz, 1H), 7.93–7.91 (m, 1H), 7.52 (dd, J = 

14.8, 8.4 Hz, 4H), 7.37 (d, J = 8.8 Hz, 1H), 7.09 (d, J = 8.8 Hz, 1H), 6.89 (d, J = 8.8 Hz, 1H), 

4.61 (bs, 1H), 3.93 (s, 3H), 2.87 (bs, 2H), 2.54 (bs, 3H), 2.38 (s, 5H), 2.28 (bs, 2H), 2.08 (bs, 

2H), 1.40 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 165.6, 159.9, 159.4, 150.5, 149.4, 134.2, 

131.0, 129.9, 129.2 (4C), 128.0, 126.1, 125.7, 125.2 (4C), 124.1, 121.9, 111.0 (2C), 110.9, 110.3, 

55.9 (2C), 34.6, 31.4 (5C), 8.5; HRMS (ESI+) m/z: [M + H]+ calcd for C34H39N2O5, 555.2859; 

found, 555.2855. 

 

246 
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3-(3'-(Tert-butyl)-6-methoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-

chromen-7-yl acetate (246): EDCI (152 mg, 0.79 mmol) and 242 (135 mg, 0.47 mmol) were 

added to aminocoumarin 211 (70 mg, 0.30 mmol), freshly prepared from hydrogenolysis of 147, 

in 30% pyridine/CH2Cl2 (4.0 mL). After 12 h, the solvent was concentrated and the residue was 

purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 246 as a colorless 

amorphous solid (111 mg, 74%): 1H NMR (CDCl3, 400 MHz) � 8.87 (s, 1H), 8.80 (s, 1H), 7.96–

7.92 (m, 2H), 7.58 (s, 1H), 7.44–7.40 (m, 4H), 7.11 (d, J = 8.4 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 

3.93 (s, 3H), 2.40 (s, 3H), 2.33 (s, 3H), 1.40 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 168.9, 

165.7, 160.0, 159.0, 151.0, 150.0, 148.7, 136.8, 131.8, 130.1, 128.0, 127.8, 126.7, 126.6, 125.8, 

125.5, 124.6, 123.7, 123.1, 119.3, 119.0, 117.8, 111.0, 55.9, 34.8, 31.4 (3C), 20.8, 9.1; HRMS 

(ESI+) m/z: [M + Na]+ calcd for C30H29NNaO6; 522.1893; found, 522.1905. 

 

247 

3-(4'-(Tert-butyl)-6-methoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-

chromen-7-yl acetate (247): EDCI (152 mg, 0.79 mmol) and 243 (135 mg, 0.47 mmol) were 

added to aminocoumarin 211 (70 mg, 0.30 mmol), freshly prepared from hydrogenolysis of 147, 

in 30% pyridine/CH2Cl2 (4.0 mL). After 12 h, the solvent was concentrated and the residue was 

purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 247 as a colorless 

amorphous solid (104 mg, 69%): 1H NMR (CDCl3, 400 MHz) � 8.88 (s, 1H), 8.79 (s, 1H), 7.92 

(dd, J = 6.0, 2.4 Hz, 2H), 7.55–7.49 (m, 4H), 7.43 (d, J = 8.4 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 

7.06 (d, J = 8.4 Hz, 1H), 3.93 (s, 3H), 2.40 (s, 3H), 2.33 (s, 3H), 1.40 (s, 9H); 13C NMR (CDCl3, 
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125 MHz) � 168.9, 165.7, 160.0, 158.9, 150.5, 150.0, 148.7, 134.2, 131.0, 129.9, 129.2, 128.1, 

125.9, 125.5, 125.2, 123.7, 123.1, 119.7, 119.3, 119.0, 117.8, 111.0, 55.9, 34.6, 31.5 (3C), 31.4, 

20.8, 9.1; HRMS (ESI+) m/z: M + Na]+ calcd for C30H29NNaO6; 522.1893; found, 522.1903. 

 

248 

3'-(Tert-butyl)-N-(7-hydroxy-8-methyl-2-oxo-2H-chromen-3-yl)-6-methoxy-[1,1'-

biphenyl]-3-carboxamide (248): A solution of 246 (93.0 mg, 0.19 mmol) in MeOH (1.90 mL) 

was treated with triethylamine (0.19 mL, 10%). After 12 h, the solvent was concentrated and the 

residue purified via column chromatography (SiO2, 40:1 → 10:1 CH2Cl2:Acetone) to afford 248 

as a yellow amorphous solid (84.0 mg, 99%): 1H NMR (Acetone-d6, 400 MHz) � 9.15 (bs, 1H), 

8.91 (s, 1H), 8.73 (s, 1H), 8.02 (dd, J = 8.8, 2.4 Hz, 1H), 7.95 (d, J = 2.4 Hz, 1H), 7.63 (s, 1H), 

7.45–7.38 (m, 4H), 7.92 (d, J = 8.8 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 3.94 (s, 3H), 2.29 (s, 3H), 

1.38 (s, 9H); 13C NMR (Acetone-d6, 125 MHz) � 165.8, 160.7, 158.1, 151.5, 138.3, 132.1, 130.8, 

129.0, 128.6, 127.6, 127.4 (2C), 127.3, 126.7 (2C), 125.5, 125.0, 122.2, 113.5, 113.3, 112.2 (2C), 

56.3, 35.3, 31.7 (3C), 8.1; HRMS (ESI+) m/z: [M + Na]+ calcd for C28H27NNaO5; 480.1787; 

found, 480.1774. 

 

249 
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4'-(Tert-butyl)-N-(7-hydroxy-8-methyl-2-oxo-2H-chromen-3-yl)-6-methoxy-[1,1'-

biphenyl]-3-carboxamide (249): A solution of 247 (85.0 mg, 0.17 mmol) in MeOH (1.7 mL) 

was treated with triethylamine (0.17 mL, 10%). After 12 h, the solvent was concentrated and the 

residue purified via column chromatography (SiO2, 40:1 → 10:1 → 5:1 CH2Cl2:Acetone) to 

afford 249 as a yellow amorphous solid (75.0 mg, 96%): 1H NMR (Acetone-d6, 400 MHz) � 9.15 

(bs, 1H), 8.92 (s, 1H), 8.71 (s, 1H), 8.01 (d, J = 2.4 Hz, 1H), 7.95 (d, J = 2.4 Hz, 1H), 7.55–7.49 

(m, 4H), 7.42 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 8.8 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 3.94 (s, 3H), 

2.29 (s, 3H), 1.38 (s, 9H); 13C NMR (Acetone-d6, 125 MHz) � 165.8, 160.7, 158.1, 150.9, 135.7, 

131.5 (2C), 130.6 (2C), 130.0, 129.0, 127.3, 126.7 (2C), 125.8 (2C), 125.5, 122.2, 113.5, 113.3, 

112.2 (2C), 56.2, 35.1, 31.6 (3C), 8.1; HRMS (ESI+) m/z: [M + Na]+ calcd for C28H27NNaO5; 

480.1787; found, 480.1781. 

 

250 

3'-(Tert-butyl)-N-(7-(3-(dimethylamino)propoxy)-8-methyl-2-oxo-2H-chromen-3-yl)-6-

methoxy-[1,1'-biphenyl]-3-carboxamide (250): Diisopropylazodicarboxylate (16.9 μL, 0.087 

mmol) was added to a solution of 3-(dimethylamino)propan-1-ol (10.3 μL, 0.087 mmol), 248 (20 

mg, 0.044 mmol) and triphenylphosphine (23.0 mg, 0.087 mmol) in anhydrous THF (0.43 mL). 

After 12 h, the solvent was removed and the residue purified via column chromatography (SiO2, 

10:1, CH2Cl2:MeOH) to afford compound 250 as a colorless amorphous solid (21.0 mg, 89%): 

1H NMR (CDCl3, 400 MHz) � 8.83 (s, 1H), 8.74 (s, 1H), 7.95–7.92 (m, 2H), 7.58 (s, 1H), 7.44–

7.33 (m, 4H), 7.10 (d, J = 8.0 Hz, 1H), 6.90 (d, J = 8.8 Hz, 1H), 4.16 (t, J = 6.0 Hz, 2H), 3.92 (s, 
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3H), 2.73 (bs, 2H), 2.47 (s, 3H), 2.35 (bs, 6H), 2.20 (bs, 2H), 1.40 (s, 9H); 13C NMR (CDCl3, 

125 MHz) � 165.6, 159.8, 159.6, 158.2, 151.0, 149.1, 136.9, 131.7, 130.1, 127.9, 127.8, 126.7 

(2C), 126.1, 125.7, 124.6, 124.3, 121.6, 114.0, 113.5, 111.0, 108.9, 66.5, 56.2, 55.9, 44.9, 34.8, 

31.4 (4C), 29.7, 8.2; HRMS (ESI+) m/z: [M + H]+ calcd for C33H39N2O5, 543.2859; found, 

543.2839. 

 

251 

4'-(tert-butyl)-N-(7-(3-(dimethylamino)propoxy)-8-methyl-2-oxo-2H-chromen-3-yl)-6-

methoxy-[1,1'-biphenyl]-3-carboxamide (251): Diisopropylazodicarboxylate (16.9 μL, 0.087 

mmol) was added to a solution of 3-(dimethylamino)propan-1-ol (10.3 μL, 0.087 mmol), 249 (20 

mg, 0.044 mmol) and triphenylphosphine (23.0 mg, 0.087 mmol) in anhydrous THF (0.43 mL). 

After 12 h, the solvent was removed and the residue purified via column chromatography (SiO2, 

10:1, CH2Cl2:MeOH) to afford compound 251 as a colorless amorphous solid (20.0 mg, 84%): 

1H NMR (CDCl3, 400 MHz) � 8.83 (s, 1H), 8.72 (s, 1H), 7.95–7.91 (m, 2H), 7.53 (d, J = 8.4 Hz, 

2H), 7.49 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.8 Hz, 1H), 7.09 (d, J = 8.8 Hz, 1H), 6.89 (d, J = 8.4 

Hz, 1H), 4.16 (t, J = 6.0 Hz, 2H), 3.93 (s, 3H), 2.73 (bs, 2H), 2.46 (bs, 6H), 2.35 (s, 3H), 2.15 (t, 

J = 6.0 Hz, 2H), 1.40 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 165.6, 159.8, 159.6, 158.1, 150.5, 

149.1, 134.3, 131.0, 129.9, 129.2 (2C), 128.0, 126.1 (2C), 125.7, 125.2, 124.3, 121.6, 114.0, 

113.5, 110.9, 108.8, 66.5, 56.2, 55.9, 44.9, 34.6, 31.4 (5C), 8.2; HRMS (ESI+) m/z: [M + H]+ 

calcd for C33H39N2O5, 543.2859; found, 543.2862. 
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253 

1-Bromo-2-(tert-butyl)benzene (253):270 Copper (I) bromide (7.88 g, 35.3 mmol) was slowly 

added to a solution of 2-(tert-butyl)aniline (5.0 mL, 32.1 mmol) and tert-butyl nitrite (6.41 mL, 

48.1 mmol) in MeCN (32.0 mL), then heated at 50oC for 1 h. Once cool, saturated aqueous 

NaHCO3 (30 mL) was added and the solution was extracted with EtOAc (3 x 30 mL). The 

combined organic layers were dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 100% Hexane → 30:1 Hexane:EtOAc) to give 253 

as a red oil (825 mg, 12%): 1H NMR (CDCl3, 500 MHz) � 7.48 (dd, J = 8.5, 1.5 Hz, 1H), 7.30–

7.26 (m, 2H), 6.63 (dd, J = 8.5, 1.5 Hz, 1H), 1.18 (s, 9H). 

 

256 

Methyl 4-(tert-butoxy)-3-iodobenzoate (256): Di-tert-butyl dicarbonate (451 mg, 2.07 mmol) 

was added to a solution of methyl 4-hydroxy-3-iodobenzoate (250 mg, 0.90 mmol) and activated 

magnesium perchlorate (20 mg, 0.090 mmol, heated at 130oC for 1.5 under vacuum prior to the 

reaction) in CH2Cl2 (1.40 mL), then heated at reflux for 12 h. Once cool, water (15 mL) was 

added and CH2Cl2 (3 x 20 mL) was used to extract the product. The combined organic extracts 

were dried (Na2SO4), filtered, and concentrated and the residue was purified via column 

chromatography (SiO2, 12:1, Hexane:EtOAc) to afford compound 256 as a colorless amorphous 

solid (27 mg, 9.0%): 1H NMR (CDCl3, 500 MHz) � 8.39 (d, J = 2.0 Hz, 1H), 7.85 (dd, J = 8.5, 

2.5 Hz, 1H), 7.01 (d, J = 8.5 Hz, 1H), 3.82 (s, 3H), 1.45 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 
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163.7, 158.3, 139.2, 128.8, 123.6, 117.3, 91.3, 80.5, 503., 27.5, 27.4, 27.2; HRMS (ESI+) m/z: 

[M + H]+ calcd for C12H16IO3, 335.0144; found 335.0162. 

 

258 

Methyl 6-(tert-butoxy)-4'-hydroxy-[1,1'-biphenyl]-3-carboxylate (258): 1,1'-bis(diphenyl-

phosphino)ferrocene-palladium(II)dichloride dichloromethane complex (7.3 mg, 0.0090 mmol) 

was added to a solution of 256 (100 mg, 0.30 mmol), (4-hydroxyphenyl)boronic acid (124 mg, 

0.90 mmol) and 2M K2CO3 (0.45 mL, 0.90 mmol) in dioxane (4.00 mL). After 1 h at rt, the 

solution was heated to 50oC for 12 h. Once cool, solvent was removed and the residue was 

resuspended in EtOAc, washed with water, dried (Na2SO4), filtered and concentrated. The 

residue was purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 258 as a 

colorless oil (43 mg, 48%): 1H NMR (CDCl3, 400 MHz) � 8.08 (d, J = 2.4 Hz, 1H), 7.92 (dd, J = 

8.4, 2.4 Hz, 1H), 7.47 (dd, J = 6.8, 2.4 Hz, 2H), 7.16 (d, J = 8.8 Hz, 1H), 6.89 (dd, J = 6.8, 2.0 

Hz, 2H) 5.32 (s, 1H), 3.93 (s, 3H), 1.22 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 167.0, 157.4, 

154.7, 136.0, 132.2 (2C), 131.5, 131.2, 129.0, 124.8, 122.9, 114.8 (2C), 81.0, 52.0, 28.9 (3C); 

HRMS (ESI+) m/z: [M + H]+ calcd for C18H21O4, 301.1440; found, 301.1462. 

 

259 
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Methyl 6-(tert-butoxy)-4'-(methoxymethoxy)-[1,1'-biphenyl]-3-carboxylate (259): N,N-

diisopropylethylamine (55 μL, 0.32 mmol) was slowly added to 258 (19 mg, 0.063 mmol) in 

anhydrous N,N-dimethylformamide (0.21 mL) over 5 min at rt. After 30 min, the solution was 

cooled to 0°C and chloromethyl ethyl ether (24 μL, 0.32 mmol) was added and the mixture 

warmed to rt over 12 h. The reaction was quenched by the addition of saturated aqueous NH4Cl 

solution and extracted with EtOAc (3 × 10 mL). The combined organic fractions were washed 

with saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 8:1 → 3:1 Hexane:EtOAc) to give 259 as a yellow 

oil (11.0 mg, 50%): 1H NMR (CDCl3, 500 MHz) � 7.96 (d, J = 2.0 Hz, 1H), 7.83 (dd, J = 8.5, 2.5 

Hz, 1H), 7.42 (dd, J = 6.5, 2.0 Hz, 2H), 7.08 (d, J = 8.5 Hz, 1H), 7.00 (dd, J = 6.5, 2.0 Hz, 2H), 

5.15 (s, 2H), 3.82 (s, 3H), 3.44 (s, 3H), 1.14 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 167.0, 

157.4, 156.5, 135.9, 132.3, 130.9, 129.1, 124.7, 122.7, 117.5, 115.9, 115.6, 115.3, 94.5, 80.9, 

56.1, 52.0, 29.3, 28.9, 28.7; HRMS (ESI+) m/z: [M + H]+ calcd for C20H25O5, 345.1702; found, 

345.1696. 

 

260 

6-(Tert-butoxy)-4'-(methoxymethoxy)-[1,1'-biphenyl]-3-carboxylic acid (260): Lithium 

hydroxide (38.0 mg, 0.45 mmol) was added to a solution of 259 (31.0 mg, 0.090 mmol) in 3:1:1 

THF:MeOH:H2O (0.9 mL). After 12 h, the solution was concentrated and the aqueous residue 

was acidified, and then extracted with EtOAc (3 x 10 mL). The combined organic layers were 

next extracted with saturated aqueous NaHCO3 (3 x 10 mL), and then the aqueous extracts were 
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acidified. Finally, EtOAc (3 x 10 mL) was used to extract the acid product, and the combined 

organic extracts were washed with saturated aqueous NaCl, dried (Na2SO4), filtered, and 

concentrated to afford 260 as a colorless amorphous solid (28.0 mg, 94%): 1H NMR (CDCl3, 400 

MHz) � 8.11 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.52 (d, J = 8.8 Hz, 2H), 7.20 (d, J = 8.4 Hz, 1H), 

7.10 (d, J = 8.4 Hz, 2H), 5.25 (s, 2H), 3.54 (s, 3H), 1.27 (s, 9H); 13C NMR (CDCl3, 125 MHz) � 

170.6, 158.2, 156.5, 135.8, 132.9, 132.3, 130.9 (2C), 129.8, 123.5, 122.4, 115.6 (2C), 94.5, 81.1, 

56.1, 28.9 (3C); HRMS (ESI+) m/z: [M + Na]+ calcd for C19H22NaO5; 353.1365; found, 

353.1343. 

 

261 

Methyl 3-iodo-4-(methoxymethoxy)benzoate (261):271 N,N-diisopropylethylamine (0.50 mL, 

2.88 mmol) was slowly added to methyl 4-hydroxy-3-iodobenzoate (200 mg, 0.72 mmol) in 

anhydrous N,N-dimethylformamide (2.10 mL) over 5 min at rt. After 30 min, the solution was 

cooled to 0°C and chloromethyl ethyl ether (0.22 mL, 2.88 mmol) was added and the mixture 

warmed to rt over 12 h. The reaction was quenched by the addition of saturated aqueous NH4Cl 

solution and extracted with EtOAc (3 × 15 mL). The combined organic fractions were washed 

with saturated aqueous NaCl, dried (Na2SO4), filtered, and concentrated. The residue was 

purified via column chromatography (SiO2, 15:1 → 10:1 Hexane:EtOAc) to give 261 as a yellow 

amorphous solid (234 mg, 99%): 1H NMR (CDCl3, 400 MHz) � 8.48 (d, J = 2.0 Hz, 1H), 8.01–

7.98 (m, 1H), 7.10 (dd, J = 8.6, 2.8 Hz, 1H), 5.32 (d, J = 2.8 Hz, 2H), 3.91 (s, 3H), 3.53 (s, 3H); 

13C NMR (CDCl3, 125 MHz) � 165.5, 159.5, 141.1, 131.4, 125.3, 113.4, 94.7, 86.2, 56.6, 52.2; 

HRMS (ESI+) m/z: [M + H]+ calcd for C10H12IO4, 322.9780; found, 322.9796. 
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263 

Methyl 3'-hydroxy-6-(methoxymethoxy)-[1,1'-biphenyl]-3-carboxylate (263): 1,1'-

bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (5.0 mg, 

0.0056 mmol) was added to a solution of 261 (60 mg, 0.19 mmol), (3-hydroxyphenyl)boronic 

acid (77 mg, 0.56 mmol) and 2M K2CO3 (0.28 mL, 0.56 mmol) in dioxane (2.50 mL). After 1 h 

at rt, the solution was heated to 50oC for 12 h. Once cool, solvent was removed and the residue 

was resuspended in EtOAc, washed with water, dried (Na2SO4), filtered and concentrated. The 

residue was purified via column chromatography (SiO2, 40:1 → 10:1 → 1:1 CH2Cl2:Acetone) to 

afford 263 as a colorless oil (52 mg, 97%): 1H NMR (CDCl3, 500 MHz) � 7.95 (d, J = 2.0 Hz, 

1H), 7.92 (dd, J = 8.5, 2.0 Hz, 1H), 7.24–7.16 (m, 2H), 7.02 (dt, J = 7.5, 1.0 Hz, 1H), 6.94 (t, J = 

2.0 Hz, 1H), 6.78–6.76 (m, 1H), 5.14 (s, 2H), 4.90 (bs, 1H), 3.83 (s, 3H), 3.36 (s, 3H); 13C NMR 

(CDCl3, 125 MHz) � 166.8, 157.8, 155.2, 139.2, 132.6, 130.9, 130.6, 129.3, 122.1, 116.5, 114.4, 

114.3, 94.6, 56.4, 52.0, 31.0; HRMS (ESI+) m/z: [M + Na]+ calcd for C16H16NaO5; 311.0895; 

found, 311.0913. 

 

264 

Methyl 4'-hydroxy-6-(methoxymethoxy)-[1,1'-biphenyl]-3-carboxylate (264): 1,1'-

bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (5.0 mg, 
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0.0056 mmol) was added to a solution of 261 (60 mg, 0.19 mmol), (4-hydroxyphenyl)boronic 

acid (77 mg, 0.56 mmol) and 2M K2CO3 (0.28 mL, 0.56 mmol) in dioxane (2.50 mL). After 1 h 

at rt, the solution was heated to 50oC for 12 h. Once cool, solvent was removed and the residue 

was resuspended in EtOAc, washed with water, dried (Na2SO4), filtered and concentrated. The 

residue was purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 264 as a 

colorless oil (46 mg, 86%): 1H NMR (CDCl3, 400 MHz) � 8.08 (d, J = 2.4 Hz, 1H), 7.98 (dd, J = 

8.6, 2.4 Hz, 1H), 7.46–7.42 (m, 2H), 7.24 (d, J = 8.8 Hz, 1H), 6.93–6.90 (m, 2H), 5.23 (s, 2H), 

5.00 (bs, 1H), 3.92 (s, 3H), 3.46 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 166.8, 157.8, 155.2, 

139.2, 132.6, 130.9, 130.7, 129.3, 122.1, 116.5, 114.5, 114.4, 94.6, 56.4, 52.1, 29.7; HRMS 

(ESI+) m/z: [M + Na]+ calcd for C16H16NaO5; 311.0895; found, 311.0893. 
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Chapter V 

Modulation of Hsp90 with Small Molecules 

I. Introduction 

 Studies discussed in Chapters II–III have led to the identification of several novel 

novobiocin analogues that exhibit significant activity. Interest in examining these compounds 

further has driven subsequent collaborative studies with laboratories at KU as well as with 

researchers at the NCI. These efforts have produced notable findings regarding the broad 

applicability and unique mechanism(s) of action these analogues manifest. Additional 

collaborative studies with researchers at the NCI resulted in the identification of a novel inhibitor 

that acts through a unique mechanism to modulate Hsp90 activity. Studies with these novobiocin 

analogues and this novel inhibitor of Wee1 are presented herein. 

 

II. Follow-up studies using 26g (KU174) 

A. In vitro assays with 26g 

 The promising activity of 26g (KU174) has led to intense interest in studying this 

compound further. Through studies largely carried out by collaborators, the scope of 

understanding the activity of this remarkable compound against cancer cells has been expanded.  
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1. Effect of 26g on more aggressive and resistant cancer cell lines 

Although initial studies examined the activity of 26g against breast and prostate cancer 

cells, collaborative studies with Dr. Holzbeierlein at the KU Medical Center (KUMC), 

demonstrated this compound manifests activity against other cancers as well. Notably, it was 

important to look at the activity of 26g against cancers that are known to be highly metastatic or 

resistant to other chemotherapeutics. LNCaP-LN3 (androgen-dependent human prostate cancer 

cells) and PC3-MM2 (androgen-independent prostate cancer cells) cells, provided by the 

Holzbeierlein lab at KUMC, were chosen to represent aggressive prostate cancer cells with high 

metastatic potential. A549 (adenocarcinomic human alveolar basal epithelial cells) cells, 

provided by the Cohen lab at KUMC, were selected as a result of their previously described 

resistance to several clinically used anti-cancer agents. The anti-proliferative activity of 26g 

against these cells lines is shown in Table 15.  

 
Table 15. Anti-proliferative activity of 26g. 

Compound  PC3-MM2             

(IC50, μM) 

LNCaP-LN3              

(IC50, μM) 

A549                  

(IC50, μM) 

26g 1.44 ± 0.4a 0.11 ± 0.02 4.51 ± 0.1 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 

 

 The activity manifested by 26g against these cell lines is very promising, and represents 

the most significant potency to date against LNCaP-LN3 cells. These consistent low micromolar 

values have motivated further mechanistic studies. In collaboration with the Holzbeierlein 
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laboratory, biological studies continue in an effort to identify the specific mechanism which 26g 

exhibits its activity, including the potential inhibition of individual Hsp90 isoforms. Moreover, 

the consistent activity manifested by 26g against several divergent cancer cell lines prompted 

further studies. 

 

2. Time-dependent activity of 26g versus 17-AAG 

In collaboration with the Holzbeierlein lab, the time course required for this compound to 

exert its anti-proliferative activity was investigated. 26g was compared with its parent 

compound, novobiocin, and the N-terminal Hsp90 inhibitor 17-AAG (Figure 64), which is in 

advanced clinical trials for cancer. The IC50 value of each of these compounds was determined 

against LN3 prostate cancer cells after 4 h, 12 h, 24 h, and 48 h. Unlike the advanced clinical 

candidate, 17-AAG, which took 72 h to reach its reported IC50 value, 26g quickly demonstrated 

efficacy, reaching its maximum potency after 4 h. Moreover, the 26g exhibited greater potency 

than 17-AAG against LN3 cells. This study demonstrated the fast-acting nature of 26g and 

confirmed its remarkable potency over advanced clinical agents. These results support that there 

would be a large variance in dosing schedules when administering these two compounds. 

Finally, if total cell death, which corresponds directly with absorbance, is considered, it becomes 

clear that 17-AAG never kills more than 60% of the cells while 26g consistently kills more than 

90% of the cells. This finding supports that while 17-AAG is a cytostatic agent, 26g is a 

cytotoxic agent against LN-3 cells. 
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Figure 65. Time-dependent IC50 values of 26g (KU174) versus 17-AAG against LN3 cells. 

3. High-throughput screen (HTS) of 26g against several cancer cell lines 

 The potency exhibited by 26g against LN3 cells motivated subsequent examination of its 

activity against a panel of cancer cell lines. In collaboration with Dr. Chaguturu in the KU HTS 

laboratory, 26g alongside several other novobiocin analogues and 17-AAG were screened 

against several cancer cell lines. After screening, the compounds were ranked based upon their 

percent inhibition at the highest concentration tested (30 μM). As seen in Figure 66, 26g 

(KU174) was consistently most active, averaging 80% inhibition and exhibiting significant 

potency against cell lines wherein other compounds failed to kill cells. In line with the study 

executed by the Holzbeierlein lab, 26g was once again confirmed to be consistently more active 

than advanced clinical candidate 17-AAG. 
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115 16 16 5 33 24 17 15 -3 -5 -3 14 4 11
122 16 20 9 16 26 26 -1 8 2 2 8 -4 11
137 8 -2 0 10 8 6 -5 1 9 3 24 6 6

Avg 67 61 50 45 36 35 32 31 31 23 16 10  

Figure 66. HTS of novobiocin analogues versus 17-AAG against a panel of cancer cell lines. 

4. NCI 60 cell line screen of 26g 

The results from these studies led to our interest in submitting these compounds to a more 

thorough analysis, utilizing cancer cell lines not previously examined. This goal was 

accomplished through submitting 26g to the NCI 60 human tumor cell line screen. Results of 

testing 26g against leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, 

prostate, and breast cancers are shown in Figure 67. 26g was shown to demonstrate broad 

efficacy against these cell lines, with values consistently in the nanomolar to low micromolar 

range. This compound was most potent (mid-nanomolar GI50) at inhibiting growth of SK-MEL-5 

metastatic melanoma and MDA-MB-468 estrogen receptor (ER)-negative breast cancer cells, 

while it was consistently in the nanomolar range against all leukemia cell lines. The promising 

activity manifested by 26g in this 60 cell panel screen prompted the NCI to request additional 



 338 

material for additional biological investigation. Due to its reproducible activity in the in vitro 

screens, 26g is scheduled to undergo a hollow fiber screen. This assay will be performed by the 

NCI as they have demonstrated the ability to provide quantitative indices of drug efficacy with 

minimal expenditures of time and materials. Thus, the hollow fiber assay will act as an initial in 

vivo experience for 26g.  

 

Figure 67. Results of testing 26g against NCI 60 human tumor cell line screen. 
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B. In vivo assay with 26g 

 An animal model to examine the efficacy of 26g was pursued in collaboration with the 

Cohen lab at KUMC. Head and neck squamous cell carcinomas (HNSCC) were implanted into 

nude mice and their tumor volumes were monitored over several weeks. 
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Figure 68. In vivo screen of 26g against HNSCC in mice. 

 

1. Mouse model of 26g against HNSCC 

 As seen in Figure 68, the solid lines represent control mice that were not dosed with any 

26g, while the dashed lines correspond to those mice that received 5mg/kg of 26g 5X/week for 3 

weeks, starting on day 21. The results obtained from this study demonstrate that 26g manifests in 

vivo efficacy. In comparison to the control mice with similar tumor volumes (in mm2) at the start 

of dosing, all but one mouse showed complete tumor regression. The non-responsive mouse had 

a markedly larger tumor at the inception of treatment. Of note, upon conclusion of dosing after 3 
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weeks, none of the treated animals showed a reemergence of the tumor, resulting in a cure for 5 

out of 6 mice. This study affirmed that 26g exhibits promise as an in vivo agent and could 

represent an exciting clinical anti-cancer agent in the future. 

 

III. Follow-up studies using 128a (KU135) 

A. In vitro assays with 128a 

 The activity manifested by 128a (KU135) has also led to subsequent studies with this 

compound. Collaborative studies with many of the same groups studying 26g have led to an 

enhanced understanding of the mechanisms through which 128a elicits its activity. 

 

1. Effect of 128a on several diverse and aggressive cancer cell lines 

Initial anti-proliferative studies examined the activity of 128a against MCF-7 and SKBr3 

breast cancer cells. To explore its applicability to other cancers, HCT-116 colon cancer cells and 

PL45 pancreatic adenocarcinoma epithelial cells, also available within our laboratory, were 

screened for their response to 128a. Next, examination of additional carcinomas was carried out 

through collaborative screens executed by the Holzbeierlein laboratory at KUMC. As stated 

before, it was important to look at the activity of 128a against cancers that are known to be 

highly metastatic or resistant to other chemotherapeutics. As with 26g, LNCaP-LN3 (androgen-

dependent human prostate cancer cells) and PC3-MM2 (androgen-independent prostate cancer 

cells) cells, were chosen. In collaboration with the Robertson laboratory at KUMC, immortalized 
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T-lymphocytic Jurkat cells were used to study acute T-cell leukemia. The anti-proliferative 

activity of 128a against these cells lines is shown in Table 16.  

 
Table 16. Anti-proliferative activity of 128a. 

Compound    HCT-116         

(IC50, μM) 

PL45         

(IC50, μM) 

LNCaP-LN3     

(IC50, μM) 

PC-3-MM2      

(IC50, μM) 

Jurkat T-cells         

(IC50, μM) 

128a 0.52 ± 0.01 4.1 ± 2.2 0.42 ± 0.27 0.97 ± 0.68 0.42 

a Values represent mean ± standard deviation for at least two separate experiments performed in 
triplicate. 

 

 The activity manifested by 128a against these cell lines is very promising, and represents 

improved activity over its initial values against breast cancer cells in almost every new cell line 

employed (SKBr3 ~5.7 μM, MCF-7 ~1.5 μM). These nanomolar IC50 values demonstrate the 

broad applicability and efficacy of 128a against cancer cell types of variable origin. Moreover, 

this novobiocin analogue manifested submicromolar activity against the metastatic LNCaP-LN3 

and PC-3-MM2 cells, making it a promising lead for aggressive prostate cancers. The 

remarkable and consistent activity of 128a against several divergent cancer cell lines prompted 

biological studies in an effort to identify the specific mechanism by which 128a exhibits its 

activity. 
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2. Time-dependent activity of 128a versus novobiocin, 17-AAG and etoposide 

 As part of a collaborative study with the Robertson laboratory at KUMC, studies were 

implemented to evaluate the extent to which wild-type Jurkat T-lymphoblastoid leukemia cells 

(clone E6.1) were sensitive to 128a. The potency of 128a was compared to that of novobiocin, as 

well as 17-AAG and the anticancer drug, etoposide. As illustrated in Figure 69, all four 

compounds inhibited cell proliferation in a concentration- and time-dependent manner. The IC50 

values for 128a, etoposide, 17-AAG and novobiocin at 48 h after treatment were found to be 416 

nM and 1.3, 4.0, and 252 μM, respectively. Thus, although all four drug treatments inhibited 

Jurkat cell proliferation, 128a was ~3, ~10, and ~600 times more potent than the clinically used 

agent, etoposide, the advanced clinical agent, 17-AAG, and novobiocin, respectively.259 

  

Figure 69. Time-dependent IC50 values of 128a (KU135) against Jurkat T-cells.259 

Cells (3 X 104)   were cultured in a 96-
well plate for 24 (C) or 48 h (D) in the 
absence or presence of: 
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3. HTS of 128a against several cancer cell lines 

 The potency exhibited by 128a against these cancer cells of divergent origin motivated 

subsequent examination of its activity against a broader panel of cancer cell lines. In 

collaboration with Dr. Chaguturu in the KU HTS laboratory, 128a was included with several 

other novobiocin analogues and 17-AAG in a screen against several cancer cell lines. After 

screening, the compounds were ranked based upon their percent inhibition at the highest 

concentration tested (30 μM). As seen in Figure 66, 128a (KU135) was in the top three 

compounds in terms of potency, averaging 62% inhibition overall. Notably, 128a exhibited 

nearly equivalent potency when compared to advanced clinical candidate 17-AAG. Moreover, in 

agreement with the study executed by Robertson and co-workers, 128a was notably more potent 

than 17-AAG against Jurkat T-cells. This study confirmed the promise of this novel novobiocin 

analogue and motivated an even broader screen to probe its efficacy. 

 

4. NCI 60 cell line screen of 128a 

Results from these led to interest in submitting these compounds to a more thorough 

analysis, utilizing cancer cell lines not previously examined. This goal was accomplished 

through submitting 128a to the NCI 60 human tumor cell line screen. Results of testing 128a 

against leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate, and 

breast cancers are shown in Figure 70. 128a was shown to demonstrate broad efficacy against 

these cell lines, with values consistently in the nanomolar to low micromolar range. This 

compound was most consistently efficacious (mid-nanomolar GI50) against leukemia, CNS and 

prostate cancer cells. However, the most remarkable activity (~200 nM) that 128a manifested as 

part of this screen was against SNB-75 (CNS), MDA-MB-435 (melanoma), and OVCAR-3 
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(ovarian) cancer cells. Due to its overall potency, 128a may represent a promising lead 

compound in treatment of these or many of the other cancer types tested. Moreover, the results of 

this screen motivated further studies into the exact mechanisms through which this unique 

scaffold manifests its remarkable activity. 

 
 

Figure 70. Results of testing 128a against NCI 60 human tumor cell line screen. 

B. Mechanistic studies involving 128a 

 Several studies utilizing alternate approaches and various cancer cell lines have been used 

to elucidate mechanisms that explain the activity manifested by 128a. Selected collaborative 

studies are presented herein. 
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1. Western blot analyses against Jurkat cells 

 As part of the previously discussed collaborative study with the Robertson laboratory at 

KUMC, Western blot analyses were used to compare the expression profiles of four different 

Hsp90 proteins in response to 128a versus 17-AAG. Moreover, the depletion of associated client 

proteins and/or the induction of Hsp70 were examined as well. As illustrated in Figure 71, Jurkat 

cells constitutively express all four isoforms of Hsp90 and incubation with 17-AAG but not 128a 

(KU135) for 24 h led to a considerable increase in of Hsp90α and β. Moreover, both compounds 

caused significant alterations in the level of known Hsp90 client proteins, especially phospho-

Akt (Akt-p). While levels of HIF-1α were decreased upon treatment with either agent, cell cycle 

regulator cdc2 was only sensitive to treatment with 17-AAG. Figure 71 illustrates that Hsp70 

expression was induced to a far greater extent in cells treated with 17-AAG than in cells treated 

with 128a (KU135). It was proposed that the differential expression profiles of Hsp90α, Hsp90β 

and Hsp70 might partially explain the increased potency of 128a versus 17-AAG against Jurkat 

T-cells.259 

 

Figure 71. Western blot analyses of 128a versus 17-AAG.259 

 



 346 

2. 128a triggers unique mechanism of apoptosis 

As another facet of the previously described study in Jurkat cells, the mechanism of 

apoptosis induced in response to treatment with 128a was examined. Apaf-1-deficient Jurkat 

cells and cells overexpressing Bcl-2 or Bcl-xL were used to investigate whether the instrinsic 

(mitochodria-mediated) pathway was responsible for 128a-induced cell death. While Apaf-1 is 

strictly required for apoptosome-mediated activation of initiator caspase-9 within the instrinsic 

pathway, Bcl-2 or Bcl-xL are well characterized anti-apoptotic proteins whose overexpression is 

known to inhibit apoptosis by preventing release of pro-apoptotic proteins into the cytosol. 

 

Figure 72. 128a exhibits unique apoptotic mechanism.259 

As seen in Figure 72, Western blot analysis of cell lysates obtained at 24 h after 128a 

treatment revealed that cells lacking Apaf-1 or overexpressing Bcl-2/Bcl-xL were resistant to 

128a-induced apoptosis. This finding is supported by the extensive proteolytic processing of pro-
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caspase-9, -3, and -2 in wild-type and control-transfected cells, which did not occur in Bcl-2/Bcl-

xL-overexpressing cells. Some processing, however, was observed in Apaf-1 deficient cells 

despite their being resistant to 128a. However, while cleavage of caspase-9 in response to 128a 

in the wild-type and control-transfected cells produced two fragments (p37/p35), only one 

caspase-9 cleavage fragment (p37) was detected in the Apaf-1-deficient cells. This novel finding 

is significant because it has been reported that apoptosome-dependent activation of caspase-9 

yields the p35 fragment, while the p37 form is generally believed to be produced by caspase-3-

mediated cleavage and to be catalytically inactive. Since only a trace amount of active caspase-3 

was detected, it is proposed that the generation of the p37 fragment of caspase-9 may be caspase-

3-independent. Together these data demonstrate that 128a induces the instrinsic apoptotic 

pathway through a unique caspase-induced mechanism.259 

  

C. In vivo examination of 128a activity 

 Due to the promise of 128a in vitro, it was proposed that subsequent studies with this 

compound could be accomplished during a research rotation at the NCI with Dr. Leonard 

Neckers. Yeast was proposed as a suitable model in which to examine the efficacy and identify a 

potential mechanism through which 128a, versus structurally related C-terminal Hsp90 

modulators. 

 

1. Isoform selectivity in yeast 

 It has been previously demonstrated that Hsp90 is an essential molecular chaperone that 

is important for activation of many regulatory proteins of eukaryotic cells. Because Hsp90 is 
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such an extremely conserved protein, heterologous expression of either human Hsp90α or β will 

provide the essential Hsp90 function in Saccharomyces cerevisiae yeast 272,273  

Based upon this knowledge and previous reports, this in vivo system was used to assess 

the sensitivity of yeast cells to Hsp90 C-terminal modulators novobiocin, KU32 (Figure 27) and 

128a (KU135). The results of these studies are shown in Figure 73. Examination of the yeast 

colonies reveal that those expressing human Hsp90α are slightly more sensitive to all three 

inhibitors when compared to yeast cells expressing human Hsp90β� This study, one of the first to 

examine the isoform-selectivity of C-terminal inhibitors, offers insight into the potential 

involvement of Hsp90α in eliciting the activity of 128a. Moreover, this study confirms the in 

vivo efficacy of 128a in yeast. 

 
Figure 73. Differential sensitivity of Hsp90 isoforms to C-terminal modulators. 
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2. Effect of 128a is heat shock specific 

 Heat shock transcription factor (HSF) is an Hsp90-dependent client protein. It is 

generally accepted that interaction of HSF with Hsp90 downregulates HSF activity through a 

negative feedback mechanism.274 Therefore, inhibition of Hsp90 chaperoning activity leads to 

strong induction in HSF activity even in the absence of heat shock stress. Based on this response 

and previous work that has demonstrated that human Hsp90 proteins are functional in yeast 

lacking the endogenous yHsp90 (yeast Hsp90), a β-galactosidase assay in yeast was proposed as 

a method to quantify the effect of 128a on heat shock induction (Figure 74).  

 

Figure 74. β-galactosidase assay. 

Interaction between HSF and Hsp90 were exploited in the design of this assay. As shown 

in Figure 75, HSF binds to heat shock element (HSE), which is a transcriptional promoter for the 
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heat shock proteins. By attaching lacZ, a reporter that encodes for β-galactosidase, to HSE, the 

transcriptional activation of heat shock proteins can be monitored via chemiluminescence, 

because they share production of β-galactosidase mirrors the normal heat shock transcription. 

Thus, cleavage of added substrate ONPG by the expressed β-galactosidase to a 

chemiluminescent is reflective of the induction of this gene.  
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Figure 75. Effect of 128a is heat shock specific. 

Next, this assay was used to examine the effect of 128a on heat shock response in 

combination with well-studied N-terminal Hsp90 inhibitor, geldanamycin (GA, Figure 2). Yeast 

PP30 cells expressing human Hsp90α as the only Hsp90-isoform and also containing the HSF-

lacZ reporter (HSE-lacZ) were treated with 100µM of the above compounds for 3 hrs. For 

comparison, these cells were stressed by heat shock (39˚C) for 1 hr and the results observed at 

ambient temperature were compared to those obtained following heat shock. While the GA 

treated cells at ambient temperature (-, blue) showed basal levels of heat shock response, 

induction was quite significant upon exposure to elevated temperatures (+, red). In comparison, 

addition of 128a (KU135) to already treated with GA reduced heat shock response at both 
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ambient and elevated temperatures. These results suggest that the mechanism through which 

128a acts is heat shock specific and that 128a interferes with pathways leading to the 

transcriptional activation of the heat shock response. 

 

3. Inhibition of chaperoning activity by 128a in yeast 

The tyrosine kinase v-Src is a well-known Hsp90 client protein.275 v-Src expression in 

yeast is Hsp90-dependent and its activation is associated with yeast lethality due to deregulated 

phosphorylation of yeast proteins. This known activity has transformed v-src into a widely used 

reporter assay in yeast for analysis of Hsp90 chaperone function. 

Phos-tyr

v-Src

Loading 
control

GAL-vSRC – + – + – + – +
KU135 KU32 Novobiocin Control

80µM

 

Figure 76. Yeast cells expressing expressing human Hsp90α as the sole Hsp90 and v-Src were 

grown on media with glucose (–) or galactose (+) and also treated with indicated compounds. 

Total phosphotyrosine and v-Src expression were analyzed by immunoblotting. 

 
Use of this reporter assay to analyze the effect of C-terminal inhibitors 128a, KU32, and 

novobiocin on yeast expressing human Hsp90α as the sole Hsp90 is shown in Figure 76. v-Src 

protein and v-Src-mediated phosphorylation of total yeast proteins were clearly detectable in 
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control yeast expressing human Hsp90α. In contrast, levels of both were significantly reduced in 

cells treated with 80 µM novobiocin. Moreover, both v-Src and resultant phosphorylation were 

absent in cells treated with 80 µM KU32 or KU135 (Figure 76). Thus, it is proposed that these 

novobiocin-derived compounds interfere with productive chaperoning of v-Src in yeast. This 

assay confirms that 128a acts through an Hsp90-dependent mechanism in vivo. 

 

IV. Characterization of 26g (KU174) and 128a (KU135) as Hsp90 inhibitors 

A. Synthesis of labeled analogues 

 Although Western blot analyses with 26g and 128a have confirmed Hsp90 inhibition as 

the mechanism through which both exhibit their anti-proliferative activity, subsequent studies 

were designed to more specifically define their interactions with Hsp90. Various analogues of 

these compounds were prepared for subsequent studies that sought to define their interaction 

with Hsp90. 

 

1. Drug metabolism studies with 128a 

 To probe potential metabolites formed upon exposure to 128a, a deuterium-labeled 

analogue was synthesized (Scheme 60). Starting from phenol 265, an iodination protocol was 

employed to furnish carboxylic acid 266. Next, addition of deuterated iodomethane in the 

presence of potassium carbonate and subsequent hydrolysis yielded the requisite deuterated acid 

267. Next, EDCI-mediated coupling of freshly prepared aniline 268 to the deuterated acid in the 

presence of pyridine was used to access intermediate 269. Subsequent Suzuki coupling with 
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boronic acid 270 afforded the desired analogue in good yield. Upon preparation of deuterated 

compound 271, it was provided to Dr. Roger Rajewski to be placed into metabolism studies. 

Results of these biological studies are pending. 

 
 

Scheme 60. Synthesis of deuterium-labeled 128a. 

2. 13C NMR studies 

 Several NMR-based studies were proposed to occur in collaboration with Dr. Robert 

Matts at Oklahoma State University. Through incorporation of a 13C into the structure of 

compounds of interest, NMR studies using 15N-labeled Hsp90 and these analogues could be used 

to identify the protein residues with which they interact.  

 A 13C-labeled analogue of 26g was prepared for NMR studies. As seen in Scheme 61, 

aryl iodide 237 was coupled to meta-hydroxy phenylboronic acid 262 using Suzuki conditions to 

yield acid 272. Although not intended, hydrolysis occurred in situ upon exposure to the Suzuki 

coupling protocol. Next, alkylation and esterification proceeded in modest yield using 13C-

labeled iodomethane in the presence of potassium carbonate, and then ester 273 was hydrolyzed 
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to afford the requisite acid. Coupling of acid 274 and freshly prepared aminocoumarin 275, the 

product of submitting benzyl carbamate-protected coumarin 25g to hydrogenolysis, was carried 

out in the presence of EDCI and pyridine. Finally, the cyclic carbonate on the noviose ring was 

solvolyzed to afford the final compound, 277. 

 
 

Scheme 61. Synthesis of 13C-labeled 26g. 

Synthesis of a 13C variant of 128a is outlined in Scheme 62. Addition of 13C-labeled 

acetic anhydride to biaryl-containing 6-methoxy coumarin phenol 159 in the presence of pyridine 

afforded the desired analogue 278. Upon preparation, both 13C-labeled analogues were sent to 

Dr. Matts and are awaiting subsequent NMR studies. Results of these studies will be reported in 

due course. 

 
 

Scheme 62. Synthesis of 13C-labeled 128a. 
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3. Biotinylated analogues 

 As a final method through which binding of 26g and 128a to Hsp90 can be examined, a 

biotinylated analogue of each was prepared. These molecules were designed as probes that 

would help localize their site(s) of interaction with Hsp90. 

 
Scheme 63. Synthesis of biotinylated 26g. 

 Biotinylation of 26g was accomplished using N,N'-dicyclohexylcarbodiimide in the 

presence of a catalytic amount of DMAP. These reaction conditions, shown in Scheme 63, 

afforded the desired compound in good yield. 

 Like the previous analogue, synthesis of the biotinylated-128a variant was carried out in 

a single step, shown in Scheme 64. Employing the same methodology used for synthesis of 

biotinylated-26g, desired compound 280 was obtained in good yield. Upon preparation of these 

two designed analogues, they were sent to the Neckers laboratory at the NIH for subsequent 

binding studies to examine specific interaction of these compounds with their protein target 

 

Scheme 64. Synthesis of biotinylated 128a. 
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B. Systematic characterization of Hsp90 binding  

 Co-workers in the Blagg laboratory, in collaboration with Dr. Matts at Oklahoma State 

University, designed several experiments to examine the binding of 26g and 128a to Hsp90. 

These complementary studies have defined 26g and 128a as C-terminal Hsp90 inhibitors. 

 

Figure 77. Hsp90 proteolytic fingerprint after incubation with various Hsp90 modulators.241 

1. Effect of 26g and 128a on the proteolytic fingerprint of Hsp90 

 As shown in Figure 77, Hsp90 produces a different proteolytic fingerprint upon treatment 

with the N-terminal Hsp90 inhibitor GDA versus C-terminal inhibitor novobiocin (NB). These 

fingerprints, analyzed by SDS-PAGE and Western blotting with antibodies directed against the 

N-terminus (A) and C-terminus (B), were in agreement with previously published reports and 

provided a means for comparison to other Hsp90 modulators. Trypsinolysis of Hsp90 in the 

presence of 26g (KU174) and 128a (KU135) led to a fragment pattern that mimicked those 

observed upon treatment with novobiocin. Moreover, the most prominent band occurred 

following immunoblot with the C-terminal antibody. Since both analogues blocked trypsinolysis 

at the same amino acid residue (Arg612) as novobiocin, it was concluded that 26g and 128a 
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induce similar conformational effects on Hsp90, thereby suggesting a similar mode of binding 

for these compounds.241 

 

2. Effect of 26g and 128a on affinity chromatography 

 Determination that novobiocin interacted with the Hsp90 C-terminus was originally 

confirmed based upon affinity purification experiments.84 As seen in Figure 78, novobiocin 

immobilized on sepharose beads demonstrated the retention of an Hsp90 C-terminal fragment, 

but not an N-terminal fragment. Also, increasing concentrations of GDA were found to be 

insufficient for the elution of Hsp90 from NB-sepharose column. In contrast, however, an 

increasing concentration of NB eluted Hsp90 from GDA-immobilized sepharose beads. Based on 

these trends, it was proposed that other compounds that manifest similar activity to NB indicate a 

similar mode of binding to the C-terminus of Hsp90.241 

 When increasing concentrations of 26g and 128a were used to elute the bound Hsp90 

from either the NB- or GDA-sepharose beads, Hsp90 was eluted from the column. Washing the 

NB- or GDA-sepharose beads with these same compounds produced the same effect as that 

observed with novobiocin. These data suggest that 26g and 128a bind Hsp90 similarly to NB.241 

 

Figure 78. NB-bound- (A) and GDA-bound-sepharose (B) affinity chromatography.241 
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3. Evaluation of the heat shock response induced by Hsp90 modulators 

Through application of the β-galactosidase assay described in Section II-B.2, the effect of 

26g and 128a versus several other novobiocin-derived analogues on HSF activity was examined. 

As before, PP30 cells expressing human Hsp90α as the only copy of Hsp90 and also containing 

the HSF-lacZ reporter (HSE-lacZ) were treated with 100µM of the above compounds for 3 hrs. 

For comparison purposes, these cells were then further stressed with heat shock (39˚C) for 1 hr 

and results were compared between ambient and heat-shocked conditions. 
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Figure 79. Evaluation of the heat shock response in the presence of Hsp90 modulators. 

 
 During examination of the data generated from this study (Figure 79), some obvious 

trends became apparent. In comparison to KU32, which acted much like GDA in this assay 

(Figure 75) and produced heat shock response with or without added heat, novobiocin and 128a 

(KU135) acted distinctly. 128a demonstrated an ability to block the heat shock response even in 
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the presence of high temperatures. This finding is consistent with the results observed in the 

same assay when GDA and 128a were examined in combination, which supports the hypothesis 

that 128a prevents release of HSF-1 from Hsp90. In contrast, 26g had no effect on heat shock 

response in yeast. This analogue neither induced nor prevented heat shock, suggesting that 

interference of the Hsp90/HSF interaction is not the mechanism through which this compound 

acts. This β-galactosidase assay identified three classes of Hsp90 C-terminal modulators, those 

that induce (KU32), those that inhibit (128a) and those that do not interfere (26g) with the heat 

shock response. Moreover, this study affirmed that 128a and 26g act via distinct mechanisms 

from one another. 

 

V. Studies of Hsp90 phosphorylation 

It was proposed that the dynamics of the Hsp90 chaperone cycle are significantly 

influenced by epigenetic factors, including post-translational modifications. Moreover, numerous 

literature reports identify Hsp90 as a phosphoprotein and support that Hsp90 phosphorylation 

impacts its function.276 Studies to better understand the details of phosphorylation and potential 

role that this post-translational modification plays on Hsp90 function were designed. As part of 

my research rotation at the NCI and in the time since, I contributed to with these efforts. 

 

A. Role of Wee1 in regulating Hsp90 phosphorylation 

Saccharomyces WEE1 (Swe1), a tyrosine kinase in budding yeast, is an Hsp90-

dependent client protein. Although Swe1 is thought to play a singular role in regulation of Cdc28 
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in yeast, it was proposed that this kinase might also play a role in Hsp90 phosphorylation. 

Several studies were designed to probe this potential role, including the one that follows.276 

 

1. Western blot analysis of Wee1 

Wildtype and mutant forms of yeast and human Hsp90 were required for the intended 

studies. These proteins and specific mutants, which incorporated a tyrosine to phenylalanine 

mutation at a proposed Hsp90 phosphorylation site, were bacterially expressed and purified. 

Following Ni-NTA purification of yHsp90-His6, yHsp90-His6-Y2F, hHsp90-His6, and hHsp90-

His6-Y2F proteins, the quality of the purified proteins was first examined by Coomassie staining 

of SDS-PAGE gels and then confirmed by Western blot analyses. This quality assessment was 

executed prior to use of these proteins in in vitro kinase assays.276 

As seen in Figure 80, one such stained Coomassie gel for the yeast Hsp90 and its mutant 

demonstrate that the ~90 kDa band dominates the total protein content. Moreover, pull-down 

studies identified the same band, corresponding to the desired pure protein. Finally, Western blot 

analyses, using the corresponding antibody, confirmed protein identity.276 

 

Figure 80. Analysis of protein purity.276 
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 Next, use of these pure proteins in the subsequent in vitro assay is shown in Figure 81. 

After several control experiments, it was identified that while phosphorylation of yeast Hsp90 

(Hsp82) by Wee1 occurred in its wildtype form, mutation of a specific tyrosine residue 

abrogated this phosphorylation event. This in vitro assay confirmed that Wee1 phosphorylates 

yeast Hsp90 and that this specific tyrosine residue that was mutated is an essential part of this 

phosphorylation process.276 

 

Figure 81. In vitro kinase assay.276 

At the conclusion of this study, it was shown that Swe1 phosphorylates a conserved 

tyrosine residue (Y24 in yeast Hsp90 and Y38 in human Hsp90α) in the N-terminal domain of 

Hsp90. Moreover, this phosphorylation was found to be cell-cycle associated and to modulate 

the ability of Hsp90 to chaperone selected proteins, including v-Src and other kinases.276 

 

B. Wee1 inhibition 

Based on the finding that several Hsp90 clients are differentially regulated due to Hsp90 

phosphorylation, it was suggested that Wee1 inhibition might provide a strategy to increase the 

cellular potency of Hsp90 inhibitors. Likewise, it was shown that deletion of SWE1 in yeast 

increases Hsp90 binding to GDA and pharmacologic inhibition/silencing of Wee1 (the human 
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form of Swe1) sensitizes cancer cells to Hsp90 inhibitor-induced apoptosis.276 Based on these 

results, synthesis of a reported selective Wee1 inhibitor was pursued for synergistic use against 

cancers in combination with known Hsp90 inhibitors. 

 
Scheme 65. Synthesis of first Wee1 inhibitor.277 

1. Synthesis of Wee1 inhibitors 

 A recent paper reported the synthesis of inhibitors of Wee1. Inhibitory activities of the 

compounds were reported against Wee1 and related checkpoint kinase Chk1. Examination of the 

ratio of Chk1 to Wee1 IC50 values revealed compound 290 to be most selective and thus, its 

preparation was pursued. Following the reported route (Scheme 65),277 carboxylic acid 281 was 

reduced and subsequently oxidized to the corresponding benzaldehyde. Benzaldehyde 282 was 

then used in a Wittig reaction with benzyl 2-(triphenylphosphoranylidene)acetate to yield diene 

283 as a mixture of the cis- and trans-isomers. Next, a Diels-Alder reaction was carried out 

between the prepared diene and maleimide, and then the enantiomeric mixture was aromatized 

using activated magnesium oxide. Hydrogenolysis of intermediate 285 liberated carboxylic acid 
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286, which was subsequently submitted to a Curtius rearrangement. Aniline 287 was next 

converted to aryl iodide 288 using Sandmeyer chemistry and finally pyridine hydrochloride was 

used to liberate the phenol. Finally, a Suzuki coupling was employed to furnish the desired 

compound, 290.277 

 Upon generation, Wee1 inhibitor 290 was sent to the Neckers laboratory for use in 

biological assays. Despite its reported activity, this compound proved to be inactive against 

Wee1 in the assays attempted. It was proposed that the sulfoxide or sulfone, rather than the 

thioether-containing compound, may have exhibited the activity reported in the original 

publication. Rather than probing this possibility, efforts were directed at synthesizing another 

promising selective Wee1 inhibitor identified in the same study, on large scale. 

 

Scheme 66. Synthesis of second Wee1 inhibitor.277 
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 As seen in Scheme 66, carboxylic acid 261 was esterified with thionyl chloride in ethanol 

and then reduced to the corresponding benzyl alcohol in quantitative yield.278 Alcohol 293 was 

oxidized to the corresponding benzaldehyde, which was subsequently used in a Wittig reaction to 

form diene 295. Diels-Alder chemistry was employed to construct the tetracyclic core 296. Next, 

the anhydride was subsequently converted to the protected maleimide and the system was 

aromatized to afford intermediate 297. Alkylation of the indole nitrogen, followed by cleavage of 

the amine protecting group to regenerate the anhydride ring yielded precursor 299. 

Demethylation using boron tribromide resulted in generation of the desired final compound.277 

 Since its intended use was in an in vivo model, the gram of pure 300 was analyzed via 

HPLC to ascertain its purity. Once HPLC analysis revealed the compound to be 93-95% pure, it 

was sent to the NIH for use in subsequent studies. Preliminary results using this compound have 

been promising and will be reported in due course. 

 

VI. Conclusion 

 Comprehensive studies involving 26g and 128a have confirmed that these compounds are 

extremely promising anti-cancer agents. The in vitro potency exhibited in a variety of assays was 

mimicked in in vivo models, demonstrating the true potential of these novobiocin analogues. 

Moreover, these studies have elucidated that while both are C-terminal inhibitors of Hsp90, they 

act through distinct mechanisms. Finally, through yet another unique mechanism, Wee1 

inhibition has demonstrated promise as a strategy to increase the cellular potency of Hsp90 

inhibitors. It is envisioned that these diverse studies could result in synergistic compounds that 
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would revolutionize the field of Hsp90 modulation and have the potential to transform cancer 

chemotherapy.  

 

VII. Experimental Protocols 

 

266 

4-Hydroxy-3-iodobenzoic acid (266):279 Iodine monochloride (2.82 g, 17.4 mmol) was added 

to a solution of 4-hydroxybenzoic acid (2.0 g, 14.5 mmol) in acetic acid (17.8 mL), and then 

stirred for 4 h at rt. Water was added and the solution was extracted with EtOAc (3 x 30 mL), 

washed with water, saturated aqueous Na2S2O3, dried (Na2SO4), filtered and concentrated. The 

residue was recrystallized from 50% MeCN in toluene to afford 266 as a colorless amorphous 

solid (1.90 g, 50%): 1H NMR (Acetone-d6, 500 MHz) � 7.80–7.77 (m, 2H), 6.92 (d, J = 8.0 Hz, 

1H), 6.80–6.78 (m, 1H). 

 

267 

3-Iodo-4-(methoxy-d3)benzoic acid (267): Potassium carbonate (5.30 g, 37.9 mmol) was 

added to 266 (1.0 g, 3.79 mmol) in N,N-dimethylformamide (7.60 mL). After 10 min, 

iodomethane-d3 (2.0 mL, 32.1 mmol) was added and the solution was heated to reflux for 12 h. 

Upon cooling to rt, the solution was extracted with EtOAc (3 × 50 mL); combined organic 

fractions were washed with saturated aqueous NaCl, dried (Na2SO4), and concentrated. The 
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residue was purified by column chromatography (SiO2, 5:1 → 3:1 Hexane:EtOAc) to afford the 

desired product as a yellow oil (1.05 g, 99%), which was used without further purification. 

Lithium hydroxide (454 mg, 18.9 mmol) was added to a solution of aryl halide (1.13 g, 3.79 

mmol) in 3:1:1 THF:MeOH:H2O (37.9 mL). After 12 h, the solution was concentrated and the 

aqueous residue was acidified, and then extracted with EtOAc (3 x 10 mL). The combined 

organic layers were next extracted with saturated aqueous NaHCO3 (3 x 10 mL), and then the 

aqueous extracts were acidified. Finally, EtOAc (3 x 10 mL) was used to extract the acid 

product, and the combined organic extracts were washed with saturated aqueous NaCl, dried 

(Na2SO4), filtered, and concentrated to afford 267 as a colorless amorphous solid (28.0 mg, 38% 

over 2 steps): 1H NMR (Acetone-d6, 500 MHz) � 8.28 (d, J = 2.0 Hz, 1H), 7.93–7.85 (m, 2H), 

6.99–6.88 (m, 2H); 13C NMR (Acetone-d6, 125 MHz) � 167.2, 165.9, 141.7, 132.5, 125.5, 114.5, 

111.5, 85.6; HRMS (ESI+) m/z: [M + H]+ calcd for C8H5D3IO3, 281.9706; found, 281.9730. 

 

269 

3-(3-Iodo-4-(methoxy-d3)benzamido)-6-methoxy-8-methyl-2-oxo-2H-chromen-7-yl 

acetate (269): EDCI (36.4 mg, 0.19 mmol) and 267 (42.7 mg, 0.15 mmol) were added to 

aminocoumarin 268 (20 mg, 0.076 mmol), freshly prepared from hydrogenolysis of 127a, in 

30% pyridine/CH2Cl2 (1.40 mL). After 12 h, the solvent was concentrated and the residue was 

purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) to afford 269 as a yellow 

amorphous solid (21.0 mg, 40%): 1H NMR (Acetone-d6, 400 MHz) � 9.05 (s, 1H), 8.75 (s, 1H), 

8.43 (d, J = 2.2 Hz, 1H), 8.07 (dd, J = 8.6, 2.2 Hz, 1H), 7.16 (d, J = 8.6 Hz, 1H), 6.93 (s, 1H), 
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3.91 (s, 3H), 2.35 (s, 3H), 2.22 (s, 3H); 13C NMR (Acetone-d6, 125 MHz) � 168.7, 165.9, 164.0, 

159.2, 149.9, 143.4, 140.7, 130.1 (2C), 126.9, 125.3, 123.5, 123.4, 120.6, 118.5, 114.9 (2C), 

107.9, 56.7, 20.3, 9.1; HRMS (ESI+) m/z: [M + Na]+ calcd for C21H15D3INNaO7, 549.0214; 

found, 549.0231. 

 

271 

3-((6-Methoxy-d3)-3'-methoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-

oxo-2H-chromen-7-yl acetate (271): 1,1'-bis(diphenylphosphino)ferrocene-

palladium(II)dichloride dichloromethane complex (1.0 mg, 0.0012 mmol) was added to a 

solution of 271 (21.0 mg, 0.040 mmol), (3-methoxyphenyl)boronic acid (18.2 mg, 0.12 mmol) 

and 2M K2CO3 (60.0 μL, 0.12 mmol) in dioxane (0.60 mL). After 1 h at rt, the solution was 

heated to 50oC for 12 h. Once cool, solvent was removed and the residue was resuspended in 

EtOAc, washed with water, dried (Na2SO4), filtered and concentrated. The residue was purified 

via column chromatography (SiO2, 3:1 Hexane:EtOAc) to afford 271 as a colorless amorphous 

solid (25.3 mg, 99%): 1H NMR (Acetone-d6, 400 MHz) � 9.00 (s, 1H), 8.75 (s, 1H), 8.01 (dd, J = 

8.6, 2.4 Hz, 1H), 7.95 (d, J = 2.4 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.27 (d, J = 8.5 Hz, 2H), 7.14 

(d, J = 7.6 Hz, 2H), 6.95 (dt, J = 9.0, 1.6 Hz, 1H), 3.91 (s, 3H), 3.86 (s, 3H), 2.34 (s, 3H), 2.24 (s, 

3H); 13C NMR (Acetone-d6, 125 MHz) � 168.7, 166.0, 160.8, 160.4, 159.1, 149.9, 143.5, 140.7, 

140.0, 131.5, 130.8, 129.9, 129.4, 127.0, 125.3, 123.8, 122.7, 120.6, 118.4, 116.2, 113.6, 112.3, 

107.9, 56.7 (2C), 55.6, 20.3, 9.1; HRMS (ESI+) m/z: [M + Na]+ calcd for C28H22D3NNaO8, 

529.1666; found, 529.1686. 
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272 

3'-Hydroxy-6-methoxy-[1,1'-biphenyl]-3-carboxylic acid (272): 1,1'-bis(diphenyl-

phosphino)ferrocene-palladium(II)dichloride dichloromethane complex (84.0 mg, 0.10 mmol) 

was added to a solution of methyl 3-iodo-4-methoxybenzoate (1.0 g, 3.42 mmol), (3-

hydroxyphenyl)boronic acid (1.42 g, 10.3 mmol) and 2M K2CO3 (5.1 mL, 10.3 mmol) in 

dioxane (50.0 mL). After 1 h at rt, the solution was heated to 50oC for 12 h. Once cool, solvent 

was removed and the residue was resuspended in EtOAc, washed with water, dried (Na2SO4), 

filtered and concentrated. The residue was purified via column chromatography (SiO2, 5:1 → 2:1 

Hexane:EtOAc) to afford 272 as an orange amorphous solid (884 mg, 99%): 1H NMR (CDCl3, 

400 MHz) � 8.07–8.04 (m, 1H), 7.32 (t, J = 8.0, 2H), 7.06–7.01 (m, 3H), 6.85 (dd, J = 8.0, 2.4 

Hz, 1H), 4.85 (bs, 1H), 3.91 (d, J = 8.0, 3H); 13C NMR (Acetone-d6, 125 MHz) � 166.9, 161.3, 

158.0, 139.9, 132.6, 130.7, 130.0, 123.4, 121.5, 119.0, 117.3, 114.6, 112.1, 56.2; HRMS (ESI+) 

m/z: [M + Na]+ calcd for C14H12NaO4, 267.0633; found, 267.0646. 

 

274 

(3'-Methoxy-13C)-6-methoxy-[1,1'-biphenyl]-3-carboxylic acid (274): Potassium carbonate 

(942 mg, 6.82 mmol) was added to 272 (880 mg, 2.56 mmol) in N,N-dimethylformamide (6.80 

mL). After 10 min, iodomethane-13C (0.43 mL, 6.82 mmol) was added and the solution was 

heated to reflux for 12 h. Upon cooling to rt, the solution was extracted with EtOAc (3 × 30 mL); 
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combined organic fractions were washed with saturated aqueous NaCl, dried (Na2SO4), and 

concentrated. The residue was purified by column chromatography (SiO2, 5:1 Hexane:EtOAc → 

100% EtOAc) to afford the desired product as a yellow oil (388 mg, 39%), which was used 

without further purification. 

Lithium hydroxide (21 mg, 0.88 mmol) was added to a solution of benzoate (48 mg, 0.18 

mmol) in 3:1:1 THF:MeOH:H2O (1.80 mL). After 12 h, the solution was concentrated and the 

aqueous residue was acidified, and then extracted with EtOAc (3 x 10 mL). The combined 

organic layers were next extracted with saturated aqueous NaHCO3 (3 x 10 mL), and then the 

aqueous extracts were acidified. Finally, EtOAc (3 x 10 mL) was used to extract the acid 

product, and the combined organic extracts were washed with saturated aqueous NaCl, dried 

(Na2SO4), filtered, and concentrated to afford 274 as a colorless amorphous solid (46.0 mg, 39% 

over 2 steps): 1H NMR (Acetone-d6, 400 MHz) � 8.04 (d, J = 8.6 Hz, 1H), 7.98 (d, J = 1.9 Hz, 

1H), 7.35 (t, J = 8.0 Hz, 1H), 7.22 (d, J = 8.6 Hz, 1H), 7.09 (d, J = 7.4 Hz, 2H), 6.93 (d, J = 8.0 

Hz, 1H), 4.02 (s, 1.5H), 3.92 (s, 3H), 3.66 (s, 1.5H); 13C NMR (Acetone-d6, 125 MHz) � 167.3, 

161.2, 160.4, 140.0, 132.9, 131.8, 131.2, 129.9, 123.7, 122.6, 116.0, 113.5, 112.0, 30.1, 30.0; 

HRMS (ESI+) m/z: [M + Na]+ calcd for C14
13CH14NaO4, 282.0823; found, 282.0812. 

 

277 

N-(7-(((3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2-yl)oxy)-

8-methoxy-2-oxo-2H-chromen-3-yl)-(3'-methoxy-13C)-6-methoxy-[1,1'-biphenyl]-3-

carboxamide (277): EDCI (23.0 mg, 0.12 mmol) and 274 (24.8 mg, 0.10 mmol) were added to 
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the amine (20.3 mg, 0.048 mmol), freshly prepared from 25g, in 30% pyridine/CH2Cl2 (0.7 mL). 

After 12 h, the solvent was concentrated and the residue purified via column chromatography 

(SiO2, 40:1 CH2Cl2:Acetone) to afford a colorless solid, which was used without further 

purification (24.7 mg, 77%). 

Triethylamine (20 �L) was added to the carbonate (13.0 mg, 0.020 mmol) in 50% 

MeOH/CH2Cl2 (0.20 mL). After 48 h, the solvent was concentrated and the residue purified via 

column chromatography (SiO2, 9:1 CH2Cl2:Acetone) to afford 277 as a colorless amorphous 

solid (10.0 mg, 80%, 62% over 2 steps): 1H NMR (CDCl3, 500 MHz) � 8.81 (s, 1H), 8.73 (s, 

1H), 7.94–7.89 (m, 2H), 7.38 (t, J = 8.0 Hz, 1H), 7.25 (dd, J = 16.5, 8.0 Hz, 2H), 7.14–7.12 (m, 

3H), 7.10–6.96 (m, 1H), 5.58 (d, J = 2.5 Hz, 1H), 5.13 (s, 1H), 4.28 (t, J = 2.5 Hz, 2H), 3.98 (s, 

3H), 3.97 (s, 3H), 3.91 (s, 3H), 3.61 (s, 3H), 3.36 (d, J = 2.5 Hz, 2H), 1.41 (s, 3H), 1.24 (s, 3H); 

13C NMR (CDCl3, 125 MHz) � 163.3, 157.6, 157.0, 156.5, 148.9 (2C), 141.6, 136.2, 134.3, 

128.8, 127.7, 126.9, 125.9, 123.6, 121.5, 121.2, 120.4, 120.1, 119.7, 112.9, 111.0, 110.8, 108.7, 

93.6, 76.4 (2C), 68.8, 59.5 (2C), 53.2, 53.0, 27.4 (2C); HRMS (ESI+) m/z: [M + H]+ calcd for 

C32
13CH36NO11, 623.2322; found, 623.2347. 

 

278 

3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl (acetate-13C) (278): A solution of coumarin 159 (27.5 mg, 0.060 mmol) in 

pyridine (1.50 mL) was treated with acetic anhydride-13C (0.50 mL). After 12 h, the solvent was 

concentrated and the residue purified via column chromatography (SiO2, 40:1 CH2Cl2:Acetone) 
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to afford 278 as a colorless amorphous solid (20.2 mg, 67%): 1H NMR (CDCl3, 400 MHz) � 8.83 

(s, 1H), 8.80 (s, 1H), 7.96–7.92 (m, 2H), 7.39 (t, J = 8.0 Hz, 1H), 7.15 (d, J = 8.0, 1H), 7.12–7.11 

(m, 1H), 7.08 (s, 1H), 6.96 (dd, J = 8.0, 2.4 Hz, 2H), 3.92 (s, 3H), 3.90 (s, 3H), 3.88 (s, 3H), 2.40 

(d, J = 7.0 Hz, 3H), 2.33 (s, 3H); 13C NMR (CDCl3, 125 MHz) � 168.5 (13C), 165.6, 159.9, 

159.3, 148.8, 142.7, 139.8 (2C), 138.6, 131.1, 130.0, 129.2, 128.2, 125.9, 124.0, 123.1, 122.0, 

120.5, 117.6, 115.3, 113.1, 111.0, 106.4, 56.2, 55.9, 55.3, 20.2, 9.2; HRMS (ESI+) m/z: [M + H]+ 

calcd for C27
13CH26NO8, 505.1692; found, 505.1675. 

 

279 

(3R,4S,5R)-6-((3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-

chromen-7-yl)oxy)-5-hydroxy-3-methoxy-2,2-dimethyltetrahydro-2H-pyran-4-yl 5-

((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate (279): DMAP 

(7.50 mg, 0.061 mmol) was added to a solution of N,N'-dicyclohexylcarbodiimide (12.6 mg, 

0.061 mmol), 26g (19 mg, 0.031 mmol), and 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-

d]imidazol-4-yl)pentanoic acid (biotin, 11.2 mg, 0.046 mmol) in CH2Cl2 (2.10 mL), and the 

solution was stirred for 12 h. Solvent was removed and the residue was recrystallized from 

EtOAc/Hexane to afford 279 as a yellow amorphous solid (19.0 mg, 73%): 1H NMR (CDCl3, 

400 MHz) � 10.15 (d, J = 6.4 Hz, 1H), 8.75 (s, 1H), 8.70 (s, 1H), 8.23 (d, J = 6.4 Hz, 2H), 8.85 

(s, 1H), 7.26 (d, J = 7.0 Hz, 1H), 7.12–7.09 (m, 2H), 6.90 (d, J = 7.0 Hz, 1H), 6.57 (d, J = 6.7 

Hz, 1H), 4.35–4.51 (m, 1H), 4.38–4.41 (m, 1H), 4.07 (s, 3H), 3.93 (s, 1H), 3.88 (s, 1H), 3.59–

3.49 (m, 6H), 3.12–3.08 (m, 2H), 3.07 (s, 3H), 2.79–2.82 (m, 2H), 2.72–2.76 (m, 2H), 2.50–2.25 
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(m, 4H), 1.94 (s, 3H), 1.73 (s, 3H), 1.42–1.27 (m, 2H), 1.22–1.10 (m, 4H); 13C NMR (Acetone-

d6, 125 MHz) � 174.2, 167.1, 164.8, 162.1 (2C), 157.2, 146.6, 144.2, 141.0, 139.2, 136.4, 130.7 

(2C), 128.5, 128.3, 127.1, 121.3 (3C), 114.4, 113.4 (2C), 112.3 (2C), 106.3, 93.1, 71.0, 69.3, 

75.8, 66.9, 61.3, 61.1, 60.1, 54.2 (3C), 39.5, 32.9, 27.8, 27.3, 24.3, 22.4, 22.3; HRMS (ESI+) m/z: 

[M + Na]+ calcd for C43H49N3NaO13S, 870.2884; found, 870.2869. 

 

280 

3-(3',6-Dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate 

(280): DMAP (10.6 mg, 0.087 mmol) was added to a solution of N,N'-dicyclohexylcarbodiimide 

(17.9 mg, 0. 087 mmol), 159 (20 mg, 0.043 mmol), and 5-((3aS,4S,6aR)-2-oxohexahydro-1H-

thieno[3,4-d]imidazol-4-yl)pentanoic acid (biotin, 15.9 mg, 0.065 mmol) in CH2Cl2 (2.90 mL), 

and the solution was stirred for 12 h. Solvent was removed and the residue was recrystallized 

from EtOAc/Hexane to afford 280 as a colorless amorphous solid (16.8 mg, 56%): 1H NMR 

(CDCl3, 400 MHz) � 8.84 (s, 1H), 8.80 (s, 1H), 8.22 (d, J = 6.8 Hz, 1H), 7.96–7.92 (m, 1H), 7.39 

(t, J = 8.0 Hz, 1H), 7.15–7.09 (m 2H), 7.00–6.90 (m 2H), 6.62 (d, J = 6.8 Hz, 1H), 4.96 (s, 1H), 

4.78 (s, 1H), 4.58–4.55 (m 1H), 4.37–4.35 (m, 1H), 4.10 (d, J = 7.3 Hz, 3H), 3.93 (s, 3H), 3.89 

(d, J = 4.9 Hz, 3H), 3.33 (d, J = 3.9 Hz, 1H), 3.00–2.55 (m, 2H), 2.80–2.69 (m, 2H), 2.32 (s, 3H), 

1.42–1.32 (m, 2H), 1.21–1.07 (m, 4H); 13C NMR (CDCl3, 125 MHz) � 168.7, 163.2, 157.4, 

156.8, 156.5, 146.2, 140.2, 137.3, 136.1, 128.5, 127.6, 126.7, 125.8, 125.3, 123.3, 121.5, 120.8, 
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119.5, 117.9, 115.1, 112.8, 110.6, 108.5, 103.9, 69.9 (2C), 59.1 (4C), 38.0, 31.0, 28.5, 27.3, 26.9, 

6.8; HRMS (ESI+) m/z: [M + Na]+ calcd for C36H37N3NaO9S, 710.2148; found, 710.2145. 

 

290 

9-Hydroxy-4-(2-(methylthio)phenyl)pyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione (290): 

Compound was prepared according to literature protocol.277 1H NMR (DMSO, 400 MHz) � 8.10 

(s, 1H), 7.97 (d, J = 7.3 Hz, 1H), 7.36–7.30 (m, 2H), 7.26 (d, J = 7.6 Hz, 1H), 7.18 (d, J = 7.9 

Hz, 1H), 7.10 (dd, J = 15.8, 7.4 Hz, 2H), 2.51 (t, J = 1.7 Hz, 3H). 

 

300 

6-Butyl-4-(2-chlorophenyl)-9-hydroxy-1H-furo[3,4-c]carbazole-1,3(6H)-dione (300): 

Compound was prepared according to literature protocol.277 1H NMR (Acetone-d6, 400 MHz) � 

9.83 (s, 1H), 8.55 (d, J = 2.4 Hz, 1H), 8.37 (s, 1H), 7.72 (s, 1H), 7.59 (d, J = 8.8 Hz, 1H), 7.55–

7.44 (m, 3H), 7.24 (dd, J = 8.8, 2.4 Hz, 1H), 4.55 (t, J = 7.2 Hz, 2H), 1.91–1.87 (m, 2H), 1.48–

1.38 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H). This material was determined to be 98% pure (Retention 

time = 10.78) by HPLC (Phenomenex Luna C-18 10 x 250 mm column eluting with 60% 

MeCN/40% H2O, flow rate 5.0 mL/min. 
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VII. Yeast Protocols 

A. General yeast growth conditions 

Yeast was grown on YPD (2% [W/V] Bacto peptone, 1% yeast extract, 2% glucose or 

(YPGal) 2% galactose, 20 mg/L adenine). Selective growth was on dropout 2% glucose (DO) 

medium supplemented with appropriate amino acids.280 YPD cultures were diluted to an optical 

density at 600 nM of 0.5, and 5 µL aliquots of a 10-fold dilution series were spotted onto YPD 

2.0% agar plates with or without compounds. Growth was monitored over 3 to 5 days at 25°C.  

 

B. v-Src activity assay in vivo (Section II.C.3) 

PP30 yeast strain expressing human Hsp90��as its sole copy of Hsp90273 was transformed 

with the YpRS316-v-SRC.281,282 v-SRC is under control of the GAL1 promoter. Its activity was 

analyzed as described previously.282,283 Cells were grown on YPD to mid-log phase and then 

harvested, washed with sterile dH2O, and then resuspended in YPGal media for 8 h in order to 

switch on the GAL1 promoter. Cells were harvested and washed with dH2O and then protein was 

extracted and quantified using Bio-Rad assay. v-Src protein levels were detected with EC10 

mouse antibody (Millipore) and v-Src activity with 4G10 mouse anti-phosphotyrosine antibody 

(Millipore). Hsp90-His6 was detected with Tetra-His monoclonal antibody (Qiagen). 
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C. Heat shock response assay (Sections II.C.2 and III.B.3) 

PP30 yeast strain expressing Hsp90a as their sole Hsp90273 was transformed with the 

centromeric URA3 vector, pHSE284 constitutively expressing �-galactosidase (encoded by lacZ) 

as a reporter gene under control of a promoter bearing 3 	 Heat Shock Element (HSE) response 

elements.284 Transformants were selected by DO medium (dropout 2% glucose medium) 

supplemented with appropriate amino acids without uracil.280 Yeast cells were grown overnight 

to exponential phase with a cell density of 2-3	106 cells per mL in 50 mL of the same medium at 

30
C. Then, appropriate compounds were added to a final concentration of 30 �M, followed by 

incubation at 30
C for 2 h. Cells were additionally heat shocked at 39˚C for 1 h, collected by 

centrifugation (2000 × g; 5 min), washed once with ddH2O, and frozen at -80
C. The proteins 

were extracted as previously described,285 except for exclusion of EDTA in the extraction buffer. 

�-galactosidase activities of HSE were measured as previously described.282 Cell lysate (10 �L) 

was mixed with equal volume of 2 × buffer Z (0.12M Na2HPO4•7H2O, 0.08M Na2HPO4•H2O, 

0.02M KCl, 0.002M MgSO4, pH 7.0). The mixture was added to 700 �L of 2mg/mL ONPG 

solution in 1 × buffer Z prewarmed at 30
C and incubated at 30
C for 5-30 min. The reaction 

was stopped by adding 500 �L of 1M Na2CO3. The optical density at 420nM (OD420) of each 

reaction mixture was determined. The protein concentration of the lysate was determined by the 

BioRad assay (BioRad). The �-galactosidase activity was calculated using the following 

formula:  

Enzyme Activity = 1000 × OD420/minute/[10 �L × protein concentration (�g/�L)]. 
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Table 17. β-galactosidase assay solutions. 

1 x Z buffer (pH 7.0)�� Substrate solution�� Stop solution��

60mM Na2HPO4 2mg/mL O-Nitrophenyl-�-D-

galactopyranoside (ONPG) dissolved in       

1× Z buffer��

1M Na2CO3�

60mM NaH2PO4 � �

5mM KCl � �

0.5mM MgSO4 � �

0.025% �-mercaptoethanol � �

 

D. Yeast protein extraction (Section IV.A.1) 

Yeast cells were collected from solid media by a plastic sterile inoculating loop, or from 

liquid culture by centrifugation and resuspended in 1 mL of protein extraction buffer (PEBY). 

The cells were vortexed and centrifuged in a microfuge (16000 × g; 3 min). The supernatant was 

removed and two pellet volumes of acid washed glass beads were added, plus sufficient PEBY to 

cover both the pellet and the glass beads. To lyse the cells, tubes were agitated using a bead 

beater (mini-Beadbeater 8, Biospec Products, USA) for 40 seconds at maximum speed. 

Subsequently, 200 �L PEBY was added and tubes were vortexed to wash protein off of the 

beads, followed by centrifugation (16000 × g; 15 seconds) to pellet the beads and unbroken cells. 

The supernatant was transferred to a new microfuge tube and centrifuged (16000 × g; 15 min) to 

pellet insoluble aggregates. Supernatant was then transferred to a fresh microfuge tube and 

TWEEN20 (from a 1% stock in ddH2O) was added to final concentration of 0.1%. 
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Table 18. Yeast protein extraction buffer. 

Protein extraction buffer (PEBY)�� Protease inhibitor cocktail stock      

(stored at -20

C) 

20mM Tris/HCl pH 8.0 2 inhibitor tablets 

1mM EDTA 6 mL ddH2O 

15% glycerol  

1mM PMSF  

2�g/mLPepstatin A  

4�g/mL RNAase  

1% �-mercaptoethanol  

Protease inhibitor cocktail (100 �L of stock to 50 

mL of protein extraction buffer)- added just prior to use 

 

 

E. High efficiency yeast transformation (Section II.C.1) 

A loop of yeast was inoculated into 50 mL of appropriate media and incubated to 

exponential phase at appropriate temperature. Cells were harvested in 50 mL sterile tubes by 

centrifugation (2000 x g, 5 min) and resuspended in 100 mM LiAc (lithium acetate) (20 mL). 

Cells were harvested by centrifugation (2000 x g, 5 min) and washed once again in 100 mM 

LiAc (20 mL). Cells were harvested again (2000 × g, 5 min) and resuspended in 100 mM LiAc 

in a volume that gave a final cell density 1×1010 cells/mL. Cells were aliquoted to 50 µL per 

microfuge tube and incubated at 30°C for 30 min. Next, the following were added in the order 

shown: 
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    1. 240 µL PEG (50% w/v) 

    2. 36 µL 1.0 M Lithium acetate (LiAc/LiOOCCH3) 

    3. 25 µL single stranded carrier DNA 

   4. 50 µL DNA mixture (1.5 µL plasmid + 48.5 µL dH2O) 

After gentle mixing with a pipette, the sample was incubated at 30°C for 30 min, 

followed by heat shock at 42°C for 20 min. Cells were harvested (2000 × g, 5 min) and 

resuspended in 1 mL YPD. This mixture was added to 8 mL YPD, followed by incubation with 

gentle agitation at 30°C for 90 min. Cells were harvested and washed with 6 mL dH2O to remove 

YPD media. Following centrifugation (2000 × g, 5 min), cells were resuspended in 600 µL dH2O 

and spread on three selective plates and incubated at 30°C for 3 days. 
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