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ABSTRACT

On geological timescales, the Earth is likely to be exposed to higher than

the usual flux of high energy cosmic rays (HECRs) from astrophysical sources

such as nearby supernovae, gamma ray bursts or by galactic shocks. These

high-energy particles strike the Earth’s atmosphere, initiating an extensive

air shower. As the air shower propagates deeper, it ionizes the atmosphere

by producing charged secondary particles and photons. Increased ionization

leads to changes in atmospheric chemistry, resulting in ozone depletion. This

increases the flux of solar UVB radiation at the surface, which is potentially

harmful to living organisms. Increased ionization affects the global electrical

circuit, which could enhance the low-altitude cloud formation rate. Secondary

particles such as muons and thermal neutrons produced as a result of hadronic

interactions of the primary cosmic rays with the atmosphere are able to reach

the ground, enhancing the biological radiation dose. The muon flux dominates

the radiation dose from cosmic rays causing damage to DNA and an increase in

mutation rates and cancer, which can have serious biological implications for

surface and sub-surface life. Using CORSIKA, we perform massive computer

simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which

can be used to quantify these effects from enhanced cosmic ray exposure to

any astrophysical source. These tables are freely available to the community
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and can be used for other studies. We use these tables to study the terrestrial

implications of galactic shock generated by the infall of our galaxy toward

the Virgo cluster. Increased radiation dose from muons could be a possible

mechanism explaining the observed periodicity in biodiversity in paleobiology

databases.
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Chapter 1

Introduction

1.1 Planetary life in the astrophysical radia-

tion environment

We are a part of an ever evolving and dynamic Universe. Ever since the big

bang, matter has evolved and been shaped into a variety of forms including

a form with the capacity to think. As far as we know, the Universe is 13.7

billion years old and Earth formed much later, 4.5 billion years ago. The

suitable conditions for life to survive and thrive on our planet have existed for

3.5 - 4 billion years. It has only been possible under these unique set of physical

conditions that molecules are able to replicate and transfer genetic information.

These conditions are governed by the properties of our host planet, star and
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our location in the planetary system and Galaxy at a particular time. The

astrophysical radiation environment shapes our natural habitat and events

occurring in our stellar and galactic neighborhood are most likely to affect the

life on our planet. Put aptly by Carl Sagan, “The evolution of life is driven

in parts through mutations by the deaths of distant stars...we are, in a very

deep sense tied to the cosmos.”

Astrophysical radiation consists of both photons and protons from the host

star as well as particles of galactic and extragalactic origins, known for his-

torical reasons as cosmic rays. Both particles and photons interact with the

planetary atmosphere in different ways. Since we get a high flux of radiation

in the form of photons from the host star, considerable effort has been made

in order to understand its interaction with the atmosphere and its subsequent

effects on our environment and the biosphere. The flux from particles is rela-

tively small and of low energy and does not have a profound effect in our daily

life. However, on long timescales, the flux of this radiation could have been

much higher on several occasions and would have affected the biosphere [81].

1.2 Cosmic Rays

Cosmic Rays are generated by charged particle acceleration in high-energy

astrophysical processes. The flux of particles impinging on the Earth’s at-
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mosphere can be represented by broken power laws with three regions with

different slopes indicating different types of astrophysical sources generating

them. The flux of incoming particles consists of about 90% protons, about

9% alpha particles and the rest are heavy nuclei [29,83]. Although these num-

bers differ slightly from experiment to experiment, this composition is widely

accepted for normal energies. The composition changes considerably at very

high and ultrahigh energies [16,45,108]. Depending on their origin, these par-

ticles, or cosmic rays can be classified into solar cosmic rays (SCRs), galactic

cosmic rays (GCRs) and extragalactic cosmic rays (ECRs).

The term“cosmic rays” in the literature usually refers to galactic cosmic

rays (GCRs). GCRs are generated by supernovae shocks within our galaxy

and are capable of accelerating particles up to PeV energies. Most particles

arriving on the Earth from galactic sources lie in the 1 - 10 GeV range and the

spectrum falls sharply above this energy range. Particles accelerated from the

Sun reach a maximum of MeV energies and produce ionization at very high

altitudes. Although recent observations of enhanced muon flux during solar

flares suggest GeV range protons hitting the Earth’s atmosphere, it is not clear

whether such protons are accelerated by the Sun or within our atmosphere.

Ultrahigh energy cosmic rays (UHECRs) (1015 eV - 1018 eV ) are thought

to be produced from sources outside our galaxy from Active Galactic Nuclei
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(AGNs) [12], Gamma Ray Bursts [24,27,85] or from past galactic GRBs [26].

The probability of UHE particles hitting the atmosphere is very small due

to the steep spectrum and there are only a very few particles known to date

falling with EeV energies. The composition of primaries at these energies is

also not well known. The highest energy cosmic rays observed to date are

estimated having 1021 eV energy.

1.3 Cosmic Ray variations

Cosmic ray variations associated with the solar cycle with a 11-year period are

well studied. They are anti-correlated with the solar activity and primaries

less than about 10 GeV energy are modulated by this effect. These low en-

ergy primaries strike high up in the atmosphere and have negligible impact

when secondary particles arrive at the ground level. The normal CR flux is

dominated by low energy primaries (Figure 1.1) that are easily deflected by

the geomagnetic field. As a result, one detects a higher flux of CRs toward

the poles than the equator. Primaries up to about 17 GeV are guided by the

geomagnetic field. The CR flux increases with altitude and the resulting mu-

tagenic effects have been often discussed in the context of air [15,39] and space

travel [22,123]. Since the flux of the high energy component of the normal CR

spectrum is very low, its effects on our daily lives are negligible and therefore
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have not been studied in the context of their atmospheric and biological effects.

Erlykin and Wolfendale [36] also discuss long term cosmic ray variations and

their biological effects from a number of astrophysical sources. On geological

timescales, the Earth is likely to be exposed to an increased flux of high energy

cosmic rays (HECRs) from astrophysical sources such as nearby supernovae,

gamma ray bursts or by galactic shocks. These high-energy particles strike

the Earth’s atmosphere initiating an extensive air shower of particles that can

reach the ground and cause damage.

Supernovae are believed to be the source of galactic cosmic rays (GCRs),

capable of accelerating the particles up to 1015 eV. Sources of ultra-high energy

cosmic rays (UHECRs) are not well established but GRBs and AGNs are the

primary candidates potentially capable of accelerating particles up to 1019 eV.

There are cosmic ray flux variations associated with geomagnetic field reversals

but they have been found to have limited impact on our planet [43].

On the other hand, the primary source of low energy protons is the Sun,

responsible for MeV range primaries directed toward the poles because of the

geomagnetic field.
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Figure 1.1: Cosmic Ray Spectrum can be described by a broken power law.
Vertical axis is the differential flux and the horizontal axis is the kinetic energy
of the incident primaries ranging from 0.1 GeV to 1 ZeV [110]
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1.4 Radiation and terrestrial effects

From an astrobiology perspective, there are two primary mechanisms of high-

energy astrophysical radiation causing damage to the biosphere. One is the

well studied damage from enhanced UVB (280 - 315 nm) flux at the ground

resulting from ozone depletion by high-energy radiation. Both cosmic rays and

photons can ionize the atmosphere and the resulting photochemical changes

deplete ozone in the upper stratosphere. Another mechanism is the direct ir-

radiation of secondary particles produced in the atmosphere (primarily muons

and thermal neutrons), on living organisms. An intense photon burst can

ionize the upper atmosphere and result in significant changes in atmospheric

chemistry from photochemical reactions. The ozone layer in the upper strato-

sphere is depleted due to this ionization and converted to oxygen. Ozone blocks

the harmful UVB radiation from the Sun, and the flux of UVB increases on

the ground due to this depletion. UVB radiation is known to be carcinogenic

and can cause DNA damage and result in a number of diseases.

The low energy particles of solar origin strike the Earth’s upper atmo-

sphere. Secondary particles produced as a result are absorbed high up in the

atmosphere. The level of damage to the upper atmosphere is very limited.

More energetic particles known as galactic cosmic rays strike the atmosphere.

A low dose of secondary particles reaches the earth’s surface and is known to
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have harmful effects on terrestrial life [63, 64]. There have been some studies

of climatic changes from the 11 year solar cycle associated with GCRs which

will be discussed later [34, 54, 55, 109]. Higher energy primaries can strike

the earth on long timescales. This higher energy component of the CR flux

would increase significantly in case of extreme events such as GRBs [112,115],

nearby supernovae [33, 41, 47, 113] and solar dynamics within the galaxy [77],

and could significantly affect the environment and life on our planet. There

have been suggestions postulating a threat to life on Earth due to energetic

phenomena generating cosmic rays. Dar et al. [23] proposed the idea that

cosmic ray bursts from mergers of neutron stars could cause a mass extinction

on Earth. Shaviv et al. [104] proposed the idea of global cooling due to CRs.

Normal cosmic ray variations have been found to be correlated with cancer

rates [63, 64].

Cosmic rays can deplete the ozone layer and enhance the global cloud cover;

a muon burst on the ground could directly affect living organisms. These

effects form normal cosmic radiation are too small to have any serious impact

on our normal life and not much attention has been paid. But these effects

become important in case of impact from extreme astrophysical events that

are relevant on long timescales.

There have been studies involving detailed computational modeling of the
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atmospheric effects of GRBs and nearby supernovae, and the subsequent effects

on life have been evaluated using only photons [32, 103, 112]. Most photons

are much lower in energy than galactic cosmic rays and are unable to initiate

an air shower. However, GeV photons generated by short-hard bursts (SHBs)

can produce air showers and can produce results similar to those of cosmic

rays. Photons ionize the upper atmosphere depleting the ozone layer allowing

exposure to more UVB radiation from the Sun.

There has been no quantitative analysis of the terrestrial effects of high

energy cosmic rays so far. As opposed to the lower energy CRs, the high

energy CRs ( > 17GeV ) are not affected by the geomagnetic field and one

would observe a uniform flux throughout the globe. Also, they penetrate

much deeper into the atmosphere, enhancing atmospheric ionization closer to

the ground than normal. The harmful secondary muon flux on the ground

would be of much higher energy, capable of penetrating deep under rock and

water. Only approximate analytical estimates of the biological effects from

enhanced CRs have been made [46].

This work is an attempt to quantify these effects by detailed computational

modeling of the atmospheric propagation of cosmic rays and exploring the

resulting atmospheric and biological impact.
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1.5 Dissertation outline

In chapter 2, I will summarize the physics of the atmospheric interaction of

cosmic rays and the Monte Carlo tool CORSIKA used for modeling. Chapters

3 and 4 detail the modeling of these interactions and construction of lookup

tables that can be used by researchers for various studies. We then use these

tables to compute various terrestrial effects from the extragalactic shock and

discuss their implications on the Earth’s atmosphere and life in Chapter 5.

Other potential applications and further work is discussed in Chapter 6, fol-

lowed by a discussion in Chapter 7.
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Chapter 2

Air showers and CORSIKA

The density of intergalactic and interstellar space is very small and particles

can travel almost unhindered in space, guided by the magnetic fields, until

they encounter an abrupt increase in density, the planetary atmosphere.

2.1 Air showers

Primary cosmic ray protons or other nuclei enter the atmosphere and strike

the nuclei of nitrogen or oxygen and produce secondary particles as a result

of this inelastic collision. These high energy protons are subjected to the

strong interaction when they collide with the nuclei of N2 and O2 molecules,

producing secondary particles and photons. The majority of the secondary

particles produced consist of pions.
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The primary proton’s interaction with protons in the atmosphere is given

by:

p+ p→ p+ n+ π+

p+ p→ p+ p+ π0

And the primary proton’s interaction with neutrons in the atmosphere is

given by:

p+ n→ p+ p+ π−

p+ n→ p+ n+ π0

p+ n→ n+ n+ π+

It must be noted that particle multiplicities increase with increasing en-

ergies and the number of particles produced in these interactions change ac-

cordingly. Other particles such as baryon-antibaryon pairs and kaons are also

produced at high primary energies. These secondary particles either decay

to produce other particles or interact with other particles in the atmosphere.

Such a cascade of particles is known as a hadronic shower. Neutral pions pro-

duced at the first interaction decay into photons which initiates a cascade of

secondary electrons, positrons and photons, called the electromagnetic shower.

π0 → γ + γ
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The muonic component is fed by the lower energy charged kaons and pions.

This combined cascade of particles and photons grows as it propagates in

the atmosphere and is called an Extensive Air Shower (EAS). Air showers

from high-energy cosmic rays can spread over a few tens of square km area,

depending on their energy. They are detected by ground based detectors

or by telescopes looking for Cherenkov radiation from the air shower. This

description of CR-induced air showers is primarily derived from these books:

[29,44,99,107].

These secondary particles further collide with other nuclei, starting a chain

of reactions known as the hard and nucleonic components of the CR shower

(Figure 1.2). All particles produced suffer energy loss through electromagnetic

and/or hadronic interactions in the atmosphere. The primary will either collide

with a proton or a neutron of the N2 or O2 nucleus producing pions.

Charged pions have a mean half life of 26 ns and they may further undergo

collisions before decaying. Neutral pions on the other hand have a half life

of 10−16 s and decay into gamma rays (without undergoing collisions due

to their short half life), which produce electron positron pairs and undergo

bremsstrahlung subsequently producing electron positron pairs (as long as the

photon energy exceeds 1.02 MeV ), building up the electromagnetic component

of the shower.
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Figure 2.1: Air shower (Credit: DESY)
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2.1.1 Electromagnetic cascade

The electromagnetic cascade is a combination of the interactions of photons

and electrons with the atmospheric nuclei. Both photons and electrons interact

with matter in different ways. The photon interaction can be described by pair

production, photoelectric effect and the Compton effect. Pair production is the

dominant process at energies > 100 MeV where the photon interacts with the

Coulomb field of the nucleus resulting in the production of an electron-positron

pair. The photon kicks off an electron from an atom in the photoelectric effect.

It is relevant only at very low energies since the photoelectric cross section is

very small at higher energies. Photons can also interact with free electrons

where they can transfer energy upon interaction, also known as the Compton

effect. This effect is also relevant at the MeV energy level.

The interaction of electrons with matter is through ionization and bremsstrahlung.

Ionization can be calculated by the following equation:

dE

dx
= 2me[ln(

π2m2
e

(1− β2)3/2I2(Z)
)− a] (2.1)

Where dE
dx

is in units of eV g−1cm2, I(Z) is the average ionization potential

(in eV ) of an atom in the medium Z, x is the column density in gcm−2, β =

v
c
, a is a constant which is 2.9 for electrons and 3.6 for positrons. The other
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process is bremsstrahlung where a photon is emitted after the interaction of

an electron with the electromagnetic field of the nucleus.

2.1.2 Hadronic component

The hadronic component consists of cascades generated by hadronic interac-

tions of nuclei as described earlier. Particle flux of type j at a given atmo-

spheric depth X is given by [44]:

dFj(E,X)

dX
= −(

1

λj
+

1

dj
)Fj(E,X) +

∑
i

∫
gij(Ei, Ej)

dEi

Fi(Ei)

λi
dEi (2.2)

Where λj is the mean free path for inelastic interactions of particle j, decay

length is dj and σj is the cross section. The second term in the above equation

is the source term that sums over the secondary particle j production with

energy Ej by primary particles of type i with energy Ei. The term
gij(Ei,Ej)

dEi

is the spectrum of secondaries from the decay of particles and Fi(Ei)
λi

dEi is the

spectrum of the decaying parent particles.

Mean free path for inelastic interactions, λj is given by:

λj =
A

NAσj
(2.3)
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Where A is the mean atomic mass of the medium, and σj is the cross

section.

2.1.3 Muon component

Muons are produced primarily from the following decay processes:

π+ → µ+ + νµ

π− → µ− + ν̄µ

They have a mass of 105.7 MeV/c2, which is around 200 times the mass

of an electron and a lifetime of 2.2 µs. They decay into secondary particles as

follows:

µ− → e− + νe + νµ

µ+ → e+ + νe + νµ

However, because of the relativistic γ factor, most muons are able to reach

the ground without decay, especially at higher primary energies.

The main process by which muons lose energy below TeV energies is

through ionization as they travel in the atmosphere. Ionization loss is given

by the Bethe-Bloch equation:

dE

dx
=

4π

me

.
nz2

β2
.(
e2

4πε0
)
2

.[ln(
2mec

2β2

I.(1− β2
)− β2] (2.4)
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Above TeV energies, losses due to bremsstrahlung and electron-positron

pair production are also significant.

2.2 Monte Carlo code: CORSIKA

In order to trace all the interactions and particles produced in the cascade,

one needs to (1) solve cascade equations to propagate the electromagnetic part

of the shower and (2) solve propagation equations to include nuclear interac-

tions of all the secondary particles produced. This becomes very hard to solve

analytically and Monte Carlo tools are used widely to model air showers. The

Monte Carlo method is a brute force method that uses randomly generated

values for uncertain variables. It is a computationally intensive method since

one needs to repeat the process a number of times in order to generate output

and average it out. In air shower physics, one uses the method to generate

spatial and momentum coordinates of all the particles produced in the in-

teractions and track the shower and sub-showers down to the ground. One

must note that as we reach primary energies higher than current accelerator

experiments, the nuclear interaction cross sections are not known. Also, the

composition of primaries at very high energy is not known precisely. Monte

Carlo tools have been used to solve cascade equations for a long time but

they lacked the physics of interaction at high energies. CORSIKA was devel-
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oped [58] in order to study air showers from primaries much higher in energy

than the ones studied in laboratory experiments. The hadronic interaction

cross sections used in CORSIKA are theoretical, and one can choose from a

variety of hadronic interaction models available. The results from CORSIKA

are compared with the experimental data from the KASCADE experiment [3],

which allows theorists to fine tune the hadronic interaction cross sections. A

number of cosmic ray researchers around the globe now use CORSIKA and

contribute to this process. Hence, this model has evolved into a robust and

more accurate Monte Carlo tool than initially conceived.

CORSIKA (COsmic Ray SImulations for KAscade) is a Monte Carlo code

used extensively to study air showers generated by primaries up to 100 EeV. It

is primarily calibrated by KASCADE data, which is a detector used to study

hadronic interactions in the 1016 to 1018 eV energy range. Overall CORSIKA

simulations are consistent from 1012 eV, the typical range of Cherenkov de-

tectors, up to the highest energies observed 1020 eV. The code can propagate

primary photons, protons and heavier nuclei up to Fe.

One can choose the following hadronic interaction models for simulations:

for high energies VENUS [122], QGSJET [65], DPMJET [98], SIBYLL [42],

HDPM [18] and EGS4 [86] (photoproduction of muon pairs and hadrons). A

good comparison with experimental data has been done for p, α, O, Fe, γ
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primaries in the 1011 - 1016 eV range. Ionization loss is calculated by the

Bethe-Bloch formula. Hadronic interactions at lower energies are described by

FLUKA [10,37], UrQMD [9,14] and GHEISHA [40] models.

The code includes a number of details of the atmosphere. The elemental

composition of the atmosphere is built in and can be changed if needed. It has

been set to 78.1% N2, 21.0% O2 and 0.9% Ar by volume. Seasonal variation

of atmospheric density with height is also included. For inclined showers, the

curvature of the atmosphere has also been taken into account. Data on all

particles is tracked and recorded up to the cut-off energy specified at the be-

ginning of the simulation. Different cut off energies can be specified for muons,

electrons, photons and hadrons, depending on the purpose of the calculation.

2.3 Hadronic interaction models

Here we describe the different hadronic interaction models we have used for this

work. These models are constantly updated and compared with experimental

data from around the world. All models have their strengths and weaknesses.

Some models might be good in reproducing the atmospheric ionization profile

but not the muon energy distribution at the surface etc. Therefore, we have

used different combinations of models for different purposes. For atmospheric

ionization, we have used EPOS and UrQMD whereas for the muon work, EPOS
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and FLUKA were used.

2.3.1 EPOS

EPOS [94] is a high-energy hadronic interaction model used in CORSIKA. It

is a new theoretical model consistent with experimental data from RHIC and

SPS (CERN). We used the EPOS 1.99 version with improved cross sections

compared to the EPOS 1.61 model which produced a larger muon flux at

the ground level than observed by KASCADE. The proton-air inelastic cross

sections are much improved in this model compared to SIBYLL and QGSJET

II and are in excellent agreement with air shower experiments [92].

2.3.2 UrQMD

UrQMD [9, 14] or the Ultrarelativistic Quantum Molecular Dynamics model

is the low energy hadronic interaction model simulating ion collisions in the

lower energy range (up to 200 GeV ). UrQMD is much slower to run than

FLUKA, but provides a more accurate ionization profile in the atmosphere.

2.3.3 FLUKA

FLUKA [10,37] is a robust Monte Carlo model used to simulate particle trans-

port through matter which is widely used in a number of particle physics stud-
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ies. In cosmic ray physics, it has been found to be consistent with muon data

from ground based detectors. When implemented with CORSIKA, we also

found it to be much faster than UrQMD.
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Chapter 3

Modeling high-energy cosmic

ray induced atmospheric

ionization

3.1 Ionization modeling at lower energies

As described earlier, as the shower progresses toward the ground, it ionizes the

atmosphere along the way. The ionization profile in the atmosphere depends

both on the incidence angle and the energy of the primary. One can approx-

imately calculate the atmospheric ionization purely based on electromagnetic

interactions using coupled cascade equations. This approach ignores any en-

ergy loss due to nuclear interaction and therefore can only be applied to the

upper atmosphere, above the point of first nuclear interaction, which is usually

around 50 km altitude. Ionization is calculated using the Bethe-Bloch equa-
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tion, which calculates the energy lost by a charged particle traversing through

a medium. In order to accurately account for both the electromagnetic and

nuclear cascade, one needs to employ a more complicated technique that can

include both electromagnetic and nuclear cascades.

Vitt and Jackman developed an analytical model [120] to calculate ioniza-

tion profiles. It is a simple model and can be used for low energy primaries to

compute the ionization profile in the upper and middle atmosphere. But the

main disadvantage of this model is the lack of hadronic interactions. There-

fore, it cannot be applied to the lower atmosphere or higher-energy primaries.

Usoskin et al. developed a new model [117] to compute atmospheric ionization

resulting from GCR variations in the solar cycle. Their primary energy range

goes from 100 MeV to 1 TeV, with only 3 data points (30, 100 and 300 GeV )

between 10 GeV and 1 TeV. This model was based on CORSIKA simulations

and is in excellent agreement with experimental data. It is not possible to

evaluate the atmospheric ionization profiles of primaries higher than a TeV

using this model. Also, data is binned in 50 g cm−2 bins which is too large for

interpolation to the photochemical model described briefly in the next section.

Therefore we needed new calculations to serve both purposes.
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3.2 Description of modeling

Modeling was done such that we have high resolution data from primaries

covering 5 orders of magnitude in primary energy. It enables us to interpolate

data to the photochemical model. Results are made available in the form of

lookup tables so that atmospheric ionization can be calculated from the cosmic

ray spectrum of any astrophysical source.

The table we have generated gives energy deposition in bins corresponding

to those used in the NASA-Goddard two-dimensional atmospheric chemistry

code, hereafter NGSFC [20, 30, 60]. The atmosphere is divided in pressure

bins, which correspond approximately to 2 km each, as opposed to column

density bins in CORSIKA. In the lower atmosphere, the column density is

very high and therefore interpolating is not a problem from other models using

column density since one can include a number of bins in 2 km. But at higher

altitudes, the column density is too small, and one 50 g cm−2 bin used in the

previous study [117] is too large to interpolate. Our primary motivation when

computing atmospheric ionization was to study photochemical changes in the

upper stratosphere. Directly using Usoskin et al. model would have resulted in

large errors. Therefore we use 1 g cm−2 column density bins in CORSIKA for

better interpolation at higher altitudes. This is the smallest bin size available

in the code.
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The NGSFC code has been used extensively to study the effects of su-

pernovae [47], gamma-ray bursts [114] and solar proton events on the atmo-

sphere [59,111]. We will only briefly describe this code, given detailed accounts

elsewhere [59, 61, 114]. There are 58 log pressure bands (we use only the first

46 of these bins here, as discussed below) and 18 bands of latitude. The model

computes atmospheric constituents with a largely empirical background of so-

lar radiation variations, with photodissociation, including small scale mixing

and winds. Also, it includes an empirical background of CR source ioniza-

tion based on current levels, which includes an 11-year solar modulation cycle,

all with a one day timestep. The code takes ionization energy flux in a 2-

dimensional format using altitude and latitude.
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Figure 3.1: Fractional energy deposition for a 10 TeV primary at 5o (solid),
45o (dotted), and 85o(dashed) zenith angles in bins of the NGSFC code in log
pressure, which is approximately linear in altitude. The size of each bin is
approximately 2 km.
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Figure 3.2: Electromagnetic energy deposition from a 100GeV primary (solid),
a 10 TeV primary (dotted) and a PeV primary (dashed) per g cm−2, in bins of
NGSFC code . Energy deposition for the higher energy primaries is deeper in
the atmosphere. Energy going into nuclear interactions or hitting the ground
is not included in this figure.

CRs of 1010 − 1015 eV are of much larger primary energy than those that

dominate normal galactic CRs, so one should not simply turn up the usual

background, as in a previous supernova study [47]. We used CORSIKA, which

is designed to perform detailed simulations of extensive air showers initiated

by high energy cosmic ray particles. We did 25 simulated showers at each of a

series of energies by 0.1 in log10 intervals of primary energy between 10 GeV
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and 1 PeV, i.e. at 51 different primary energies.

We created a lookup table using data from CORSIKA runs that contains

atmospheric ionization energy deposition per primary due to CRs in the range

of 10 GeV - 1 PeV. The sum of deposition over altitude is less than the total

of the primary energy, as not all energy is deposited in the atmosphere by

electromagnetic processes. Nuclear interactions also occur between HECRs

and atmospheric particles, but nuclear energy is dumped mostly into nuclei,

not into atmospheric chemistry. Energy that goes into nuclear interactions or

reaches the ground is not included in the deposition table.

An arbitrary spectrum can be convolved with this data and the results used

in the NGSFC code (or other similar codes) to simulate the effects this energy

flux deposition will have on atmospheric chemistry. It is computationally un-

feasible at this time to do Monte Carlos over a very large number of angles

of incidence. Because of this, we investigated and applied an approximation

scheme. We investigated the effect of zenith angle by running 50 shower ensem-

bles (2500 primary particle simulation runs) at zenith angles of 0o (vertical),

45o, and 70o at 1013 eV. In Figure 3.1 we show the fractional energy deposition

for each of these zenith angles (excluding nuclear interactions) per bin (bins

of the NGSFC code) in log pressure. The size of each bin is approximately

2 km in altitude. Note that the lateral displacement in the lines, and the
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location of their maxima, are reasonably approximated by a (cos θ)−1 factor,

confirming the simplest thing one would expect from a column density factor.

For a general-purpose code at the energies we consider, it is appropriate to

assume the flux to be isotropic.

For each shower, we recorded the fractional energy deposition in each of

1036 bins of 1 g cm−2 column density. We used their mean to construct a

lookup table describing the energy deposition for a particle of given primary

energy as a function of pressure. Below we describe in detail the construction

and use of the table.

The greatest deposition of energy per bin corresponds to the first interac-

tion between the incoming CR and the atmosphere, which occurs very high

in the atmosphere. Since log column density is nearly linear with altitude,

we analyze the maximum energy deposition per bin of log column density.

This has weak trends with primary energy, as shown in Figure 3.2. This gives

about 100-200 g cm−2 for 70o zenith angle as the site of the greatest deposition

of energy per unit distance, corresponding to an altitude of about 11-16 km.

This can be compared with (a) about 13 km as the mean altitude of maximal

energy deposition density for the normal CR spectrum as implemented in the

NGSFC code, strongly biased toward latitudes above 60 degrees, and (b) 22

to 35 km as the peak deposition for keV −MeV photons, depending upon en-

30



ergy [32,114]. One would expect higher energy CRs to penetrate deeper based

on their smaller cross sections. This apparent discrepancy between the alti-

tudes in (a) and our CR data results from the fact that the normal dominant

CR spectrum up to about a GeV , strongly interacts with the Earth’s magnetic

field, comes down with a small zenith angle near the poles, and consequently

encounters a lower mean column density than an isotropic ensemble.

The table was originally created to compute ozone (O3) depletion and

other atmospheric chemistry changes [79] resulting from energy deposition by

HECRs. O3 concentration in the atmosphere is highest between altitudes of 10-

35 km [53] with considerable latitude dependence [32]. Our data is inaccurate

by 5% (described later) from 46-90 km because CORSIKA runs on a linear

column density scale starting with 1 g cm−2. However, the main effects of

atmospheric chemistry changes on the biosphere occur at lower altitudes. The

46-90 km altitude range is less significant because high-energy CRs rarely have

their first interaction that high in the atmosphere.

The CORSIKA model 6.900 is used in all simulations. When installing

CORSIKA, UrQMD was used for the low energy hadronic interaction model

and EPOS as the high energy hadronic interaction model. CORSIKA was

installed with CURVED, SLANT and UPWARD options to simulate primaries

at large zenith angles and track upward going particles in a curved atmosphere.
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The following are the important variables used in the input file (Table 3.1) for

CORSIKA. The Longitudinal Shower Development variable (LONGI) is set

as LONGI T 1 T F giving longitudinal ionization for every 1 g cm−2 bin to

facilitate interpolation to the bins of GSFC photochemical code. The variable

THETAP gives the angle of incidence of particles and was set as THETAP z z,

where z is the zenith angle. The code ran for zenith angles 5o, 15o...upto 85o, a

total of 9 angles. The energy range variable (ERANGE) is set as ERANGE x

x, where x is the variable energy of the primary particle. For our preliminary

runs (10 GeV - 100 TeV ), CORSIKA was run 100 times at each of the energies

stated above using different SEED random number variables from the input

file for each run. The data file outputs a variety of information. The sum of

the average longitudinal energy deposited in GeV given at every 1 g cm−2 is

the only data we are interested in order to evaluate the atmospheric ionization.

In the future we plan to extend this table above the PeV range.

CORSIKA ran at 51 different energy levels 100 times each at intervals of

0.1 in log energy for 9 angles. Each time it was run CORSIKA simulated 15

protons entering the atmosphere. Therefore, we compiled 13500 particles for

each of the 51 energy levels. The energy was averaged for each of the 900 runs

at each longitudinal pressure bin.

Minor problems arose when transferring the CORSIKA data to the NGSFC
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code. First, the smallest atmospheric depth bin at which energy deposition is

given is 1 g cm−2 in CORSIKA, while 22 of the 46 pressure levels are below

1 g cm−2 in the NGSFC code. Secondly, CORSIKA outputs deposition in a

linear pressure scale. We interpolated to a logarithmic scale for the NGSFC

code. We converted CORSIKA atmospheric depth units of g cm−2 to millibars

(needed for NGSFC) by a conversion factor of 0.98.

To resolve the problem of CORSIKA’s highest interaction altitude being

below 22 of the NGSFC codes altitudes we linearly extrapolated the data using

the ionization from the 1 g cm−2 bin. Because the first interaction point of

primaries is rarely within the first g cm−2, most of the CORSIKA output

files have no energy deposition for this altitude. Also, the data we used from

CORSIKA is binned in 0.1 GeV intervals, meaning for the lower energy runs

many of the 1036 altitude levels are zero. For this reason our output file may

have no energy in the 22 highest altitude bins for certain energy levels. For

our purpose of looking at the ozone these higher altitudes, above ∼ 46 km,

are not important, since the amount of ionization in them from HECR would

be quite small.

We use the same linear interpolation method for each bin with less than

1 g cm−2, depositing the energy from ground level to the highest logarithmic

altitude level in the last bin, as shown in table 3.3. The logarithmic altitude
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bins are centered on the bins used in the NGSFC code (Table 3.2).

The geomagnetic field should be mentioned with regard to the lookup table.

Its impact on CRs is minor for protons with energies greater than 17 GeV .

Because this only impacts a small region of the CR range of importance (10

GeV - 1 EeV ) effects due to the magnetic field are small. If desired, alterations

to the latitude distribution of energy deposition can be made in the 10 to 17

GeV range to simulate the effects of deflection by the geomagnetic field.

We present results in the form of two lookup tables that give (1) atmo-

spheric ionization corresponding to column density and (2) atmospheric ion-

ization corresponding to the bins of NGSFC code. The lookup tables are

formatted into 51 columns corresponding to 51 energies but the number of

rows for both tables are different. For the atmospheric chemistry model, the

table has 46 rows corresponding to the altitude bins of the NGSFC code shown

in table 3.2. As is, it displays ionization energy deposition for a spectrum of

1 particle per steradian per square meter per second for every 0.1 logarithmic

energy bin, in units of GeV/m2.sr.s. Trivially, one must multiply by the num-

ber of particles per unit area per steradian per second in their bin to get the

total energy flux at each altitude bin for a given spectral form. To input this

data into the NGSFC code the energy at each altitude must be added over all

energy levels, creating a 1-dimensional data set of total energy deposition flux
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at each altitude.

The general purpose table has 51 columns as mentioned above and 21 rows

of bin size 50 g cm−2 each. The table displays the ionization yield function in

units of ion pairs per meter square per steradian per second. Total number

of ion pairs for a given spectrum can be obtained by the method mentioned

above.

As mentioned previously, the NGSFC code takes ionization energy flux

in a 2-dimensional format using altitude and latitude. The data is now in

1-dimension with respect to altitude, so the user must create a latitude com-

ponent. The NGSFC code has 18 latitude bins (90o− 80o, 80o− 70o, 70o− 60o

etc). For an isotropic flux, the same flux is entered for each latitude bin. The

final data file to be input into the NGSFC code should now be a 2-dimensional

set of ionization energy flux deposition at the 18 latitude bins for 46 altitudes,

a total of 828 data points. For a point source, the input into latitude bins

may be adjusted by the appropriate factor, including a correction for the cos

θ factor as in [114]. This may result in hemispheric differences in the results.

The energy flux data as a function of altitude and latitude, generated as

described above, may be used in the NGSFC code by way of a simple read-

in subroutine. Depending on the units of the spectrum used, conversion to

cm−2s−1 may be necessary since the NGSFC code uses cgs units. In order to
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use the input as a source of NOy, the energy flux must first be converted to

ionization flux. This is accomplished using 35 eV per ion pair [95], which finally

gives values in units of ions cm−2s−1. Constituents in the code are stored with

units of number cm−3s−1. Therefore, the area ionization rate is converted to

a volume rate using the height of the altitude bins, which depends on the

current density of each bin at read in (the density depends on temperature,

which depends on the presence of sunlight, etc.). This ionization rate is then

used as a source for NOy, assuming 1.25 molecules are created for each ion

pair [95]. The model then runs as usual, incorporating this source of NOy in

the relevant chemistry computations. The general procedure here is the same

as that used in previous work with both photon and solar proton ionization

sources [62, 114].

It must be noted that alpha particles were not considered to produce these

tables. At such high energies, an alpha particle can be approximated by four

protons with the same energy per nucleon and the resulting ionization can be

computed using the data generated with protons.

3.3 Comparison with existing simulations

We have compared our simulation with existing simulation generated in a

previous work using CORSIKA [117] as well as analytical methods proposed
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by Velinov et al. [119] (Table 3.3).

We found very good agreement with Usoskin et al. simulation [117] at 1

TeV (figure 3.3), 100 GeV (figure 3.4) and 10 GeV (figure 3.5). However,

there is about 5% higher ionization in our simulation at lower altitudes. This

can be attributed to the UrQMD model we have used, which is more efficient

in tracking muons compared to FLUKA used in the earlier work. Since muons

are a major source of atmospheric ionization, especially near the ground, we

would expect this enhancement. It must also be noted that we used the latest

version of the code (CORSIKA 6.900, 2009) compared to CORSIKA 6.204

(2005) used in the earlier work.

We also compared the shower profile at 1 PeV (figure 3.6) with Tanguy

Pierog’s (CORSIKA developer) simulation generated by the same hadronic

interaction models and found very good agreement. This simulation provides

the energy deposition profile of a 1 PeV primary using the EPOS-UrQMD

hadronic interaction models produced with CORSIKA.

The analytical method [119] can be used for a thin target, which is above

50 km altitude. It uses the Bethe-Bloch solution to calculate ionization from

proton propagation in the upper atmosphere. Also, the equation used to cal-

culate ionization limits the primary energy range to 600 MeV - 5 TeV. We

applied the analytical solution to the energy range of 17 GeV - 5 TeV in order
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to ignore the effects of solar modulation. Our values of ionization are about 5%

higher than predicted by the approximation (Table 3.3). As discussed earlier,

CORSIKA does not allow altitude bins smaller than 1 g cm−2, which contains

the entire atmosphere above 50 km, and therefore, it is not possible to resolve

different levels within 1 g cm−2 bin, which explains the 5% difference.

Atmospheric ionization produced by the primaries in our energy range is a

very tiny fraction of the total ionization from the GCR flux, and therefore we

can not compare our results with certain models [120], but it will be possible

to compare for a given CR spectrum.
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Figure 3.3: Comparison of our simulation (dash) at 1 TeV with Usoskin et al.
(solid) [117].
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Figure 3.4: Comparison of our data (solid) at 100 GeV with Usoskin et al.
(dash) [117].
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Figure 3.5: Comparison of our data (dash) at 10 GeV with Usoskin et al.
(solid) [117].
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Figure 3.6: Comparison of our data (dots) at 1 PeV with T. Pierog’s data
(solid) produced with CORSIKA/CONEX in bins of 10 g cm−2
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Table 3.1: Input File for CORSIKA - Complete Description of Variables at [58]
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Table 3.2: Altitudes for NGSFC code.
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Table 3.3: Comparison of analytical approximation vs CORSIKA data for a
thin target [119].
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Chapter 4

Modeling high-energy cosmic

ray induced terrestrial muon

flux

4.1 Cosmic ray muons

Since muons traverse the atmosphere practically unhindered because of their

small cross section, they provide a wealth of information about the energy of

the primary particle. Muon detectors are cheap and are spread at a number of

locations around the world. The shower propagates down towards the ground

with the shower-front shaped like a pancake. Most of the energy of the pri-

mary particle is used up in ionizing the atmosphere. This component ionizing

the atmosphere consists of charged particles and photons, also referred to as

the electromagnetic component of the shower. A large fraction of this electro-
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magnetic component is absorbed within the first 1000 g cm−2 of atmosphere

and mostly the hard component (muons) of the shower is able to reach the

ground. This is very close to the ground for vertical showers and much higher

in the atmosphere for inclined ones. Other particles and photons reaching the

ground are not biologically effective. This atmospheric ionization induced by

HECR primaries has already been modeled for energies up to 1 PeV [6] and

described above (Chapter 3). Along with ionizing the atmosphere, secondary

particles reach ground level. Depending on their energy, they have the ability

to penetrate deep underground and into water. Not all secondary particles

are biologically effective. For this study, we concentrate on the penetrating

radiation component due to muons. Other particles such as low energy elec-

trons, photons and alpha particles are not penetrating. Enhanced levels of

secondary muon flux could be harmful to living organisms [23] by increased

mutation rates, cancer and birth defects [64].

Muons are generated by the decay of charged pions and have a very small

interaction cross section. Also, their cross section is a very weak function of

energy and the ionization energy loss is a very small fraction of the primary

energy, even at very high energies. As a result, high energy muons generated by

high energy primaries hit the ground practically unhindered. But since muons

are charged particles, they are easy to detect and give a dominant signal deep
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in the atmosphere and underground. They are usually detected with detectors

buried a meter or more underground in order to absorb the electromagnetic

component.

The muon component dominates the flux of particles on the ground at

energies above 100 MeV. Its contribution is about 85% of the total equivalent

biological dose by cosmic rays [2,87]. At lower energies, the muon flux decreases

because of their short lifetime of 2 µs. Muons with higher energy travel with

higher velocities and hence travel longer distances due to the time dilation

effects. They lose energy due to ionization at a rate of about 2 MeV per g

cm−2. Since the column density of our atmosphere is about 1000 g cm−2, a

muon loses around 2 GeV of energy, on average, upon reaching the ground

(falling vertically). This radiation dose from muons at the ground level will

be in addition to the dose from other components discussed elsewhere [66,67].

Analytical models [44] can approximate muon flux resulting from vertical

GCR primaries and a vast amount of data [56] is available from detectors

around the world. Other methods can be used to calculate muon flux for the

normal cosmic ray spectrum [28, 121]. But no model is available to compute

muon flux when the CR primary flux is different from the normal GCR flux. In

particular at higher energies, the hadronic interaction cross sections are only

estimates, and reasonable predictions can be obtained only by computational
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methods.

We have developed a lookup table to compute the terrestrial flux of muons

resulting from high energy cosmic ray interactions with the atmosphere that

can be used by convolving with the spectrum from any astrophysical source.

4.2 Description of modeling

We used CORSIKA to simulate air showers for a flat spectrum of high-energy

primaries (protons) so that any arbitrary CR spectra can be applied later on,

to calculate the muon flux.

In order to obtain data that is independent of the primary GCR spectrum

and geographic location on the Earth, we simulated showers at fixed primary

energies. The flux of muons at the ground level strongly depends on the

zenith angle of the primary; therefore we simulated showers for a range of

zenith angles. We compiled data for primaries from 10 GeV up to 1 PeV in

0.1 log10 intervals. At each energy, simulations are performed at zenith angles

starting from 5, 15...up to 85 degrees. We averaged 90,000 showers at each

energy for 10 GeV - 1 TeV range, 9,000 for 1 TeV - 10 TeV , 900 for 10 TeV -

100 TeV and 180 showers for 100 TeV - 1 PeV. Overall, the data is compiled

from a large ensemble of 1.9× 106 showers.

CORSIKA 6.960 was used for all the simulations. The code was set up with
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EPOS as the high-energy hadronic interaction model due to its compatibility

with KASCADE data. For low energies, the FLUKA hadronic interaction

model was chosen since it is the fastest and best at tracking muons in our

energy range [91,93] The code was installed with the SLANT option to study

the longitudinal shower development. It will be used for studying thermal

neutrons in future. The CURVED option was chosen for primaries incident

at large zenith angles and the UPWARD option for albedo particles. The

energy cut was set at 300 MeV since it is adequate to get all the muons and

hadrons produced by photon interactions while saving a significant amount of

computing time. Sea level was set as the observation level.

CORSIKA outputs data on a number of particle species hitting the ground

level. Each file contains momentum data of individual particles at the sea level

from a single air shower. Muon momentum is extracted from each file gener-

ated by a primary at a fixed energy and fixed zenith angle. The momentum

data is then compiled for all showers at a given energy and angle, and is binned

in logarithmic energy bins of 0.1 GeV in log10 intervals. It is then normalized

by the total number of showers, giving the muon flux from a single primary.

As a result we get the terrestrial muon spectrum of a particular primary en-

ergy at a given zenith angle. Data obtained from different angles at a given

primary energy is then averaged by sin θ weight resulting in an isotropic muon
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spectrum at a particular primary energy. This is the data recorded in the data

table. This process is repeated for all 51 primary energies from 10 GeV - 1

PeV .

As expected we get less muon flux at higher zenith angles (Figures 4.1 and

4.2). Low energy primaries are not efficient in producing muons of enough

energy so that they can reach the ground. A large number of primaries at lower

energies produce fewer muons at the ground level. The number of secondary

particles produced in the shower increases with the primary energy and so

does the number of muons hitting the ground (Figure 4.3). The contribution

from larger zenith angle component is very small for low energy primaries, and

goes up with energy. This is evident in Figure 4.3 where the flux from 100

GeV primary falls very steeply compared to primaries at higher energies.

Our primary energies are centered at 10 GeV , 101.1 GeV and so on with

bin size of 0.1 in log10 intervals. The number of particles in a given energy bin

(dN
dE

) can be calculated using the differential spectrum from any astrophysical

source. This number is then multiplied by the data given in the table to get

the corresponding muon spectrum for each primary energy. The total muon

spectrum can be obtained by summing over a given energy range. Since the

primaries higher than 17 GeV are unaffected by the geomagnetic field, their

flux is independent of the geographic location. A large amount of literature
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exists for muon flux for lower energies, both from experiments [56] or using

approximate analytical methods [44].

4.3 Comparison with data

Let us now use these lookup tables to compare the results with existing data.

Hebbeker and Timmermans [56] compiled all published data on muon flux from

a number of experiments and made various corrections based on the detector

altitude and geographical location. The data was then plotted together and

fitted with a polynomial. This polynomial fit is considered to be a standard

result to be compared to.

We have also compared the lookup table data with the Hebbeker and Tim-

mermans polynomial fit to data collected from a number of experiments [56].

We find a maximum 15% deviation from the polynomial fit for low energy

muons, 1-5% difference in the 10 GeV - 3 TeV range and an 8% deviation

at higher energies. Overall it is a very good fit considering the experimental

variation in data compiled in the reference [56] (Figure 4.4).
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Figure 4.1: Differential muon flux for 10 TeV primaries at zenith angles 5o

(solid), 45o (dotted), and 85o(dashed). The flux goes down with increasing
zenith angles [5].
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Figure 4.2: Differential muon flux for 1 PeV primaries at zenith angles 5o

(solid) and 85o(dotted) [5].
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Figure 4.3: The muon flux averaged over the hemisphere from 100 GeV (solid),
10 TeV (dotted) and 1 PeV (dashed) primaries. Flux for higher energy pri-
maries does not fall sharply compared to the lower energy primaries since
the contribution from higher zenith angles increases with increasing primary
energy [5].
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Figure 4.4: Muon flux computed from the lookup table (dots) compared with
the Hebbeker and Timmermans (2002) [56] polynomial fit (solid) [5].

Results are presented in the form of lookup tables which present the muon

flux as a function of primary energy. The primary energy is given at the

top row and arranged in 51 columns going from 10 GeV up to 1 PeV. The

first column gives logarithmic bins of muon energy at the ground. In order

to evaluate the muon flux from a given cosmic ray spectrum, one needs to

convolve the spectrum with this table. The spectrum will give the number of

particles falling per unit area per second on the top of the atmosphere and

this table will give the muon energy distribution in the same units.
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Chapter 5

Terrestrial effects of enhanced

cosmic rays from the

extragalactic shock model

5.1 Biodiversity cycles and Cosmic Rays

A∼ 62 My periodicity in terrestrial biodiversity has been found in independent

studies of paleobiology databases going back to 500 My [21, 78, 82, 100]. The

physical cause driving this biodiversity cycle is not known. The period and

phase of this biodiversity cycle correlates with the motion of our solar system

in the galactic disk. Our solar system oscillates perpendicular to the galactic

plane with an amplitude of about 70 pc and a period of 63.6 My [48]. It has

been hypothesized [77] that the coincidence of time and phase of these two

seemingly unrelated phenomena may not just be a coincidence, but are related
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by the following proposed mechanism. The Milky Way is falling toward the

Virgo cluster at the rate of 200 km/s due to its gravitational pull. A galactic

shock is formed at the north end of our Galaxy due to this motion. Such a

shock is capable of accelerating particles and exposing our galaxy’s northern

side to a higher flux of cosmic rays. The earth is protected from these cosmic

rays by the galactic magnetic field when it is within the galactic disk or at

the southern side. But as it moves up the galactic plane, the magnetic field

weakens and as a result it is exposed to an enhanced flux of high energy

cosmic rays. This happens once every ∼ 62 My when we are at the north with

higher cosmic ray exposure and the biodiversity declines at this time. Such an

exposure will persist for about 107 years in each cycle [77,79].

The spectrum of extragalactic cosmic rays hitting the Earth’s atmosphere

has already been calculated [77]. The flux as a function of displacement from

the galactic plane, z, is given by

F (z, E) = Cn{Ep−2.7e{−
Ep
3

1/2
} + f(z)Ep

−3.2e
(
−E0
Ep

)} (5.1)

Cn is a normalization constant, f(z) parametrizes the cosmic ray enhance-

ment due to the solar position, Ep is the energy in PeV , E0 is the variable

cutoff in PeV.

When, E0 = 3PeV and f(z) = 1, the first term gives the normal, low en-
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ergy cosmic ray flux by sources within the Galaxy. The range of flux enhance-

ments can be estimated that are consistent with the extragalactic backgrounds

etc described in detail here [77, 79]. Lowest flux in the range is obtained by

setting E0 = 10−3 and will be called case 1. Highest flux is calculated by set-

ting E0 = 10−4, and will be called case 2 in this manuscript. The parameter

f(z) is adjusted such that flux at 1 TeV is enhanced by a factor of 4 in case

1 and by a factor of 25 in case 2.

We calculate the magnitude of various terrestrial effects from such an ex-

posure and discuss their impact on the biosphere to answer whether this mech-

anism is capable of driving biodiversity cycles.

5.2 Terrestrial effects

In this section, we discuss three terrestrial effects impacting the biosphere.

• Enhanced atmospheric ionization from cosmic rays depletes the ozone

layer and lead to increased UVB flux on the ground

• Enhanced atmospheric ionization from cosmic rays could lead to cloud

cover changes and have climatic implications, and

• Enhanced flux of secondary muons can directly cause biological damage

on the ground.
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Figure 5.1: Enhanced cosmic ray spectra from the extragalactic shock model
[77,79]. The dotted curve represents case 1 (minimal estimate) and the dashed
curve represents case 2 (maximal estimate).

5.2.1 UVB damage from ozone depletion

Figures 5.3 and 5.4 show the energy deposition profiles obtained by CORSIKA

simulations. The number of particles increases as the shower progresses de-

positing more energy in the atmosphere, as seen in the figure. As the number

of particles increases, the energy of individual particles decreases and reaches a

threshold below which no more new particles are produced in the shower. This

feature can be seen in the declining part of the energy deposit curve (Figure
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5.2). As expected, the peak of the higher energy primary is located deeper

into the atmosphere.

Let us now go into more detail on how atmospheric ionization from cosmic

rays affects the atmospheric chemistry. Our atmosphere consists primarily of

N2 (80%) and O2 (19%) along with traces of other gases. This electromagnetic

energy deposited in the atmosphere ionizes N2 and O2 molecules starting a

series of molecular reactions. The triple bond of N2 is broken, leading to the

formation of a number of compounds such as NO and NO2, referred as NOx,

present in very low abundance in the present atmosphere. NO2 is a brown

gas and may have opacity effects. But since the production of NO2 in the

atmosphere is in small amounts, this effect will become significant only in

extreme cases.

NOx compounds catalyze the conversion of O3 to O2 through several cat-

alytic reactions. There are a series of other photochemical reactions due to

enhanced ionization involving a number of other species such as oxygen, ni-

trogen, hydrogen, chlorine and bromine. A detailed description of all the

photochemical reactions can be found here [112].

NOx compounds react catalytically in the following way to deplete ozone:

NO +O3 → NO2 +O2

NO2 +O → NO +O2

62



Net reaction is the following:

O3 +O → O2 +O2

Ozone is depleted to oxygen in the stratosphere and gives way to the solar

UVB (280-315 nm) flux [101]. The wavelength range of UVB radiation is

strongly absorbed by DNA and can damage it, leading to a number of harmful

effects. Harmful effects of UVB also include erythema (sunburn), skin cancer

and mutations leading to other diseases. An increase in flux of UVB can be

harmful to a variety of organisms such as phytoplankton which form the base

of the aquatic food chain.

Using the ionization lookup tables, we calculated the atmospheric ioniza-

tion profiles resulting from enhanced cosmic ray exposure in the extragalactic

shock model. These ionization values served as an input to the NGSFC code

described previously. Photochemical simulations were performed by Brian

Thomas and all the details are reported here [79]. Ozone depletion from our

minimal assumption (case 1) was found to be much smaller than the cur-

rent depletion rate from anthropogenic causes. For the maximal assumption

in cosmic ray flux (case 2) the globally averaged ozone depletion was about

6%, which is twice due to anthropogenic causes, which is about 3%. None of

the two values are capable of causing any serious damage to the biosphere.

This was expected since most of the energy is deposited much lower in the
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atmosphere and ionization increase in the upper atmosphere is very small.

Apart from these effects, an increase in atmospheric ionization could en-

hance cloud formation and hence increase the low altitude cloud cover [75,76].

An increased cloud cover would enhance the albedo which would result in less

solar energy on the ground, decreasing the global temperature.

5.2.2 Cloud cover

There is some evidence that cosmic ray induced atmospheric ionization could

enhance the low altitude cloud cover [34, 54, 55, 109]. Although the study of

cloud microphysics associated with atmospheric ionization is still in its infancy,

preliminary experimentation suggests a correlation between the atmospheric

ionization and aerosol formation [31] that directly affects the cloud formation

rate. This ionization change will affect the global ionosphere-earth current

density Jz, which has effects on cloud microphysical processes such as elec-

troscavenging and ion mediated nucleation [116]. The change in ionization

from the cosmic ray variability has been previously computed for a solar cycle,

which indicates a linear relationship between ionization and the low altitude

cloud cover [118]. However, other studies [35, 70, 106] show a much smaller

effect on the low altitude cloud cover. They are either unable to find a corre-

lation or estimate a small fraction of contribution to the total change in cloud
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cover from galactic cosmic rays. Recent work by Lockwood et al. [73] attributes

the recent colder UK winter to a lower solar irradiance and an enhanced flux

of galactic cosmic rays. We note that the cosmic rays in the extragalactic

hypothesis [77] are of higher energy, and will penetrate deeper in the atmo-

sphere [6] producing more ionization and hence should have a greater effect

than the galactic cosmic rays.

Muons are the primary source of atmospheric ionization at low altitudes.

With an enhancement of HECR flux, there will be an increase in the flux of

high energy muons at low altitudes, thereby enhancing atmospheric ionization

there. This could lead to increased low altitude cloud cover resulting from

HECR exposure predicted by the extragalactic shock model.

The enhanced spectra from the extragalactic shock model results in an

increase in the flux of primaries up to about 1 PeV . Because of the uncertainty

in the values of the magnetic field parameters in this model, it gives a range of

possible results. Here, we explore the maxima and minima of HECR exposure

obtained from the model. As shown in Fig 1, the minimum flux (case 1)

has the flux enhanced by a factor of 4 at one TeV and by a factor of 25

for the maximum flux (case 2). The normal atmospheric ionization values

corresponding to lower energies are calculated using an existing ionization table

[117]. Atmospheric ionization profiles at the pole corresponding to different
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cosmic ray inputs are shown in Figure 5.2. We concentrate on the increase in

ionization from these two cases at an altitude of 3 km (∼ 700 gcm−2), where

most low altitude clouds reside.

We compared the values of atmospheric ionization from the two cases with

that at the time of the cosmic ray maxima in a solar cycle. Looking at the total

energy deposited in the atmosphere, case 1 has a global enhancement factor of

3.2 and case 2 a factor of 30.7. Global enhancement is by 28% in a solar cycle.

But most of the ionization is above 10 km altitude and the enhancement at

lower altitudes is much lower, as expected. At the 3 km level (Figure 5.3), for

case 1 (minimal), we found an average increase in ionization of 38% with 79.6%

enhancement at the equator and 20.4 % at the poles. For case 2 (maximal), the

average enhancement was by 600%, with 770% at the equator and 532% at the

poles at 3 km altitude. The average increase in ionization at 3 km altitude in

a solar cycle is 4.2%. Ionization increase in the minimal case is about 9 times

that of a solar cycle. Since higher energy primaries are unaffected by the

geomagnetic field, one gets almost the same flux of particles globally. When

compared to the normal GCR flux, the difference at the equator is much higher

than at the poles because the normal particle flux at the equator is much lower

than at the poles. For case 2, the flux of high energy primaries is even higher,

which translates to an increase in the flux of high energy muons.
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High energy muons, because of their very small cross sections, can pene-

trate deeper into the atmosphere increasing ionization in the lower atmosphere.

As discussed above, the correlation between ionization and cloud cover is not

well quantified and estimates of the contribution of cosmic rays to cloud cover

changes varies from 0 to 100%. Due to the absence of a quantitative model to

calculate cloud cover changes from increased ionization, accurate estimates of

cloud cover changes are not possible. However, it would be safe to predict that

the magnitude of cloud cover change with this long term cosmic ray variability

would be much greater than the changes during a solar cycle.

This large difference in our estimates of ionization (case 1 and 2) is due to

the large uncertainty in the HECR flux calculated from the extragalactic shock

model. For the minimal case, the expected change in cloud cover is probably

not enough to cause a significant global temperature change. On the other

hand, the expected cloud cover change from the maximal case could be large

due to a significantly increased estimate of ionization and can certainly lead

to a drop in the global temperature and increase in precipitation. The actual

cloud cover change can be anywhere between the two cases discussed here. As

with earlier ozone depletion computations [79] the estimates of effects that may

impact biodiversity appear in this case to span the range from unimportant

to serious.
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An interesting aspect of this question concerns strontium isotope ratios.

Melott et al. [80] have noted a strong 62 My periodicity in the fluctuations

of the 87Sr/86Sr ratio, with the sense that this ratio rises when biodiversity

drops. Such an increase would typically be associated with uplift. Melott et

al. [80] have discussed some of the evidence suggesting that climate change can

affect uplift. A recent study [84] suggests a ∼ 56 My periodic cycle in North

American sedimentation during this period. Also, Li et al. [72] have argued

that there should be a strong temperature effect due to erosion rates of mica,

raising this isotope ratio for cooler temperatures. Melott et al. [80] speculated

that this effect might provide a link between the natural oscillation frequency

and phase agreement of the extragalactic shock scenario and geoisotope data

that is synchronous with the biodiversity signal.

More accurate computations of the various terrestrial effects from cosmic

rays will be possible in the future with better measurements of parameters

used in the extragalactic shock model and especially with improvement in the

understanding of cloud microphysics. A better quantitative understanding of

cloud cover changes from long term cosmic ray variability in future will provide

us with a better picture of the possible long term climate change and its impact

on the biosphere.
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Figure 5.2: Atmospheric ionization as a function of altitude at the poles from
various cosmic ray flux inputs. Maximal ionization (dash), minimal ionization
(dots) and normal ionization at the pole from the normal cosmic ray maxima
(solid line) in a solar cycle [7].
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Figure 5.3: Percent increase in atmospheric ionization for case 1 (solid) and
case 2 (dotted) at 3 km altitude. The enhancement is greater at the equator
than the poles because the geomagnetic field guides the majority of normal
cosmic rays toward the poles, while the cosmic rays in the extra-galactic model
are typically too energetic to be redirected [7].
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5.3 Biological damage from enhanced Muon

flux

5.3.1 A brief review of radiation biophysics

Ionizing radiation, even though very small in energy compared to non-ionizing

radiation, is very damaging to life. Of all ionizing radiation types, muons are

the most penetrating and therefore dominate the radiation dose at the ground

[87, 105]. The biological impact of cosmic rays has been studied primarily

to evaluate the damage to the human body in air and space travel. A lot of

research has been done in the context of space travel, in particular with regard

to the future human mission to Mars [?]. Astronauts will not be protected

by the Earth’s extended magnetosphere and will be vulnerable to galactic

cosmic rays and solar flares. Cosmic ray primary and secondary particles can

easily penetrate bones and tissues. The impact of cosmic ray neutrons has

also been studied on airline staff and found to be carcinogenic for elongated

exposures. Studies [8, 51, 74, 96, 97] done on airline crews showed a significant

increase in cancer rates compared to the normal. These particles can result in

a significant biological damage depending on the type of particle and energy.

A lot of experimental effort has been made in understanding the impact of this

radiation in outer space for planning a good strategy for human space missions
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in outer space. But such studies are of limited importance to assess the impact

of cosmic rays on terrestrial life. As we have seen earlier, the flux of particles

at the surface is dominated by high-energy muons and other lower energy

components that are not as biologically effective. The impact of such muons

on biological samples has not been studied so far. Experiments have been

conducted to study the effect of keV muons on non-human biological samples,

but such experiments cannot provide us with a quantitative understanding of

the damage at higher energies. Damage can be estimated from theoretical

modeling the propagation of such particles in biological samples and compare

similar damage caused by other particles such as electrons. Higher energy

muons are hard to produce in the laboratory. In order to conduct experiments

with such muons, one needs to tap them from particle accelerators.

In normal circumstances, there is always some amount of biological dam-

age caused by cosmic rays, but life has natural repair mechanisms that can

repair some of the damage caused by normal dose of CRs. But in case the

dose is increased, this repair mechanism can become inadequate which causes

dangerous mutations leading to various diseases, including cancer.

Biological damage is quantified using experiments where a sample is ex-

posed to different doses of radiation of different types. In biophysics literature,

it is a convention to describe the dose of particles as radiation. For our case,
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even though we will be talking about damaging effects of elementary particles,

it will be named as radiation following this convention.

Absorbed dose, D is the amount of energy deposited in a unit mass of the

material from ionizing radiation or D = dE
dm

. Although it is a good measure

to estimate the damage on a uniform sample, it does not work with biological

samples. Biological samples are non-uniform both in terms of composition and

density and different components of a cell respond in a different way to a given

radiation dose. One can however apply this equation to a relatively uniform

sample such as a specific tissue or an organ. The measure of the biological

damage suffered by a tissue or an organ is given by the equivalent dose, HR.

Equivalent dose is given by:

HR = wR ×DR (5.2)

where DR is the averaged dose absorbed by the organ R and wr is the radi-

ation weighting factor, also known as the quality factor. This quality factor

is determined experimentally by exposing samples to different radiation types

and comparing the relative damage.

Biological damage caused by radiation depends on the type of radiation

and its energy. Equal doses of different radiation types result in different

types of biological damage. This is because different radiation types interact

73



with matter in different ways and the magnitude of damage is a function of

energy too. A good measure for measuring damage in a sample is the energy

deposited per unit path length or Linear Energy Transfer (LET) for different

radiations. LET or the stopping power is given by the well known Bethe-Bloch

equation where the rate of energy deposition per unit length depends on the

square of the charge of the particle and inversely proportional to the square of

the velocity. The differential energy loss per unit length in keV/µm is given

by:

dE

dx
=

40πe4z2NZ

mv2
[ln

2mv2

I0
− ln(1− β2)− β2] (5.3)

Where e is the charge of the electron, v is the velocity of the particle, N is

the number of atoms per unit volume in the medium, Z is the average number

of electrons in the atom, I0 is the ionizing potential of the medium, z is the

charge of the ionizing particle and β is its velocity.

As the particle travels through the medium, it loses energy by ionization

and hence its velocity goes down. This makes dE
dx

go up, until the particle

loses its kinetic energy; and then dE
dx

drops, going towards zero until the par-

ticle stops. This is shown by the Bragg curve, where the maximum energy

deposition occurs toward the end of the particle’s trajectory in the medium,

also known as the Bragg peak. It is at this peak where one expects maximum
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damage from incident radiation.

Radiation ionizes the material it is passing through, and in case of biological

matter, ionization removes electrons from the atoms that make up the molecule

of a tissue and hence it falls apart. Quantitative analysis of biological damage

is derived from these books [2, 68,71].

In order to quantify the damage, each radiation type is assigned a radiation

weighting factor, wR or the quality factor which gives its relative biological

effectiveness (RBE).

One would think that RBE would go up with LET because more energy

deposited per unit path would result in more damage. However, when the

energy deposited increases beyond a certain point, the ionization density is

more than enough at critical points within a cell, thus wasting the energy

without doing more damage, also known as overkill. As shown in figure 5.4,

very high LET radiation is as effective as the low LET radiation due to this

effect.

Overall, radiation damage depends on the following factors:

(1) Radiation Flux (Φ(E))

(2) Effective absorbed dose (DR), which in turn depends on:

(a) Type of radiation (wR)

(b) Type of tissue/organ exposed (wT )
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In order to estimate the dose from any radiation source, one needs to

combine these factors.

Total effective dose is given by:

DTotal =

∫
Φ(E).wFD.dE (5.4)

Where wFD is the flux-to-effective dose conversion factor. Since produc-

ing muons to conduct experiments is very difficult, a number of theoretical

studies have been conducted to calculate the conversion factor for muons on

human samples. For muons, this conversion factor remains fairly constant with

increasing muon energy [19, 38, 88]. Therefore, the damage does not depend

specifically on the energy of the muon, but the overall flux. Also, dE
dx

for muons

is a very slow function of energy [50] and ionization produced by very high

energy muons increases modestly with energy.

5.3.2 Radiation dose from enhanced muon flux

Similar to the method employed to evaluate the atmospheric ionization values,

we used the muon lookup tables to calculate the muon flux at the surface from

the two cases. The flux obtained from the primary energy spectrum has already

been compared with existing results and was in very good agreement. Flux
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from case 1 shows a shift to higher energies as expected. The total energy

deposition from muons was enhanced by 47% both because of the increased

number of particles as well as the increased average energy of muons. For case

2, there is a much higher increase in flux and the spectrum shifts a bit further

to higher energy muons. The total energy deposition in muons in this case was

increased by a factor of 15.89 ∼ 16. We see a considerable increase in both

the number of muons and also the average energy of muons. Under ordinary

circumstances, muons contribute 85% to the biological dose from cosmic rays

at the surface [87,105]. Such an increase in flux will considerably increase the

radiation dose and can be potentially harmful to the biosphere.

The effective radiation dose from muons is given by:

Dµ =

∫
Φµ.wFD.dE (5.5)

Where Φµ is the muon flux on ground. We can use the muon flux calculated

above for both cases and convolve with the flux-to-dose conversion factor. The

flux-to-dose conversion factor has been theoretically determined for muons up

to 10 TeV on human samples. To calculate the biological effects over the 500

My timescale, values for humans will not be useful and studies on non-human

samples need to be conducted. But, studies do suggest that biological damage
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is proportional to the overall muon flux, and the fluence-to-dose factor remains

fairly constant with energy [19, 38, 88]. Therefore, we calculate the ratio of

fluxes for muon enhancements in both cases in order to get an estimate of the

biological damage.

DµEnhanced

DµNormal

=
φEnhanced
φNormal

(5.6)

For case 1, we saw a flux enhancement of 88% and for case 2 the enhance-

ment was by a factor of 24.5. This would translate to an 88% increase in

effective dose for case 1 and by a factor of 24.5 for case 2. Other components

such as electrons and photons are already absorbed in the atmosphere and

those reaching the surface in modest quantities are not biologically effective.

Also, α particles are not penetrating and can be easily stopped by a thin

sheet of paper or by our skin. Of the overall radiation from natural sources,

cosmic rays contribute to about half of the effective dose from penetrating

radiation [2]. The other half is contributed by terrestrial sources which are

primarily from radionuclides of the uranium-thorium series. The contribution

from cosmogenic radionuclides is very small and can be neglected.
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5.3.3 Summary

Looking at the terrestrial effects discussed above, ozone depletion from en-

hanced UVB exposure is modest and will not have any significant contribution

to biological damage. Cloud cover changes can not be determined due to the

lack of knowledge of cloud microphysics and therefore this effect is of limited

importance. Enhanced muons flux however directly affects living organisms

and could be the primary mechanism capable of driving biodiversity decline.

Increase in the background radiation dose can result in increased rate of mu-

tations and carcinogenic diseases over a period of ∼ 10 My, when the cosmic

ray exposure is highest.
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Figure 5.4: LET vs RBE. Circles shown above represent cells. If the energy
is deposited on a number of critical points on a cell, the cell gets killed. Low
LET radiation is inefficient because it does not produce enough ionization to
attack all the critical points. High LET radiation on the other hand produces
more than enough ionization, wasting the energy and hence is inefficient too.
Optimal LET radiation produces just enough ionization to damage the critical
points, and hence has the highest RBE [52].
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Figure 5.5: Enhanced muon flux (dots) from Case 1 in the extragalactic shock
model compared with the normal muon flux (solid).
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Figure 5.6: Enhanced muon flux (solid) from Case 2 in the extragalactic shock
model compared with the normal muon flux (dots)
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Chapter 6

Other applications and future

work

6.1 Applications

Lookup tables developed to calculate the atmospheric ionization and muon

flux can be used for other studies too. Obvious applications are studies of

terrestrial effects from other intense astrophysical sources. Here we outline a

few such applications.
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6.1.1 Galactic Gamma Ray Bursts

It has been suggested that it is likely that the Earth has been hit by a GRB

which had a significant effect on the biosphere. Detailed computational mod-

eling of atmospheric effects of the photon burst gives a good estimate of the

damage caused by such an event [112]. A burst pointed at Earth within 2 kpc

can cause serious damage. There have been some observations [25] indicating

the production of cosmic rays resulting from GRBs. Present models suggest

that particles could be accelerated across the shock releasing ultra-high energy

cosmic rays up to energies of 1018 eV . However, the effects of cosmic rays were

not taken into account in the previous analyses. The spectrum and flux of CRs

on Earth resulting from a GRB has to be calculated. As mentioned earlier, we

plan to extend our work to these energies so that effects of such high energy

bursts could be estimated.

Some models suggest that Gamma Ray Bursts are capable of accelerat-

ing particles to ultra-high energies and are one of the sources of UHECRs

observed on the Earth. If that is the case, the impact of UHECRs on the

Earth would be substantial and could not be ignored as in previous analysis

with photons. Apart from the uncertainty in the cosmic ray spectrum from

GRBs, their composition is not well constrained at such higher energies. The

biggest uncertainty apart from these two is the knowledge of interactions at
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these energies. Currently, the development of air showers at such high energies

is based on theoretical models. Interaction cross sections at these energies are

not anticipated to be available in the near future either.

6.1.2 Nearby Supernovae

Estimates suggest that a supernova occurring within 10 pc will significantly

damage the Earth’s atmosphere. The estimated rate of supernovae within

10 pc is about 2 per Gyr [81]. When such an event occurs, there will be

a flux of high energy cosmic rays accelerated by the SN blast wave. In the

previous work, the atmospheric ionization due to the normal GCR flux was

simply multiplied by a factor of 100 to account for CRs from nearby supernova.

Normal GCR flux consists primarily of low energy protons which are easily

deflected by Earth’s geomagnetic field and hence are concentrated at the poles,

and almost negligible flux at and near the equator. However, CRs generated

from a supernova blast will be much higher in energy and will not be deflected

by the geomagnetic field. As a result, one would see the flux distributed

uniformly over the globe. Also, higher energy CR penetrate deeper into the

atmosphere and their effects cannot be studied by simply enhancing the low

energy flux as done previously. There are calculations of the CR spectrum in

supernova remnants that can be used as an input for our analysis [11].
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Galactic cosmic rays are thought to be produced by an acceleration mecha-

nism of supernovae shocks. Models predict particle acceleration up to the PeV

range from shock fronts. If such an event occurs nearby, the flux of cosmic rays

from the shock is anticipated to be much higher than normal. The spectrum

of particles entering the Earth’s atmosphere needs to be determined. Such

calculations will take into account the diffusion of particles and the nearby

magnetic fields.

6.1.3 Extrasolar planets

Cosmic ray flux on exoplanets atmosphere has been calculated [49] and its

astrobiological impact have been discussed qualitatively. Terrestrial effects

from such cosmic ray exposure can be calculated using our methodology.

6.2 Future work

6.2.1 UHECRs

As described earlier, there is some evidence of UHECR production from GRBs

[25,26]. Previous study on the terrestrial impact of a galactic GRB was done

ignoring UHECRs. We intend to extend our modeling to include the effects of

UHECRs. Atmospheric ionization profiles can be obtained by CONEX [13,90],
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which is another model to obtain atmospheric ionization profiles at ultrahigh

energies. It is a one-dimensional Monte Carlo code where low energy sub-

showers are treated numerically with hadronic cascade equations. This results

in drastic reduction in computing time and a major improvement over the

’thinning’ algorithm [57] used for ultra-high energy showers previously.

6.2.2 Thermal neutrons

Although CORSIKA does a good job in tracking muons and giving the electro-

magnetic energy deposition profile, it does not track neutrons below the energy

of 50 MeV [57]. Since we are interested in obtaining the low energy neutron

flux down to the thermal level, CORSIKA can not be used for this purpose.

The following are tentative approaches that could be adopted in order to get

the required neutron data. Analytical functions [102] can be used to get the

neutron flux down to the thermal level, but they are only valid up to primaries

of energy 100 GeV . GEANT4 [1] can also be used to get the neutron flux but

it is limited to energies up to typical LHC level (∼ TeV ). Therefore, it needs

to be interfaced with a physical model that includes physics for higher energies

and needs further investigation. Other approaches include a method [89] to

calculate the lower energy neutron flux from the fast neutrons that CORSIKA

provides or by using a Monte Carlo package MCNP [17].
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6.2.3 Sub surface muons

Muons are capable of traveling below the surface and therefore sub-surface

flux needs to be determined. In order to track muons in water [69] and un-

derground, the MUSIC [4] (MUon SImulation Code) code can be used. It is a

monte carlo code having the capability to track muons through large thickness

of rock or water. This code is suited for our work because it can track muons

with energies up to 1016 eV .

6.2.4 Experimentation

A large number of experiments are already dedicated to study the effects of

cosmic rays to humans in the context of space travel. Astronauts are exposed

to cosmic ray primaries, as opposed to secondary particles that we receive

on the surface. As mentioned previously, such experiments are of limited

importance to assess its biological damage on ground. More experiments need

to be conducted on non-human samples with secondaries. There also need to

be studies of mutation rate dependence on radiation on a number of biological

samples to understand the phenomenon better.

88



Chapter 7

Discussion

The earth is most likely to have been exposed to an enhanced flux of radiation

in the past. The sources of this radiation could be intense astrophysical events

such as supernovae and gamma-ray bursts or radiation enhancement could

occur depending on the Earth’s position in the Milky Way. Such an exposure

would have affected the environment and life on our planet. Good paleobiology

data is available for the past ∼ 500 My to look for such clues in earth’s

history. We have developed a method to quantify the terrestrial effects of the

particle component of this radiation. We have explored two major effects, (1)

UVB damage from ozone depletion due to comic ray ionization in the upper

stratosphere, and (2) direct impact of cosmic ray secondary muons on ground.

Enhanced cosmic ray exposure can also cause climatic changes but accurate

predictions are not possible due to limited knowledge of cloud microphysics.
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Results are available in the form of lookup tables that can be used for other

studies in the future. This method is then used to study the terrestrial effects

of enhanced cosmic ray exposure from solar oscillation perpendicular to the

galactic plane. This could be the possible mechanism explaining the observed

periodicity in biodiversity in paleobiology databases.

90



Bibliography

[1] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce,

M. Asai, D. Axen, S. Banerjee, G. Barrand, et al. GEANT4-a simulation

toolkit. Nuclear Instruments and Methods in Physics Research-Section

A, 506(3):250–303, 2003.

[2] E.L. Alpen. Radiation biophysics, Englewood Cliffs, NJ (US); Prentice

Hall. 1990.

[3] T. Antoni, WD Apel, F. Badea, K. Bekk, A. Bercuci, H. Blumer, H. Boz-

dog, IM Brancus, C. Buttner, A. Chilingarian, et al. The cosmic-ray

experiment KASCADE. Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associ-

ated Equipment, 513(3):490–510, 2003.

[4] P. Antonioli, C. Ghetti, EV Korolkova, VA Kudryavtsev, and G. Sar-

torelli. A three-dimensional code for muon propagation through the rock:

91



MUSIC. Astroparticle Physics, 7(4):357–368, 1997.

[5] D. Atri and A. L. Melott. Modeling high-energy cosmic ray induced

terrestrial muon flux: A lookup table. Radiation Physics and Chemistry,

in press, 2011.

[6] D. Atri, A. L. Melott, and B. C. Thomas. Lookup tables to compute

high energy cosmic ray induced atmospheric ionization and changes in

atmospheric chemistry. Journal of Cosmology and Astroparticle Physics,

5:008, May 2010.

[7] D. Atri, B. C. Thomas, and A. L. Melott. Can periodicity in low altitude

cloud cover be induced by cosmic ray variability in the extragalactic

shock model? ArXiv:1006.3797, submitted, November 2010.

[8] P.R. Band, J.J. Spinelli, VT Ng, J.A. Moody, and R.P. Gallagher. Mor-

tality and cancer incidence in a cohort of commercial airline pilots. Avi-

ation, space, and environmental medicine, 61(4):299, 1990.

[9] S. Bass. Microscopic models for ultrarelativistic heavy ion collisions.

Progress in Particle and Nuclear Physics, 41:255–369, 1998.

[10] G. Battistoni, F. Cerutti, A. Fassò, A. Ferrari, S. Muraro, J. Ranft,
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