Origin and evolution of the unique Australo-Papuan mangrove-
restricted avifauna: novel insights form molecular phylogenetic and

comparative phylogeographic analyses

By

Arpad S. Nyari

Submitted to the graduate degree program in Ecology and Evolutionary Biology and the
Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

Chairperson: A. Townsend Peterson

Robert G. Moyle

Rafe M. Brown

Mark B. Robbins

Xingong Li

Date Defended: 22 April 2011



The Thesis Committee for
Arpad S. Nyari

certifies that this is the approved version of the following thesis:

Origin and evolution of the unique Australo-Papuan mangrove-restricted
avifauna: novel insights form molecular phylogenetic and comparative
phylogeographic analyses.

Chairperson A. Townsend Peterson

Date approved: 22 April 2011



Abstract

Coastal mangrove forests of Australo-Papua harbor the world’s richest avifauna
restricted to mangroves, however their biogeographic origins and evolutionary
processes shaping their current distributions are not well understood. Building upon
previous work based on field surveys and morphological characters, | am here focusing
on elucidating the phylogenetic placement of mangrove-bound species from three
different bird families as well as the comparative phylogeographic analysis of eight co-
distributed mangrove restricted birds.

In the first molecular phylogenetic analysis of fantails (Aves: Rhipiduride) |
document six distinct clades, harboring members spread across large geographic
extents. Rhipidura hypoxantha is not a true fantail, but rather a member of the
Stenostiridae clade that is morphologically and behaviorally convergent with fantails.
The Australian mangrove fantails R. phasiana and R. dryas both evolved recently from
Pacific island radiations.

A molecular phylogeny of all extant species of the honeyeater genus
Lichenostomus (Aves: Meliphagidae) also addresses the relationship of the only
mangrove-restricted honeyeaters on Australia’s east coast, L. versicolor and L.
fasciogularis. These species were not sisters but rather L. versicolor was sister to the
pair comprising L. fasciogularis and the continental widespread Singing Honeyeater L.
virescens. The genus Lichenostomus is not monophyletic, and instead comprises seven

distinct lineages interdispersed within the larger meliphagid assemblage. Based on this



taxonomic and nomenclatural revision, recognition of a novel genus of honeyeater is
warranted.

A multilocus molecular phylogeny of gerygones (Aves; Acanthizidae) establishes
that the three mangrove endemic species do not form a monophyletic clade, instead
indicating three distinct, temporally non-overlapping, radiations into magroves.
Moreover, G. cinerea from New Guinea is in fact a member of the genus Acanthiza, with
which it consistently grouped based on 13 distinct molecular loci analyzed.

Comparative phylogeographic analyses of 8 co-distributed mangrove forest
endemic birds concludes biogeographic barriers such as the Canning Gap, Bonaparte
Gap, and the Carpentarian Gaps all had important, but varying degrees of impact on the
species we analyzed. Species with more recent radiations into mangroves include
Rhipidura phasiana, Mpyiagra ruficollis, and Myzomela erythrocephala, while
Peneoenanthe pulverulenta, Pachycephala melanura, P. lanioides, Zosterops luteus,

and Colluricincla megarhyncha all had more marked phylogeographic signatures.
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Chapter 1*

Phylogenetic relationships of fantails (Aves: Rhipiduridae)

* Nyari A. S., Benz B. W., Jonsson K. A., Fjeldsa J., and Moyle R. G. 2009. Phylogenetic relationships of
fantails (Aves: Rhipiduridae). Zoologica Scripta 38: 553-361.
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Abstract

We explore the phylogenetic relationships of fantails (Aves: Rhipiduridae) using
molecular characters derived from two nuclear introns and two mitochondrial genes.
Our results indicate that Rhipidura hypoxantha is not a true fantail, but rather a member
of the Stenostiridae clade that is morphologically and behaviorally convergent with
fantails. Within the true Rhipiduridae, we identified 6 distinct clades, however
phylogenetic relationships among these groups were unresolved. The only well-
supported sister relationship was between members of the grey and the rufous fantail
complexes. Clades recovered through our model-based phylogenetic analyses
generally correspond to previously proposed fantail complexes based on morphological
characters. The phylogenetic position of R. afra and R. diluta remain unclear, as sister
relationships varied between analyses for the prior whereas the latter was placed as
sister to the New Guinea thicket fantails, R. leucothorax and R. threnothorax, yet
significant node support was not recovered for either taxa. Biogeographically, fantails
appear to have radiated rapidly and the six clades are not geographically restricted, but

instead span Southeast Asia, New Guinea, Australia, and Pacific Islands.
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1. Introduction

Fantails are a well-defined family of small-bodied insectivorous passerine birds
distributed across the Oriental, Australasian, and southwest Pacific island regions, with
a center of diversity located on New Guinea. Currently, ~44 species are recognized in a
single genus, Rhipidura (Boles 2006, Dickinson 2003). Diagnostic to the family, all
fantails exhibit elongated rectrices, which are held spread apart to form the
characteristic fan-shaped tail that in some species may be held cocked, and or swung
side to side. Besides obvious inter and intra-specific signal functions, the tail is used,
together with partly spread wings, as a “parachute” during foraging, as the bird falls off
its perch, tumbling towards the ground for passing insects (Boles 2006).

From a taxonomic point of view, fantails have been suggested to share affinities
with Old World flycatchers (Muscicapidae), but this relationship appears to be
convergent given their general feeding habits. Recent molecular work has indicated that
fantails are part of the large Australo-Papuan songbird radiation, widely separate from
the Muscicapidae, and instead part of the Corvoidea, most closely related to monarch
flycatchers (Monarchidae), drongos (Dicruridae), and in particular to the Pygmy Drongo,
Chaetorhynchus papuensis (Barker et al. 2002, 2004, Cracraft et al. 2004, Irestedt et al.
2008). The cohesiveness of the Rhipiduridae has not seen any major challenges,
although one species, the Yellow-bellied Fantail (Rhipidura hypoxantha) stands out as
having smaller body size compared to other rhipidurids, and is the only fantail with a
carotenoid based, bright yellow plumage. As such, this distinctive fantail has at times

been assigned to a separate genus, Chelidorhynx (Boles 1979, 2006).
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Within the family, various subgroups and subgenera have been delineated,
mainly based on plumage characters and geographic distribution. Probably the best-
studied group is the grey fantail complex (Ford 1981, Schodde & Mason 1999, Boles
2006, Christidis & Boles 2008): occurring throughout the Australo-Papuan region,
satellite islands, and New Zealand, this complex includes the species R. albiscapa,
phasiana, fuliginosa, albolimbata, and hyperythra (Table 1), all characterized by a
somewhat drab plumage and a grey to black dorsum. Ecologically, this group includes
the New Guinea lowland species R. hyperythra, which is replaced by R. albolimbata in
the highlands, while on mainland Australia, the more widespread R. albiscapa gives
way to the mangrove-restricted species, R. phasiana (Boles 2006, Schodde & Mason
1999). The central Pacific Islands hold another assemblage hypothesized to be closely
linked to the latter complex. This island-endemic group of six species is centered on the
Streaked Fantail, R. verreauxi, and includes the species R. personata, nebulosa,
drownei, tenebrosa, and rennelliana (Table 1). Previous taxonomic arrangements have
acknowledged a close relationship between these two groups by placing these 11
species in the subgenus Rhipidura (Watson et al. 1986, Boles 2006).

Another large assemblage is the rufous fantail complex, including R. rufifrons and
11 other species (Table 1), mostly with rusty-rufous dorsal coloration. Members of this
complex are distributed throughout Australia, New Guinea, South and Central Pacific
islands, and Indonesia; these species are sometimes placed in the subgenus Howeavis
(Boles 2006). The northern fantail complex is a smaller group of four species
(rufiventris, diluta, fuscorufa, and cockerelli), extending from the Moluccas through New

Guinea, and south to northern Australia (Table 1).
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Apart from these major groups, several smaller species clusters have been
distinguished within the family, albeit without explicit evolutionary affinities to any of the
previously mentioned larger complexes. Examples include the two Philippine endemic
species with blue coloration (R. cyaniceps and R. superciliaris), the New Guinea Thicket
Fantails (R. threnothorax, R. leucothorax, and R. maculipectus), and the distinctive
Willie Wagtail (R. leucophrys), the largest-bodied member of the family, which is placed
in the subgenus Leucocirca. Compared to the aforementioned larger rhipidurid groups,
the relationships of these remaining fantails, mostly from Southeast Asia, Indonesia,
and the Philippines, have received relatively little attention.

In sum, no comprehensive revision of this family has been undertaken, and an
overview of phylogenetic relationships of its members is lacking. Herein, we use
molecular characters from multiple loci to establish a phylogenetic framework for the
Rhipiduridae. We address questions pertinent to (1) the monophyly of the family, (2) the
cohesiveness of presently recognized species groups and subgenera, and (3)

biogeographic patterns of constituent subgroups.

2. Materials and Methods
2.1 Taxon sampling and molecular markers

For the present study, the family Rhipiduridae was represented by a total of 35
individuals of 29 species (Table 1). The remaining 13 unsampled species, with the
exception of the distinctive R. phoenicura, have been considered members of
superspecies (Boles 2006), which are represented in this study. For 5 species, we

included two samples per species, to confirm species identification and to obtain rough

15



estimates of intraspecific genetic variation among geographically distinct populations.
This study is founded on vouchered genetic samples of fantail species collected
throughout the family’s range. The choice of outgroup taxa was based on results from
recent molecular studies of passerine phylogeny, in which a lineage comprising
Chaetorhynchus papuensis of the New Guinea highland and Lamprolia victoriae of Fiji
Islands has been suggested as the closest extant relative of fantails (Barker et al. 2002,
2004, Cracraft et al. 2004, Irestedt et al. 2008). We also included representatives of the
Old World flycatchers (Muscicapidae) and the drongos (Dicruridae) as additional
outgroup taxa (Table 1).

Total genomic DNA was extracted from frozen or alcohol-preserved tissue
samples using standard Qiagen tissue extraction protocols (Qiagen, Valencia, CA). Our
choice of molecular markers relied on previously used and established mitochondrial
protein-coding genes and two nuclear introns. Sequences of the mitochondrial genes
nicotinamide adenine dinucleotide dehydrogenase subunit 2 (ND2; 1041 bp) and
subunit 3 (ND3; 351 bp), the fifth intron of the transforming growth factor 32 (TGFb2;
590 bp aligned), as well as the fifth intron of the nuclear gene Beta-Fibrinogen (Fib5;
613 bp aligned) were amplified using the primers L5215 — H6313 (Sorenson et al.
1999), L10755 — H11151 (Chesser 1999), TGF5 — TGF6 (Primmer et al. 2002), and
Fib5 — Fib6 (Marini & Hackett 2002), respectively.

All loci were amplified in 25 ul reactions under standard PCR thermocycling
protocols using PureTag™ RTG PCR beads (GE Healthcare Corp.). Amplified double-
stranded PCR products were cleaned with ExoSAP-IT™ (GE Healthcare Corp.), and

visualized on high-melt agarose gels stained with ethidium bromide. Purified PCR
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products were cycle-sequenced with ABI Prism BigDye™ v3.1 terminator chemistry,
using the same PCR primers Cycle-sequenced products were further purified using
Sephadex™ spin columns (GE Healthcare Corp.), and finally sequenced on an ABI
3130 automated sequencer. Sequences of both strands of each gene were examined
and aligned in Sequencher 4.1 (GeneCodes Corp.), and a final data matrix of
contiguous sequences assembled using ClustalX 1.83 (Thompson et al. 1997).
Alignments of the two nuclear introns were further examined by eye and corrected at
indel sites as necessary.

2.2. Phylogenetic reconstruction and analyses

Sequence evaluation and phylogenetic reconstructions based on the
concatenated dataset were performed via maximum likelihood (ML), as implemented in
the software PAUP*. ModelTest 3.7 (Posada & Crandall, 1998) was used to determine
the most appropriate model of sequence evolution via a hierarchical likelihood ratio test
(hLRT) based on the Akaike Information Criterion (AIC). Nodal support was assessed
via nonparametric bootstrapping with 100 replicates.

We also conducted Bayesian phylogenetic analyses (BA) using Markov Chain
Monte Carlo (MCMC) tree searches using the program MrBayes 3.1.2 (Ronquist &
Huelsenbeck 2003). The concatenated dataset was partitioned by gene and codon
positions for the nuclear intron and mitochondrial genes, respectively. ModelTest 3.7
(Posada & Crandall, 1998) was again used to establish the best substitution model
according to the AIC (Table 2). Two independent runs of 10’ generations were
conducted using the respective models of sequence evolution, with default chain

heating conditions, and sampling every 100 generations. Evaluation of stationarity was
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conducted by plotting posterior probabilities from the two runs in the program Tracer
(Rambaut & Drummond 2007). Topologies sampled from the first 25% of generations
were discarded as an initial “burn-in,” so a total of 75,000 trees were summarized to

produce a single 50% majority-rule consensus tree.

3. Results
3.1.  Sequence data characteristics

Sequence alignments for all taxa and genes were straightforward. The
mitochondrial data showed no insertions, deletions, or anomalous stop-codons, and
base composition was typical for both genes (Table 2), suggesting true mitochondrial
origin, as opposed to corresponding to nuclear pseudogenes (Sorenson & Quinn,
1998). The ND3 gene sequence of R. albiscapa from Vanuatu included the ‘silent base’
described in several bird groups, a cytosine insertion at position 174, which does not
disrupt the reading frame because it is not translated (Mindell et al. 1998). Deletions
and insertions were inferred in the nuclear sequences, although these were not coded
separately in our analyses.

The complete molecular dataset thus comprised 38 samples of 33 species, of
which 30 were ingroup species, and 2595 aligned bases (Table 2). Average pairwise
distance (uncorrected P) based on the two mitochondrial markers between ingroup and
outgroup samples across the entire dataset was 20%; within fantails, pairwise distance
ranged from 0.6% between the 2 samples of R. nigrocinnamomea, up to 25% between

R. hypoxantha and R. tenebrosa.
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3. 2. The affinities of Rhipidura hypoxantha

The distinctiveness of R. hypoxantha compared to other fantails was indicated
not only by a large genetic distance, but was also evident in preliminary phylogenetic
analyses, where it was consistently recovered outside the fantail family. This peculiarity
prompted us to investigate the true relationships of this taxon further, by performing a
NCBI GenBank BLAST (Basic Local Alignment Search Tool) search of the ND2 and
FibS sequences against homologous sequences of other passerines. Search results
yielded highest similarities to sequences from several members of the Sylvioidea, in
particular to the Stenostiridae (Beresford et al. 2005, Johansson et al. 2008).

Subsequently, we constructed an additional dataset of ND2 and Fib5 sequences
from species sharing highest similarity scores in the BLAST search, as well as a subset
of our ingroup taxa; most sequences were drawn from the most recent molecular study
of the Passerida (Johansson et al. 2008; see Appendix). An additional BA was
performed on this new dataset. The results of this analysis indicate conclusively that R.
hypoxantha is distantly related to true fantails, and instead is part of the recently
proposed Stenostiridae family, closely related to the genera Stenostira, Culicicapa, and
Elminia (Figure 1; Beresford et al. 2005, Johansson et al. 2008, Nguembock et al.
2008).
3. 3. Phylogenetic analyses

ML analyses produced a single topology (likelihood score of -InL = 20287.43120),
which was largely congruent with the consensus tree inferred via BA (Figure 2). Apart
from the novel placement of R. hypoxantha with the Stenostiridae, true fantail

monophyly was recovered with highest statistical support under both search algorithms.
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At least 6 distinct fantail clades were recovered, although support for relationships
among these clades was weak, effectively producing a large basal polytomy. The only
exception to this general lack of support was strong consensus for a sister relationship
between the grey and the rufous fantail complexes (clades E and F; Figure 2).
Relationships of fantail species within each clade were generally well supported, with
only a few exceptions. Most notable among these exceptions was R. atra, which was
weakly inferred as sister to clade B in the ML analysis, while the BA separated this
species from the other clades, placing it with very low support at the base of the fantails.
Another taxon that received low phylogenetic support was R. diluta, although in this
case both methods agreed in placing it sister to R. leucothorax and R. threnothorax

(Figure 2).

4. Discussion
4.1.  Phylogenetics and taxonomy

These results constitute the first detailed phylogenetic analysis of fantail
relationships using molecular characters. We conclude that the Rhipiduridae, as
currently defined, does not constitute a natural group, owing to the misallocation of the
Yellow-bellied Fantail (Rhipidura hypoxantha), which is in fact a member of
heterogeneous African-Eurasian clade, Stenostiridae. The taxonomic affinity of R.
hypoxantha to other rhipidurids has not been formally disputed, although generic
separation into Chelidorhynx has been suggested based on its phenotypic
distinctiveness relative to the rest of the fantails. Chelidorhynx shares plumage colours

with the stenostirid genus Culicicapa, and a similar long tail — and behavior — is found in

20



the stenostirid genus Elminia. Placement of R. hypoxantha within this family received
significant support (Figure 1), and thus the Stenostiridae must be expanded to include
this new member, under the appropriate scientific name of Chelidorhynx hypoxantha
(Watson et al. 1986, Boles 2006).

Phylogenetic relationships of true fantails are marked by 6 discrete, well-
supported groups, while the affinities of two species (R. atra and R. diluta) were only
poorly resolved. The 6 distinct groups are all united by weakly supported nodes,
precluding meaningful inferences regarding evolutionary history among these distinct
lineages (Figure 2). Two clades, corresponding to the grey and the rufous fantail
complexes, were inferred to be sister groups with high support under both of our
phylogenetic analyses (clades E and F, Figure 2).

The grey fantail species complex (clade F, Figure 2) includes all 5 “typical”
species (Table 1; Boles 2008), but is here redefined to include several members of the
Streaked Fantail (R. verreauxi) complex, represented in our study by the species
verreauxi, tenebrosa, and renelliana. As reciprocal monophyly was not recovered
between the grey and steaked group species, we recognize only one distinct group:
within this inclusive clade, the two New Guinea species hyperythra and albolimbata, a
lowland and highland species, respectively, are sister to a separate subgroup of mostly
island endemic species (clade F, Figure 2). Within this subgroup, R. albiscapa was
paraphyletic; samples from Vanuatu and Australia were moderately divergergent from
one another (4.7% uncorrected P sequence difference; Figure 2) and not sister taxa.
The taxonomic complexity of grey fantails has been long recognized (Ford 1981,

Schodde & Mason 1999, Boles 2006, Christidis & Boles 2008); our results clearly
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indicate the need for a thorough molecular phylogenetic analysis of this broadly
distributed group. Based on our results, Pacific Island populations of R. albiscapa will
likely have to be elevated to full species rank. Overall, our results support the
cohesiveness of the grey and streaked fantail groups, as previously suggested based
on plumage similarities and by the recommended consolidation of these two groups
within the subgenus Rhipidura (Watson et al. 1986, Schodde & Mason 1999, Boles
2006). In addition to the species that are part of this clade, the traditional taxonomy of
streaked fantails also includes the here unsampled island species drownei, personata
and nebulosa.

The rufous fantail species group was consistently recovered as sister to the grey
fantails (clade E, Figure 2). Mayr and Moynihan (1946) provided a thorough revision of
relationships of the rufous fantail complex based on morphological characters,
proposing a series of dispersal events from an ancestral source from which five well
defined subgroups emerged. Of these, R. rufifrons attained the highest degree of
subspeciation. Even though our taxonomic sampling of the rufous fantail group is by no
means inclusive, it nevertheless provides a first evaluation of the sequence of
speciation events. As such, our results indicate that the New Guinea lowland species R.
rufidorsa and the highland species R. brachyrhyncha branch basally from a well
supported subclade containing dahli, teysmanni, dryas, and rufifrons (Figure 2). This
pattern confirms Mayr and Moynihan’s phylogenetic hypothesis for this group, which
was based on the restriction of ancestral forms to New Guinea, with subsequent
colonization of surrounding islands. Previous treatments of rufous fantails did not

specifically place R. brachyrhyncha within this complex, but a potential link to this
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widespread species group has been suggested (Mayr & Moynihan 1946, Boles 2006).
According to the traditional classification, this group would also include the species
semirubra (near dryas), matthiae and malaitae (with rufidorsa), and superflua, dedemi,
opisterythra and lepida (near teysmanni). Probably the most interesting finding within
this group is that members of the R. rufifrons subspecies complex, which currently
includes 19 subspecies (Dickinson 2003), have achieved this diversity only recently
(assuming that all currently recognized subspecies actually are part of the monophyletic
R. rufifrons).

Clade D (Figure 2) represents another well-defined, but novel, group. The
largest, and morphologically distinct, R. leucophrys is sister to a clade of Southeast
Asian species, javanica, aureola, and albicollis (plus albigularis according to the
morphological classification). An affiliation between these species and other major
fantail groups has not been proposed, and are here shown to constitute a distinct clade.
Evolutionary associations of the widespread Australo-Papuan R. leucophrys have also
been unclear, although our phylogenetic analysis clearly supports the relationship of this
species to a widespread Asian clade, disproving previous distinctions of this taxon as a
separate subgenus Leucocirca based on morphology and behavior (Harrison 1976,
Boles 2006). A sister relationship between clades C and D (Figure 2) was recovered by
both phylogenetic analyses, however in both cases this association was weakly
supported by ML bootstrap and BA posterior probabilities (<50% and 0.75,
respectively). Clade C contains the two thicket fantails of New Guinea, R. threnothorax
and R. leucothorax as sister to R. diluta, although support for the inclusion of the latter

species in this clade was again quite deficient (Figure 2).
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The northern fantail species complex is redefined in our phylogenetic analysis by
a novel arrangement of members of clade B (Figure 2). As opposed to the current
delineation of this group (see Introduction and Table 1; Boles 2006), our results indicate
that R. diluta does not belong to this group, and is instead substituted for by the Spotted
Fantail, R. perlata (Figure 2). Finally, clade A hosts three Philippine endemics, two of
which (R. cyaniceps and R. superciliaris) are the only fantails with blue color in their
plumage. The Black Fantail, R. atra, was consistently inferred as isolated from all other
major fantail groups (Figure 2). This species has been hypothesized to share some
affinities with the rufous fantails (clade E, Figure 2; Boles 2006), but we found no
support for this relationship (Figure 2).
4. 2. Biogeographic patterns

Fantails are part of the species-rich Australasian radiation of oscine passerines
(Barker et al. 2002, 2004), and the present phylogenetic framework provides some
important insights into some of the key underlying biogeographic processes through
which this family attained its current species distribution. Our sampling for this study
included ~70% of extant species diversity, with most omitted species occurring on
isolated Pacific islands. Even though we cannot infer a complete biogeographic picture
for the family, the overall geographic distribution of rhipidurids (Figure 3) reveals some
common themes among the clades, as well as some unique patterns.

New Guinea’s close link to the diversification of fantails is abundantly clear, as
evidenced by their sister relationship with Chaetorhynchus papuensis and the high
species diversity present on mainland New Guinea (Mayr & Diamond 2001, Boles

2006). Rhipidurids comprise an important component of the insectivorous guild
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throughout New Guinea’s lowland and montane bird communities, as high levels of
sympatry are maintained through niche partitioning both within and among habitat
types. That these communities include members of all fantail clades recovered within
our phylogenetic framework, with the exception of the entirely Philippine endemic clade
A, clearly demonstrates the integral role New Guinea has played in the evolution of the
family.

Phylogenetic relationships and distributions suggest the possibility of colonization
events in both directions between islands and continents. Probably the most eloquent
example of the historical biogeographic importance of New Guinea is inferred in clades
E and F (Figure 3), in which the branching patterns place New Guinea fantails basal to
a subset of island species, which in turn are sister to rhipidurids that have recently
recolonized mainland Australia. This distinct biogeographic pattern has been recently
documented to have occurred also in monarch flycatchers (Monarchidae), where an
extensive Pacific Island radiation recolonized mainland Australia, where further
speciation events occurred (Filardi & Moyle 2005). By contrast, the prevailing
hypothesis of Pacific Island avifaunal diversification assumes a sequential colonization
of islands from mainland source populations through a one-directional flow of
immigrants (Mayr 1939, 1942, Mayr & Diamond 2001). Integrating results from the
present study with groups of taxa sharing similar geographic extents would present a
good opportunity to test the timing and geographic fit of speciation events onto a
modern view of plate tectonic events throughout SE Asia and the Pacific Islands (Hall

1996, 1997, 1998).
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Conclusions

Drawing from a multi-locus molecular dataset, the present phylogenetic
foundation of the Rhipiduridae advances understanding of the taxonomic and
biogeographic underpinnings of the present species diversity in the family. Striking
morphological and behavioral convergence in “Rhipidura” (=Chelidorhynx) hypoxantha
has until now obscured the recognition of a new member of the enigmatic Stenostiridae.
Among true fantails, the phylogenetic relationships recovered by our dataset clearly
indicate rapid radiation of distinct clades, especially through the Pacific Islands,
consistently mediated by the influences of New Guinea as a source area and the
opportunities for dispersal that arose as a consequence of the large-scale tectonic
changes affecting the island arcs along the western margin of the Pacific Ocean from
the late Neogene. To broaden our understanding of fantail relationships and
biogeography, several avenues of research merit further investigation. Complete taxon
sampling of all Pacific island species should be undertaken through assembling modern
voucher collections from these poorly known regions in order to fully elucidate the
evolutionary history of the family. Relationships within the grey fantail complex as well
as several widely distributed lineages including R. dryas, R. ruffifrons, R. rufiventris, and
New Guinea’s wide ranging lowland and montane taxa should be examined in detail to

confirm monophyly and better understand the regional histories of these taxa.
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Figure 1: Phylogenetic placement of “Rhipidura” (=Chelidorhynx) hypoxantha within
Stenostiridae as inferred from Bayesian analysis. Samples contributed by the present
study are indicated in bold. An asterisk indicates nodal support of > 90 posterior

probability.

Figure 2: Maximum likelihood (ML, left) and Bayesian analysis (BA, right) views of
phylogenetic patterns implied by analyses of the complete molecular dataset. Support
values are indicated by percent bootstrap (ML, left) and posterior probability values (BA,
right) above or at each node. Values <50 recovered by each method are not indicated at

nodes. Clade letters are referenced throughout the main text.

Figure 3: Schematic consensus tree derived from the ML and BA topologies
illustrating geographic distributions of rhipidurids. Clade letters follow Figure 2, and are
referenced throughout the main text. Nodal support is schematically indicated via
circles: - black circles correspond to nodes supported by ML bootstrap values >75% and
BA posterior probability >0.75, white circles denote ML bootstrap values <75% and BA
posterior probabilities >0.75, and nodes without circles correspond to ML bootstrap

values <75% and BA posterior probabilities <0.75.
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Figure 1

|
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Figure 3

Rhipidura atra - New Guinea
Rhipidura nigrocinnamomea - Philippines A
E Rhipidura cyaniceps - Philippines
Rhipidura superciliaris - Philippines
Rhipidura perlata - S Thailand, Malay Peninsula, Sumatra, Borneo B
Rhipidura fuscorufa - Tanimbar Archipelago
Rhipidura cockerelli - Bougainville, Solomons
Rhipidura rufiventris - Lesser Sundas, New Guinea + islands, N Australia
I_ Rhipidura diluta - Lesser Sundas
L{ Rhipidura leucothorax - New Guinea ©
T Rhipidura threnothorax - New Guinea
Rhipidura leucophrys - Australia, New Guinea + islands, Solomons D
—{ i Rhipidura javanica - SE Asia, Sumatra, Java, Borneo, Philippines
Rhipidura albicollis - India, China, SE Asia, Sumatra, Borneo
Rhipidura aureola - India, Myanmar, S China, SW Thailand, SC Vietnam
Rhipidura rufidorsa - New Guinea E
Rhipidura brachyrhyncha - New Guinea
Rhipidura dahli - Bismark Archipelago
Rhipidura teysmanni - Sulawesi
S Rhipidura dryas - Lesser Sundas, Moluccas, Tanimbar, N Australia
Rhipidura rufifrons - N Moluccas, S New Guinea, Solomons, E coast Australia
Rhipidura albolimbata - New Guinea highlands F
Rhipidura hyperythra - New Guinea lowlands
Rhipidura verreauxi - New Caledonia, Vanuatu, Fiji
Rhipidura tenebrosa - Makira Island (Solomons)
Rhipidura rennelliana - Rennell Island (Solomons)
Rhipidura albiscapa - New Caledonia, SE Solomons, Vanuatu
Rhipidura phasiana - N coast Australia
Rhipidura albiscapa - Australia, Tasmania
Rhipidura fuliginosa - New Zealand
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Chapter 2**

Systematic dismantlement of Lichenostomus improves the basis for
understanding relationships within the honeyeaters (Meliphagidae)

and historical development of Australo-Papuan bird communities

** Nyari, A. S. and Joseph L. Systematic fragmentation of Lichenostomus improves the basis for
understanding relationships within the honeyeaters (Meliphagidae) and historical development of
Australo-Papuan bird communities. EMU. in press.
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Abstract

Several recent re-evaluations of relationships among major lineages of
honeyeaters (Passeriformes: Meliphagidae) have used dense taxon and nucleotide
sampling. The present study, which focuses on the systematically contentious genus
Lichenostomus, adds to this growing body of phylogenetic analyses of meliphagids. It
uses data from the two molecular markers that were common to two major recent
studies, the mitochondrial protein-coding gene ND2 and the nuclear intron Fib5. Based
on complete species-level sampling of Lichenostomus, we confirm the recent finding
that Lichenostomus is not monophyletic. We find that it comprises seven distinct
lineages interdispersed within the larger meliphagid assemblage. The two uniform,
unadorned species White-gaped Honeyeater L. unicolor and Yellow Honeyeater L.
flavus were recovered as sister species close to some other taxa currently placed in
Lichenostomus. The only two species of this group that are essentially mangrove
specialists, Varied Honeyeater L. versicolor and Mangrove Honeyeater L. fasciogularis
from north-eastern Australia, were not sisters but L. versicolor was sister to the pair
comprising L. fasciogularis and widespread Singing Honeyeater L. virescens. The two
New Guinean endemic species Obscure Honeyeater L. obscurus and Black-throated
Honeyeater L. subfrenatus are a sister pair to Yellow-faced Honeyeater L. chrysops
from eastern Australia. We suggest a revised generic nomenclature for the species
recently placed in Lichenostomus and erect one new genus-group name, Bolemoreus,
to include two species that have been previously grouped in Caligavis either as a genus

or subgenus within Lichenostomus.
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1. Introduction

Honeyeaters (Passeriformes: Meliphagidae) are among Australia’s most
characteristic passerine birds. Most diverse in continental Australia and New Guinea,
they are also prominent in major avian diversifications of Australasian island
archipelagos where they have reached high levels of endemism (Mayr 1939; Diamond
1977; Schodde and Mason 1999; Mayr and Diamond 2001). The meliphagid radiation
has been accompanied by significant morphological and phenotypic diversity, making
analysis of relationships within the family challenging and difficult to resolve (Christidis
and Schodde 1993; Driskell and Christidis 2004; Gardner et al. 2010).

Relationships among meliphagid genera were thoroughly explored by Driskell
and Christidis (2004) who used DNA sequence data derived from mitochondrial and
nuclear introns, and sampled 32 of the 42 recognized genera. They concluded that the
Australian and New Guinean “core” honeyeaters comprise four main clades each with
generic level radiations, spinebills Acanthorhynchus spp being sister to those four
clades. Low support for basal nodes precluded robust estimates of relationships among
the four clades, but their results were nevertheless taken as sufficient basis for
taxonomic and nomenclatural changes (Higgins et al. 2008). More recently, a multilocus
study of the superfamily Meliphagoidea to which the Meliphagidae belongs (Gardner et
al. 2010) examined relationships primarily but not solely among its member families.
Emerging from these recent works, however, has been the clear need to reassess the
systematic placement of the species currently comprising the genus Lichenostomus, the

monophyly of which is in doubt.
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Lichenostomus as currently construed (Schodde and Mason 1999; Christidis and
Boles 2008) is the second most speciose genus of honeyeaters after Myzomela. It has
18 species restricted to continental Australia, and three in New Guinea two of which are
endemic there. Australian species mostly inhabit arid and semi-arid woodlands and
mallee. Two species (L. versicolor, L. fasciogularis) are essentially mangrove specialists
in northeast Australia (Ford 1982, Schodde et al. 1979) whereas the two New Guinean
endemic species (L. subfrenatus, L. obscurus), inhabit lowland and montane rainforests.
Circumscription of Lichenostomus with respect to other meliphagid genera has been
challenging (Salomonsen 1967; Schodde 1975; McGill 1976; Keast 1981; 1985).
Recent work (Gardner et al. 2010) shows two key points: (1) that the species currently
placed in Lichenostomus are not each other’s closest relatives, i.e., it is not a
monophyletic group, and (2) that to clarify relationships among the 20 species, all of
them need to be analysed along with a broad sampling of other honeyeater genera. The
present study aims to do this and in so doing clarify the intrageneric delineations
suggested on morphological grounds by Schodde (1975) and Schodde and Mason
(1999). These are listed in Table 1 with English names for all species.

Driskell and Christidis (2004) and Gardner et al. (2010) included only one or eight
species of Lichenostomus, respectively, in their analyses, the latter study showing
clearly that Lichenostomus is not monophyletic, that L. leucotis is close to Entomyzon
and Melithreptus (see also Toon et al. 2010), and that L. melanops, L. flavus, and L.
unicolor are more deeply divergent from the “core” Lichenostomus clade (L. virescens,

L. flavescens, L. penicillatus, and L. ornatus).
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Comprehensive taxon sampling can improve overall confidence of phylogenetic
analyses, augmenting confidence in branching patterns as well as elucidating the
evolutionary history of complex adaptive radiations (Pollock et al. 2002; Zwickl and Hillis
2002). To explore relationships of this diverse and challenging group of honeyeaters
further, we have included sequence data from all extant species of Lichenostomus.
These data are then integrated within the higher-level phylogenetic framework of the
Meliphagidae, previously delineated by Driskell and Christidis (2004) and Gardner et al.
(2010). Our aims are to clarify relationships of species currently assigned to
Lichenostomus relative to Meliphaga (Christidis and Schodde 1993), the latter having
also been examined by Norman et al. (2007) and other genera (Gardner et al. 2010),
elucidate the phylogenetic placement of the two New Guinean endemic species (L.
subfrenatus and L. obscurus), and address the validity and relationships of previously
proposed subgroups within Lichenostomus (Schodde 1975; Christidis and Schodde
1993). Testing the monophyly of the species is outside our scope, which is focused on
genus-level groupings of taxa. We employ the two molecular markers that were
common to previous phylogenetic analyses of honeyeaters (Driskell and Christidis
2004; Norman et al. 2007; Gardner et al. 2010). We intend that our analysis is a

compromise between complete taxon sampling and linkage to existing datasets.

2. Materials and Methods
2.2. Taxon sampling and molecular markers
We sampled all of the 20 Lichenostomus species from vouchered specimens

collected by us and others (Table 1). We used the two molecular markers common to
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Driskell and Christidis (2004), Norman et al. (2007), and Gardner et al. (2010) —i.e., the
mtDNA protein-coding gene NADH dehydrogase subunit 2 (ND2) and the fifth intron of
the nuclear gene Beta-Fibrinogen (Fib5). Total genomic DNA was extracted from frozen
or alcohol-preserved tissue samples using standard Qiagen DNeasy™ tissue extraction
protocols (Qiagen, Valencia, CA). Target regions were amplified using the primers
L5215-H6313 (Sorenson et al., 1999) and Fib5 and Fib6 (Marini and Hackett 2002),
respectively. All PCR amplifications were performed in 25yl reactions using PureTag™
RTG PCR beads (GE Healthcare Bio-Sciences Corp.). Amplified double-stranded PCR
products were cleaned with ExoSAP-IT™ (GE Healthcare Bio-Sciences Corp.), and
visualized on high-melt agarose gels stained with ethidium bromide. Purified PCR
products were cycle-sequenced with ABI Prism BigDyeT™ v3.1 terminator chemistry,
using the same primers as for each PCR reaction. Cycle-sequenced products were
further purified using Sephadex™ spin columns (GE Healthcare Bio-Sciences Corp.),
and finally sequenced on an ABI 3130 automated sequencer. Sequences of both
strands of each gene were examined and aligned in Sequencher 4.8 (GeneCodes
Corp.). Heterozygous base calls in the Fib5 intron were coded as ambiguous according
to the International Union of Pure and Applied Chemistry (IUPAC) standards.
Phylogenetic methods

Published sequences of the ND2 (1041bp) and Fib5 (543bp aligned) markers
(Driskell and Christidis 2004; Norman et al. 2007) were downloaded from GenBank (see
Appendix). We added sequence data of the same two markers from the 20
Lichenostomus species resulting in a final data matrix of 116 contiguous sequences

assembled using ClustalX 2.0.7 (Thompson et al, 1997). Alignments were
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subsequently scrutinized by eye in Mesquite (Madison and Madison 2009). We
analyzed the concatenated dataset through model-based phylogenetic algorithms under
both Maximum Likelihood (ML) and Bayesian analyses (BA). ModelTest 3.7 (Posada
and Crandall 1998) was used to determine the most appropriate model of sequence
evolution via the Akaike Information Criterion (AIC). ML heuristic tree searches were
conducted through the program GARLI 1.0 (Zwickl 2008), under a single data partition
and the GTR+I+G model of sequence evolution, with parameter values estimated from
the data. Nodal support was assessed via 100 non-parametric bootstrap replicates. BA
was carried out within the Markov Chain Monte Carlo (MCMC) tree search algorithm
framework as implemented in the program MrBayes 3.1.2 (Ronquist and Huelsenbeck
2003). The concatenated data set was partitioned by gene and codon positions for the
nuclear intron and mitochondrial gene, respectively. We ran two independent runs of
10" generations, using the previously inferred model of sequence evolution. Search
parameters included adjustment of chain heating conditions (temp = 0.1) for improved
chain swap acceptance rates, and sampling every 100 generations. Evaluation of
stationarity and chain convergence was conducted by plotting posterior probabilities
from the two runs in the program Tracer (Rambaut and Drummond 2007). The resulting
pool of topologies sampled from the first 25% of generations was discarded as an initial
‘burn-in’, such that a total of 75,000 trees were finally summarized to produce a single
50% majority-rule consensus tree, rooted with the Striated Grasswren Amytornis
striatus. We also conducted separate BA on each of the two markers in order to
ascertain possible alternative topologies supported by each locus. Given the reported

polyphyly of Lichenostomus (Gardner et al. 2010), we proceeded to evaluate alternative
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topologies by enforcing constraints on ML GARLI searches. Site likelihood outputs from
the best constrained trees were used in subsequent test against our ML tree via the
Approximately Unbiased (AU) test, as implemented in the program CONSEL

(Shimodaira and Hasegawa 2001).

3. Results

After pooling our dataset with the two other studies, we obtained a matrix
containing 116 taxa and 1584 base pairs. The ND2 sequences (1041bp) had no
insertions, deletions, or anomalous stop-codons. Base composition was typical of avian
MIDNA (29%A, 34%C, 12%G, 25%T) consistent with true mitochondrial origin as
opposed to nuclear pseudogenes (Sorenson & Quinn 1998). The Fib5 intron (543bp
aligned) showed a relatively high presence of indels, making proper alignment crucial
for phylogenetic estimation. Given recent issues with phylogenetic importance assigned
to indel regions within the Meliphagidae (Driskell and Christidis 2004, Gardner et al.
2010), we decided to excise all indels from the intron dataset, and perform analyses on
the sequence data alone.

ML and BA analyses both produced congruent topologies, characterized by clear
definition of clades but a lack of resolution at the base of the trees (Figure1). Monophyly
of the Meliphagidae was strongly supported under both algorithms, but little could be
inferred in terms of basal branching patterns within the family. Several individual clades,
on the other hand, received moderate-to-strong support. Lichenostomus flavicollis and
L. leucotis are consistently sister species, and are together members of a clade

containing the honeyeater genera Entomyzon, Melithreptus, and Foulehaio (node 1,
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Figure 1). Lichenostomus frenatus and L. hindwoodi are similarly sister species and in
turn are sister to a clade comprising Australian Anthochaera (which now includes
Xanthomyza; Christidis and Boles 2008) and Acanthagenys (node 2, Figure 1).

Most of the remaining Lichenostomus species diversity clusters within a larger
clade, where two main subclades are evident (nodes 3 and 4, Figure 1). The first at
node 3 received low support for the internal branching patterns but nevertheless
comprised L. chrysops as sister to the New Guinean species pair L. obscurus + L.
subfrenatus, and L. cratitius as sister to L. melanops. L. flavus and L. unicolor were also
recovered as sister species with strong statistical support. Members of Melidectes,
Manorina and Purnella also descend from this node. A second, strongly supported
group at node 4 comprises only Lichenostomus honeyeaters. It has our Australian
sample of L. versicolor as sister to the pair of L. virescens and L. fasciogularis. The
same group also contains a strongly supported subclade comprising the remaining six
species of Lichenostomus. Whereas Lichenostomus is indeed highly paraphyletic with
respect to other meliphagids, the genus Meliphaga is monophyletic and receives strong
statistical support. Analyses conducted on the individual loci did present differences in
the placement of several species groups, mostly recovered by the Fib5 intron data.
These differences however, received low support values, were predominantly between
major honeyeater clades, and did not affect the placement of Lichenostomus sister
species as outlined.

Results from the Approximately Unbiased (AU) tests of four alternative constraint
topologies against the recovered ML tree were all statistically significant, except for one,

indicating that proposed alternative topologies were all worse hypotheses of
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relationships of Lichenostomus honeyeaters. Rejected constraint topologies included (1)
a monophyletic Lichenostomus, (2) reciprocal monophyly of Lichenostomus sister
species in clade 1 and 2 (Figure 1) and remainder of Lichenostomus, and (3) reciprocal
monophyly of Lichenostomus species in clade 3 and all other Lichenostomus species
groups. Further, the AU test could not reject the alternative scenario of a monophyletic
group of five species (L. frenatus, L. hindwoodi, L. subfrenatus, L. obscurus and L.
chrysops), indicating that this alternative topology is within the 95% confidence interval
of our most likely topology, which renders this grouping paraphyletic (Figure 1; see

Discussion).

4. Discussion

Our study is the first molecular systematics analysis of Lichenostomus
honeyeaters based on complete taxon sampling within the genus as recently construed
(e.g., Schodde and Mason 1999; Christidis and Boles 2008). Results from our
mitochondrial and nuclear DNA dataset mirror closely the findings of Gardner et al.
(2010). This similarity is expected, as both studies are based on the solid taxonomic
framework sampled by Driskell and Christidis (2004), and also on two molecular
markers in common between these studies (ND2 and Fib5). As such, the paraphyly of
Lichenostomus extends to seven different subgroups (Figure 1, 2). Support for these
arrangements, in the form of Bayesian posterior probabilities (BPP) and maximum
likelihood bootstrap support (MLBS) values, was generally good, and several species
pairs and even a larger “core” assemblage of Lichenostomus species were strongly

supported (Figure 1). With the need to dismantle Lichenostomus sensu lato into
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different genera now well-established, we develop below a new generic classification
(Table 1; Figure 2) that is a consensus of previous delineations of subgeneric groups
(Salomonsen 1967; Schodde 1975; Christidis and Schodde 1993; Schodde and Mason
1999), and well-supported clades recovered from molecular data (present study;
Gardner et al. 2010). Nomenclatural details used below in making genus-level decisions
are derived from Salomonsen (1967).

Strong support was recovered for the sister relationship of L. leucotis and L.
flavicollis, two species previously placed in the “Nesoptilotis” subgroup of
Lichenostomus honeyeaters (Schodde 1975; Christidis and Schodde 1993; Schodde
and Mason 1999; Higgins et al. 2008). Our dataset places these two sister species as
closely related to the Pacific Island endemic Wattled Honeyeater, Foulehaio
carunculatus, and the clade formed by all three with Entomyzon and Melithreptus
(Figure 1). This result indicates closer relationships, systematically and
biogeographically, among these mainland Australian and Pacific Island taxa, than has
been previously appreciated (see also Filardi and Moyle 2006; Moyle et al. 2009; Nyari
et al. 2009). We advocate use of Nesoptilotis Mathews, 1913 (type species N. flavicollis)
for these two species. Their geographical replacement of each other coupled with their
sister species relationship suggests a history of vicariance splitting an ancestral
member of the Bassian avifauna (Schodde and Calaby 1972) between Australian
mainland and Tasmanian landmasses, respectively.

Among the five species comprising the “Caligavis” subgroup (Iredale 1956;
Schodde 1975; Schodde and Mason 1999; Higgins et al. 2008), L. frenatus and L.

hindwoodi of eastern Australia are well-supported by our analyses as sister taxa, L.
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chrysops is similarly well-supported as the sister to L. obscurus and L. subfrenatus, but
all five do not form a monophyletic group (see also Christidis and Schodde 1993). Our
best tree similarly indicated non-monophyly of all five. In our analyses L. frenatus and L.
hindwoodi form a pair that is sister to a clade containing the wattlebirds, Anthochaera
and Spiny-cheeked Honeyeater, Acanthagenys rufogularis.

Doubt has surrounded the diagnosis and circumscription of Caligavis since
Iredale (1956) introduced it for the two New Guinean species, L. obscurus and L.
subfrenatus. He said its purpose was “to act as a lighthouse to warn of the dangers”
associated with those two species. This presumably alluded to difficulties associated
with their identification and uncertainty about their relationships. Later analyses (cited
above) included in Caligavis three further species L. obscurus, L. frenatus and L.
hindwoodi, the last of which was named by Longmore and Boles (1983). These studies
showed there is more phenotypic heterogeneity among the five species than there are
traits that can clearly and readily diagnose them as a group (Longmore and Boles 1983;
Schodde and Mason 1999; see Figure 3). Given that heterogeneity as well as molecular
indications of their non-monophyly, we restrict Caligavis Iredale, 1956 (type species C.
obscura) to the species to be then known as C. chrysops, C. subfrenata and C. obscura
(note female endings to epithets with Caligavis). No genus-group name is available only
for the L. frenatus-L. hindwoodi pair so whether recognized as a genus or subgenus a
new genus-group name is needed. We introduce the following genus-group name:

Family Meliphagidae

Genus Bolemoreus Nyari and Joseph, nomen novum

Type species: B. frenatus (Ramsay, 1875)
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Included species: B. frenatus, B. hindwoodi (Longmore and Boles, 1983)

Diagnosis: The need for recognition of Bolemoreus has arisen from molecular
data reported herein. Phenotypic traits diagnosing hindwoodi and frenatus apart from
the species with which they have been most closely associated and for which we now
advocate a restricted circumscription of Caligavis (obscura, subfrenata and chrysops)
are difficult to discern, apart, perhaps, from reduced or absent subocular yellow
plumage and distinctive vocalizations. The phenotypic diversity, which we hypothesize
shows complex patterns of derived traits and retention and loss of ancestral traits
especially in the pattern of marking about the heads of these five species, has been
reviewed by Longmore and Boles (1983) and Schodde and Mason (1999).

Distribution: The two species are confined to the tropical and subtropical
rainforests either side of the Burdekin Gap (Keast 1961; Galbraith 1969) in central
eastern and north-eastern Australia.

Etymology: Bolemoreus is a Latinized name of masculine gender that
commemorates the work of Walter E. Boles and N. Wayne Longmore. Together and
individually, they have contributed enormously to the development of ornithology in
Australia, especially systematic ornithology. Of specific relevance here, however, is their
role in the discovery and description of the Eungella Honeyeater B. hindwoodi, which to
date was the most recently discovered and described Australian bird species
(Longmore and Boles 1983).

Our Clade 3 includes two strongly supported pairs of sister taxa, L. flavus and L.
unicolor, and L. cratitius and L. melanops. The former pair comprises the “Stomiopera”

subgroup (Schodde 1975; Schodde and Mason 1999; Christidis and Schodde 1993;
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Higgins et al. 2008). They are the most uniformly coloured of Lichenostomus
honeyeaters, yellow or grey, respectively, and occur in tropical eucalypt woodlands of
monsoonal Australia in the Torresian and Irian biogeographical provinces (Schodde and
Calaby 1972; Schodde 2006; Bowman et al. 2010). We recognize Stomiopera
Reichenbach, 1852 (type species S. unicolor) for this pair. The L. cratitius-L. melanops
pair, which inhabit Australia’s southern mallee and south-eastern temperate eucalypt
woodlands and forest-heaths, together were part of the “Lichenostomus” subgroup
(sensu Schodde 1975; Christidis and Schodde 1993; Schodde and Mason 1999). We
restrict Lichenostomus Cabanis, 1851 to L. cratitius (type species) and L. melanops.
Because the pair L. cratitius-L. melanops is not the sister to the pair L. flavus-L.
unicolor, they should not be combined generically (Figure 2).

The remaining species currently in Lichenostomus form a well-supported group
in which the “Gavicalis” and “Ptilotula” subgroups are sister groups (Schodde and
Mason 1999). The “Gavicalis” subgroup unites L. versicolor as sister to L. virescens and
L. fasciogularis. Most notably, the two most mangrove-restricted species of the group
under study from the Australian east coast, L. fasciogularis and L. versicolor (Ford
1982; Higgins et al. 2001, 2008) are not sister species in our results. Instead, L.
versicolor is sister to the pair comprising the widespread L. virescens and L.
fasciogularis. This suggests that the widespread species L. virescens might have been
derived from eastern Australian mangroves. Lastly, the “Ptilotula” subgroup contains L.
ornatus, L. penicillatus, L. plumulus, L. keartlandi, L. fuscus and L. flavescens. All of
these taxa occupy a variety of open forests and semi-arid habitats throughout mainland

Australia. Lichenostomus can no longer apply to these nine species (as argued above).
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Ptilotula Mathews, 1912 (type species Pt. flavescens) and Gavicalis Schodde and
Mason, 1999 (type species G. virescens) are available, however. Paraptilotis Mathews,
1912 (type species Pa. fusca) was described on the same page of the same work as
Ptilotula and so could apply to that subgroup. We advocate use of Ptilotula for the
species recently known as L. ornatus, L. penicillatus, L. plumulus, L. keartlandi, L.
fuscus and L. flavescens because it has been in recent use (Schodde and Mason
1999). Nonetheless, all nine species are monophyletic so the older generic name,
Ptilotula, could validly apply to them all.

In contrast to the need to dismantle Lichenostomus, data from almost the entire
Meliphaga radiation clearly suggests its monophyly. Although our study lacks the
phylogenetic power to infer well-supported nodes in Meliphaga at various levels
throughout the topology, it nevertheless makes a continuing case for increased
individual, population and taxon sampling in phylogenetic studies of complex radiations.
Judging from the branch lengths of our resulting tree, we consider it clear that many
honeyeater species have evolved relatively rapidly. This leads to short internodes and
long terminal branches, prone to accumulating larger amounts of evolutionary changes
in time. We would thus stress the need of studies that test the monophyly of taxonomic
species of all meliphagids. At the same time it is of utmost importance to maximize the
contribution of phylogenetic signal from every taxon included in the analysis by
sampling many loci. In future studies this approach should lead to a more refined
understanding image of relationships within this iconic group of largely Australo-Papuan

birds.
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Figure 1: Phylogenetic relationships of Lichenostomus honeyeaters derived from
Bayesian analysis of the mitochondrial protein-coding gene ND2 and the nuclear intron
Fib5. Outgroup taxa included members of the Pardalotidae and Maluridae (following
Driskell and Christidis 2004), rooted with the Striated Grasswren Amytornis striatus. The
20 species of Lichenostomus contributed by the present study are indicated in bold text
style. Taxa in regular font style correspond to samples from the Driskell and Christidis
(2004) study, while the Meliphaga species shown in grey regular font are from Norman
et al. (2007). As both search algorithms (BA and ML) produced concordant topologies,
we summarize nodal support derived through Bayesian posterior probabilities (BPP)
and maximum likelihood bootstrap support (MLBS) by differently shaded circles as
follows: black circles indicate 100% BPP and over 95% MLBS, grey circles correspond
to above 95% BPP and over 75% MLBS, while white circles show nodes recovered only
with more than 75% BPP. The four main Lichenostomus groups are flagged by

numbered boxes at their nodes.

Figure 2: Simplified, diagrammatic overview of Figure 1 to summarize the generic
level dismantlement of Lichenostomus proposed here. For graphical convenience,
branch lengths have no phylogenetic significance, and we have illustrated branches

leading to other meliphagid clades as triangles (see Figure 1 for details).

Figure 3: Photograph of specimens of five species formerly placed in

Lichenostomus and here placed in Caligavis and in Bolemoreus gen. nov. From left to

right with abbreviations of generic names proposed: B. hindwoodi (ANWC 41405), B.
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frenatus (ANWC 39613), C. obscura (ANWC 1425), C. subfrenata (ANWC 4543) and C.

chrysops (ANWC 40727).
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Figure 2

<]

_H_E Nesoptliofis: N. leucolis, N. flavicollis

Bolemoreus: B. hindwoodi, B. frenatis
EL __ Caligavis: C. obscura,

C. subfrenata, C. chrysops

Lichenostomus: L. cratitius,
L. melanops

1
q

Stomlopera: S. flavus, S. unicalor

Gavicalis: G. versicolor, G. virescens,
G. fasciogularis

Ptifotufa: P, flavescens, P omalus,

P. peniciliatus, P. plismulus,
P, fuscus, P keartlandi
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Chapter 3
Multilocus analysis of the Gerygone warblers (Aves: Acanthizidae):

phylogenetic relationships, taxonomy and their evolution into the

mangroves
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Abstract

The Australo-Papuan warblers (Passeriformes: Acanthizidae) have been the subject of
recent molecular phylogenetic analyses. Taxon sampling for one member genus
Gerygone, however, has been incomplete. This has limited our ability to draw
meaningful conclusions about the evolutionary history and historical biogeography of
Gerygone. Here we report on a phylogenetic analysis of Gerygone based on
comprehensive taxon sampling and a multilocus dataset of thirteen loci spread across
the avian genome (eleven nuclear and two mitochondrial loci). Since Gerygone includes
three species restricted to Australia’s coastal mangrove forests, we sought to
understand the biogeography of their evolution in that ecosystem. Analyses of individual
loci, as well as of a concatenated dataset drawn from previous molecular studies
indicates that the genus as currently defined is not monophyletic, and that the Grey
Gerygone (G. cinerea) from New Guinea is a basal member of the genus Acanthiza.
Evolution into mangrove ecosystems occurred repeatedly, in three non-overlapping time
frames. Our results highlight recurrent difficulties of recovering strongly supported
species trees from multilocus datasets, particularly in groups that have undergone rapid

radiations.
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1. Introduction

Among the members of the Australo-Papuan passerine family Acanthizidae, the
genus Gerygone is the most geographically widespread. Its 19 currently recognized
member species occur in Australia, New Guinea, New Zealand, Pacific Islands, and
Indonesia as well as on many offshore islands. One species, G. sulphurea, is found
north of Wallace’s Line from Thailand to the Philippines, and G. insularis of Lord Howe
Island became extinct following predation by introduced rats in the early 19" century
(Ford 1986). All Gerygone are small, relatively drab, and forage arboreally. Habitats
range from closed canopy moist forests to open arid zone woodlands, and at least three
species (G. magnirostris, G. tenebrosa, G. levigaster) occur predominantly in coastal
mangrove forests (Ford 1982, 1986, Schodde and Mason 1999, Christidis and Boles
2008). Given the diverse biogeographic and ecological patterns exemplified by
gerygones — a mainly Australo-Papuan clade with several members on offshore islands,
and several mangrove forest specialists — they rank among the groups best-suited for
elucidating the origin of Australia’s rich mangrove avifauna (Ford 1982, Schodde et al.
1979, Schodde 2006).

Despite Ford’s (1986) pioneering attempt to analyze Gerygone phylogenetically,
the birds’ conservative morphology has inhibited development of a comprehensive
phylogenetic framework. This in turn has complicated interpretations of biogeographic
patterns. A recent phylogenetic study of the largest radiation of Australasian songbirds,
the Meliphagoidea (Gardner et al. 2010), included the first molecular analysis of
acanthizids including Gerygone. The eight species of Gerygone from Australia and New

Guinea comprised a monophyletic group, which, together with the monotypic Fernwren
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Oreoscopus gutturalis, was basal to all other acanthizids. Support for the monophyly of
the eight species was high but relationships within the genus were not well resolved and
there were only a few well-supported clades.

Several molecular phylogenetic studies have now documented the importance of
island radiations in diversification of continental avifaunas (Filardi and Moyle 2006,
Moyle et al. 2009, Nyari et al. 2009). They have led to the conclusion that islands are
not necessarily evolutionary dead ends, but rather that they are important sources of
biological diversity for mainland groups through back-colonization events. By analogy,
the role of Australo-Papua’s mangrove forests as ecological islands for closed-canopy-
dwelling birds during Australia’s long history of aridification (Byrne et al. 2008) might
also be tested. This could assess whether several avian families evolved and speciated
solely within mangrove forests (Ford 1982). While it is currently hypothesized that the
rich Australo-Papuan mangrove avifauna has evolved mainly from continental sources
(Ford 1982, Schodde 2006, Loynes et al. 2009, Nyari and Joseph in press), examples
of contributions of novel mangrove-restricted species from island radiations have also
been documented (Nyari et al. 2009).

Our use of multilocus datasets here reflects two now well-established
observations: that individual gene trees can differ from the true species tree, and that
these datasets offer richer windows into the evolutionary history of lineages than studies
based on mitochondrial DNA (mtDNA) (Edwards et al. 2005, Jennings and Edwards
2005, Hackett et al. 2008, Loynes et al. 2009, Nyari et al. 2009, Christidis et al. 2010, Li
et al. 2010, Toon et al. 2010, Flérez-Rodriguez et al. 2011). Gene tree — species tree

discordances can be due to stochastic sorting of ancestral polymorphisms, or varying
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degrees of gene flow following lineage-splitting events at different depths within the
phylogenetic history of a group of organisms (Degnan and Rosenberg 2006, Liu and
Edwards 2009). All of these processes call for increased complexity and thoroughness
of model-based phylogenetic estimations from multilocus datasets. These range from
individual gene tree analysis, concatenation and partitioning of an entire multilocus
dataset, to Bayesian Estimation of Species Tree methods, which estimate the joint
posterior distribution of gene trees for each locus and use the resulting joint posterior
distribution of gene trees to approximate the Bayesian posterior distribution of the
species tree based on coalescent theory (Liu and Pearl 2007, Edwards et al. 2007). The
implications of these methodological advances are far reaching. Anomalous gene trees
(Degnan and Rosenberg 2006) are known to be quite common, particularly in groups
that have seen rapid bursts of speciation (Moyle et al. 2009).

Accordingly, we here use comprehensive taxon sampling and an analysis of
sequence data derived from 13 loci spread across the avian nuclear and mitochondrial
genomes to test the (1) monophyly of the acanthizid genus Gerygone, (2) monophyly of
the set of mangrove-restricted species (G. magnirostris, G. tenebrosa, and G.
levigaster), and (3) biogeographic influence of island species and timing of speciation

events tied to mangrove forests.

2. Materials and methods
2.1.  Taxon sampling and laboratory protocols
Our ingroup of 16 Gerygone species comprised single samples per taxon and so

was not designed to test species limits, which mostly are uncontroversial. Unsampled
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taxa included extinct G. insularis and extant populations of G. dorsalis and G.
albofrontata from the Lesser Sundas and Chatham Islands, respectively. Outgroup taxa
were chosen based on results of previous higher-level phylogenetic studies of
passerines and included diverse acanthizids: Oreoscopus gutturalis (Fernwren),
Smicrornis brevirostris (Weebill), and Acanthiza apicalis (Inland Thornbill).

Genomic DNA was extracted from frozen or ethanol preserved tissue samples
from vouchered specimens collected by us and researchers from other institutions
(Table 1) via the standard Qiagen DNeasy™ tissue extraction protocols (Qiagen,
Valencia, CA). We amplified and sequenced 13 distinct loci distributed across the avian
nuclear and mitochondrial genomes using a published set of primers and protocols
(Table 2). A detailed list of GenBank accession numbers for all loci and species is
presented in Table 3. All PCR amplifications were performed in 25pul reactions using
PureTag™ RTG PCR beads (GE Healthcare Bio-Sciences Corp.). Amplified double-
stranded PCR products were cleaned with ExoSAP-IT™ (GE Healthcare Bio-Sciences
Corp.), and visualized on high-melt agarose gels stained with ethidium bromide. Purified
PCR products were subsequently cycle-sequenced with ABI Prism BigDyeT™ v3.1
terminator chemistry using the same primers as for each PCR reaction. Cycle-
sequenced products were further purified using Sephadex™ spin columns (GE
Healthcare Bio-Sciences Corp.), and finally sequenced on an ABI 3130 automated
sequencer. Sequences of both strands of each gene were examined and aligned in
Sequencher 4.8 (GeneCodes Corp.). We did not attempt to reconcile the allelic phase of
heterozygous base calls, but rather coded them as ambiguous according to the

International Union of Pure and Applied Chemistry (IUPAC) standards.
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2.2. Data matrix construction and phylogenetic analyses

Complementary gene sequence contigs derived from all 13 loci for all taxa were
aligned using ClustalX 2.0.7 (Thompson et al., 1997), and scrutinized further by eye in
Mesquite 2.74 (Madison and Madison 2010). Separate data matrices of 19 taxa (16
ingroup and 3 outgroup) were assembled for each of the 11 nuclear loci, while the two
mitochondrial genes (ND2 and ND3) were combined in a single dataset. Subsequent
analyses examined individual loci and a partitioned dataset through model-based
phylogenetic algorithms under both Maximum Likelihood (ML) and Bayesian analysis
(BA) approaches. ModelTest 3.7 (Posada and Crandall 1998) was used to determine
the most appropriate model of sequence evolution via the Akaike Information Criterion
(AIC).

ML heuristic tree searches were conducted using the program GARLI 1.0 (Zwickl
2008), under a single data partition and the GTR+I+G model of sequence evolution,
with parameter values estimated from the data. Nodal support was assessed via 1000
non-parametric bootstrap replicates. BA was carried out within the Markov Chain Monte
Carlo (MCMC) tree search algorithm framework as implemented in the program
MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003). The concatenated data set was
partitioned by each locus, and by codon position for the mitochondrial genes. We ran
two independent runs of 10’ generations, using the previously inferred model of
sequence evolution specified for each locus. Search parameters included unlinking of
all partition-specific rates and models of evolution, adjustment of chain heating
conditions (temp = 0.1 — 0.05) for improved chain swap acceptance rates, and sampling

every 100 generations. Evaluation of stationarity and chain convergence was conducted
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by plotting posterior probabilities from the two runs in the program Tracer (Rambaut and
Drummond 2007). The resulting pool of topologies sampled from the first 30% of
generations was discarded as an initial ‘burn-in’, such that 70,000 trees were finally
summarized to produce a single 50% majority-rule consensus tree, rooted with the
Fernwren Oreoscopus gutturalis. Lastly, we proceeded to evaluate the monophyly of the
3 mangrove-restricted gerygones by enforcing their monophyly as a constraint on ML
GARLI searches. Site likelihood outputs from the best constrained trees were used in
subsequent test against our ML tree via the Approximately Unbiased (AU) test, as
implemented in the program CONSEL (Shimodaira and Hasegawa 2001).

Additionally, a species tree was estimated from the joint distribution of individual
gene trees via the program BEST 1.6 (Liu et al. 2007, 2008). The dataset was again
partitioned by locus, each with an appropriately specified model of evolution. We
assigned default settings for the parameter values of the Bayesian search, as
recommended by the authors: flat priors, inverse gamma distribution with values of a =
3 and B = 0.003 for priors of population size, and a uniform distribution with bounds of
0.5 and 1.5 for priors of the mutation rates. Two runs with four separate chains (one
heated and three cold) were run simultaneously for 5 x 10" generations, sampling every
1000 generations. A consensus topology from the two separate runs was obtained after
discarding an initial burn-in of 30% of the sampled topologies.

2.3. Phylogenetic affinities and divergence timing of diversification of G. cinerea

Initial examination of the data revealed that sequences of the Grey Geryone, G.

cinerea, from the highlands of New Guinea were substantially distinct from other

Gerygone species. This prompted us to consider further testing of the phylogenetic
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placement of G. cinerea within the Meliphagoidea in which Gerygone itself is
embedded. Gardner et al.’s (2010) study of Meliphagoidea shared three markers with
our dataset. Accordingly, we assembled a separate data matrix from published and
newly derived sequences for nuclear exons of RAG1 and RAG2 and the mtDNA gene
ND2 to examine relationships of G. cinerea within the Acanthizidae specifically and
Melipgaoidea more generally (Appendix 1).

We performed a Bayesian analysis using the program MrBayes 3.1.2 as
described above, partitioning our data by gene and by codon for the two nuclear and the
mitochondrial genes, respectively. This larger dataset was also used to estimate relative
timing events of cladogenesis using the program BEAST 1.4.8 (Drummond and
Rambaut, 2007) by producing an ultrametric tree with 95% confidence intervals for node
heights. Given the lack of reliable fossil calibration points for acanthizids, we opted not
to place dates on the ultrametric tree, but rather focus on relative differences in the
sequence of splitting events. A topological constraint in the form of the Bayesian
consensus tree was placed onto the MCMC run, such that rates were allowed to vary
only along this given scenario. A relaxed clock model (Drummond et al., 2006) with
uncorrelated rates drawn from a lognormal distribution was selected, and two MCMC
runs of 10’ generations with parameters logged every 100 generations. The first 40% of
generations of each run were discarded as burn-in after inspection of likelihood scores
and parameters for stationarity. The final ultrametric tree was generated from the

combined tree files of the two MCMC runs.

3. Results
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3.1.  Phylogenetic analyses of gene trees and species tree reconstruction

Alignment of sequence data derived from all thirteen loci was straightforward,
resulting in a total of 8124 base pairs (bp). Overall sequence length ranged from 279 bp
to 1350 bp for nuclear loci, whereas the two mitochondrial genes were 1041 bp and 351
bp in length (Table 2). Among the nuclear loci, Mame AL-23, MUSK, and TGFb2 were
the most variable; however, Mame AL-16, CDC132 and FibS had the highest
percentage of informative sites (Table 2). The two mtDNA protein-coding genes ND2
and ND3 had no insertions, deletions, or anomalous stop-codons. Base composition
was typical of avian mtDNA (Table 2), consistent with true mitochondrial origin as
opposed to nuclear pseudogenes (Sorenson & Quinn 1998). Information content in the
two mitochondrial loci was significantly higher than in the nuclear loci: out of the total
number of variable sites, ND2 and ND3 had over 70% and 64% parsimony informative
sites, respectively (Table 2).

Resolution of individual gene trees varied at diverse nodes throughout the
topology, most loci showing consistent patterns of sister species relationships (Figure
1). G3PDH was the least informative locus and also the shortest sequence, but all other
nuclear loci showed at least four strongly supported nodes (Bayesian posterior
probabilities and ML bootstrap support; Figure 1). The combined mitochondrial dataset
(ND2 and ND3) featured the best-resolved topology, and all but two nodes had the
highest possible support. Analysis of the combined datased under a single partition and
separated by gene and codon region for the two mtDNA protein-coding genes
recovered similar topologies and statistical support as our species tree estimate (Figure

2, see below). Nodal support was strong throughout the concatenated and partitioned
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datasets: only some terminal nodes received relatively low statistical support (Figure 2).
Compared to the species tree estimate, the concatenated and partitioned datasets
differed in placement of G. magnirostris relative to other mangrove species. Further
differences are also evident along subsequent nodes, although the three different data
analysis schemes agreed on the sister relationship of G. igata and G. modesta.

G. cinerea was consistently recovered by all loci as not closely related to other
ingroup species rendering Gerygone polyphyletic (Figure 1). Analysis of our 13-locus
dataset placed this species with the three outgroup members, specifically with
Acanthiza apicalis.

All gene trees indicated clearly that the three mangrove restricted species G.
magnirostris, G. tenebrosa, and G. levigaster, do not form a monophyletic group. Strong
support was evident in all gene trees for two sister species relationships, one between
G. chrysogaster and G. mouki, and the other between G. igata and G. modesta. The
mtDNA dataset further indicated strong support for sister species relationships between
G. chloronota and G. palpebrosa (also supported by Fib5), between G. inornata and G.
olivacea (also supported by MUSK, HMG2, AL16), and between G. fusca and G.
levigaster (also supported by RAG2, TGFb2, HMG2, CDC132).

The species tree inferred from all 13 loci mirrored closely the consensus among
the underlying gene trees and the analysis of the concatenated and partitioned dataset.
Again, Gerygone was not monophyletic and the sister species relationships of G.
chrysogaster/G. mouki, and G. igata/G. modesta were strongly supported (Figure 2).
Similarly, the three mangrove specialists were not a monophyletic group, and their

constrained monophyly constitutes a significantly worse likelihood under the AU test.
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Most other nodes in the species tree received low-to-moderate support, except that
uniting G. chloronota, G. inornata and G. olivacea.
3.2.  Phylogenetic affinities of G.cinerea and timing of speciation events

Based on the broader, three gene dataset, we addressed the phylogenetic
placement of G. cinerea within acanthizids generally. The dataset comprised 3429 bp
from RAG1 (1350 bp), RAG2 (1038 bp) and ND2 (1041 bp) (Appendix 1). Results
clearly supported our previous phylogenetic inferences based on the 13-locus dataset,
where G. cinerea clusters not with other gerygones but with Acanthiza, the second
largest group of acanthizid warblers. Placement of G. cinerea within Acanthiza received
very strong nodal support (Figure 3): G. cinerea is relatively basal within Acanthiza
where it is sister to A. lineata and A. nana, both of which are endemic to Australia.

The same extended dataset was used to infer a sequence of splitting events
under a relaxed-clock model coupled with an enforced topological constraint from the
Bayesian consensus tree. The resulting ultrametric tree illustrates important variation in
the 95% confidence intervals for node heights (Figure 3). As such, we can clearly
distinguish differences in evolutionary rates between the two prominent acanthizid
groups, Gerygone and Acanthiza, the former clearly having radiated later, and with
increased speciation rate, whereas the clade containing Acanthiza, Sericornis, and
other Australo-Papuan acanthizids is relatively older and has had slower rates of
diversification. Due to the unavailability of a calibration point in this analysis, we report
estimates of mitochondrial sequence divergence to be used as rough guidelines in the
estimation of divergence times. Based on uncorrected sequence divergences of the two

mitochondrial genes, the genetically most distinct gerygones (excluding G. cinerea)
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were G. palpebrosa and G. mouki at 13.5%. Highest divergences values within the
clade containing the three mangrove-bound species (Figure 3) were at 8.1% between
G. magnirostris and G. igata. The three mangrove endemic species differed by 7.7% (G.
magnirostris vs. G. tenebrosa), 7.3% (G. magnirostris vs. G. levigaster), and 4.0% (G.

levigaster and G. tenebrosa).

4. Discussion
4.1.  Multilocus phylogenetic analysis and taxonomy of gerygones

Our study represents the first comprehensive phylogenetic analysis of the
acanthizid warbler genus Gerygone, using a broadly sampled, multilocus dataset. While
multilocus phylogenetic analyses have been successfully employed throughout a
diverse array of avian groups (McGuire et al. 2007, Pasquet et al. 2007, Wright et al.
2008, Fregin et al. 2009, Loynes et al. 2009, Parra et al. 2009), the present study is
among the few that make use of high numbers of unlinked loci spread across the avian
nuclear and mitochondrial genomes (Hackett et al. 2008, Lovette et al. 2010, Toon et al.
2010, Floérez-Rodriguez et al. 2011). Moreover, we directed our study towards a group
of diverse evolutionary and ecological histories, to understand better the implications of
individual gene histories and their influence on species tree estimation. Overall, several
common phylogenetic patterns emerged from the individual gene trees and their
differences also highlight complexity of the group’s evolutionary history. The Bayesian
estimate of species tree relationships and the Bayesian analyses of the concatenated
and partitioned dataset resulted in very similar topologies. Below, we highlight detail of

some of these commonalities and differences among analytical methods.
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Ford (1986) reviewed the taxonomy of Gerygone based on numerical analysis of
morphological characters. He noted inherent difficulties in reconstructing relationships
based solely upon morphology, but nevertheless derived important hypotheses
regarding sister species relationships of gerygones, some of which were corroborated
here with the aid of multilocus data. For example, two relationships suggested by Ford,
that of G. inornata of the Lesser Sundas being closely related to Australo-Papuan G.
olivacea, and Australian G. fusca being closely related to the mangrove forest endemic
G. levigaster, were affirmed here in the species tree, three of the gene trees, and the
mtDNA tree (Figure 1 and 2). Further, Ford’s hypothesis that G. mouki is one of the
basal members on the Gerygone tree, is again in agreement with our species tree,
combined gene trees, four different gene trees and the mitochondrial tree (Figure 1 and
2).

The most novel relationship concerning Gerygone that we recovered is the
exclusion from Gerygone of G. cinerea, which clearly belongs in Acanthiza (Figure 2
and 3). Based on plumage and biogeography, Ford (1986) suggested that G. cinerea
was closely related to G. chloronota. We conclude that G. cinerea should be assigned
to Acanthiza Vigors and Horsfield, 1827, and so be known as A. cinerea (Salvadori,
1876).

Other novel relationships within Gerygone include the eastern Australian
endemic G. mouki as sister to G. chrysogaster from the lowlands of New Guinea. This
relationship was supported almost unequivocally in our different data analyses (Figures
1, 2, and 3). G. chloronota grouped with G. inornata and G. olivacea, although support

for this arrangement came only from the species tree (Figure 2). However, individual
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gene trees consistently placed two of these three taxa in close phylogenetic proximity
(Figure 1). Another unequivocally supported sister species relationship was between the
endemics of New Zealand and Norfolk Island, G. igata and G. modesta, respectively.
Ford (1986) had alternatively concluded that G. modesta and G. igata are not sister taxa
and that the former is possibly more closely affiliated to mangrove-restricted G.
levigaster. Nonetheless, as in our analyses, he had repeatedly found G. levigaster to be
close to widespread Australian G. fusca.

Several Gerygone species were characterized by weakly-supported phylogenetic
placements in the species tree analysis. An example is G. palpebrosa, which was
recovered from a deeper node in the topology of our species tree, as well as our
concatenated and partitioned 13-locus dataset, where it received high nodal support
(Figure 2). Individual gene trees did not show particularly strong support for placement
of this taxon, while the ntDNA gene tree identified it as sister to G. chloronota. Similarly,
our separate gene tree analysis indicated that the northernmost species, G. sulphurea,
is also characterized by labile phylogenetic placement, migrating from deeper to more
shallow nodes throughout the Gerygone clade between analyses (Figure 1). The
species tree together with the combined and partitioned phylogenetic analyses
nevertheless placed G. sulphurea with moderate to strong support at the node
preceding the clade containing all three mangrove restricted Gerygone species (Figure
2). The mtDNA gene tree, on the other hand, placed G. sulphurea as sister to one of the
mangrove endemics, G. magnirostris.

The New Guinean highland endemic, G. ruficollis, is another species with

uncertain evolutionary history. The species tree places it with low support as sister to
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the G. fuscalG. levigaster pair (Figure 2), but the concatenated and partitioned dataset
analysis instead strongly support it as sister to G. igata/G. modesta (Figure 2).
Interestingly, our mtDNA dataset includes G. ruficollis as sister to a clade containing
both of these other sister species pairs.

4.2. Biogeographic patterns and the evolution of mangrove-restricted gerygones

Complex evolutionary and biogeographic scenarios in the history of Gerygone
are clearly apparent from our results. Consensus was achieved in identifying G.
chrysogaster and G. mouki as basal to the rest of Gerygone. This is consistent with an
Australo-Papuan center of diversity for the group. The geographic distributions of these
two taxa correspond to Australo-Papuan tropical lowland (lrian) and subtropical-
montane rainforest (Tumbunan) avifaunas (Schodde and Calaby 1972, Schodde and
Mason 1999, Schodde 2006).

The clade formed by G. chloronota as sister to G. inornata and G. olivacea,
includes species from northwest Australia and New Guinea, the Lesser Sundas,
northeast Australia and southeast New Guinea, respectively. The sister relationship
between insular G. inornata and continental G. olivacea illustrates the broader
geographic extent of the Australo-Papuan Torresian influence within this clade
(Schodde 2006). The only Gerygone species extending beyond Wallace’'s Line, G.
Sulphurea, has radiated well into the Malay Peninsula, Greater Sundas, and the
Philippines, where it occupies forests as well as coastal mangroves. The phylogenetic
placement of this wide-ranging species amidst different clades of mostly Australo-

Papuan gerygones aptly illustrates the capability of rapid dispersal and speciation within
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this group of acanthizid warblers, in direct contrast with the other constituent members
of the family (Figure 3).

The remaining species of Gerygone are from continental Australian, New
Guinea, and Pacific Islands (Figure 2). Prominent in this group are the three mangrove
endemic species G. magnirostris, G. tenebrosa, and G. levigaster. Although our data do
not recover a single unequivocal pattern of relationships among these species, there is
no support for them representing a single radiation into mangrove ecosystems. Rather,
they appear to represent three independent, repeated colonizations of mangroves from
continental or island sister species. We were unable to infer with certainty which species
arrived first in Australia’s mangroves, as the species tree placed G. tenebrosa as
earliest to enter mangroves (Figure 2), while the concatenated and partitioned datasets,
as well as the extended taxon sampling dataset supported G. magnirostris as the
earliest mangrove gerygone (Figure 2 and 3). G. levigaster, the most recently arrived
mangrove gerygone, currently occupies coastal mangrove forests mostly east of the
range of G. tenebrosa; these two species overlap only along a short stretch of the
Kimberley coast (Ford 1982). Conversely, the broad sympatry of G. magnirostris and G.
levigaster along the northern and north-eastern Australian seaboard coasts (Ford 1982,
Schodde and Mason 1999, Schodde 2006) is probably due to some degree of niche
partitioning. G. magnirostris, for example, also explores resources in nearby
swamplands and riparian forests besides its main, mangrove-preferred habitat (Ford
1982, Johnstone 1990, Noske 1996).

As is clearly evident from our data, establishing a definite sequence of speciation

events tied to mangroves remains problematic, even with the contribution of multilocus
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phylogenetic analysis. This is most likely due to the comparatively recent evolution of
this clade of acanthizids (Figure 3), but can be also due to potential hybridizations
between taxa such as G. magnirostris and G. tenebrosa (Johnstone 1975, Ford 1983),
further complicating species tree inferences. Concerning the temporal framework of
evolution in Gerygone, it is clear that the sequence of speciation events within this final
clade occurred relatively quickly, potentially predating the Pleistocene based solely on
uncorrected sequence divergences and a mitochondrial clock of 2% per m.y. This is
supported by the lack of consensus in phylogenetic resolution of all the relevant taxa
(Figure 2 and 3). Thus, all three methods we have used had difficulties in discerning a
common pattern. Variable placements of the Solomon Islands endemic G. flavolateralis,
the New Guinean highland endemic G. ruficollis, and the widespread interior Australian
endemic G. fusca all illustrate this. Multilocus phylogenetic analysis has seen a surge of
attention in recent years, although difficulties associated with obtaining well-supported
phylogenetic topologies from such a large and diverse array of loci can lead to a sense
of low return given the considerable effort required for generating such datasets.
Differences in topologies and support can derive from difficulties in proper model
parameterization of such large datasets, further complicated by rapid rates of speciation
over broad geographic scales and ecological niches. We are, however, certain that such
repeated efforts in generating well-sampled datasets for non-model organisms will lead
to an increased understanding of their intricate evolutionary histories, highlighting the

need for further research towards novel approaches in data collection and analysis.

5. Conclusions
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Employing a diverse array of molecular markers to elucidate the evolutionary
history of gerygones still has proven difficult in recovering an overall well-supported
phylogenetic hypothesis. Mangrove-bound gerygones were shown to have evolved
repeatedly and not as a single evolutionary lineage, lending further support for a case-
by case exploration of the rich Australo-Papuan mangrove avifauna. Further
phylogeographic analysis of relationships among the three gerygones tied to coastal
mangroves will provide additional insights into the levels of intraspecific genetic markup,
influence of geographic barriers, as well as putative hybridization events. Contrasting
these molecular findings with morphological data based on plumage, song and behavior

will broaden our understanding of historical biogeography within this group.
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Figure 1: Phylogenetic estimates of gene trees obtained via Bayesian analysis of

individual loci. Locus acronyms follow Table 2 and references therein. Strong support in
form of Bayesian posterior probabilities of >95% are indicated by dark circles at nodes.
The mitochondrial protein-coding genes ND2 and ND3 have been combined in a single

partition, indicated as “mtDNA”. Mangrove specialists are highlighted in green.

Figure 2: Phylogenetic analysis of the combined 13-locus dataset. All topologies
are rooted with the Fernwren Oreoscopus gutturalis, not shown for brevity of branch
length. Support values in form of Bayesian posterior probabilities are given at each
node, with dark circles emphasizing strong support (>95%). LEFT panel illustrates the
species tree obtained under the BEST algorithm. CENTER panel depicts phylogenetic
hypothesis based on the Bayesian analysis of the entire dataset under a single,
concatenated partition. RIGHT panel represents topology derived from a Bayesian
analysis of the entire dataset partitioned by locus and codon position for the two

mitochondrial protein-coding genes. Mangrove specialists are highlighted in green.

Figure 3: Phylogenetic hypothesis of relationships within the broader family
Acanthizidae, highlighting the placement of Gerygone cinerea within the genus
Acanthiza. Results are based on a three gene extended dataset (RAG1, RAG2, ND2)
derived from the study of Gardner et al. (2010). Nodal support in form of Bayesian
posterior probabilities are given at each node. Also illustrated are 95% confidence

intervals around node heights as derived from the ultrametric tree generated in the
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program BEAST. For overview purposes, the genus Gerygone is colored red, while

Acanthiza is blue, and the mangrove specialists are again indicated in green.
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Chapter 4

Comparative phylogeography of Australo-Papuan mangrove-

restricted and mangrove-associated avifaunas

95



Abstract

Australia and New Guinea feature the world’s richest mangrove-restricted avifauna;
however, the intraspecific genetic variation and the differentiation of the species
involved are almost completely unknown. Here, we use sequence data derived from two
mitochondrial protein-coding genes sampled to study the evolutionary history of 8 co-
distributed mangrove-restricted and mangrove-associated birds from the Australian part
of this region. Utilizing a comparative phylogeographic framework, we conclude that the
region’s mangrove forest birds present coincident phylogeographic breaks across their
shared geographic distribution. Barriers such as the Canning Gap, Bonaparte Gap, and
the Carpentarian Gaps all had important, but varying degrees of impact on the studied
species. Statistical phylogeographic simulations were able to discern among alternative
scenarios involving 6 different geographic and temporal population separations. Species
exhibiting recent colonization of mangroves include Rhipidura phasiana, Myiagra
ruficollis, and Myzomela erythrocephala, while Peneoenanthe pulverulenta,
Pachycephala melanura, P. lanioides, Zosterops luteus, and Colluricincla megarhyncha

all had deeper histories, reflected as more marked phylogeographic divergences.

96



1. Introduction

Climatic fluctuations and their associated effects on distributional changes of
species have played important, but disparate, roles in shaping the present ranges of
global biota. For birds, molecular phylogeographic studies have documented numerous
instances of varying degrees of intraspecific genetic structuring that have been directly
tied to repeated Pleistocene climatic fluctuations (Avise and Walker 1998, Holder et al.
1999, Mila et al. 2007, Peters et al. 2005, Zink 1996). During these past climatic
changes, processes driving distributional shifts of taxa have depended chiefly on
persistence of habitable areas that served as refugia, while other, unfavorable areas
served as barriers to gene flow between populations.
1.1.  Biogeographic importance of Australo-Papuan mangrove forests

On the Australian continent, climatic variation from the late Middle Miocene to the
Pleistocene involved pronounced aridification of previously predominant subtropical
rainforest cover across much of the landscape (reviews in Schodde 2006, Bowman et
al. 2010). Specifically, recent studies of Australian terrestrial avifaunas (i.e. not in
mangroves) indicate that birds with once widespread distributions underwent range
contractions into isolated refugia around the coast and in the center of the continent.
While these species have been subdivided into multiple subspecies by taxonomist, but
their genetic signatures point in some cases only to a separation between western and
eastern clades or single range expansions (Joseph and Wilke 2006, 2007, Toon et al.
2007, Joseph and Omland 2009). An important role in shaping the present composition
and distribution of Australian avifaunas, however, is expected from the persistence of a

land bridge to New Guinea (Arafura Platform) during the low-sea-level cool periods of
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the Pleistocene. Several avian groups are thought to have escaped the pronounced
continental aridification by tracking suitable habitats from the eastern rainforests of
Australia (Tumbunan and Irian avifaunas) and the eucalypt woodlands and scrubs of the
northern parts of the continent (Torresian avifaunas) via the Arafura Platform into New
Guinea, where most of these taxa apparently underwent further radiation and speciation
(Schodde and Calaby 1972, Schodde and Mason 1999, Schodde 2006).

A particularly interesting aspect of the climatic fluctuations, continental
aridification and faunal exchange between Australia and New Guinea is the origin and
evolution of a mangrove-tied component of the avifauna. Especially noteworthy are the
mangrove-specialized birds of Australia, where numerous taxa confined are confined
entirely to mangroves (12 species); other taxa occupy mangroves only in parts of their
range (16 species); and a large part of the Australian avifauna (80-90 species) visits
mangroves only to forage opportunistically (Schodde et al. 1979, Ford 1982, 1983,
Simpson and Day 1999, Schodde 2006). These high numbers contrast significantly with
the patterns of mangove-inhabiting birds from other parts of the world (Luther and
Greenberg 2009). As such, Australia harbors the world’s greatest concentration of
endemic, and habitat-restricted mangrove forest birds.

Mangrove forests extend narrowly in Australia from Shark Bay in the west all the
way around the northern rim east to Sydney on the east coast (Ford 1982). In the
western part of the range, arid coastal climates accentuate environmental gradients
between mangrove forests and adjacent scrubby vegetation, whereas in the more
humid northeast, mangroves form more of a continuum with other closed-canopy

vegetation types, such as tropical rainforests, monsoonal forests, and gallery forests.
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These differences in vegetation composition appear to have shaped the way in which
some bird species have adapted to using mangrove forests, with more mangrove-
restricted taxa found exclusively in the northwestern Australian mangroves (Ford 1982).
In contrast, populations from the eastern part of the range (Cape York Peninsula) may
occur also in closed canopy forests abutting mangroves. Ford (1982) and Schodde et
al. (1979) provided an excellent summary of the avifauna tied to varying degrees to
mangroves, as well as several hypotheses on their origin, speciation and distribution
within the habitat. The development of the Arafura Platform during Pleistocene glacial
cycles, coupled with shifts in vegetation composition due to climate fluctuation, is
proposed as key in shaping the current distribution of mangrove taxa.
1.2. Mangrove-inhabiting birds as model system for comparative phylogeography
Beyond traditional morphology-based taxonomy, molecular data analyzed in a
phylogenetic and population genetic framework offer promising new tools for elucidating
questions related to evolution and speciation. Previous molecular studies of Australian
biogeographic areas have focused mostly on taxa of the Tumbunan and Irian
biogeographic region (Schodde and Calaby 1972) and more broadly in the Atherton
Plateau Wet Tropics and Eastern Queensland (Cracraft 1991). These studies (James
and Moritz 2000, Joseph et al. 1995, 2001, Hugall et al. 2002, Schneider et al. 1998,
1999) have documented consistent phylogeographic structuring, coinciding with past
climatic (Plio-Pleistocene) vicariant speciation events. On the other hand, little or no
phylogeographic differentiation has been documented in studies of a suite of more

widespread Australian birds (Joseph and Wilke 2006, 2007, Toon et al. 2007).
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Because of the aforementioned different extent of “mangrove-dependency”
manifested by sympatrically distributed birds, these taxa are excellent candidates for
testing hypotheses of biogeographic history of areas of endemism around the northern
Australian rim (Figure 1). A recent study investigating the Pleistocene effects of sea-
level changes on freshwater shrimp populations in Indo-Australian waters (De Bruyn
and Mather 2007) have reported distinct haplotypes corresponding to discrete
biogeographic areas from Western Australia, Northern Territory, and the Cape York
Peninsula, pointing to persistence of natural barriers through the Pleistocene. These
barriers correspond to the Canning Gap (around Eighty Mile Beach), Bonaparte Gap,
Carpentarian Gaps, and the Burdekin Gap (Schodde 2006, Figure 1).

Here, we focus on the comparative phylogeography of 8 species of mangrove-
endemic and mangrove-associated birds (Ford 1982, Table 1). We use sequence data
derived from mitochondrial protein-coding genes to investigate underlying patterns of
population genetic and phylogeographic structure. Recently developed analytical
frameworks for testing alternative hypotheses within a statistical phylogeographic
framework provide a model-based testing ground for discriminating among alternative
population histories across suites of co-distributed taxa (Knowles and Madison 2002,
Richards et al. 2007, Carstens and Richards 2007, Knowles 2009). Given the dynamic
nature of the biogeography of the northern Australian mangrove forests (Schodde et al.
1979, Ford 1982, Schodde 2006, Bowman et al. 2010) and the diverse evolutionary
histories of its constituent endemic avifauna, our aim is to examine effects of

hypothesized historical barriers on population genetic subdivision, and to test alternative
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historical scenarios of mangrove bird population processes via coalescent methods in a

statistical phylogeographic framework.

2. Materials and Methods
2.1. Laboratory protocols and sequence data acquisition

Our sampling scheme focuses on 8 bird species endemic or partially endemic to
coastal mangrove forests, distributed across the putative refugia of the Pilbara,
Kimberley Plateau, Arnhem Land, Cape York Peninsula, and East Queensland (Figure
1, Tables 1 and 2). Genomic DNA was extracted from frozen or ethanol-preserved
tissue samples from vouchered specimens collected by us and other institutions
(Appendix 1) via the standard Qiagen DNeasy™ tissue extraction protocols (Qiagen,
Valencia, CA). We amplified and sequenced the mitochondrial protein-coding genes
NADH dehydrogase subunit 2 (ND2, 1041bp), and 3 (ND3, 351bp), using primers
L5215 — H6313 (Sorenson et al. 1999) and L10755 — H11151 (Chesser 1999). All PCR
amplifications were performed in 25 yl reactions using PureTag™ RTG PCR beads (GE
Healthcare Bio-Sciences Corp.). Amplified double-stranded PCR products were cleaned
with ExoSAP-IT™ (GE Healthcare Bio-Sciences Corp.) and visualized on high-melt
agarose gels stained with ethidium bromide. Purified PCR products were subsequently
cycle-sequenced with ABI Prism BigDyeT™ v3.1 terminator chemistry using the same
primers as for each PCR reaction. Cycle-sequenced products were purified further
using Sephadex™ spin columns (GE Healthcare Bio-Sciences Corp.) and finally
sequenced on an ABI 3130 automated sequencer. Sequences of both strands of each

gene were examined and aligned in Sequencher 4.8 (GeneCodes Corp.), and complete
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data matrices were assembled via Mesquite 2.74 (Maddison and Maddison 2010) for
subsequent phylogeographic and population genetic analyses.
2.2. Phylogenetic and population genetic analyses

Since both of our loci are mitochondrial protein-coding genes, they can be
regarded as a single functional and genetic unit. We combined these two loci for all
subsequent analyses. Mitochondrial gene trees were constructed via model-based
phylogenetic algorithms under Bayesian (BA) and Maximum likelihood (ML) criteria. For
each species’ dataset we used ModelTest 3.7 (Posada and Crandall 1998) to determine
the most appropriate model of sequence evolution via the Akaike Information Criterion
(AIC).

ML heuristic tree searches were conducted using the program GARLI 1.0 (Zwickl
2008), under a single data partition and the appropriate model of sequence evolution
(Table 1), with parameter values estimated from the data. Nodal support was assessed
via 100 non-parametric bootstrap replicates. BA was carried out within the Markov
Chain Monte Carlo (MCMC) tree search algorithm framework as implemented in the
program MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003). Datasets were partitioned
by gene and by codon position. Focusing solely on unique haplotypes for increased
processing speed, we ran two independent runs of 107 generations, using the
previously inferred model of sequence evolution. Search parameters included unlinking
of all partition-specific rates, adjustment of chain heating conditions for improved chain
swap acceptance rates, and sampling every 100 generations. Evaluation of stationarity
and chain convergence was conducted by plotting posterior probabilities from the two

runs in the program Tracer (Rambaut and Drummond 2007). The resulting pool of
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topologies sampled from the first 30% of generations was discarded as an initial ‘burn-
in’, such that 70,000 trees were summarized to produce a single 50% majority-rule
consensus tree. Outgroup choices for each species were selected according to the
most recent molecular phylogenetic studies of familial relationships (Appendix 1).

Intraspecific haplotype networks were reconstructed using TCS 1.18 (Clement et
al. 2000) via parsimony using a 95% connection limit. DNAsp 5 (Librado and Rozas,
2009) was used to calculate number of polymorphic sites (S), number of haplotypes (H),
haplotype (h) and nucleotide diversity (1), and net divergence (Da). We also tested
whether constituent populations of each species have undergone demographic
expansion by calculating Fu’s Fs (Fu 1997), Tajima’s D (Tajima 1989), and R, (Ramos-
Onsin and Rozas 2002). All calculations were performed on geographic populations
identified through haplotype network and phylogenetic analyses. Analysis of molecular
variance (AMOVA) was performed via Arlequin 3.5 (Excoffier and Lischer 2010) for
each species to test levels of genetic variation between and within intraspecific
phylogroups. Statistical significance was evaluated based on 10,000 nonparametric
permutations.
2.3. Statistical phylogeography

Based on the regional biogeographic history and areas of endemism (Figure 1),
we chose to test 3 different phylogeographic scenarios involving various degrees of
population differentiation. Phylogeographic population structure could have been
attained under at least 3 tractable scenarios: one involving simultaneous fragmentation
of a continuously distributed population along a single barrier (Figure 2A), early

divergence across a single barrier (Bonaparte Gap) followed by subsequent divergence
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of Pilbara-Kimberley and Arnhem-Gulf of Carpentaria populations (Figure 2B), and
lastly, according to a sequential colonization of current areas of endemism via isolation
by distance from east to west (Figure 2C). As relative time frames of splitting events, we
used a latest divergence time of 12,000 years based on studies of the duration of Last
Glacial Maximum land bridge connectivity in the Gulf of Carpentaria and Joseph
Bonaparte Gulf (Yokoyama et al. 2001). Older splitting events within the mid-
Pleistocene (700,000 years before present) and early Pleistocene (1.5 million years
before present) were also included in the alternative hypotheses testing scenarios
(Figure 2). As such, through a combination of 3 geographic topologies and an additional
3 time-frame variants, 6 alternative scenarios in all were tested for the 8 mangrove birds
(Figure 2 — A1, A2, A3, B1, B2, C).

We used Migrate 3.2 to estimate effective population size N, for each species
from 6 = 2Ngu using coalescence simulations (Beerli 2006). Mesquite 2.74 (Maddison
and Maddison 2010) was used to generate phylogeographic topologies in the form of
population trees and to simulate 500 gene trees under the coalescent process onto
these topologies for each taxon. Timing of phylogeographic splitting events was defined
as number of generations along branch lengths. We then simulated a DNA data matrix
of equivalent number of base pairs, number of individuals, and under the same inferred
model of sequence evolution as our observed dataset (Table 1). Besides accurately
parameterizing each simulated DNA matrix, we also verified that maximum intraspecific
sequence divergence of simulated DNA matrices was similar to our observed dataset by
adjusting the scaling factor for character model specifications (Madison and Madison

2010). The resulting 500 data matrices of each of the six alternative phylogeographic
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hypotheses (Figure 2) were used to derive a new set of phylogenetic trees to serve as a
null distribution against which our observed datasets were tested.

Slatkin and Maddison’s (1989) S statistic, which measures discord between a
gene tree and constituent population tree subdivisions, was used to assess significance
of each hypothesis. We also measured the amount of discord (i.e. number of deep
coalescents, nDC) between the simulated datasets and the population topology, and
compared the distribution of this value to our observed dataset (Knowles and Madison
2002, Richards et al. 2007, Carstens and Richards 2007, Knowles 2009), rejecting
phylogeographic scenarios if our observed values were outside the 95% confidence

interval.

3 Results
3.1.  Genetic diversity and structure

A total of 315 samples from 8 species of Australo-Papuan mangrove-restricted
birds (Appendix 1) were sequenced for the two mitochondrial protein-coding gene
fragments, ND2 and ND3. Both genes were combined to form a concatenated dataset
of total sequence length varying from 1251 to 1392 base pairs (1041 bp ND2, 351 bp
ND3, Table 1). Alignment of sequences was straightforward, with only few samples in
which ambiguous base-calls towards the ends of the ND2 gene had to be excised. Base
frequencies were concordant with previously reported studies of avian mtDNA.
Moreover, all sequences translated into amino acids without the presence of aberrant
stop codons or double peaks in chromatograms, thus indicating true mitochondrial origin

as opposed to nuclear pseudogenes, or numts (Sorenson and Fleischer 1996,
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Sorenson and Quinn 1998). As expected, sequence variation and substitution models
within the concatenated dataset were species-dependent, where Zosterops luteus and
Colluricincla megarhyncha had highest numbers of variable sites, while Peneoenanthe
pulverulenta and C. megarhyncha showed the highest percentage of informative sites.
On the other hand, Rhipidura phasiana and Myiagra ruficollis sequences had lowest
numbers of informative sites.

A summary of genetic diversity indices is given in Table 2, and Figure 3
illustrates intraspecific haplotype networks based on a 95% parsimony connectivity limit.
All  haplotype networks showed strong geographic structure, including unique
haplotypes from 5 different biogeographic regions. However, two species (Rhipidura
phasiana and Zosterops luteus), contained shared haplotypes involving singletons from
the Kimberley region together with samples from the Pilbara and Arnhem regions. Four
species had two or more haplotype groups that could not be connected under the 95%
limit. Haplotype diversity (h) ranged from 0.46 in the Kimberley populations of
Pachycephala lanioides to the > 0.90 for most other species, and even reaching 1.00 for
our New Guinea populations of Colluricincla megarhyncha (Table 2). Nucleotide
diversity (1), on the other hand, was generally lower, from 0.04% in P. lanioides,
reaching upper values of 0.6%, and even a maximum of 5.7%, again for the New
Guinean samples of C. megarhyncha. On average, populations of P. lanioides had
lowest values of h and 17, while C. megarhyncha showed the highest values of the two
indices. All populations of P. pulverulenta showed high levels of h, while  values for
corresponding populations showed proportionally lower values. A similar trend was

observed in Z. luteus. From a geographic point of view, samples from western regions
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(Pilbara, Kimberley, and Arnhem) generally had lower h and 1 values compared to
populations from the Gulf of Carpentaria and East Queensland.

Estimates of population size changes and selection generally indicated non-
neutrality. Peneoenanthe pulverulenta and Zosterops luteus had 3 populations with
significant Fu’s Fs values, while Pachycephala melanura, Myzomela erythrocephala and
Myiagra ruficollis each had one population with significant Fs values. Values of Tajima’s
D were mostly negative and non-significant, except for Z. luteus, for which populations
of Pilbara and East Queensland were significant at the p < 0.05 level. In contrast,
calculations of Ramos-Onsin and Roza’s R, were all nonsignificant, however, Z. luteus
and C. megarhyncha each had populations with low Rz values, suggesting population
expansion. Results from the analysis of molecular variance (AMOVA) showed a
significant contribution of variation among populations for 5 mangrove birds (P.
pulverulenta, P. lanioides, P. melanura, Z. luteus and C. megarhyncha), while 3 species
(R. phasiana, M. erythrocephala and M. ruficollis) had their intraspecific variation
distributed more equitatively among and within populations (Table 3).

3.2.  Phylogenetic analysis

Intraspecific phylogenetic analyses were conducted on the concatenated mtDNA
dataset using the estimated model of sequence evolution for each species (Table 1).
Results of gene trees are presented alongside halpotype networks in Figure 3. Previous
studies demonstrated paraphyly between East Queensland populations of Zosterops
luteus and eastern populations of Z. lateralis (Degnan 1993, Degnan and Moritz 1993,
Moyle et al. 2009). As a result, we included 29 additional samples from populations of Z.

lateralis alongside the mangrove-endemic Z. luteus (Appendix 1). Phylogenetic
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resolution varied among the 8 species, mirroring findings derived from the intraspecific
haplotype networks. As such, for each species, 2 — 4 distinct geographic phylogroups
were identified (Figure 3, Table 2). Nodal support was higher at the clade level and
generally lacking statistical support within individual phylogroups. Topologies inferred
for R. phasiana, M. erythrocephala and M. ruficollis showed the least support for
individual clades, while the remaining species, especially Z. luteus and P. melanura,
had very well-supported nodes throughout.

Net sequence divergence between individual clades (Da) differed again among
species; least differentiation was documented in the case of the two populations of R.
phasiana and M. ruficollis, and also between the Pilbara and Kimberley populations of
P. lanioides (Table 2). Alternatively, highest sequence divergence values were
observed within P. pulverulenta, Z. luteus, and C. megarhyncha (at the Arnhem — Gulf
of Carpentaria barrier; Table 2, Figure 1).

3.3.  Statistical phylogeography

Analyses of alternative phylogeographical hypotheses were summarized
according to 3 geographic and 3 additional temporal scenarios (Figure 2). Results
based on the number of deep coalescents (nDC) and Slatkin’s S derived from simulated
datasets under each scenario indicate that simultaneous divergence of populations at
the end of the Last Glacial Maximum could not be rejected in Rhipidura phasiana,
Pachycephala lanioides, Myzomela erythrocephala, Myiagra ruficollis, and Zosterops
luteus (Table 4). Simultaneous divergence was rejected unilaterally as a historical
scenario in Pachycephala melanura, while S values for Peneoenanthe pulverulenta

could not reject simultaneous divergence at older time frames of the early Pleistocene
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(Table 4). Scenarios involving the Bonaparte Gap as an important geographic break at
the mid to early Pleistocene could generally not be rejected, as each species had at
least one of the test statistics return non-significant values (Table 4). The hypothesis of
sequential divergence from east to west also received mixed results, as we could only
significantly reject this scenario based on nDC, and not Slatkin’s S, for R. phasiana, P.
lanioides, M. erythrocephala, and M. ruficollis, while C. megarhyncha was the only
species for which solely a scenario of sequential population divergence was found

plausible (Figure 2, Table 4).

4. Discussion

The present study constitutes the first analysis of molecular variation among
Australia’s rich mangrove endemic birds (Schodde et al. 1979, Ford 1982, 1983,
Schodde 2006). Using two protein-coding mitochondrial genes in a comparative
phylogegeographic framework, we were able to illustrate commonalities and differences
among 8 co-distributed birds tied to mangrove forests (Figure 1). Overall, the 8 species
showed similar major population subdivisions within Australia’s coastal mangroves
(Figure 3). We elaborate on the observed patterns for each species below.
4.1.  Phylogeographic patterns

Rhipidura phasiana — This species diverged recently as part of a rich and recent
Pacific radiation of fantails (Rhipiduridae), and is the current sister lineage to a clade
comprised of the mainland Australian form of R. albiscapa and the New Zealand fantail
R. fuliginosa (Nyari et al. 2009). Phylogeographic analysis uncovered a shallow

topology, corresponding to at least two distinct major lineages separated only by very
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few base changes between populations (Figure 3). Remarkable is the shallow but
almost completely sorted mitochondrial population tree (Joseph and Omland 2009), with
only one haplotype shared between the Pilbara and Kimberley regions. Low genetic
diversity indices (m and h) and negative values of Tajima’'s D and Fu’'s Fs (but non-
significant at the 95% level) point towards a recently expanding population. This result
was also evident in our statistical phylogeographic analysis, wherein we could not reject
a scenario of recent simultaneous divergence at the end of the Pleistocene (Table 4,
Figure 2). It is also noteworthy that this species does not include multiple plumage-
based subspecies (Ford 1982, Schodde and Mason 1999, Simpson and Day 1999,
Christidis and Boles 2008f). From the phylogeographic patterns observed in this taxon,
we believe that, given sufficient time and cessation of gene flow among the 4
populations, quantifiable morphological differences will eventually result.

Peneoenanthe pulverulenta — Part of the Australo-Papuan robin (Petroicidae)
radiation, this taxon has been long labeled as of uncertain taxonomic affinities, even in
light of modern multilocus phylogenetic analyses (Loynes et al. 2009). It is clearly part of
an older lineage, exhibiting deep intraspecific divisions. Our phylogeographic analysis
detected 4 distinct subpopulations separated by divisions corresponding to the Gulf of
Carpentaria and the Bonaparte Gap (Figure 1 and 3). Levels of genetic diversity were
moderate, while values of Tajima’s D and Fu’'s Fs were negative for all 3 populations
east of the Kimberley, reaching their highest significance on the East Queensland coast
(Table 2). These patterns point toward sequential eastward expansion of populations,
an idea corroborated by our simulations, wherein we could not reject hypotheses of

sequential population differentiation (Table 4). Based on Slatkin’s S, however,
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simultaneous divergence of populations in the mid-to-late Pleistocene could also have
been possible. Three subspecies on the coastlines of Australia are recognized (Ford
1982, Schodde and Mason 1999, Simpson and Day 1999, Christidis and Boles 2008),
all differing in morphology and vocalizations. Given reciprocally monophyletic lineages
and marked sequence divergences, populations from Pilbara and Kimberley, Arnhem,
and east of the Gulf of Carpentaria could each be recognized as distinct species. The
herein-unsampled populations of New Guinea would provide additional insights to the
geographic origins of this enigmatic robin.

Pachycephala lanioides — Sister to the continental Rufous Whistler (P.
rufiventris), this mangrove endemic whistler (Pachycephalidae) is also part of a diverse
lineage of Australo-Papuan birds (Jgnsson et al. 2010). Haplotype networks for this
Australian endemic species showed completely sorted and reciprocally monophyletic
geographic lineages, corresponding to 3 populations. All three exhibited negative (but
not-significant) values of Tajima’s D and Fu’s Fs, indicative of population expansion
(Figure 3, Table 2). A recent population subdivision was also supported by our statistical
phylogeographic simulations, which could not reject a hypothesis of a late-Pleistocene
simultaneous population divergence (Table 4). The Bonaparte Gap also proved to be an
important barrier for this species as an alternative explanation of observed
phylogeographic patterns. Similar to P. pulverulenta, 3 subspecies with slight
morphological trait variations are recognized (Ford 1982, Schodde and Mason 1999,
Simpson and Day 1999, Christidis and Boles 2008). Although sequence divergence
between populations was relatively low, as with R. phasiana, current monophyletic

lineages could well be interpreted as following distinct evolutionary trajectories.
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Pachycephala melanura — Another mangrove-restricted member of the whistler
radiation, this species is part of the hyper-variable P. pectoralis species complex that
spans the entirety of the Australo-Papuan and Oceania regions (Galbraith 1956, Mayr
and Diamond 2001, Jgnsson et al. 2008). This species exhibits marked
phylogeographic subdivision, with at least 4 distinct populations (Figure 3, Table 2).
With the exception of East Coast populations, all other subclades had moderate genetic
diversity indices and negative values of neutrality tests (Table 2). East Coast
populations are regarded as outliers in this analysis, as they are linked phylogenetically
instead to P. m. dahli populations from the Bismark Archipelago (Nyari, pers. obs.). Our
topological test scenarios were able to reject unequivocally a simultaneous divergence
model in favor of older, sequential population separations, influenced again by the
Bonaparte Gap, which was responsible also for the largest sequence divergence within
this taxon (Table 4). More work including multilocus datasets covering the entire
geographic extent of the P. pectoralis/P. melanura complex is necessary to elucidate
their elaborate historical biogeography.

Myzomela erythrocephala — This species lies at the base of the diverse
honeyeater (Meliphagidae) radiation, exhibiting the largest geographic extent of any
honeyeater genus (Driskell and Christidis 2004, Gardner et al. 2010). Similar to R.
phasiana, this honeyeater features shallow intraspecific divergences, suggestive of
recent splits (Joseph and Omland 2009). Two major population subdivisions were
recognized, focused around the Gulf of Carpentaria (Figure 3). Populations east of the
Gulf had moderate to high genetic diversity indices, although populations from Arnhem

and the Kimberley had negative but nonsignificant values of Tajima’s D and Fu’s Fs, a
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signature of recent population expansion (Table 2). Based on our alternative
phylogeographic test settings, we were unable to reject a simultaneous recent
divergence (Table 4). Insufficient statistical power led to inability to discern among a
predominant role of the Bonaparte Gap and a sequential divergence.

Myiagra ruficollis — As a member of the Australasian monarch flycatchers
(Monarchidae), this species is part of a larger complex that has radiated into Pacific
Islands from mostly continental sources (Filardi and Moyle 2006). On the Australian
continent, one subspecies, M. r. mimikae extends from the Kimberley east through the
Gulf of Carpentaria all the way to the East Coast (Figure 1). Our phylogeographic
analysis identified a very shallow network of haplotypes, as in M. erythrocephala,
grouped in two mail geographic areas (Figure 3). Featuring low sequence divergence,
low genetic diversity indices and negative values of Tajima’s D and Fu’s Fs, this species
has most likely withnessed recent population expansions (Table 2). The historical
scenario most favored by our simulations was one of recent simultaneous divergence,
although as was the case of M. erythrocephala, we believe that statistical power was
insufficient to distinguish between temporal effects of the Bonaparte Gap and sequential
divergence of populations (Table 4).

Zosterops luteus — One of the most intriguing constituent species of mangrove
dependent endemics, Z. luteus evolved within an unprecedentedly rapid white-eye
radiation (Zosteropidae), which spans the entire Old World Tropics, reaching numerous
archipelagos of the Atlantic, Indian, and Pacific Ocean within the last 2 million years
(Moyle et al. 2009). The mitochondrial paraphyly between East Queensland populations

of Z. luteus and eastern populations of Z. lateralis demonstrated by previous studies
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(Degnan 1993, Degnan and Moritz 1993) led us to include broader sampling of Z.
lateralis in our phylogeographic analysis. Indeed, we confirmed the previous findings of
incomplete mitochondrial lineage sorting between the two species, with one sample of
Z. luteus having the exact same haplotype as several Z. lateralis individuals (Figure 3).
This pattern is most likely attributed to recent hybridization events of the isolated Z.
luteus populations on Australia’s eastern shore (Figure 1 and 3). Nevertheless, a
preliminary analysis of the entire dataset with the addition of a nuclear intron (TGFb2)
was unable to confirm reciprocal monophyly of the two species, as previously reported
based on RFLP analysis (Degnan 1993). This result was expected given the rapid
radiation of the group, where the nuclear genome would still lack complete sorting (Zink
and Barrowclough 2008, Joseph and Omland 2009). Our analysis identified 4 main
populations featuring moderate genetic diversity and negative values of Tajima’s D and
Fu's Fs, suggestive of recent expansion. Sequence divergence between populations on
either side of the Gulf of Carpentaria exceeded 4% (Table 2) — equivalent to almost half
of the sequence divergence observed in the entire Zosterops radiation (Clade B of
Moyle et al. 2009). Statistical phylogeographic simulation results based on values of
nDC could not distinguish well between alternative scenarios, however, values of
Slatkin’s S rejected all scenarios except for that of sequential divergence, in which case
both estimators were in agreement (Table 4, Figure 2). Considering the complex history
of this group of birds (Clegg et al. 2002, Moyle et al. 2009), more detailed analyses
featuring the entire radiation and the use of multilocus or genomic datasets are

warranted (Edwards et al. 2005, Edwards 2007, Lerner and Fleischer 2010).
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Colluricincla megarhyncha — Another member of the extended whistler family
(Pachycephalidae), this species has seen extensive radiation in the Australo-Papuan
region, with over 31 recognized subspecies (Schodde and Mason 1975, Ford 1978,
Schodde and Mason 1999). On the Australian continent, it occupies diverse closed-
canopy habitats, though is restricted to mangroves only around the western edge of its
distribution in Arnhem and around the Gulf of Carpentaria (Ford 1982, Schodde and
Mason 1999, Simpson and Day 1999, Christidis and Boles 2008). It is therefore the only
taxon in our analysis that utilizes mangroves only in part of its range. New Guinea
populations included in the present study were intended to sergve as a geographic
outgroup for the mangrove-restricted subspecies C. m. parvula and C. m. aelptes
(Schodde and Mason 1975, Ford 1978, Schodde and Mason 1999). Phylogeographic
analysis recovered deep lineage splits, where New Guinea populations were basal in
the topology, sister to the mangrove-restricted populations of C. m. parvula and C. m.
aelptes, while the remaining populations were distributed along the Gulf of Carpentaria
and Australia’s east coast (Figure 1 and 3). Deep divergences were observed between
samples from New Guinea and Arnhem (5.7%), and between Arnhem and Gulf of
Carpentaria (6.7%; Table 2), although individual lineages shared haplotypes between
regions (Figure 3). Based on the statistical phylogeographic analysis, we were able to
reject all hypotheses except the sequential divergence scenario (Table 4). Our analysis
reveals the distinctiveness of the Arnhem population C. m. parvula, while C. m. aelptes
samples fall within a larger clade of populations from the Gulf of Carpentaria and Cape
York, attributed to C. m. normani (Schodde and Mason 1975, Ford 1978, Schodde and

Mason 1999).
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4.2. Geographic barriers across coastal mangrove forests

Comparing phylogeographic patterns across our 8 mangrove-restricted and
mangrove-associated birds revealed several important parallels of geographic barriers
of coastal mangroves and habitats further inland (Ford 1982, Cracraft 1991, Schodde
2006, Bowman et al. 2010). At their western-most extent, around Shark Bay, mangrove
forests are depauperate, consisting of only a single tree species. From there, tree
species diversity increases eastwards: 5 in Pilbara, 17 in Kimberley, and 22 in the
Northern Territory, to a high of 28 species along the eastern coast of the Cape York
Peninsula, after which it decreases along the Gulf of Carpentaria to 13 in central
Queensland, and to 3-7 species in New South Wales (Semeniuk et al. 1978, Ford 1982,
Ricklefs and Latham 1993, Ellison et al. 1999). In contrast, numbers of mangrove-
restricted birds are highest in western and northern parts of Australia, decreasing
significantly towards the east, reaching lowest numbers of endemic species along the
East Coast (Ford 1982, Schodde et al. 1979).

In the westernmost coastal barrier, the Canning Gap around Eighty Mile Beach,
mangroves are completely absent, providing an extensive arid barrier to gene flow
between the Pilbara and Kimberley regions. R. phasiana, P. pulverulenta, P.lanioides,
P. melanura, and Z. luteus all have populations on either side of the barrier, although
only P. pulverulenta, P. lanioides and P. melanura have reciprocally monophyletic
lineages on either side of the Canning Gap (Figure 1 and 3). In the case of R. phasiana,
only one haplotype from the Kimberley groupes with the Pilbara clade, whereas Z

luteus showed increased gene flow across the barrier (Figure 3). Therefore, the present
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study is among the few that have examined the biogeographic implications of the
Canning Gap (Bowman et al.2010).

The Bonaparte Gap separates the regions of the Kimberley Plateau and Arnhem
(Figure 1), and is considered an important biogeographic barrier, given the exposure of
the Sahul Shelf and the formation of lacustrine environments in the Joseph Bonaparte
Depression during low sea levels (Yokoyama et al. 2001), extending further inland with
the Ord Arid Intrusion. All 8 species havd genetically distinct populations isolated by the
Bonaparte Gap, a few showing moderate levels of genetic divergence across this
barrier (P. pulverulenta, P. melanura; Table 2). These patterns have been documented
in a diverse array of organisms (reviewed in Bowman et al. 2010), most notable for birds
being the multilocus study of Jennings and Edwards (2005) describing timing of
population divergence across the Bonaparte Gap in Poephila grass finches to have
occurred 300,000 years ago. Our suite of mangrove-associated taxa suggests important
contributions of the Bonaparte Gap in population subdivision, although estimates of
divergence timing were found to be earlier, in the middle to early Pleistocene (Table 4).

Northern Australia’s biogeographic history was influenced predominantly by the
processes surrounding the Gulf of Carpentaria, especially during the Pleistocene sea
level fluctuations that have led to the exposure of the Arafura Platform, thus connecting
Australia and New Guinea facilitating a rich faunistic exchange (Schodde 2006). During
the presence of this land bridge, the newly formed Lake Carpentaria was surrounded by
low-laying plains, and an extensive marshy environment, as well as more widespread
mangrove forest cover (Chivas et al. 2001, Yohoyama et al. 2001). Examples of

population divergences around the Carpentarian Gap have been reviewed by Bowman
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et al. (2010). Our mangrove-based system appropriately expands the pool of organisms
influenced by this geographic barrier, since all 8 mangrove-bound birds exhibited
marked population subdivisions around the Gulf of Carpentaria (Figure 3). With the
exception of P. lanioides, M. erythrocephala and C. megarhyncha, all taxa had unique
haplotypes on either side of the barrier. Sequence divergences across the Gulf ranged
from 0.2% in R. phasiana and M. ruficollis, to 4.11% in Z. luteus and 6.78% in C.
megarhyncha (Table 2).

Only few of our mangrove species had populations reaching Australia’s east
coast, making it difficult to evaluate the influence of the Burdeking Gap on mangrove
inhabiting birds. Since the East Coast features less mangrove-restricted species
(Schodde et al. 1979, Ford 1982, Schodde 2006), this barrier is likely to have acted as a
minor influence on shaping the overall biogeography of these birds. It is noteworthy,
however, that Z. Iuteus and P. melanura both have well-differentiated isolated
populations along the east coast. Populations of P. pulverulenta showed only minor
demarcation across the Burdeking Gap, being divided instead between the eastern and
western sides of the Cape York Peninsula. While not confined to mangroves along the
east coast, C. megarhyncha nevertheless had distinct populations across this barrier,
albeit with signs of past gene flow (Figure 3).

4.3.  Geographic origin of Australian mangrove birds

Our phylogeographic analysis suggests an important role of the Arhem Land as
basal geographic region for P. pulverulenta, Z. luteus and C. megarhyncha. However, in
P. melanura, populations from the Kimberley and Pilbara were recovered as basal

(Figure 3). All other species had low support for the branching sequences owing to
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smaller sampling size and low intraspecific variation. The role of the Arnhem region as a
source of mangrove birds can be explained by its implication in the Arafura Platform
during low sea levels of the Pleistocene (Yokoyama et al. 2001), where taxa could have
spread through mangroves along the western shorelines of the landbridge and finally
become separated by recurring sea level rise. This historical pattern is supported also
by the fact that with the exception of P. lanioides and Z. Iluteus, all other Australian
mangrove birds also have isolated populations along the southern coast of New Guinea
(Ford 1982). A scenario of direction of evolution between Australia and New Guinea

remains to be investigated with additional sampling.
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Figure 1: Map of sampling localities for eight species of mangrove endemic and

mangrove-associated Australo-Papuan birds distributed along the Australian coastline
and New Guinea. Designation of important areas of endemism follow Cracraft (1991),
and are color coded to their respective coastal extent. Phylogeographic barriers along

the coastline are indicated following Ford (1982) and Schodde (2006).

Figure 2: Schematic representation of alternative biogeographic topologies applied
as individual, species-specific statistical phylogeography testing frameworks for eight
species of mangrove-endemic and mangrove-associated Australo-Papuan birds
distributed along the Australian coastline and New Guinea. Three main geographic
categories aim to test the historical influence of barriers between areas of endemism,
and are designated A, B, C. Geographic scenarios A and B each have 3 and 2

respective additional temporal constraints imposed upon them, indicated by numbers.

Figure 3: Intraspecific parsimony haplotype networks (95% connection limit; upper
panel) and model-based phylogeographic trees (lower panel) for eight species of
mangrove endemic and mangrove-associated Australo-Papuan birds distributed along
the Australian coastline and New Guinea. Population coloring scheme follows that of
Figure 1 and is based on the coastal extent of areas of endemism and major geographic
barriers. Circle size of haplotype networks is proportional to the number of samples
contained within each group. Circles with single haplotypes are not numbered, and
black dots represent inferred steps of changes. Phylogeographic trees follow the same

coloring scheme, listing also sample catalog numbers. Black circles at nodes
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correspond to >95% Bayesian posterior probability. The scale bar indicates a
proportional amount of 0.005 changes/site. Note that the Zosterops luteus tree also

contains samples of Z. lateralis, with which it is paraphyletic.
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Appendix

Chapter 1: GenBank accession numbers of taxa used in the phylogenetic framework to

establish taxonomic affinities of Rhipidura (= Chelidorhynx) hypoxantha.

Taxon ND2 Fib5

Meliphaga reticulata DQ673232 DQ673252
Picathartes gymnocephalus DQ125989 EU739155
Certhia familiaris FJ177333 EU680633
Parus major AY732696 DQ320586
Hyliota flavigaster DQ125983 EU680653
Stenostira scita DQ125993 EU680689
Culicicapa ceylonensis DQ125979 EU680640
Elminia albonotata EU652714 EU680645
Bombyecilla garrulus FJ177331 EU680629
Passer montanus AY030144 EU626752
Regulus calendula AY329435 EU680681
Promerops cafer DQ125990 EU6G80676
Pycnonotus barbatus DQ402232 EF626746
Sylvia atricapilla DQ125994 EU680691
Hylia prasina AY 136606 EU680652
Alauda arvensis DQ125975 EF626747
Cinclus cinclus FJ177334 EU680638

135



Chapter 2: Table of GenBank accession numbers for the mtDNA protein-coding gene
NADH dehydrogase subunit 2 (ND2) and the fifth intron of the nuclear gene Beta-
Fibrinogen (Fib5) for the entire dataset included in the analyses. Further details on

sample and voucher information can be found in Driskell and Christidis (2004) and

Norman et al. (2007).

Taxon sample information ND2 Fib5
Driskell and Christidis 2004

Stipiturus mallee MEWA1 AY488328.1 AY488485.2
Malurus splendens SW 683 AY488327.1 AY488484.2
Malurus lamberti VW 104 AY488326.1 AY488483.2
Amytornis striatus SGW1 AY488325.1 AY488482.2
Sericornis perspicillatus ANWC E313 AY488324.1 AY488481.2
Sericornis frontalis MV 228 AY488323.1 AY488480.2
Pardalotus striatus ANWC B471 AY488322.1 AY488479.2
Pardalotus punctatus ANWC B479 AY488321.1 AY488478.2
Gerygone chrysogaster ANWC E670 AY488320.1 AY488477.2
Gerygone chloronotus ANWC E122 AY488319.1 AY488476.2
Dasyornis broadbenti MV 2172 AY488318.1 AY488475.2
Acanthiza chrysorrhoa MV 116 AY488317.1 AY488474.2
Acanthiza apicalis MV 158 AY488316.1 AY488473.2
Xanthotis flaviventer ANWC E594 AY488315.1 AY488472.2
Xanthomyza phrygia ANWC F724 AY488314.1 AY488471.2
Trichodere cockerelli ANWC 42941 AY488313.1 AY488470.2
Timeliopsis griseigula ANWC E714 AY488312.1 AY488469.2
Timeliopsis fulvigula ANWC E233 AY488311.1 AY488468.2
Ramsayornis modestus ANWC C900 AY488310.1 AY488467.2
Ramsayornis fasciatus MV 1230 AY488309.1 AY488466.2
Pycnopygius stictocephalus ANWC C035 AY488308.1 AY488465.2
Pycnopygius cinereus ANWC CO057 AY488307.1 AY488464.2
Ptiloprora guisei ANWC E173 AY488306.1 AY488462.2
Prosthemadera novaeseelandiae MNZ 11/1996 AY488305.1 AY488461.2
Plectorhyncha lanceolata ANWC C379 AY488304.1 AY488460.2
Phylidonyris novaehollandiae ANWC B685 AY488303.1 AY488458.2
Phylidonyris nigra MV 198 AY488302.1 AY488457.2
Phylidonyris albifrons ANWC D361 AY488301.1 AY488455.2
Philemon meyeri ANWC E683 AY488300.1 AY488454.2
Philemon corniculatus ANWC C720 AY488299.1 AY488453.2
Philemon citreogularis ANWC D008 AY488298.1 AY488452.2
Philemon buceroides ANWC C863 AY488297.1 AY488451.2
Philemon argenticeps ANWC JCWO095 AY488296.1 AY488450.2
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Myzomela sanguinolenta
Myzomela rosenbergii
Myzomela obscura
Myzomela cardinalis
Melithreptus brevirostris
Melithreptus albogularis
Melipotes fumigatus
Meliphaga gracilis
Meliphaga albonotata
Melilestes megarhynchus
Melidectes torquatus
Melidectes ochromelas
Melidectes belfordi
Manorina melanophrys
Manorina flavigula
Lichmera indistincta
Lichmera alboauricularis
Lichenostomus flavescens
Grantiella picta
Glycichaera fallax
Foulehaio carunculata
Epthianura aurifrons
Epthianura albifrons
Entomyzon cyanotis
Conopophila rufogularis
Conopophila albogularis
Certhionyx variegatus
Certhionyx pectoralis
Certhionyx niger

Ashbyia lovensis
Anthochaera paradoxa
Anthochaera lunulata
Anthochaera chrysoptera
Anthochaera carunculata
Acanthorhynchus tenuirostris
Acanthorhynchus superciliosus
Acanthagenys rufogularis
Ptiloprora plumbea
Phylidonyris pyrrhoptera
Phylidonyris melanops
Myzomela erythrocephala
Epthianura tricolor
Epthianura crocea

Norman et al.2007

Meliphaga reticulata
Meliphaga orientalis orientalis
Meliphaga notata notata
Meliphaga notata mixtata
Meliphaga montana aicora

ANWC C402
ANWC E240
ANWC C531
2494 S|

MV 371
ANWC JC100
ANWC E332
ANWC C753
ANWC E471
ANWC E557
ANWC E389
ANWC E360
ANWC E168
ANWC 42737
ANWC 42856
ANWC C271
ANWC E629
ANSP 52785
MV 2673
ANWC E663
2077 Sl
ANWC D156
ANWC D328
ANWC F274
MV 1300

MV 1216
SAM W036
ANWC C912
ANWC C954
ANWC D173
ANWC B736
MV 175
ANWC B792
ANWC C257
ANWC B873
MV 248

MV 1122
ANWC C173
ANWC B651
ANWC D451
MV 1198
ANWC D229
ANWC D175

RJ996

ANWC 26771
ANWC 39741
ANWC 39527
ANWC 26714
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AY488295.1
AY488294.1
AY488293.1
AY488292.1
AY488291.1
AY488290.1
AY488289.1
AY488288.1
AY488287.1
AY488286.1
AY488285.1
AY488284.1
AY488283.1
AY488282.1
AY488281.1
AY488280.1
AY488279.1
AY488278.1
AY488277.1
AY488276.1
AY488275.1
AY488274.1
AY488273.1
AY488272.1
AY488271.1
AY488270.1
AY488269.1
AY488268.1
AY488267.1
AY488266.1
AY488265.1
AY488264.1
AY488263.1
AY488262.1
AY488261.1
AY488260.1
AY488259.1
AY488409.1
AY488408.1
AY488407.1
AY488406.1
AY488405.1
AY488329.1

DQ673232.1
DQ673231.1
DQ673230.1
DQ673229.1
DQ673228.1

AY488449.2
AY488448.2
AY488447.2
AY488445.2
AY488444.2
AY488443.2
AY488442.2
AY488441.2
AY488440.2
AY488439.2
AY488438.2
AY488437.2
AY488436.2
AY488435.2
AY488434.2
AY488433.2
AY488432.2
AY488431.2
AY488430.2
AY488429.2
AY488428.2
AY488425.2
AY488424.2
AY488423.2
AY488422.2
AY488421.2
AY488420.2
AY488419.2
AY488418.2
AY488417.2
AY488416.2
AY488415.2
AY488414.2
AY488413.2
AY488412.2
AY488411.2
AY488410.2
AY488463.2
AY488459.2
AY488456.2
AY488446.2
AY488427.2
AY488426.2

DQ673252.1
DQ673251.1
DQ673250.1
DQ673249.1
DQ673248.1



Meliphaga mimikae granti
Meliphaga lewinii amphochlora
Meliphaga lewinii lewinii
Meliphaga gracilis imitatrix
Meliphaga gracilis gracilis
Meliphaga fordiana

Meliphaga flavirictus

Meliphaga cinereifrons stevensi
Meliphaga cinereifrons cinereifrons
Meliphaga aruensis

Meliphaga aruensis aruensis
Meliphaga analoga stevensi
Meliphaga analoga analoga
Meliphaga albonotata
Meliphaga albilineata

AM 0.59188
ANWC 39738
ANWC 39451
ANWC 39509
ANWC 39862
ANWC 39176
ANWC 26479
ANWC 27018
ANWC 27099
ANWC 26588
AM 0.59185
ANWC 27038
AM 0.59191
ANWC 24488
NTM 1633

DQ673227.1
DQ673226.1
DQ673225.1
DQ673224.1
DQ673223.1
DQ673222.1
DQ673221.1
DQ673220.1
DQ673219.1
DQ673218.1
DQ673217.1
DQ673216.1
DQ673215.1
DQ673214.1
DQ673213.1

DQ673247.1
DQ673246.1
DQ673245.1
DQ673244.1
DQ673243.1
DQ673242.1
DQ673241.1
DQ673240.1
DQ673239.1
DQ673238.1
DQ673237.1
DQ673236.1
DQ673235.1
DQ673234.1
DQ673233.1
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