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Abstract

This thesis contains a collection of work I have performed while working on

Dr. Erik Perrins’ Efficient Hardware Implementation of Iterative FEC Decoders

project. The following topics and my contributions to those topics are included

in this thesis. The first topic is a Viterbi decoder implemented in the Haskell

programming language. Next, I will briefly introduce Kansas Lava, a Haskell

DSL developed by my advisor, Dr. Andy Gill, and other students and staff.

The goal of Kansas Lava is to generate efficient synthesizable VHDL for complex

circuits. I will discuss one such circuit, a large-scale LDPC decoder implemented

in Kansas Lava that has been synthesized and tested on FPGA hardware. After

discussing the synthesis and simulation results of the decoder circuit, I will discuss

a memory interface that was developed for use in our HFEC system. Finally, I

tie these individual projects together in a discussion on the benefits of functional

programming in hardware design.
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Chapter 1

Introduction

1.1 Overview

The purpose of this thesis is to show how Functional Programming can be used

to benefit the implementation of Error Correction Coding (ECC) systems. This is

accomplished in several chapters which discuss different contributions I have made

to the HFEC project. This remainder of this document is organized as follows.

Chapter 2 describes a functional implementation of a soft-decision Viterbi decoder

in Haskell. This decoder was written when Kansas Lava was in it’s infancy and was

developed in pure Haskell using a library of matrix operations that predates those

found in the sized-types [9] library. The purpose of this excercise was to gain

an understanding of the algorithm as well as functional programming. Kansas

Lava is introduced in chapter 3. Kansas Lava began as a teaching tool for an

introductory functional programming class. However, my advisor, Dr. Andy Gill,

saw untapped research potential in using Lava to assist in the implementation

of complex algorithms in hardware. Over time, Kansas Lava was extended to

it’s current state. This chapter includes a high level overview of Kansas Lava,

some small examples, and my thoughts on the viability of Kansas Lava as a tool
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for FPGA developers. Chapter 4 contains a description of Low Density Parity

Check (LDPC) codes and a description of an LDPC decoder. Also included is an

example demonstrating how new functionality is added to Kansas Lava. Chapter

5 discusses the testing framework used to test our LDPC decoder, some issues we

faced when designing the testing framework, as well as some performance results

for our LDPC decoder. Finally, chapter 6 discusses how a memory interface was

developed for off chip DRAM on our development board, and also how Kansas

Lava could interface to this memory.

1.2 Graduate Work

In this section, I will describe the work I’ve done as a graduate student. I

started my Master’s degree in the Fall of 2008. During this semester, I taught

two sections of EECS128: Foundations of Information Technology as a gradu-

ate teaching assistant. This class is a service course for non-engineering majors.

During this time I also took classes in digital communications and digital sig-

nal processing to prepare for my work with Dr. Erik Perrins on the High-speed

Forward Error Correction (HFEC) project.

In the Spring of 2009, I took a functional programming class with Dr. Andy

Gill and a software defined radios class with Dr. Gary Minden. Also, during

this semester I started working as a graduate research assistant on the HFEC

project. During this time I began writing a paper on the implementation of a

Viterbi decoder using the functional programming language Haskell for the Inter-

national Telemetering Conference (ITC). Implementing the Viterbi algorithm in

Haskell was the first step towards using Kansas Lava to implement error correcting

circuits. This project is discussed further in chapter 2.
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In the Fall of 2009, I took a class in network routing architectures and a class in

error correction coding. Also, in October of 2009, I attended the ITC conference

in Las Vegas, and presented my paper on the Viterbi algorithm. It was also during

this time that I began working with Dr. Andy Gill on LDPC in Kansas Lava.

In the Spring of 2010, I took a class in implementing functional programming

languages and a class in computer graphics. I continued working with Dr. Gill

on the LDPC project. While prototyping the LDPC decoder, I extended dif-

ferent matrix representations in our Haskell Sized Types library. Some of my

contributions to the LDPC decoder are discussed in chapter 4. Also, as a part of

the CSDL lab, I attended the Trends in Functional Programming conference in

Norman, Oklahoma.

In the Fall of 2010 and Spring of 2011, I enrolled in Master’s thesis hours, and

worked on my thesis while working on the HFEC project. In particular, I worked

on testing our LDPC implementation on FPGA hardware. Our testing methods

and the results of these tests are discussed further in 5. I also worked on imple-

menting a reliable DRAM interface for the FPGAs on our Wildstar 5 development

board. This DRAM interface is discussed in 6. During this semester a paper de-

tailing the implementation of an LDPC decoder on an FGPA [8] was accepted

to the IEEE Symposium on Field-programmable Custom Computing Machines

(FCCM). Figures 4.1 and 3.1 were adapted from this paper with permission from

the primary author, Dr. Andy Gill.
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Chapter 2

Viterbi Decoder

This section discusses a Haskell implementation of a Viterbi decoder. The

contents of this section came from a paper [2] which I wrote and presented at the

International Telemetering Conference in Las Vegas in 2009. This project served

to better familiarize myself with Haskell and also prepare to implement a Forward

Error Correction decoder in Kansas Lava. Ultimately, we decided to implement

LDPC first in Kansas Lava, but this proved to be a good introduction to Error

Correction Coding and Haskell.

2.1 Background Information

Forward error correction(FEC) codes allow a receiver to correct errors in a

received bit sequence by introducing parity bits into the transmitted signal. FEC

codes are commonly used in wireless communications and offer benefits including

the ability to provide reliable communication at very low signal-to-noise ratios.

The motivation behind this implementation is a telemetry application, and as

such, future telemetry systems will used trellis-based demodulators that will re-

quire an FEC decoder.
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This chapter focuses on one type of FEC code: convolutional codes (CC).

Specifically, we focus on the Viterbi algorithm, a decoding algorithm for convo-

lutional codes [14, Ch 12]. This chapter is the first step in a larger project, to

implement the CC decoder on field-programmable gate array (FPGA) hardware.

Traditionally, a software model is first implemented in an imperative programming

language such as MATLAB or C++. This model can later be used for equiva-

lence checking with the hardware implementation. However, in general, none of

the coding done on the software model is reuseable in the hardware implementa-

tion. The hardware implementation is usually written in a hardware description

language such as VHDL1, which is very different syntactically and semantically

from an ordinary programming language.

In this paper, we discuss a Viterbi algorithm implementation in the functional

programming language, Haskell. Functional programming languages offer many

benefits over imperative languages like C or MATLAB. Functions in Haskell are

more like mathematical expressions than a list of steps for the computer to it-

erate through. Functions can be passed as arguments very easily and neatly.

These properties make Haskell appealing as a hardware description language as

well. Chapter 3 discusses how Kansas Lava draws on these properties, and oth-

ers, to effectively describe digital circuits in Haskell. Haskell has a library called

QuickCheck available that simplifies and automates equivalence checking [4]. So,

designing our software model in Haskell and the hardware description in Lava

will allow us to easily check the hardware implementation for correctness. Ad-

ditionally, future research may include methods of transforming normal Haskell

functions into Lava.

1VHSIC (Very High Speed Integrated Circuits) hardware description language
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In summary, our contributions are as follows:

• We implement the Viterbi algorithm in the Haskell programming language.

• We investigate the advantages and caveats of implementing the Viterbi al-

gorithm in Haskell.

• We compare bit error rate (BER) performance of our implementation with

a known implementation to give evidence of correctness.

2.2 Viterbi Algorithm

The Viterbi algorithm is a decoding algorithm for convolutional codes [14, Ch

12]. A simple block diagram of the system used to simulate the algorithm is pre-

sented in Figure 2.1. The simulation program first generates a block of 4096 bits

and encodes the bits using a rate 1/2 (5,7) convolutional code (CC) encoder [14, Ch

12]. The encoded bits are then modulated using binary pulse-amplitude modula-

tion (PAM), essentially just turning them into antipodal bits(+/-1). The mod-

ulated data are then sent through an additive white Gaussian noise (AWGN)

channel. Finally, the noisy data are supplied as input to the soft decision Viterbi

algorithm (SDVA) decoder which, by definition, takes antipodal data as input and

outputs decoded bits. Further details of the simulation process are included in

the Performance Validation section.

BPAM 
ModulatorCC Encoder AWGN 

Channel
SDVA 

Decoder

{0,1} {0,1} {1,-1} {float} {0,1}

Tx Bits Rx Bits

Figure 2.1. Block diagram of Viterbi algorithm simulation.

The Viterbi algorithm is implemented in two steps. First, we generate a trellis

from the received bits. An example trellis is shown in Figure 2.2. At any point in
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the transmission, there are four possible states. Each dot corresponds to a state.

Each edge corresponds to a state transition, or branch. Each branch is assigned

a branch metric, which is related to the Euclidean distance between the branch

state and the last transmitted symbol.

00 11 10 10

• •

UUUUUUUUUUUUUUUUUUUUU • • •

• • •

KKKKKKKKKKKKKKKKKKKKKKKK • •

• • • • •

• • • •

iiiiiiiiiiiiiiiiiiiii •

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 2.2. Viterbi Algorithm Trellis

The equation we used to calculate the branch metric is simple:

BM(rr, bb) = (r0 − b0)2 + (r1 − b1)2 (2.1)

= r20 − 2r0b0 + b20 + r21 − 2r1b1 + b21

= �
�r20��−2r0b0 +�

�b20 + �
�r21��−2r1b1 +�

�b21 (2.2)

≡ r0b0 + r1b1. (2.3)

In (2.1), rr corresponds to the received symbol while bb corresponds to the

branch symbol, which is dependent on the convolutional encoder used. In (2.2), all

scalar terms (including −1) are cancelled out. We are able to simplify the calcula-

tion because we are not concerned with finding the actual value for Euclidean dis-

tance. Properties of equality state that argmin(a×x+b, a×y+b) == argmin(x, y).
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Assuming that there is no noise, for values of r and b between -1 and 1, the branch

metric will be between -2 and 2. If rr = bb, then the branch metric will be 2.

Likewise, if r0 = −b0 and r1 = −b1, the branch metric will be −2. Thus, the

minimum Euclidean distance in (2.1) corresponds with the maximum correlation

in (2.3).

Each state in the trellis contains an ordered pair of Floating point numbers,

which represent the path metric (λ) for each branch entering the state:

λnew = λprev + r0b0 + r1b1. (2.4)

The path metric at any state is a cumulative value representing the path of

minimum distance to that state. Remember, to minimize distance, we maximize

the branch metric. Thus, λprev is simply the path metric of the previous state,

which is equal to the maximum value in the ordered pair at the previous state. The

second part of the path metric equation is the branch metric derived in Equation

(2.3).

Once the trellis is generated, the next step is to find the survivor path. The

survivor path is the path with minimal Euclidean distance (and maximum path

metric). To find the survivor path, we start at the end of the transmission and

find the branch with the highest path metric. We then follow that branch to

its previous state. At this state, we once again pick the path with the highest

path metric and follow that branch to it’s previous state. This process continues

until we reach the starting state. In Figure 2.2, the solid black line represents the

survivor path. The branch symbols for that path are includeded at the top of the

figure. The Viterbi algorithm is discussed in much further detail in [14, Ch 12].
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2.3 Haskell Implementation

Traditional programming languages such as C or Java are considered imper-

ative languages. Algorithms are expressed in an iterative fashion. Functional

programming languages, like Haskell, express algorithms more as mathematical

expressions than as lists of steps [16]. Normal Haskell functions and variables have

no side effects. In computer science, a side effect is a change of state or an in-

teraction with the outside world. This means that all functions are deterministic:

the output is dependent only on the input. Also, variables do not change. In an

imperative language a variable is a label for a block of memory or the value stored

in that block of memory. In Haskell, a variable is a label for some value. This

means that Haskell variables do not actually vary at all! Unsurprisingly, functions

are a very important part of functional programming. Functions are values just

like variables. A function can have another function as input or output. While all

of this may seem unnatural at first to the C or MATLAB programmer, it allows

for higher levels of abstraction and much more concise code. An example of a

Haskell function for calculating the branch metric is presented below:

ed :: (Float,Float) -> (Float,Float) -> Float

ed (x1,y1) (x2,y2) = x1*x2 + y1*y2

First, the type of the function is given. Function types are listed in order from

the first argument to the last argument followed by the type of the output. The

Euclidean distance function, ed, accepts two-tuples as arguments, each containing

two floating point numbers, and returns a floating point number. A tuple is a data

structure similar to a list with a few exceptions. A list in Haskell can only contain

elements of a single type, while a tuple can contain elements of different types.

Also, a list can be of variable length, while the number of elements in a tuple must
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be known. In this case, each tuple contains a pair of values. The line after the

type contains the actual function. We simply multiply the x and y values from

the two ordered pair inputs and sum the results. This function, ed, is used to

calculate the branch metric discussed in the previous section.

Haskell has a built-in type called Array, which can be used to create indexed

multi-dimensional arrays. Haskell includes functions to get/update elements of an

array. However, for this project we wanted additional functionality. We wanted

to be able to use many of the matrix operations such as reshape, cross product,

add, and subtract that are available in MATLAB. So we created a matrix mod-

ule including a new type called Matrix and wrote functions that performed these

operations on our new data structure. For this project, we used an early imple-

mentation of the Matrix library that is included in the sized-types [9] Haskell

package which is used extensively in Kansas Lava. The current Matrix library

contains all of the functionality included here, but also much more functionality

making matrices easier to work with. The following definition of newtype Matrix

contains a ”boxed up” two-dimensional Array:

newtype Matrix a = Matrix (Array (Int,Int) a)

newtype is a keyword in Haskell used to declare a new data type. In this case,

we are building a new data type called Matrix which can contain elements of

any type. The pair, (Int,Int) correspond to row and column indices in a two-

dimensional array. In our Haskell implementation of the Viterbi algorithm, the

trellis is represented as a 4 × N matrix of ordered pairs, where N is the number

of symbols in the received data. Each row in the matrix corresponds to one of

the four states, and each column corresponds to a symbol. Each element contains

the path metric data at that state. An example path metric matrix is presented

10



below:

(Just 2.0,Nothing) (Just 0.0,Nothing) (Just 0.0,Just (-2.0)) (Just 0.0,Just 2.0)

(Just (-2.0),Nothing) (Just 4.0,Nothing) (Just 0.0,Just (-2.0)) (Just 0.0,Just 2.0)

(Nothing,Nothing) (Just (-2.0),Nothing) (Just 2.0,Just 0.0) (Just (-2.0),Just 8.0)

(Nothing,Nothing) (Just (-2.0),Nothing) (Just 6.0,Just (-4.0)) (Just 2.0,Just 4.0)

This matrix was generating using the four symbol sequence described in Figure

2.2. Haskell contains a built-in type called Maybe which is essentially an optional

value. A value of type Maybe Float, for example, either contains a value of type

Float (called Just Float) or Nothing. The Maybe type is discussed further in

[16]. The Maybe type was used in the Viterbi algorithm to denote invalid branches

in the first two symbols. The first column in the matrix above corresponds to the

states at t = 1 in the trellis in Figure 2.2. The Nothing values correspond to

states which have zero or one branch entering them.

The vaTrellis function is presented below:

vaTrellis :: Matrix Float -> Matrix ((Maybe Float),(Maybe Float))

vaTrellis rx = (Matrix a)

where a = array ((0,0),(3,un-1))

$[((x,0), (bm1 x 0,Nothing)) | x <- [0,1]] ++

[((x,0), (Nothing,Nothing)) | x <- [2,3]] ++

[((x,1), (((bm1 x 1) ‘mAdd‘ p1 x 1),Nothing)) | x <- [0..3]] ++

[((x,y), (((bm1 x y) ‘mAdd‘ p1 x y),(bm2 x y) ‘mAdd‘ p2 x y))

| y <- [2..un-1], x <- [0..3]]

bm1 x y = Just $ ed (list2Tuple (getRow bs (l2r@@(x*2,0)))) (list2Tuple (getRow rxDat y))

bm2 x y = Just $ ed (list2Tuple (getRow bs (l2r@@(x*2+1,0)))) (list2Tuple (getRow rxDat y))

p1 x y = max (fst (a!(l2r@@(2*x,0) ‘div‘ 2,y-1))) (snd (a!(l2r@@(2*x,0) ‘div‘ 2,y-1)))

p2 x y = max (fst (a!(l2r@@(2*x+1,0) ‘div‘ 2,y-1))) (snd (a!(l2r@@(2*x+1,0) ‘div‘ 2,y-1)))

un = numRows rxDat

xDat = matReshape rx (numRows rx ‘div‘ 2) 2

l2r = genL2R gcc

bs = matMap antip $ genBS gcc

11



The vaTrellis function accepts a list of received symbols in the form of a

1 × 2N matrix of floating point numbers, and outputs a 4 × N Matrix of type

(Maybe Float, Maybe Float) whereN is the number of transmitted (2-bit) sym-

bols. Haskell allows the programmer to include a where clause containing defin-

tions of local functions and variables. In the code above, the where clause includes

the majority of the functionality. The variable a is defined as the array inside the

matrix that is returned by the function. The first line array ((0,0),(3,un-1))

includes the array bounds. The lower bounds are (0,0) and the upper bounds

are (3,un-1) where un is equal to the number of symbols in the transmission.

The next four lines build the contents of the array. The contents of an array are

stored in a list where each element is of the form ((idx,idy),v)) where idx is

the column index, idy is the row index, and v is the value stored in that element.

To build this list, we use a series of Haskell list comprehensions, which are simi-

lar to set comprehensions (or set-builder notation) in mathematics. A complete

explanation of Haskell list comprehensions is beyond the scope of this paper. We

encourage the reader to read the appropriate section in [16] for more information.

Suffice it to say that a list comprehension is a syntactic shortcut for building a

list from one or more lists. In this case, we are building a list of matrix elements

from lists of row and column indices. After a is defined, we define a series of

helper functions which are used to get the branch metric and path metric data.

bm1 and bm2 are used to calculate the branch metric for even and odd branches

respectively. The type of the bm functions is given below:

bm :: Int -> Int -> Maybe Float

The functions accept an x and y index for a state in the trellis and calculates

the branch metric data at that state. The functions p1 and p2 determine which

12



path metric (referred to as λprev in the previous section) to use at a given state.

Their type is the same as the bm functions. They accept an x and y index for a

state and return the maximum value of the previous state. rxDat reshapes the

input data (a single column matrix) into a two column matrix so that there is one

2-bit symbol on each row. l2r generates a list of left-to-right indices that are used

to determine a branch’s left index, given its right index. bs generates antipodal

branch state data.

After the trellis is generated, the next step is to determine the survivor path.

We wrote a function that accepts a matrix generated by the vaTrellis function

and outputs decoded bits. That function is called getSym:

getSym :: Matrix (Maybe Float, Maybe Float) -> Int -> [Int]

getSym m y = flatten $ reverse $ getSym’ ss m y

where possSS = getCol m y

ss = foo possSS

getSym’ x m y

| y >= 0 = issueBS x (m@@(x,y)) : getSym’ (st x (m@@(x,y))) m (y-1)

| otherwise = []

The function getSym relies on three helper functions: foo, st, and issueBS. The

type of foo is given below:

foo :: [(Maybe Float, Maybe Float)] -> Int

This function accepts a column from the trellis and returns the index of the row

containing the highest value. This is used to determine the starting state in the

last column of the trellis (the first symbol to be decoded).

The type of st is given below:

st :: Int -> (Maybe Float,Maybe Float) -> Int

13



st takes a current state (an Int) and an ordered pair containing path metric data,

and outputs the next state. This function is used to move from right to left in

the trellis, following the survivor path.

The type of the function issueBS is given below:

issueBS :: Int -> (Maybe Float, Maybe Float) -> [Int]

This function takes a current state and an ordered pair of path metric data, and

outputs the branch state. The branch state is the decoded bit(s) and is dependant

on the convolutional encoder used. In the getSym function, we use the where

clause to define some functions and variables used in main function definition. The

variable possSS contains the last column in the trellis. The variable ss determines

the starting state by running foo on possSS. Finally, getSym’ combines all of the

functions discussed above to move from right to left in the trellis, generating a list

of decoded bits. The type of getSym’ is included below:

getSym’ :: Int -> Matrix (Maybe Float, Maybe Float) -> Int -> [[Int]]

The first argument to getSym’, x, is the row index of the current state. The next

argument is the trellis matrix, and the final argument, y, is the column index

of the current state. There are two things that must be considered before the

result of getSym’ is output to the user. First, since getSym’ is recursing from

the beginning to the end of the data transmission, we must reverse the decoded

bit sequestion. Seond, the function returns a list of lists of Int because issueBS

returns the decoded bits for each symbol in the form of a list. Even though the

rate 1/2 convolutional code only has one decoded bit per 2-bit symbol, other

convolutional encoders may have multiple bits. Thus, we return a list of bits. To

solve these two problems we call the built-in function reverse to reverse the bit
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sequence returned by getSym’ and we call the function flatten which turns a

list of type [[Int]] into a list of type [Int].

The two functions vaTrellis and getSym make up the majority of our Viterbi

algorithm implementation in Haskell. By calling vaTrellis on a column matrix

of encoded data, and then calling getSym on the trellis data structure, we are able

to decode a sequence of convolutionally encoded bits.

2.4 Performance Validation

We used simulation to measure algorithm correctness. In the simulation, a

rate 1/2 (5,7) convolutional code was used with 4096 bit codewords. We ran the

simulation using input data with energy per bit to noise power spectral density

ratios (Eb/N0) of 3dB to 6dB in 0.5dB increments. For each Eb/N0 value, we ran

the simulation until at least 25,000 bit errors were recorded. Results are shown

in Figure 2.3. This bit-error rate (BER) curve matches the curve presented

in [12, Ch 11], giving confidence that our implementation is correct.

2.5 Lava Implementation

The final goal of this project was to implement a Viterbi decoder on a field-

programmable gate array (FPGA). The original plan was to iteratively translate

the Haskell implementation of the Viterbi decoder to Kansas Lava. For various

reasons, I went on to work with my advisor on the LDPC decoder discussed in

chapter 4. Independently, two more implementations of the SDVA arose. An-

other student, Brett Werling, implemented the SDVA in VHDL directly. Also,

Ed Komp, an engineer working in our lab implemented the algorithm in Kansas
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Figure 2.3. Bit error rate as a function of Eb/N0 of Rate = 1/2
convolutional code.

Lava. Comparisons between the two showed similar performance. While the plan

of iteratively stepping from a pure Haskell implementation to a Kansas Lava im-

plementation was not used for this project, it was used to great success in the

implementation of the LDPC decoder discussed in chapter 4.
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Chapter 3

Kansas Lava

This section contains a high-level description of Kansas Lava and examples

of the Kansas Lava design pattern. Some contents from this chapter, including

figure 3.1 and the counter example, were adapted from a paper [8] in which I was

a contributing author.

3.1 Description

Functional programming provides a convenient host for hardware description.

There are several parallels between functional programming and hardware de-

sign [18]: the stream idiom in functional programming mirrors synchronous cir-

cuits in hardware, functional programmers and hardware designers both take a

black-box approach to components in that components (or functions) are often

considered in terms of their inputs and outputs, a functional program can provide a

macro language on top of hardware description languages like VHDL and Verilog.

There have been several uses of Haskell in providing Domain Specific Languages

(DSLs) for hardware description. Historically, these include: Chalmers Lava [3]

17



which focuses on verification of circuits, Xilinx Lava [19] which focuses on Xilinx

FPGA circuit layout, ForSyDe [17] which focuses on modeling systems and the

connections between systems, and Hydra [15] which was one of the first attempts

at modeling hardware using functional programming. Kansas Lava is a flavor of

lava which was designed with the synthesis of complex circuits in mind and uses

static types to describe communication between components.

Haskell Language

Kansas Lava Language

Signals

KLEG

VHDL

KLEG
Optimizer

Debugging
output

ModelSim

XST

Optional
Haskell
Model

Kansas Lava
ImplementationSignals

Data
Generator

Testbench
Generation

VCD
(etc)

Result
Verifier

Graph
Capture

Figure 3.1. KansasLava Architecture

Kansas Lava provides a dual shallow and deep embedding [10] which allows for

software simulation (in GHCi) and netlist generation through a technique called

reification [7]. Figure 3.1 describes the common Kansas Lava design paradigm.
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This paradigm is as follows. First, A Haskell model of the desired algorithm

is developed. This model can later be used to verify correctness of the Kansas

Lava implementation. Additionally, an iterative process can be used to develop

versions of the algorithm that are closer and closer to the final synthesizable

version. In fact, this is exactly how the LDPC decoder described in chapter 4

was developed. There were actually 17 versions of the decoder, from a straight-

forward pure Haskell model to the final, efficient, hardware implementation. After

the Kansas Lava implementation and optional Haskell model have been developed,

a data generator can be developed in Haskell to provide test data. Kansas Lava

provides built-in functions to generate Signals (streams) of data from the common

Haskell List type. These signals can be provided as input to the Kansas Lava

implementation for a cycle-accurate simulation inside GHCi. The output signals

of the simulation can then be compared to the output of the Haskell model to

verify correctness. An example of one such testing infrastrucutre is discussed

further in chapter 4. Alternatively, the input and output signals can be written to

a VCD file for waveform analysis. After the developer is satisfied with the results

of the software simulation, they may choose to generate a netlist output. This

netlist can then be used to generate VHDL code that can be simulated in a tool

like ModelSim or synthesized to hardware.

3.2 Examples

Kansas Lava contains a type class, Signal, which supports combinitorial and

sequential circuits through types called Comb and Seq respectively. An additional

type, called HandShake. provides a reliable mechanism for communication between

sub-components of a larger circuit. First, we will explore the simplest of these
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three types, Comb.

halfAdder :: (Comb ~ sig) => sig Bool -> sig Bool -> (sig Bool, sig Bool) 1

halfAdder x y = (s, c) 2

where s = (x ‘xor2‘ y) 3

c = (x ‘and2‘ y) 4

Above is a simple half-adder circuit defined in Kansas Lava. The circuit is

defined as a Haskell function, and the first line of any Haskell function lists the

type of the function. In this case, (Comb ~ sig) indicates that sig is an alias

for a Combinatorial value. The portion of the type signature after the => indicates

that the circuit accepts two Boolean Combinatorial inputs and outputs a tuple

containing two Boolean Combinatorial outputs. Next, we can use two half-adders

to construct a full-adder.

fullAdder :: (Comb ~ sig) => sig Bool -> sig Bool -> sig Bool -> (sig Bool, sig Bool) 1

fullAdder x y c_in = (s_out, c_temp1 ‘or2‘ c_temp2) 2

where (s_temp, c_temp1) = halfAdder x y 3

(s_out, c_temp2) = halfAdder s_temp c_in 4

The fullAdder function above uses halfAdder, as defined previously, to build

a full-adder. In the fullAdder function, we’ve added a carry input called c_in.

This is indicated in the additional sig Bool on the first line, and by c_in on

the second line. Next, Haskell can be used to construct a truth table for our

fullAdder circuit.

> [ (x,y,cin,fullAdder x y cin)

| x <- [low,high], y <- [low, high], cin <- [low, high] ]

[(0,0,0,(0,0)), (0,0,1,(1,0)), (0,1,0,(1,0)),

(0,1,1,(0,1)), (1,0,0,(1,0)), (1,0,1,(0,1)),

(1,1,0,(0,1)), (1,1,1,(1,1))]
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The first two lines above is the input to the GHCi interpreter. Both of these

would ordinarily be entered on a single line, but they have been split to better

fit on the page of this dicument. These two lines form a list comprehension.

As mentioned in chapter 2, list comprehensions are a common type of syntactic

sugar used to construct lists in Haskell. A full explanation is included in [16].

The syntax details are not important, but we are constructing a list containing all

possible combinations of inputs to the fullAdder circuits and listing those inputs

with the circuit outputs. In other words, we are constructing a truth table. The

output of this function (the truth table) is included on the three lines following

the input to the interpreter. This is a simple example, but it is important to

note that this process of constructing large systems (programs) from small blocks

(functions) is pervasive in functional programming. It is also worth noting that

a Kansas Lava circuit is a Haskell function, and therefore can use many of the

abstractions available to standard Haskell functions.

The next example is a simple sequential circuit:

counter :: (Rep a, Num a, Clock clk, CSeq clk ~ sig) => sig Bool -> sig Bool -> sig a 1

counter restart inc = loop 2

where reg = register 0 loop 3

reg’ = mux2 restart (0,reg) 4

loop = mux2 inc (reg’ + 1, reg’) 5

In this case, the first line of the code block indicates that the output type is

both Representable in hardware and Numeric. Representable types include most

fixed length integer types (signed and unsigned), boolean values, and tuples con-

taining these types. Second, we indicate that this is a Sequential circuit with

CSeq clk ~ sig. We have two sequential Boolean inputs and a single sequential

output. Instead of generating a truth table, we can execute the circuit from GHCi

with some sample input to see if we get the expected output.
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> counter low (toSeq (cycle [True,False])) :: Seq U4

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 ...

low is a function which outputs a Boolean Signal that is always false (or low).

Here, we are setting the restart input to low which will cause the counter to never

restart, unless it overflows. toSeq is a function which takes a list of Representable

values, and outputs a stream of values. This function can be thought of as a bridge

between Haskell types and Kansas Lava types. In this case, we are simple cycling

the inc input between True and False. The inc input determines whether the

output increments on this clock cycle. Finally, we must define a type for our

output. In this case, we choose a Sequential Unsigned output that is 4 bits wide.

The output, included on the second line, indicates that the counter is incremented

every other clock cycle. This matches the expected output.

Now that the circuit has been tested in software, synthesizable VHDL code

can be generated. This code can then be simulated in ModelSim or synthesized

for running on an FPGA. Given that the system for generating a netlist is always

available, there is another issue that must be dealt with. In a Haskell function,

arguments are unnamed and ordered. Conversely in a VHDL circuit, ports are

named and unnordered. We could generate names automatically, but even small

code changes can cause problems with this approach. Additionally, the association

between a Kansas Lava function argument and a VHDL port becomes unclear.

Kansas Lava has employed a solution in the form of a functional programming

construct called a monad. A monad is a construct used to express computation.

The details of monads are beyond the scope of this document and are discussed

further in [16]. In this case, the Fabric monad can be thought of as a data

structure that is used to describe the interfaces to a Kansas Lava circuit.
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There are several functions defined which provide an interface to Fabric. A

subset of these are included below:

inStdLogic :: String -> Fabric (Seq Bool)

inStdLogicVector :: (Size x) => String -> Fabric (Seq (Unsigned x))

outStdLogic :: String -> Seq Bool -> Fabric ()

outStdLogicVector :: (Size x) => String -> Seq (Unsigned x) -> Fabric ()

inStdLogic and inStdLogicVector each name an input, while outStdLogic

and outStdLogicVector each name an output and return a Fabric. This interface

can be used to build a Fabric for the counter example discussed above.

counterFabric :: Fabric ()

counterFabric = do

restart <- inStdLogic "restart"

inc <- inStdLogic "inc"

let cir = counter rst inc :: Seq U4

outStdLogicVector "count" ((coerce) cir)

counterFabric is a function which builds a Fabric for the counter circuit.

In the code above, inStdLogic is used to name two binary inputs “restart”

and “inc”. Next, these named inputs are provided to the counter function.

Lastly, outStdLogicVector is used to name the output of our circuit “count”.

The coerce function is simply used to coerce from the Unsigned type to the

StdLogicVector type. This step is necessary because Kansas Lava circuits can

only have inputs of type StdLogicVector or StdLogic. Next, VHDL code can

be generated from the Fabric.

We will use two functions reifyFabric and writeVhdlCircuit to generate

VHDL code for our circuit. The type for reifyFabric and writeVhdlCircuit

are as follows:

reifyFabric :: Fabric () -> IO Circuit

writeVhdlCircuit :: [String] -> String -> FilePath -> Circuit -> IO ()
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reifyFabric takes a Fabric and returns an IO Circuit. IO is another monad

which, unsurprisingly, provides I/O to Haskell programs. For our purposes, IO

can be thought of as a box in which we are storing a Circuit. The Circuit is a

datastructure which is essentially a netlist for our circuit. writeVhdlCircuit has

four arguments. The first is a list of optional arguments, which can be ignored for

now. The second is a name for the generated VHDL entity. The third is a file

name for the output, and the final argument is the Circuit for which we want to

generate VHDL.

main = do

k <- reifyFabric counterFabric

writeVhdlCircuit [] "counter" "counter.vhd" k

The code sample above generates VHDL for the counter function. At this

point, the process used to go from a Kansas Lava function to VHDL should be

clear. First, we create a wrapper for our function called a Fabric. Next, we use

reification to generate a netlist for our function called a Circuit. Finally, we can

generate VHDL code from the Circuit.

...

entity counter is

port(rst : in std_logic;

clk : in std_logic;

clk_en : in std_logic;

inc : in std_logic;

restart : in std_logic;

count : out std_logic_vector(3 downto 0));

end entity counter;

architecture str of counter is

signal sig_2_o0 : std_logic_vector(3 downto 0);

...

signal sig_6_o0 : std_logic_vector(3 downto 0) := "0000";

begin

sig_2_o0 <= sig_3_o0;

sig_3_o0 <= sig_4_o0 when (inc = ’1’) else
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sig_5_o0;

sig_4_o0 <= std_logic_vector((unsigned(sig_5_o0) + "0001"));

sig_5_o0 <= "0000" when (restart = ’1’) else

sig_6_o0;

proc14 : process(rst,clk) is

begin

if rst = ’1’ then

sig_6_o0 <= "0000";

elsif rising_edge(clk) then

if (clk_en = ’1’) then

sig_6_o0 <= sig_3_o0;

end if;

end if;

end process proc14;

count <= sig_2_o0;

end architecture str;

VHDL for our counter example is included above. It is apparent that there

are some redundnant assignments in the generated code. A future version of

Kansas Lava will optimize away these redundant statements. In our experiences,

the synthesis tools are quite good at catching these cases and optimizing them

away, so it has not been a high priority.

3.3 Retrospective

In my opinion, Kansas Lava can benefit hardware developers in a number of

ways:

• The type system: The Haskell type system tends to catch a lot of type errors

which can make it past VHDL compilers. Additionally, types can be easily

constructed which describe a control structure or communication protocol.

VHDL does allow for user defined types, but the Haskell type system is

much more powerful.
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• The shallow embedding: Being able to test circuits using the GHCi inter-

preter and being able to construct test data using normal Haskell functions

has been an invaluable time saving tool to our design efforts.

• The deep embedding: One aspect of Kansas Lava which was not discussed in

this chapter, but which was used in optimizing the LDPC decoder discussed

in chapter 4 is that the netlist can be analyzed to determine the critical path

of a circuit which is causing the greatest delay, and lowering the maximum

clock rate for the circuit.

• The benefits of a high-level language: It is common knowledge in computer

science that high-level programming languages generally make the program-

mer’s job easier, though sometimes at the cost of performance. The same

can be said of Kansas Lava and traditional hardware description languages

like VHDL. However, just as is the case with Haskell, steps can be taken to

mitigate the associated performance loss. In fact, Chapter 4 discusses one

example of how Kansas Lava has already been used to meet the real-world

performance requirements of a complex algorithm. Also discussed in this

chapter is how an inefficient and naive implementation can be optimized in

Kansas Lava.

Naturally, there are still a few issues with hardware development:

• Haskell as a host: Currently, the developer must be an exptert in Haskell

development to efficiently use Kansas Lava. Convincing developers in indus-

try to learn a programming paradigm that is fundamentally different from

anything they’ve probably seen is a difficult proposition.

• VHDL as an intermediary: This subject is discussed further at the end of
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chapter 6. It is easy to instantiate a Kansas Lava module inside a larger

VHDL design, but the reverse is not true. There is still a fair amount of

work to be done to allow a VHDL entity to be instantiated inside a Kansas

Lava circuit.

• The penalty of abstraction: The metric example demonstrated how a user

could very easily write an inefficient implementation of a seemingly straight-

forward algorithm. Additionally, the Kansas Lava team is tasked with en-

suring that primitives behave the same way in Kansas Lava as they do when

realized in hardware. Andrew Farmer discusses some work he has done to

verify consistency between the shallow and deep embedding in [5] and he has

extended these efforts since this publication. This is still a non-trivial task

considering that even HDL simulators like ModelSim sometimes produce

different results than hardware.
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Chapter 4

Low-Density Parity Check Codes

This chapter contains a description of LDPC codes and the LDPC decoder

algorithm we are using for the HFEC project. The implementation of the decoder

was discussed in a paper [8] in which I was a contributing author. The equations

used in this chapter were adapted from this paper. I was involved in the initial

prototyping of the decoder in Haskell as well as the development of some of the

Kansas Lava primitives. In the final section of this chapter, I discuss a portion

of the decoder, and contrast a naive Kansas Lava implementation, an optimized

Kansas Lava implementation, and a native VHDL implementation.

4.1 Description

Low-Density Parity Check (LDPC) codes are a type of forward error correct-

ing code that were invented by Robert G. Gallager in the 1960’s [6]. LDPC codes

belong to a subset of error correcting codes called block codes. Block codes are

distinct from the convolutional codes discussed in chapter 2. Block codes are

generally discussed in terms of their message length k, and their codeword length
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n. A message consists of k information symbols (usually bits), while a codeword

consists of n symbols. The ratio k/n is used to describe the rate of the code.

An LDPC code consists of two matrices: a generator matrix and a parity check

matrix. The generator matrix contains k rows and n columns of bits, and is used

to generate a length-n codeword from a length-k message through a matrix-vector

multiplication. The parity check matrix contains n − k rows and n columns and

is used to check the validity of a codeword through a matrix-vector multiplica-

tion. However, these matrices are generally quite large, and until recently, LDPC

codes were too computationally complex to use in real-time systems. Because of

advances in hardware and advances in LDPC code design, LDPC codes can now

be used in real-time systems.

4.2 Decoding LDPC Codes

We used an iterative log-likelihood decoder for our implementation. The it-

erative decoding algorithm accepts a noisy codeword as input and provides a

decoded message as output. This iterative decoding algorithm can be described

by the following three equations [14]:

For each (m,n) where A(m,n) = 1:

η
[l]
m,n = −2 tanh−1

(∏
j∈Nm,n

tanh

(
η

[l−1]
m,j −λ

[l−1]
j

2

))
For each n:

λ
[l]
n = λ

[0]
n +

∑
m∈Mn

η
[l]
m,n

For each n:

ĉ
[l]
n = 1, ifλ

[l]
n > 0, otherwise = 0.

A above refers to the parity check matrix mentioned in the previous section.

η refers to a matrix that contains the same number of elements as the parity
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check matrix. However, each element is a soft value. η is first initialized to 0’s

where A(m,n) = 1. λ can be thought of a vector of probabilities. Each element

in λ corresponds to a symbol in the codeword and is initialized to the recieved

codeword.

For each decode iteration, η is updated according to the equation above. Next,

λ is updated according to the equation above. Finally, ĉ, a vector of bits, is ob-

tained by sending λ through a sign function which operates as described above.

At the end of each iteration, a parity check is performed: if A ∗ ĉ = 0, a valid

codeword has been found. Else, we increment the iteration counter and repeat.

The algorithm continues until either a valid codeword is found, or a maximum

number of iterations has been reached. The maximum number of iterations is

known before decoding begins. In our case, we used 200 iterations as our maxi-

mum. So, if after 200 iterations, a valid codeword has not been found, a decoding

failure is declared, and we output the message packet with errors.

4.3 Our Decoder Design

In the case of our HFEC project, we are using an LDPC code that is a part

of a family of codes called AR4JA codes. These codes were developed at NASA’s

JPL [1]. These codes have a few properties which ease implementation. First, the

codes are considered regular codes. This means that all of the information bits in a

codeword are stored in-order at the beginning of the codeword. Thus, a codeword

consists of n information bits (the message) followed by m parity bits. This makes

the encoder implementation slightly easier because the information sequence can

just be stored in a register. Only the parity bits have to be calculated. This also

simplifies the decoder implementation slightly because, given a valid codeword,
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the original information sequence can be obtained by simply truncating off the

parity bits. No matrix operations are necessary. Next, and most importantly,

these codes are called block-circulant codes. This means that the parity check

and generator matrices are made up of smaller submatrices, which we refer to as

cells. Each cell consists of an all-zeros matrix, an identity matrix, or a cyclically-

shifted identity matrix. This block-circulant property will contribute greatly to

our implementation of an LDPC decoder and is discussed further below.

Our LDPC code has a message size of 4096 bits and a codeword size of 6144

bits. The code actually has an extra 1024 parity bits which we do not transmit,

resulting in a generator matrix size of 4096×7168 bits and a parity-check matrix

size of 3096×7168. Given that the η matrix contains the same number of ele-

ments as the parity check matrix, it goes without saying that a naive decoder

implementation storing the entire η matrix would never fit on an FPGA. Luckily,

the matrices are sparse, so we could use a map-like data structure to store only

the non-zero values. However, this still does not take advantage of the massively

parallel nature of FPGAs. Thus, we take a divide and conquer approach to the

decoding algorithm.

Figure 4.1(a) illustrates the LDPC decoder as a fabric. Our fabric accepts λ

(the noisy input sequence), and outputs parity bits and processed λ-deltas. We
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output delta values, instead of the updated λ because the original λ is stored when

a packet is received.

It is straightforward to see how control logic could be added around this block

to both compute ĉ, and provide the λ-deltas as feedback if the parity check fails.

The most complex part of the decoder implementation is the splitting of the LDPC

fabric. Figure 4.1(b) illustrates how the fabric can be split horizontally by initially

loading the λ values into each block in a column and combining λ-delta values

after computation has completed. Splitting vertically is not as straightforward,

because sharing occurs bidirectionally. I was involved in the early prototyping of

this design in Haskell, and was a part of the discussions during the transition to a

fully synthesizable Kansas Lava implementation. My advisor, Dr. Andy Gill, was

the primary developer of our final Kansas Lava implementation. The remaining

details of the final design are discussed further in [8].

4.4 Metric Function

The tanh and tanh−1 functions used in the calculation of λ are very expensive

operations in hardware. Either a large lookup table or a linear approximation

must be used. Additionally, the algorithm described above requires that the

input codeword first be scaled by a factor that is proportional to the signal-to-

noise ratio of the input. Thus, a hardware implementation must also contain a

signal-to-noise estimator. Luckily, there is a simplified implementation which uses

only comparators and basic arithmetic operators:
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For each (m,n) where A(m,n) = 1:

η
[l]
m,n = −3

4

(
Lmin†Mj∈Nm,n (η

[l−1]
m,j − λ

[l−1]
j )

)
min†(x, y) = sign(x) ∗ sign(y) ∗min(|x|, |y|)

The notation above indicates that the values on the right side of L M should be

combined in the same was as
∑

or
∏

. Thus,
∑

could be written as L+M. In our

case, the function min† is used to combine values. This notation is borrowed from

the notation for a catamorphism in functional programming [13].

We have the option of implementing the above function either in Kansas Lava

or directly in VHDL. Kansas Lava has the advantage that the definition will be far

more concise than a direct VHDL implementation. Additionally, since the circuit

is a Haskell function, it can be tested in GHCi directly. One advantage of using

VHDL for implementation is that the final implementation may be slightly more

efficient since workingg at a lower level allows for greater control of implementation

details, just as in software programming. Both implementations will be presented

and compared in this section.

metric :: (Size ix, Integral ix, Signed ix ~ a, Clock clk, CSeq clk ~ sig) =>

sig a -> sig a -> sig a

metric x y = (sign x) * (sign y) * (min (abs x) (abs y))

where sign x = mux2 (x .>. 0) (1, (-1))

The Kansas Lava code is presented above. As with previous Kansas Lava

examples, the first statement describes the type. In this case, we are stating

that the two inputs are Sequential Signed signals. Size ix indicates that the

signal has a fixed width, and Integral ix indicates that the signal is an integer

type. The next line contains the value returned by this function. This definition is

almost identical to the definition presened above. The sign function is not present
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in Kansas Lava (or Haskell for that matter), so we had to define it ourselves. In

this case, we used mux2, a built-in Kansas Lava function which is a two-input

multiplexer. The first argument is a Boolean function and the second argument is

a tuple containing the output when the first argument evaluates to true followed

by the output when the first argument evaluates to false. This is analogous to

an if-then-else statement in programming. In this case, sign is a function which

returns 1 in the case of a positive number and −1 in the case of a negative number.

Next, the function can be tested in GHCi.

> let a = toSeq [(-10)..10] :: Seq S8

> let b = toSeq [0..20] :: Seq S8

> metric a b

0 -1 -2 -3 -4 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ...

The first line generates a incremental Sequence of Signed 8-bit values from −10

to 10. The second line generates a Sequence of values with the same type from 0

to 20. The next line executes the metric function using a and b as inputs. We can

analyze this output mathematically to see if it matches our expected output, and

in this case it does. Next, we can generate VHDL code for this circuit. However,

during VHDL generation, we found that the min and abs functions did not have

deep embedding definitions in Kansas Lava. Here is an example of where the deep

and shallow embeddings diverge.

instance (Show a, Rep a, Num a) => Num (CSeq c a) where

(+) = liftS2 (+)

(-) = liftS2 (-)

(*) = liftS2 (*)

negate = liftS1 negate

abs = liftS1 abs

signum = liftS1 signum
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instance (Ord a, Rep a) => Ord (CSeq c a) where

max = liftS2 max

min = liftS2 min

The shallow embedding functionality is described above. The functions liftS1

and liftS2 are used to lift an ordinary Haskell function into the Lava world.

However, this method only creates a shallow embedding for the function, as there

is no way to automatically derive the functionality in VHDL. We must add the

deep embedding functionality ourselves. In this case, that is exactly what we’ve

done:

genInst :: M.Map Unique (Entity Unique) -> Unique -> Entity Unique -> [Decl]

genInst _ i (Entity (Prim "min") [("o0",_)] [("i0",xTy,x),("i1",yTy,y)])

= [NetAssign (sigName "o0" i)

(ExprCond cond

(toStdLogicExpr xTy x)

(toStdLogicExpr yTy y))]

where cond = ExprBinary LessThan (toTypedExpr xTy x) (toTypedExpr yTy y)

genInst _ i (Entity (Prim "abs") [("o0",_)] [("i0", xTy, x)])

= [NetAssign (sigName "o0" i)

(ExprCond cond

(toStdLogicExpr xTy (ExprUnary Neg (toTypedExpr xTy x)))

(toStdLogicExpr xTy x))]

where cond = ExprBinary LessThan (toTypedExpr xTy x) (toTypedExpr xTy (0 :: Integer))

genInst is a function whose type is given in the first line above. The underlying

details are complex, but it is essentially used to generate a netlist for Kansas Lava

primitives. Thus, any primitive which we wish to generate VHDL for must have

a definition inside genInst. The above examples are similar in that they both

rely on a binary expression to determine their output. The difference is that min

takes 2 arguments, while abs only takes 1 argument. The generated VHDL code

is included below:
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...

entity metric is

port(x : in std_logic_vector(7 downto 0);

y : in std_logic_vector(7 downto 0);

z : out std_logic_vector(7 downto 0));

end entity metric;

architecture str of metric is

signal sig_2_o0 : std_logic_vector(7 downto 0);

...

begin

sig_2_o0 <= sig_3_o0;

inst3 : entity lava_signed_mul

generic map (width => 8)

port map (i0 => sig_4_o0,i1 => sig_15_o0,o0 => sig_3_o0);

sig_15_o0 <= sig_16_o0 when (signed(sig_16_o0) < signed(sig_17_o0)) else

sig_17_o0;

sig_17_o0 <= std_logic_vector(-(signed(sig_12_o0))) when (signed(sig_12_o0) < "00000000") else

sig_12_o0;

sig_16_o0 <= std_logic_vector(-(signed(sig_7_o0))) when (signed(sig_7_o0) < "00000000") else

sig_7_o0;

inst4 : entity lava_signed_mul

generic map (width => 8)

port map (i0 => sig_5_o0,i1 => sig_10_o0,o0 => sig_4_o0);

sig_10_o0 <= "00000001" when (sig_11_o0 = ’1’) else

sig_14_o0;

sig_14_o0 <= std_logic_vector(-("00000001"));

sig_11_o0 <= ’1’ when (signed(sig_12_o0) > "00000000") else

’0’;

sig_12_o0 <= sig_13_o0;

sig_13_o0 <= y(7 downto 0);

sig_5_o0 <= "00000001" when (sig_6_o0 = ’1’) else

sig_9_o0;

sig_9_o0 <= std_logic_vector(-("00000001"));

sig_6_o0 <= ’1’ when (signed(sig_7_o0) > "00000000") else

’0’;

sig_7_o0 <= sig_8_o0;

sig_8_o0 <= x(7 downto 0);

z <= sig_2_o0;

end architecture str;

Again, we find that there are some redundant assignments in this code. As

mentioned in chapter 3, we intend to optimize these out of the generated code
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eventually. However, the synthesis tools seem to do a sufficient job of optimizing

them out on their own.

The above VHDL code synthesizes and provides the expected output. How-

ever, there is some inefficiency to the code. Most notably, there are two multipli-

cations which are only multiplying by either 1 or −1. So we can easily optimize

out these multiplies by using a negate instead when appropriate.

metric’ :: (Size ix, Integral ix, Signed ix ~ a, Clock clk, CSeq clk ~ sig) =>

sig a -> sig a -> sig a

metric’ x y = mux2 flipSign (-ans,ans)

where flipSign = (isPositive x) ‘xor2‘ (isPositive y)

ans = (min (abs x) (abs y))

sign x = mux2 (x .>. 0) (1, (-1))

We will call our optimized circuit metric’. To determine whether we need

to flip the sign of the output, we’ve added a function called flipSign which is

a Boolean function that uses a built-in Kansas Lava function called isPositive

which takes a Signed Signal as an argument and outputs high when the Signal

is positive and low when the Signal is low. We can simply xor the results of

the isPositive function to determine whether we need to flip the output sign.

Finally, we can use mux2 again to simply output ans or the negation of ans.

The VHDL resulting from metric’ is included below:

...

entity metric is

port(x : in std_logic_vector(7 downto 0);

y : in std_logic_vector(7 downto 0);

z : out std_logic_vector(7 downto 0));

end entity metric;

architecture str of metric is

signal sig_2_o0 : std_logic_vector(7 downto 0);

...

begin

sig_2_o0 <= sig_3_o0;
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sig_3_o0 <= sig_13_o0 when (sig_4_o0 = ’1’) else

sig_14_o0;

sig_13_o0 <= std_logic_vector(-(signed(sig_14_o0)));

sig_14_o0 <= sig_15_o0 when (signed(sig_15_o0) < signed(sig_16_o0)) else

sig_16_o0;

sig_16_o0 <= std_logic_vector(-(signed(sig_11_o0))) when (signed(sig_11_o0) < "00000000") else

sig_11_o0;

sig_15_o0 <= std_logic_vector(-(signed(sig_7_o0))) when (signed(sig_7_o0) < "00000000") else

sig_7_o0;

sig_4_o0 <= (sig_5_o0 xor sig_9_o0);

sig_9_o0 <= not(sig_10_o0);

sig_10_o0 <= sig_11_o0(7);

sig_11_o0 <= sig_12_o0;

sig_12_o0 <= y(7 downto 0);

sig_5_o0 <= not(sig_6_o0);

sig_6_o0 <= sig_7_o0(7);

sig_7_o0 <= sig_8_o0;

sig_8_o0 <= x(7 downto 0);

z <= sig_2_o0;

end architecture str;

Analyzing the VHDL code, we see that there are no longer any instances of the

lava_signed_mul entity, which is our multiplication entity for the Signed signal

type. For the sake of comparison, a version of the metric function written directly

in VHDL is included in the Appendix at the end of this document. This is the

version of the function we used in our initial design of the LDPC algorithm, and

provides results consistent with the optimized Kansas Lava design. In the final

part of this chapter, we will synthesize these the two Kansas Lava implementations

and compare their relative utilization of the on the FPGA.

Table 4.1. Device Utilization of 1024 Serially Conected Metric
Blocks

# LUTs Used Max Clock Frequency
Optimized 33837 187MHz
Original 59950 130MHz
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Table 4.1 compares the device utilization of 1024 Metric blocks which are

connected serially. This configuration was used to provide a good indicator of

the relative performance of the metric function without letting the rest of the

LDPC circuit obfuscate the results. These tests were performed on a Xilinx Vir-

tex 5vlx110tff1738-1 FPGA. In our tests, the circuit using the optimized algorithm

used about 56% of the number of LUTs as the original circuit. Additionally, the

maximum frequency for the optimized circuit was 57MHz higher (a 44% improve-

ment). This improvement in clock frequency is a result of a shorter path from

beginning to the end of the circuit. This relatively simple example illustrates the

care that must be taken when implementing even simple hardware circuits. This

issue was highlighted at the end of chapter 3. Though Kansas Lava may make

hardware development easier for functional programmers, they must still be aware

of the caveats of hardware design.
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Chapter 5

Testing Infrastructure

This chapter contains a description of the testing framework we used to test the

LDPC decoder on our development board. This testing framework was developed

by my advisor and myself. I was highly involved in the optimization efforts of

the testing framework. I also used the testing framework to test the decoder and

ultimately generate the results in figure 5.6.

5.1 LDPC Packet Format

As discussed in the previous chapter, the LDPC decoder requires, as input, a

maximum number of decoding iterations to attempt. This value could be statically

coded into the decoder. However, we wanted to have the ability to tune this

aspect of the decoder during operation. To provide this information to the LDPC

decoder, we could either add an additional input to the decoder or we could

include the maximum iterations as a header before sending our noisy codeword

to the decoder. In the end, we elected to use the header approach as there were

other benefits which will be discussed further in this section.
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data Packet d = Packet

{ packet_id :: Word8

, iter_id :: Word8

, packet_count :: Word32

, payload :: [d]

}

Above is the Haskell data type definition for our LDPC Packet. The packet

contains a 48-bit header followed by a payload. The header is very straightfowrad.

The packet_id is an 8-bit value which indicates the type of packet. This is impor-

tant as it describes the contents of the payload. Table 5.1 lists the packet_ids and

the associated payload. For packets containing noisy data, the iter_id indicates

the maximum number of iterations that should be attempted by the decoder. In

the case of an output packet from the decoder, the iter_id indicates the number

of iterations used by the decoder. The packet_count is essentially an upcounter

which can be used to determine if a packet was dropped.

Table 5.1. Packet Information
Packet Type packet_id iter_id packet_count payload

Message 0x1 N/A 512 8 bits/byte
Codeword (CW) 0x2 N/A 768 8 bits/byte
Noisy CW 0x5 max iters 12288 16 bits/symbol
Quantized CW 0x6 max iters 6144 8 bits/symbol
Successful decode 0x7 iters used 512 8 bits/byte
Failed decode 0x8 iters used 512 8 bits/byte

Since a packet decoding success or failure could occur on the last decode iter-

ation, we could not use the iter_id alone to determine decoding success. Thus,

we created two seperate packet_id values for success and failure (0x7 and 0x8

respectively). This value can be used by the receiver to handle decoder failures.

In our system, we don’t do anything in the case of a decoding failure. However,

one could imagine a system in which failed packets are retransmitted. In this case,
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the packet_count can be used to request a specific packet be retransmitted.

When testing our LDPC decoder on our FPGA development board, we quickly

found that our test program was the bottleneck in our overall testing framework.

We had the option to either optimize our Haskell code, or rewrite portions of the

test program in C. Given the simple packet format and short timeframe we had

to work with, we elected to rewrite portions of our program in C. In the end,

we developed a C program which consisted of about 800 lines of code. Table

5.2 contains a listing of which components were and were not reproduced in the

C program. As mentioned in the previous section, we have decoders written in

Haskell and Kansas Lava. Of course, from Kansas Lava, we generated VHDL

which was synthesized and loaded onto an FPGA on the Wildstar development

board.

Table 5.2. Processes in the Testing Infrastructure
Data Encode AddNoise Quantize Decode Compare

C YES YES YES YES NO NO
Haskell YES YES YES YES YES YES

We developed the C program with a similar command line interface to the

Haskell interface to make integration easier. The Makefile sample below performs

the same operation as the Haskell version discussed previously.

The command line interface is nearly identical. We elected to include optional

arguments for input and output this time, rather than just using Unix functions

to redirect stdin and stdout. This choice was made primarily for debugging

purposes during development.

Table 5.3 compares the relative performance of C and unoptimized Haskell

for each block in our test program. It is clear that the computation in either

program is dominated by the Encode operation. This is not surprising since the
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allc::

rm -f $(BITS)

mkfifo $(BITS)

$(CLDPC) --process=Data --rounds=$(ROUNDS) --output=$(BITS) &

rm -f $(ENCODED)

mkfifo $(ENCODED)

$(CLDPC) --process=Encode --rounds=$(ROUNDS) --input=$(BITS) --output=$(ENCODED) &

make addnoise

rm -f $(NOISE)

mkfifo $(NOISE)

$(CLDPC) --process=AddNoise --noise=2.18 --input=$(DATA)/$(ENCODED) --output=$(NOISE) &

rm -f $(RAWIN)

mkfifo $(RAWIN)

$(CLDPC) --process=Quantize --iterations=200 --input=$(NOISE) --output=$(RAWIN) &

rm -f $(RAWOUT)

mkfifo $(RAWOUT)

./*exe -f 30.0 $(RAWIN) $(RAWOUT)

Figure 5.1. Makefile for executing test using the optimized C Code

Table 5.3. Execution Time for Individual Blocks of Test Framework
Data Encode AddNoise Quantize

C 00:00.11 02:09.15 00:00.61 00:00.03
Haskell 00:01.33 15:55.39 02:48.42 01:12.14

encode operation is essentially a vector-matrix multiply between a 1×4096 vector

and a 4096×7168 matrix while the rest of the operations are linear in time. Even

after using the C version of our test program, we found that the system overall

was still CPU limited. We decided that the easiest solution was to encode a very

large number of packets, and store them in a file. Then these packets could be

reused in our tests by generating random noise in real-time. To verify performance

down, it was necessary to test the decoder down to a bit error rate of 10−6. To

provide a statistically sound result, it was necessary for the test to produce at

least 1000 bit errors at this bit error rate. Thus, it would be necessary to simulate

at least one billion bits. Given that each packet contains 6K bits, a sample of

one million packets would give us a large enough set of data to perform all of the

measurements we needed. After generating this data set, only the AddNoise and
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Quantize processes would need to be performed in real-time. These operations

are very fast in the C implementation, so our program was easily able to keep up

with the output of our development board.

5.2 Description of the Testing Infrastructure

BPAM 
Modulator

LDPC 
Encoder

AWGN 
Channel

LDPC 
Decoder BER TesterBit 

Generator

{0,1} {0,1} {1,-1} {float} {0,1}

4K 
packets

6K 
packets

6K 
packets

6K 
packets

4K 
packets

Figure 5.2. LDPC Test Framework

A model of our testing infrastructure is depicted in figure 5.2. At a high

level, the testing infrastructure consists of a bit generator, an LDPC encoder,

an Additive White Gaussian Noise (AWGN) block, an LDPC decoder, and a

BER tester. We implemented all of these blocks in a Haskell program which

uses a command-line interface to specify which operation will be performed and

the associated options for the selected operation. The program takes an argument

called process which determines which operation will be performed. The program

has the option to read packets from a binary file pointer and writes packets to a

binary file pointer (stdout). A simple Makefile was used to pipeline the testing

infrastructure. The Makefile redirects input and output to unix fifos (named

pipes). This pipelined Makefile system provided an easy way to allow us to take

advantage of multiple CPUs in the host system. A sample of the makefile is

included below:

The code sample above invokes the testing framework from beginning to end

using our Haskell executable. We generate message packets, encode the packets,

add noise, quantize the packets for decoding, and send the packets to the decoder
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allh::

rm -f $(BITS)

mkfifo $(BITS)

$(LDPC) --process=Data --rounds=$(ROUNDS) > $(BITS) &

rm -f $(ENCODED)

mkfifo $(ENCODED)

$(LDPC) --process=Encode --rounds=$(ROUNDS) $(BITS) > $(ENCODED) &

make addnoise

rm -f $(NOISE)

mkfifo $(NOISE)

$(LDPC) --process=AddNoise --noise=2.18 $(DATA)/$(ENCODED) > $(NOISE) &

rm -f $(RAWIN)

mkfifo $(RAWIN)

$(LDPC) --process=Quantize --iterations=200 $(NOISE) > $(RAWIN) &

rm -f $(RAWOUT)

mkfifo $(RAWOUT)

./*exe -f 30.0 $(RAWIN) $(RAWOUT)

Figure 5.3. Makefile for executing test using the unoptimized
Haskell Code

running on our test board. The method of invoking each process is very similar.

First, create a Unix FIFO for output, and then invoke the desired process. We’ve

used variables as much as possible in the Makefile to maximize modularity. There

is a companion process which acts as the BER tester. This process reads from

the final output ($(RAWOUT)) and compares the output packets to the originally

generated message packets.

[tbull@togo exec]$ make compare

/projects/fpg/data/ldpc4k --process=Compare /projects/fpg/data/Datam.4K.1M.dat Decoded.raw 1.0

[0.029108s] Packet (0,0) : (0,200) : 333 bers, 8.129883% [total: 333 bers, 8.129883%, 4096 ] #

[1.056257s] Packet (45,45) : (0,67) : 0 bers, 0.000000% [total: 2598 bers, 1.378864%, 188416 ]

[2.12255s] Packet (93,93) : (0,57) : 0 bers, 0.000000% [total: 5583 bers, 1.450039%, 385024 ]

[3.173391s] Packet (139,139) : (0,27) : 0 bers, 0.000000% [total: 7568 bers, 1.319754%, 573440 ]

[4.240439s] Packet (187,187) : (0,73) : 0 bers, 0.000000% [total: 8895 bers, 1.155123%, 770048 ]

[5.288494s] Packet (234,234) : (0,34) : 0 bers, 0.000000% [total: 10876 bers, 1.129904%, 962560 ]

A sample of the comparison output is included above. The compare process

expects as arguments two filenames and a numeric value to indicate the period,

in seconds, in which to write results to stdout. Above, the program is configured
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to send output to the console once every second (see the final argument, 1.0).

We output the packet count,number of iterations, BER for this packet, total

bit errors, BER, and total bits. Additionally, the # symbol is used to indicate a

decode failure occured in this packet. This is enough information to allow us to do

debugging in real-time and also provides the necessary information for performing

BER measurements such as those discussed in the next section.

For development, we used a Wildstar 5 development board from Annapolis

Micro. This board contains three Xilinx Virtex 5vlx110tff1738-1 FPGAs, and

uses a PCI-Express interface to communicate with the host computer. A photo

of the development board is included in figure 5.4.

Figure 5.4. Wildstar 5 PCI-Express Development Board

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

26794 tbull 25 0 26604 1252 836 R 99.9 0.0 0:27.48 basic_wrapper_d

26798 tbull 15 0 84996 7360 3612 S 3.7 0.1 0:00.93 ldpc4k

26786 tbull 18 0 55524 632 524 S 3.0 0.0 0:00.72 cldpc4k

4392 tbull 18 0 55516 488 408 S 0.0 0.0 0:00.00 cldpc4k

Figure 5.5. Output from the top command during testing

Figure 5.5 contains the partial output of the Unix top command. Using effec-

tively 100% of the time on a single CPU is the basic_wrapper_driver command

which is responsible for communication with the Wildstar board. The ldpc4k
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command is the comparison process discussed in the previous paragraph. The

remaining processes are the C code which add noise and quantize packets. All of

these processes use vary little resources compared to the communications process.

Table 5.4. Throughput in Packets/Second for Test Framework

All Tasks Noise + Quantization Only
C 7.97 48.20
Haskell 1.05 5.92

Table 5.4 compares the throughput of our decoder on the board while using

our test framework. This table indicates that our C implementation can generate

test data completely from scratch faster than the unoptimized Haskell imple-

mentation can perform only the Noise and Quantization processes while reading

encoded packets from a file. If we use the C implementation to perform only the

Noise and Quantization processes, we can run at an average of 48.2 packets/sec.

In figure 5.5, we verified that the throughput is no longer limited by the test

framework at this speed by verifying that the CPU time was being dominated by

the communication process and not by data generation. It is also worth noting

that the C implementation used less memory. Peak memory usage for the C im-

plementation was around 45MB while peak memory usage for the unoptimized

Haskell implementation was around 75 MB.

Once again, it is worth mentioning that the performance figures in this section

are not an indicator of Haskell performance in general. In fact, Haskell is capable

of producing very efficient code. The options for optimizing Haskell programs

are vast. The GHC compiler contains very good profiling tools. Additionally,

there are tools available such as HPC [11] for viewing code coverage as well as a

number of libraries containing heavily optimized versions of the built-in Haskell

data structures. We simply decided to use C where appropriate because we were
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dealing with a small program that could just as easily be expressed in an im-

perative language. In circumstances where functional programming proved more

beneficial, it would make more sense to optimize the original Haskell code.

5.3 Performance Results

We used the test framework described in the previous section to simulate the

LDPC decoder at a range of signal-to-noise levels and iteration counts. Our de-

coder contains 8-bits of quantization, uses the min† function discussed in chapter

4 and ran up to the maximum number of iterations for each packet received.
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Figure 5.6. BER curve for 4096/6144 LDPC code

A plot containing our simulation results is included in figure 5.6. We included

results from a software simulation (labeled tanh) in the plot. it is worth noting
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that the tanh algorithm provides approximately 0.2dB better performance than

min†, which is the expected result. Also, as we expected, raising the maximum

number of iterations improves performance. However, in terms of bit error rate,

we did see diminishing returns on increases to the number of iterations allowed.
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Chapter 6

Memory

This chapter contains a description of a DDR2 DRAM interface which we de-

veloped for use in the HFEC project. Our wildstar 5 development board provides

a single-port interface to off-chip DRAM. However, to make integration with the

Kansas Lava system easier, it was necessary to develop a dual-port wrapper around

this interface. This section describes the steps that were followed in this develop-

ment process.

6.1 Annapolis Micro Wildstar 5 DDR2 DRAM Interface

The vendor, Annapolis Micro, provided a simple DRAM interface for the board

which is illlustrated in figure 6.1. Limited documentation was provided and since

the DRAM interface was on the board, it was not possible to use a simulator such

as ModelSim for direct simulation. Through experimentation, the details of this

interface became more clear and reliable communication was achieved with the

DRAM. The read and write operations are described in detail in this section.
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Figure 6.1. Annapolis Wildstar 5 DRAM Interface

To write to the DRAM, perform the following:

1. Wait for the ready signal to go high.

2. Assign desired values to address and data_out.

3. Set bwe (block write enable) to indicate which input bytes should be written.

4. Set strobe and write to high.

To read from the DRAM, perform the following:

1. Wait for the ready signal to be high.

2. Assign desired read address to address.

3. Set strobe to high and write to low.

The write process is straightforward, though the DRAM does not acknowledge

that a write has occured. The user should only perform I/O when ready is high,

51



and it is understood that if ready is high then the data will indeed be written on

this clock cycle. In the case of a read operation, the data_valid signal indicates

that a read has occured. In general, the read output will appear on data_in on

the cycle after a read is requested. There is not a multiple cycle read delay, which

is common with on-chip block RAMs(BRAMs).

Annapolis Micro have chosen to name the data signals from the perspective of

the FPGA. Thus, data_in is the input to the FPGA (and output of the DRAM),

while data_out is the output of the FPGA (and input to the DRAM). Also, the

widths of the address, data_in, data_out, and bwe vary depending on which

FPGA on the board is used. In our case, the data signals are 64-bits wide, which

meant that bwe is 8-bits wide (each bit corresponding to a data byte). One point

worth mentioning is that if no data mask is desired, bwe should be set to all 1’s.

In our initial tests, it took some time to determine why we were always reading 0’s

from our memory. The reason for this turned out to be the bwe signal, which was

not being set. Finally, the address width is 26-bits, which allows for a maximum

of 512MB of addressable memory given that each address contains 64-bits of data.

6.2 Dual-Port DRAM Wrapper

The DRAM interface described above is a single-port interface. In Kansas

Lava, we have a standard dual-port memory interface which we have used suc-

cessfully to build FIFOs using BRAMs. The comparatively large capacity of

off-chip DRAM provided motivation for extending this interface to the DRAM.

Thus, it was necessary to provide a dual-port wrapper around the single-port

DRAM interface provided by Annapolis. This dual-port interface is described in

figure 6.2.
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Figure 6.2. Dual-port DRAM Interface

The first step was adding seperate address lines for the read and write oper-

ations (rd_address and wr_address, respectively). Accompanying each address

line is an enable signal (rd_en and wr_en) which should be set high whenever a

read or write operation is desired. Also added is a wr_accept signal which is high

on any cycle in which a successful write operation occurs. Additionally, there is a

rd_valid signal which is high on any cycle in which the dout signal is valid. The

dram_in and dram_out ports at the bottom correspond to the signals in figure 6.1.

This interface is provided by Annapolis in the case of our Wildstar development

board. The signals are bundled into a record which is a collection of signals in

VHDL, similar to a struct in C. Thus, a larger arrow is used to depict a record

in the figure. Since we are interfacing into a single-port DRAM, a read or write

operation can occur on every clock cycle. However, if a read and write operation is

desired on the same clock cycle, a delay must be introduced. In our desgin, if both

read and write are requested, the write occurs on this cycle and the read occurs
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on the following cycle. The choice of doing write-before-read was arbitrary, and

it would not be difficult to reconfigure the wrapper to perform read-before-write.

The current interface is illustrated in the following timing diagram.

clk

rd addr 0x1 0x2

rd en

wr addr 0x2 0x3

wr en

din TWO THREE

rd valid

dout ONE TWO

wr accept

Figure 6.3. Dual Port DRAM Simulation Example

The first operation above is a read operation on address 0x1. The input

signals are sampled on the rising edge of the clock cycle, and the read output

(the symbolic value ONE) appears on dout on the following clock cycle. The next

operation is a write operation. A request to write the value TWO to the address

0x2 is sent, and wr_accept goes high as soon at the rising edge of the clock cycle,

and remains high until the following clock cycle. The final operation is actually

a pair of operations: a read and a write. We will refer to this as a read/write

operation in the remainder of this document. In this case, a read is requested on

address 0x2 while a write is requested on address 0x3. Even though these input

signals don’t change at exactly the same time, the operations will be received at

the same time since they both are sampled on the same rising edge of the clock.
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The write is processed first, as indicated by wr_accept going high at the start

of the clock cycle. The read is processed on the following clock cycle. The data

read (TWO) appears on dout on the next clock cycle, effectively delayed an extra

cycle. An important consideration is that any input to the DRAM on this extra

cycle following the read/write request will be ignored. This is communicated

to the user through the wr_accept and rd_valid signals. If a write operation

were attempted, the wr_accept signal would not be set high, indicating that the

write was not accepted. If a read were attempted, rd_valid signal would go

high on the following clock cycle, but the circuit accessing the memory should

still be waiting on the result of the previous read, indicating that this one was

not accepted. In our test system, which performed thousands of sequential reads,

writes, and read/writes, this protocol proved reliabile.

The implementation of this interface amounted to about 100 lines of VHDL

code. The entity definition is given in figure 6.4. The architecture is included in

the Appendix. The architecture contains a single process running on the rising

edge of the clock. This process provides the logic necessary to manage the DRAM

as described in the previous example.

6.3 Kansas Lava DRAM Interface

Given the entity in figure 6.4, we could provide a Kansas Lava interface in one

of two ways. First, we could simply build a circuit (and Fabric) which has input

and output signals corresponding to each of the signals in the dram_dual_port

entity. This has the advantage that it does not require any further technology to

be added to Kansas Lava. However, this would require we write some VHDL code

to manually wire the two circuits together.
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entity dram_dual_port is

generic (

WIDTH : integer := 64;

ADDR_WIDTH : integer := 26;

);

port (

clk : in std_logic;

reset : in std_logic;

din : in std_logic_vector(WIDTH-1 downto 0);

wr_addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);

wr_en : in std_logic;

wr_accept : out std_logic;

rd_addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);

rd_en : in std_logic;

dout : out std_logic_vector(WIDTH-1 downto 0);

rd_valid : out std_logic;

dram_in : in dram_32b_interface_in_type;

dram_out : out dram_32b_interface_out_type

);

end dram_dual_port;

Figure 6.4. VHDL Entity definition for a dual-port DRAM interface

Ideally, we would like to instantiate the dram_dual_port entity in our circuit

directly. This would help eliminate a potential for error in the handwritten VHDL

code. Additionally, handwriting such VHDL code quickly becomes tedious if

the entity is instantiated multiple times. There are a couple of issues with this

approach. First, Fabric currently only supports ports of type std_logic and

std_logic_vector. Thus, we would need to add two more interface functions for

Fabric:

inAbstract :: (Rep a) => String -> String -> Fabric (Seq a)

outAbstract :: (Rep a) => String -> String -> Seq a -> Fabric ()

We’ve added an additional String argument to inAbstract and outAbstract
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which would be used to describe the VHDL type. One example type is the

dram_32b_interface_in_type used in dram_dual_port entity. This isn’t the

only issue however. Additionally, a circuit that instantiates dram_dual_port in

Kansas Lava would also require a model of the entity in Kansas Lava to allow for

simulation in GHCi. If we don’t care about simulation, there is another issue with

the actual instantiation of an external entity. Currently, Fabric gives us a way

to name ports on an entity which we can then instantiate inside another VHDL

circuit. However, we don’t have a way of instatiating a VHDL entity inside of

Kansas Lava, and that is necessary to solve this problem. This type of instantia-

tion may take the form of another monad, like Fabric, or it may take the form of

a function containing a list of ports on the external entity and their types. These

issues are being explored currently, and certainly this functionality will be added

to a future version of Kansas Lava.
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Chapter 7

Conclusion

In the introduction of this thesis, it was stated that functional programming

can be used to benefit the development of error correction coding systems. I

have demonstrated this in several ways. First, in chapter 2, I demonstrated the

use of Haskell in the implementation of a Viterbi decoder. In this case, Haskell

was beneficial in that it provides a mathematical syntax and also a concise def-

inition of the algorithm. It was proposed that a Haskell model of the Viterbi

algorithm would allow for easier testing of a Kansas Lava implementation. Since

a VHDL implementation was already in development, my attention was turned to

the LDPC decoder. Next, in chapter 3, I introduced Kansas Lava and showed how

GHCi can be used as a light-weight test environment for Kansas Lava circuits and

also how synthesizable VHDL code can be generated from Kansas Lava circuit

definitions. In chapter 4, I provided an overview of a complex example in which

Kansas Lava was used to generate space and time efficient VHDL code. I also

demonstrated the relatively painless process of adding additional functionality to

Kansas Lava in the form of the min and abs functions. In chapter 5, I showed

how Haskell was used to develop a rich test environment for our LDPC decoder
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running on a development board. This chapter also showed one common short-

coming of unoptimized Haskell code in execution time. I showed how we were able

to mitigate against this shortcoming by rewriting portions of our code in C. One

may point to this as a failure in functional programming, or in Haskell. However,

as was discussed at the end of the chapter, there were optimization opportunities

available in Haskell. We simply chose to take the route of a C implementation

because we knew that C would meet our goals in this circumstance. Finally, the

end of chapter 6 discusses how, in the future, Kansas Lava will be able to directly

instantiate entities developed outside of Kansas Lava allowing for a greater degree

of interoperability and less time spent hacking wrappers and interfaces in VHDL.

Through my work on this project, I have had the opportunity to work in two

very different worlds: functional programming and hardware design. In doing so,

I have learned the power of abstraction in programming. In terms of abstrac-

tion, we have successfully used a very high level language in Haskell to make the

low-level, and sometimes tedious, task of hardware development easier. Func-

tional programming has provided several benefits: a more mathematical syntax

for describing algorithms in Haskell, a light-weight software simulation platform in

GHCi, and hardware optimization opportunities in Kansas Lava that would likely

require a great deal of code rewriting in VHDL. With these benefits come some

caveats: the Kansas Lava developer must also be a skilled Haskell programmer,

care must be taken to ensure efficiency, and testing on hardware is still messy.

These issues are discussed further in the following section.
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7.1 Future Work

Arguably, the most important and most difficult task is making Kansas Lava

more accessible. Learning a language like Haskell is a time consuming task for

a hardware designer with no prior experience in functional programming. How-

ever, a deep understanding of Haskell is a requirement for efficient use of Kansas

Lava. Second, more efficient methods of testing Kansas Lava circuits is an area in

need of improvement. Testing in software is easy. Testing inside Kansas Lava is

accomplished in GHCi, and efforts have been made to make testing in ModelSim

easier [5], but testing on hardware becomes much more complex. A testing frame-

work, including a lot of handwritten VHDL and C code, must be developed for

every combination of circuit and development board. Some work has been done

to provide a standard test interface in Lambda Bridge [8], but ideally one would

test circuits running on hardware from GHCi or a GHCi-like interface. In chap-

ter 4, we demonstrated how a simple Haskell function can be lifted into Kansas

Lava, but there are certainly opportunities to investigate the generation of Lava

circuits, and potentially VHDL, from more general Haskell programs. Lastly, as

a lab, have successfully implemented two different HFEC algorithms in Kansas

Lava (LDPC, discussed in chapter 4 and SDVA, implemented in Kansas Lava by

team member, Ed Komp). It is certain that different algorithms in different fields

of study will present unique challenges that we have not even considered.
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Chapter 8

Appendix

8.1 Metric Function in VHDL

This section contains a version of the Metric function discussed in chapter 4.

This code takes a similar approach to the optimized Kansas Lava approach except

that the sign signal is the opposite of flipSign in our Kansas Lava implemen-

tation, and the output of the nabs2 is flipped correspondingly. Likewise, the min

function was changed to a max. This choice was quite arbitrary and does not

change the resulting output.

entity ldpc_metric is

generic (

width_size : natural := 8; -- signal width

max_value : natural := 8); -- value for max * min

port (i0 : in std_logic_vector(width_size-1 downto 0);

i1 : in std_logic_vector(width_size-1 downto 0);

o0 : out std_logic_vector(width_size-1 downto 0));

end ;

architecture Behavioral of ldpc_metric is

signal sign : std_logic := ’0’; -- sign of output signal

-- define some temp signals to satisfy the compiler...
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signal i0s, i1s, i0temp, i1temp, ztemp : signed (width_size-1 downto 0);

signal negZtemp : std_logic_vector(width_size - 1 downto 0);

-- min calculates the minimum of two signed signals

function max(signal a, b : in signed) return signed is

begin

if a < b then

return b;

else

return a;

end if;

end function max;

-- abs2 calculates the absolute value of a signed signal

function nabs2(signal a : in signed) return signed is

begin

if a < 0 then

return a;

else

return -a;

end if;

end function nabs2;

begin

-- figure out whether we need to flip the sign of the output

sign <= i0(width_size-1) xor i1(width_size-1);

i0s <= signed(i0);

i1s <= signed(i1);

-- define temp signals, and output

i0temp <= nabs2(i0s);

i1temp <= nabs2(i1s);

ztemp <= max(i0temp,i1temp);

neg : entity Sampled_negate

generic map (

width_size => width_size,

max_value => max_value)

port map (i0 => std_logic_vector(ztemp),
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o0 => negZtemp);

-- flip the sign on output only if the inputs have two different signs.

o0 <= std_logic_vector(ztemp) when sign = ’1’ else negZtemp;

end Behavioral;

8.2 DRAM Dual-Port Wrapper

Below is the VHDL architecture definition for the dram_dual_port wrapper

discussed in chapter 6.

architecture std of dram_dual_port is

constant dram_bwe : std_logic_vector(7 downto 0) := x"FF";

signal dram_dout, dram_din : std_logic_vector(WIDTH-1 downto 0);

signal dram_addr, rd_addr_reg : std_logic_vector(ADDR_WIDTH-1 downto 0);

signal dram_write, dram_ready : std_logic;

signal dram_strobe : std_logic;

signal rw_sig : std_logic_vector(1 downto 0) := "00";

signal skip : std_logic;

signal rd_valid_1, rd_valid_2, rd_valid_current : std_logic;

begin

dram_out.data_out <= dram_din;

dram_out.bwe <= dram_bwe;

dram_out.address <= dram_addr;

dram_out.strobe <= dram_strobe;

dram_out.write <= dram_write;

dram_dout <= dram_in.data_in;

rd_valid <= dram_in.data_valid;

dram_ready <= dram_in.ready;

rw_sig <= rd_en & wr_en;

control_proc: process (clk, reset)

begin -- process control_proc
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if reset = ’1’ then

dram_strobe <= ’0’;

dram_write <= ’0’;

skip <= ’0’;

elsif rising_edge(clk) then

if dram_ready = ’1’ then

if skip /= ’1’ then

case rw_sig is

when "01" =>

dram_strobe <= ’1’;

dram_write <= ’1’;

dram_addr <= wr_addr;

dram_din <= din;

skip <= ’0’;

when "10" =>

dram_strobe <= ’1’;

dram_write <= ’0’;

dram_addr <= rd_addr;

dram_din <= din;

skip <= ’0’;

when "11" =>

dram_strobe <= ’1’;

dram_write <= ’1’;

dram_addr <= wr_addr;

dram_din <= din;

rd_addr_reg <= rd_addr;

skip <= ’1’;

when others =>

dram_strobe <= ’0’;

dram_write <= ’0’;

dram_addr <= rd_addr;

dram_din <= din;

skip <= ’0’;

end case;

else

dram_strobe <= ’1’;

dram_write <= ’0’;

dram_addr <= rd_addr_reg;

dram_din <= din;

skip <= ’0’;

end if;

end if;
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end if;

end process control_proc;

wr_accept <= ’1’ when ((skip = ’0’) and (rw_sig = "01" or rw_sig = "11")) else

’0’;

dout <= dram_dout;

end std;
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