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Abstract

The Rosetta system-level design language is a specification language created to

support design and analysis of heterogeneous models at varying levels of abstrac-

tion. These abstraction levels are represented in Rosetta as domains, specifying

a particular semantic vocabulary and modeling style. The following dissertation

proposes a framework, semantics and methodology for automated verification of

safety preservation over specification transformations between domains. Utilizing

the ideas of lattice theory, abstract interpretation and category theory we define the

semantics of a Rosetta domain as well as safety of specification transformations

between domains using Galois connections and functors. With the help of Is-

abelle, a higher order logic theorem prover, we verify the existence of Galois con-

nections between Rosetta domains as well as safety of transforming specifications

between these domains. The following work overviews the semantic infrastruc-

ture required to construct the Rosetta domain lattice and provides a methodology

for verification of transformations within the lattice.
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Chapter 1

Introduction

1.1 Motivation

Modern system design and development requires the integration of heterogeneous

models. Systems today can consist of hundreds, thousands, even millions of com-

ponents all defined using different semantic domains. For example, it is not un-

common for a single system to be constructed from concurrent processors, soft-

ware components, mechanical components, and analog components. How do we

assure a system as a whole will operate correctly? Furthermore, how can we

guarantee the individual components will interact with one another as expected?

Although these questions, along with heterogeneous systems in general, aren’t

necessarily new, the increasing size of modern systems has caused a significant

increase in the complexity of their design and analysis.

The ever increasing demand for reduced design time and cost along with

1



quicker turn around time has given rise to different methods of design. Tradi-

tionally each component of a system is designed and tested individually. It is not

until the separate components have been verified that they are integrated together

to form a complete system. Unfortunately, an error caused by integrated com-

ponents this late in the design stage is time consuming and costly to fix[1]. If

we could understand how these components will interact at an earlier stage in the

design process we could reduce the design time as well as the costs involved.

The Rosetta system-level design language[2] serves as the basis for our work.

Rosetta provides the ability to specify and analyze specifications to better predict

the behavior of integrated components at an earlier design stage. System com-

ponents, modeled as facets, are organized hierarchically as domains. We show

that the hierarchy structure is a complete lattice defined by homomorphism. The

lattice allows the existence of Galois connections between domains providing a

formal basis for verification of model transformations.

We propose a methodology for system-level analysis based on the ideas of

category theory, lattice theory, and abstract interpretation. We will first show that

the Rosetta domain hierarchy defines a complete lattice. We then show that given

a specification in the lattice, we can safely transform it into another semantic do-

main, perform some analysis on it and transform it back into its original domain.

Because of the existence of Galois connections within the Rosetta domain lattice

we can determine if the transformations were safe with respect to the original

specification. Furthermore, due to the strong mathematical basis the methodology

is built upon, we can automate the verification process using an automated theo-
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rem prover such as Isabelle[3]. Using Isabelle we are able to determine whether

or not a Galois connection exists between two semantic domains, and if so, can

verify safety preservation over transformations between those two domains. This

allows for formal analysis of component interactions. With the ability to auto-

mate safety preservation we not only save time and money associated with actual

development of a system, but we also help simplify the overall design process.

1.2 Problem Statement

The purpose of this research is to provide semantic domains for design and anal-

ysis as well as a semantic basis for heterogeneous interaction analysis within

Rosetta[2]. This work contributes to the overall goal to better predict the global

effects of local, domain specific design decisions on systems as a whole before

run-time. The ability to safely transform models between semantic domains al-

lows us to reason about performance constraints as well as analyze component

interactions. Furthermore, the ability to analyze specification interactions at an

earlier stage in the design process will help reduce the time and cost involved

in the development of a system. The methodology proposed in this dissertation

provides a formal framework for transforming and verifying the safety of speci-

fications, thus providing a means for safety verification of design analysis at the

system-level.

By formally defining the models of computation and vocabularies represented

by Rosetta semantic domains as lattices, a formal methodology for verifying

3



safety preservation over transformations between semantic domains exists. Uti-

lizing the ideas of abstract interpretation[4, 5] a Galois connection[6], known to

exist between two complete lattices, can be defined between two Rosetta seman-

tic domains. The existence of the Galois connection assures a safe transformation

from one domain to another, therefore providing a formal basis for automated ver-

ification of specification transformation.

Research Statement
The Rosetta semantic domains can be formally represented as complete lat-

tices. Due to the lattice structure we are able to form Galois connections

between domains providing a means for formal verification of safety preser-

vation over Rosetta model transformations.

1.3 Research Results

Research results described within this dissertation include the following: i) For-

mal specification of Rosetta models of computation as lattices; ii) Formal specifi-

cation of the hierarchy of Rosetta models of computation as a lattice; iii) Formal

definition of existence of Galois connections between Rosetta models of com-

putation; iv) Formal definition of safety preservation over specification transfor-

mations between Rosetta models of computation; v) Automated example proof

of Galois connection verifcation and safety preservation; vi) Formal verification

of safety preservation over actual Rosetta model transformations; vii) Automated
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verification of Rosetta specification transformations and safety preservation; viii)

Generalization of automated verification process to all Rosetta models.

As a result of the efforts described above the following statements can be

made: i) Models of computation within the Rosetta system-level design language

can be formally specified as lattices; ii) The hierarchy of Rosetta models of com-

putation can be formally specified as a lattice; iii) A Galois connection exists

between Rosetta domains and can be formally verified; iv) The verification of the

existence of Galois connections between Rosetta domains can be automated us-

ing Isabelle; and v) Safety preservation of specification transformations between

Rosetta models of computation can be semi-automatically verified using Isabelle.

1.4 Key Contributions

The following summarize the work completed as a result of the research described

in this dissertation:

1. Definition of a formal representation for semantic domains, providing a

framework for transformations between them,

2. Definition of a formal framework for the Rosetta domain lattice, allowing

verification of specification transformations between semantic domains,

3. Definition of Galois connections between semantic domains providing for-

mal verification of safe specification transformations,
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4. Demonstration of methodology for multi-domain modeling and domain in-

teraction analysis within one framework,

5. Promotion of system-level design by providing a methodology for hetero-

geneous specification verification at an early stage in the design process.

1.5 Outline

The following chapter provides a brief introduction to the mathematics used within

this research. Chapter 3 presents the Rosetta system-level design language and

defines the representation of Rosetta semantic domains as lattices. Chapter 4 ex-

plores the formal semantics required for the Galois connection to exist between

domains as well as the properties it must uphold. This chapter also introduces the

automated theorem prover, Isabelle, and provides an example verification using

the tool. Chapter 5 discusses the methodology’s application to Rosetta models

and Chapter 6 addresses what analysis means in terms of the research described

within this work. Chapter 7 provides an overview to some of the related works

associated with this project, and finally in Chapters 8 and 9 we make our closing

comments and discuss options for future work respectively.
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Chapter 2

Preliminaries

Throughout the remainder of the paper we will rely heavily on the mathematical

basis behind lattice theory, abstract interpretation and Galois connections. This

section is meant to give a brief introduction to each of these topics. The terms

Definition, Lemma and Proposition are used throughout this chapter. A Proposi-

tion is used to relate different Definitions to each other or to give an alternate form

of a Definition, and a Lemma is a subsidiary proposition assumed to be valid and

used to demonstrate a principal Definition[1].

2.1 Lattice Theory

In this section we recall some of the basic concepts of lattice theory that are rel-

evant to the work described within this dissertation. The first section describes a

partial order as well as what is meant by a partially ordered set. We then discuss
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bounds associated with partially ordered sets and lattices. Finally we provide the

formal definition of a lattice and a complete lattice. The following definitions are

selected from various sources[7, 1, 8].

2.1.1 Partially Ordered Sets

One cannot discuss lattice theory without first introducing the notion of a partial

order and partially ordered sets.

Definition 2.1.1.1 A partial ordering is a relation v: L × L → {true, false}

satisfying the following characteristics:

(i) Reflexivity: ∀l ∈ L : l v l

(ii) Antisymmetry: ∀l1, l2 ∈ L : l1 v l2 ∧ l2 v l1 ⇒ l1 = l2

(iii) Transitivity: ∀l1, l2, l3 ∈ L : l1 v l2 ∧ l2 v l3 ⇒ l1 v l3

Definition 2.1.1.2 A partially ordered set (L,v) is a set L equipped with a par-

tial ordering v 1.

The term “partial” means there does not need to be an order for all pairs of ele-

ments from the underlying set. If an order does exist for all pairs, this is a special

form of a partially ordered set known as a totally ordered set.
1Sometimes written vL
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2.1.2 Bounds

With an ordering defined on a set we can now begin to discuss upper and lower

bounds of pairs of elements within the set.

Definition 2.1.2.1 A subset Y of L has l ∈ L as an upper bound if ∀l′ ∈ Y : l′ v

l.

Informally, consider two elements, a and b in a partially ordered set. For an upper

bound, ub, to exist between the two elements the following must be true:

a v ub ∧ b v ub

There can be multiple upper bounds for a pair of elements and the upper bounds

do not have to be unique from the elements they are computed for.

Definition 2.1.2.2 A least upper bound l = tY is an upper bound of Y that satis-

fies l v l0 whenever l0 is another upper bound of Y.

A least upper bound is simply an upper bound that is v to all other upper bounds.

Note, sometimes the t operator is called the join operator.

Definition 2.1.2.3 A subset Y of L has l ∈ L as a lower bound if ∀l′ ∈ Y : l′ w l.

Informally, consider again the two elements a and b in a partially ordered set. For

a lower bound lb to exist between the two elements the following must be true:

a w lb ∧ b w lb

9



Definition 2.1.2.4 A greatest lower bound l = uY is a lower bound of Y such that

l0 v l whenever l0 is another lower bound of Y.

A greatest lower bound is simply a lower bound that isw to all other lower bounds.

Note sometimes the u operator is called the meet operator.

2.1.3 Lattices

With the basics of partial orderings, partially ordered sets and bounds in place we

can now formally construct the lattice definition.

Definition 2.1.3.1 A lattice L = (L,v,t,u,⊥,>) is a partially ordered set

(L,v) in which all nonempty finite subsets have a least upper bound and a great-

est lower bound

Definition 2.1.3.2 A complete lattice L = (L,v,t,u,⊥,>) is a partially or-

dered set (L,v) such that all subsets have both least upper bounds and greatest

lower bounds.

Additionally, ⊥ = t∅ = uL is the least element and > = u∅ = tL is the

greatest element. Note the difference between a lattice where all nonempty finite

subsets have a least upper bound and a greatest lower bound, and a complete lat-

tice where all subsets have both least upper bounds and greatest lower bounds.

The following are properties of lattices and functions on lattices:

Lemma 2.1.3.1 For a partially ordered set L = (L,v) the claims

10



(i) L is a complete lattice,

(ii) every subset of L has a least upper bound,

(iii) every subset of L has a greatest lower bound

are equivalent[1].

Definition 2.1.3.3 A function f : L1 → L2 between partially ordered sets L1 =

(L1,v1) and L2 = (L2,v2) is

1. surjective if ∀l2 ∈ L2 : ∃l1 ∈ L1 : f(l1) = l2

2. injective if ∀l, l′ ∈ L1 : f(l) = f(l′)⇒ l = l′

3. monotone if ∀l, l′ ∈ L1 : l v1 l
′ ⇒ f(l) v2 f(l′)

4. additive if ∀l1, l2 ∈ L1 : f(l1 t l2) = f(l1) t f(l2)

5. multiplicative if ∀l1, l2 ∈ L1 : f(l1 u l2) = f(l1) u f(l2)

Lemma 2.1.3.2 If L = (L,v,t,u,⊥,>) and A = (A,v,t,u,⊥,>) are com-

plete lattices and A is finite then the three conditions

(i) γ : A→ L is monotone,

(ii) γ(>) = >, and

(iii) γ(a1 u a2) = γ(a1) u γ(a2) whenever a1 6v a2 ∧ a2 6v a1

are jointly equivalent to γ : A→ L being completely multiplicative[1].
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Definition 2.1.3.4 Let L1 = (L1,v1) and L2 = (L2,v2) be partially ordered

sets. Define L = (L,v) as

L = {(l1, l2)|l1 ∈ L1 ∧ l2 ∈ L2}

and

(l11, l21) v (l12, l22) iff l11 v1 l12 ∧ l21 v2 l22

If each Li = (Li,vi,ti,ui,⊥i,>i) is a complete lattice then so is L = (L,v

,t,u,⊥,>) and L is a partially ordered set.

2.2 Abstract Interpretation

This section gives a brief introduction to the theory of Abstract Interpretation[4,

5]. As a general theory for approximating the semantics of discrete dynamic sys-

tems (e.g. computations of programs), abstract interpretation provides the math-

ematical basis for the types of Rosetta specification transformations we are inter-

ested in. The following definitions are taken from various sources[4, 5, 1, 6, 9, 10].

2.2.1 Abstraction and Concretization Functions

Definition 2.2.1.1 Given the complete lattices L = (L,v,t,u,⊥,>) and A =

(A,v,t,u,⊥,>) an abstraction function α : L → A expresses the meaning of

elements of L in terms of elements of A. This is sometimes referred to as lifting.
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Definition 2.2.1.2 Given the complete lattices L = (L,v,t,u,⊥,>) and A =

(A,v,t,u,⊥,>) a concretization function γ : L← A expresses the meaning of

elements of A in terms of elements of L. This is sometimes referred to as lowering.

The abstraction function is used to represent elements of the lattice more abstractly

and conversely, the concretization function is used to represent elements of the set

more precisely. We show below how the abstraction and concretization functions

are used to define Galois connections, providing a means for safe transformations

of elements in one set to elements in another.

2.2.2 Galois Connections

Situations arise when calculations on a complete lattice prove to be too costly or

even uncomputable. Circumstances such as these motivate the replacement of the

original lattice with a more abstract one. The existence of a Galois connection

between two lattices provides us with safety, the ability to transform elements

in one lattice into elements in the other without violating any properties of the

original element.

Definition 2.2.2.1 (L, α, γ, A) is a Galois connection between the complete lat-

tices L = (L,v,t,u,⊥,>) and A = (A,v,t,u,⊥,>) if and only if

α : L→ A ∧ γ : L← A

13



are monotone functions that satisfy:

γ ◦ α w λl.l

α ◦ γ v λa.a

The above conditions express that there is no loss of safety by transforming back

and forth between the two lattices, however there may be some loss of precision.

Meaning, when abstracting and concretizing between lattices we may not result

in the original model, however our result will be safe with respect to the original

model. In the case of the top expression, we are assured that by starting with some

element l ∈ L we can first apply an abstraction function resulting in a description,

α(l), of l inA. Applying a concretization function to α(l) results in γ(α(l)) which

is a description of α(l) in L. This resulting description need not be our original

element l, however we are guaranteed it will be a safe approximation of it. Safety

guarantees that our approximated element does not violate any properties of the

original, although some of the original element’s detail may be lost in transforma-

tion. It is important to note that loss of precision does not mean loss of accuracy in

regards to the analysis being performed. The second condition follows similarly.

Definition 2.2.2.2 (L, α, γ, A) is an adjunction between the complete lattices

L = (L,v,t,u,⊥,>) and A = (A,v,t,u,⊥,>) if and only if

α : L→ A ∧ γ : L← A

14



are total functions that satisfy:

α(l) v a⇔ l v γ(a)

for all l ∈ L and a ∈ A

The above condition states that α and γ respect the orderings of the two lattices.

If an element l ∈ L is safely described by the element a ∈ A then the element

described by a is safe with respect to l. By transforming elements between the

two lattices you will never violate any of the properties held within the individual

lattices themselves.

Proposition 2.2.2.1 (L, α, γ, A) is an adjunction if and only if (L, α, γ, A) is a

Galois connection.

2.2.3 Properties of Galois Connections

Lemma 2.2.3.1 If (L, α, γ, A) is a Galois connection then:

(i) α uniquely determines γ by γ(a) = t{l|α(l) v a} and γ uniquely deter-

mines α by α(l) = u{a|l v γ(a)}.

(ii) α is completely additive and γ is completely multiplicative.

In particular, α(⊥) = ⊥ and γ(>) = >. The above Lemma states that given

a Galois connection, the abstraction function defined by the Galois connection

is completely additive, and similarly the concretization function is completely

15



multiplicative[1]. This is important because it means we can uniquely define a

concretization function as the dual of the abstraction function and vice versa. By

abstraction functions being completely additive and concretization functions be-

ing completely multiplicative we are assured that if we can define one of the func-

tions, we can define the other. In other words, if we can transform in one direction,

we can always transform back into the original domain.

Lemma 2.2.3.2 If α : L→ A is completely additive then there exists γ : L← A

such that (L, α, γ, A) is a Galois connection. Similarly, if γ : L← A is completely

multiplicative then there exists α : L → A such that (L, α, γ, A) is a Galois

connection[1].

This states that it suffices to specify either a completely additive abstraction func-

tion or a completely multiplicative concretization function in order to obtain a

Galois connection.

Definition 2.2.3.1 (L, α, γ, A) is a Galois insertion between the complete lattices

L = (L,v,t,u,⊥,>) and A = (A,v,t,u,⊥,>) if and only if

α : L→ A ∧ γ : L← A

are monotone functions that satisfy:

γ ◦ α w λl.l

α ◦ γ = λa.a

16



Note the difference between a Galois connection and a Galois insertion. With a

Galois connection there is some loss of precision when first performing a con-

cretisation and then an abstraction, however a Galois insertion requires no loss of

precision during this transformation. As a consequenceA cannot contain elements

that do not describe elements of L.

Lemma 2.2.3.3 For a Galois connection (L, α, γ, A) the following claims are

equivalent[1]:

(i) (L, α, γ, A) is a Galois insertion;

(ii) α is surjective: ∀a ∈ A : ∃l ∈ L : α(l) = a;

(iii) γ is injective: ∀a1, a2 ∈ A : γ(a1)⇒ a1 = a2; and

(iv) γ is an order-similarity: ∀a1, a2 ∈ A : γ(a1) v γ(a2)⇔ a1 v a2.

Definition 2.2.3.2 If (L0, α1, γ1, L1) and (L1, α2, γ2, L2) are Galois connections

then (L0, α2 ◦ α1, γ1 ◦ γ2, L2) is also a Galois connection.

The above Definition states that Galois connections are closed under composi-

tion. If a Galois connection exists between lattices L0 and L1 and another Galois

connection exists between lattices L1 and L2, then we can prove that a Galois

connection exists between the lattices L0 and L2 using the functional composition

of the abstraction and concretization functions.
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Definition 2.2.3.3 Let (L, α1, γ1, A1) and (L, α2, γ2, A2) be Galois connections.

The direct product of the two Galois connections will be the Galois connection

(L, α, γ, A1 × A2)

where α and γ are given by:

α(l) = (α1(l), α2(l))

γ(a1, a2) = γ1(a1) u γ2(a2)

The Direct Product of two Galois connections allows us to show that two analyses

dealing with the same data can be combined into one analysis. This essentially

amounts to performing two analyses in parallel.

Lemma 2.2.3.4 Assume that (L, α, γ, A) is a Galois connection and let f : L→

L and g : A→ A be monotone functions satisfying that g is an upper approxima-

tion to the function induced by f

α ◦ f ◦ γ v g

Then for all a ∈ A:

g(a) v a⇒ f(γ(a)) v γ(a)

The above Lemma states that given a function, f , mapping an element of L to an-

other element of L and a function, g, mapping an element of A to another element
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of A, we can define g as an upper approximation of f [1]. It suffices to consider g

the abstracted version of f .

2.3 Summary

Lattice theory, abstract interpretation and category theory serve as the mathemat-

ical foundation for our research and results. We rely on partial orderings and

lattices as the basis for abstract interpretation and definition of Galois connec-

tions. The notion of safety preservation, provided by the existence of a Galois

connection, allows for transformation of elements in one lattice into elements in

another, more abstract lattice, without sacrificing the properties of the original.

Furthermore, because Galois connections can be functionally composed, we have

the ability to apply transformations and analyses across multiple lattices.
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Chapter 3

Rosetta

The desire to incorporate concurrent knowledge from multiple semantic domains

to assess the influence of local decisions on global properties lies at the heart of

system-level design[11]. To support system-level design a language must mini-

mally address issues such as heterogeneous specification and specification trans-

formation. The system-level design language, Rosetta[2], was designed with both

of these requirements in mind. Originally developed by researchers from a consor-

tium of Universities and companies including The University of Kansas, Averstar

and Adelaide University, Rosetta provides designers the ability to choose different

modeling techniques adapted to the design of each part of a system. This is key

to obtaining design flexibility and allows exploitation of heterogeneity early in a

design.
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3.1 Facets

Models in Rosetta are created using facets, the fundamental unit of specification.

Each facet represents one aspect or view of a multi-aspect system. Each facet rep-

resents a system from one perspective using a semantic basis appropriate for the

information being modeled. A facet can represent information such as component

function and structure as well as performance constraints. There are four key ele-

ments that make up the structure of a facet: (i) a domain; (ii) parameters; (iii) local

declarations; and (iv) terms. The domain identifies the vocabulary and model of

computation used as a basis for the facet model. The parameters of a facet define

the model’s interface and give a mechanism for customization and instantiation.

Facet declarations provide information on local state as well as local functions,

while facet terms define constraints over parameters and local variables.

A benefit of design using Rosetta is the ability to model non-terminating sys-

tems. To accommodate this type of specification the semantic basis of a facet

is denoted using a coalgebra [12], defining observations on some abstract state.

The coalgebra allows for a flexible environment in which to model systems and

provides a simulation semantics that provides a well-defined basis for model com-

position. We choose coalgebras over their better known duals, algebras, due to the

nonterminating heterogeneous nature of the types of systems we model. Addition-

ally, the ability to write coalgebraic specifications allows analysis of the reactive

behavior of systems, precisely a goal of system-level design.

A complete Rosetta model composes facets representing multiple perspectives
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facet power
(o ::output top; leakage,
switch :: design real ):: state based is
export power;
power::real ;

begin
power’=power+leakage+

if event(o) then switch
else 0

end if ;
end facet power;

facet interface function
( i :: input real ; o ::output real;
clk :: in bit
uniqueID::design word(16);
pktSize::design natural )::

discrete time is
uniqueID::word(16);
hit :: boolean;
bitCounter :: natural ;

end facet interface function;

Figure 3.1: Rosetta Specification Fragments

into a composite system model. Figure 3.1 is an example of two facets written in

Rosetta. The individual facets each represent a single aspect of a system. The

facet on the left is a fragment of a specification defining power consumption,

while the facet on the right is one taken from a functional model for a TDMA

unique word detector[13]. Although they define two separate system views, the

facet definitions each contain the four key elements discussed above. The hetero-

geneous nature of system-level specifications requires that multiple computation

models be considered during modeling and analysis, hence facets like the ones in

Figure 3.1 are combined with other facets to denote a composite system model.

By defining relationships between states in different domains, one can relate in-

formation associated with one state observation to information associated with

other state observations. This allows determination of when information in one

domain impacts information observed in another, exactly our goal of modeling at

this level.
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3.2 Domains

The type associated with a Rosetta facet is referred to as its domain and lies at the

heart of this work. Each domain provides the vocabulary and semantics needed

for defining facets within that domain. A domain defines, to varying degrees,

units of semantic representation, a model of computation, and a domain specific

modeling vocabulary. Rosetta supports simple unit-of-semantic definitions like

the state based domain, defining a simple stateful computation model, as well

as complex engineering domains like the digital domain, providing a complete

semantics for writing digital system models.

The unit-of-semantics information provided by a domain defines the vocabu-

lary used to define a model-of-computation. For example, the state based Rosetta

domain declares an abstract state type, a current state variable, an abstract next

state function, and defines how observations are made with respect to these dec-

larations. The state based domain does not define properties, but simply pro-

vides declarations of quantities that all stateful facets must define. The model-

of-computation information provided by a domain defines a description of how

computation proceeds. Defining the model-of-computation information for the

Rosetta state based domain requires constraining the definitions of state type,

state, and next state. Finally, the engineering domain information provided by a

domain defines a vocabulary for engineering specification. In other words, the

engineering domain provides a domain specific modeling vocabulary. Rosetta’s

engineering domains extend common models-of-computation with declarations
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for one specific discipline.

For verification purposes it is beneficial to look at the semantic representation

of a Rosetta domain. We mentioned already that the type of a facet is the domain

it is defined within. To define a facet within a Rosetta domain, the facet extends

that domain to create a new model. The extended facet is declared an element

of the domain it extended and inherits all of that domain’s declarations. More

specifically, the facet inherits the notions of state, change, and event as a built-in

part of the specification vocabulary.

Each domain is semantically the collection of all facets that can be defined by

extending it. In other words, the collection of all facets satisfying the properties of

that domain. Using Definitions 2.1.3.1 and 2.1.3.2 we formally define a domain,

D, as

D = (D,→) = (D,→,t,u,⊥,>)

where the partial ordering between facets is extension, a simple homomorphism1.

The ⊥ element is inconsistent while the > element is the definition of the domain

itself. Figure 3.2 illustrates the lattice structure of a Rosetta domain. From the

figure one can see that the least common supertype (t) between any two facets

will always be the common domain because facets cannot be further extended

to create new facets. Similarly, the greatest common subtype (u) for any two

facets will always be ⊥ for the same reasons. Since a greatest common subtype

and least common supertype exist for every pair of elements in a domain, we can

1We formally prove extension as a partial order in section 3.3 and using Isabelle in Chapter 5
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facet_1 facet_2 . . . facet_nfacet_3

⊥

domain

Figure 3.2: Structure of a Rosetta Domain

define each Rosetta domain as a complete lattice (Definition 2.1.3.2)2.

3.3 The Rosetta Domain Lattice

The collection of domains and the extensions used to define them are referred to

in Rosetta as the domain lattice [13, 14]. The domain lattice provides support

for transforming information across domains as well as semantics for verifying

these transformations. Using Definitions 2.1.3.1 and 2.1.3.2 we formally define

the Rosetta domain lattice as

L = (L,→) = (L,→,t,u,null,bottom)

where L is the collection of all Rosetta domains. The partial ordering, extension

(→), defined over the domain lattice is the same partial ordering defined within

individual Rosetta domains. Because extension is a simple homomorphism rela-

tionship it is easy to prove it as a partial ordering. Using Definition 2.1.1.1 we

prove reflexivity, antisymmetry, and transitivity for extension:

2We formally prove Rosetta domains as complete lattices in section 5.1

25



Theorem 3.3.0.1 Extension is a partial order over the Rosetta domains

Proof: Let L be the collection of all Rosetta domains.

(i) Reflexivity: Because ∀l ∈ L : (l⇐ l) then ∀l ∈ L : (l→ l)

(ii) Antisymmetry: Because ∀l1, l2 ∈ L : (l1 ⇐ l2) ∧ ( l2 ⇐ l1) ⇒ (l1 = l2) then

∀l1, l2 ∈ L : (l1 → l2) ∧ (l2 → l1)⇒ (l1 = l2)

(iii) Transitivity: Because ∀l1, l2, l3 ∈ L : (l1 ⇐ l2) ∧ (l2 ⇐ l3) ⇒ (l1 ⇐ l3) then

∀l1, l2, l3 ∈ L : (l1 → l2) ∧ (l2 → l3)⇒ (l1 → l3)

Because extension is reflexive, antisymmetric, and transitive it is a partial ordering.

The null domain defines > in the lattice and is the greatest domain in the

collection. All domains inherit from null. Conversely, the bottom domain is the

least domain and inherits from all other domains. bottom is inconsistent because

it contains properties of every other domain, including null. Join (t) and meet

(u) can be defined as the least common supertype and greatest common subtype

of any pair of domains. Hence, the domain lattice is formally a complete lattice1.

As defined in the previous section each Rosetta domain is itself a complete lat-

tice consisting of the collection of facets satisfying that domain’s modeling style.

Abstracting up a level we can then represent the collection of all Rosetta domains

as a complete lattice. Informally, the Rosetta domain lattice can be thought of

as a lattice of lattices. The important distinction between extension within a do-

main and extension between domains is a domain can be further extended while a

facet cannot. Therefore, a domain can either be extended to define a facet (model)
1We formally prove the Rosetta domain lattice as a complete lattice in section 5.2
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within itself, or it can be further extended to define a new domain (modeling style).

There is no notion of facet extension in Rosetta.

3.4 Modeling in Rosetta

The definition of domains and the domain lattice serve as the underlying Rosetta

semantics. With this semantic basis we can utilize the domain lattice for defin-

ing specification transformations. The lattice facilitates establishing the safety of

transforming specifications using Galois connections. This is crucial to support-

ing model heterogeneity due to the necessity to analyze component interactions

between various domains.

3.4.1 Domain Extension

With the formal definition of extension defined in the previous section, we can

now begin to discuss what it means in terms of design. In an ideal world all com-

ponents of a system would operate within the same semantic domain, however in

reality this is not the case. To model a complete system in Rosetta, the individual

facets are composed of various Rosetta domains. This means to analyze the in-

teractions between these facets, we need to understand how the different domains

interact.

We have already shown that Rosetta domains are organized in a lattice and

the partial ordering on them is extension. If a domain is extended to create a new

domain we call it a subdomain of the domain it extended. Like facets, the subdo-
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static

state_based(state_type::type)
state_based()

signal_based(event_type::type)
signal_based()

finite_state(state_type::type)
finite_state()

infinite_state(state_type::type)
infinite_state()

continuous_temporal(state_type::type)

discrete_temporal(state_type::type; delta_val::state_type)

null

trace_based(event_type::type)
trace_based()

process_based(event_type::type)
process_based()

discrete_time() continuous_time()

frequency()

digital()
discrete_event()

tagged_event()CSP()

pi_calculus()

Figure 3.3: The Rosetta Domain Lattice

main inherits all the declarations of the domain it extends while further extending

upon those to create its new vocabulary. Similarly, the domain that was extended

is referred to as the superdomain. For example, in Figure 3.3 the state based

and signal based domains are subdomains of the static domain. The state based

domain also serves as the superdomain to the finite state and infinite state do-

mains.

A functor in the domain lattice is a function specifying a mapping from one

domain to another. We use functors in the domain lattice to transform a model

in one domain into a model in another domain. Viewing each domain and facets

comprising its type as a subcategory of the category of all Rosetta specifications,

a functor is simply a mapping from one subcategory to another. Any model in the

original subcategory can be transformed into a model in the second. This corre-

sponds to the classic definition of functors in category theory[8]. The existence
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of functors in the domain lattice facilitate the definition of Galois connections be-

tween domains (subcategories). If a Galois connection exists between domains we

can perform analysis on transformations between the domains. Due to the Galois

connection we are assured safety preservation over any transformations made.

When defining domains by extension, as in the domain lattice, two kinds of

functors result. Instances of concretization functors and abstraction functors are

defined each time one domain is extended to define another. Concretization func-

tors move a model down in abstraction and conversely, abstraction functors move

a model up. The arrows moving down the lattice in Figure 3.3 represent con-

cretization functors. Moving down the lattice, domains become more detailed and

hence the models represented in them more concrete. Although not shown in the

diagram, an abstraction functor exists for every concretization functor due to the

multiplicative nature of extension[1].

It is important to note the difference between abstraction and concretization

functors and abstraction and concretization functions. An abstraction function,

denoted as α, is a function mapping a specific model to the same model repre-

sented more abstractly in another domain. Similarly a concretization function,

γ, is a function mapping a specific model to the same model represented more

concretely in another domain. When we refer to abstraction and concretization

functors we are referring to the collection of all abstraction and concretization

functions respectively. Therefore, the abstraction functor, denoted A, between

two domains is the collection of all abstraction functions between those two do-

mains. Furthermore the concretization functor, Γ, between two domains is the
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collection of all concretization functions between those domains. Although, A is

the dual of Γ, they do not form an isomorphism because some information may

be lost when transforming back and forth between domains.

3.4.2 Specification Transformation

Moving models using functors accomplishes numerous modeling tasks. Two such

examples include: (i) moving a model to an analysis domain; or (ii) moving a

model to a domain for composition with another model. In the former case, ab-

straction and/or concretization functions move definitions from one domain to a

new domain better equipped for analysis. In the latter case, abstraction and/or con-

cretization functions move definitions to new domains where specification com-

position yields new, more detailed, specifications.

As an example, refer to the facets defined in Figure 3.1. Although these facets

exist in different domains, we could use the Rosetta product operation to compose

them as is. In this case however, a more accurate performance prediction can be

made if the facets are first composed into the same domain. This gives us three

options: (i) move the power facet to the discrete time domain; (ii) move the func-

tional specification to the state based domain; or (iii) move both specifications to

a common, intermediate domain. For this example, we choose to move the power

facet into the discrete time domain by applying a concretization function, γ. We

choose this option due to the existence of a discrete time simulation environment

that can be used to analyze the resulting model. Once the specification has been

transformed into the appropriate domain, the facet product is used to compose
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facet power and function
( i :: input real ; o ::output top; clk :: in bit ; uniqueID::design word(16);
pktSize::design natural; leakage,switch::design real ):: discrete time is

gamma(power(o,leakage,switch))
∗ function( i ,o,clk ,uniqueID,pktSize);

Figure 3.4: A Composite Specification

specifications.

Figure 3.4 illustrates the resulting model after specification transformation us-

ing the built-in concretization function gamma(power()) and specification com-

position using the facet product. The beauty of using functions defined by the

domain lattice is that if the extension between domains used to form the con-

cretizaton functions is consistent, we know Γ and A exist. We will see in the next

section how Galois connections can be formed to assure the safety of these types

of transformations. Thus, when moving specifications as done in the above exam-

ple, we are certain that the resulting specification in its new domain will be sound

with respect to the original.

3.5 Summary

The Rosetta system-level design language is a language aimed at aiding in hetero-

geneous design. Individual system components are defined as facets. Each facet

defines a domain, parameters, local declarations, and terms specific to one piece

of the design. Individual facets are then combined to create the composite sys-

tem. The domain a facet is defined within provides the vocabulary and modeling
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style specific to that facet where each domain is represented as a lattice defined

by extension. Additionally, the collection of Rosetta domains are also organized

as a lattice defined by extension. It is the lattice structure that allows the ability to

formally verify transformations between Rosetta domains.
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Chapter 4

Methodology

The ability to transform specifications between domains in the domain lattice is

only beneficial if we can verify the correctness of the transformation. However,

this raises the question, what is considered a correct transformation? The fol-

lowing section discusses the use of abstract interpretation as a formal basis for

describing and verifying specification transformation. Abstract interpretation pro-

vides a mathematical basis for representing Rosetta semantics at varying levels of

abstraction and also gives the foundation for verifying the correctness of the actual

model transformations. We define what is meant by a safe transformation as well

as a means to guarantee them using Galois connections. Additionally, we pro-

pose a methodology for automating the verification process using the automated

theorem prover Isabelle[3].
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4.1 Abstract Interpretation and Safety

Abstract Interpretation[4, 5] is the notion of formally constructing approximations

of the semantics of programming languages. Used in Rosetta, it provides a capa-

bility for focusing analysis by removing unneeded detail from a specification. Ab-

straction and concretization functors are used to transform Rosetta specifications

between domains in the Rosetta domain lattice. An abstraction functor, moving a

specification up the hierarchy of Rosetta domains, removes unneeded detail from

a specification. Its dual, a concretization functor, transforms specifications down

the hierarchy adding detail to the specification. Depending on the type of anal-

ysis being performed we may need to transform a specification into a different

semantic domain. The abstraction and concretization functors provide precisely

that type of transformation.

One of the main challenges of abstract interpretation is assuring that an ab-

stracted model is correct with respect to the original. This is the notion of safety[9,

10, 15] and is the basis for verification of a correct specification transformation in

Rosetta. Specifically, we need to verify the safety of functors moving models up

and down the Rosetta domain lattice. The existence of a Galois connection[6, 1]

between domains provides the foundation for assuring safety preservation over

transformations.

We have already stated that the Rosetta domains are represented as complete

lattices and have proven extension of domains as a partial order. Using each of

these results and Definition 2.2.2.1 we can define a Galois connection between
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two Rosetta domains, D0 and D1 as

(D0, A1,Γ1, D1)

where A1 and Γ1 are the abstraction and concretization functors defined by Defi-

nitions 2.2.1.1 and 2.2.1.2 respectively. By Definition 2.2.2.1, the functors A1 and

Γ1 must be monotone functions that satisfy:

Γ1 ◦ A1 w λd0.d0 (∀d0 ∈ D0) (4.1)

A1 ◦ Γ1 v λd1.d1 (∀d1 ∈ D1) (4.2)

Equation 4.1 states that given an element, d0, in domainD0, if we first abstract the

element into domainD1 followed by concretizing back into domainD0, our result

will satisfy the relation (Γ1(A1(d0))) w d0. Similarly, by Equation 4.2, given an

element, d1 in domain D1, concretization followed by abstraction will satisfy the

relation (A1(Γ1(d1))) v d1. What these equations are saying, is that we do not

sacrifice safety by transforming back and forth between the two domains, however

we may lose some precision. Safety preservation assures that an abstracted model

is correct with respect to the original, thus we are not losing any information that

we are concerned with. Figure 4.1 shows this relationship. For our purposes, a loss

of precision is not an issue because we simply want to assure safety preservation

over model transformations within the domain lattice. In fact, in some cases the
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Γ1

d0

d1

D1D0 A1

Γ1(d1)

A1(do)

Figure 4.1: The Galois Connection (D0, A1,Γ1, D1)

loss of precision is what makes the analysis possible. If a model is too complex

to analyze as is, we can abstract away unneeded detail to focus on the specific

problem. In the case of Rosetta model transformation, if information is lost during

a transformation, but we still prove safety preservation, we are guaranteed the

transformed model is safe with respect to the original. Hence, regardless of the

lost information, we can still perform our analysis with the assurance of the result

holding true to the original model.

It is important to note that when defining Galois connections in the Rosetta do-

main lattice we will always use A and Γ (abstraction and concretization functors)

instead of α and γ (abstraction and concretization functions). This is because

not every model can be transformed using the same abstraction and concretiza-

tion functions, i.e. each model may need a specific α and γ. The functors are

the collection of property preserving functions that exist between the two Rosetta

domains defined by the Galois connection. When discussing Galois connections

between domains, we will use A and Γ to refer to the family of all α’s and γ’s
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between those domains. Hence, when defining the Galois connections using A

and Γ we are referring to the collection of abstraction and concretization func-

tions that transform between the two domains specified by the Galois connection.

When discussing specific transformations of individual specifications we will use

α and γ to represent the transformation functions specific to that model.

4.2 Safety of Specification Transformation

As defined in the previous section, safety assurance is guaranteed with the ex-

istence of a Galois connection. This is important in terms of the Rosetta domain

lattice because it provides a formal method for verifying the correctness of Rosetta

model transformations. Given the Galois connection, (D0, A1,Γ1, D1), between

domains D0 and D1 we can verify that any model

transformed between these domains will be safe with respect to the original.

From a designers perspective this means we can analyze models at varying levels

of abstraction without sacrificing the correctness of the original model.

Figure 4.2 illustrates the following example. Consider a component, C, that

we want to perform some analysis, f , on. Assuming C is defined in the concrete

domain, D0, we can perform the analysis here resulting in f(C). Now assume

we want to observe the component’s behavior in some abstract domain, D1. We

can apply an abstraction function, α, to C to transform into our new domain,

and perform our analysis, f#1. We use f and f# to distinguish between the

1We are assuming f # is a sound approximation of f
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f f #

f #(C)

C

Figure 4.2: Abstraction and Concretization Commuting Diagram

analysis performed in the concrete versus abstract domain, however they represent

the same function. Because a Galois connection exists between our concrete and

abstract domains we are guaranteed the resulting analysis is safe with respect to

the original. The same holds true if the transformation were reversed. AssumingC

is defined in the abstract domain, D1, we can transform into the concrete domain,

D0, using a concretization function, γ, and perform our analysis, f . Again because

of the Galois connection we know safety preservation holds over the analysis.

A benefit of applying this method to the Rosetta domain lattice arises from

the nature of extension, we are guaranteed a concretization functor exists between

domains in the lattice. Lemma 2.2.3.2 assures that an abstraction functor exists as

well because extension is completely multiplicative. This means that for any con-

cretization done within the lattice, we are guaranteed a way back. Additionally,

this assures a Galois connection exists between any domain and its subdomain.

Furthermore, by Definition 2.2.3.2 the functional composition of two Galois con-

nections is also a Galois connection[1]. Formally, if (D0, A1,Γ1, D1) is a Galois

connection existing between domains D0 and D1, and (D1, A2,Γ2, D2) is another

Galois connection existing between domains D1 and D2, then their functional
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composition results in the Galois connection:

(D0, A2 ◦ A1,Γ1 ◦ Γ2, D2)

This is important because not only can we assure safety between a domain and its

subdomain, but now we can assure safety of any transformation within the entire

domain lattice that is transformed as a result of extension. In terms of Rosetta

specifications, this means any model written in a Rosetta domain can be trans-

formed via extension to any other Rosetta domain, analyzed, then transformed

back with the assurance of safety preservation throughout. From a design perspec-

tive, this means a component specified in one semantic domain can be transformed

to that same component represented in another semantic domain without sacrific-

ing safety of the original model. The ability to guarantee safety preservation over

transformations in the domain lattice provides designers a means for analysis over

multiple semantic domains. Furthermore, due to the verification being done at the

systems-level, we can reason about component interaction and composition at an

earlier stage in the design process.

4.3 Automated Verification

Verifying safety preservation during model transformation is a critical piece of the

design process. Unfortunately, it can also be a costly one. The task of transform-

ing each specification into a different domain, verifying that safety holds over the
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transformation, then performing some analysis on it can become extremely te-

dious, particularly if it’s necessary to perform the process several times on one

specification. The fact that systems can contain hundreds, thousands, or even mil-

lions of components will only complicate that task. If the process were automated

we could take advantage of the infrastructure used for transformation while re-

ducing the work load, decreasing the time required and, in general, simplifying

the overall verification process.

Using Isabelle[3], we propose a methodology for automating the verification

process. Given a specification written in Rosetta, we use an abstraction or con-

cretization function to transform that model into the same model represented in

a different semantic domain. Then utilizing the semantics of the domain lattice

and the existing Galois connections between domains we can formally prove the

preservation of safety over that transformation.

Before we relate this methodology to actual Rosetta models we first outline

a basic example using natural numbers. We use Isabelle to verify the existence

of a Galois connection between the set of all natural numbers and the Parity set,

[Odd,Even]. We define a concrete value as either a number or a list of odd or

even numbers, and an abstract value as either Odd or Even.

datatype ’a ConVal = ConNum ’a

| OddList

| EvenList
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datatype AbsVal = Odd

| Even

For the purposes of this example we define OddList and EvenList to repre-

sent a list of odd and even numbers respectively. These values represent the result

of abstracting a natural number followed by concretizing back into the concrete

domain. The best approximation we can get at this point is a list of all odd or even

natural numbers. We have no way of knowing what number we started with, thus

illustrating the loss of precision that occurs during transformation.

An abstraction function, alpha is written to transform a number or a list of

numbers in the concrete domain (set of natural numbers) to that same number or

list of numbers represented in the abstract domain (Parity set).

constdefs alpha :: "nat ConVal⇒ AbsVal"

"alpha x == case x of (ConNum y)⇒ if (even y) then Even

else Odd |

(OddList)⇒ Odd |

(EvenList)⇒ Even"

The even function is used to determine the parity of a number, returning

True if the number is indeed even and False if not. The result of alpha is

therefore an element of the [Odd,Even] domain. We also define a concretization

function, gamma, to transform from the abstract domain to the concrete domain.

We have already seen an instance of a Rosetta concretization function in Section
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3.2 where we used gamma(power()) to transform a facet written in the state based

domain to the same facet represented in the discrete time domain.

constdefs gamma :: "AbsVal⇒ nat ConVal"

"gamma x == if (x=Even) then EvenList else OddList"

Notice that gamma will never return a specific ConNum, the best approximation

we can get is a list of odd or even numbers. This is where the loss of some pre-

cision comes into play because given either Odd or Even, the best concretized

approximation we can make is the list of all odd or even natural numbers respec-

tively. Although we have lost precision, we still have a safe approximation of the

original value because the set of values left contains the original value.

After we’ve transformed into a different domain, we would like to be able to

perform some analysis. When designing in Rosetta, the analysis will be specific

to the system being modeled. For this example we’ve chosen to use a simple

increment function, both in the concrete domain as well as the abstract domain.

consts conInc :: "nat ConVal⇒ nat ConVal"

primrec

"conInc (ConNum x) = (ConNum (x+1))"

"conInc OddList = EvenList"

"conInc EvenList = OddList"
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consts absInc :: "AbsVal⇒ AbsVal"

primrec

"absInc Odd = Even"

"absInc Even = Odd"

Finally, before we can verify the Galois connection, we must define and prove a

partial ordering over both domains. sqsubseteq is a function over the concrete

domain that takes two natural numbers and returns a boolean value, sqsupseteq

is the same function defined over the abstract domain. sqsubseteq will serve

as the partial ordering over our concrete domain and sqsupseteq will server

as the partial ordering over our abstract domain. Remember, we must be able to

prove a partial ordering exists over our domains in order to prove the existence of

a Galois connection.

constdefs sqsubseteq :: "nat ConVal⇒ nat ConVal⇒ bool"

(infixr " v " 65)

"x v y == case x of (ConNum a)⇒

case y of (ConNum b)⇒ if (a=b) then True

else False |

(OddList)⇒ if (even a) then False

else True |

(EvenList)⇒ if (even a) then True

else False |

(OddList)⇒
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case y of (ConNum b)⇒ False |

(OddList)⇒ True |

(EvenList)⇒ False |

(EvenList)⇒

case y of (ConNum b)⇒ False |

(OddList)⇒ False |

(EvenList)⇒ True "

constdefs sqsupseteq :: "AbsVal⇒ AbsVal⇒ bool"

(infixr " w " 65)

"x w y == if (x=y) then True else False"

For the remainder of this example, to simplify the notation and mimic the struc-

ture of the definitions used to define these theorems and lemmas we will refer to

sqsubseteq and sqsupseteq as their infix operators, v and w respectively.

Note that above the infixr command has been used to define the infix operator

for these functions.

We can now verify v and w as partial orders. To formally prove this we

must show that reflexivity, antisymmetry, and transitivity hold for both functions.

Hence we define three lemmas for each:

lemma subset_reflexivity: "x v x"

lemma subset_antisymmetry: "((x v y) & (y v x))⇒ (x=y)"

lemma subset_transitivity: "((x v y) & (y v z))⇒ (x v z)"
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lemma supset_reflexivity: "x w x"

lemma supset_antisymmetry: "((x w y) & (y w x))⇒ (x=y)"

lemma supset_transitivity: "((x w y) & (y w z))⇒ (x w z)"

Using the definitions of the functions along with Isabelle’s built in lemmas and

simplification rules we can reduce the above lemmas and prove their correctness,

thus proving v and w as partial orders1. We can now define a Galois connection

between the set of natural numbers and the Parity set [Odd,Even] by proving

Equations 4.1 and 4.2 from the previous section. Modified to fit our example we

have:

theorem galois_connection_one: "x w (alpha (gamma x))"

theorem galois_connection_two: "x v (gamma (alpha x))"

Using induction on x and the definitions of alpha, gamma, v and w we can

easily verify the correctness of these theorems. Finally, with the Galois connection

in place, we can verify the safety of transforming between domains.

theorem alpha_commute: "(alpha (conInc x)) = (absInc (alpha x))"

theorem gamma_commute: "(conInc (gamma x)) = (gamma (absInc x))"

Theorem alpha_commute shows that incrementing a value in the concrete do-

main followed by abstracting the incremented value is equivalent to first abstract-
1The complete listing of Isabelle code can be found in the Appendix.

45



ing the value into the abstract domain and then incrementing. Similarly theorem

gamma_commute shows that applying the concretization function followed by

incrementing is equivalent to first incrementing the abstract value and then ap-

plying the concretization function. Note that theorems alpha_commute and

gamma_commute follow directly from the commuting diagrams illustrated in

Figure 4.2. By substituting a natural number in for x in theorem alpha_commute

and an abstract value in for x in theorem gamma_commute we can easily see the

theorems are correct. It is important to note that in most Rosetta applications of

the above theorems, the equivalence relation would be replaced by the partial or-

der. This is again due to the fact that some precision will be lost in transformation.

The above example serves as a general framework for implementing our method-

ology using Rosetta models. Instead of the natural numbers and Parity domains,

we incorporate domains found in the Rosetta domain lattice. The models we

transform are actual Rosetta specifications using Rosetta facets. We use the same

lemmas and theorems from above modified to fit the model being transformed. In

Section 5 we use Isabelle to construct a formal basis for automated verification

of safety preservation over Rosetta model transformations. We formally prove

Rosetta extension as a partial ordering as well as Rosetta domains as complete

lattices. Due to abstraction and concretization functions being specific to each

facet being transformed, we are unable to prove every single case of specification

transformation within Rosetta; however, we can set up a basis for verification.

Given a specific abstraction and concretization function and using Equations 4.1

and 4.2 from the previous section we can then formally prove (or disprove) the
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existence of a Galois connection, and thus prove (or disprove) that a specification

transformation is safe.

4.4 Summary

Abstract interpretation allows removal of unneeded detail from a Rosetta speci-

fication without sacrificing the correctness of the original. Due to the existence

of a Galois connection between a domain and its subdomain in the Rosetta do-

main lattice, we can assure safety preservation over models transformed between

those domains. Furthermore, because Galois connections are functionally com-

positional, we can assure safety preservation over models transformed throughout

the entire Rosetta domain lattice. This provides designers an environment for

specifying designs, the ability to transform individual components to various se-

mantic domains, and the ability to perform analyses in these domains without

sacrificing the correctness of their original model. Furthermore, due to the for-

mal mathematical basis behind abstract interpretation, we can verify the existence

of Galois connections, model transformations, and safety preservation using the

automated theorem prover, Isabelle.
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Chapter 5

Application

With an overall methodology defined we now seek to apply it to Rosetta models.

In order to facilitate a reusable and formal approach to verification over Rosetta

model transformations, we have chosen to encode the foundation of our methodol-

ogy using the automated theorem prover, Isabelle. The following sections describe

the definition and prove that Rosetta domains and the Rosetta domain lattice form

complete lattices. Furthermore we discuss the formation of Galois connections

within the lattice and between lattices and the impact these have on design using

Rosetta.

5.1 Rosetta Domains as Complete Lattices

In order to facilitate automated formal verification of Rosetta specification trans-

formations we must first prove that Rosetta domains are complete lattices. Re-
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ferring back to section 2.1 we see that our initial step is to define and prove a

partial ordering over our set, which in this case is a Rosetta domain. In Isabelle,

we define a new data type for a Rosetta domain as:

datatype ’d Domain = Top

| Facet "d"

| Bottom

Top and Bottom represent > and ⊥ respectively, and the collection of facets

defined by Facet d along with Top and Bottom define the domain itself. We

give a parameter to Facet in order to have a way of checking if two Facets are

equivalent. When defining actual Rosetta models Facet will certainly contain

other parameters and thus the definition above would have to be modified. How-

ever, for the purposes of this example we hold the definition abstract in order to

focus on the overall structure of automated verification within Isabelle. Remem-

ber there is no notion of facet extension in Rosetta, only domain extension, thus a

domain such as Top can be extended to define various Facets, but Facets can-

not be further extended to define another Facet. All Facets extend to Bottom

because Bottom is inconsistent and it is always possible to make a Facet in-

consistent by adding FALSE.

The ordering over Rosetta domains is extension, used to define new facets

and domains. By definition, when you extend a domain to a facet or a domain

to another domain you are only adding definitions to the domain that is being

extended. for example, the facet myFacet below, is an extension of domain d:
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facet myFacet(x::integer)::d is...

We are only adding new definitions to domain d, which mathematically gives us

theory extension. This means that because all extension within the domain lattice

follows the same behavior, we know that we are guaranteed theory extension when

defining new facets and domains. Futhermore, because we always have theory

extension we know a partial ordering exists between any new facet or domain

defined by extension and the domain it is extended from. Using Definition 2.1.1.1

we define a partial ordering Sqsubseteq between Rosetta domains as:

constdefs Sqsubseteq :: "nat Domain ⇒ nat Domain ⇒ bool"

(infixr "v" 65)

"x v y == case x of

(Top) ⇒ case y of (Top) ⇒ True |

(_) ⇒ False |

(Facet f) ⇒ case y of (Top) ⇒ True |

(Facet g) ⇒

if (f=g) then True

else False |

(_) ⇒ False |

(Bottom) ⇒ case y of (_) ⇒ True"

The above definition is the foundation for establishing Galois connections be-

tween Rosetta domains. A Galois connection cannot exist unless the domains it

is defined over contain a partial ordering. In order to prove that this definition
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is in fact a partial ordering we must show that it is reflexive, antisymmetric and

transitive. The following lemmas have been defined:

lemma Sqsubseteq_reflexivity: "x v x"

lemma Sqsubseteq_antisymmetry:"((x v y) & (y v x) =⇒ (x=y))"

lemma Sqsubseteq_transitivity: "((x v y) & (y v z) =⇒ (x v z))"

Using the definition of v along with Isabelle’s built in lemmas and simplification

rules we can reduce the above lemmas and prove their correctness, thus proving

v as a partial order1. This is crucial to our design because we must have a partial

ordering in order to form a complete lattice, and the complete lattice facilitates the

existence of Galois connections between Rosetta domains.

The next step in forming a complete lattice is proving all subsets have both

least upper bounds and greatest lower bounds. First, we prove that an upper

bound and lower bound exist for all subsets of a domain. Using Definitions 2.1.2.1

and 2.1.2.3 we define the following lemmas:

lemma ub: "(∃ x. (a v x) & (b v x))"

lemma lb: "(∃ x. (x v a) & (x v b))"

Lemma ub states that for any two elements, a and b, within a Rosetta domain,

there exists another element, x, in that domain that is an upper bound to both a

and b. Similarly, Lemma lb states that for any two elements, a and b, within

1The complete listing of Isabelle code can be found in the Appendix
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a Rosetta domain there exists another element, x, in that domain that is a lower

bound to both a and b. There could be multiple upper and lower bounds for any

two elements within a Rosetta domain, however we are only concerned that at

least one exists because this facilitiates forming a Galois connection between two

Rosetta domains.

In addition to upper and lower bounds we also want to prove that every subset

contains a least upper bound and greatest lower bound. In the case of Rosetta

domains, a least upper bound is an element of the domain that is more concrete

or equal to (v) all other upper bounds for any two elements, a and b, within that

domain. Additionally, a greatest lower bound is an element of the domain that is

more abstract or equal to (w) all other lower bounds for any two elements, a and

b, within that domain. In the degenerate case Top and Bottom are always an

upper and lower bound respectively.

Using Definitions 2.1.2.2 and 2.1.2.4 we define:

lemma least_ub:

"(∃ x m. (a v x) & (b v x) & (a v m) & (b v m) & (x v m))"

lemma greatest_lb:

"(∃ x m. (x v a) & (x v b) & (m v a) & (m v b) & (m v x))"

Again using the definitions of v and Isabelle’s built in lemmas and simplification

rules we can reduce the above lemmas and prove their correctness, thus proving

that every subset in a Rosetta domain has both an upper and lower bound and

least upper bound and greatest lower bound. This means we can now formally
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automate the proof that every Rosetta domain can be represented as a complete

lattice. Furthermore, we can store this proof within Isabelle so that we are not

continually proving Rosetta domains as complete lattices for every specification

transformation.

5.2 Rosetta Domain Lattice as Complete Lattice

The same process for proving Rosetta domains as complete lattices can also be

applied to proving the entire Rosetta domain lattice is a complete lattice. We

mentioned previously that the Rosetta domain lattice can be thought of as a lattice

of lattices. We now know that the inner lattices are actually complete lattices fa-

cilitating the existence of Galois connections between Rosetta domains. What we

prove in this section is that the domain lattice itself is a complete lattice facilitating

the existence of Galois connections between Rosetta domain lattices.

We first define and prove a partial ordering over our set, which in this case is

the Rosetta domain lattice. In Isabelle, we define a new data type for a Rosetta

domain lattice as:

datatype DomainLattice = Null

| Static

| State_Based

| Signal_Based

| Bottom

For simplicity purposes we have chosen to only include five domains within the
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Rosetta domain lattice; Null, Static, State_Based, Signal_Based and

Bottom. A complete listing of existing Rosetta domains can be found in Fig-

ure 3.3. Remember that Rosetta supports user defined domains, thus there is es-

sentially an unlimited number of possible Rosetta domains. Null and Bottom

represent > and ⊥ respectively.

Using Definition 2.1.1.1 we define a partial ordering v between Rosetta do-

main lattices as:

constdefs Sqsubseteq :: "DomainLattice ⇒ DomainLattice ⇒ bool"

(infixr "v" 65)

"x v y == case x of

(Null) ⇒ case y of (Null) ⇒ True |

(_) ⇒ False |

(Static) ⇒ case y of (Null) ⇒ True |

(Static) ⇒ True |

(_) ⇒ False |

(State_Based) ⇒ case y of (Null) ⇒ True |

(Static) ⇒ True |

(State_Based) ⇒ True |

(_) ⇒ False |

(Signal_Based) ⇒ case y of (Null) ⇒ True |

(Static) ⇒ True |

(Signal_Based) ⇒ True |
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(_) ⇒ False |

(Bottom) ⇒ case y of (_) ⇒ True"

The above definition shows that we can relate any two Rosetta domains using

the v operator. This means we can compare which domains are more abstract

and/or more concrete with respect to another Rosetta domain. Remember, we

cannot form a Galois connection without a set that contains a partial ordering. In

order to prove the partial ordering we must provev to be reflexive, antisymmetric

and transitive. The following lemmas have been defined:

lemma Sqsubseteq_reflexivity: "x v x"

lemma Sqsubseteq_antisymmetry: "(x v y) & (y v x) =⇒ (x=y)"

lemma sqsubseteq_transitivity: "(x v y) & (y v z) =⇒ (x v z)"

Using the definition of v along with Isabelle’s built in lemmas and simplification

rules we can reduce the above lemmas and prove their correctness, thus proving

v as a partial order1.

We must now show that all subsets have both least upper bounds and greatest

lower bounds. We first prove that an upper bound and lower bound exist for all

subsets of the domain lattice. Using Definitions 2.1.2.1 and 2.1.2.3 we define the

following lemmas:

lemma ub: "(∃ x. (a v x) & (b v x))"

lemma lb: "(∃ x. (x v a) & (x v b))"

1A complete listing of all Isabelle code can be found in the Appendix
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Lemma ub states that for any two Rosetta domains, a and b, there exists another

Rosetta domain, x, that is an upper bound to both a and b. Similarly, Lemma lb

states that for any two Rosetta domains, a and b, there exists another Rosetta do-

main, x, that is a lower bound to both a and b. There could be multiple upper and

lower bounds for any two Rosetta domains, however we are only concerned that

at least one exists because this facilitates forming a Galois connection between

domains a and b.

In addition to upper and lower bounds we also want to prove that every subset

contains a least upper bound and greatest lower bound. In the case of the Rosetta

Domain Lattice, a least upper bound is a domain that is more concrete or equal to

(v) all other upper bounds for any two Rosetta domains a and b. Additionally,

a greatest lower bound is a domain that is more abstract or equal to (w) all other

lower bounds for any two Rosetta domains a and b.

Using Definitions 2.1.2.2 and 2.1.2.4 we define:

lemma least_ub:

"(∃ x m. (a v x) & (b v x) & (a v m) & (b v m) & (x v m))"

lemma greatest_lb:

"(∃ x m. (x v a) & (x v b) & (m v a) & (m v b) & (m v x))"

Notice that the defined lemmas for upper bounds, lower bounds, least upper bounds

and greatest lower bounds for the Rosetta domain lattice are identical to those de-

fined for Rosetta domains. This is because what we are trying to prove does not
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change. We’re simply applying the same proofs to a different structure.

Again using the definition of v and Isabelle’s built in lemmas and simplifica-

tion rules we can reduce the above lemmas and prove their correctness, thus prov-

ing that every subset in the Rosetta domain lattice has both an upper and lower

bound and least upper bound and greatest lower bound. We can now formally

automate the proof that the Rosetta domain lattice can be represented as a com-

plete lattice. Similar to the proof that Rosetta domains are complete lattices, we

can also store this proof within Isabelle so that we are not continually proving the

Rosetta domain lattice as a complete lattice for every specification transformation.

5.3 Galois Connections and Transformation Safety

Now that we can automate the proof of Rosetta domains and the Rosetta domain

lattice as complete lattices, we want to use this to facilitate the existence of Galois

connections between Rosetta domains. Section 2.2 establishes that in order to

define a Galois connection we must first define an abstraction and concretization

function between two complete lattices, specifically, Rosetta domains. Remember

that abstraction and concretization functions will be specific to the transformation

being made, while abstraction and concretization functors represent the collection

of all abstraction and concretization functions between those two domains. Since

it is impossible to predict every possible abstraction and concretization function

that will exist between two Rosetta domains, we define our example in terms of

abstraction and concretization functors.
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We first show how to construct a Galois connection between two specific

Rosetta domains, Static and State_Based. The State_Based domain is

derived from the Static domain by the addition of a collection of axioms. We

define a concretization functor, −→S:SB, which takes an element of the Rosetta

domain Static and returns that same value represented in the Rosetta domain

State_Based. For the purposes of this example we’ll use the notation FS to

represent a facet defined in the Static domain and FSB to represent a facet de-

fined in the State_Based domain. Thus, extension (−→) applied to FS results

in FSB, the same facet represented in the State_Based domain:

(−→S:SB Fs) == FSB

Similarly, we define,←−SB:S , as the functor that transforms a facet in the

State_Based domain into the same facet represented in the Static domain:

(←−SB:S FSB) == FS

Using equations 4.1 and 4.2 we can then define the following theorems:

theorem galois_connection_one: " FS w (←−SB:S (−→S:SB FS))"

theorem galois_connection_two: " FSB v (−→S:SB (←−SB:S FSB))"

Using induction on FS and FSB and the definitions of v, −→S:SB, and←−SB:S

we can easily verify the correctness of these theorems. Thus, we have formally

established the Galois connection:
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( State_Based,←−SB:S , −→S:SB , Static)

Any Rosetta specification written in the Static domain and transformed into

the State_Based domain using−→S:SB falls within the boundaries defined by

the above Galois connection and therefore we can verify the safety of the trans-

formation of that model. We can do the same for any Rosetta specification written

in the State_Based domain and transformed into the Static domain using

←−SB:S .

We can apply the same method to any two domains within the Rosetta domain

lattice. Because domains are defined by extension we are guaranteed a concretiza-

tion functor, and due to these functors being multiplicative we are also guaranteed

an abstraction functor. Thus, we can define a Galois connection between any two

domains in the Rosetta domain lattice and therefore can verify safety of trans-

formations made between any two domains. Taking it one step further, we also

know that the functional composition of two Galois connections is also a Galois

connection. This fact allows us to functionally combine two Galois connections

within the Rosetta domain lattice and therefore gives us the ability to transform

facets between multiple levels of the domain hierarchy.

We now have a formal means of automating Rosetta specification transforma-

tion proofs using Isabelle. This provides us with both the flexibility to analyze

models at varying levels of abstraction without sacrificing the correctness of the

original model, and the ability to utilize existing structures and definitions without

having to redefine them for each model being analyzed. Both are important to de-
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sign in general; however they are particularly significant in heterogenous design

due to the need to transform across various semantic domains in order to compose

a complete model.

5.4 Rosetta Counter Example

In Section 4.3 we outlined a simple parity example of specification transformation

and safety preservation using Isabelle. We now want to apply the same techniques

used in that example to actual Rosetta models. We define two domains, concrete

and abstract, that extend the state based Rosetta domain. By definition of exten-

sion, concrete and abstract will inherit all properties of the state based domain

while declaring their own domain specific properties.

Figures 5.1 and 5.2 define our two new Rosetta domains, concrete and abstract.

Within the domains we again define our datatypes, one for representing the set of

all natural numbers, defined within the concrete domain, and one for representing

the abstracted version of that set, what we refer to as the Parity set [Odd,Even],

defined within the abstract domain. Again, the OddList and EvenList represent

a list of odd and even numbers respectively. Because we proved in Section 5.1

that all Rosetta domains can be represented as complete lattices, we need not re-

prove this for the individual datatypes. This is due to the fact that every Rosetta

model will be defined within a Rosetta domain and must obey the properties of

that domain. Additionally, in Section 5.2 we proved that a partial ordering v (ex-

tension) exists over the entire Rosetta domain lattice. Thus, we already have a
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domain concrete::state based is

ConVal(natural)::type is datatype ConNum(natural) |
OddList |
EvenList;

conInc(x::ConVal)::ConVal(natural) is
case x of (ConNum x) = (ConNum (x+1)) |

OddList = EvenList |
EvenList = OddList;

alpha(x::ConVal)::AbsVal is
case x of (ConNum y) = if (even y) then Even else Odd end if |

(OddList) = Odd |
(EvenList) = Even;

begin
end domain concrete;

Figure 5.1: Rosetta Concrete Domain Definition

formal means of analyzing the safety of a model written in one Rosetta domain

with respect to the same model written in a different Rosetta domain.

To form a Galois connection we must have a means of transforming between

the ConVal and AbsVal datatypes. We know that concretization and abstraction

functors exist between every pair of Rosetta domains, however we want to de-

fine the concretization and abstraction functions to transform our specific exam-

ple between the concrete and abstract domains. An abstraction function, alpha,

is written to transform a number or list of numbers in the concrete domain (set

of all natural numbers) to that same number or list of numbers represented in

the abstract domain (Parity set). Similarly, a concretization function, gamma,

is defined within the abstract domain to transform from the abstract domain to
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domain abstract::state based is

AbsVal::type is datatype Odd |
Even;

absInc(x::AbsVal)::AbsVal is
if (x=Odd) then Even else Odd end if;

gamma(x::AbsVal)::ConVal(natural) is
if (x=Even) then EvenList else OddList end if;

begin
end domain abstract;

Figure 5.2: Rosetta Abstract Domain Definition

the concrete domain. Remember that abstraction and concretization functors are

the collection of all abstraction and concretization functions that exist between

two domains. Thus, alpha and gamma, defined above, would contribute to the

abstraction and concretization functors that transform between the concrete and

abstract domains.

In order to analyze safety preservation over transformations made between the

datatypes we also define an increment function in both domains. conInc, defined

in the concrete domain, increments a natural number by one and absInc, defined

in the abstract domain, does the same to values of the Parity set. The increment

function will serve as the basis for defining the functionality of our facets.

We now extend the concrete and abstract domains to define a facet within

each. Facet Counter, shown in Figure 5.3, extends the concrete domain, and de-

fines a simple counter example while facet ParityCounter, shown in Figure 5.4,
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facet Counter(x::ConVal)::concrete is
begin
y :: AbsVal;

x’ = conInc(x);
y = alpha(x);
y’ = alpha(x ’);
end facet Counter;

Figure 5.3: Rosetta Counter Definition

facet ParityCounter(y::AbsVal)::abstract is
begin
x :: ConVal;

y’ = absInc(y);
x = gamma(y);
x’ = gamma(y’);
end facet ParityCounter;

Figure 5.4: Rosetta Parity Counter Definition

extends the abstract domain, defining a counter over parity values. Each facet

specifies a next state function for both a ConVal and AbsVal value. In the concrete

domain a ConVal value’s next state is the equivalent of applying the conInc func-

tion to the value (incrementing the value by one).

Similarly, in the abstract domain an AbsVal value’s next state is the result of

applying the absInc function (again, incrementing the value by one). We can also

specify the abstracted or concretized version of our values. In the concrete domain

the abstracted version of our value is the result of applying the alpha function and

in the abstract domain, our concretized value is the result of applying gamma. For

example, alpha(ConNum 5) results in Odd and gamma(Even) results in EvenList.
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Finally, we can specify the next state of our abstracted and concretized values.

Within the concrete domain, our abstracted next state is equivalent to applying

alpha to the result of our conInc function. For instance, if x = (ConNum 5) then x’

= conInc(x) = conInc(ConNum 5) = (ConNum 6) and alpha(x ’) = alpha(ConNum 6)

= Even. Likewise, within the abstract domain, our concretized next state is the re-

sult of applying gamma to the result of our absInc function. Thus if y = Even then

y’ = absInc(y) = absInc(Even) = Odd and gamma(y’) = gamma(Odd) = OddList.

This is important because it allows us to not only analyze transformations between

domains, but also the ability to reason about the safety of analyses performed at

various levels of abstraction. Being able to move a specification to another do-

main is only useful if you can guarantee the results of any analyses performed in

the new domain are applicable to the original. If we can prove safety preservation

over the transformation then we are guaranteed precisely this.

It is important to note that the task of writing the above Rosetta datatypes and

functions in Isabelle syntax will result in exactly the same datatypes and functions

defined in Section 4.3. Rosetta datatypes use a semantics common among numer-

ous languages that include datatype definitions. The Isabelle code will not change

because the underlying semantics between our initial example and the example

written in Rosetta syntax is identical. Thus, the theorems used in the remainder of

this section are identical to those defined and proven in Section 4.3.

With our complete lattices, partial ordering, domains, datatypes, abstraction

function, concretization function and facets defined we are now able to define a

Galois connection between the concrete and abstract domains. Using Equations
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4.1 and 4.2 we define the following theorems in Isabelle:

theorem galois_connection_one: "x w (alpha (gamma x))"

theorem galois_connection_two: "x v (gamma (alpha x))"

The above theorems show that transformations between the concrete and abstract

Rosetta domains are safe with respect to the original model, although we again

risk the possibility that some precision may be lost. As described in Section 4.1,

precision is not the goal of this type of analysis. We instead want to verify property

preservation over transformation between semantic domains, which is precisely

what we achieve by proving the existence of the Galois connection. Similarly, we

can verify that transformation plus analysis will commute:

theorem alpha_commute: "(alpha (conInc x))v (absInc (alpha x))"

theorem gamma_commute: "(conInc (gamma x))v (gamma (absInc x))"

Again, these are the same theorems we defined in section 4.3. The semantics re-

mains the same regardless of the fact that we are now referring to an actual Rosetta

model. If we increment a value in the concrete domain followed by abstracting

it, the result is v to first abstracting and then incrementing. The same holds true

for incrementing a value in the abstract domain followed by concretizing it. The

result is v to first concretizing and then incrementing.

The purpose of this example is to show that the proposed methodology de-

scribed in the first four chapters of this dissertation is applicable to Rosetta mod-
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els. The same methodology could also be applied to any model we are able to

define using Rosetta syntax and semantics. Because we have already proven a

partial order over domains and the domain lattice as well as domains as complete

lattices, we eliminate this step from future proofs. This gives us the ability to

reuse existing theorems, lemmas and code and overall formalize and simplify the

analysis and verification of transforming Rosetta models.

5.5 Summary

The automated theorem prover, Isabelle, can be used to automate the formal proof

process of verifying safety preservation over Rosetta specification transforma-

tions. In order to take advantage of Isabelle and its functionality we must first

be able to represent domains and the Rosetta domain lattice as complete lattices.

By defining our own theorems and lemmas and taking advantage of Isabelle’s

exisiting ones, we can automate the proof that both Rosetta domains and the do-

main lattice are complete lattices. This facilitates the existence of Galois con-

nections between Rosetta domains, producing a formal means of verifying safety

of transformations made between the domains in the Galois connection. This is

significant to heterogenous design because it allows the ability to analyze models

at varying levels of abstraction without sacrificing the correctness of the original

model. Multiple abstraction levels are important to heterogeneity because they

provide a means for tractable, safe analysis of complete systems.
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Chapter 6

Analysis and Discussions

With research results presented, we must now revist the ideas and challenges pre-

sented in the Problem Statement. We focus on the overall issue and the steps

taken to overcome the identified challenges. We also discuss the strengths and

weaknesses of this methodology and how they relate to both Rosetta and hetero-

geneous design.

6.1 Rosetta Design and Abstract Interpretation

To reiterate the motivating problem, design and development today consists of the

integration of heterogeneous models in order to construct a system as a whole. The

increased size of today’s systems has caused a significant increase in the complex-

ity of their design and analysis. A challenge of this type of design is assuring the

integrated heterogeneous models will operate as expected once the system is con-
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structed. Researchers are constantly looking for new ways to address this issue.

The Rosetta system-level design language is one of those efforts. Rosetta provides

the ability to specify and analyze specifications to better predict the behavior of

integrated components at an earlier design stage.

Using Rosetta, system components are modeled as facets and are organized

as domains. The domains are positioned hierarchically and defined by homomor-

phism (extension). Due to the results of this research we know both Rosetta do-

mains and the hierarchy they exist within can be represented as a complete lattice.

The lattice allows formation of Galois connections between domains providing a

formal basis for verification of model transformations. Given a Rosetta specifi-

cation we can transform it into another semantic domain, perform some analysis

on it and then transform it back into its original domain without sacrificing the

correctness of the original specification.

Additionally, due to the ideas of category theory, lattice theory and abstract in-

terpretation this method of design is based upon, we can automate the verification

process. This allows us to formally determine whether or not a Galois connection

exists between two semantic domains and if so, gives us the ability to verify safety

preservation over transformations between the domains defined in the Galois con-

nection. Because this methodology can be automated we can take advantage of

existing structures and definitions while reducing the overall complexity of the

design process.
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6.2 Revisiting the Problem

The purpose of this research was to provide a methodology for analysis to better

predict the global effects of local, domain specific design decisions on systems as

a whole before run-time. As stated in our Research Statement:

The Rosetta semantic domains can be formally represented as complete lattices.

Due to the lattice structure we are able to form Galois connections between

domains providing a means for formal verification of safety preservation over

Rosetta model transformations.

Using lattice theory, Rosetta domains can be represented as complete lattices.

Additionally, the hierarchy of Rosetta domains can also be represented as a com-

plete lattice. Using the concepts of abstract interpretation, a Galois connection can

be defined between two Rosetta domains due to domains being complete lattices.

The existence of Galois connections facilitates analysis of safety preservation over

specification transformations between Rosetta domains. Finally because the en-

tire methodology is based off of a strict mathematical background, the automated

theorem prover, Isabelle, can be utilized to simplify and accelerate the design pro-

cess.
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6.3 Research Results and Contributions

As a result of the efforts described in this document we have established five key

statements to summarize our findings.

1) Rosetta domains can be formally represented as complete lattices. Each

domain serves as the type associated with a Rosetta facet and provides the vo-

cabulary and semantics needed for defining facets within that domain. For the

purposes of heterogeneous design, we would like the ability to model the same

facet in various Rosetta domains. The ability to transform a facet written in one

domain into the same facet written in another domain depends on the semantic

representation of the Rosetta domains themselves.

Each domain consists of the collection of facets satisfying the properties of

that domain. To define a facet within a Rosetta domain, the facet extends the

domain to create a new model. Due to the nature of extension, we can prove

it to be a partial ordering over the domain. Additionally, because facets cannot

be further extended to create new facets, > and ⊥ serve as the least common

supertype and greatest common subtype respectively for any two facets defined

within that domain. By Definition 2.1.3.2 we can therefore define each Rosetta

domain as a complete lattice.

2) The hierarchy of Rosetta domains (the Rosetta domain lattice) can be for-

mally represented as a complete lattice. Similar to facets being defined within

a Rosetta domain, new domains can be defined by extending existing Rosetta do-
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mains. The same extension function that is used to define facets is also used to

define new Rosetta domains. Thus, we can also prove extension as a partial order-

ing over the collection of all Rosetta domains.

Every domain inherits from null, and bottom inherits from every domain, thus

null and bottom represent > and ⊥ respectively. Because we can define a least

common supertype and greatest common subtype for any pair of Rosetta domains,

we can again use Definition 2.1.3.2 to formally define the Rosetta domain lattice

as a complete lattice.

3) Galois connections can be formally defined between Rosetta domains. Ga-

lois connections allow a formal basis for constructing approximations of the se-

mantics of programming languages. In Rosetta, the existence of a Galois connec-

tion between Rosetta domains provides a means for focusing analysis by remov-

ing unneeded detail from a specification. The existence of the Galois connection

allows us to formalize facet transformations from one Rosetta domain to another.

We have already stated that Rosetta domains can be proven to be complete

lattices, and that extension serves as the partial ordering over the domains. By

Definition 2.2.2.1 we know a Galois connection can be defined between any two

Rosetta domains using the definition of the domains themselves and extension

as the transformation (concretization) functor. Because extension is completely

multiplicative, we are assured an abstraction functor exists for every extension

functor. Thus, a Galois connection can be proven to exist between any Rosetta

domain and its subdomain. Additionally, Definition 2.2.3.2 states that the func-
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tional composition of two Galois connections is also a Galois connection, which

in return allows us to form a Galois connection between any two Rosetta domains.

4) Safety preservation over specification transformations between Rosetta do-

mains can be formally defined and proven or disproven. One of the biggest

challenges of design using this methodology is assuring that a transformed model

is correct with respect to the original. This is the notion of safety preservation and

it is crucial to modeling accurate designs in Rosetta. We must be able to show that

a transformed model upholds the properties specific to the type of analysis we are

performing even if some of the detail has been removed from the specification.

With the existence of a Galois connection, we are automatically guaranteed

safety preservation. In other words, if a Galois connection can be formed between

two Rosetta domains using a specific abstraction and concretization function, then

we are guaranteed safety preservation of any model transformed between the two

domains defined by the Galois connection and using the abstraction and/or con-

cretization functions also defined by the Galois connection. Because we know we

can form Galois connections between any two Rosetta domains, we are also able

to prove or disprove safety preservation over transformations made between these

domains.

5) All formal definitions and proofs can be automated using the automated

theorem prover, Isabelle. With a formal infrastructure defined, it’s desireable to

automate the process of proving each step of our methodology in order to simplify

design and verification. Using Isabelle, we can define the structure and semantics
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of our language as well as define theorems and lemmas specific to the types of

transformations we make. As a result we eliminate the need to reprove every step

when transforming a new model.

The structure of extension does not change, thus we need only prove it as a

partial ordering once. Similarly, Rosetta domains and the Rosetta domain lattice

are always constructed using extension which eliminates the need to prove each as

a complete lattice for every specific transformation. Because abstraction and con-

cretization functions will be specific to the facet being transformed, we will need

to verify that a Galois connection can be formed using those specific abstraction

and concretization functions. We will also need to verify safety preservation over

the specific transformation being made. This is where we can fully utilize the

benefits of Isabelle and eliminate the need to write each proof by hand.

A benefit of design using this methodology is the ability to evaluate the system

wide effects of local design decisions. We are able to analyze what effect a change

in one semantic domain will have on components defined in other semantic do-

mains because we can safely move information between domains for any reason

necessary . Additionally, due to the structure of the domain lattice we are able

to take advantage of reusable code and proofs. Because the foundation for each

proof will be identical, there is no need to redefine it for each individual specifi-

cation. Instead, this enables us to focus our attention to the specific specification

or transformation being examined.

Although we’re able to abstract away unneeded detail and focus on a spe-

cific problem, there is a drawback to the methodology. Because each facet will
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have to be transformed individually between semantic domains, there will be a

separate abstraction and concretization function for each. If a Galois connection

can be formed then we are assured we can prove or disprove safety preservation

over the transformation; however, there are no guarantees that the abstraction and

concretization functions have been defined correctly. Meaning, just because a Ga-

lois connection can be formed, we are not assured that the transformation itself

is valid. It is the designer’s responsibility to verify the correctness of their model

transformations between domains.
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Chapter 7

Related Work

Rosetta is certainly not the first research defining frameworks where various method-

ologies and tools can be used together. The difference between approaches pro-

posed by fellow researchers and our approach lies mainly in the level of abstrac-

tion where the engineer works, the area of application, the models of computation

involved, and the use of one representation versus several representations.

By far, the most predominant work used throughout this dissertation is the

work of Patrick Cousot regarding Abstract Interpretation[4, 5, 6]. The theory of

Abstract Interpretation provides the formal basis our methodology is based upon.

In short, Abstract Interpretation is a general theory for approximating the seman-

tics of discrete dynamic systems. The most widespread application of its prinici-

ples are in specification of program analyzers for compilers, program transfor-

mations, partial evaluation, test generation, abstract debugging, polymorphic type

inference and model checking. A typical approach to Abstract Interpretation is to
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choose a semantic domain to serve as your concrete domain and another semantic

domain to represent some abstracted version of the concrete domain. One can

then use the concepts behind Abstract Interpretation to define transitions between

the two domains and establish safety, soundness and correctness between models

defined in one domain and transformed into the other. This becomes especially

useful when a system or model is too complex to analyze or reason about in the

concrete domain because a designer can utilize the abstract domain to perform

their analysis while assuring their results hold true to the concrete version of the

same model.

Within Rosetta we utlize Abstract Interpretation to assure safety of transfor-

mations made between domains in the Rosetta domain lattice. Extensions, used

to define new domains and facets, allow us to define Galois connections between

domains in the lattice. The Galois connection provides the formal basis for defin-

ing safe transformations between two Rosetta domains. The ability to transform a

model between various semantic domains within the Rosetta domain lattice allows

the designer to analyze their models or systems at varying levels of abstraction

without sacrificing the correctness of their design.

Ptolemy[16] composes models using multiple computation domains to create

executable simulations and actual software systems. Automata are defined for dif-

ferent concurrent models of computation and by defining interaction types derived

from the automata, they model a concurrent system, maintaining the use of various

models of computation. Like Rosetta, Ptolemy II[17, 18] uses a formal semantic

model for system-level types. Unlike Rosetta, Ptolemy II is limited in specifica-
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tion of interactions that may occur between different models. Rosetta overcomes

these limitations by providing an interaction model that precisely describes any

interaction occuring between domains.

The Symbolic Analysis Laboratory, SAL[19], is yet another attempt to com-

bine the use of various tools. Differing from Ptolemy II and Rosetta, SAL offers an

intermediate language that can be translated to and from the languages of different

analysis tools. This provides an advantage in that tools such as model checkers

and theorem provers can be used in one integrated environment.

The Metropolis[20] project proposes a framework where formal models can

be defined and compared. It is being developed to help capture the requirements

of embedded system design. Metropolis is communication-based, meaning com-

ponents are composed through the communication that connects them. Similar

to Rosetta, the framework allows definition of formal models such that a system

can be defined using various models of computation, therefore allowing the use of

several semantic domains. Rosetta provides a semantics of algebras, hidden alge-

bras, and coalgebras where as Metropolis’ semantics is given by trace algebras and

trace structure algebras. Our approach also differs in that relations across domains

can be analyzed without specific communication between models in different do-

mains, and interaction in Metropolis occurs only through communication.

Viewpoints[21, 22, 23, 24] is a software specification technique allowing mul-

tiple perspectives of a system to be expressed using different tools. Each view-

point provides a template for describing a specific formalism that specifies a piece

of the system. The templates are divided into five fields consisting of the de-
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scription of the formalism chosen, the domain of application, the specification

of the sub-system, a work plan describing how the specification is to be imple-

mented, and a work record providing the history of the design. Similar to Rosetta,

Viewpoints allows the designer the choice of models of computation. However,

Viewpoints are less formal than Rosetta and focus primarily on software systems.

Possibly the most visible work in heterogeneous modeling is the Unified Mod-

eling Language, UML[25, 26, 27]. Built upon fundamental object oriented con-

cepts, UML allows the developer to specify, visualize and document various mod-

els of software systems, however it can also be used to model non-object oriented

applications as well. A UML model may be platform-independent or platform-

specific, but every standard or application is based on a platform-independent

model. The platform-independent model is then expanded upon using standard-

ized mappings to produce the platform-specific models. This is similar to the do-

main approach used by Rosetta. Rosetta provides the fundamental development

domains and designers are free to expand upon them using extension to create

their own domain-specific modeling environments.

Vapor (Verilog Abstraction for Processor Verification)[28, 29], is a tool used

for automatic abstraction of behavioral RTL Verilog to the CLU language used

by the UCLID system[30]. Unlike CLU, the Verilog language lacks formal se-

mantics. UCLID is a completely automatic tool used by designers to make as-

sumptions on data path units, perform abstractions, and prove properties about

the system. Although completely automatic, designers still have to manually ab-

stract the design to express it in the UCLID language. Vapor performs these ab-
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stractions automatically from design descriptions in Verilog, and thus provides a

sound abstraction to UCLID. This approach is similar to Rosetta in that we too

are performing sound abstractions of system models, however our emphasis on

automation lies in the actual verification of the transformation, not the abstraction

itself.

The Hawk language[31] is a domain-specific extension of the pure functional

language Haskell. It is used for building executable microprocessor specifica-

tions as well as to specify and reason about processor microarchitectures at a

high level of abstraction. Similar to Rosetta, the language focuses on the no-

tions of concision, modularity, and reusability in specifications. The work done

by Matthews[32] aims at the formal verification of Hawk specifications. Similar

to the work described here, the automated theorem prover, Isabelle, is chosen for

completing automation. However, where Matthew’s work relies heavily on the

underlying semantics of lazy functional languages, static typing, parametric poly-

morphism and first-class functions, the verification described in this work is based

on the mathematical basis behind lattice theory and abstract interpretation.

The task of writing property specifications for the informal requirements of a

system is known as the property specification problem. The Bandera Specification

Language (BSL)[33, 34], a source level specification language for model checking

Java programs, addresses this issue by leveraging the property specification to

the source level. BSL uses temporal specification patterns to abstract away from

specific temporal logics, hence aiding in the ease of writing and maintaining the

specifications. Like Rosetta, BSL utilizes the notion of abstraction to eliminate
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unneeded detail from specifications in order to analyze system behavior. However,

the work described here is aimed at verification of specification transformations

between semantic domains, whereas Bandera is focused to finite-state verification

using model checking.

Much work has been done by Dr. Douglas Smith and colleagues [35, 36] at

Kestrel Institute on creating what he describes as a mechanized model of software

development based around algebraic specifications and specification morphisms.

Specification Morphisms translate the language of one specification into the lan-

guage of another while preserving theorems over the morphism. Similar to the

efforts described in this paper, the majority of work in this area proposes a trans-

lation from one language to another and then verifies the axioms of the source

specification are translated and proven in the target specification. The approach

taken by Smith in his work on Constructing Specification Morphisms varies in that

he uses the source axioms to define the translation between languages. The axioms

themselves translate to theorems in the target specification. The paper describes

several techniques for constructing these morphisms including verifying manually

constructed signature morphisms, composition of specification morphisms, a tech-

nique referred to as unskolemization that treats the construction of morphisms as

a constraint satisfaction problem, and connections between specifications. Within

Rosetta our concretization functor transformation is defined for us, however we

may be able to utilize the techniques described by Smith to help us define our

abstraction functors, transforming from our concrete to abstract domains.

Another work by Smith focuses on Evolving Specification Engineering[37]
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and the ability to separate the concern of specifying normal-case behavior ver-

sus the exceptional cases. This work extends earlier works done by Smith on

evolving specifications and the algebraic/categorical specification of software by

introducing the concept of stateful behavior. The ability to reason about the more

complicating edge cases of a system allows better understanding of the safety and

security policies in a system and their semantic effects on the design. This is

precisely a goal of design using Rosetta. The various domains in the domain lat-

tice and their accompanying semantics allow designers to incrementally develop

models as opposed to creating monolithic ones. Similar to the efforts described

by Smith, the resulting models can be formally specified allowing for a range of

analyses to be performed.

Another effort by Smith worth mentioning is his work on Designware: Soft-

ware Development by Refinement[38]. This work builds on his mechanizable

framework for software development[35] by representing various sources of in-

formation such as application domains, requirements on the system’s behavior,

design knowledge regarding the system architecture, algorithms, data structures,

code optimization techniques and run-time hardware, software and physical envi-

ronments in which the software will execute, and for composing these pieces of

information in a refinement process. This work supports the claim that the process

of formal software refinement can be supported by automated tools. Additionally,

it supports that libraries of design knowledge can be used in constructing refine-

ments for a given specification. Rosetta mimics this approach in that we too sup-

port the ability to model various sources of information and the ability to combine
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this information in a refinement process. Rosetta domains provide the varying

levels of specification detail and semantics for representing various aspects of a

system, and extension allows us to transform specifications written in one seman-

tic domain into the same specification written in another semantic domain. The

existence of Galois connections assures safety preservation over properties spe-

cific to the design/analysis being performed. Because of the mathematical basis

the methodology is built upon, we’re able to utilize automated tools to help with

the verification and analysis of the specifications and their transformations.

David Schmidt’s work on Program Analysis as Model Checking of Abstract

Interpretation[10] presents several techniques for representing, abstracting and an-

alyzing programs using abstract interpretation, flow analysis and model checking.

The paper attempts to explain how the three techniques can interact within a static

analysis methodology. Like the efforts described in our paper, Schmidt is con-

cerned with the preservation of safety properties for all reachable states of a pro-

gram. His methodology varies from our approach in that he highlights the areas

of intersection between the use of flow analysis and model checking in support of

abstract interpretation. One constructs their program model as a state-transition

system that encodes the program’s executions, then abstracts upon the model to

reduce the level of detail. Model checking is then used to analyze and validate the

properties of the finite-state program model. Although our paper focuses on the

environment and methodology used to develop and transform the specifications

of a model, future work will most certainly involve the correctness of the specifi-

cations written as well as the validity of transformations made and importance of
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preserved safety properties to the original model.

A common challenge of verifying concurrent systems is given a specific sys-

tem, how do we create an abstract version of the model that is simple enough to

be verified but also does not violate any details needed to satisfy the properties of

it? Loiseaux and Graf’s[15] approach to solving this problem involves property

preserving abstractions. They have defined a notion of abstraction of transition

systems as a simulation that’s parameterized by Galois connections. The Galois

connections relate the lattices of properties between the two systems allowing

analysis of property preservation. Much like our effort to relate Rosetta models

written in various Rosetta domains, Loiseaux and Graf aim to verify properties of

systems by verifying the properties that apply in one system also apply to a sim-

pler, abstracted version of the system. Futhermore, the paper also discusses the

conditions under which the abstraction of concurrent systems can be computed

from the abstraction of the system’s components. This allows for compositional

application of the proposed verification method similar to our approach of func-

tional composition of Galois connections between Rosetta domains.

Designed by CoFI, the international Common Framework Initiative for alge-

braic specification and development, the Common Algebraic Specification Lan-

guage, CASL, is an expressive language for formal specification of modular soft-

ware design and functional requirements[39]. Based on subsorts, partial func-

tions, first-order logic, and structured and architectural specifications, CASL, is

aimed at providing a standard language for specification. Consisting of basic

specifications (declarations, definitions, axioms), structured specifications (trans-
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lations, reductions, unions, extension), architectural specifications (composition)

and specification libraries (local and distributed), its language design integrates

aspects such as pragmatic issues, semantic concepts and language constructs. A

basic specification denotes a class of models and many-sorted partial first-order

functions, and includes declarations, introducing components of signatures, and

axioms, giving properties to structures considered models of the specification.

Much like Rosetta domain and facet declarations, CASL signatures provide sort

names, partial and total function names as well as predicate names together with

profiles of functions and predicates. Similar to safety assurance provided by the

existence of a Galois connection between Rosetta domains, CASL institutions are

defined using signatures, models, sentences and signature morphisms obeying a

satisfaction relation between models.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

We show that, using the Rosetta system-level design language as a framework,

heterogeneous system components can be safely modeled in various Rosetta do-

main semantics. Utilizing the firm mathematical basis provided by category the-

ory, lattice theory, and abstract interpretation we have developed a methodology

for automatic verification of safety preservation over Rosetta specification trans-

formation. Rosetta facets represented as models and denoted as coalgebras are

organized around domains situated in a lattice defined by homomorphism. Us-

ing the lattice as a framework, we describe how homomorphisms define a Galois

connection between domains, assuring safety preservation over model transforma-

tion. The ability to transform specifications written in a specific semantic domain

to another semantic domain, without sacrificing correctness allows for analysis
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capabilities at the system level. Thus, being able to determine how component

specifications will interact with one another at an early design stage will help re-

duce the costs of testing the composite system as well as help reduce the time

involved with developing the system as a whole. Furthermore, the ability to au-

tomate the process using the automated theorem prover, Isabelle, will reduce the

work load, decrease the time required, and in general, simplify the overall verifi-

cation process.

8.2 Future Work

8.2.1 Verification of Transformation Functions

As mentioned in section 6.3, there is currently no way of formally verifying the

correctness of abstraction and/or concretization functions between Rosetta do-

mains. Chapter 2 discusses several properties these functions must contain in

order to form a Galois connection; however, we have no way of knowing if char-

acteristics specific to the model being transformed are upheld during the transfor-

mation. Currently it is the designer’s responsibility to define both the abstraction

and concretization functions to transform a specific model and consequently there

is room for error.

It would be interesting to see if there are fixed attributes of Rosetta facets

that could be analyzed and verified when transformed. Due to each facet being

defined using the same syntactic structure, there might be an opportunity to take

advantage of the framework for verification purposes. The ability to validate the
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correctness of both abstraction and concretization functions would only strenghten

our methodology.

8.2.2 Analysis Automation

The work in this dissertation has mainly focused on automating and simplifying

the proofs associated with transformation of Rosetta specifications and safety ver-

ification over those transformations. As we have already mentioned, the cause

for transformation could be for analysis purposes in another semantic domain. In

that case, it would be beneficial for the designer to be able to automate the anal-

ysis being performed. It seems reasonable, due to Rosetta’s underlying semantic

structure, that we could also transform analysis specifications into an automated

theorem prover and prove or disprove correctness over analysis. This could prove

challenging, though, especially for larger specifications because domains can be-

come quite complex with the allowance of user defined domains.

8.2.3 Transformation Between Rosetta Domain Lattices

The research described in this paper focuses on transformations made between

domains in the Rosetta domain lattice. A key component to this being possible

is the fact that Rosetta domains can be represented as complete lattices. What

was also found as a result of this research was that the entire collection of Rosetta

domains can also be represented as a complete lattice. Thus, the hierarchy of

Rosetta domains is actually a complete lattice of complete lattices.
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Since Galois connections exist between complete lattices, it is feasible that

Galois connections can exist between the Rosetta domain lattice and the Rosetta

domain lattice. In other words, if two (or more) copies of the Rosetta domain lat-

tice existed we could form Galois connections between them in order to facilitate

transformations between the two domain lattices. We already have the mathe-

matical basis to perform this type of transformation; however, it’s unclear what

benefit this would have on design using Rosetta, if any. This may not provide any

advantages due to the fact that new domains can be defined within the Rosetta do-

main lattice. Users currently have the ability to create any new domain they may

need for their design. However, there may be worth in establishing more than one

Rosetta domain lattice and being able to transform models between them.
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Appendix

Isabelle Code - Parity Example:

theory EvenOdd

imports Main

begin

(* Creating datatypes *)

datatype ’a ConVal = ConNum ’a

| OddList

| EvenList

datatype AbsVal = Odd

| Even

(* getVal extracts the natural number *)

consts getVal :: "nat ConVal ⇒ nat"

primrec "getVal (ConNum x) = x"

(* Increments a natural number *)

consts conInc ::"nat ConVal ⇒ nat ConVal"

primrec "conInc (ConNum x) = (ConNum (x+1))"

"conInc OddList = EvenList"

"conInc EvenList = OddList"

(* Increments an abstract value *)
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consts absInc :: "AbsVal ⇒ AbsVal"

primrec "absInc Odd = Even"

"absInc Even = Odd"

(* Determines if a natural number is even *)

constdefs even :: "nat ⇒ bool"

"even n == n mod 2 = 0"

(* Abstraction function *)

constdefs alpha :: "nat ConVal ⇒ AbsVal"

"alpha x == case x of (ConNum y) ⇒ if (even y) then Even else Odd |

(OddList) ⇒ Odd |

(EvenList) ⇒ Even"

(* Concretization function *)

constdefs gamma :: "AbsVal ⇒ nat ConVal"

"gamma x == if (x=Even) then EvenList else OddList"

(* Partial ordering *)

constdefs sqsubseteq :: "nat ConVal⇒ nat ConVal⇒ bool" (infixr " v " 65)

"x v y == case x of (ConNum a)⇒

case y of (ConNum b)⇒ if (a=b) then True

else False |

(OddList)⇒ if (even a) then False

else True |

(EvenList)⇒ if (even a) then True

else False |

(OddList)⇒

case y of (ConNum b)⇒ False |

(OddList)⇒ True |

(EvenList)⇒ False |

(EvenList)⇒

case y of (ConNum b)⇒ False |

(OddList)⇒ False |

(EvenList)⇒ True "
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constdefs sqsupseteq :: "AbsVal⇒ AbsVal⇒ bool" (infixr " w " 65)

"x w y == if (x=y) then True else False"

(*-------------------------------------------------------*)

(* Lemma Definitions *)

(*-------------------------------------------------------*)

lemma even_suc_suc: "even a =⇒ even (Suc (Suc a))"

apply (simp add: even_def)

done

lemma even_suc_suc_even: "even (Suc (Suc a)) =⇒ even a"

apply (simp add: even_def)

done

lemma not_even_suc_suc_not_even: "˜(even (Suc (Suc a))) =⇒ ˜(even a)"

apply (erule contrapos_nn)

apply (simp add: even_def)

done

lemma even_not_even_suc: "even a =⇒ ˜(even (Suc a))"

apply (induct a)

apply auto

apply (simp add: even_def)

apply (simp add: even_suc_suc_even)

done

lemma not_even_even_suc: "˜(even a) =⇒ (even (Suc a))"

apply (erule contrapos_np)

apply (induct a)

apply (simp add: even_def)

apply (drule not_even_suc_suc_not_even)

apply (drule contrapos_np)

apply auto
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done

(*------------------------------------------------------*)

(* Proving the partial order *)

(*------------------------------------------------------*)

lemma supset_reflexivity: "x w x"

apply (simp add: sqsupseteq_def)

done

lemma supset_antisymmetry: "((x w y) ∧ (y w x)) =⇒ (x = y)"

apply (induct x)

apply (induct y)

apply (simp add: supset_reflexivity)

apply (simp add: sqsupseteq_def)

apply (induct y)

apply (simp add: sqsupseteq_def)

apply (simp add: supset_reflexivity)

done

lemma supset_transitivity: "((x w y) ∧ (y w z)) =⇒ (x w z)"

apply (induct x)

apply (induct y)

apply (induct z)

apply (simp add: supset_reflexivity)

apply (simp add: sqsupseteq_def)

apply (induct z)

apply (simp add: sqsupseteq_def)

apply (simp add: sqsupseteq_def)

apply (induct y)

apply (induct z)

apply (simp add: sqsupseteq_def)

apply (simp add: sqsupseteq_def)

apply (induct z)

apply (simp add: sqsupseteq_def)
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apply (simp add: supset_reflexivity)

done

lemma subset_reflexivity: "x v x"

apply (induct x)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

done

lemma subset_antisymmetry: "(x v y) ∧ (y v x) =⇒ (x = y)"

apply (induct x)

apply (induct y)

apply (simp add: subset_reflexivity)

apply (simp add: sqsubseteq_def)

apply auto

apply (erule rev_iffD2)

apply (drule eqTrueI)

apply auto

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (induct y)

apply (simp add: sqsubseteq_def)

apply (simp add: subset_reflexivity)

apply (simp add: sqsubseteq_def)

apply (induct y)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (simp add: subset_reflexivity)

done

lemma subset_transitivity: "(x v y) ∧ (y v z) =⇒ (x v z)"

apply (induct x)

apply (induct y)

apply (induct z)
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apply (simp add: sqsubseteq_def)

apply auto

apply (drule contrapos_pp)

apply auto

apply (simp add: sqsubseteq_def)

apply auto

apply (drule contrapos_pp)

apply auto

apply (simp add: sqsubseteq_def)

apply (drule contrapos_pp)

apply auto

apply (induct z)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (induct z)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (induct y)

apply (induct z)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (induct z)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (induct z)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (induct y)

apply (induct z)

apply (simp add: sqsubseteq_def)
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apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (induct z)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (induct z)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

apply (simp add: sqsubseteq_def)

done

(*------------------------------------------------------*)

(* Proving the abstraction function commutes *)

(*------------------------------------------------------*)

theorem alpha_commute: "(alpha (conInc x))=(absInc (alpha x))"

apply (induct x)

apply (simp add: alpha_def)

apply auto

apply (simp add: even_not_even_suc)

apply (simp add: not_even_even_suc)

apply (simp add: alpha_def)

apply (simp add: alpha_def)

done

(*------------------------------------------------------*)

(* Proving the concretization function commutes *)

(*------------------------------------------------------*)

theorem gamma_commute: "(conInc (gamma x))=(gamma (absInc x))"

apply (induct x)

apply (simp add: gamma_def)

apply (simp add: gamma_def)

done
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(*-------------------------------------------------------*)

(* Proving the Galois connection *)

(*-------------------------------------------------------*)

theorem galois_connection_one: "x w (alpha (gamma x))"

apply (induct x)

apply (simp add: gamma_def)

apply (simp add: alpha_def)

apply (simp add: sqsupseteq_def)

apply (simp add: gamma_def)

apply (simp add: alpha_def)

apply (simp add: sqsupseteq_def)

done

theorem galois_connection_two: "x v (gamma (alpha x))"

apply (induct x)

apply (simp add: alpha_def)

apply (simp add: gamma_def)

apply (simp add: sqsubseteq_def)

apply (simp add: alpha_def)

apply (simp add: gamma_def)

apply (simp add: sqsubseteq_def)

apply (simp add: alpha_def)

apply (simp add: gamma_def)

apply (simp add: sqsubseteq_def)

done

end
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Isabelle Code - Rosetta Domains:

theory Domains

imports Main Lattices

begin

datatype ’d Domain = Top

| Facet "’d"

| Bottom

constdefs Sqsubseteq :: "nat Domain ⇒ nat Domain ⇒ bool" (infixr "v" 65)

"x v y == case x of (Top) ⇒ case y of (Top) ⇒ True |

(_) ⇒ False |

(Facet f) ⇒ case y of (Top) ⇒ True |

(Facet g) ⇒ if (f=g) then True else False |

(_) ⇒ False |

(Bottom) ⇒ case y of (_) ⇒ True"

(*-------------------------------------------*)

(* Proving partial ordering over domains *)

(*-------------------------------------------*)

lemma Sqsubseteq_reflexivity: "x v x"

apply (induct x)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

done

lemma Sqsubseteq_antisymmetry:"((x v y) & (y v x) =⇒ (x=y))"

apply (induct x)

apply (induct y)

apply (simp add: Sqsubseteq_reflexivity)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)
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apply (induct y)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_reflexivity)

apply (simp add: Sqsubseteq_def)

apply auto

apply (drule eqTrueI)

apply auto

apply (erule rev_iffD2)

apply auto

apply (simp add: Sqsubseteq_def)

apply (induct y)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

done

lemma Sqsubseteq_transitivity: "((x v y) & (y v z) =⇒ (x v z))"

apply (induct x)

apply (induct y)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct y)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)
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apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply auto

apply (drule eqTrueI)

apply auto

apply (erule rev_iffD2)

apply auto

apply (erule rev_iffD2)

apply auto

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct y)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

done

theorem Top_Top_ub: "Top v Top & Top v Top"

apply (simp add: Sqsubseteq_def)
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done

theorem Top_Facet_ub: "Top v Top & Facet d v Top"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Bottom_ub: "Top v Top & Bottom v Top"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Top_ub: "Facet d v Top & Top v Top"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Facet_ub: "(Facet d v Top & Facet f v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Facet_ub2: "d = f =⇒ Facet d v Facet d & Facet f v Facet d"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Bottom_ub: "Facet d v Facet d & Bottom v Facet d"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Bottom_ub2: "Facet d v Top & Bottom v Top"
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apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Bottom_ub: "Bottom v Bottom & Bottom v Bottom"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Bottom_ub2: "Bottom v Facet d & Bottom v Facet d"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Bottom_ub3: "Bottom v Top & Bottom v Top"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Top_ub: "Bottom v Top & Top v Top"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Facet_ub: "Bottom v Top & Facet d v Top"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Facet_ub2: "Bottom v Facet d & Facet d v Facet d"

apply (simp add: Sqsubseteq_def)

done

lemma ub: "(∃ x. (a v x) & (b v x))"
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apply (induct a)

apply (induct b)

apply (rule exI)

apply (rule Top_Top_ub)

apply (rule exI)

apply (rule Top_Facet_ub)

apply (rule exI)

apply (rule Top_Bottom_ub)

apply (induct b)

apply (rule exI)

apply (rule Facet_Top_ub)

apply (rule exI)

apply (rule Facet_Facet_ub)

apply (rule exI)

apply (rule Facet_Bottom_ub)

apply (induct b)

apply (rule exI)

apply (rule Bottom_Top_ub)

apply (rule exI)

apply (rule Bottom_Facet_ub)

apply (rule exI)

apply (rule Bottom_Bottom_ub)

done

(* ********* LOWER BOUNDS ***********)

theorem Top_Top_lb: "Top v Top & Top v Top"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Top_lb2: "Facet d v Top & Facet d v Top"

apply (simp add: Sqsubseteq_def)

done
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theorem Top_Top_lb3: "Bottom v Top & Bottom v Top"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Facet_lb: "Facet d v Top & Facet d v Facet d"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Facet_lb2: "Bottom v Top & Bottom v Facet d"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Bottom_lb: "Bottom v Top & Bottom v Bottom"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Top_lb: "Facet d v Facet d & Facet d v Top"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Top_lb2: "Bottom v Facet d & Bottom v Top"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Facet_lb: "(Bottom v Facet d & Bottom v Facet d)"

apply (simp add: Sqsubseteq_def)

done

110



theorem Facet_Facet_lb2: "d=f =⇒ Facet d v Facet d & Facet d v Facet f"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Facet_lb3: "Bottom v Facet d"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Bottom_lb: "Bottom v Facet d & Bottom v Bottom"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Top_lb: "Bottom v Bottom & Bottom v Top"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Facet_lb: "Bottom v Bottom & Bottom v Facet d"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Bottom_lb: "Bottom v Bottom & Bottom v Bottom"

apply (simp add: Sqsubseteq_def)

done

lemma lb: "(∃ x. (x v a) & (x v b))"
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apply (induct a)

apply (induct b)

apply (rule exI)

apply (rule Top_Top_lb)

apply (rule exI)

apply (rule Top_Facet_lb)

apply (rule exI)

apply (rule Top_Bottom_lb)

apply (induct b)

apply (rule exI)

apply (rule Facet_Top_lb)

apply (rule exI)

apply auto

apply (rule Facet_Facet_lb3)

apply (rule Facet_Facet_lb3)

apply (rule exI)

apply (rule Facet_Bottom_lb)

apply (induct b)

apply (rule exI)

apply (rule Bottom_Top_lb)

apply (rule exI)

apply (rule Bottom_Facet_lb)

apply (rule exI)

apply (rule Bottom_Bottom_lb)

done

(************ Least Upper Bound **************)

theorem Top_Top_Top_Top_ub: "(Top v Top) & (Top v Top) & (Top v Top) & (Top v Top) & (Top v

Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Facet_Top_Top_ub: "(Top v Top) & (Facet d v Top) & (Top v Top) & (Facet d v
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Top) & (Top v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Bottom_Top_Top_ub: "(Top v Top) & (Bottom v Top) & (Top v Top) & (Bottom v

Top) & (Top v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Top_Top_Top_ub: "(Facet d v Top) & (Top v Top) & (Facet d v Top) & (Top v

Top) & (Top v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Facet_Top_Top_ub: "(Facet d v Top) & (Facet f v Top) & (Facet d v Top) & (Facet f v

Top) & (Top v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Facet_Facet_Top_ub: "(Facet d v Facet d) & (Facet d v Facet d) & (Facet d v

Top) & (Facet d v Top) & (Facet d v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Facet_Facet_Facet_ub: "(Facet d v Facet d) & (Facet d v Facet d) & (Facet d v

Facet d) & (Facet d v Facet d) & (Facet d v Facet d)"

apply (simp add: Sqsubseteq_def)

done

113



theorem Facet_Bottom_Top_Top_ub: "(Facet d v Top) & (Bottom v Top) & (Facet d v Top) & (Bottom v

Top) & (Top v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Bottom_Facet_Top_ub: "(Facet d v Facet d) & (Bottom v Facet d) & (Facet d v

Top) & (Bottom v Top) & (Facet d v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Bottom_Facet_Facet_ub: "(Facet d v Facet d) & (Bottom v Facet d) & (Facet d v

Facet d) & (Bottom v Facet d) & (Facet d v Facet d)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Top_Top_Top_ub: "(Bottom v Top) & (Top v Top) & (Bottom v Top) & (Top v

Top) & (Top v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Facet_Top_Top_ub: "(Bottom v Top) & (Facet d v Top) & (Bottom v Top) & (Facet d v

Top) & (Top v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Facet_Facet_Top_ub: "(Bottom v Facet d) & (Facet d v Facet d) & (Bottom v

Top) & (Facet d v Top) & (Facet d v Top)"
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apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Facet_Facet_Facet_ub: "(Bottom v Facet d) & (Facet d v Facet d) & (Bottom v

Facet d) & (Facet d v Facet d) & (Facet d v Facet d)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Bottom_Top_Top_ub: "(Bottom v Top) & (Bottom v Top) & (Bottom v Top) & (Bottom v

Top) & (Top v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Bottom_Facet_Top_ub: "(Bottom v Facet d) & (Bottom v Facet d) & (Bottom v

Top) & (Bottom v Top) & (Facet d v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Bottom_Facet_Facet_ub: "(Bottom v Facet d) & (Bottom v Facet d) & (Bottom v

Facet d) & (Bottom v Facet d) & (Facet d v Facet d)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Bottom_Bottom_Top_ub: "(Bottom v Bottom) & (Bottom v Bottom) & (Bottom v

Top) & (Bottom v Top) & (Bottom v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Bottom_Bottom_Bottom_ub: "(Bottom v Bottom) & (Bottom v Bottom) & (Bottom v

Bottom) & (Bottom v Bottom) & (Bottom v Bottom)"
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apply (simp add: Sqsubseteq_def)

done

lemma least_ub: "(∃ x m. (a v x) & (b v x) & (a v m) & (b v m) & (x v m))"

apply (induct a)

apply (induct b)

apply (rule exI)

apply (rule exI)

apply (rule Top_Top_Top_Top_ub)

apply (rule exI)

apply (rule exI)

apply (rule Top_Facet_Top_Top_ub)

apply (rule exI)

apply (rule exI)

apply (rule Top_Bottom_Top_Top_ub)

apply (induct b)

apply (rule exI)

apply (rule exI)

apply (rule Facet_Top_Top_Top_ub)

apply (rule exI)

apply (rule exI)

apply (rule Facet_Facet_Top_Top_ub)

apply (rule exI)

apply (rule exI)

apply (rule Facet_Bottom_Top_Top_ub)

apply (induct b)

apply (rule exI)

apply (rule exI)

apply (rule Bottom_Top_Top_Top_ub)

apply (rule exI)

apply (rule exI)

apply (rule Bottom_Facet_Top_Top_ub)

apply (rule exI)

apply (rule exI)
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apply (rule Bottom_Bottom_Top_Top_ub)

done

(*********** Greatest Lower Bound ************)

theorem Top_Top_Top_Top_lb: "(Top v Top) & (Top v Top) & (Top v Top) & (Top v Top) & (Top v

Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Top_Top_Facet_lb: "(Top v Top) & (Top v Top) & (Facet d v Top) & (Facet d v

Top) & (Facet d v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Top_Top_Bottom_lb: "(Top v Top) & (Top v Top) & (Bottom v Top) & (Bottom v

Top) & (Bottom v Top)"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Top_Facet_Facet_lb: "(Facet d v Top) & (Facet d v Top) & (Facet d v Top) & (Facet d v

Top) & (Facet d v Facet d)"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Top_Facet_Bottom_lb: "(Facet d v Top) & (Facet d v Top) & (Bottom v Top) & (Bottom v

Top) & (Bottom v Facet d)"

apply (simp add: Sqsubseteq_def)

done
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theorem Top_Top_Bottom_Bottom_lb: "(Bottom v Top) & (Bottom v Top) & (Bottom v Top) & (Bottom v

Top) & (Bottom v Bottom)"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Facet_Facet_Facet_lb: "(Facet d v Top) & (Facet d v Facet d) & (Facet d v

Top) & (Facet d v Facet d) & (Facet d v Facet d)"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Facet_Facet_Bottom_lb: "(Facet d v Top) & (Facet d v Facet d) & (Bottom v

Top) & (Bottom v Facet d) & (Bottom v Facet d)"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Facet_Bottom_Bottom_lb: "(Bottom v Top) & (Bottom v Facet d) & (Bottom v

Top) & (Bottom v Facet d) & (Bottom v Bottom)"

apply (simp add: Sqsubseteq_def)

done

theorem Top_Bottom_Bottom_Bottom_lb: "(Bottom v Top) & (Bottom v Bottom) & (Bottom v

Top) & (Bottom v Bottom) & (Bottom v Bottom)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Top_Facet_Facet_lb: "(Facet d v Facet d) & (Facet d v Top) & (Facet d v

Facet d) & (Facet d v Top) & (Facet d v Facet d)"
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apply (simp add: Sqsubseteq_def)

done

theorem Facet_Top_Facet_Bottom_lb: "(Facet d v Facet d) & (Facet d v Top) & (Bottom v

Facet d) & (Bottom v Top) & (Bottom v Facet d)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Top_Bottom_Bottom_lb: "(Bottom v Facet d) & (Bottom v Top) & (Bottom v

Facet d) & (Bottom v Top) & (Bottom v Bottom)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Facet_Facet_Facet_lb: "(Facet d v Facet d) & (Facet d v Facet d) & (Facet d v

Facet d) & (Facet d v Facet d) & (Facet d v Facet d)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Facet_Facet_Bottom_lb: "(Facet d v Facet d) & (Facet d v Facet d) & (Bottom v

Facet d) & (Bottom v Facet d) & (Bottom v Facet d)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Facet_Bottom_Bottom_lb: "(Bottom v Facet d) & (Bottom v Facet d) & (Bottom v

Facet d) & (Bottom v Facet d) & (Bottom v Bottom)"

apply (simp add: Sqsubseteq_def)

done

theorem Facet_Bottom_Bottom_lb: "(Bottom v Facet d) & (Bottom v Bottom) & (Bottom v

Bottom)"
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apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Bottom_lb2: "(Bottom v Bottom)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Top_Bottom_lb: "(Bottom v Bottom) & (Bottom v Top) & (Bottom v Bottom)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Facet_Bottom_lb: "(Bottom v Bottom) & (Bottom v Facet d) & (Bottom v

Bottom)"

apply (simp add: Sqsubseteq_def)

done

lemma greatest_lb:" (∃ x m. (x v a) & ( x v b) & (m v a) & (m v b) & (m v x))"

apply (induct a)

apply (induct b)

apply (rule exI)

apply (rule exI)

apply (rule Top_Top_Top_Top_lb)

apply (rule exI)

apply (rule exI)

apply (rule Top_Facet_Facet_Facet_lb)

apply (rule exI)

apply (rule exI)

apply (rule Top_Bottom_Bottom_Bottom_lb)

apply (induct b)

apply (rule exI)
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apply (rule exI)

apply (rule Facet_Top_Facet_Facet_lb)

apply (rule exI)

apply (rule exI)

apply auto

apply (rule Facet_Facet_lb3)

apply (rule Facet_Facet_lb3)

apply (rule Facet_Facet_lb3)

apply (rule Facet_Facet_lb3)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Facet_Facet_lb3)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply (rule Facet_Bottom_Bottom_lb)

apply (induct b)

apply (rule exI)

apply auto

apply (rule Bottom_Bottom_lb2)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply (rule Bottom_Top_Bottom_lb)

apply (rule exI)

apply auto

apply (rule Bottom_Bottom_lb2)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply (rule Bottom_Facet_Bottom_lb)

apply (rule exI)

apply auto

apply (rule Bottom_Bottom_lb2)

apply (rule exI)

apply (rule Bottom_Bottom_lb)

done
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end

Isabelle Code - Rosetta Domain Lattice

theory DomainLattice

imports Main Lattices

begin

datatype DomainLattice = Null

| Static

| State_Based

| Signal_Based

| Bottom

constdefs Sqsubseteq :: "DomainLattice ⇒ DomainLattice ⇒ bool" (infixr "v" 65)

"x v y == case x of (Null) ⇒ case y of (Null) ⇒ True |

(_) ⇒ False |

(Static) ⇒ case y of (Null) ⇒ True |

(Static) ⇒ True |

(_) ⇒ False |

(State_Based) ⇒ case y of (Null) ⇒ True |

(Static) ⇒ True |

(State_Based) ⇒ True |

(_) $Rightarrow False |

(Signal_Based) ⇒ case y of (Null) ⇒ True |

(Static) ⇒ True |

(Signal_Based) ⇒ True |

(_) ⇒ False |

(Bottom) ⇒ case y of (_) ⇒ True"

(*-----------------------------------------------------------*)

(* Proving the partial ordering over domain lattice *)

(*-----------------------------------------------------------*)

lemma Sqsubseteq_reflexivity: "∀ x. D x $Longrightarrow x v x"
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apply (induct x)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

done

lemma Sqsubseteq_antisymmetry: "(x v y) & (y v x) =⇒ (x=y)"

apply (induct x)

apply (induct y)

apply (simp add: Sqsubseteq_reflexivity)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct y)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_reflexivity)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct y)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_reflexivity)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct y)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_reflexivity)

apply (simp add: Sqsubseteq_def)
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apply (induct y)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

done

lemma sqsubseteq_transitivity: "(x v y) & (y v z) =⇒ (x v z)"

apply (induct x)

apply (induct y)

apply (induct z)

apply (simp add: Sqsubseteq_reflexivity)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)
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apply (simp add: Sqsubseteq_def)

apply (induct y)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct y)

apply (induct z)

apply (simp add: Sqsubseteq_def)
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apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct y)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)
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apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct y)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)
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apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct y)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)
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apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct z)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

done

theorem Null_Null_ub: "(Null v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem Null_Null_Null_Null_ub: "(Null v Null) & (Null v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem Static_Null_ub: "(Static v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem Null_Static_Null_ub: "(Null v Null) & (Static v Null) & (Null v Null)"
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apply (simp add: Sqsubseteq_def)

done

theorem Null_StateBased_Null_ub: "(Null v Null) & (State_Based v Null) & (Null v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem Null_SignalBased_Null_ub: "(Null v Null) & (Signal_Based v Null) & (Null v

Null)"

apply (simp add: Sqsubseteq_def)

done

theorem Static_Static_Null_ub: "(Static v Null) & (Static v Null) & (Null v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem Static_Null_Null_ub: "(Static v Null) & (Null v Null) & (Null v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem StateBased_Null_ub: "(State_Based v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem StateBased_Null_Null_ub: "(State_Based v Null) & (Null v Null) & (Null v Null)"

apply (simp add: Sqsubseteq_def)

done
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theorem StateBased_Static_Null_ub: "(State_Based v Null) & (Static v Null) & (Null v

Null)"

apply (simp add: Sqsubseteq_def)

done

theorem StateBased_StateBased_Null_ub: "(State_Based v Null) & (State_Based v Null) & (Null v

Null)"

apply (simp add: Sqsubseteq_def)

done

theorem StateBased_SignalBased_Null_ub: "(State_Based v Null) & (Signal_Based v Null) & (Null v

Null)"

apply (simp add: Sqsubseteq_def)

done

theorem SignalBased_Null_ub: "(Signal_Based v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem SignalBased_Null_Null_ub: "(Signal_Based v Null) & (Null v Null) & (Null v

Null)"

apply (simp add: Sqsubseteq_def)

done

theorem SignalBased_Static_Null_ub: "(Signal_Based v Null) & (Static v Null) & (Null v

Null)"

apply (simp add: Sqsubseteq_def)

done
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theorem SignalBased_StateBased_Null_ub: "(Signal_Based v Null) & (State_Based v Null) & (Null v

Null)"

apply (simp add: Sqsubseteq_def)

done

theorem SignalBased_SignalBased_Null_ub: "(Signal_Based v Null) & (Signal_Based v

Null) & (Null v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem Null_Bottom_Null_ub: "(Null v Null) & (Bottom v Null) & (Null v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Null_ub: "(Bottom v Null)"

apply (simp add: Sqsubseteq_def)

done

lemma least_ub: "(∃ x m. (a v x) & (b v x) & (a v m) & (b v m) & (x v m))"

apply (induct a)

apply (induct b)

apply (rule exI)

apply auto

apply (rule Null_Null_ub)

apply (rule exI)

apply (rule Null_Null_Null_Null_ub)

apply (rule exI)

apply auto
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apply (rule Null_Null_ub)

apply (rule Static_Null_ub)

apply (rule exI)

apply (rule Null_Static_Null_ub)

apply (rule exI)

apply auto

apply (rule Null_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply (rule Null_StateBased_Null_ub)

apply (rule exI)

apply auto

apply (rule Null_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply (rule Null_SignalBased_Null_ub)

apply (rule exI)

apply auto

apply (rule Null_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply (rule Null_Bottom_Null_ub)

apply (induct b)

apply (rule exI)

apply auto

apply (rule Static_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply (rule Static_Null_Null_ub)

apply (rule exI)

apply auto

apply (rule Static_Null_ub)

apply (rule exI)

apply auto

apply (rule Static_Null_ub)
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apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Static_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Static_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Static_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Static_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Static_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Static_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule StateBased_Null_ub)

apply (induct b)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)
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apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct b)

apply (rule exI)

apply (rule StateBased_Null_Null_ub)

apply (rule exI)

apply (rule StateBased_Static_Null_ub)

apply (rule exI)

apply (rule StateBased_StateBased_Null_ub)

apply (rule exI)

apply (rule StateBased_SignalBased_Null_ub)

apply (rule exI)

apply auto

apply (rule StateBased_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct b)

apply (rule exI)

apply auto

apply (rule SignalBased_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply (rule SignalBased_Null_Null_ub)

apply (rule exI)

apply auto

apply (rule SignalBased_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply (rule SignalBased_Static_Null_ub)

apply (rule exI)

apply auto

apply (rule SignalBased_Null_ub)

apply (rule StateBased_Null_ub)

apply (rule exI)

apply (rule SignalBased_StateBased_Null_ub)
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apply (rule exI)

apply auto

apply (rule SignalBased_Null_ub)

apply (rule exI)

apply (auto)

apply (rule SignalBased_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule SignalBased_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule SignalBased_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Null_ub)

apply (induct b)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (induct b)

apply (rule exI)

apply auto

apply (rule Bottom_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)
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apply (rule exI)

apply auto

apply (rule Bottom_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Null_ub)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Null_ub)

apply (simp add: Sqsubseteq_def)

done

theorem Null_Null_lb: "(Null v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem Null_Null_Null_Null_lb: "(Null v Null) & (Null v Null) & (Null v Null) & (Null v

Null) & (Null v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem Null_Static_Static_Static_lb: "(Static v Null) & (Static v Static) & (Static v

Null) & (Static v Static) & (Static v Static)"

apply (simp add: Sqsubseteq_def)

done

theorem Null_StateBased_StateBased_StateBased_lb: "(State_Based v Null) & (State_Based v

State_Based) & (State_Based v Null) & (State_Based v State_Based) & (State_Based v
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State_Based)"

apply (simp add: Sqsubseteq_def)

done

theorem Null_SignalBased_SignalBased_SignalBased_lb: "(Signal_Based v Null) & (Signal_Based v

Signal_Based) & (Signal_Based v Null) & (Signal_Based v Signal_Based) & (Signal_Based v

Signal_Based)"

apply (simp add: Sqsubseteq_def)

done

theorem Static_Null_Static_Static_lb: "(Static v Static) & (Static v Null) & (Static v

Static) & (Static v Null) & (Static v Static)"

apply (simp add: Sqsubseteq_def)

done

theorem Static_Static_Static_Static_lb: "(Static v Static) & (Static v Static) & (Static v

Static) & (Static v Static) & (Static v Static)"

apply (simp add: Sqsubseteq_def)

done

theorem Static_StateBased_StateBased_StateBased_lb: "(State_Based v Static) & (State_Based v

State_Based) & (State_Based v Static) & (State_Based v State_Based) & (State_Based v

State_Based)"

apply (simp add: Sqsubseteq_def)

done

theorem Static_SignalBased_SignalBased_SignalBased_lb: "(Signal_Based v Static) & (Signal_Based v

Signal_Based) & (Signal_Based v Static) & (Signal_Based v Signal_Based) & (Signal_Based v

Signal_Based)"
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apply (simp add: Sqsubseteq_def)

done

theorem StateBased_Null_StateBased_StateBased_lb: "(State_Based v State_Based) & (State_Based v

Null) & (State_Based v State_Based) & (State_Based v Null) & (State_Based v State_Based)"

apply (simp add: Sqsubseteq_def)

done

theorem Null_Bottom_Bottom_Bottom_lb: "(Bottom v Null) & (Bottom v Bottom) & (Bottom v

Null) & (Bottom v Bottom) & (Bottom v Bottom)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Null_lb: "(Bottom v Null)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_Static_lb: "(Bottom v Static)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_StateBased_lb: "(Bottom v State_Based)"

apply (simp add: Sqsubseteq_def)

done

theorem Bottom_SignalBased_lb: "(Bottom v Signal_Based)"

apply (simp add: Sqsubseteq_def)

done
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theorem Bottom_Bottom_lb: "(Bottom v Bottom)"

apply (simp add: Sqsubseteq_def)

done

lemma greatest_lb: "(∃ x m. (x v a) & (x v b) & (m v a) & (m v b) & (m v x))"

apply (induct a)

apply (induct b)

apply (rule exI)

apply (rule exI)

apply (rule Null_Null_Null_Null_lb)

apply (rule exI)

apply (rule exI)

apply (rule Null_Static_Static_Static_lb)

apply (rule exI)

apply (rule exI)

apply (rule Null_StateBased_StateBased_StateBased_lb)

apply (rule exI)

apply (rule exI)

apply (rule Null_SignalBased_SignalBased_SignalBased_lb)

apply (induct b)

apply (rule exI)

apply (rule exI)

apply (rule Null_Bottom_Bottom_Bottom_lb)

apply (rule exI)

apply auto

apply (rule Bottom_Null_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Null_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)
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apply auto

apply (rule Bottom_Null_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Null_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Null_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Null_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Null_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Null_lb)

apply (simp add: Sqsubseteq_def)

apply (induct b)

apply (rule exI)

apply auto

apply (rule Bottom_Static_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Static_lb)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto
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apply (rule Bottom_Static_lb)

apply (rule exI)

apply auto

apply (rule Bottom_Static_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Static_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Static_lb)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Static_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Static_lb)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Static_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Static_lb)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_StateBased_lb)

apply (induct b)
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apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_StateBased_lb)

apply (induct b)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_SignalBased_lb)

apply (induct b)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_SignalBased_lb)

apply (induct b)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)
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apply auto

apply (rule Bottom_Bottom_lb)

apply (induct b)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (rule exI)

apply auto

apply (rule Bottom_Bottom_lb)

apply (induct b)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

apply (simp add: Sqsubseteq_def)

done

end
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