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Abstract: Blood-brain barrier transport of the selective serotonin reuptake inhibitor and antidepressant, 
citalopram, was studied using monolayers of bovine brain microvessel endothelial cells (BMECs).  This 
study provides for the first time, evidence of a transport mechanism for a selective serotonin reuptake 
inhibitor (SSRI).  Carrier-mediated transport, efflux mechanisms, as well as inhibition of metabolizing 
enzymes of citalopram were investigated.  Citalopram transport was saturable and temperature-
dependent suggesting that passage of the drug across BMECs was mediated by a carrier mechanism.  
Since the apical to basolateral and basolateral to apical permeability coefficients were similar and 
cyclosporin A, a P-glycoprotein inhibitor, does not modify the transport of citalopram, it appeared that 
no active efflux systems were involved in this transport.  Citalopram is only available as a racemic drug 
and its pharmacological effect resides mainly in the S-(+)-enantiomer.  However, the passage of  
citalopram enantiomers across BMEC monolayers was not stereoselective.  Finally, inhibition of the 
metabolizing enzymes of citalopram and monoamine oxidases did not modify the permeation of 
citalopram across BMECs.  Collectively, our results suggested that citalopram crosses the blood-brain 
barrier via a non-stereoselective, bidirectional and symmetrical carrier-mediated mechanism without 
influences of active efflux mechanisms or monoamine oxidases. 
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1. Introduction  

 In general, few studies regarding the stereoselective levels of psychotropic drugs 

either in the brain or in the blood have been published.  With the enantiomers of (E)-10-

hydroxynortriptyline, evidence has strongly implicated a stereoselective, active transport 

of the molecule out of the cerebrospinal fluid [6].  In contrast, the difference between the 

brain levels of the enantiomers of fluoxetine may be the consequences of specific and 

stereoselective cerebral enzymatic activities [14]. 

 Citalopram (CIT), Figure 1, is a selective serotonin reuptake inhibitor (SSRI) and 

antidepressant, which has recently been introduced as a racemic mixture [26].   The 

drug is well-absorbed with an absolute oral bioavailability of 80%.  The pharmacological 

effect of CIT resides mainly in the S-(+)-enantiomer [18].  In humans, CIT is 

stereoselectively biotransformed mainly by N-demethylation to demethylcitalopram by 

cytochrome P450 (CYP) 2C19, 3A4 and 2D6 [27] but also by deamination to a propionic 

acid derivative (CIT-PROP) by monoamine oxidases (MAO) and aldehyde oxidase [29]. 

The serum half-life of CIT is approximately 35 hours [35].  Knowledge of the 

biotransformation and elimination of CIT and other SSRIs has improved drug efficacy or 

safety and, in some cases, individualized drug treatment [8,12]. 

 Although SSRI metabolism has been extensively studied in vivo and in vitro  [5], 

no data are available for the transport mechanisms into the brain.  Indeed, the 

exchange of drugs between systemic circulation and the central nervous system is 

severely restricted by the so-called blood-brain barrier (BBB) [2].  The microvessels of 

the BBB consist of a single continuous layer of cerebral endothelial cells effectively 

sealed together by tight intercellular junctions.  Cells surrounding the brain endothelium 
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(i.e. neurons, astrocytes and pericytes), as well as the basal lamina, also contribute to 

the stability and the barrier characteristics of the brain microvessel cells (BMECs) [19].  

The presence of the efflux pump P-glycoprotein (Pgp) at the apical membrane of brain 

endothelial cells, compounds the picture of the BBB [36].  Pgp decreases the 

permeability across the BBB by effluxing many drugs and peptides back into the blood 

[2].  Moreover, brain endothelial cells contain a substantial volume of mitochondria, 

indicating that the BBB could contribute to signfficant MAO biotransformation of 

xenobiotics [16,25]. 

 The purpose of this study was to evaluate CIT transport across the BBB using a 

simple, well characterized in vitro model of the brain endothelium: BMEC monolayers 

[1].  Specifically, carrier mechanisms, as well as Pgp and metabolism, were investigated 

as possible factors regulating the distribution of CIT across the blood-brain barrier. 

 

2. Materials and Methods 

 Chemicals.  Citalopram hydrobromide was obtained from Lundbeck 

(Copenhagen, Denmark).  Serotonin, dopamine, L-tryptophan, cyclosporin A and 

rhodamine 123 were purchased from Sigma Chemical Company (St.  Louis, MO).  All 

other compounds used were of highest quality commercially available. 

 High performance liquid chromatography analysis (HPLC).  Non-stereoselective 

HPLC analysis of CIT racemate was performed on a C18 analytical column coupled 

with a Shimadzu system (Shimadzu, Inc., Tokyo, Japan) consisting of LC-6A pump, a 

SIL-10A autoinjector and a SCL-10A controller.  The injection volume was 200 µl.  The 
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mobile phase consisted of 35% acetonitrile, 65 % triethylamine buffer 1% (vol/vol) 

adjusted with acetic acid to pH = 6. 1. The flow rate was 1.2 ml/min.   

Stereoselective analysis of CIT racemate was performed on a CHIROBIOTIC V 

analytical column (150 mm x 4.6 mm). The mobile phase was 99.885% methanol with 0.055% 

triethylamine and 0.060% acetic acid.  The flow rate was 1.0 ml/min.  The fluorescence detector (Perkin-

Elmer LC 240) was coupled after the columns and set at 240 nm and 296 nm for excitation and emission 

wavelengths, respectively.  Samples were directly injected into the column and quantitation was 

obtained after comparison of peak areas with a calibration curves.  Calibration curves were linear 

between 25 nM and 30 µM.  Samples were kept at 4°C for less than one month prior to HPLC analysis.  

In a previous study [28], the enantiomers of CIT showed high stability regarding temperature and in the 

solvents used above. 

 Cell culture.  BMECs were isolated from gray matter of cerebral cortices by 

enzymatic digestion and subsequent centrifugation, and seeded into primary culture as 

detailed previously [1].  The 100 mm tissue cultures dishes (Coming Costar 

Corporation, Cambridge, MA) were pretreated with rat tail collagen and bovine 

fibronectin (Sigma Chemical Co., St. Louis, MO). Culture media consisted of a minimum 

of 45% essential media, 45% F-12 Ham nutrient mix (Gibco, Life Technologies, Grand 

Island, IL), 10 mM HEPES, pH 7.4, 13 mM sodium bicarbonate, 10% plasma-derived 

equine serum, 100 µg/ml heparin, 100 µg/ml streptomycin, 100 µg/ml penicillin G, 50 

µg/ml polymixin B and 2.5 µg/ml amphotericin B (Sigma Chemical Co., St. Louis, MO).  

Isolated BMECs were cultured at 37°C with 95% humidity and 5% CO2 until confluent 

monolayers were formed (10 to 14 days).  Cell surfaces facing the culture media, and 

those sealing the culture dishes, mimic apical and basolateral membranes of brain 
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microvessel cells, respectively [1].  The purity of the isolated BMECs was monitored by 

periodic evaluation of the enrichment of enzyme markers, γ-glutamyl transpeptidase and 

alkaline phosphatase, and the endothelial origin confirmed by positive staining for 

Factor VIII antigen [1,3]. 

Transport studies.  BMECs were seeded onto collagen- and fibronectin-coated, 

translucent, polycarbonate membranes (pore size 0.4 µm) placed in 100 mm tisssue 

culture dishes.  Monolayer confluency was verified by inspection of the areas around 

the polycarbonate membranes using an inverted microscope.  The basolateral side of 

the cells was defined as the side facing the collagen matrix.  Once confluency was 

obtained, the membranes were carefully inserted in a horizontal Side-bi-Side diffusion 

apparatus (Crown Glass, Inc., Somerville, NJ) for transendothelial permeability studies.  

The area of the diffusion membrane was 0.636 cm2.  The donor and receiver chambers 

were filled with 3.0 ml of culture media and the temperature was maintained with an 

external circulating water bath at either 37°C or 4°C.  The contents of each chamber 

were continuously stirred with Teflon coated magnetic stirred bars at the speed of 600 

r/min driven by an external drive console (Crown Glass, Inc., Somerville, NJ). The apical 

to basolateral transport of CIT was studied with a 5 µM drug pulse added to the donor 

chamber.  In some experiments, cyclosporin A (1 µM), serotonin (250 µM), dopamine 

(250 µM), tryptophan (250 µM), pargyline (100 µM), selegiline (50  nM) or clorgyline (50 

nM) were added in both chambers at 50 min.  In these cases, permeability coefficients 

were calculated for CIT permeation before and after the treatment.  For cyclosporin A, 

pargyline, selegifine and clorgyline, a pre-incubation was performed for a specific time 

before the collection of the subsequent samples.  A 200 µl sample was taken from the 
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receiver chambers at various times.  Each sample volume was replaced with equal 

volume of fresh medium.  CIT transport at 37°C with no additional treatment present 

was always performed as control.   

Calculation and statistics.  Permeability coefficients were calculated using the 

following equation: P = F/(A*Cdonor); where F, the flux, is the slope of the drug appearing 

in the receiver chamber per time; A, the area of the membrane (0.636 cm2) and Cdonor, 

the initial concentration in the donor chamber [1].   

Kinetic data (CIT flux versus CIT concentration) were analyzed by means of a 

nonlinear least square curve fitting program (Statistics for Windows, StatSoft, Inc.) and 

treated according to a monophasic model of Michaelis-Menten equation in order to 

determine Km and Jmax values (Flux-max) of the CIT.  All experiments were carried out in 

at least three replications and expressed as means ± standard deviation. 

 

3. Results 

Concentration-dependence of CIT transport.  The time-dependent permeation of CIT 

across BMEC monolayers was determined using concentrations ranging from 1 µM to 1000 µM.    

The flux of CIT across BMEC monolayers for 30 min was linear over the concentration range 

examined at 37°C (data not shown).   Figure 2 illustrates the concentration dependence of the 

apical to basolateral transport of CIT across BMEC monolayers at 37°C.  The flux (Figure 2A) 

and the apparent permeability coefficients (Figure 2B) for CIT passage across BMEC monlayers 

was a saturable process at concentrations higher than 100 µM.   The apparent permeability 
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coefficient for CIT passage across the BMEC monolayers was significantly greater than for 

sucrose (data not shown), a marker for paracellular leakage of the monolayers.  Collectively, 

these results argued for a carrier-mediated mechanism for CIT transport across BMECs.  

Michaelis-Menten parameters, Km and Jmax values, were determined to be  487 µM and 7.4 

nmol/min, respectively. 

Temperature dependence of CIT transport.  The effect of temperature on the apical to 

basolateral permeation of CIT (5 µM) across the BMECs is presented in Figure 3A.   After 

following the flux of CIT for 50 min, control diffusion systems were maintained at 37°C, while 

others were cooled to 4°C with ice.  Flux values were recorded for an additional 40 min in both 

diffusion systems.  The apparent permeability coefficients for CIT at  4°C and 37°C are 

represented in Figure 3B. The permeability coefficients decreased significantly (P < 0.05) from 

22.5 ± 4.9 x 10-5 cm/s at 37°C to 0.5 ± 0.2 x 10-5 cm/s at 4°C.   The sensitivity of the apparent 

permeability coefficients for CIT to temperature was also suggestive of a transport process rather 

than a saturation of a binding process since the latter likely would be much less affected by low 

temperature.   

Polarity of  CIT transport.   In separate experiments, CIT (5 µM) or rhodamine 123 (10 

µM) were added either in the chambers facing the cell membranes or in those facing the 

basolateral surface of the BMEC monolayers.  Apparent permeability coefficients for CIT and 

rhodamine 123 were calculated for both directions of transport (Figure 4).  The permeability 

coefficients for CIT were similar in apical to basolateral or in basolateral to apical directions and 

were 16.3 ± 2.9 x 10-5 cm/s and 15.0 ± 2.0 x 10-5 cm/s, respectively.  In contrast, rhodamine 123, 

a well characterized Pgp substrate, exhibited a permeability coefficient about 4 times lower in 

the apical to basolateral transport in comparison to the basolateral to apical transport (i.e., 3.6 ± 
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2.4 x 10-5 cm/s and 14.3 ± 3.8 x 10-5 cm/s, respectively).  In other experiments, CIT flux across 

BMEC monolayers was monitored for up to 50 min at which time cyclosporin A (1 µM), a Pgp 

inhibitor, was added to both diffusion chambers for a 30 min incubation period.  Following this 

incubation period, the apparent permeability coefficients for both CIT and rhodamine 123 were 

re-determined over an additional assay period of 40 min (Figure 4).  In the presence of 

cyclosporin A, the apical to basolateral permeability coefficient increased for rhodamine 123 

over two-fold to 8.1 ± 2.9 x 10-5 cm/s.   In contrast, in the presence the apparent  permeability 

coefficient for the apical to basolateral flux of CIT, 15.9 ± 2.4 x 10-5 cm/s, was not statistically 

different from the untreated control.  These results strongly suggested that CIT was not a 

substrate for Pgp or controlled by other unidirectional efflux systems in the BMECs.   

Stereoselectivity of CIT transport.  The stereoselective quantitation of CIT enantiomers 

was performed after CIT transport (5 µM and 50 µM) across BMECs for 30 min.  In the receiver 

chambers, S(+)-CIT levels represented 50.6 % ± 2.9% of the total S-(+)-CIT and R-(-)-CIT 

enantiomers and R-(-)-CIT levels represented 49.4% ± 2.9%. Therefore, a stereoselective 

transport of the enantiomers of CIT was not observed for BMEC transport.   

Dopamine, serotonin, and L-tryptophan effects on CIT transport.  The effect of 250 µM 

of dopamine or serotonin or L-tryptophan  on the passage of CIT (5 µM) across BMECs was 

examined.  These compounds were pulsed into the donor chamber after the flux of CIT had been 

sampled for  50 min.   Following the pulse of the potential competitors, samples were continually 

collected out  to 100 min.  No significant effects on the passage of CIT across the monolayers 

were observed for any of these compounds (data not shown). 

Effect of MAO inhibitors on citalopram transport.  As previously reported [31], inhibition 

of MAO activity in BMECs was obtained with a 30 min preincubation of pargyline (100 µM), 
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selegiline (50 nM) or clorgyline (50 nM) as non-selective, selective MAO type B and MAO type 

A inhibitors, respectively.  No significant modification of the transport of CIT (5 µM) was 

observed in the presence of MAO inhibitors (data not shown).  In addition, the CIT metabolite 

produced by MAO, CIT-PROP, was not detected in either receiver chambers or donor chambers 

under the conditions of these experiments. 

 

4. Discussion 

In BMECs, the polarity of transport mimics the blood to brain and brain to blood passage for 

some substances [1].  In the present study, we provided evidence that citalopram was transported 

across brain microvessel endothelium via a saturable mechanism in the apical-to-basolateral direction. 

Consistent with carrier-mediated mechanisms versus passive diffusion, the passage of CIT across the 

cells was extremely sensitive to low temperature.  However, it also appeared that the process was not 

selective for S-(+)-CIT, the pharmacologically active enantiomer, suggesting that the transport process 

was non-stereoselective.    

The absence of stereoselectivity is associated with carrier mechanisms of broad specificity such 

as the unidirectional Pgp efflux mechanism [30] and asymmetry in transport is reflective of such 

unidirectional, polyspecific efflux or uptake mechanisms [1].   In this study, the transport of CIT and the 

representative PgP substrate, rhodamine 123 [13], across BMECs was assayed in both directions.  Apical 

to basolateral and basolateral to apical transport of CIT were similar and unaltered in the presence of a 

known Pgp inhibitor, cyclosporin A [13].  By contrast, the apical to basolateral transport of our positive 

control, rhodamine 123, was strongly impaired by the efflux pump, Pgp and modified on exposure to 

cyclosporin A. The lack of asymmetric transport and the absence of a sensitivity to cyclosporin A strongly 

suggested that CIT is not a substrate of Pgp or known alternative asymmetric active efflux systems like 
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the multidrug resistant associated protein (MRP), a recently described efflux mechanism in brain 

endothelium [24].   The relatively poor lipophilicity of CIT [4], a feature of most Pgp and MRP substrates 

[33], would further suggest that the drug would not necessarily fit the physicochemical profile of a 

substrate for these typical efflux mechanisms.  Therefore, nonstereoselective, active, and unidirectional 

efflux mechanisms do not seem to be involved in regulating CIT distribution across brain endothelium.   

Bidirectional, saturable transport is a characteristic of non-energy requiring facilitated diffusion 

mechanisms at the blood-brain barrier [2] and appears likely to mediate CIT distribution across BMEC 

monolayers. 

Although binding studies have shown that the tricyclic antidepressant imipramine and the SSRI, 

paroxetine, have low and high binding sites on isolated porcine microvessels [10,11], these binding sites 

remain to be fully characterized and could be either ATP dependent transporters or ATP-independent 

carriers.   The imipramine binding site on BMECs is believed to label the serotonin transporter [11].   

Citalopram has been shown to competitively inhibit serotonin uptake and transport at submicromolar 

concentrations and is therefore, considered a very effective and specific serotonin uptake inhibitor 

[7,17,35].  However, we were not able to establish significant decreases in the transport of CIT across 

BMECs in the presence of either serotonin or L-tryptophan.  Moreover, CIT did not inhibit dopamine 

transport. Sufficiently high expression of carriers on BMEC membranes, high maximum uptake rate (Jmax) 

and/or participation of various carriers may explain the apparent lack of inhibitory effects of potential 

endogenous substrates on CIT transport at these concentrations.  The low affinity and absence of 

significant competition with other potential substrates at the concentrations here would also be 

consistent with the observations for transport properties of the high capacity, polyspecific cationic 

carriers that are present in BMECs and other tissues [21]. Some authors have suggested that a panel of 

stably transfected cell lines expressing specific transporters could be an appropriate tool for this 

purpose [30] to identify more potent and specific inhibitors for such mechanisms.   Using this approach, 
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Breidert et al. [9], was recently able to demonstrate in such a constructed cell line stably expressing 

OCT1r  that transported several substrates in a saturable fashion, including norepinephrine, dopamine, 

and serotonin.  However, the transport of the norepinephrine, dopamine, and serotonin by the OCT1r 

expressing cells was resistant to specific inhibitors such as desipramine, cocaine, and CIT, respectively.    

Our results were consistent with this observation and could be suggestive of the involvement of a 

polyspecific carrier in CIT transport. The absence of effects of potential inhibitors of CIT transport 

underlines the difficulties in identifying and kinetically characterizing the involvement of polyspecific 

carriers involved in the uptake and transport of drugs by cells. 

Brain microvessel endothelium contains a very low level of cytochrome P-450 and, in 

contrast, contains high quantities of MAO type A or type B, metabolizing-isozymes found in 

mitochondrial membranes [25].  It appears that the levels of MAO type A in BMECs approach 

those of the gray matter but in contrast, MAO type B activity is a few times lower compared to 

activities of gray matter [3].  Some authors have suggested that microvessels should be 

considered as a potential site of inactivation of some neurotransmitters or drugs [3,20,25].  For 

instance, the transport of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a dopaminergic 

neurotoxin, across primary cultures of BMECs seems to be restricted by oxidation mediated by 

MAO [32].  In the presence of pargyline, seleguine, or clorglyine, the passage of MPTP 

increased significantly and the appearance of its oxidative metabolites was decreased. A 

combination of SSRI and MAO inhibitors have been shown to produce more adverse effects than 

SSRI alone [22].  Considering that CIT is biotransformed by both MAO type A and type B [29], 

it was interesting to evaluate the inhibitory effect of MAO activities on CIT transport across 

BMECS.  MAO inhibition obtained with pargyline, selegiline, or clorgyline, did not modify the 

apparent permeability coefficients for CIT.  Our results suggested that CIT metabolizing 
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enzymes would not be involved in the passage of CIT across the BBB.  Moreover, the high 

permeability coefficient of CIT, in contrast to Pgp substrates, was consistent with the probable 

insignificant role of MAO for CIT deliverance at the BBB.  Indeed, some authors have suggested 

that reducing the rate of the transport of cyclosporin A across Caco-2 cells increases its 

biotransformation rate [15].  Similar to CIT, pargyline has been observed to not modify 

dopamine uptake in perfused brains of guinea pigs [23].  It was suggested that BBB uptake of 

dopamine was independent of MAO type B, a dopamine metabolizing enzyme.  Taking into 

consideration these data, interindividual differences of cerebral levels of the CIT enantiomers 

and other SSRIs (e.g., fluoxetine) might result from its stereoselective metabolism in the liver 

and in the brain [14,34], rather than due to stereoselective transport or biotransformation 

localized at the BBB.   

To conclude, this study provides for the first time, evidence of transport mechanisms of a 

SSRI antidepressant across the BBB using monolayers of BMECS.  CIT seems to cross the 

blood-brain barrier via a non-stereoselective, bidirectional and saturable carrier-mediated 

mechanism with no influence of either active efflux mechanisms (e.g. Pgp) or monoamine 

oxidases. 
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FIGURE LEGENDS 

 

 

Figure 1. Chemical structure of citalopram. 

 

Figure 2.  Concentration dependence of apical to basolateral permeation of citalopram 

(CIT) at 37°C across BMEC monolayers in the Side-bi-Side system. Each data point 

represents the mean ± SD (n ≥ 3) of CIT flux or apparent permeability coefficient.   (A)  

Concentration-dependence of the flux of citalopram permeation across BMEC 

monolayers.  In the concentration range of 1 to 1000 µM data follow a Michaelis-Menten 

model with Km and Jmax values of 487 µM and 7.4 nmol/min, respectively.   Inset : 

regression curve fit linearly the concentration range of 1 to 100 µM.  (B) Concentration-

dependence of the apparent permeability coefficients for citalopram permeation across 

BMEC monolayers.  

 

Figure 3. Temperature dependence of apical to basolateral transport of 5 µM citalopram 

(CIT) across BMECs monolayers in Side-bi-Side systems.  Each data point 

represents the mean ± SD (n ≥ 3).   (A) Squares represent control transport performed 

at 37°C through 90 min; empty squares represent transport at 37°C through 50 min and 

when (arrow) the temperature was reduced to 4°C through 90 min.  (B) Apparent 
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permeability coefficients were calculated from the flux data for CIT permeation across 

BMEC monolayers at 37°C and 4°C. 

 

 

Figure 4.  Apparent permeability coefficients for passage of 5 µM citalopram (CIT) or 10 

µM rhodamine 123  (Rho123) across BMECs monolayers.  Studies were performed in 

Side-bi-Side systems, with substrates permeating apical to basolateral (A to B), or 

basolateral to apical (B to A), or apical to basolateral in presence of 1 µM cyclosporin A 

(A to B + CsA).  Controls were studies performed with CIT or Rho123 alone.  Each data 

point represents the mean ± SD (n ≥ 3). 
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