
Arithmetic Coding for Data Compression

PAUL G. HOWARD and JEFFREY SCOTT VITTER, fellow, ieee

Arithmetic coding provides an e�ective mechanism for remov-

ing redundancy in the encoding of data. We show how arithmetic

coding works and describe an e�cient implementation that uses

table lookup as a fast alternative to arithmetic operations. The

reduced-precision arithmetic has a provably negligible e�ect on the

amount of compression achieved. We can speed up the implemen-

tation further by use of parallel processing. We discuss the role of

probability models and how they provide probability information

to the arithmetic coder. We conclude with perspectives on the

comparative advantages and disadvantages of arithmetic coding.

Index terms| Data compression, arithmetic coding, lossless
compression, text modeling, image compression, text compres-
sion, adaptive, semi-adaptive.

I. Arithmetic coding

The fundamental problem of lossless compression is to de-
compose a data set (for example, a text �le or an image)
into a sequence of events, then to encode the events using as
few bits as possible. The idea is to assign short codewords
to more probable events and longer codewords to less prob-
able events. Data can be compressed whenever some events
are more likely than others. Statistical coding techniques
use estimates of the probabilities of the events to assign the
codewords. Given a set of mutually distinct events e1, e2, e3,
: : : , en, and an accurate assessment of the probability dis-
tribution P of the events, Shannon [1] proved that the the
smallest possible expected number of bits needed to encode
an event is the entropy of P , denoted by

H(P) =

nX
k=1

�pfekg log2 pfekg;

where pfekg is the probability that event ek occurs. An op-
timal code outputs � log

2
p bits to encode an event whose

probability of occurrence is p. Pure arithmetic codes sup-
plied with accurate probabilities provides optimal compres-
sion. The older and better-known Hu�man codes [2] are
optimal only among instantaneous codes, that is, those in
which the encoding of one event can be decoded before en-
coding has begun for the next event.
In theory, arithmetic codes assign one \codeword" to each

possible data set. The codewords consist of half-open subin-
tervals of the half-open unit interval [0; 1), and are expressed
by specifying enough bits to distinguish the subinterval cor-
responding to the actual data set from all other possible
subintervals. Shorter codes correspond to larger subinter-
vals and thus more probable input data sets. In practice,

Manuscript received Mmm DD, 1993. Some of this work was per-
formed while both authors were at Brown University and while the
�rst author was at Duke University. Support was provided in part by
NASA Graduate Student Researchers Program grant NGT{50420, by
a National Science Foundation Presidential Young Investigator Award
with matching funds from IBM, and by Air Force O�ce of Scienti�c
Research grant number F49620{92{J{0515. Additional support was
provided by Universities Space Research Association/CESDIS asso-
ciate memberships.

P. G. Howard is with AT&T Bell Laboratories, Visual Communica-
tions Research, Room 4C{516, 101 Crawfords Corner Road, Holmdel,
NJ 07733{3030.

J. S. Vitter is with the Department of Computer Science, Duke
University, Box 90129, Durham, NC 27708{0129.

IEEE Log Number 0000000.

the subinterval is re�ned incrementally using the probabili-
ties of the individual events, with bits being output as soon
as they are known. Arithmetic codes almost always give bet-
ter compression than pre�x codes, but they lack the direct
correspondence between the events in the input data set and
bits or groups of bits in the coded output �le.

A statistical coder must work in conjunction with a mod-
eler that estimates the probability of each possible event at
each point in the coding. The probability model need not
describe the process that generates the data; it merely has
to provide a probability distribution for the data items. The
probabilities do not even have to be particularly accurate,
but the more accurate they are, the better the compression
will be. If the probabilities are wildly inaccurate, the �le may
even be expanded rather than compressed, but the original
data can still be recovered. To obtain maximum compres-
sion of a �le, we need both a good probability model and
an e�cient way of representing (or learning) the probability
model.

To ensure decodability, the encoder is limited to the use
of model information that is available to the decoder. There
are no other restrictions on the model; in particular, it can
change as the �le is being encoded. The models can be adap-
tive (dynamically estimating the probability of each event
based on all events that precede it), semi-adaptive (using
a preliminary pass of the input �le to gather statistics), or
non-adaptive (using �xed probabilities for all �les). Non-
adaptive models can perform arbitrarily poorly [3]. Adaptive
codes allow one-pass coding but require a more complicated
data structure. Semi-adaptive codes require two passes and
transmission of model data as side information; if the model
data is transmitted e�ciently they can provide slightly bet-
ter compression than adaptive codes, but in general the cost
of transmitting the model is about the same as the \learn-
ing" cost in the adaptive case [4].

To get good compression we need models that go beyond
global event counts and take into account the structure of
the data. For images this usually means using the numeric
intensity values of nearby pixels to predict the intensity of
each new pixel and using a suitable probability distribution
for the residual error to allow for noise and variation between
regions within the image. For text, the previous letters form
a context, in the manner of a Markov process.

In Section II, we provide a detailed description of pure
arithmetic coding, along with an example to illustrate the
process. We also show enhancements that allow incremental
transmission and �xed-precision arithmetic. In Section III
we extend the �xed-precision idea to low precision, and show
how we can speed up arithmetic coding with little degrada-
tion of compression performance by doing all the arithmetic
ahead of time and storing the results in lookup tables. We
call the resulting procedure quasi-arithmetic coding. In Sec-
tion IV we brie
y explore the possibility of parallel coding
using quasi-arithmetic coding. In Section V we discuss the
modeling process, separating it into structural and probabil-
ity estimation components. Each component can be adap-
tive, semi-adaptive, or static; there are two approaches to
the probability estimation problem. Finally, Section VI pro-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213393176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

vides a discussion of the advantages and disadvantages of
arithmetic coding and suggestions of alternative methods.

II. How arithmetic coding works

In this section we explain how arithmetic coding works
and give operational details; our treatment is based on that
of Witten, Neal, and Cleary [5]. Our focus is on encoding,
but the decoding process is similar.

A. Basic algorithm for arithmetic coding

The algorithm for encoding a �le using arithmetic coding
works conceptually as follows:

1. We begin with a \current interval" [L;H) initialized to
[0; 1).

2. For each event in the �le, we perform two steps.
(a) We subdivide the current interval into subintervals,

one for each possible event. The size of a event's
subinterval is proportional to the estimated proba-
bility that the event will be the next event in the
�le, according to the model of the input.

(b) We select the subinterval corresponding to the
event that actually occurs next, and make it the
new current interval.

3. We output enough bits to distinguish the �nal current
interval from all other possible �nal intervals.

The length of the �nal subinterval is clearly equal to the
product of the probabilities of the individual events, which
is the probability p of the particular sequence of events in
the �le. The �nal step uses at most b� log

2
pc + 2 bits to

distinguish the �le from all other possible �les. We need some
mechanism to indicate the end of the �le, either a special end-
of-�le event coded just once, or some external indication of
the �le's length. Either method adds only a small amount
to the code length.
In step 2, we need to compute only the subinterval corre-

sponding to the event ai that actually occurs. To do this it is
convenient to use two \cumulative" probabilities: the cumu-
lative probability PC =

P
i�1

k=1
pk and the next-cumulative

probability PN = PC + pi =
P

i

k=1
pk . The new subinterval

is [L + PC(H � L); L + PN(H � L)). The need to main-
tain and supply cumulative probabilities requires the model
to have a complicated data structure, especially when many
more than two events are possible.
We now provide an example, repeated a number of times

to illustrate di�erent steps in the development of arithmetic
coding. For simplicity we choose between just two events at
each step, although the principles apply to the multi-event
case as well. We assume that we know a priori that we
have a �le consisting of three events (or three letters in the
case of text compression); the �rst event is either a1 (with
probability pfa1g = 2

3
) or b1 (with probability pfb1g = 1

3
);

the second event is a2 (with probability pfa2g = 1

2
) or b2

(with probability pfb2g = 1

2
); and the third event is a3 (with

probability pfa3g = 3

5
) or b3 (with probability pfb3g = 2

5
).

The actual �le to be encoded is the sequence b1a2b3.
The steps involved in pure arithmetic coding are illus-

trated in Table 1 and Fig. 1. In this example the �nal interval
corresponding to the actual �le b1a2b3 is [23

30
; 5
6
). The length

of the interval is 1

15
, which is the probability of b1a2b3, com-

puted by multiplying the probabilities of the three events:
pfb1gpfa2gpfb3g = 1

3

1

2

2

5
= 1

15
. In binary, the �nal inter-

val is [0:110001 : : : ; 0:110101 : : :). Since all binary numbers
that begin with 0:11001 are entirely within this interval, out-
putting 11001 su�ces to uniquely identify the interval.

Table 1 Example of pure arithmetic coding

Action Subintervals

Start [0; 1)

Subdivide with left prob. pfa1g = 2

3
[0; 2

3
); [2

3
; 1)

Input b1, select right subinterval [2
3
; 1)

Subdivide with left prob. pfa2g = 1

2
[2
3
; 5
6
); [5

6
; 1)

Input a2, select left subinterval [2
3
; 5
6
)

Subdivide with left prob. pfa3g = 3

5
[2
3
; 23
30
); [23

30
; 5
6
)

Input b3, select right subinterval [23
30
; 5
6
)

= [0:110001 : : : 2; 0:110101 : : : 2)

Output 11001 0:110012 is the shortest binary
fraction that lies within [23

30
; 5
6
)

initial current interval0 1

subdivide
2

3

1

3

0 2

3
a1 1b1

select b1
1

2

1

2
subdivide

2

3

5

6
a2 1b2

select a2
3

5

2

5
subdivide

2

3

23

30
a3

5

6
b3

select b3
23

30

5

6

0:110012 0:110102output 11001

Fig. 1. Pure arithmetic coding graphically illustrated

B. Incremental output

The basic implementation of arithmetic coding described
above has two major di�culties: the shrinking current in-
terval requires the use of high precision arithmetic, and no
output is produced until the entire �le has been read. The
most straightforward solution to both of these problems is
to output each leading bit as soon as it is known, and then
to double the length of the current interval so that it re-

ects only the unknown part of the �nal interval. Witten,
Neal, and Cleary [5] add a clever mechanism for preventing
the current interval from shrinking too much when the end-
points are close to 1

2
but straddle 1

2
. In that case we do not

yet know the next output bit, but we do know that what-
ever it is, the following bit will have the opposite value; we
merely keep track of that fact, and expand the current inter-
val symmetrically about 1

2
. This follow-on procedure may

be repeated any number of times, so the current interval size
is always strictly longer than 1

4
.

Mechanisms for incremental transmission and �xed preci-
sion arithmetic have been developed through the years by
Pasco [6], Rissanen [7], Rubin [8], Rissanen and Langdon
[9], Guazzo [10], and Witten, Neal, and Cleary [5]. The
bit-stu�ng idea of Langdon and others at IBM that limits
the propagation of carries in the additions serves a function
similar to that of the follow-on procedure described above.

2

Table 2 Example of pure arithmetic coding with incremental
transmission and interval expansion

Action Subintervals

Start [0; 1)

Subdivide with left prob. pfa1g = 2

3
[0; 2

3
); [2

3
; 1)

Input b1, select right subinterval [2
3
; 1)

Output 1, expand [1
3
; 1)

Subdivide with left prob. pfa2g = 1

2
[1
3
; 2
3
); [2

3
; 1)

Input a2, select left subinterval [1
3
; 2
3
)

Increment follow count, expand [1
6
; 5
6
)

Subdivide with left prob. pfa3g = 3

5
[1
6
; 17
30
); [17

30
; 5
6
)

Input b3, select right subinterval [17
30
; 5
6
)

Output 1, output 0 (follow bit), expand [2
15
; 2
3
)

Output 01 [1
4
; 1
2
) is entirely within [2

15
; 2
3
)

initial current interval0 1

subdivide
2

3

1

3

0 2

3
a1 1b1

select b1
2

3

1

output 1; expand

1

3

1

subdivide
1

2

1

2

1

3

2

3
a2 1b2

select a2
1

3

2

3

follow; expand

1

6

5

6

subdivide
3

5

2

5

1

6

17

30
a3

5

6
b3

select b3
17

30

5

6

output 1f = 10; expand
2

15

2

3

0:012 0:102 output 01

Fig. 2. Pure arithmetic coding with incremental transmission
and interval expansion, graphically illustrated

We now describe in detail how the incremental output and
interval expansion work. We add the following step immedi-
ately after the selection of the subinterval corresponding to
an input event, step 2(b) in the basic algorithm above.
2. (c) We repeatedly execute the following steps in se-

quence until the loop is explicitly halted:
1. If the new subinterval is not entirely within one

of the intervals [0; 1
2
), [1

4
; 3
4
), or [1

2
; 1), we exit

the loop and return.

2. If the new subinterval lies entirely within [0; 1
2
),

we output 0 and any following 1s left over from
previous events; then we double the size of the
subinterval by linearly expanding [0; 1

2
) to [0; 1).

3. If the new subinterval lies entirely within [1
2
; 1),

we output 1 and any following 0s left over from
previous events; then we double the size of the
subinterval by linearly expanding [1

2
; 1) to [0; 1).

4. If the new subinterval lies entirely within [1
4
; 3
4
),

we keep track of this fact for future output by
incrementing the follow count; then we double
the size of the subinterval by linearly expanding
[1
4
; 3
4
) to [0; 1).

Table 2 and Fig. 2 illustrate this process. In the exam-
ple, interval expansion occurs exactly once for each input
event, but in other cases it may occur more than once or not
at all. The follow-on procedure is applied when processing
the second input event a2. The 1 output after processing
the third event b3 is therefore followed by its complement 0.
The �nal interval is [2

15
; 2
3
). Since all binary numbers that

start with 0:01 are within this range, outputting 01 su�ces
to uniquely identify the range. The encoded �le is 11001,
as before. This is no coincidence: the computations are es-
sentially the same. The �nal interval is eight times as long
as in the previous example because of the three doublings of
the current interval.

Clearly the current interval contains some information
about the preceding inputs; this information has not yet
been output, so we can think of it as the coder's state. If a
is the length of the current interval, the state holds � log

2
a

bits not yet output. In the basic method the state contains
all the information about the output, since nothing is out-
put until the end. In the incremental implementation, the
state always contains fewer than two bits of output informa-
tion, since the length of the current interval is always more
than 1

4
. The �nal state in the incremental example is [2

15
; 2
3
),

which contains � log
2

8

15
� 0:907 bits of information; the �-

nal two output bits are needed to unambiguously transmit
this information.

C. Use of integer arithmetic

In practice, the arithmetic can be done by storing the
endpoints of the current interval as su�ciently large inte-
gers rather than in
oating point or exact rational numbers.
We also use integers for the frequency counts used to esti-
mate event probabilities. The subdivision process involves
selecting non-overlapping intervals (of length at least 1) with
lengths approximately proportional to the counts. Table 3
illustrates the use of integer arithmetic using a full inter-
val of [0;N) = [0; 1024). (The graphical version of Table 3
is essentially the same as Fig. 2 and is not included.) The
length of the current interval is always at least N=4+2, 258
in this case, so we can always use probabilities precise to at
least 1=258; often the precision will be near 1=1024. In prac-
tice we use even larger integers; the interval [0; 65 536) is a
common choice, and gives a practically continuous choice of
probabilities at each step. The subdivisions in this example
are not quite the same as those in Table 2 because the re-
sulting intervals are rounded to integers. The encoded �le
is 11001 as before, but for a longer input �le the encodings
would eventually diverge.

3

Table 3 Example of arithmetic coding with incremental trans-
mission, interval expansion, and integer arithmetic. Full interval
is [0;1024), so in e�ect subinterval endpoints are constrained to

be multiples of 1

1024
.

Action Subintervals

Start [0; 1024)

pfa1g =
2

3
; subdivide with

left probability = 683

1024
� 0:66699 [0;683); [683; 1024)

Input b1, select right subinterval [683; 1024)
Output 1, expand [342; 1024)

Subdivide with left prob. pfa2g = 1

2
[342; 683); [683; 1024)

Input a2, select left subinterval [342; 683)
Increment follow count, expand [172; 854)

pfa1g = 3

5
; subdivide with

left probability = 409

682
� 0:59971 [172; 581); [581; 854)

Input b3, select right subinterval [581; 854)
Output 1, output 0 (follow bit), expand [138; 654)

Output 01 [256; 512) is entirely within [138; 654)

Table 4 Example of arithmetic coding with incremental trans-
mission, interval expansion, and small integer arithmetic. Full
interval is [0;8), so in e�ect subinterval endpoints are constrained

to be multiples of 1

8
.

Action Subintervals

Start [0; 8)

pfa1g = 2

3
; subdivide with left prob. = 5

8
[0; 5); [5; 8)

Input b1, select right subinterval [5; 8)
Output 1, expand [2; 8)

Subdivide with left prob. pfa2g = 1

2
[2; 5); [5; 8)

Input a2, select left subinterval [2; 5)
Increment follow count, expand [0; 6)

pfa3g = 3

5
; subdivide with left prob. = 2

3
[0; 4); [4; 6)

Input b3, select right subinterval [4; 6)
Output 1, output 0 (follow bit), expand [0; 4)
Output 0, expand [0; 8)

III. Limited-precision arithmetic coding

Arithmetic coding as it is usually implemented is slow be-
cause of the multiplications (and in some implementations,
divisions) required in subdividing the current interval ac-
cording to the probability information. Since small errors
in probability estimates cause very small increases in code
length, we expect that by introducing approximations into
the arithmetic coding process in a controlled way we can
improve coding speed without signi�cantly degrading com-
pression performance. In the Q-Coder work at IBM [11],
the time-consuming multiplications are replaced by additions
and shifts, and low-order bits are ignored. In [12] we describe
a di�erent approach to approximate arithmetic coding. Re-
calling that the fractional bits characteristic of arithmetic
coding are stored as state information in the coder, we re-
duce the number of possible states, and replace arithmetic
operations by table lookups; the lookup tables can be pre-
computed. Here we review this reduced precision binary
arithmetic coder, which we call a quasi-arithmetic coder. It
should be noted that the compression is still completely re-
versible; using reduced precision merely a�ects the average
code length.

Table 5 Excerpts from quasi-arithmetic coding table, N = 8.
Only the three states needed for the example are shown; there
are nine more states. An \f" output indicates application of the
follow-on procedure described in the text.

Start Probability Left (a) input Right (b) input

state of left input Output Next Output Next
state state

[0,8) 0.000 { 0.182 000 [0; 8) � [1; 8)
0.182 { 0.310 00 [0; 8) � [2; 8)
0.310 { 0.437 0 [0; 6) � [3; 8)
0.437 { 0.563 0 [0; 8) 1 [0; 8)
0.563 { 0.690 � [0; 5) 1 [2; 8)
0.690 { 0.818 � [0; 6) 11 [0; 8)
0.818 { 1.000 � [0; 7) 111 [0; 8)

[0,6) 0.000 { 0.244 000 [0; 8) � [1; 6)
0.244 { 0.415 00 [0; 8) f [0; 8)
0.415 { 0.585 0 [0; 6) f [2; 8)
0.585 { 0.756 0 [0; 8) 10 [0; 8)
0.756 { 1.000 � [0; 5) 101 [0; 8)

[2,8) 0.000 { 0.244 010 [0; 8) � [3; 8)
0.244 { 0.415 01 [0; 8) 1 [0; 8)
0.415 { 0.585 f [0; 6) 1 [2; 8)
0.585 { 0.756 f [0; 8) 11 [0; 8)
0.756 { 1.000 � [2; 7) 111 [0; 8)

Table 6 Example of operation of quasi-arithmetic coding

Start in state [0; 8).

Probfa1g = 2

3
, so choose range 0.563 { 0.690 in [0; 8).

First event is b1, so choose right (b) input.
Output 1. Next state is [2; 8).

Probfa2g = 1

2
, so choose range 0.415 { 0.585 in [2; 8).

Second event is a2, so choose left (a) input.
f means increment follow count. Next state is [0; 6).

Probfa3g = 3

5
, so choose range 0.585 { 0.756 in [0; 6).

Third event is b3, so choose right (b) input.
Indicated output is 10. Output 1; output 0 to account

for follow bit; output 0. Next state is [0; 8).

A. Development of binary quasi-arithmetic coding

We have seen that doing arithmetic coding with large in-
tegers instead of real or rational numbers hardly degrades
compression performance at all. In Table 4 we show the en-
coding of the same �le using small integers: the full interval
[0;N) is only [0; 8).

The number of possible states (after applying the interval
expansion procedure) of an arithmetic coder using the inte-
ger interval [0;N) is 3N2=16. If we can reduce the number
of states to a more manageable level, we can precompute all
state transitions and outputs and substitute table lookups
for arithmetic in the coder. The obvious way to reduce the
number of states is to reduce N . The value of N should be a
power of 2; its value must be at least 4. If we choose N = 8
and apply the arithmetic coding algorithm in a straightfor-
ward way, we obtain a table with 12 states, each state o�ering
a choice of between 3 and 7 probability ranges. Portions of
the table are shown in Table 5.

Table 6 shows how Table 5 is used to encode our sam-
ple �le. Before coding each input event the coder is in a
certain current state, corresponding to the current subinter-
val. For each state there are a number of probability ranges;

4

we choose the one that includes the estimated probability
for the next event. Then we simply select the input event
that actually occurs and perform the indicated actions: out-
putting bits, incrementing the follow count, and changing to
a new current state. In the example the encoded output �le
is 1100. Because we were using such low precision, the sub-
division probabilities became distorted, leading to a lower
probability for the �le (1=16), but one which ends in the full
interval [0; 8), requiring no disambiguating bits. We usually
use a somewhat larger value of N ; in practice the compres-
sion ine�ciency of a binary quasi-arithmetic coder (neglect-
ing very large and very small probabilities) is less than one
percent for N = 32 and about 0.2 percent for N = 128.
In implementations, the coding tables can be stripped

down so that the numerical values of the interval endpoints
and probability ranges do not appear. Full details and ex-
amples appear in [13]. The next section explains the compu-
tation of the probability ranges. Decoding uses essentially
the same tables, and in fact is easier than encoding.

B. Analysis of binary quasi-arithmetic coding

We now prove that using binary quasi-arithmetic coding
causes an insigni�cant increase in the code length compared
with pure arithmetic coding. We mathematically analyze
several cases.
In this analysis we exclude very large and very small prob-

abilities, namely those that are less than 1=W or greater than
(W � 1)=W , where W is the width of the current interval.
For these probabilities the relative excess code length can be
large.
First we assume that we know the probability p of the left

branch of each event, and we show both how to minimize
the average excess code length and how small the excess
is. In arithmetic coding we divide the current interval (of
width W) into subintervals of length L and R; this gives
an e�ective coding probability q = L=W since the resulting
code length is � log

2
q for the left branch and � log

2
(1�q) for

the right. When we encode a sequence of binary events with
probabilities p and 1�p using e�ective coding probabilities q
and 1� q, the average code length L(p; q) is given by

L(p; q) = �p log
2
q � (1� p) log

2
(1� q):

If we use pure arithmetic coding, we can subdivide the in-
terval into lengths pW and (1 � p)W , thus making q = p

and giving an average code length equal to the entropy,
H(p) = �p log

2
p� (1� p) log

2
(1� p); this is optimal.

Consider two probabilities p1 and p2 that are adjacent
based on the subdivision of an interval of width W ; in other
words, p1 = (W � �1)=W , p2 = (W � �2)=W , and �2 =
�1 � 1. For any probability p between p1 and p2, either
p1 or p2 should be chosen, whichever gives a shorter average
code length. There is a cuto� probability p� for which p1 and
p2 give the same average code length. We can compute p�

by solving the equation L(p�; p1) = L(p�; p2), giving

p
� =

1

1 +
log

p2
p1

log
1� p1
1� p2

(1)

We can use Equation (1) to compute the probability ranges
in the coding tables. As an example, we compute the cuto�
probability used in deciding whether to subdivide interval
[0; 6) as f[0; 3); [3; 6)g or f[0; 4); [4; 6)g; this is the number

0:585 that appears in Table 5. In this case p1 =
1

2
and p2 =

2

3
. We compute p� = log(3=2)= log 2 � 0:585. Hence when

we encode the third event in the example (with pfa3g =
3

5
),

we use the f[0; 4); [4; 6)g subdivision.
Probability p� is the probability between p1 and p2 with

the worst average quasi-arithmetic coding performance, both
in excess bits per event and in excess bits relative to optimal
compression. This can be shown by monotonicity arguments.

Theorem 1 If we construct a quasi-arithmetic coder based

on full interval [0;N), and use correct probability estimates,

the number of bits per input event by which the average code

length obtained by the quasi-arithmetic coder exceeds that of

an exact arithmetic coder is at most

4

ln 2

�
log

2

2

e ln 2

�
1

N
+O

�
1

N2

�
�

0:497

N
+O

�
1

N2

�
;

and the fraction by which the average code length obtained by

the quasi-arithmetic coder exceeds that of an exact arithmetic

coder is at most�
log

2

2

e ln 2

�
1

log
2
N

+O

�
1

(logN)2

�

�
0:0861

log
2
N

+O

�
1

(logN)2

�
:

Proof : For a quasi-arithmetic coder with full interval [0;N),
the shortest terminal state intervals have size W = N=4+2.
The worst average error occurs for the smallest W and
the most extreme probabilities, that is, for W = N=4 + 2,
p1 = (W � 2)=W , and p2 = (W � 1)=W (or symmetrically,
p1 = 1=W and p2 = 2=W). For these probabilities, we �nd
the cuto� probability p�. Then for the �rst part of the theo-
rem we take the asymptotic expansion of L(p2; p

�)�H(p2),
and for the second part we take the asymptotic expansion of
(L(p2; p

�)�H(p2))=H(p2). 2

If we let p = (p1 + p2)=2, we can expand Equation (1)
asymptotically in W and obtain an excellent rational ap-
proximation for p�:

ep� = p+
1

6W 2

p� 1=2

p(1� p)
:

The compression loss introduced by using ep� instead of p� is
completely negligible, never more than 0:06%. In the exam-
ple above with p1 =

1

2
, p2 =

2

3
, andW = 6, we �nd that p� =

log(3=2)= log 2 � 0:58496 and ep� = 737=1260 � 0:58492. As
we expect, only for small values of W (the short intervals
that occur when using very low precision arithmetic) do we
need to be careful about roundo� when subdividing inter-
vals; for larger values of W we can practically round the
interval endpoints to the nearest integer.
We can prove a similar theorem for a more general case, in

which we compare quasi-arithmetic coding with arithmetic
coding for a single worst-case event. We assume that both
coders use the same estimated probability, but that the esti-
mate may be arbitrarily bad. (The proof is omitted to save
space.)

Theorem 2 If we construct a quasi-arithmetic coder based

on full interval [0;N), and use arbitrary probability esti-

mates, the number of bits per input event by which the code

length obtained by the quasi-arithmetic coder exceeds that of

an exact arithmetic coder in the worst case is at most

log
2

N + 8

N + 4
�

4

N ln 2
�

5:771

N
:

5

IV. Parallel coding

In [14] we present general-purpose algorithms for encoding
and decoding using both Hu�man and quasi-arithmetic cod-
ing. We are considering the case where we wish to do both
encoding and decoding in parallel, so the location of bits in
the encoded �le must be computable by the decoding proces-
sors before they begin decoding. The main requirement for
our parallel coder is that the model for each event is known
ahead of time; it is not necessary for each event to have the
same model. We use the PRAM model of parallel compu-
tation; the number of processors is p. We allow concurrent
reading of the parallel memory, and limited concurrent writ-
ing, to a single one-bit register, which we call the completion

register. It is initialized to 0 at the beginning of each time
step; during the time step any number of processors (or none
at all) may write 1 to it. We assume that n events are to
be coded. The main issue is in dealing with the di�erences
in code lengths of di�erent events. For simplicity we do not
consider input data routing.

We describe the algorithm for the Hu�man coding case,
since pre�x codes are easier to handle, and then extend it to
quasi-arithmetic coding. First the n events are distributed
as evenly as possible among the p processors. Then each pro-
cessor begins encoding its assigned events in a deterministic
sequence, outputting one bit in each time step; the bits out-
put in each time step are contiguous in the output stream.
As soon as one or more processors complete all of their as-
signed events, they indicate this fact by writing 1 to the
completion register. When the completion register is 1, the
output process is interrupted. Events whose processing has
not begun are distributed evenly among the processors, us-
ing a pre�x operation; events whose processing has begun
but not �nished remain assigned to their current processors.
Processing of the reallocated events then continues until the
next time that one or more processors �nishes all their al-
located events. Toward the end of processing, the number
of remaining events will become less than the number of
available processors. At this time we deactivate processors,
making the number of active processors equal to the number
of remaining events; we must redirect the output bits from
the remaining processors. No further event reallocations are
needed, but we still have to deactivate processors whenever
any of them �nish.

We analyze the time required by the parallel algorithm.
Assuming that in one time unit each processor can output
one bit, we can easily show that the time required for bit
output is between dnH=pe and dnH=pe + L. The more in-
teresting analysis concerns the number of pre�x operations
required. We de�ne a phase to be the period between pre�x
operations. Early phases are those which take place while
the number of events is greater than the number of proces-
sors; each is followed by an event reallocation. Late phases

are those needed to code the �nal p or fewer events; each late
phase requires a pre�x operation to redirect output bits. We
bound the number of pre�x operations needed in the follow-
ing theorem.

Theorem 3 When coding n events using p processors, the

number of pre�x operations needed by the reallocation coding

algorithm is at most L log
2
(2n=p) in the worst case.

Proof : We de�ne a superphase to be the time needed to
halve the number of remaining events. Consider the �rst
superphase. The number of events assigned to each processor
ranges from n=p in the �rst phase down to n=2p in the last.

At least one processor completes all its events in each phase;
such a processor must output at least one bit per event,
since all code words in a Hu�man code have at least one
bit. This processor (and hence all processors) thus output
at least n=2p bits in each phase, making a total of at least
n=2 bits output in each phase. The total number of bits that
must be output in the �rst superphase is at most nL=2, so
the number of phases in the �rst superphase is at most L.
The same reasoning holds for all superphases. The number

of superphases needed to reduce the number of remaining
events from n to p is log

2
(n=p), so the number of phases

needed is just L log
2
(n=p). Once p or fewer events remain,

at most L late phases are required, so the total number of
phases needed is at most L log

2
(2n=p). 2

The extension of the parallel Hu�man algorithm to quasi-
arithmetic coding is fairly straightforward. The only compli-
cation arises when the last event of a processor's allocation
leaves the processor in a state other than the starting state.
We deal with this by outputting the smallest possible num-
ber of bits (0, 1, or 2) needed to identify a subinterval that
lies within the �nal interval; this is the end-of-�le disam-
biguation problem that we have seen in Section II.

V. Modeling

The goal of modeling for statistical data compression is
to provide probability information to the coder. The mod-
eling process consists of structural and probability estima-
tion components; each may be adaptive, semi-adaptive, or
static. In addition there are two strategies for probability
estimation. The �rst is to estimate each event's probabil-
ity individually based on its frequency within the data set.
The other strategy is to estimate the probabilities collec-
tively, assuming a probability distribution of a particular
form and estimating the parameters of the distribution, ei-
ther directly or indirectly. For direct estimation, we simply
compute an estimate of the parameter (the variance, for in-
stance) from the data. For indirect estimation [15], we start
with a small number of possible distributions, and compute
the code length that we would obtain with each; then we
select the one with the smallest code length. This method
is very general and can be used even for distributions from
di�erent families, without common parameters.
For lossless image compression, the structural component

is usually �xed, since for most images pixel intensities are
close in value to the intensities of nearby pixels. We code
pixels in a predetermined sequence, predicting each pixel's
intensity using a �xed linear combination of a �xed constella-
tion of nearby pixels, then coding the prediction error. Typ-
ically the prediction errors have a symmetrical exponential-
like distribution with zero mean, so the probability estima-
tion component consists of estimating the variance and possi-
bly some other parameters of the distribution, either directly
or indirectly. A collection of only a few dozen distributions
is su�cient to code most images with minimal compression
loss.
For text, on the other hand, the best methods involve con-

stantly changing structures. In text compression the events
to be coded are just the letters in the �le. Typically we
begin by assuming only that some unspeci�ed sequences of
letters will occur frequently. (We may also specify a max-
imum length for the frequently occurring sequences.) As
encoding proceeds we determine which sequences are most
frequent. In the Ziv-Lempel dictionary-based methods [16,
17], the sequences are placed directly in the dictionary. The

6

advantage of Ziv-Lempel methods is their speed, obtained by
coding directly from the dictionary data structure, bypass-
ing the explicit probability estimation and statistical coding
stages. The PPM method [18] obtains better compression by
constructing a Markov model of moderate order, proceeding
to higher orders as more of the �le is encoded. Complicated
data structures are used to build and update the context
information.
Most models for text compression involve estimating the

letter probabilities individually, since there is no obvious
mathematical relationship between the probabilities of di�er-
ent letters. (Numerical proximity of ASCII representations
does not imply anything about probabilities.) We usually
estimate the probability p of a given letter by

p =
weight of letter

total weight of all letters
:

The weight of a letter is usually based on the number of
occurrences of the letter in a particular conditioning context.
Since we are often dealing with contexts that have oc-

curred only a few times, we have to deal with letters that
have never occurred. We cannot give a weight of 0 to such
letters because that would lead to probability estimates of 0,
which arithmetic coding cannot handle. This is the zero-

frequency problem, thoroughly investigated by Witten and
Bell [19]. It is possible to assign an initial weight of 1 to
all possible letters, but a better strategy is to assign initial
0 weights and to include a special escape event indicating
\some letter that has never occurred before in this context";
this event has its own weight, and must be encoded like an
ordinary letter whenever a new letter occurs. There are a
number of methods of dealing with the zero-frequency prob-
lem, di�ering mainly in the computation of the escape prob-
ability.
A second issue that arises in text compression is locality

of reference: strings tend to occur in clusters within a text
�le. One way to take advantage of locality is to scale the
counts periodically, typically by halving all weights when
the total weight reaches a speci�ed number. This e�ectively
gives more weight to more recent occurrences of each letter,
and has the additional bene�t of keeping the counts small
enough to �t into small registers. Analysis [4] shows that
scaling often helps compression, and can never hurt it by
very much.
One technique for probability estimation when only two

events are possible is to use small scaled counts, considering
each count pair to be a probability state. We can then pre-
compute both the corresponding probabilities and the state
transitions caused by the occurrence of additional events.
The states can be identi�ed by index numbers, which in
turn can be used to index into the probability range lists
in quasi-arithmetic code tables like those in Table 5.

VI. Conclusion

The main advantages of arithmetic coding for statistical
data compression are its optimality and its inherent sepa-
ration of coding and modeling. Pure arithmetic coding, as
described in Section II, is strictly optimal for a stochastic
data source whose probabilities are accurately known, but
it relies on relatively slow arithmetic operations like multi-
plication and division. The quasi-arithmetic coding method
described in Section III, which uses table lookup as a low-
precision alternative to full-precision arithmetic, is nearly
optimal and fairly fast, even when the probabilities are close
to 1 or 0.

The separation of coding and modeling is important be-
cause it permits any degree of complexity in the modeler
without requiring any change to the coder. In particular,
the model structure and probability estimates can change
adaptively. (In Hu�man coding, by contrast, the probabil-
ity information must be built into the coding tables, making
adaptive coding di�cult.) Even totally disjoint data streams
can be intertwined; the only requirement is that the decoder
must be able to track the model structure of the encoder.
One occasionally useful advantage to arithmetic coding is
that it is easy to maintain lexicographic order without any
loss in compression e�ciency, so that encoded strings can
have the same order as the original unencoded data; main-
taining lexicographic order with a pre�x code requires a more
complicated algorithm (the Hu-Tucker algorithm [20] and en-
tails some sacri�ce in e�ciency.

The disadvantages of arithmetic coding are that it runs
slowly, it is fairly complicated to implement, and it does
not produce pre�x codes. It can be speeded up with only a
slight loss in compression e�ciency by using approximations
like quasi-arithmetic coding, the patented IBM Q-Coder, or
Neal's low-precision coder [21]. The implementation di�-
culties are not insurmountable, but arithmetic coding will
not be available as an o�-the-shelf package until a fast, e�-
cient, patent-free method is agreed upon as a standard. The
non-pre�x-code property leads to some technical di�culties:
error resistance can be a serious problem, especially with
adaptive models, and the output delay can be unbounded
in the Witten-Neal-Cleary version described here, although
not in the Q-Coder.

For binary alphabets, various forms of run-length encod-
ing can be used instead of arithmetic coding, even if the
probabilities are highly skewed. Golomb coding [22] and
the related Rice coding [23] are based on exponentially dis-
tributed run lengths. The Golomb and Rice methods each
consist of a family of codes parameterized by a single param-
eter; the parameter can be estimated adaptively [15] giving
good compression e�ciency. These codes are extremely fast
pre�x codes and are easily implemented in software or hard-
ware. Other non-parameterized run-length codes like Elias
codes [24] are less
exible and hence less useful.

When more than two input events are possible, the main
alternatives to arithmetic coding are Hu�man coding and
coding based on splay trees [25]. Mo�at et al. [26] compare
arithmetic coding with these methods. Hu�man coding is
very e�ective in conjunction with a semi-adaptive model;
the probability information can be built into the coding ta-
bles, leading to fast execution. Splay trees are even faster,
since the data structure for coding is the \statistical" model;
compression e�ciency su�ers somewhat. Golomb and Rice
coding can be used when many events are possible, main-
taining lists of the events in approximate probability order
and coding the positions of the events within the lists. This
is an especially useful technique for very large alphabets [27].

The main usefulness of arithmetic coding is in obtain-
ing maximum compression in conjunction with an adaptive
model, or when the probability of one event is much larger
than 1=2. Arithmetic coding gives optimal compression, but
its slow execution can be problematical. Approximate ver-
sions of arithmetic coding give almost optimal compression
at improved speeds. Probabilities can be estimated approxi-
mately too, again leading to only slight degradation of com-
pression performance.

7

Acknowledgments

The authors would like to acknowledge helpful suggestions
made by Marty Cohn.

References

[1] C. E. Shannon, \A Mathematical Theory of Communication,"
Bell Syst. Tech. J., 27, pp. 398{403, July 1948.

[2] D. A. Hu�man, \A Method for the Construction of Minimum
RedundancyCodes," Proceedings of the Institute of Radio En-
gineers, 40, pp. 1098{1101, 1952.

[3] T. C. Bell, J. G. Cleary and I. H. Witten, Text Compression.
Englewood Cli�s, NJ, Prentice-Hall, 1990.

[4] P. G. Howard and J. S. Vitter, \Analysis of Arithmetic Coding
for Data Compression," Information Processing and Manage-

ment, 28, no. 6, pp. 749{763, 1992.

[5] I. H. Witten, R. M. Neal and J. G. Cleary, \Arithmetic Coding
for Data Compression," Comm. ACM, 30, no. 6, pp. 520{540,
June 1987.

[6] R. Pasco, \Source Coding Algorithms for Fast Data Compres-
sion," Stanford Univ., Ph.D. Thesis, 1976.

[7] J. J. Rissanen, \Generalized Kraft Inequality and Arithmetic
Coding," IBM J. Res. Develop., 20, no. 3, pp. 198{203, May
1976.

[8] F. Rubin, \Arithmetic Stream Coding Using Fixed Precision
Registers," IEEE Trans. Inform.Theory , IT{25, no. 6, pp. 672{
675, Nov. 1979.

[9] J. J. Rissanen and G. G. Langdon, \Arithmetic Coding," IBM
J. Res. Develop., 23, no. 2, pp. 146{162, Mar. 1979.

[10] M. Guazzo, \A General Minimum-Redundancy Source-Coding
Algorithm," IEEE Trans. Inform.Theory , IT{26, no. 1, pp. 15{
25, Jan. 1980.

[11] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon and R. B.
Arps, \An Overview of the Basic Principles of the Q-Coder
Adaptive Binary Arithmetic Coder," IBM J. Res. Develop.,
32, no. 6, pp. 717{726, Nov. 1988.

[12] P. G. Howard and J. S. Vitter, \Practical Implementations
of Arithmetic Coding," in Image and Text Compression, J.
A. Storer, Ed. Norwell, MA: Kluwer Academic Publishers,
pp. 85{112, 1992.

[13] , \Design and Analysis of Fast Text Compression
Based on Quasi-Arithmetic Coding," in Proc. Data Compres-

sion Conference, J. A. Storer and M. Cohn, Eds. Snowbird,
Utah: pp. 98{107, Mar. 30-Apr. 1, 1993.

[14] , \Parallel Lossless Image Compression Using Hu�-
man and Arithmetic Coding," in Proc. Data CompressionCon-
ference, J. A. Storer and M. Cohn, Eds. Snowbird, Utah:
pp. 299{308, Mar. 24-26, 1992.

[15] , \Fast and E�cient Lossless Image Compression,"
in Proc. Data Compression Conference, J. A. Storer and M.
Cohn, Eds. Snowbird, Utah: pp. 351{360, Mar. 30-Apr. 1,
1993.

[16] J. Ziv and A. Lempel, \A Universal Algorithm for Sequential
Data Compression," IEEE Trans. Inform. Theory , IT{23, no.
3, pp. 337{343, May 1977.

[17] , \Compression of Individual Sequences via Variable
Rate Coding," IEEE Trans. Inform. Theory , IT{24, no. 5,
pp. 530{536, Sept. 1978.

[18] J. G. Cleary and I. H. Witten, \Data Compression Using
Adaptive Coding and Partial String Matching," IEEE Trans.

Comm., COM{32, no. 4, pp. 396{402, Apr. 1984.

[19] I. H. Witten and T. C. Bell, \The Zero Frequency Problem:
Estimating the Probabilities of Novel Events in Adaptive Text
Compression," IEEE Trans. Inform. Theory, IT{37, no. 4,
pp. 1085{1094, July 1991.

[20] T. C. Hu and A. C. Tucker, \Optimal Computer-Search
Trees and Variable-Length Alphabetic Codes," SIAM J. Appl.

Math., 21, no. 4, pp. 514{532, 1971.

[21] R. M. Neal, \Fast Arithmetic Coding Using Low-Precision Di-
vision," Unpublished manuscript, 1987.

[22] S. W. Golomb, \Run-LengthEncodings," IEEE Trans. Inform.

Theory , IT{12, no. 4, pp. 399{401, July 1966.

[23] R. F. Rice, \Some Practical Universal Noiseless Coding Tech-
niques," Jet Propulsion Laboratory, Pasadena, California, JPL
Publication 79{22, Mar. 1979.

[24] P. Elias, \Universal Codeword Sets and Representations of In-
tegers," IEEE Trans. Inform. Theory , IT{21, no. 2, pp. 194{
203, Mar. 1975.

[25] D. W. Jones, \Application of Splay Trees to Data Compres-
sion," Comm. ACM, 31, no. 8, pp. 996{1007, Aug. 1988.

[26] A. M. Mo�at, N. Sharman, I. H. Witten and T. C. Bell, \An
Empirical Evaluation of Coding Methods for Multi-SymbolAl-
phabets," in Proc. Data Compression Conference, J. A. Storer
and M. Cohn, Eds. Snowbird, Utah: pp. 108{117, Mar. 30-
Apr. 1, 1993.

[27] A. M. Mo�at, \Economical Inversion of Large Text Files," pre-
sented at Computing Systems, 1992.

Paul G. Howard is a Member of Techni-
cal Sta� in the Visual Communications Re-
search Department of AT&T Bell Laborato-
ries. He received the B.S. degree in com-
puter science from M.I.T. in 1977 and the
M.S. and Ph.D. degrees in computer science
from Brown University in 1989 and 1993 re-
spectively. His research interests are in data
compression, including coding, image model-
ing, and text modeling. He is a member of
Sigma Xi and an associate member of the Cen-
ter of Excellence in Space Data and Informa-

tion Sciences. He was brie
y a Research Associate at Duke University
before joining AT&T in 1993.

Je�rey Scott Vitter (Fellow, IEEE) is the
Gilbert, Louis, and Edward Lehrman Profes-
sor of Computer Science and the Chair of
the Department of Computer Science at Duke
University. Previously he was Professor at
Brown University, where he was on the fac-
ulty since 1980. He received the B.S. degree
in mathematics with highest honors from the
University of Notre Dame in 1977 and the
Ph.D. degree in computer science from Stan-
ford University in 1980. He is a Guggenheim
Fellow, an NSF Presidential Young Investiga-

tor, and an IBM Faculty Development Awardee. He is coauthor of the
book Design and Analysis of Coalesced Hashing (Oxford University
Press, 1987) and is coholder of a patent in the area of external sort-
ing. He has written numerous articles and has consulted often in the
areas of combinatorial algorithms, I/O e�ciency, parallel and incre-
mental computation, computational geometry, and machine learning.
He serves on several editorial boards and is a frequent editor of spe-
cial issues and member of program committees. He has served ACM
SIGACT as Member-at-Large from 1987 to 1991 and as Vice Chair
since 1991. He is currently an associate member of the Center of
Excellence in Space Data and Information Sciences.

8

