
Constructing Binary Space Partitions for
Orthogonal Rectangles in Practice*

T. M. Murali** Panka.i K. Agarwal* * * ,J c!frey Scott Vittcr t

Center for Geometric Computing
Department of Compnter Science, Duke University

Box 90129, Durham, NC 27708-0129
Email: {tmax .pankaj .jsv}@cs. duke. edu

\\nwvV: http://www.cs.duke.edu/-{tmax,pankaj.jsv}

Abstract. In this paper, we develop a simple technique for constructing
a I3inary Space Partition (nSP) for a set of orthogonal rectangles in IR3.
OUf algorithm has the novel feature that it tunes its performance to the
geometric properties of the rectangles, e.g., their aspect ratios.
"Fe have implemented our algorithm and tested its performance on real
data scti). V\.Tc have also systematically compared the performance of our
algorithm with that of other techniques presented in the literature. Our
studies show that our algorithm constructs nsps of near-linear size and
small height in practice, has fast running times, and answers queries
efficiently. It is a method of choice for constructing BSPs for orthogonal
rectangles.

1 Introduction

The Binary Space Partition (BSP) is a hierarchical partitioning of space that
was originally proposed by Schumacker et. a1. [19] and was furt.her refined by
Fuchs et a1. [10]. The BSP has been widely used in several areas, including
comput.er graphics (global illuminat.ion [4]. shadow generation [6,7]. visibility
determination [3,21]' and ray tracing [15]), solid modeling [16,22]' geometric
data repair [12], network design [11]. and surface simplification [2]. The BSP has

'" A preliminary version of this paper appeared as a communication in the Proceedings
of the 18th Annual ACM Symposium on Computational Geometry) 1997, pages 382
384.

** This author is affiliated "\vith Brown University. Support was provided in part by
National Science Foundation research gTant CCR-9522047 and by Army Research
Office Ml:ill grant DAAH04-96-1-0013.

* * * Support was provided in part by National Science Foundation research grant CCR-
93-01259, by Army Research Office :\fURl grant DAAH04-96-1-0013, by a Sloan
fellowship, by a National Science Foundat.ion KYI award and matching funds from
Xerox Corp, and by a grant from the U.S.-Isra.eli Bina.tional Science Foundation.
Support was provided in part by National Science Foundation research grant CCR
9522047, by Army Research Office grant DAAH04-93-G-0076, and by Army Re
search Office Ml:RI grant DAAH04-96-1-00l3.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213393172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

been successful since it serves both as a model for an object (or a set of objects)
and &<;j a data structure for querying the object.

Before proceeding further, we give a definition of the BSP. A binary space
partition B for a set 5 of pairwise-disjoint triangles in]R3 is a tree defined as
fo11O\\'s: Each node 'I) in B represents a convex polytope R,v and a set of tri
angles S" = {s n R" I S E S} that intersect Rv. The polytope associated with
the root is IR:1 itself. If S'L' is empty, then node v is a leaf of B. Otherwise,
we partition R 1) into two convex polytopes by a cutting plane H 1!. At v, we
store t.he equat.ion of H" and t.he subset. of triangles in S" t.hat. lie in H". If
we let H

1
--; be the negative halfspace and H;; be the positive halfspace bounded

by H", t.he polyt.opes associat.ed wit.h t.he left. and right. children of v are R" n H;;
and R" n Ht, respectively. The left subtree of v is a BSP for the set of trian
gles {s n H;; I s E S,,} and the right subtree of v is a BSP for the set of triatl
gles {s n Ht I s E S,,}. The size of B is the sum of the number of internal nodes
in B and the total number of triangles stored at all the nodes in B.l

The efficiency of most. I3SP-ha"ed algorithms depends on t.he size and/or t.he
height of the BSP. Therefore, several t.echniques to construct BSPs of small size
and height have been developed [3,10,21,22]. These techniques may construct
a BSP of size fi(n3) for some instances of n triangles. The first algorithms with
non-trivial provable bounds on the size of a BSP were developed by Paterson
and Yao. They show that a BSP of size A(n2) can be constructed for n disjoint
triangles in][3 [17] and t.hat. a BSP of size A(ny'n) can be constructed for n
non-intersecting, orthogonal rectangles in][3 [18]. Agarwal et al. [1] consider the
problem of constructing BSPs for fat rectangles. A rectangle is said to be fat if
its aspect ratio is at most 0:, for some constant 0: 2:: 1; otherwise, it is said to
be tlt'tn. If rn rectangles are thin and the rest are fat, they present an algorithm
that constructs a BSP of size Th/iii20 (y"[Ogn). A related result of de Berg shows
that a BSP of linear size can be constructed for fat polyhedra. in][d [8].

In this paper, we consider the problem of constructing BSPs for orthogo
nal rectangles in 1R3. In many applications, common environments like buildings
are composed largely of orthogonal rectangles. Further, it is a common prac
tice (for exatnple, in the BRL-CAD solid modeling system [13,20]) to approx
imate non-orthogonal objects by their orthogonal bounding boxes, since such
approximations are simple, easy to manipulate, and often serve as very faithful
representations of the original objects [9].

Our paper makes two important contributions. First, we develop and im
plement a simple technique for constructing a BSP for orthogonal rectangles
in jR:1. Our algorithm has the useful property that it tunes its performance to
the geometric structure present in the input; e.g., the aspect ratios of the input
rectangles. While Agarwal et al. [lJ use similar ideas, our algorithm is consid
erably simpler than theirs and is much more easy to implement. Moreover; our

1 For each internal node v, we store the description of the polytope nil. However, if v
is a leaf, \ve do not store nt." since it is completely defined by nV) and the cutting
plane hw, where w is the parent of v. Hence, we do not include the number of leaves
while counting the si:t,e of B.

algorithm is ;~local" in the sense that in order to determine the cutting plane for
a node v, it examines only the rectangles intersecting Rv. On the other hand,
the algorithm of Agarwal et al. is more "global'; in nature: to determine hmy
to partition a node v, it uses splitting planes computed at ancestors of v in the
ESP. Other "local" algorithms presented in the literature [3,21,22] can he easily
incorporated into the framework of our algorithm but not into the Agarwal et al.
algorithm. We also show that a slightly modified version of our algorithm con
structs a ESP of size n.,fiii20 (VIO" n) for a set of n - III fat and n thin orthogonal
rectangles in)Ht3 , achieving the saJIle bound as the algorithm of Agarwal et al. [I].

"Fe have implemented our algorithm to study its performance on "real'; data
sets. Our experiments show that our algorithm is practical: it constructs a ESP
of near-linear size on real data sets (the size varies between 1.5 and 1.8 times
the number of input rectangles).

The second contribution of our paper is a methodical study of the empiri
cal performance of a variety of known algorithms for constructing BSPs. Our
experiments show that our algorithm performs better than not only theoretical
algorithms like that of Paterson and Yao [18] but also most other techniques
described in the literature [3,10,22]. The only algorithm that performs better
than our algorithm on some data sets is Teller's algorithm [21]; even in these
cases, our algorithm has certain advantages in terms of the trade-off between
the size of the ESP and query times (see Section 4).

To compare the different algorithms, we measure the size of the ESP each
algorithm constructs and the time spent in answering various queries. The size
measures the storage needed for the ESP. We use queries that are typically
made in many ESP-based algorithms: point location (determine the leaf of the
ESP that contains a query point) and my shooting (determine the first rectangle
intersected by a query ray).

2 Our Algorithm

In this section, we describe our algorithm New for constructing BSPs for orthog
onal rectangles in IR3. \Ve first give some definitions, most of ,vhich are borrowed
from Agarwal et a1. [I].

We will often focus on a box B and construct a ESP for the rectangles
intersecting it. We use 5 B to denote the set {s n B I s E S} of rectangles
obtained by clipping the rectangles in 5 within B. We say that a rectangle in
SR is free if none of its edges lies in the interior of Bj otherwise it is non-free. A
free cut is a cutting plane that does not cross any rectangle in S and that either
divides S into two non-empty sets or contains a rectangle in S. Note that the
plane containing a free rectangle is a free cut.

A box B in IF.3 has six faces-top, bottom, front, back, right, and left. We say
that a rectangle r in S B is long with respect to a box B if none of the vertices
of r lie in the interior of B. Otherwise, r is said to be short. We can partition long
rectangles into three classes: a rectangle !3 that is long with respect to B belongs
to the top clas8 if two parallel edges of .'3 are contained in the top and bottom

faces of E. We similarly define the front and right classes. A long rectangle
belongs to at least one of these three cla.<;jses; a non-free rectangle belongs to a
unique class. Finally, for a set of points P, let Pn be the subset of P lying in
t.he int.erior of D.

OUf algorithm b recursive. At each step, we construct a BSP for the set
SE of rectangles intersecting a box B by partitioning B into two boxes Bl and
B2 using an orthogonal plane, and recursively constructing a BSP for the sets
of rect.angles SE, and SE,. We st.art. by applying the algorithm to a box t.hat.
contains all the rectangles in S. ""Ve use Fn to denote the set of long rectangles
in SR. We define t.he measure I,(E) of E t.o be the quantity !PRI + 2k R, where
kR is the number of vertices of rectangles in SR that lie in the interior of B. \Ve
sa~y that a class in FB is large if the number of rectangles in that class is at least
p(D) /6. We split. D using one of t.he following st.eps:

1. If SR contains free rectangles, we usc the free cut containing the median
free rectangle to split n into two boxes. I\ ote that snch a free cnt is not
partitioned by any further cuts in E.

2. If all t.hree classes in FH are large, we split E as follows: Assume without.
loss of generality t.hat. among all the faces of E, t.he back face of E has
t.he smallest area. Each long rect.angle in the front class has an edge t.hat.
is contained in the back face of B. Vle can find an orthogonal line f in the
back face t.hat. pa."es t.hrough an endpoint. of one of these edges and does
not intersect the interior of any other edge.2 "Fe split B using a plane that
contains £ and is perpendicular t.o t.he back face of D.
This step is most useful when all rectangles in FB are fat (recall that a
rectangle is fat if its a.':ipect ratio is bounded by a constant 0:). In such a ca.':ie,
we can prove that there are 0 (a) candidates for line £ and show that this step
is used to split only O(a) boxes t.hat. E is recursively partitioned into before
one of Steps 3, 4 or 5 is invoked. Thus, we '~separate" the long rectangles
into distinct boxes without increasing the total number of rectangles by more
than a constant factor.

3. If only two classes in FB are large, we make one cut that does not intersect
any rectangle in the two large classes and partitions B into two boxes Bl
and E2 such that

(i) eit.her ,,(Di) <:: 2p.(D)/3, for i = 1,2, or
(ii) t.here is an i E {I, 2} such t.hat. p(B,) ::> p(E)/3.

4. If only one cla.,s in F n is large, let. 9 be t.he face of D t.hat. cont.ains exactly
one of the edges of each rectangle in E. We use a plane that is orthogonal to
9 to partition E into two boxes E, and E2 so that after all free cuts in E,
and E2 are applied (by repeated invocation of Step 1), each of the resulting
boxes has measure at most. 2p,(E)/3.

5. If no class in Fn is large, we split B into two boxes Bl and B2 such that
I,(E,) <:: 2p(E)/3, for i = 1,2.

2 If there is no such line -f, we can prove that FE contains at most two classes of
rectangles 111.

The intuition behind Steps 3-5 is that \~.rhen B contains more short rectangles
than long rectangles, we partition F into boxes that contain roughly half the
number of short rectangles as B (but possibly as many long rectangles as
F).

In Steps 2-5; if there are many planes that satisfy the conditions on the cuts,
we use the plane that intersects the smallest number of rectangles in S n. \Ve
recursively apply tbe above steps to tbe sub-boxes created by partitioning B.
Due to lack of space, \ve defer an explanation of how we compute these cuts to
the full version of the paper.

Remark: If all n rectangles in S are fat, we can prove that there arc Ora)
candidate lines to consider in Step 2. If we modify Step 2 to partition Fusing
all tbe planes defined by tbese lines, we can prove that our algoritbm constructs
a BSP of size n20(yrogn). Furthermore, when m of the rectangles in S are thin,
we can further modify our algorithm to construct a BSP of size n..,fiii20(Vlog n).

The analysis is similar to that of Agarwal et al. [IJ. We believe that the size
of the BSP constructed by the simpler algorithm New is also n..,fiii20(Vlog n).

However, ,ve have been unable to prove this claim so far. The experiments we
describe in Section 4 show that algorithm New constructs BSPs of linear si7.e in
practice.

3 Other Algorithms

In this section, we discuss our implementation of some other techniques presented
in the literature for constructing BSPs. Note that some of the algorithms dis
cussed below were originally developed to construct I3SPs for arbitrarily-oriented
polygons in 1R3. All the algorithms ,york on the smne basic principle: To deter
mine which plane to split a box n \vith, they examine each plane that supports
a rectangle in SR (recall tbat SR is tbe set of rectangles in S clipped witbin B)
and determine how ':good;' that plane is. They split B using the "best" plane
and recurse. Our implementation refines the original descriptions of these algo
rithms in two respects: (i) At a node B, we first check whether Sn contains a
free rectangle; if it does, we apply the Ii-ee cut containing that rectangle.' (ii) If
there is more than one "best;' plane, we choose the medial plane.4 To complete
the description of each technique, it suffices to describe how it measures how
':good;' a candidate plane is.

For a plane IT, let f" denote the number of rectangles in S B intersected by
IT, l: the number of rectangles in SB completely lying in the positive halfspace
defined by IT, and f; the number of rectangles in SB lying completely in the
negative halfspace defined by IT. We define the occ/'Usion factor "IT to be the

3 Only Paterson and Yao's algorithm [18] originally incorporated the notion of free
cuts.

4 Only Teller's algorithm [21] picked the medial plane; the other algorithms do not
specify how to deal with multiple "best" planes.

ratio of the total area of the rectangles in S R lying in IT to the area of IT (when IT

is dipped within B), the balance ,B. to be the ratio min{f;;,J;} / max{f;;,J;}
bet"Yeen the number of polygons that lie completely in each halfspace defined
by 1r, and CT. to be the split lactor of 1r, which is the fraction of rectangles that
7r intersects, i.e., CTrr = f1f/ISRI. "Ve now discuss how each algorithm measures
hmv good a plane is.

ThibaultNaylor: We discuss two of the three heuristics that Thibault and Nay
lor [22] present (the third performed poorly in our experiments). Below, w
is a positive weight that can be changed to tune the performance of the
heuristics.
1. Pick a plane the minimi"es the function II: - I; I + wi •. This measure

tries to balance the number of rectangles on each side of 7r so that the
height of the BSP is small and also tries to minimize the number of
rectangles intersected by 7r.

2. l'v'laximize the measure it i; - wirr. This measure is very similar to the
previous one, except that it gives more weight to constructing a balanced
BSP.

In our experiments, we use 11) = 8, aB suggested by Tbibault and Naylor [22].
Airey: Airey [3] proposes a measure function that is a linear combination of a

plane's occlusion factor, its balance, and its split factor: 0.5arr+0.3prr+O.2CTrr.
Teller: Let 0 <: T <: 1 be a real number. Teller [21] chooses the plane with the

maximum occlusion factor D:1fl provided D:1f 2:'. To If there is no such plane~ he
chooses the plane \vith the minimum value of 1rr. Vle use the value T = 0.5
in our implementation, as suggested by Teller. The intuition behind this
algorithm is that planes that are "well-covered" are unlikely to intersect
many rectangles and that data sets made up of orthogonal rectangles are
likely to contain many coplanar rectangles.

Paterson Vao: \Ve have implemented a refined version of the algorithm of Paterson
and Yao [18]. For a box B, let s" (resp., By, s,) denote the number of edges
of the rectangles in S H that lie in the interior of B and are parallel to the x
axis (resp., y-a."'{is, z-axis). Vle define the measure of B to be IL(B) = 8 x 8 y8 z.
We make a cut that is perpendicular to the smallest family of edges and
divides B into two boxes, each with meaBure at most p,(B)/4. (Paterson and
Yao prove that given any axis, we can find such a cut perpendicular to that
axis.) "Ve can show that this algorithm also constructs produces DSPs of size
O(nvn) for n rectangles, just like Paterson and Yao's original algorithm [18].

Rounds: We briefly describe the algorithm of Agarwal et a1. [I]. Their algorithm
proceeds in rounds. Each round partitions a box n using a sequence of cuts
in two stages, the separating stage and the dividing stage. The separating
stage partitions B into a set of boxes C such that for each box C E C, Fc
contains onl~y t\""O classes of long rectangles. To effect this partition, the~y use
cuts similar to the cut we make in Step 2 of algorithm New. In the dividing
stage, they refine each box C E C using cuts similar to those made in Steps 3
and 4 of algorithm New until the "\~leight" of each resulting box is less than
the "weight" of B by a certain factor. A new round is executed recursively in

each of these boxes. See Agarwal et al. [1] for more details. Below, we refer
to their technique aB algorithm Rounds.

Our implementations of these algorithms are efficient in terms of running
time becau~e we exploit the fact that \ve are con~tructing BSPs for orthogonal
rectangle~. After an initial sort, we determine the cut at any node in time linear
in the number of the rectangles intersecting that node. If we were processing
arbitrarily-oriented objects, computing a cut can take time quadratic in the
number of objects.

'Ve now briefly mention some other known techniques that we have not im
plemented, since we expect them to have performance similar to the algorithms
we have implemented. ::"-Jaylor has proposed a technique that controls the con
struction of the BSP by using estimates of the costs incurred \~.rhen the BSP is
used to answer standard queries [14]. While his idea is different from st.andard
techniques used to construct BSPs; the measure functions he uses to choose
cutting planes are very similar to the ones used in the algorithms we have imple
mented. Cassen et al. [5] use genetic algorithms t.o construct BSPs. We have not
compared our algorithms to their~ since they report that their algorithm takes
hours to run even for moderately-sized data sets. Note that de Berg's algorithm
for constructing BSPs for fat polyhedra [8] cannot be used to solve our problem
since rectangles in ffi.3 are not fat in his model.

4 Experimental Results

We have implemented the above algorithms and run them on the following data
sets containing orthogonal rectangles:5

1. the Fifth floor of Soda Hall containing 1677 rectangles,
2. the Entire Soda Hall model with 8690 rectangles,
3. the Orange Cnited Methodist Church Fellowship Hall with 29988 rectangles,
4. the Sitterson Hall Lobby with 12207 rectangles, and
5. Sitter~on Hall containing 6002 rectangles.

'Ve present three sets of results. For each set, we first discuss the experimental
set-up and then present the performance of our algorithms. These experiments
were run on a Sun SPARCstation 5 running SunOS 5.5.1 with 64MB of RAM.

4.1 Size of the BSP

Recall that we have defined the si,e of a BSP to be the sum of the number of
interior nodes in the BSP and the total number of rectangles stored at all the
nodes of the BSP. The total number of rectangles stored in the BSP is the sum
of the number of input rectangles and the number of fragments created by the

5 \Ve discarded all non-orthogonal polygons from these data sets. The number of such
polygons wal'! very small.

cutting planes in the BSP. The table below displays the size of the BSP and the
total number of times the rect.angles are fragmented by the cut.s made by t.he
BSP.

Number of Fragments Size of the BSP
Fifth Entire Church Lobby Sitt. Datasets Fifth Entire Church Lobby Sitt.

1677 8690 29988 12207 6002 #recta.llgles 1677 8690 29988 12207 6002
89 660 881 681 332 New 2115 14410 45528 22226 8983

113 741 838 415 312 Rounds 2744 14707 45427 2222.) 9060
301 1458 873 514 153 Teller 2931 14950 33518 13911 7340
449 5545 12517 9642 6428 Paterson Yao 3310 22468 56868 30712 20600
675 7001 5494 5350 8307 Airey 3585 24683 41270 21753 19841

1868 10580 13797 3441 1324 ThibaultNaylorl 6092 32929 65313 25051 10836
262 2859 6905 1760 1601 ThibauitNaylor2 3235 20089 58175 23159 12192

Examining this table, \ve note that, in general; the number of fragments
and size of the BSP scale well with t.he size of the data set.. For t.he Soda Hall
data sets (Fifth and Entire), algorithm New creates the smallest number of
fragments and constructs the smallest BSP. For the other three sets, algorithm
Teller performs best in terms of BSP size. However, there are some peculiarities
in the table. For example, for the Church data set, algorithm Rounds creates a
smaller number of fragments than algorithm Teller but constructs a larger BSP.
We believe that this difference is explained by the fact that t.he 29998 rectangles
in the Church model lie in a total of only 859 distinct planes. Since algorithm
Teller makes cuts based on how much of a plane's area is covered by rectangles,
it is reasonable to expect that the algorithm will ~'place" a lot of rectangles in
cuts made close to the root of the BSP, thus leading to a BSP with a small
number of nodes.

We further examined the issue of how well the performance of the algorithms
scaled with t.he size of the data by running the algorithms on data sets that
we "created" by making translated and rotated copies of the original data sets.
In Figure 1, we display the results of this experiment for the Entire Soda Hall
and the Si tterson models. We have omitted graphs for the other data sets due
to lack of space. In these graphs, we do not. display the curve for algorithm
ThibaultNaylorl since its performance is always vvorse than the performance of
algorithm ThibaultNaylor2. The graphs show that the size of the BSP constructed
by most algorithms increa..'ies linearly with the size of the data. The performance
of algorithms New, Rounds, and Teller is nearly identical for the Entire data set.
However, algorit.hm Teller const.ruct.s a smaller nsp t.han algorit.hm New for t.he
Sitterson data set. For this data set, note the performance of algorithm New
is nearly identical to the performance of algorithm Rou nds.

The time taken to construct the BSPs also scaled well with the size of the
data sets. Algorithm New took 11 seconds to construct a BSP for the Fifth
floor of Soda Hall and about. 4.5 minutes for t.he Church data set. Typically,
algorithm PatersonYao took about 15% less time than algorithm New while the
other algorithms (Airey, ThibaultNaylor, and Teller) took 2 4 times as much time

300000 ,----~-~-~--~-~-~-~-___,

250000

200000
BSP si:>:e

150000

100000

50000

New -
R~?I~~ ;;_

Paterson~ao -><
Airey -.0.

ThibauitNaylor2 -lI

/ x"
~" .

Jr, • :'
--:'~ -

/

°O"~~~~~~~~~~~~~~~~ 10000 20000 30000 40000 50000 60000 70000 80000
Kumber of input rectangles

(a) Entire: Algorithms New, Rounds) and Teller have
nearly identical graphs.

200000

180000

160000

140000

BSp2R~go
100000

80000

flOOOO

10000

20000

New-
R~~~~ ~-_

Paterson'fao " -
AI"'" ~ ThibaultNay or2 ..

/

°o~~-L----~----L---~----~--~
10000 20000 30000 40000 50000 60000

Number of input rectangles

(b) Sitters on: Algorithms New and Rounds have
nearly identical graphs.

Fig. 1. Graphs displaying BSP size vs. the number of input rectangles.

as algorithm New to construct a nsP" While the difference in time is negligible
for small data sets, it can be considerable for large data sets. For exaxnple, for
the data set obtained by placing 9 copies of the Si tterson model in a 3 x 3
array, algorithm New took 13 minutes to construct a BSP while algorithm Teller
took 51 minutes.

4.2 Point Location

In the point location query, given a point, we want to locate the leaf of the BSP
that contains the point. We answer a query by traversing the path from the root
of the BSP that leads to the leaf" that contains the query point. The cost of a
query is the number of nodes in this path. In our experiments, we create the

queries by generating 1000 random points from a uniform distribution over the
box n containing all the rectangles in S.

Due to lack of ~pace, we pre~ent a summary of the results for point location,
concentrating on algorithms New, Rounds, and Teller These results were highly
correlat.ed to the height. of t.he trees. Algorithms New and Rounds const.ructed
BSPs of average height between 11 and 16 with the standard deviation of t.he
height ranging from 2 to 2.5. The average cost of locating a point ranged between
10 and 15. The average height of the BSP constructed by algorithm Teller ranged
between 15 and 20 with standard deviation ranging from 4 to 5, while the average
cost of point location ranged between 7 and 15.

4.3 Ray Shooting

Given a ray Pl we want to determine the first rectangle in 5 that is intersected
by p or report that there is no such rectangle. To answer such a query, vve trace
p through the leaves of the ESP that p intersects. At each such leaf v, we check
whether the first point where p intersects the boundary of v is contained in a
rectangle in S (such a rectangle must be stored ,,,ith the bisecting plane of an
ancestor of v or lie on the boundary of B). If so, we output the rectangle and stop
the query. Otherwise, we continue tracing p. There are two components to the
cost of ansv,rering the query v,rith p: the number of nodes visited and the number
of rectangle~ checked. \Ve report the two factors ~eparately belmv. The actual
cost of a ray shooting query is a linear combination of these two components; its
exact form depends on the implementation. In our experiment; we constructed
1000 rays for each data set by generating 1000 random (origin, direction) pairs,
where the origin was picked from a uniform dbtribution over B and the direction
was chosen from a uniform distribution over the sphere of directions.

#nodes visited #rects. checked
Fifth Entire Church Lobby Sitt. Fifth Entire Church Lobby Sitt.

43.7 10.8 311.5 86.8 56.0 New 5.6 3.7 48.3 2.6 19.8
44.7 12.5 326.4 89.6 55.9 Rounds 5.7 3.0 49.6 2.0 19.2
17.1 13.7 96.6 13.0 37.3 Teller 12.0 11.0 4828.2 20.4 44.1
40.0 11.8 531.4 49.8 83.1 Paterson Yao 4.0 5.7 5461.2 84.2 114.0
24.0 13.3 170.2 10.5 129.9 Airey 5.5 4.1 4757.9 11.9 27.5
44.1 31.3 256.8 102.6 69.1 I h,baultNaylorl 4.6 14.6 20.7 2.1 38.5
44.5 14.2 298.5 78.4 59.8 ThibauitNaylor2 5.1 7.5 28.5 2.6 7.3

There is an interesting tradeoff between these t,,,o costs) which is most sharpl~y
noticeable for the Church data set. ~otice that the average number of nodes
visited to aIIS\Ver ray shooting queries in the BSP constructed by algorithm
Teller is about a third the number visited in the BSP built by algorithm New
but the number of rectangles checked for algorithm Teller is about 10 times
higher! This apparent discrepancy actually ties in with our earlier conclusion
that algorithm Teller is able to construct a BSP with a small number of nodes
for the Church model because the rectangles in this model lie in a small number of
distinct planes. A~ a result, we do not visit too many nodes during a ray shooting

query. However, when we check whether the intersection of a ray with a node is
contained in a rectangle in S, we process a large number of rectangles since each
cutting plane contains a large number of rectangles. This cost can be brought
down by using an efficient data structure for point location among rectangles.
Hmvever, this change \vill increase the size of the ESP itself. Determining the
right combination needs further investigation.

5 Conclusions

Our comparison indicates that algorithms New, Rounds and Teller construct the
smallest BSPs for orthogonal rectangles in Th!3. Algorithms New and Rounds run
2-4 times faster and construct BSPs \vith smaller and more uniform height than
algorithm Teller.

Algorithm Teller is best for applications like painter's algorithm [91 in which
the entire BSP is traversed. On the other hand, for queries such as ray shooting,
it might be advisable to use algorithm New or Rounds since they build BSPs
whose sL"es are not much more than algorithm Teller's BSPs but have better
height and query costs. Note that we can prove that algorithms New and Rounds
construct. nsps whose height is logarit.hmic in the number ofrectangles in 5 [11.
Such guarantees are crucial to extending these BSP-construction algorithms to
scenarios when the input rectangles move or are inserted into and deleted from
the BSP.

Clearl~y, there is a tradeoff between the amount of time spent on constructing
t.he nsp and the size of t.he resulting nsp. Our experience suggests t.hat. while
algorithm Teller constructs the smallest BSPs, algorithms New and Rounds are
likely to be fast in terms of execution, will build compact BSPs that answer
queries efficiently; and can be efficiently extended to dynamic environments.

Acknowledgments We would like to thank Seth Teller for providing us with the
Soda Hall data set created at the Department of Computer Science, University
of California at. Berkeley. We would also like to thank the Walkthrough Project,
Department of Comput.er Science, University of North Carolina at Chapel Hill for
providing us \~lith the data sets for Sitterson Hall, the Orange Unitecl1Icthodist
Church Fellowship Hall, and t.he Sitt.erson Hall Lobby.

References

1. P. K. Aganval, E. F. Grove, T. M. Mllrali, and J. S. Vitter, Binary space partitions
for fat rectangles, Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci., October
1996, pp. 482-49l.

2. P. K. Aganval and S. Suri, Surfa.ce approximation and geometric partitions, Proc.
5th ACM-SIAM Sympos. Discrete Algorithms, 1994, pp. 24-33.

3 . .T. :.\1. Airey, Increasing Update Rates in the Building Walkthrough System with
Automatic Model-space Subdivision and Potentially Visible Set Calculations, Ph.D.
Thesis, Dept. of Computer Science, Lniversity of~orth Carolina., Chapel Hill, 1990.

4. A. T. Campbell, Modeling Global Diffuse Illumination for Image Synthesis, Ph.D.
ThesiH, Dept.. of Comput.er ScienceH, "("niverHity of Texas, AUHt.in, 1991.

5. T. Cassen, K. R. Subramanian, and Z. rvlichakwicz, Ncar-optimal construction of
partitioning trees by evolutionary techniques, Proc. Gmphics Interface '95, 1995,
pp. 263-271.

6. N. Chin and S. Feiner, Kear real-t.ime shadow generation using BSP trees, Proc.
SIGGRAPH 89, Comput. Graph., Vol. 23, AC:\,[SIGGRAPH, 1989, pp. 99 106.

7. N. Chin and S. Feiner, Fast object-precision shadO\v generation for areal light
sources using BSP trees, Pmc. 1992 Sympos. Intemci'ive SD Gmph'ics, 1992, pp. 21-
30.

8. M. de Berg, Linear si'l:e binary space partitions for fat objects, Proc. 3rd Annu.
E'U'f"Opean Sympos. Algo'f"ithm,s, Lecture Notes Comput. Sci., Vol. 979, Springer
Verlag, 1995, pp. 252-263.

9. J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Gmphics:
Principles and Practice, Addison-\Vesley, R.eading, MA, 1990.

10. H. Fuchs, Z. M. Kedem, and B. Naylor, On visible surface generat.ion by a priori
tree structures, Proc. SIGGRAPH 80, Comput. Graph., Vol. 14, ACM SIGGRAPH,
1980, pp. 124-133.

11. C. Mat.a and J. S. B. Mit.chell, Approximat.ion algorit.hms for geometric tour and
network design problems, Proc. 11th Annu. ACM Sympos. Comput. Geom., 1995,
pp. 360-369.

12. T. M. Murali and T. A. Funkhouser, Consistent solid and boundary representations
from arbitrary polygonal dat.a, Proc. 1997 Sympos. Interactive 3D Graphics, 1997,
pp. 155-162.

13. M. J. !'·iluus, Understanding the preparation and analysis of solid models, in: Tech
niques for Computer Graphics (D. F. Rogers and R. A. Earnshaw, eds.), Springer
Verlag, 1987.

14. B. Naylor, Constructing good partitioning trees, Proc. Graphics Interface '93,1993,
pp. 181-191.

15. n. Naylor and \V. Thibault, Application of nsp trees to ray-t.racing and eSG
evaluat.ion, Technical Report GIT-ICS 86/03, Georgia Inst.it.ute of Tech., School of
Informat.ion and Computer Science, F~bruary 1986.

16. B. F. Kaylor, J. Amanatides, and \iV. C. Thibault, rvlerging BSP trees yields poly
hedral set operations, Froc. SIGGRAFH 90, Comput. Graph., Vol. 24, ACM SIG
GRAPH, 1990, pp. 115-124.

17. M. S. Paterson and F. F. Yao, Efficient binru."y space partitions for hidden-surface
removal and solid modeling, Discrete Comput. Geom., 5 (1990), 485-503.

18. M. S. Paterson and F. F. Yao, Optimal binary space partitions for orthogonal
objects, J. Algo'l'dhms, 13 (1992), 99-113.

19. R. A. Schumacker, R.. Brand, M. Gilliland, and \V. Sharp, Study for applying
computer-generated images to visual simulat.ion, Tech. Rep. AFHRL-TR-69-14,
U.S. Air Force Human Resources Laboratory, 1969.

20. P .. J. Tanenbaum. Applications of computational geometry in army research and
development. Invited talk, Second CGC \Vorkshop on Computat.ional Geometry,
1997.

21. S . .J. Teller, Visibility Computations in Densely Occluded Polyhedral Environments,
Ph.D. Thesis, Dept. of Computer Science, University of California, Berkeley, 1992.

22. \V. C. Thibault and 13. F. Kaylor, Set operations on polyhedra using binary space
partitioning trees, Proc. SIGGRAPH 87, Comput. Graph., VoL 21, AC:~v1 SIG
GRAPH, 1987, pp. 153-162.

