Constructing Binary Space Partitions for
Orthogonal Rectangles in Practice*

T. M. Murali** Pankaj K. Agarwal*** Jeffrey Scott Vitter!

Center for Geometric Computing
Department of Computer Science, Duke University
Box 90129, Durham, NC 27708-0129
Email: {tmax,pankaj, jsv}@cs.duke.edu
WWW: http://www.cs.duke.edu/~{tmax,pankaj, jsv}

Abstract. In this paper, we develop a simple technique for constructing
a Binary Space Partition (BSP) for a set of orthogonal rectangles in R®.
Our algorithm has the novel feature that it tunes its performance to the
geometric properties of the rectangles, e.g., their aspect ratios.

We have implemented our algorithm and tested its performance on real
data sets. We have also systematically compared the performance of our
algorithm with that of other techniques presented in the literature. Our
studies show that our algorithm constructs BSPs of near-linear size and
small height in practice, has fast running times, and answers queries
efficiently. It is a method of choice for constructing BSPs for orthogonal
rectangles.

1 Introduction

The Binary Space Partition (BSP) is a hierarchical partitioning of space that
was originally proposed by Schumacker et al. [19] and was further refined by
Fuchs et al. [10]. The BSP has been widely used in several areas, including
computer graphics (global illumination [4], shadow generation [6,7], visibility
determination [3,21], and ray tracing [15]), solid modeling [16,22], geometric
data repair [12], network design [11], and surface simplification [2]. The BSP has

* A preliminary version of this paper appeared as a communication in the Proceedings
of the 138th Annual ACM Symposium on Computational Geometry, 1997, pages 382—
384.

** This author is affiliated with Brown University. Support was provided in part by
National Science Foundation research grant CCR-9522047 and by Army Research
Office MURI grant DAAH04-96-1-0013.

*** Support was provided in part by National Science Foundation research grant CCR~
93-01259, by Army Research Office MURI grant DAAH(04-96-1-0013, by a Sloan
fellowship, by a National Science Foundation NYI award and matching funds from
Xerox Corp, and by a grant from the U.S.-Israeli Binational Science Foundation.

t Support was provided in part by National Science Foundation research grant CCR~-
9522047, by Army Research Office grant DAAH04-93-G-0076, and by Army Re-
search Office MURI grant DAAH04-96-1-0013.

https://core.ac.uk/display/213393172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

been successful since it serves both as a model for an object (or a set of objects)
and as a data structure for querying the object.

Before proceeding further, we give a definition of the BSP. A binary space
partition B for a set S of pairwise-disjoint triangles in R® is a tree defined as
follows: Each node v in B represents a convex polytope R, and a set of tri-
angles S, = {sNR, | s € S} that intersect R,. The polytope associated with
the root is R? itself. If S, is empty, then node v is a leaf of B. Otherwise,
we partition R, into two convex polytopes by a cutting plane H,. At v, we
store the equation of H, and the subset of triangles in S, that lie in H,. If
we let H, be the negative halfspace and H;" be the positive halfspace bounded
by H,, the polytopes associated with the left and right children of v are R, N H
and R, N H, respectively. The left subtree of v is a BSP for the set of trian-
gles {sN H; | s €S,} and the right subtree of v is a BSP for the set of trian-
gles {sN H} | s € S,}. The size of B is the sum of the number of internal nodes
in B and the total number of triangles stored at all the nodes in B.!

The efficiency of most BSP-based algorithms depends on the size and/or the
height of the BSP. Therefore, several techniques to construct BSPs of small size
and height have been developed [3, 10,21, 22]. These techniques may construct
a BSP of size 2(n?) for some instances of n triangles. The first algorithms with
non-trivial provable bounds on the size of a BSP were developed by Paterson
and Yao. They show that a BSP of size ©(n?) can be constructed for n disjoint
triangles in R® [17] and that a BSP of size ©(ny/n) can be constructed for n
non-intersecting, orthogonal rectangles in R® [18]. Agarwal et al. [1] consider the
problem of constructing BSPs for fat rectangles. A rectangle is said to be fat if
its aspect ratio is at most «, for some constant a > 1; otherwise, it is said to
be thin. If m rectangles are thin and the rest are fat, they present an algorithm
that constructs a BSP of size ny/m2°(V1°67) A related result of de Berg shows
that a BSP of linear size can be constructed for fat polyhedra in R? [8].

In this paper, we consider the problem of constructing BSPs for orthogo-
nal rectangles in R®. In many applications, common environments like buildings
are composed largely of orthogonal rectangles. Further, it is a common prac-
tice (for example, in the BRL-CAD solid modeling system [13,20]) to approx-
imate non-orthogonal objects by their orthogonal bounding boxes, since such
approximations are simple, easy to manipulate, and often serve as very faithful
representations of the original objects [9].

Our paper makes two important contributions. First, we develop and im-
plement a simple technique for constructing a BSP for orthogonal rectangles
in R®. Our algorithm has the useful property that it tunes its performance to
the geometric structure present in the input, e.g., the aspect ratios of the input
rectangles. While Agarwal et al. [1] use similar ideas, our algorithm is consid-
erably simpler than theirs and is much more easy to implement. Moreover, our

! For each internal node v, we store the description of the polytope R,. However, if v
is a leaf, we do not store R,, since it is completely defined by R, and the cutting
plane h,,, where w is the parent of v. Hence, we do not include the number of leaves
while counting the size of B.

algorithm is “local” in the sense that in order to determine the cutting plane for
a node v, it examines only the rectangles intersecting R,. On the other hand,
the algorithm of Agarwal et al. is more “global” in nature: to determine how
to partition a node v, it uses splitting planes computed at ancestors of v in the
BSP. Other “local” algorithms presented in the literature [3,21,22] can be easily
incorporated into the framework of our algorithm but not into the Agarwal et al.
algorithm. We also show that a slightly modified version of our algorithm con-
structs a BSP of size ny/m2°(V1087) for a set of n —m fat and n thin orthogonal
rectangles in R®, achieving the same bound as the algorithm of Agarwal et al. [1].

We have implemented our algorithm to study its performance on “real” data
sets. Our experiments show that our algorithm is practical: it constructs a BSP
of near-linear size on real data sets (the size varies between 1.5 and 1.8 times
the number of input rectangles).

The second contribution of our paper is a methodical study of the empiri-
cal performance of a variety of known algorithms for constructing BSPs. Our
experiments show that our algorithm performs better than not only theoretical
algorithms like that of Paterson and Yao [18] but also most other techniques
described in the literature [3,10,22]. The only algorithm that performs better
than our algorithm on some data sets is Teller’s algorithm [21]; even in these
cases, our algorithm has certain advantages in terms of the trade-off between
the size of the BSP and query times (see Section 4).

To compare the different algorithms, we measure the size of the BSP each
algorithm constructs and the time spent in answering various queries. The size
measures the storage needed for the BSP. We use queries that are typically
made in many BSP-based algorithms: point location (determine the leaf of the
BSP that contains a query point) and ray shooting (determine the first rectangle
intersected by a query ray).

2 Owur Algorithm

In this section, we describe our algorithm New for constructing BSPs for orthog-
onal rectangles in R®. We first give some definitions, most of which are borrowed
from Agarwal et al. [1].

We will often focus on a box B and construct a BSP for the rectangles
intersecting it. We use Sp to denote the set {sN B | s € S} of rectangles
obtained by clipping the rectangles in S within B. We say that a rectangle in
Sp is free if none of its edges lies in the interior of B; otherwise it is non-free. A
free cut is a cutting plane that does not cross any rectangle in S and that either
divides S into two non-empty sets or contains a rectangle in S. Note that the
plane containing a free rectangle is a free cut.

A box B in R? has six faces—top, bottom, front, back, right, and left. We say
that a rectangle r in Sp is long with respect to a box B if none of the vertices
of r lie in the interior of B. Otherwise, r is said to be short. We can partition long
rectangles into three classes: a rectangle s that is long with respect to B belongs
to the top class if two parallel edges of s are contained in the top and bottom

faces of B. We similarly define the front and right classes. A long rectangle
belongs to at least one of these three classes; a non-free rectangle belongs to a
unique class. Finally, for a set of points P, let Pg be the subset of P lying in
the interior of B.

Our algorithm is recursive. At each step, we construct a BSP for the set
Sp of rectangles intersecting a box B by partitioning B into two boxes By and
B, using an orthogonal plane, and recursively constructing a BSP for the sets
of rectangles Sp, and Sp,. We start by applying the algorithm to a box that
contains all the rectangles in S. We use Fg to denote the set of long rectangles
in Sp. We define the measure u(B) of B to be the quantity |Fg|+ 2kp, where
kp is the number of vertices of rectangles in Sg that lie in the interior of B. We
say that a class in Fg is large if the number of rectangles in that class is at least
1(B)/6. We split B using one of the following steps:

1. If Sp contains free rectangles, we use the free cut containing the median
free rectangle to split B into two boxes. Note that such a free cut is not
partitioned by any further cuts in B.

2. If all three classes in Fp are large, we split B as follows: Assume without

loss of generality that among all the faces of B, the back face of B has
the smallest area. Each long rectangle in the front class has an edge that
is contained in the back face of B. We can find an orthogonal line £ in the
back face that passes through an endpoint of one of these edges and does
not intersect the interior of any other edge.? We split B using a plane that
contains ¢ and is perpendicular to the back face of B.
This step is most useful when all rectangles in Fp are fat (recall that a
rectangle is fat if its aspect ratio is bounded by a constant «). In such a case,
we can prove that there are O(a) candidates for line £ and show that this step
is used to split only O(a) boxes that B is recursively partitioned into before
one of Steps 3, 4 or 5 is invoked. Thus, we “separate” the long rectangles
into distinct boxes without increasing the total number of rectangles by more
than a constant factor.

3. If only two classes in Fp are large, we make one cut that does not intersect
any rectangle in the two large classes and partitions B into two boxes B
and B, such that

(i) either p(B;) <2u(B)/3, for i =1,2, or
(ii) there is an ¢ € {1,2} such that u(B;) > p(B)/3.

4. If only one class in Fp is large, let g be the face of B that contains exactly
one of the edges of each rectangle in B. We use a plane that is orthogonal to
g to partition B into two boxes B; and Bj so that after all free cuts in By
and Bs are applied (by repeated invocation of Step 1), each of the resulting
boxes has measure at most 2u(B)/3.

5. If no class in Fp is large, we split B into two boxes By and By such that
u(Bi) < 2u(B)/3, for i = 1,2.

2 If there is no such line ¢, we can prove that Fp contains at most two classes of
rectangles [1].

The intuition behind Steps 3-5 is that when B contains more short rectangles
than long rectangles, we partition B into boxes that contain roughly half the
number of short rectangles as B (but possibly as many long rectangles as
B).

In Steps 2-5, if there are many planes that satisfy the conditions on the cuts,
we use the plane that intersects the smallest number of rectangles in Sp. We
recursively apply the above steps to the sub-boxes created by partitioning B.
Due to lack of space, we defer an explanation of how we compute these cuts to
the full version of the paper.

Remark: If all n rectangles in S are fat, we can prove that there are O(«a)
candidate lines to consider in Step 2. If we modify Step 2 to partition B using
all the planes defined by these lines, we can prove that our algorithm constructs
a BSP of size n20(V1°6™) Furthermore, when m of the rectangles in S are thin,
we can further modify our algorithm to construct a BSP of size n,/m2°(Viegn)
The analysis is similar to that of Agarwal et al. [1]. We believe that the size
of the BSP constructed by the simpler algorithm New is also n\/ﬁ2o(\/m).
However, we have been unable to prove this claim so far. The experiments we
describe in Section 4 show that algorithm New constructs BSPs of linear size in
practice.

3 Other Algorithms

In this section, we discuss our implementation of some other techniques presented
in the literature for constructing BSPs. Note that some of the algorithms dis-
cussed below were originally developed to construct BSPs for arbitrarily-oriented
polygons in R3. All the algorithms work on the same basic principle: To deter-
mine which plane to split a box B with, they examine each plane that supports
a rectangle in Sp (recall that Sp is the set of rectangles in S clipped within B)
and determine how “good” that plane is. They split B using the “best” plane
and recurse. Our implementation refines the original descriptions of these algo-
rithms in two respects: (i) At a node B, we first check whether Sp contains a
free rectangle; if it does, we apply the free cut containing that rectangle.® (ii) If
there is more than one “best” plane, we choose the medial plane.* To complete
the description of each technique, it suffices to describe how it measures how
“good” a candidate plane is.

For a plane 7, let f, denote the number of rectangles in Sp intersected by
m, [the number of rectangles in Sp completely lying in the positive halfspace
defined by 7, and f the number of rectangles in Sp lying completely in the
negative halfspace defined by 7. We define the occlusion factor o, to be the

3 Only Paterson and Yao’s algorithm [18] originally incorporated the notion of free
cuts.

4 Only Teller’s algorithm [21] picked the medial plane; the other algorithms do not
specify how to deal with multiple “best” planes.

ratio of the total area of the rectangles in Sp lying in 7 to the area of 7 (when 7
is clipped within B), the balance 3, to be the ratio min{f}, f=}/ max{f}, f=}
between the number of polygons that lie completely in each halfspace defined
by 7, and o, to be the split factor of w, which is the fraction of rectangles that
m intersects, i.e., o = fr/|SpB|- We now discuss how each algorithm measures
how good a plane is.

ThibaultNaylor: We discuss two of the three heuristics that Thibault and Nay-
lor [22] present (the third performed poorly in our experiments). Below, w
is a positive weight that can be changed to tune the performance of the
heuristics.

1. Pick a plane the minimizes the function |f — f| + wf.. This measure
tries to balance the number of rectangles on each side of 7 so that the
height of the BSP is small and also tries to minimize the number of
rectangles intersected by .

2. Maximize the measure f;} f —wf,. This measure is very similar to the
previous one, except that it gives more weight to constructing a balanced
BSP.

In our experiments, we use w = 8, as suggested by Thibault and Naylor [22].

Airey: Airey [3] proposes a measure function that is a linear combination of a
plane’s occlusion factor, its balance, and its split factor: 0.5a,+0.33,+0.20 .

Teller: Let 0 < 7 < 1 be a real number. Teller [21] chooses the plane with the
maximum occlusion factor a,, provided e, > 7. If there is no such plane, he
chooses the plane with the minimum value of f,. We use the value 7 = 0.5
in our implementation, as suggested by Teller. The intuition behind this
algorithm is that planes that are “well-covered” are unlikely to intersect
many rectangles and that data sets made up of orthogonal rectangles are
likely to contain many coplanar rectangles.

PatersonYao: We have implemented a refined version of the algorithm of Paterson
and Yao [18]. For a box B, let s, (resp., sy, s;) denote the number of edges
of the rectangles in Sp that lie in the interior of B and are parallel to the z-
axis (resp., y-axis, z-axis). We define the measure of B to be p(B) = s;5y5..
We make a cut that is perpendicular to the smallest family of edges and
divides B into two boxes, each with measure at most u(B)/4. (Paterson and
Yao prove that given any axis, we can find such a cut perpendicular to that
axis.) We can show that this algorithm also constructs produces BSPs of size
O(n+/n) for n rectangles, just like Paterson and Yao’s original algorithm [18].

Rounds: We briefly describe the algorithm of Agarwal et al. [1]. Their algorithm
proceeds in rounds. Each round partitions a box B using a sequence of cuts
in two stages, the separating stage and the dividing stage. The separating
stage partitions B into a set of boxes C such that for each box C € C, F¢
contains only two classes of long rectangles. To effect this partition, they use
cuts similar to the cut we make in Step 2 of algorithm New. In the dividing
stage, they refine each box C' € C using cuts similar to those made in Steps 3
and 4 of algorithm New until the “weight” of each resulting box is less than
the “weight” of B by a certain factor. A new round is executed recursively in

each of these boxes. See Agarwal et al. [1] for more details. Below, we refer
to their technique as algorithm Rounds.

Our implementations of these algorithms are efficient in terms of running
time because we exploit the fact that we are constructing BSPs for orthogonal
rectangles. After an initial sort, we determine the cut at any node in time linear
in the number of the rectangles intersecting that node. If we were processing
arbitrarily-oriented objects, computing a cut can take time quadratic in the
number of objects.

We now briefly mention some other known techniques that we have not im-
plemented, since we expect them to have performance similar to the algorithms
we have implemented. Naylor has proposed a technique that controls the con-
struction of the BSP by using estimates of the costs incurred when the BSP is
used to answer standard queries [14]. While his idea is different from standard
techniques used to construct BSPs, the measure functions he uses to choose
cutting planes are very similar to the ones used in the algorithms we have imple-
mented. Cassen et al. [5] use genetic algorithms to construct BSPs. We have not
compared our algorithms to theirs since they report that their algorithm takes
hours to run even for moderately-sized data sets. Note that de Berg’s algorithm
for constructing BSPs for fat polyhedra [8] cannot be used to solve our problem
since rectangles in R® are not fat in his model.

4 Experimental Results

We have implemented the above algorithms and run them on the following data
sets containing orthogonal rectangles:®

1. the Fifth floor of Soda Hall containing 1677 rectangles,

2. the Entire Soda Hall model with 8690 rectangles,

3. the Orange United Methodist Church Fellowship Hall with 29988 rectangles,
4. the Sitterson Hall Lobby with 12207 rectangles, and

5. Sitterson Hall containing 6002 rectangles.

We present three sets of results. For each set, we first discuss the experimental

set-up and then present the performance of our algorithms. These experiments
were run on a Sun SPARCstation 5 running SunOS 5.5.1 with 64MB of RAM.

4.1 Size of the BSP

Recall that we have defined the size of a BSP to be the sum of the number of
interior nodes in the BSP and the total number of rectangles stored at all the
nodes of the BSP. The total number of rectangles stored in the BSP is the sum
of the number of input rectangles and the number of fragments created by the

5 We discarded all non-orthogonal polygons from these data sets. The number of such
polygons was very small.

cutting planes in the BSP. The table below displays the size of the BSP and the
total number of times the rectangles are fragmented by the cuts made by the
BSP.

Number of Fragments Size of the BSP
Fifth|Entire|Church|Lobby|Sitt. Datasets Fifth|Entire|Church| Lobby| Sitt.
1677| 8690 29988|12207| 6002| #rectangles | 1677| 8690 29988| 12207 6002

89| 660 881 681 332 New 2715|14470| 45528| 22226 8983
113 741 838| 475| 312 Rounds 2744| 14707| 45427| 22225 9060
301 1458 873| 514 153 Teller 2931| 14950| 3351813911 7340
449| 5545| 12517| 9642| 6428| PatersonYao | 3310| 22468| 56868| 30712|20600
675 7001| 5494| 5350| 8307 Airey 3585| 24683| 41270| 2175319841

1868| 10580| 13797| 3441| 1324|ThibaultNaylorl| 6092| 32929 65313| 2505110836
262| 2859 6905 1760| 1601| ThibaultNaylor2| 3235| 20089 58175 23159(12192

Examining this table, we note that, in general, the number of fragments
and size of the BSP scale well with the size of the data set. For the Soda Hall
data sets (Fifth and Entire), algorithm New creates the smallest number of
fragments and constructs the smallest BSP. For the other three sets, algorithm
Teller performs best in terms of BSP size. However, there are some peculiarities
in the table. For example, for the Church data set, algorithm Rounds creates a
smaller number of fragments than algorithm Teller but constructs a larger BSP.
We believe that this difference is explained by the fact that the 29998 rectangles
in the Church model lie in a total of only 859 distinct planes. Since algorithm
Teller makes cuts based on how much of a plane’s area is covered by rectangles,
it is reasonable to expect that the algorithm will “place” a lot of rectangles in
cuts made close to the root of the BSP, thus leading to a BSP with a small
number of nodes.

We further examined the issue of how well the performance of the algorithms
scaled with the size of the data by running the algorithms on data sets that
we “created” by making translated and rotated copies of the original data sets.
In Figure 1, we display the results of this experiment for the Entire Soda Hall
and the Sitterson models. We have omitted graphs for the other data sets due
to lack of space. In these graphs, we do not display the curve for algorithm
ThibaultNaylorl since its performance is always worse than the performance of
algorithm ThibaultNaylor2. The graphs show that the size of the BSP constructed
by most algorithms increases linearly with the size of the data. The performance
of algorithms New, Rounds, and Teller is nearly identical for the Entire data set.
However, algorithm Teller constructs a smaller BSP than algorithm New for the
Sitterson data set. For this data set, note the performance of algorithm New
is nearly identical to the performance of algorithm Rounds.

The time taken to construct the BSPs also scaled well with the size of the
data sets. Algorithm New took 11 seconds to construct a BSP for the Fifth
floor of Soda Hall and about 4.5 minutes for the Church data set. Typically,
algorithm PatersonYao took about 15% less time than algorithm New while the
other algorithms (Airey, ThibaultNaylor, and Teller) took 2—4 times as much time

300000 T T T T T T T
/A
250000 |- 7
A/
- x
200000 [New o - .
. Roune(ﬁ *- _ - ox T x
BSP size Teller 8- A S X
150000 - Paterson?ﬁgo x- _ _ B i
ThibaultNaylors
100000 - Lo e
50000 [b e .
1 L L 1 1 1 1

0
0 10000 20000 30000 40000 50000 60000 70000 80000
Number of input rectangles

(a) Entire: Algorithms New, Rounds, and Teller have
nearly identical graphs.

200000 . . : : :
180000 - R
160000
140000 |- roNep - L]

BSl%2sq(z)20 i Paterson%paec'; ‘{' s x
100000 I ThipaultNaylors = {‘/'/ o .

T
P
1

0
0 10000 20000 30000 40000 50000 60000
Number of input rectangles

(b) Sitterson: Algorithms New and Rounds have
nearly identical graphs.

Fig. 1. Graphs displaying BSP size vs. the number of input rectangles.

as algorithm New to construct a BSP. While the difference in time is negligible
for small data sets, it can be considerable for large data sets. For example, for
the data set obtained by placing 9 copies of the Sitterson model in a 3 x 3
array, algorithm New took 13 minutes to construct a BSP while algorithm Teller
took 51 minutes.

4.2 Point Location

In the point location query, given a point, we want to locate the leaf of the BSP
that contains the point. We answer a query by traversing the path from the root
of the BSP that leads to the leaf that contains the query point. The cost of a
query is the number of nodes in this path. In our experiments, we create the

queries by generating 1000 random points from a uniform distribution over the
box B containing all the rectangles in S.

Due to lack of space, we present a summary of the results for point location,
concentrating on algorithms New, Rounds, and Teller These results were highly
correlated to the height of the trees. Algorithms New and Rounds constructed
BSPs of average height between 11 and 16 with the standard deviation of the
height ranging from 2 to 2.5. The average cost of locating a point ranged between
10 and 15. The average height of the BSP constructed by algorithm Teller ranged
between 15 and 20 with standard deviation ranging from 4 to 5, while the average
cost of point location ranged between 7 and 15.

4.3 Ray Shooting

Given a ray p, we want to determine the first rectangle in S that is intersected
by p or report that there is no such rectangle. To answer such a query, we trace
p through the leaves of the BSP that p intersects. At each such leaf v, we check
whether the first point where p intersects the boundary of v is contained in a
rectangle in S (such a rectangle must be stored with the bisecting plane of an
ancestor of v or lie on the boundary of B). If so, we output the rectangle and stop
the query. Otherwise, we continue tracing p. There are two components to the
cost of answering the query with p: the number of nodes visited and the number
of rectangles checked. We report the two factors separately below. The actual
cost of a ray shooting query is a linear combination of these two components; its
exact form depends on the implementation. In our experiment, we constructed
1000 rays for each data set by generating 1000 random (origin, direction) pairs,
where the origin was picked from a uniform distribution over B and the direction
was chosen from a uniform distribution over the sphere of directions.

#nodes visited F#trects. checked
Fifth(Entire|Church|Lobby|Sitt. Fifth(Entire|Church|Lobby|Sitt.
43.7| 10.8] 311.5| 86.8| 56.0 New 5.6 3.7 483 2.6] 19.8
44.7) 12.5| 326.4] 89.6] 55.9 Rounds 5.7 3.0 49.6] 2.0] 19.2
171 13.7] 96.6| 13.0| 37.3 Teller 12.0{ 11.0| 4828.2| 20.4| 44.1
40.0(11.8| 531.4| 49.8| 83.1] PatersonYao 4.0 5.7| 5461.2| 84.2{114.0
24.0 13.3] 170.2| 10.5{129.9 Airey 5.5 4.1/ 4757.9| 11.9] 27.5
44.1] 31.3| 256.8]/102.6] 69.1|ThibaultNaylorl| 4.6] 14.6] 20.7] 2.1| 385
44.5| 14.2] 298.5| 78.4| 59.8|ThibaultNaylor2| 5.1 7.5 28.5] 2.6/ 7.3

There is an interesting tradeoff between these two costs, which is most sharply
noticeable for the Church data set. Notice that the average number of nodes
visited to answer ray shooting queries in the BSP constructed by algorithm
Teller is about a third the number visited in the BSP built by algorithm New
but the number of rectangles checked for algorithm Teller is about 10 times
higher! This apparent discrepancy actually ties in with our earlier conclusion
that algorithm Teller is able to construct a BSP with a small number of nodes
for the Church model because the rectangles in this model lie in a small number of
distinct planes. As a result, we do not visit too many nodes during a ray shooting

query. However, when we check whether the intersection of a ray with a node is
contained in a rectangle in S, we process a large number of rectangles since each
cutting plane contains a large number of rectangles. This cost can be brought
down by using an efficient data structure for point location among rectangles.
However, this change will increase the size of the BSP itself. Determining the
right combination needs further investigation.

5 Conclusions

Our comparison indicates that algorithms New, Rounds and Teller construct the
smallest BSPs for orthogonal rectangles in R3. Algorithms New and Rounds run
2-4 times faster and construct BSPs with smaller and more uniform height than
algorithm Teller.

Algorithm Teller is best for applications like painter’s algorithm [9] in which
the entire BSP is traversed. On the other hand, for queries such as ray shooting,
it might be advisable to use algorithm New or Rounds since they build BSPs
whose sizes are not much more than algorithm Teller’s BSPs but have better
height and query costs. Note that we can prove that algorithms New and Rounds
construct BSPs whose height is logarithmic in the number of rectangles in S [1].
Such guarantees are crucial to extending these BSP-construction algorithms to
scenarios when the input rectangles move or are inserted into and deleted from
the BSP.

Clearly, there is a tradeoff between the amount of time spent on constructing
the BSP and the size of the resulting BSP. Our experience suggests that while
algorithm Teller constructs the smallest BSPs, algorithms New and Rounds are
likely to be fast in terms of execution, will build compact BSPs that answer
queries efficiently, and can be efficiently extended to dynamic environments.

Acknowledgments We would like to thank Seth Teller for providing us with the
Soda Hall data set created at the Department of Computer Science, University
of California at Berkeley. We would also like to thank the Walkthrough Project,
Department of Computer Science, University of North Carolina at Chapel Hill for
providing us with the data sets for Sitterson Hall, the Orange United Methodist
Church Fellowship Hall, and the Sitterson Hall Lobby.

References

1. P. K. Agarwal, E. F. Grove, T. M. Murali, and J. S. Vitter, Binary space partitions
for fat rectangles, Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci., October
1996, pp. 482-491.

2. P. K. Agarwal and S. Suri, Surface approximation and geometric partitions, Proc.
5th ACM-SIAM Sympos. Discrete Algorithms, 1994, pp. 24-33.

3. J. M. Airey, Increasing Update Rates in the Building Walkthrough System with
Automatic Model-space Subdivision and Potentially Visible Set Calculations, Ph.D.
Thesis, Dept. of Computer Science, University of North Carolina, Chapel Hill, 1990.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. T. Campbell, Modeling Global Diffuse Illumination for Image Synthesis, Ph.D.
Thesis, Dept. of Computer Sciences, University of Texas, Austin, 1991.

T. Cassen, K. R. Subramanian, and Z. Michalewicz, Near-optimal construction of
partitioning trees by evolutionary techniques, Proc. Graphics Interface ’95, 1995,
pp. 263-271.

N. Chin and S. Feiner, Near real-time shadow generation using BSP trees, Proc.
SIGGRAPH 89, Comput. Graph., Vol. 23, ACM SIGGRAPH, 1989, pp- 99-106.
N. Chin and S. Feiner, Fast object-precision shadow generation for areal light
sources using BSP trees, Proc. 1992 Sympos. Interactive 3D Graphics, 1992, pp. 21—
30.

M. de Berg, Linear size binary space partitions for fat objects, Proc. 8rd Annu.
European Sympos. Algorithms, Lecture Notes Comput. Sci., Vol. 979, Springer-
Verlag, 1995, pp. 252-263.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics:
Principles and Practice, Addison-Wesley, Reading, MA, 1990.

H. Fuchs, Z. M. Kedem, and B. Naylor, On visible surface generation by a priori
tree structures, Proc. SIGGRAPH 80, Comput. Graph., Vol. 14, ACM SIGGRAPH,
1980, pp- 124-133.

C. Mata and J. S. B. Mitchell, Approximation algorithms for geometric tour and
network design problems, Proc. 11th Annu. ACM Sympos. Comput. Geom., 1995,
pp- 360-369.

T. M. Murali and T. A. Funkhouser, Consistent solid and boundary representations
from arbitrary polygonal data, Proc. 1997 Sympos. Interactive 3D Graphics, 1997,
pp. 155-162.

M. J. Muus, Understanding the preparation and analysis of solid models, in: Tech-
niques for Computer Graphics (D. F. Rogers and R. A. Earnshaw, eds.), Springer-
Verlag, 1987.

B. Naylor, Constructing good partitioning trees, Proc. Graphics Interface 93, 1993,
pp. 181-191.

B. Naylor and W. Thibault, Application of BSP trees to ray-tracing and CSG
evaluation, Technical Report GIT-ICS 86/03, Georgia Institute of Tech., School of
Information and Computer Science, February 1986.

B. F. Naylor, J. Amanatides, and W. C. Thibault, Merging BSP trees yields poly-
hedral set operations, Proc. SIGGRAPH 90, Comput. Graph., Vol. 24, ACM SIG-
GRAPH, 1990, pp. 115-124.

M. S. Paterson and F. F. Yao, Efficient binary space partitions for hidden-surface
removal and solid modeling, Discrete Comput. Geom., 5 (1990), 485-503.

M. S. Paterson and F. F. Yao, Optimal binary space partitions for orthogonal
objects, J. Algorithms, 13 (1992), 99-113.

R. A. Schumacker, R. Brand, M. Gilliland, and W. Sharp, Study for applying
computer-generated images to visual simulation, Tech. Rep. AFHRL-TR-69-14,
U.S. Air Force Human Resources Laboratory, 1969.

P. J. Tanenbaum. Applications of computational geometry in army research and
development. Invited talk, Second CGC Workshop on Computational Geometry,
1997.

S. J. Teller, Visibility Computations in Densely Occluded Polyhedral Environments,
Ph.D. Thesis, Dept. of Computer Science, University of California, Berkeley, 1992.
W. C. Thibault and B. F. Naylor, Set operations on polyhedra using binary space
partitioning trees, Proc. SIGGRAPH 87, Comput. Graph., Vol. 21, ACM SIG-
GRAPH, 1987, pp. 153-162.

