
Analysis of Arithmetic Coding

for Data Compression

Paul G. Howard and Je�rey Scott Vitter

Brown University
Department of Computer Science

Technical Report No. CS{92{17
Revised version, April 1992

(Formerly Technical Report No. CS{91{03)

Appears in Information Processing and Management,
Volume 28, Number 6, November 1992, pages 749{763.

A shortened version appears in the proceedings of the

IEEE Computer Society/NASA/CESDIS Data Compression Conference,

Snowbird, Utah, April 8{11, 1991, pages 3{12.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213393131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Analysis of Arithmetic Coding

for Data Compression
1

Paul G. Howard2 Je�rey Scott Vitter3

Department of Computer Science

Brown University

Providence, R.I. 02912{1910

Abstract

Arithmetic coding, in conjunction with a suitable probabilistic model, can pro-

vide nearly optimal data compression. In this article we analyze the e�ect that

the model and the particular implementation of arithmetic coding have on the

code length obtained. Periodic scaling is often used in arithmetic coding im-

plementations to reduce time and storage requirements; it also introduces a

recency e�ect which can further a�ect compression. Our main contribution is

introducing the concept of weighted entropy and using it to characterize in an

elegant way the e�ect that periodic scaling has on the code length. We explain

why and by how much scaling increases the code length for �les with a ho-

mogeneous distribution of symbols, and we characterize the reduction in code

length due to scaling for �les exhibiting locality of reference. We also give a

rigorous proof that the coding e�ects of rounding scaled weights, using integer

arithmetic, and encoding end-of-�le are negligible.

Index terms : Data compression, arithmetic coding, analysis of algorithms,

adaptive modeling.

1A similar version of this paper appears in Information Processing and Management, 28:6, Novem-

ber 1992, 749{763. A shortened version of this paper appears in the proceedings of the IEEE Com-

puter Society/NASA/CESDIS Data Compression Conference, Snowbird, Utah, April 8{11, 1991,

3{12.
2Support was provided in part by NASA Graduate Student Researchers Program grant NGT{

50420 and by an NSF Presidential Young Investigators Award with matching funds from IBM. Ad-

ditional support was provided by a Universities Space Research Association/CESDIS appointment.
3Support was provided in part by a National Science Foundation Presidential Young Investigator

Award grant with matching funds from IBM, by NSF grant CCR{9007851, by Army Research

O�ce grant DAAL03{91{G{0035, and by the O�ce of Naval Research and the Defense Advanced

Research Projects Agency under contract N00014{83{J{4052,ARPA order 8225. Additional support

was provided by a Universities Space Research Association/CESDIS associate membership.

1

1 Introduction

We analyze the amount of compression possible when arithmetic coding is used for

text compression in conjunction with various input models. Arithmetic coding is a

technique for statistical lossless encoding. It can be thought of as a generalization of

Hu�man coding [14] in which probabilities are not constrained to be integral powers

of 2, and code lengths need not be integers.

The basic algorithm for encoding using arithmetic coding works as follows:

1. We begin with a \current interval" initialized to [0::1].

2. For each symbol of the �le, we do two steps:

(a) We subdivide the current interval into subintervals, one for each possible
alphabet symbol. The size of a symbol's subinterval is proportional to the
estimated probability that the symbol will be the next symbol in the �le,
according to the input model.

(b) We select the subinterval corresponding to the symbol that actually occurs
next in the �le, and make it the new current interval.

3. We transmit enough bits to distinguish the �nal current interval from all other
possible �nal intervals.

The length of the �nal subinterval is clearly equal to the product of the probabilities
of the individual symbols, which is the probability p of the particular sequence of

symbols in the �le. The �nal step uses almost exactly � lg p bits to distinguish the
�le from all other possible �les. For detailed descriptions of arithmetic coding, see
[17] and especially [34].

We use the following notation throughout this article:

t = length of the �le, in bytes;

n = number of symbols in the input alphabet;

k = number of di�erent alphabet symbols that occur in the �le;

ci = number of occurrences of the ith alphabet symbol in the �le;

lg x = log2x;

AB = A (A+ 1) � � � (A+B � 1) (the rising factorial function):

Results for a \typical �le" refer to a �le with t = 100;000, n = 256, and k = 100.
Code lengths are expressed in bits. We assume 8-bit bytes.

1.1 Modeling e�ects

The coder in an arithmetic coding system must work in conjunction with a model

that produces probability information, describing a �le as a sequence of decisions; at

2 1 INTRODUCTION

each decision point it estimates the probability of each possible choice. The coder

then uses the set of probabilities to encode the actual decision.

To ensure decodability, the model may use only information known by both the

encoder and the decoder. Otherwise there are no restrictions on the model; in partic-

ular, it can change as the �le is being encoded. In this subsection we describe several

typical models for context-independent text compression.

The length of the encoded �le depends on the model and how it is used. Most

models for text compression involve estimating the probability p of a symbol by

p =
weight of symbol

total weight of all symbols
;

which we can then encode in� lg p bits using exact arithmetic coding. The probability
estimation can be done adaptively (dynamically estimating the probability of each
symbol based on all symbols that precede it), semi-adaptively (using a preliminary
pass of the input �le to gather statistics), or non-adaptively (using �xed probabilities

for all �les). Non-adaptive models are not very interesting, since their e�ectiveness
depends only on how well their probabilities happen to match the statistics of the �le
being encoded; Bell, Cleary, and Witten show that the match can be arbitrarily bad
[2].

Static and decrementing semi-adaptive codes. Semi-adaptive codes are con-
ceptually simple, and useful when real-time operation is not required; their main
drawback is that they require knowledge of the �le statistics prior to encoding. The

statistics collected during the �rst pass are normally used in a static code; that is,
the probabilities used to encode the �le remain the same during the entire encoding.
It is possible to obtain better compression by using a decrementing code, dynamically
adjusting the probabilities to re
ect the statistics of just that part of the �le not yet
coded.

Assuming that encoding uses exact arithmetic, and that there are no computa-

tional artifacts, we can use the �le statistics to form a static probabilistic model.
Not including the cost of transmitting the model, the code length LSS for a static
semi-adaptive code is

LSS = � lg
nY
i=1

(ci=t)
ci

= t lg t�
nX
i=1

ci lg ci;

the information content of the �le. Dividing by the �le length gives the self-entropy of
the �le, and forms the basis for claims that arithmetic coding encodes asymptotically

close to the entropy. What these claims really mean is that arithmetic coding can

encode close to the entropy of a probabilistic model whose symbol probabilities are

1.1 Modeling e�ects 3

the same as those of the �le, because computational e�ects (discussed in Section 3)

are insigni�cant.

If we know a �le's exact statistics ahead of time, we can get improved compres-

sion by using a decrementing code. We modify the symbol weights dynamically (by

decrementing each symbol's weight each time it is encoded) to re
ect symbol frequen-

cies for just that part of the �le not yet encoded; hence for each symbol we always

use the best available estimates of the next-symbol probabilities. In a sense, it is a

misnomer to call this a \semi-adaptive" model since the model adapts throughout

the second pass, but we apply the term here since the symbol probability estimates

are based primarily on the �rst pass. The decrementing count idea appears in the

analysis of enumerative codes by Cleary and Witten [7]. The resulting code length

for a semi-adaptive decrementing code is

LSD = � lg

kY
i=1

ci!

!�
t!

!
: (1)

It is straightforward to show that for all input �les, the code length of a semi-

adaptive decrementing code is at most that of a semi-adaptive static code, equality
holding only when the �le consists of repeated occurrences of a single letter. This
does not contradict Shannon's theorem [30]; he discusses only the best static code.

Static semi-adaptive codes have been widely used in conjunction with Hu�man
coding, where they are appropriate since changing weights often requires changing
the structure of the coding tree.

Encoding the model. If we assume that all symbol distributions are equally likely
for a given �le length t, the cost of transmitting the exact model statistics is

LM = lg(number of possible distributions)

= lg

t+ n� 1

n� 1

!
(2)

� n lg(et=n):

A similar result appears in [2] and [7]. For a typical �le LM is only about 2560

bits, or 320 bytes. The assumption of equally-likely distributions is not very good for

text �les; in practice we can reduce the cost of encoding the model by 50 percent or
more by encoding each of the counts using a suitable encoding of the integers, such
as Fibonacci coding [12].

Strictly speaking we must also encode the �le length t before encoding the model;

the cost is insigni�cant, between lg t and 2 lg t bits using an appropriate encoding of
integers [11,31,32].

Adaptive codes. Adaptive codes use a continually changing model, in which we

use the frequency of each symbol up to a given point in the �le as an estimate of its

probability at that point.

4 1 INTRODUCTION

We can encode a symbol using arithmetic coding only if its probability is nonzero,

but in an adaptive code we have no way of estimating the probability of a symbol

before it has occurred for the �rst time. This is the zero-frequency problem, discussed

at length in [1,2,33]. For large �les with small alphabets and simple models, all

solutions to this problem give roughly the same compression. In this section we

adopt the solution used in [34], simply assigning an initial weight of 1 to all alphabet

symbols. The code length using this adaptive code is

LA = � lg

kY
i=1

ci!

!�
nt
!
: (3)

By combining Equations (1), (2), and (3) and noting that
�
t+n�1

n�1

�
= nt=t!, we

can show that for all input �les, the adaptive code with initial 1-weights gives the
same code length as the semi-adaptive decrementing code in which the input model

is encoded based on the assumption that all symbol distributions are equally likely.
In other words, LA = LSD+LM . This result is found in Rissanen [23,24]. Cleary and
Witten [7] and Bell, Cleary, and Witten [2] present a similar result in a more general
setting, showing approximate equality between enumerative codes (which are similar
to arithmetic codes) and adaptive codes. Intuitively, the reason for the equality is
that in the adaptive code, the cost of \learning" the model is not avoided, but merely

spread over the entire �le [25].

Organization of this article. Section 2 contains our main result, which precisely
and provably characterizes the code length of a �le dynamically coded with periodic
count-scaling. We express the code length in terms of \weighted entropies" of the
model, which are the entropies implied by the model at the scaling times. Our result
shows both the advantage to be gained by scaling because of a locality-of-reference

e�ect and the excess code length incurred by the overhead of the scaling process.

For example, scaling has the most negative e�ect when the alphabet symbols are
distributed homogeneously throughout the �le, and our result shows explicitly the
small amount that scaling can cause the code length to increase. However, when the

distribution of the alphabet symbols varies, as is often the case in �les displaying

locality of reference, our result characterizes precisely the bene�ts of scaling on code

length. In Section 2.2 we extend this analysis to higher-order models based on the

partial string matching algorithm of Cleary and Witten.
Through the years, practical adjustments have been made to arithmetic coding [21,

26,28,34] to allow the use of integer rather than rational or
oating point arithmetic
and to transmit output bits almost in real time instead of all at the end. In Section 3

we prove that the loss of coding e�ciency caused by practical coding requirements is

negligible, thus demonstrating rigorously the empirical claims made in [2,34].

5

2 Scaling

Scaling is the process in which we periodically reduce the weights of all symbols. It

allows us to use lower precision arithmetic at the expense of making the model more

approximate, which can hurt compression when the distribution of symbols in the

�le is fairly homogeneous. Scaling also introduces a locality of reference (or recency)

e�ect, which often improves compression when the distribution of symbols is variable.

In this section we give a precise characterization of the e�ect of scaling on code length

produced by an adaptive model. We express the code length in terms of the weighted

entropies of the model. The weighted entropy is the Shannon entropy, computed using

probabilities weighted according to the scaling process; the term \weighted entropy"

is a notational convenience. Our characterization explains why and by how much
scaling can hurt or help compression.

In most text �les we �nd that most of the occurrences of at least some words are
clustered in one part of the �le. We can take advantage of this locality by assigning
more weight to recent occurrences of a symbol in a dynamic model. In practice there

are several ways to do this:

� Periodically restarting the model. This often discards too much information
to be e�ective, although Cormack and Horspool �nd that it gives good results
when growing large dynamic Markov models [8].

� Using a sliding window on the text [15]. This requires excessive computational

resources.

� Recency rank coding [4,10,29]. This is computationally simple but corresponds
to a rather coarse model of recency.

� Exponential aging (giving exponentially increasing weights to successive sym-
bols) [9,20]. This is moderately di�cult to implement because of the changing

weight increments.

� Periodic scaling [34]. This is simple to implement, fast and e�ective in operation,

and amenable to analysis. It also has the computationally desirable property
of keeping the symbol weights small. In e�ect, scaling is a practical version of

exponential aging. This is the method that we analyze.

In our discussion of scaling, we assume that a �le is divided into blocks of length B.

Our model assumes that at the end of each block, the weights for all symbols are

multiplied by a scaling factor f , usually 1=2. Within a block we update the symbol

weights by adding 1 for each occurrence.

Example 1 : We illustrate an adaptive code with scaling, encoding the 8-symbol �le
\abacbcba". In this example, we start with counts ca = 1, cb = 1, and cc = 1, and set

the scaling threshold at 10, so we scale only once, just before the last symbol in the

6 2 SCALING

�le. To retain integer weights without allowing any weight to fall to 0, we round all

fractional weights obtained during scaling to the next higher integer.

Symbol Current Interval pa pb pc

Start 0.000000000 1.000000000 1=3 1=3 1=3

a 0.000000000 0.333333333 2=4 1=4 1=4
b 0.166666667 0.250000000 2=5 2=5 1=5
a 0.166666667 0.200000000 3=6 2=6 1=6
c 0.194444444 0.200000000 3=7 2=7 2=7
b 0.196825397 0.198412698 3=8 3=8 2=8
c 0.198015873 0.198412698 3=9 3=9 3=9
b 0.198148148 0.198280423 3=10 4=10 3=10

Scaling 2=6 2=6 2=6

a 0.198148148 0.198192240 3=7 2=7 2=7

The �nal interval is [0.00110 01010 11100 11101, 0.00110 01010 11110 01011] in
binary. The theoretical code length is � lg 0:000044092 = 14:469 bits. The actual
code length is 15 bits, since the �nal subinterval can be determined from the output
00110 01010 11101. 2

In this section we assume an adaptive model and exact rational arithmetic. We
introduce the following additional notation for the analysis of scaling:

ai = the ith alphabet symbol that occurs in the block;

si = weight of symbol ai at the start of the block;

ci = number of occurrences of symbol ai in the block;

A =
nX
i=1

si (the total weight at the start of the block);

B =
nX
i=1

ci (the size of the block);

C = A+B (the total weight at the end of the block);

f = A=C (the scaling factor);

qi = si=A (probability of symbol ai at the start of the block);

ri = (si + ci)=C (probability of symbol ai at the end of the block);

b = number of blocks resulting from scaling;

m = the minimum weight allowed for any symbol, usually 1:

When f = 1=2, we scale by halving all weights every B symbols, so A = B and

b � t=B. In a typical implementation, A = B = 8192.

2.1 Coding Theorem for Scaling 7

2.1 Coding Theorem for Scaling

In our scaling model each symbol's counts are multiplied by f whenever scaling takes

place. Thus scaling has the e�ect of giving more weight to more recent symbols. If

we denote the number of occurrences of symbol ai in block m by ci;m, the weight wi;m

of symbol ai after m blocks is given by

wi;m = ci;m + fwi;m�1

= ci;m + fci;m�1 + f2ci;m�2 + : : : : (4)

The weighted probability pi;m of symbol ai at the end of block m is then

pi;m =
wi;mPn
i=1wi;m

: (5)

We now de�ne a weighted entropy in terms of the weighted probabilities:

De�nition 1 The weighted entropy of a �le at the end of the mth block, denoted

by Hm, is the entropy implied by the probability distribution at that time, computed
according to the scaling model. That is,

Hm =
nX
i=1

�pi;m lg pi;m;

where the pi;m are given by Equation (5).

We �nd that lm, the average code length per symbol for block m, is related to the

starting weighted entropyHm�1 and the ending weighted entropyHm in a particularly
simple way:

lm �
1

1 � f
Hm �

f

1 � f
Hm�1

= Hm +
f

1� f
(Hm �Hm�1):

Letting f = 1=2, we obtain
lm � 2Hm �Hm�1:

When we multiply by the block length and sum over all blocks, we obtain the following
precise and elegant characterization of the code length in terms of weighted entropies:

Theorem 1 Let L be the code length of a �le compressed with arithmetic coding using

an adaptive model with scaling. Then

B

bX

m=1

Hm

!
+Hb �H0

!
� t

k

B

< L < B

bX

m=1

Hm

!
+Hb �H0

!
+ t

k

B
lg

�
B

kmin

�
+O

k2

B2

!!
;

8 2 SCALING

where H0 = lg n is the entropy of the initial model, Hm is the (weighted) entropy

implied by the scaling model's probability distribution at the end of block m, and kmin

is the smallest number of di�erent symbols that occur in any block.

This theorem enables us to compute the code length of a �le coded with periodic

scaling. To do the calculation we need to know only the symbol counts within each

scaling block; we can then use Equations (4) and (5) and De�nition 1. The occurrence

of entropy-like terms in the code length is to be expected; the main contribution of

Theorem 1 is to show the precise and simple form that the entropy expressions take.

2.1.1 Proof of the upper bound

We prove the upper bound of Theorem 1 by showing �rst that the code length of a
block depends only on the beginning weights and block counts of the symbols, and
not on the order of symbols within the block. Then we show that there is an order
such that for each symbol certain equalities and inequalities hold, which we use to
compute a value and an upper bound for the code length of all occurrences of a single
symbol in one block. Finally we sum over all symbols to obtain the worst case code

length of a block, and over all blocks to obtain the code length of the �le. The proof
of the lower bound is similar.

The �rst lemma enables us to choose any convenient symbol order within a block.

Lemma 1 The code length of a block depends only on the beginning weights and block

counts of the symbols, and not on the order of symbols within the block.

Proof : The exact code length L of a block,

L = � lg

kY
i=1

si
ci

!�
AB

!
;

has no dependence on the order of symbols. For each symbol ai, the adaptive model

ensures that the numerators in the set of probabilities used for coding the symbol in

the block always form the sequence hsi; si + 1; : : : ; si + ci � 1i, and that for the block
as a whole the denominators always form the sequence hA;A+ 1; : : : ; A+B � 1i. 2

In the next lemma we prove the almost obvious fact that there is some order
of symbols such that the occurrences of each symbol are roughly evenly distributed
through the block. This order will enable us to use a smoothly varying function to

estimate the probabilities used for coding the occurrences.

De�nition 2 A block of length B containing c1; c2; : : : ; ck occurrences of symbols

a1; a2; : : : ; ak, respectively, has the evenly-distributed (or ED) property if for each

symbol ai and for all m, 1 � m � ci, the symbol occurs for the mth time not after

position mB=ci.

2.1 Coding Theorem for Scaling 9

Lemma 2 Every distribution of symbol counts has an order with the ED property.

Proof : Let ri(j) be the number of occurrences of symbol ai required up through the

jth position in any ED order. Such an order exists if and only if
Pk

i=1 ri(j) � j for

1 � j � B. We �nd that ri(j) = d
ci(j+1)

B
e � 1 < ci(j + 1)=B. Since

Pk
i=1 ci = B,Pk

i=1 ri(j) < j + 1, or
Pk

i=1 ri(j) � j since
Pk

i=1 ri(j) is an integer. This holds for

any j, so an ED order exists. 2

Next we de�ne a number of related sums and integrals approximating l, the code

length of all occurrences of one symbol in one block. For a given symbol with prob-

ability p = c=B within the block, we can divide the block into c subblocks each of

length B=c = 1=p. Then pB(k) and pE(k) give the probability that the dynamic

model would give to the kth occurrence of the symbol if it occurred precisely at the
beginning and end of the kth subblock respectively.

pB(k) =
qA+ k

A+ k=p
; pE(k) =

qA+ k

A+ (k + 1)=p
:

The expressions SL and SU are the lower and upper bounds of the symbol's code

length, based on its occurrences being as early or as late as possible in the subblocks.

SL =
c�1X
j=0

� lg pB(j); SU =
c�1X
j=0

� lg pE(j):

The integrals IL and IU approximate SL and SU .

IL =
Z c

0
� lg pB(x) dx; IU =

Z c

0
� lg pE(x) dx:

We de�ne �I to be IU � IL. After a considerable amount of algebra, we get

�I =
1

1� f
((c+ 1� f) lg(c+ 1 � f) � c lg c

�(fc+ 1� f) lg(fc + 1� f) + fc lg(fc)) :

The expressions �U and �L are used to bound the error in approximating SU by IU
and SL by IL respectively.

�U =

(
lg(1 + c

qA
) � lg(1 + c

pA+1
) if p > q � 1=A;

0 if p � q � 1=A;

�L =

(
lg(1 + c

pA
)� lg(1 + c

qA
) if p < q;

0 if p � q:

We need a simple lemma from integral calculus.

10 2 SCALING

Lemma 3 If g(x) is monotone increasing, then

c�1X
j=0

g(j) <
Z c

0
g(x) dx:

If g(x) is monotone decreasing, then

c�1X
j=0

g(j) <
Z c

0
g(x) dx� g(c) + g(0):

Proof : The increasing case is obvious. In the decreasing case, the integral for any

unit interval is greater than the value at the right end of the interval:
R j+1
j g(x) dx >

g(j +1). We obtain the lemma by adding g(j)� g(j +1) to both sides and summing
over j. 2

Lemma 4 The code length l for all occurrences of a single symbol in a block in ED

order is less than IL +�I +�U .

Proof : We show that l < SU � IU + �U = IL + �I + �U . Since SU represents the
code length for the symbol if all occurrences of the symbol come as late as possible in

an ED order, we have l < SU . If p < q�1=A, then � lg pE(x) is monotone increasing,
so by Lemma 3 we have SU < IU . If p > q � 1=A, then � lg pE(x) is monotone
decreasing, so by Lemma 3 we have SU < IU + lg pE(c) � lg pE(0) = IU + �U . If
p = q � 1=A, then SU = IU . In all three cases, SU � IU + �U . From the de�nition
of �I, IU = IL +�I . 2

We now relate IL to the entropy of the beginning and ending probability dis-
tributions. We write IL(i) to di�erentiate the values of IL evaluated for di�erent
symbols ai. We de�ne H(R) and H(Q) to be the entropies associated with prob-

ability distributions R = hr1; r2; : : : ; rni and Q = hq1; q2; : : : ; qni respectively; that
is,

H(R) = �

nX
i=1

ri lg ri;

H(Q) = �

nX
i=1

qi lg qi:

Lemma 5 Let LH = B
�

1

1�f
H(R) � f

1�f
H(Q)

�
. Then LH =

Pk
i=1 IL(i).

Proof : By appropriate substitutions, we have

kX
i=1

IL(i) =
kX
i=1

B

1

1� f
(�ri lg ri)�

f

1 � f
(�qi lg qi)

!

+
kX
i=1

B

f

(1� f)2
(qi � ri)

!
:

2.1 Coding Theorem for Scaling 11

The last sum is 0 because Q and R are probability distributions, so
Pk

i=1 qi =Pk
i=1 ri = 1. The lemma follows from the de�nition of H(�). 2

Finally we bound the per-block error.

Lemma 6 Let Lj be the compressed length of block j. Then

Lj � B

1

1� f
H(R)�

f

1 � f
H(Q)

!
+ k lg

B

k
+O

k2

B

!
:

Proof : From Lemmas 4 and 5, we have Lj � LH+
Pk

i=1(�I+�U). A scaling factor f

of 1=2 implies that A = B. Asymptotics under this condition give

�I +�U =

(
1�O(1=c) if p � q � 1=A;
lg(c=s) +O(s=c) if p > q � 1=A:

The sum
Pk

i=1(�I+�U) is maximized when as many symbols as possible have large c

and small s; the sum's largest possible value cannot exceed its value when s = m and
c = B=k for all k symbols, in which case �I + �U = lg(B=km) + O(km=B). We
obtain the result by setting m = 1 and summing over the symbols. 2

The proof of the upper bound in Theorem 1 follows from Lemma 6 by summing
over all blocks, noting that b = t=B. (We are neglecting any special e�ects of a longer
�rst block or shorter last block.) There is much cancellation because H(R) of one

block is H(Q) of the next.

2.1.2 Proof of the lower bound

The proof of the lower bound of Theorem 1 is similar to that of the upper bound. In
this proof of the lower bound we append a prime to the label of each de�nition and
lemma to show the correspondence with the de�nition and lemmas used in the proof

of the upper bound.

De�nition 2
0 A block of length B containing c1; c2; : : : ; ck occurrences of symbols

a1; a2; : : : ; ak, respectively, has the reverse ED property if for each symbol ai and for

allm, 1 � m � ci, the symbol occurs for themth time not before position (m�1)B=ci.

Lemma 2
0 Every distribution of symbol counts has an order with the reverse ED

property.

Proof : By Lemma 2 there is always an order with the ED property. Such an order,
when reversed, has the reverse ED property. 2

12 2 SCALING

Lemma 3
0 If g(x) is monotone decreasing, then

c�1X
j=0

g(j) >
Z c

0
g(x) dx:

If g(x) is monotone increasing, then

c�1X
j=0

g(j) >
Z c

0
g(x) dx� g(c) + g(0):

Proof : Similar to that of Lemma 3. 2

Lemma 4
0 The code length l for all occurrences of a single symbol in a block in

reverse ED order is greater than IL ��L.

Proof : We show that l > SL � IL � �L. Since IL represents the code length for

the symbol if all occurrences of the symbol come as early as possible in a reverse
ED order, we have l > SL. If p > q, then � lg pB(x) is monotone decreasing, so by
Lemma 30 we have SL > IL. If p < q, then � lg pB(x) is monotone increasing, so by
Lemma 30 we have SL > IL + lg pB(c)� lg pB(0) = IL ��L. If p = q, then SL = IL.
In all three cases, we have SL � IL ��L. 2

Lemma 6
0 Let Lj be the compressed length of block j. Then

Lj � B

1

1� f
H(R) �

f

1� f
H(Q)

!
� k:

Proof : From Lemmas 40 and 5, Lj � LH �
Pk

i=1�L(i). Asymptotics when f = 1=2

give �L = 1�O(c=s), which has maximum value 1, so the sum is at most k. 2

The proof of the lower bound in Theorem 1 follows from Lemma 60 by summing
over all blocks, noting that b = t=B.

2.1.3 Non-scaling corollary

By letting B = t, f = n=(t+ n), and m = 1 in Lemmas 6 and 60, we obtain the code
length without scaling:

Corollary 1 When we do not scale at all, the code length LNS satis�es:

tH�nal + n(H�nal �H0)� k < LNS < tH�nal + n(H�nal �H0) + k lg(t=k):

We can get important insights by contrasting upper bounds in this corollary and
Theorem 1. Scaling will bring about a shorter encoding by tracking the block-by-

block entropies rather than matching a single entropy for the entire �le, but when we

forgo scaling the overhead is less, proportional to lg t instead of to t. Scaling will do
worst on a homogeneously distributed �le, but even then the overhead will increase

the code length by only about (k=B) lg(B=k) bits per input symbol, less than 0.1
bit per symbol for a typical �le. We conclude that the bene�ts of scaling usually

outweigh the minor ine�ciencies it sometimes introduces.

2.2 Application to Higher Order Models 13

2.2 Application to Higher Order Models

We now extend our results to higher order models. Cleary and Witten [6] present a

practical adaptive method called prediction by partial matching (or PPM) in which

they maintain models of various orders. At each point they use the highest-order

model in which the symbol has occurred in the current context, with a special escape

symbol to indicate the need to drop to a lower order. (Because most contexts occur

only a few times with only a few di�erent symbols, assigning an initial weight of 1

to each alphabet symbol as we did in Section 1.1 is an unsatisfactory solution to the

zero-frequency problem in higher-order models. Doing so would give too much weight

to symbols that never occur.) See [2] or [3] for a detailed description of the PPM

method. Witten, Cleary, Mo�at, and Bell have proposed at least �ve methods for

estimating the probability of the escape symbol [6,19,33], and Arps et al. [1] give two
more. All of the methods give approximately the same compression; PPMB [6] is the
most readily analyzed.

In PPMB, in each context the escape event is treated as a separate symbol with its
own weight and probability; the �rst occurrence of an ordinary symbol is not counted

and the �rst two occurrences are coded as escapes. Treating the escape event as a
normal symbol, we can apply the results of Section 2 if we make adjustments for the
�rst two occurrences of each symbol, since in PPMB the code length is independent
of the order of the symbols.

In the block in which a given symbol occurs for the �rst time, we can take the

occurrences to be evenly distributed in the sense of De�nition 2, with symbol weights
(numerators) running from 1 to c and occurrence positions (denominators) running
fromA+B=c to A+B. If this were coded in the normal way, the code length would be
bounded above by Lemmas 4 and 5. Since the mechanism of PPMB excludes the last
two numerators, c� 1 and c, and the �rst two denominators, A+B=c and A+2B=c,

the code length from the approximation must be adjusted by adding Ladjustment:

Ladjustment = Lactual� Lestimated

= lg
(c� 1) c

(A+B=c)(A+ 2B=c)

= 2 lg c� 2 lgA+ lg
�
1 �

1

c

�
� lg

1 +

1=f � 1

c

!

� lg

1 + 2

1=f � 1

c

!
:

Wemust also adjust the entropy: the actual value of the initial probability q is 0 in-

stead of 1=A, and the actual value of the �nal probability r is (c�1)=(A+B) instead of

(c+1)=(A+B). For convenience we denote the entropy termB
�

1

1�f
H(R) � f

1�f
H(Q)

�
by h. We de�ne and compute the adjustment:

hadjustment = hactual� hestimated

14 3 CODING EFFECTS

= c lg

�
1 +

2

c� 1

�
+ 2 lg c� lgA+ 2 lg f + lg

�
1�

1

c2

�
:

The code length is then given by

Lactual = hactual + (Ladjustment� hadjustment) + small terms

= hactual � c lg

�
1 +

2

c� 1

�
� lgA� 2 lg f � lg

�
1 +

1

c

�

� lg

1 +

1=f � 1

c

!
� lg

1 + 2

1=f � 1

c

!

+ small terms:

The net adjustment is always negative if f = 1=2. We can let f = 1=2 if we

neglect the e�ect of the time before the �rst scaling in each context.
Now we can extend Theorem 1 to the PPMB model with scaling, using X sub-

scripts in the natural way to restrict quantities to context X:

Theorem 2 When we use PPMB with scaling, the code length L is bounded by

L <
X

contexts X

0
@B

0
@ bXX
m=1

HX;m +HX;b �HX;0

1
A+O

kXtX lgB

B

!1A :

Proof : The proof follows from the discussion above. 2

This theorem does not readily estimate the code length of a �le in a direct way.

However, it does show that the code length of a �le coded using a high-order Markov
model with scaling can be expressed using the weighted entropy formulation intro-
duced in Section 2. In particular, the code length for each context is expressed directly
in terms of the weighted entropies for that context.

3 Coding E�ects

In this section we prove analytically that coding e�ects (as distinguished from mod-
eling e�ects) are insigni�cant, and hence that our assumption of exact coding is
appropriate. Empirical evidence that the coding e�ects are negligible appears in [2,

34].

3.1 Rounding counts to integers

In Section 2 we analyzed the modeling e�ect of periodic scaling; here we analyze the

coding e�ect. Witten, Neal, and Cleary scale the counts to avoid register over
ow,
and to prevent any count from falling to 0, they round fractional counts to the next

higher integer. This gives more weight to symbols whose count happens to be odd

when scaling occurs.

3.2 Using integer arithmetic 15

Theorem 3 Rounding counts up to the next higher integer increases the code length

for the �le by no more than n=2B bits per input symbol.

Proof : Each symbol whose weight is rounded up causes the denominators of all

probabilities in the next block to be too large, by 1/2. If r is the number of symbols

subject to roundup, r=2 of the denominators in computing the coding interval will be

approximately T instead of T=2, each adding one bit to the code length of the block,

so the block's code length will be r=2 bits longer. The e�ect for the entire �le (t=B

blocks) is rt=2B bits, or, since r � n, at most n=2B bits per input symbol. 2

This e�ect is typically 0.02 bit or less per input symbol.

3.2 Using integer arithmetic

Witten, Neal, and Cleary use integers from a large �xed range, typically [0; 8B],

instead of using exact rational arithmetic, and they transmit encoded bits as soon as
they know them instead of waiting until the entire string has been encoded, scaling
up the range to represent only that half of the original range whose identity has not
yet been transmitted. The result is nearly the same compression e�ciency as with
exact rational arithmetic.

As is apparent from the following description of the coding section of the Witten-
Neal-Cleary algorithm, scaling up the range is only approximate:

1. We select a subrange of the current interval [low; high] whose length within
[low; high] is proportional to p. The new integer values of low and low are
obtained by truncating the results of the exact calculation.

2. We repeat the following steps as many times as possible:

(a) If the new subrange is not entirely in the lower, middle, or upper half of

the full range of values, we return.

(b) If the new subrange is in the lower or upper half, we output 0 or 1 respec-

tively, plus any bits left over from previous symbols. If the subrange is

entirely in the middle half, we keep track of this fact for future output.

(c) We scale the subrange up:

i. We shift the subrange to ignore the part of the full range in which the

subrange is known not to lie.

ii. We double both low and high and add 1 to high.

In this algorithm, any roundo� error in selecting the �rst subrange will propagate

through the entire scaling up process. In the worst case, a symbol with a count of 1
could result in a subrange of length 1, even though the unrounded subrange size

might be just below 2. In e�ect, this would assign a symbol probability of only half

16 3 CODING EFFECTS

the correct value, resulting in a code length one bit too long. In practice, however, the

code length error in one symbol is seldom anywhere near that large, and because the

errors can be of either sign and have an approximately symmetrical distribution with

mean 0, the average error is usually very small. Witten, Neal, and Cleary empirically

estimate it at 10�4 bit per input symbol.

In order to get a rigorous bound on the compression loss, we analyze a new

algorithm that maintains full precision when scaling up the range. Instead of adding 1

to high at each step, we add either 0 or 1 to low, and independently we add 1 or 2 to

high, the choice in each case being based on the fractional bits of the exact results of

the initial subrange selection. The resulting code length may be longer than that of

exact arithmetic coding, but by a tiny amount, as shown in the following theorem:

Theorem 4 When we use the high precision algorithm for scaling up the subrange,

the code length does not exceed the ideal code length � lg p by more than 1=(2B ln 2)
bits per input symbol.

Proof : After the scaling up process, the smallest possible subinterval size is 2B. As
a result of rounding while scaling up, low can never be too high, and high can be too
low by as much as 1, so the subinterval can be too short by as much as 1. (It can
also be too long by as much as 1.) An interval too short by 1 can be too short by
a factor of as much as (2B � 1)=2B, which corresponds to a code length increase of
� lg((B � 1=2)=B) � 1=(2B ln 2). 2

A loss of 1=(2B ln 2) bits per input symbol is negligible, about 10�4 bit per symbol
for typical parameters. In practice the high precision algorithm gives exactly the same
compression as the algorithm of Witten, Neal, and Cleary, but its compression loss is
provably small.

3.3 Encoding end-of-�le

The end of the �le must be explicitly indicated when we use arithmetic coding. The

extra code length required is typically very small and is often ignored; for complete-

ness, we provide a brief analysis of the end-of-�le e�ect.

Witten, Neal, and Cleary introduce a special low-weight symbol in addition to the

normal alphabet symbols; it is encoded once, at the end of the �le. In the following
theorem we bound the cost of identifying end-of-�le by this method:

Theorem 5 The use of a special end-of-�le symbol results in additional code length

of less than t=(B ln 2) + lgB + 10 bits.

Proof : The cost has four components:

� at most lgB+1 bits to encode the end-of-�le symbol (since its probability must

be at least as large as the smallest possible probability, 1=2B)

17

� fewer than t=(B ln 2) bits in wasted code space to allow end-of-�le at any point

(each probability can be reduced by a factor of between (2B � 1)=2B and

(B � 1)=B, resulting in a loss of between � lg((2B � 1)=2B) � 1=(2B ln 2)

and � lg((B � 1)=B) � 1=(B ln 2) bits per symbol)

� two disambiguating bits after the end-of-�le symbol

� up to seven bits to �ll the last byte.

2

An alternative, transmitting the length of the original �le before its encoding,

reduces the cost to between lg t and 2 lg t bits by using an appropriate encoding of

integers [11,31,32], but requires the �le length to be known before encoding can begin.
The end-of-�le cost using either of these methods is negligible for a typical �le,

less than 0.01 bit per input symbol.

4 Conclusion

Using our notion of weighted entropy, we have precisely characterized the tradeo�

between the overhead associated with scaling and the saving that it can realize by
exploiting locality of reference. The largest code length savings come from more
sophisticated (higher order) models such as PPMB, and our scaling analysis extends
accordingly. We have also proven that the computational e�ects on the code length
in practical arithmetic coding implementations are small, so we can treat practical

arithmetic coders as though they were exact coders.
Another important consideration in making arithmetic coding practical, which

we do not address in this article, is the speed at which the current interval can be
updated. In the basic algorithm outlined in Section 1 and in the work of Witten, Neal,
and Cleary, up to two multiplications and one division are needed for each symbol

encoded. Work by Rissanen, Langdon, Mohiuddin, and others at IBM [5,16,18,22,27]
eliminates the division altogether and focuses on approximating the multiplication by

combinations of additions and shifts. In [13] we present an alternative approach in

which we approximate an arithmetic coder by a �nite state automaton with a small
number of states. Since the arithmetic computations are e�ectively stored in the state
tables, coding can proceed quickly using only table lookups.

Acknowledgement. We wish to thank Prof. Martin Cohn for helping us to uncover

a small mistake in the analysis of the e�ect of using integer arithmetic.

18 4 CONCLUSION

References

[1] R. B. Arps, G. G. Langdon & J. J. Rissanen, \Method for Adaptively Initializing

a Source Model for Symbol Encoding," IBM Technical Disclosure Bulletin 26 (May

1984), 6292{6294.

[2] T. C. Bell, J. G. Cleary & I. H. Witten, Text Compression, Prentice-Hall, Engle-

wood Cli�s, NJ, 1990.

[3] T. C. Bell, I. H. Witten & J. G. Cleary, \Modeling for Text Compression," Comput.

Surveys 21 (Dec. 1989), 557{591.

[4] J. L. Bentley, D. D. Sleator, R. E. Tarjan & V. K. Wei, \A Locally Adaptive Data

Compression Scheme," Comm. ACM 29 (Apr. 1986), 320{330.

[5] D. Chevion, E. D. Karnin & E. Walach, \High E�ciency, Multiplication Free
Approximation of Arithmetic Coding," in Proc. Data Compression Conference, J.

A. Storer & J. H. Reif, eds., Snowbird, Utah, Apr. 8{11, 1991, 43{52.

[6] J. G. Cleary & I. H. Witten, \Data Compression Using Adaptive Coding and
Partial String Matching," IEEE Trans. Comm.COM{32 (Apr. 1984), 396{402.

[7] J. G. Cleary & I. H. Witten, \A Comparison of Enumerative and Adaptive Codes,"
IEEE Trans. Inform. Theory IT{30 (Mar. 1984), 306{315.

[8] G. V. Cormack & R. N. Horspool, \Data Compression Using Dynamic Markov
Modelling," Computer Journal 30 (Dec. 1987), 541{550.

[9] G. V. Cormack & R. N. Horspool, \Algorithms for Adaptive Hu�man Codes,"
Inform. Process. Lett. 18 (Mar. 1984), 159{165.

[10] P. Elias, \Interval and Recency Rank Source Coding: Two On-line Adaptive Vari-
able Length Schemes," IEEE Trans. Inform. Theory IT{33 (Jan. 1987), 3{10.

[11] P. Elias, \Universal Codeword Sets and Representations of Integers," IEEE Trans.

Inform. Theory IT{21 (Mar. 1975), 194{203.

[12] A. S. Fraenkel & S. T. Klein, \Robust Universal Complete Codes as Alternatives

to Hu�man Codes," Dept. of Applied Mathematics, The Weizmann Institute of

Science, Technical Report, Rehovot, Israel, 1985.

[13] P. G. Howard & J. S. Vitter, \Practical Implementations of Arithmetic Coding,"

in Image and Text Compression, J. A. Storer, ed., Kluwer Academic Publishers,

Norwell, MA, 1992, 85{112.

[14] D. A. Hu�man, \A Method for the Construction of MinimumRedundancy Codes,"

Proceedings of the Institute of Radio Engineers 40 (1952), 1098{1101.

[15] D. E. Knuth, \Dynamic Hu�man Coding," J. Algorithms 6 (June 1985), 163{180.

19

[16] G. G. Langdon, \Probabilistic and Q-Coder Algorithms for Binary Source Adap-

tation," in Proc. Data Compression Conference, J. A. Storer & J. H. Reif, eds.,

Snowbird, Utah, Apr. 8{11, 1991, 13{22.

[17] G. G. Langdon, \An Introduction to Arithmetic Coding," IBM J. Res. Develop.

28 (Mar. 1984), 135{149.

[18] G. G. Langdon & J. Rissanen, \Compression of Black-White Images with Arith-

metic Coding," IEEE Trans. Comm.COM{29 (1981), 858{867.

[19] A. M. Mo�at, \Implementing the PPM Data Compression Scheme," IEEE Trans.

Comm.COM{38 (Nov. 1990), 1917{1921.

[20] K. Mohiuddin, J. J. Rissanen & M. Wax, \Adaptive Model for Nonstationary

Sources," IBM Technical Disclosure Bulletin 28 (Apr. 1986), 4798{4800.

[21] R. Pasco, \Source Coding Algorithms for Fast Data Compression," Stanford Univ.,
Ph.D. Thesis, 1976.

[22] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon & R. B. Arps, \An Overview of
the Basic Principles of the Q-Coder Adaptive Binary Arithmetic Coder," IBM J.

Res. Develop. 32 (Nov. 1988), 717{726.

[23] J. Rissanen, \Stochastic Complexity and Modeling," Ann. Statist. 14 (1986), 1080{
1100.

[24] J. Rissanen, \Stochastic Complexity," J. Roy. Statist. Soc. Ser. B 49 (1987), 223{

239, 253-265.

[25] J. Rissanen, \Universal Coding, Information, Prediction, and Estimation," IEEE
Trans. Inform. Theory IT{30 (July 1984), 629{636.

[26] J. J. Rissanen, \Generalized Kraft Inequality and Arithmetic Coding," IBM J.

Res. Develop. 20 (May 1976), 198{203.

[27] J. J. Rissanen & K. M. Mohiuddin, \A Multiplication-Free Multialphabet Arith-
metic Code," IEEE Trans. Comm. 37 (Feb. 1989), 93{98.

[28] F. Rubin, \Arithmetic Stream Coding Using Fixed Precision Registers," IEEE

Trans. Inform. Theory IT{25 (Nov. 1979), 672{675.

[29] B. Y. Ryabko, \Data Compression byMeans of a Book Stack," ProblemyPeredachi
Informatsii 16 (1980).

[30] C. E. Shannon, \A Mathematical Theory of Communication," Bell Syst. Tech. J.

27 (July 1948), 398{403.

[31] R. G. Stone, \On Encoding of Commas Between Strings," Comm. ACM 22 (May

1979), 310{311.

[32] M. Wang, \Almost Asymptotically Optimal Flag Encoding of the Integers," IEEE

Trans. Inform. Theory IT{34 (Mar. 1988), 324{326.

20 4 CONCLUSION

[33] I. H. Witten & T. C. Bell, \The Zero Frequency Problem: Estimating the Prob-

abilities of Novel Events in Adaptive Text Compression," IEEE Trans. Inform.

Theory IT{37 (July 1991), 1085{1094.

[34] I. H. Witten, R. M. Neal & J. G. Cleary, \Arithmetic Coding for Data Compres-

sion," Comm. ACM 30 (June 1987), 520{540.

