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Abstract: We examine the complexity of testing di�erent program constructs. We do this

by de�ning a measure of testing complexity known as VCP-dimension, which is similar to the

Vapnik-Chervonenkis dimension, and applying it to classes of programs, where all programs

in a class share the same syntactic structure. VCP-dimension gives bounds on the number

of test points needed to determine that a program is approximately correct, so by studying

it for a class of programs we gain insight into the di�culty of testing the program construct

represented by the class. We investigate the VCP-dimension of straight line code, if-then-

else statements, and for loops. We also compare the VCP-dimension of nested and sequential

if-then-else statements as well as that of two types of for loops with embedded if-then-else

statements. Finally, we perform an empirical study to estimate the expected complexity of

straight line code.
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1 Introduction

Program testing is an important sub�eld of the �eld of software engineering. Much work

has been done in �nding methods for selecting test data [GG75, MH81, DMMP87] and in

evaluating di�erent testing methodologies [Bud81, DN84, BS87, Ham89]. A related area of

software engineering is the study of software complexity. Considerable research has been

done in this area as well to devise software complexity measures [Hal77, McC76, WHH79]

and to compare various measures for their e�ectiveness [Wey88, Tia92, TZ92].

Our work combines these two areas by looking at the \testing complexity" of di�erent

classes of programs. The reason that we study classes of programs is that by examining the

complexity of a class of programs, where each program in the class has the same syntactic

structure, we gain insight into the testing complexity of the syntactic structure that these

programs share. Therefore, given a class of programs, each with the same syntactic structure,

we investigate how di�cult it is to distinguish one program in the class from the others using

only input/output test pairs. Usually this is impossible to do with 100% accuracy. In other

words, for most classes of programs it is impossible to distinguish one program in the class

from all other programs that compute a di�erent function when only a �nite number of

input/output test pairs is used to test the program.

For this reason we introduce another measure of testing complexity. In the �eld of

computational learning theory [VC71, BEHW89] Vapnik-Chervonenkis dimension (or VC-

dimension) characterizes the complexity of a class of objects to be learned. We de�ne a

similar notion of dimension for program classes that will give an indication of the testing

complexity of these classes.

Using this notion we can compare the testing complexity of di�erent classes of programs

and gain insight into how di�cult it is to test various program constructs as well as determine

how the complexity increases when program constructs are combined in di�erent ways. This

insight is important because it tells the programmer which types of program structures lead

to more easily testable programs, and it shows the tester where more concentrated testing

e�orts should be applied.

2 Measuring Testing Complexity

When we examine the testing complexity of classes of programs, we consider only a subset

of programs that compute total recursive functions from the rationals (Q) to the rationals.

However, we feel that this subset is su�cient to provide insight into the relative testing

complexity of di�erent program constructs.
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De�nition. A program p computes a function fp : Q ! Q , where a probability measure M

is de�ned over the set of inputs. A program class is a set P of programs.

We will use p to denote both the program and the function fp that it computes when it

is clear from the context which meaning is being used. Programs are de�ned to compute

functions with domain Q because the �nite representation of numbers in the computer only

allows rationals. However, sometimes it is necessary to consider an extension of such a

function to the reals, and in this case we will use the natural extension.

The probability measure M is usually taken to be either the operational distribution

on the inputs to the program, or a uniform distribution. In the former case, the error of a

program (that is, the probability that an input chosen at random according toM will produce

an incorrect output) is a measure of its unreliability; in the latter case, the error measures

the fraction of the input domain for which the program computes an incorrect answer. The

probability measure M can either be a discrete probability measure on Q or a continuous

probability measure on the reals, R.

When de�ning a measure of testing complexity for a class of programs, we would ideally

like a measure that can tell us how many test points (that is, input/output pairs) are needed

to distinguish one program from all other programs in the class. We can de�ne this notion

formally as follows:

De�nition. Given a program class P and a program p 2 P , a test set for p with respect

to P is a set of inputs T � Q such that for all other programs q 2 P , if p(x) = q(x) for all

x 2 T , then p(x) = q(x) for all x 2 Q (that is, p and q compute the same function). The

testing complexity of the class P is the smallest integer k such that any program p 2 P has

a test set of cardinality k.

The following results about testing complexity can be proven easily.

Proposition 2.1. The testing complexity of a program class containing n programs is less

than or equal to n � 1.

Proof. Let P be a class of n programs, and let p 2 P be given. For each q 2 P that computes

a di�erent function than p, choose an input x for the test set of p such that p(x) 6= q(x).

There will be at most n� 1 such test points. ut

Proposition 2.2. The class of all programs computing polynomials of degree no greater than

n has testing complexity n+ 1.
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Proof. Since n+1 points completely determine an n degree polynomial, any program in this

class has a test set of size n + 1. ut

Although this de�nition of testing complexity yields some results, it does not allow us

to compare di�erent program constructs. This is because when more complicated program

constructs are used, even very simple programs become impossible to \test", as the following

example illustrates.

Example 2.1. Let the program class P be de�ned by the following schema:

P := fp j p(x) := if a1 �1 b1 then
output(a2 �2 b2)

else
output(a3 �3 b3)g;

where �1 2 f=; 6=; <;>;�;�g and �2; �3 2 f+;�;�;�g and ai; bi 2 fxg [ Q

Now, consider the problem of selecting a test set for the program q 2 P de�ned as follows:

q(x) := if 0 < 3 then
output(x+ 2)

else
output(x� 3):

Since the boolean expression in the if-then-else statement is always true, program q sim-

ply computes the linear function x + 2. Although this may seem like a contrived program

since the boolean expression is obviously always true and one branch is never executed, real

programs with more complicated branching structures can contain unexecutable paths that

are not easily detected. Barzdin, Bicevskis and Kalninsh [BBK77] proved that the problem

of determining which branches of a program are realizable (a branch is realizable if some

input causes the branch to be taken during execution of the program) is undecidable.

Proposition 2.3. The program q has no �nite test set with respect to the class P .

Proof. Suppose a �nite test set T for q existed. Let m := maxfx j x 2 Tg. De�ne

q0(x) := if x � m then
output(x+ 2)

else
output(x� 2):

6



Program q0 is in P since it has the syntax speci�ed by the class. It computes the same output

as q for all inputs in T . However, it computes an incorrect value for all x > m, so T is not a

test set for q. ut

The program q has no test set with respect to P because it does not make use of both

branches of the if-then-else statement. Thus, the unused branch can be used by another

program in P to \trick" any supposed test set. Such a program looks like q on all inputs in

the test set, but it diverges from q on inputs greater than those in the test set.

The example above demonstrates that it is impossible to test most programs to within

100% accuracy, even when they are tested with respect to simple program classes. Since

absolute testing is an impossible task, we propose in the next section a less absolute but

more meaningful measure of testing complexity. This measure indicates when it is possible

to use a small number of randomly selected test points to determine whether any program in a

given class is approximately correct with high probability. A program is approximately correct

if on the average it computes a value \close to" the value of a program that is absolutely

correct. These ideas will be made more formal in the next section.

We emphasize that we are not proposing random testing as an e�ective testing method-

ology, but rather we are using it as a basis for comparing the testing complexity of di�erent

program constructs and combinations of constructs. However, other work has been done re-

cently [BK89, BLR90, Lip91, GLR+91] to make random testing a viable approach to testing

software. The problem that is addressed in this other work is how to convert a program that

has been shown through random testing to be correct for most inputs into a program that

is correct with high probability on all inputs. The following simple example illustrates this

idea.

Example 2.2. Suppose we are given a black box program p that computes the function

f(x) = x. Suppose that we have performed a su�cient number of random tests on p to

ensure that it is correct for most inputs. The following program q calls p as a subroutine and

uses a random number generator to compute the function f . If p is correct for most inputs,

then q computes f correctly on all inputs with high probability. It is assumed that q has

access to fault-free addition and subtraction operators.

q(x) := begin
y =random;
z = p(x+ y)� p(y);
output(z)

end
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3 Random Approximate Testing

In order to de�ne a meaningful measure of testing complexity, we de�ne a model for random

approximate testing of programs and relate a measure to this model. First we de�ne the

notion of error for a program.

De�nition. Given a program class P and a program p 2 P , the error of a program q 2 P

with respect to p and the probability measure M is de�ned by

EM(q; p) =
Z
R

jq(x)� p(x)jdM(x):

In this de�nition p represents a speci�cation, and q represents a program to be tested

against the speci�cation. The error of a program is the expected di�erence in value between

its output and the speci�cation for a randomly drawn input. If this error is bounded by

�, then q is approximately correct with respect to p for error bound �. Note that the error

function EM is a pseudo-metric1 on P . When the probability measure M is clear from

context, we just use E for the error function.

Now we de�ne what it means for a class of programs to be randomly approximately

testable. Let I denote the open interval of rationals (0; 1), and let m: I � I ! Z+ be a

positive integer valued function de�ned on I � I . Let P be a class of programs computing

functions from Q to Q, and let M be a probability measure on Q .

De�nition. P is randomly approximately testable (w.r.t. M) with test set size m(�; �) if

for all �; � 2 I and for all p 2 P , if a set T of m(�; �) inputs is selected at random from

Q according to M , then with probability at least 1 � � for all q 2 P , if p(x) = q(x) for all

x 2 T (that is, if q is consistent with p on T ), then EM(q; p) � �.

If the class P is randomly approximately testable, then given a speci�cation p 2 P , a

con�dence parameter � 2 I , and an error bound � 2 I , a �nite number of random test points

can be selected, and with high probability these test points will ensure that any program

that tests correctly on these points will be approximately correct. If the function m is a

polynomial in 1

� and 1

�
, then the class P is polynomially randomly approximately testable or

just polynomially testable.

3.1 A Complexity Measure for Random Approximate Testing

Now that we have de�ned a model for random approximate testing of programs, we must �nd

a complexity measure that relates to this model. In computational learning theory [VC71,

1
A pseudo-metric on a set P is a function E : P �P ! R

+
such that for all x; y; z 2 P the following three

properties hold: (1) x = y ) E(x; y) = 0, (2) E(x; y) = E(y; x), (3) E(x; y) + E(y; z) � E(x; z).
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BEHW89] Vapnik-Chervonenkis dimension (or VC-dimension) characterizes the complexity

of a class of objects to be PAC2 learned. If this dimension is �nite, then any object in the

class can be learned with high probability. This means that if a small number of random

examples are selected and labeled according to a chosen object, then with high probability

any other object in the class that is consistent with the chosen object on the examples will

be approximately equal to that object.

Since our model for random approximate testing is similar to the model of [BEHW89]

for PAC learning, we introduce a notion of dimension similar to VC-dimension for program

classes that gives an indication of the testing complexity of these classes. This dimension

allows us to determine when a small number of test points can be used to demonstrate that

a program is approximately correct. In order to de�ne this dimension we �rst identify a

program with the set of intervals for which it evaluates to a positive number. These notions

are formalized below.

De�nition. Given a program class P , a �nite set of inputs T � Q is shattered by P if for all

S � T , there exists p 2 P such that p(x) > 0 for all x 2 S and p(x) � 0 for all x 2 T�S. The

Vapnik-Chervonenkis program dimension of P (or simply VCP-dimension(P )) is the largest

integer k such that there exists a subset T of Q of cardinality k that is shattered by P . If no

such k exists, the VCP-dimension of P is in�nite.

3.2 VCP versus Pseudo Dimension

A similar measure to VCP-dimension, called pseudo dimension, has been de�ned by Haussler

[Hau92]. He has shown that if this dimension is \small" for a set of functions, then the set of

functions can be PAC learned. We de�ne this measure now and compare it to VCP-dimension.

De�nition. ([Hau92]) For a family of functions F from a set S into R the pseudo dimension

of F (or dim(F )) is the largest k such that there exist two sequences of length k, �x =

(x1; : : : ; xk) 2 Sk and �t = (t1; : : : ; tk) 2 R
k , and for any subsequence �y = (xi1 ; : : : ; xij) of �x,

there exists f 2 F such that f(xi) + ti > 0 for all xi 2 �y and f(xi) + ti � 0 for all xi 2 �x� �y

(that is, elements of the sequence �x that are not in the subsequence �y). If no such k exists,

then dim(F ) is in�nite.

The pseudo dimension of a class of functions is the size of the largest set of inputs that can

be shattered by the class using a vector (�t) of translation values. Pseudo dimension di�ers

from VCP-dimension because it allows for the possibility of translating a set of functions by

a vector of constants before shattering a set of points.

It is easy to see that for any class of functions F , VCP-dimension(F ) � dim(F ) since a

2
PAC stands for probably almost correct.
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set of inputs that is shattered by F is still shattered if the vector of outputs produced by

these inputs is translated by the vector 0k. If arbitrary classes of functions are considered,

then an inverse bound does not exist. That is, there are classes of functions with �nite VCP-

dimension and in�nite pseudo dimension. For example, the class of all positive functions has

VCP-dimension 0, but it has in�nite pseudo dimension.

Although pseudo dimension can be arbitrarily greater than VCP-dimension, Macintyre

and Sontag [MS93] have observed that given a class of functions F :S ! R, a new class of

functions F 0:S�R ! R can be created with the property that dim(F ) � VCP-dimension(F 0)

(in fact, equality holds). This new class of functions F 0 is created from F by replacing each

f 2 F with the new function f(x)� y, which takes two inputs x 2 S and y 2 R .

Using the above observation of Macintyre and Sontag, the upper bounds that we obtain

in this paper for the VCP-dimension of various classes of programs are the same as those

that can be obtained for the pseudo dimension of these classes. This is because the upper

bounds on the VCP-dimension still hold if we convert each program class P into a program

class P 0, where each p0 2 P 0 takes two inputs x and y and computes p(x)� y for some p 2 P .

Therefore, the results of Haussler using pseudo dimension that we employ next to bound the

number of test points needed to randomly approximately test a program are valid for the

classes we consider.

Haussler [Hau92] has used the notion of pseudo dimension to get a bound on the number of

random examples needed to PAC learn a function from a class of functions. These results can

also be used to �nd a bound on the number of random test points needed to approximately

test a program from a class of programs. This is because a random sample of input/output

pairs for a function that gives su�cient information to infer the rest of the function is also

su�cient to determine that a program correct on the sample has small overall error.

We now illustrate this relationship between PAC learning and random approximate testing

in more detail. First we de�ne several notions used in Haussler's result.

De�nition. ([Hau92]) Let F be a family of functions from S = R � R into [0; K]. Let M

be a probability measure on S. For any f 2 F the expected value E(f) of f on an example

chosen at random from S according to M is
R
S f(x)dM(x). The empirical estimate of this

expected value on a random sample �x 2 Sm is Ê�x(f) :=
1

m

Pm
i=1 f(xi). The \closeness" of

these two values is given by the metric d� , where � > 0, de�ned by d�(x; y) :=
jx�yj
�+x+y

for any

non-negative reals x and y.

Haussler gives the following result relating �nite pseudo dimension to PAC learning of

functions. This theorem states that for a family of functions F with codomain [0; K] and

with �nite pseudo dimension, to ensure that with high probability the empirical estimate of

the expected value of any function in F on a random sample is \close to" its actual expected

value, it is only necessary to choose a random sample whose size is a polynomial in the pseudo
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dimension of F , the bound K on the codomain of F , and several approximation parameters.

The notion of a permissible family of functions used in the theorem is a measurability as-

sumption that must be made when the family F is uncountable. Since the programs we

examine only use rational constants, they compute countable classes of functions, so we do

not need to be concerned with this notion.

Theorem 3.1. [Hau92] Let F be a permissible family of functions from S = R�R into [0; K]

with dim(F ) = d <1. Let M be a probability measure on S. If a random sample �x of length

m is drawn from S according to M , and if

m �
8K

�2�

�
2d ln

8eK

��
+ ln

8

�

�

for 0 < �; � < 1 and for 0 < � � 8K, then the probability that there exists f 2 F such that

d�(Ê�x(f); E(f))> � is at most �.

This theorem applies to PAC learning when the class F is de�ned to be the class of loss

functions associated with a class F of functions from R to R used to estimate or \learn"

an unknown distribution of input/output examples. A loss function Lf for a function f

measures, for each input to f , the error or \loss" of f on that input. In this case the loss

function is de�ned by Lf (x; y) = jf(x)� yj; that is, it measures how much the value given

by f di�ers from a given y for a given input x. If the class of loss functions associated with

F has �nite pseudo dimension, then it is possible to use a small random sample to choose a

function in F that has a small loss (that is, its error is close to the in�mum of errors over

all functions in F) with respect to the unknown distribution of examples. This function will

give a good representation of the unknown distribution of examples.

We can also apply Haussler's result to the problem of testing. When testing programs we

would like to use a small set of test points to detect programs that vary greatly from a given

speci�cation. In particular, we would like to be able to say that any program that is correct

on a small set of test points computes a function that is approximately correct with respect

to the speci�cation.

In order to apply Haussler's result to testing programs, we must use a class of functions

with codomain [0; K]. We do this by choosing a maximum loss value K and de�ning a class

of loss functions corresponding to the class of programs P . Since we test with respect to

a speci�cation function p 2 P , we can de�ne the loss function LK
p;q for a tested program q

(w.r.t. p) by

LK
p;q(x) :=

(
jp(x)� q(x)j if jp(x)� q(x)j < K

K otherwise

When we de�ne the loss function in this way, the error of a tested program corresponds to

the expected value of its loss function, assuming that the error of a program on a particular

input is bounded above by K.
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Haussler's work di�ers from our approach since he uses probability measures de�ned on

R � R, rather than just on the domain R of the class of functions F . However, our work

can be put into his framework by de�ning the following probability measure Mp on R � R

corresponding to the probability measure M de�ned on Q and the speci�cation program p:

Mp(x; y) :=

(
M(x) if p(x) = y

0 otherwise

Mp is a probability measure that is 0 everywhere on R � R except on the graph of p, and its

marginal on R is M .

By making these two adjustments, we can prove a result that is similar to Haussler's and

apply it to the testing problem. First we relate the pseudo dimension of the class of loss

functions associated with a given program p 2 P to that of the class P .

Lemma 3.1. Let P be a class of programs computing functions from Q to Q. For any p 2 P

and K 2 Q+, the class of loss functions LK
p := fLK

p;q j q 2 Pg associated with p is a subset

of the sum of two classes of functions LK
p � LK

p;+ +LK
p;�, such that dim(LK

p;+) � dim(P ) and

dim(LK
p;�) � dim(P ).

Proof. We show this in three steps. First, by a result of Wenocur and Dudley [WD81], for any

p 2 P , if we de�ne a new class of functions Lp := fq � p j q 2 Pg, then dim(Lp) = dim(P ).

This is easy to see. If Lp shatters �x using the translation vector �t, then P shatters �x using

the translation vector �t0, where t0i = ti � p(xi).

Second, for any program q 2 Lp, the programs q+ and q�, computing the positive and

negative part of q respectively, can be de�ned as follows:

q+(x) :=

(
q(x) if q(x) > 0
0 otherwise

q�(x) :=

(
q(x) if q(x) < 0
0 otherwise

The classes Lp;+ := fq+ j q 2 Lpg and Lp;� := fq� j q 2 Lpg have the property that

dim(Lp;+) � dim(Lp) and dim(Lp;�) � dim(Lp). Suppose the subset L0
p;� of Lp;� shatters

�x using the translation vector �t. Then �x is also shattered by Lp using the same �t. If there

exists xi 2 �x and q� 2 L0
p;� such that q�(xi) = 0 and q�(xi)+ ti > 0, then q(xi)+ ti > 0. On

the other hand, if there exists xi 2 �x and q� 2 L0
p;� such that q�(xi) = 0 and q�(xi)+ ti � 0,

then �x is not shattered by L0
p;� since every q� 2 L0

p;� has q�(xi)+ ti � 0. A similar argument

can be made for Lp;+.

Third, for the classes Lp;+ and Lp;� and for K 2 Q+ we can de�ne the classes LK
p;+ :=

fqK j q 2 Lp;+g and LK
p;� := f�qK j q 2 Lp;�g, where qK(x) = q(x) if �K < q(x) < K,

qK(x) = K if q(x) � K, and qK(x) = �K if q(x) � �K. For both of these classes the

pseudo dimension is no more than that of Lp using the same argument as above.
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It is easy to see that LK
p � LK

p;+ + LK
p;�. ut

To prove our result on testing programs we use the following notions and theorems from

the literature.

De�nition. ([Pol84, Hau92]) Let F be a family of functions from a set S into R and let M

be a probability measure on S. For � > 0, the covering number N (�; F ) of F is de�ned as

the smallest m for which there exist functions g1; : : :gm (not necessarily in F ) such that for

all f 2 F there is a gi with EM(f; gi) � �. The �-separation number M(�; F ) of F is de�ned

as the largest m for which there exists a set H � F of functions of cardinality m such that

for all distinct hi; hj 2 H , EM(hi; hj) > �. The family F has a nonnegative envelope f if

f(x) � jf(x)j for all f 2 F .

Theorem 3.2. [Hau92] Let F be a family of functions with envelope f. Then for any � > 0,

M(2�; F ) � N (�; F ) �M(�; F ):

Theorem 3.3. [Pol84, Hau92] Let F be a family of functions from a set S into [0; K], where

dim(F ) = d <1. Let M be a probability measure on S. Then for all 0 < � � K,

M(�; F ) < 2

�
2eK

�
ln

2eK

�

�d

:

Theorem 3.4. [Pol86] Let F be a permissible family of functions from a set S into [0; K],

and let M be a probability measure on S. Assume � > 0; 0 < � < 1, and m � 1. Suppose

that �x 2 Sm is generated by m independent random draws from S according to M . Then the

probability that there exists f 2 F such that d�(Ê�x(f); E(f))> � is at most

4E(N (��=8; Fj�x))e
��2�m=16K:

where E is expected value and Fj�x is the restriction of F to �x; that is, Fj�x = f(f(x1); : : : ; f(xm)) j

f 2 Fg.

Theorem 3.5. [NP87] If F and G are families of functions with envelopes f and g, then the

class

F + G := ff + g j f 2 F; g 2 Gg;

with envelope f + g, satis�es

N (2�1 + 2�2; F +G) � N (�1; F )N (�2; G):
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We use the above theorems to prove a result for testing programs that is similar to

Haussler's result for learning functions.

Theorem 3.6. Let P be a class of programs computing functions from Q to Q with dim(P ) =

d <1, and let M be a probability measure de�ned over the set of inputs Q. Given p 2 P and

K 2 Q+, de�ne the loss function for any q 2 P to be LK
p;q and de�ne LK

p := fLK
p;q j q 2 Pg.

Also, de�ne the probability measure Mp on R � R as above. If a random sequence of test

points �x of length m is drawn from Q according to M , and if

m �
16K

�2�

�
4d ln

32eK

��
+ ln

16

�

�

for 0 < �; � < 1 and for 0 < � � 8K, then the probability that there exists f 2 LK
p such that

d�(Ê�x(f); E(f))> � is at most �.

Proof. We follow the form of Haussler's proof. By Theorem 3.4., if a random sequence

�x of m test points is selected, then the probability that there exists f 2 LK
p such that

d�(Ê�x(f); E(f))> � is at most

4E(N (��=8;LK
p;j�x))e

��2�m=16K :

Since LK
p � LK

p;+ + LK
p;� by Lemma 3.1., and using Theorem 3.5., this is at most

4E(N (��=32;LK
p;+;j�x)N (��=32;LK

p;�;j�x))e
��2�m=16K:

By Theorems 3.2. and 3.3. and Lemma 3.1. this is at most

16

�
64eK

��
ln
64eK

��

�2d
e��

2�m=16K :

Setting the above bound equal to � and solving for m gives

m �
16K

�2�

�
2d ln

�
64eK

��
ln
64eK

��

�
+ ln

16

�

�
:

Simplifying this expression using the fact that ln(a ln a) < 2 ln(a=2) when a � 5 gives the

�nal expression. ut

In the previous theorem, the program p 2 P that is chosen to determine the loss functions

and probability measure represents a speci�cation against which other programs must be

tested. As stated earlier, the loss function for a tested program q computes its error with
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respect to the speci�cation p. The empirical estimate Ê�x(L
K
p;q) for the loss function of q

represents the observed error of q on the test sequence. The expected value E(LK
p;q) represents

the actual error of q with respect to p.

The theorem states that if P has �nite pseudo dimension, then with high probability

these two measures of error will be close for all programs in P . With respect to testing this

means that any program q that is consistent with p on the test set will have small error for

appropriately chosen �; � and �. For example, if � = 1

100
, � = 1

2
, and � = � and if the number

of test points speci�ed in the theorem are chosen at random, then with 99% probability any

program in P that is consistent with p on these test points will have error less than �. This

is because with 99% probability no program in P will have an error that di�ers by more

than 1

2
from its observed error on the random test sequence, when d� is used to measure this

di�erence. For a program q that is consistent with p on the test sequence �x, Ê�x(L
K
p;q) = 0.

Therefore, in order for

d�(Ê�x(L
K
p;q); E(L

K
p;q)) =

jÊ�x(LK
p;q)�E(LK

p;q)j

� + Ê�x(LK
p;q) +E(LK

p;q)
=

E(LK
p;q)

�+ E(LK
p;q)

to be less than 1

2
, the actual error of q, E(LK

p;q), must be less than �.

In this section we have discussed the relationship between VCP-dimension and pseudo

dimension and have shown how pseudo dimension can be used to determine the number of

random test points needed to approximately test a program. These dimensions also give

an intuitive measure of the testing complexity of a program class, so they can be used to

compare the complexity of di�erent program classes. In the following sections we investigate

the VCP-dimension of di�erent classes of program segments.

4 Testing Straight Line Programs

First we consider the case of testing straight line programs. We de�ne Pn, the class of straight

line programs with n lines of computing code and one output line, as follows:

De�nition. Program class Pn is de�ned by the following schema:

Pn := fp j p(x) := y1 = a1 �1 b1;
...

yn = an �n bn;
output(yn)g;

where �i 2 f+;�; �g and ai; bi 2 Q [ fxg [ fyj j j < ig:
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Each line of code in a program from Pn either adds, subtracts or multiplies a constant, the

input x, or a previous expression to either a constant, the input x, or a previous expression.

Thus each line of code uses two operands that are polynomials. Since the set of polynomials

with rational coe�cients is a ring, and rings are closed under addition, subtraction, and

multiplication, each p 2 Pn computes a polynomial over the rationals.

De�nition. The class Fn of functions computed by Pn can be de�ned inductively as follows:

F0 := fxg [ Q

Fn := ff(h) � g(h) j f 2 Fi; g 2 Fj ; h 2 Fk ; � 2 f+;�; �g; i+ j + k � n� 1g;

where the meaning of f(h) for f 2 Fi; h 2 Fk is that function f performs i elementary

operations (from the set f+;�; �g) using the operands x; h, and any c 2 Q.

A function in Fn is built up from smaller functions f(h) and g(h), which have h as their

largest common subexpression. The two functions f(h) and g(h) are joined together in the

last computing step of a program in Pn. Obviously, Fn � Fn+k for all k � 0 since any

function in Fn can be realized by a program in Pn+k that has k lines of code that are not

used in computing the �nal expression.

4.1 Lower Bounds on VCP-Dimension of Straight Line Code

Before investigating the VCP-dimension of the class Pn, we make a few observations. For a

class P of polynomials to have VCP-dimension k, it must contain a program p that changes

sign at least k�1 times. Therefore, p must compute a polynomial of degree at least k�1 that

has at least k � 1 distinct real zeros. Using Horner's method [Baa88] it is known that any

degree k polynomial can be computed with 2k elementary operations (addition, subtraction,

multiplication). Therefore VCP-dimension(Pn) is at least b
n
2
c+1. Other work has been done

[RS72] to get the number of operations for evaluating a degree k polynomial down to 3k
2
,

which means that VCP-dimension(Pn) is even higher.

On the other hand, Borodin and Cook [BC76] have demonstrated a polynomial with 3bn=3c

real, distinct zeros that can be computed with n operations, so just examining the largest

number of real, distinct zeros that can occur in a polynomial computed by a program in Pn

is not su�cient to obtain a good bound on the VCP-dimension. Since Borodin and Cook

[BC76] have also proven that \most" polynomials of degree greater than or equal to (n+2)2

cannot be computed with n � operations, even when an unbounded number of multiplication

operations are allowed, it appears that VCP-dimension(Pn) is no more than O(n2). In fact,

in the next section we will prove an upper bound that is close to this one.

We now examine VCP-dimension(Pn) for some small values of n to get a feel for how

the dimension grows with the size of the programs. As a base case, programs in P0 have no
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computing lines and can only output a constant or the input x, so VCP-dimension(P0) = 1.

The class P1 contains programs with one computing line and can be enumerated by P1 =

fk; kx; x+ k; x� k; k � x; x2g, where k 2 Q. It is easy to see that VCP-dimension(P1) = 2.

Proposition 4.1. VCP-dimension(P2) = 3.

Proof. First we show VCP-dimension(P2) � 3 by showing that the set T = f�2; 0; 2g of 3

points is shattered by P2. We represent a subset of T by an ordered list of + and � signs

where a + sign in the ith position means that the ith smallest element of T is in the subset.

So, for example, (+;�;+) represents the subset f�2; 2g of T . The following list shows each

subset of T along with a polynomial computed by a program in P2 that obtains that subset.

Each subset in the left column begins with a � sign, and the corresponding subset in the

right column is the negation of this subset, so the polynomial that obtains it is the negation

of the polynomial in the left column. Subsets in the left column are ordered by increasing

number of + signs.

(�;�;�) �3 (+;+;+) 3
(�;�;+) x� 1 (+;+;�) 1� x

(�;+;�) 2� x2 (+;�;+) x2 � 2
(�;+;+) x+ 1 (+;�;�) �1� x

Now we show VCP-dimension(P2) � 3. In order for VCP-dimension(P2) to be greater

than 3, it must be possible to shatter a set of points of size at least 4 with P2. Therefore, P2
must contain a program that computes a function that obtains the subset (+;�;+;�) for

some set of 4 points. However, this can only be done with a polynomial that has at least 3

distinct real zeros, and the only polynomials of degree greater than 2 in P2 are x3 and x4,

which only have one real zero. So P2 cannot shatter a set with more than 3 points.

Since VCP-dimension(P2) � 3 and VCP-dimension(P2) � 3, VCP-dimension(P2) =

3. ut

Proposition 4.2. VCP-dimension(P3) = 4.

Proof. First we show VCP-dimension(P3) � 4 by showing that the set T = f�3;�1; 1; 3g of 4

points is shattered by P3. The following list shows each subset of T along with a polynomial

computed by a program in P3 that obtains that subset. As before, subsets beginning with a
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� sign are in the left column.

(�;�;�;�) �3 (+;+;+;+) 3
(�;�;�;+) x� 2 (+;+;+;�) 2� x

(�;�;+;�) 1� (x� 1)2 (+;+;�;+) (x� 1)2 � 1
(�;+;�;�) 1� (x+ 1)2 (+;�;+;+) (x+ 1)2 � 1
(�;�;+;+) x (+;+;�;�) �x

(�;+;�;+) x3 � 4x (+;�;+;�) 4x� x3

(�;+;+;�) 2� x2 (+;�;�;+) x2 � 2
(�;+;+;+) x+ 2 (+;�;�;�) �2� x

Now we show VCP-dimension(P3) � 4. In order for VCP-dimension(P3) to be greater

than 4, P3 must contain a program that computes a polynomial that has at least 4 distinct

real zeros. However, the only polynomials of degree greater than 3 in P3 are kx
4; x4+k; (x2+

kx)2; (x+ k)4; (x2+ k)2; x4+ kx2; x4+ x3; x4+ x; x5; x6; x8 and none of these have 4 distinct

real zeros, so P3 cannot shatter a set with more than 4 points. ut

It can similarly be proven that VCP-dimension(P4) = 5. From the above examples we

could conjecture that VCP-dimension(Pn) = n + 1. This is, in fact, a lower bound for

VCP-dimension(Pn), but as n increases it is no longer an upper bound, as the following two

theorems demonstrate.

Theorem 4.1. VCP-dimension(Pn) � n+ 1.

Proof. First we demonstrate how to build an n degree polynomial with n distinct real

zeros using n operations, and then we show how a set of n + 1 points can be shattered. If

c1; c2; : : : cbn
2
c are distinct positive rationals, then the following polynomial has n distinct real

zeros (if n is odd, a factor of x is inserted):

f(x) = (x2 � c21)(x
2 � c22) : : :(x

2 � c2bn
2
c)

This polynomial can be computed in n operations with the following program:

p(x) := y1 = x � x;
y2 = y1 � c21;
y3 = y1 � c2

2
;

y4 = y2 � y3;
...
yn = x � yn�1; (if n is odd)
yn = yn�2 � yn�1; (if n is even)
output(yn)
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The program p builds bn
2
c degree 2 polynomials, x2�c2i , each with two distinct real zeros,

ci and �ci, and multiplies these together. If n is odd, p multiplies this polynomial by x to

make 0 the nth zero.

A set T of n+ 1 points can be chosen by choosing a point between every two zeros of f ,

as well as a point at either end of the zeros of f . The polynomial f obtains one subset of

T with n sign changes, and its negation, which can be obtained in n operations by negating

one factor (that is, by using (c2i � x2)), obtains the other subset with n sign changes. Given

any subset S of T with less than n sign changes, the following steps will give a polynomial

computable in n operations which obtains that subset.

1. Build a polynomial similar to f , except skip the factor (x2 � c2i ) if the points in T on

either side of ci or �ci are assigned the same sign by S. This will \save" two operations.

If n is odd and the two points next to 0 are assigned the same sign by S, then remove

the factor x.

2. For each ci for which the factor (x
2�c2i ) was skipped in step 1, if ci (�ci) has the points

on either side of it assigned di�erent signs by S, then place a line through it. That is,

insert the additional factor ci�x (�ci�x) into the polynomial. This additional factor

will change the sign of all points greater than ci (greater than �ci). It requires two

operations, the same number as were \saved" by not inserting the factor (x2 � c2i ).

3. If no factors were added in either step 1 or step 2, then S contains no sign changes,

so it is given by a constant polynomial. If the polynomial obtained by step 1 assigns

a di�erent sign to the smallest point in T than S does, then it must be negated. This

can be done by negating one of its factors.

The polynomial created by the above steps has a zero between every two points of S where a

sign change occurs and has no other zeros. Since each of these zeros actually passes through

the x axis, and no zero is shared by two or more factors, the resulting polynomial actually

changes sign at each zero. Since step 3 ensures that the smallest point in T is assigned the

correct sign by the polynomial, all other points will also be assigned the correct sign. ut

Theorem 4.2. For n > 42, VCP-dimension(Pn) > n + 1.

Proof. We demonstrate how, using several \tricks", we can shatter a set of n+2 points, where

n > 42. For n even, de�ne T := f�(n+1);�(n�1); : : : ;�3;�1; 1; 3; : : : ; n�1; n+1g and for

n odd de�ne T := f�n;�(n � 2); : : : ;�3;�1; 0; 1; 3; : : : ; n� 2; ng. Observe that any subset

of T can be obtained by constructing a polynomial with exactly one zero (a zero where the

19



polynomial actually \crosses" the x axis) between each pair of consecutive points in T where

a sign change occurs. Since the points chosen for T are symmetric around 0, any subset of

T that has at least one pair of sign changes missing (that is, any subset where there exists

a c � 3 such that �c and �(c � 2) are assigned the same sign and c and c � 2 are assigned

the same sign) can be obtained using the techniques in the proof of Theorem 4.1.. Also,

any subset with three consecutive sign change pairs (that is, any subset where there exists

a c > 6 such that �c;�(c� 2);�(c� 4);�(c� 6) and (c� 6); (c� 4); (c� 2); c are assigned

alternating signs) can be obtained, as the following claim shows.

Claim 4.2.a. Any subset of T containing three consecutive sign change pairs can be obtained

with n lines of computing code.

Proof. Let S be a subset of T with three consecutive sign change pairs, and let c be the

constant such that S assigns alternating signs to �c;�(c � 2);�(c � 4);�(c � 6) and to

(c� 6); (c� 4); (c� 2); c. Assume S assigns a + sign to �c. The following 5 lines of code will

build a polynomial that evaluates to a positive number for �c;�(c�4); c�4; c and evaluates

to a negative number for �(c� 2);�(c� 6); c� 6; c� 2:

y1 = x � x;
y2 = y1 � (c� 3)2;
y3 = y2

2
;

y4 = y3 � k;
y5 = y2 � y4;

where k is chosen appropriately. An appropriate k is one that causes y4 to be positive for

�c;�(c� 6); c� 6; c and negative for �(c� 2);�(c� 4); c� 4; c� 2. In other words, such a

k must make the following inequalities hold:

(c2 � (c� 3)2)2 � k = (6c� 9)2 � k = 36c2 � 108c+ 81� k > 0
((c� 6)2 � (c� 3)2)2 � k = (�6c+ 27)2 � k = 36c2 � 324c+ 729� k > 0
((c� 2)2 � (c� 3)2)2 � k = (2c� 5)2 � k = 4c2 � 20c+ 25� k < 0
((c� 4)2 � (c� 3)2)2 � k = (�2c+ 7)2 � k = 4c2 � 28c+ 49� k < 0

A k that satis�es the above inequalities is one that is less than 36c2 � 108c+ 81 and 36c2 �

324c+729 and greater than 4c2�20c+25 and 4c2�28c+49. Since for c > 3; 4c2�20c+25 >

4c2� 28c+ 49 and 36c2 � 108c+ 81 > 36c2� 324c+ 729, such a k satis�es 4c2 � 20c+ 25 <

k < 36c2 � 324c+ 729. There exists such a k if 32c2 � 304c+ 704 = 16(2c2� 19c+ 44) > 0.

Since this inequality holds for all c � 6, and the restriction on c is c > 6, a k with the correct

properties always exists.

The above 5 lines of code produce a polynomial with 6 zeros (3 symmetric pairs of zeros).

In addition to the sign changes produced by these zeros, S contains a total of at most dn�5
2
e

pairs of sign changes and single sign changes (a single sign change occurs when there exists

a positive c such that c and c � 2 are assigned the same sign but �c and �(c � 2) are

assigned di�erent signs, or visa versa). Since each pair of sign changes can be obtained with
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2 additional lines of code (by including the factor x2 � ci), and each single sign change can

be obtained with 2 additional lines of code (by including the factor x� ci), at most 2d
n�5
2
e

additional lines of code are needed to obtain the rest of the sign changes in S. For n odd

2dn�5
2
e = 2(n�5)

2
= n � 5, so the total number of lines of code needed to obtain S is n. For

n even 2dn�5
2
e = 2(n�4)

2
= n� 4. However, one of the possible sign changes in S is at 0, and

this sign change can be obtained in one line by adding the factor x, so a total of n lines of

code are needed to obtain S in this case too. ut

Now we must demonstrate how to obtain subsets of T that do not have any pairs of sign

changes missing and do not contain three consecutive sign change pairs. We claim that such

subsets must have one of the following two properties:

1. There exist 3 single sign changes k1 < k2 < k3 (a sign change ki is de�ned to be c� 1

where S assigns di�erent signs to c and c� 2) such that k2 � k1 = k3 � k2.

2. There exist 4 single sign changes k1 < k2 < k3 < k4 such that k2 � k1 = k4 � k3.

A subset of T can be represented by a string of length n + 1 from the alphabet � =

f0; 1; 2g. A 2 in the ith position of such a string represents a sign change between the ith

and the (i + 1)st points of T that is one of a symmetric pair of sign changes. A 1 in the

ith position represents a sign change between the ith and the (i + 1)st points of T that

is a single sign change. A 0 in the ith position represents that no sign change occurs in

T between the ith and the (i + 1)st points. By searching through longer and longer even

length strings (for n even, the possible sign change at 0 is omitted) it is found that all even

length strings of length at least 44 that contain at least one sign change of any possible

pair of sign changes and do not contain three consecutive sign change pairs satisfy at least

one of the above two properties. (Note: A search program was written and executed to do

this.) A string of length 42 that does not satisfy either of the two properties is the following:

221122021202202212122220202212212021220022.

If a subset S of T has property 1, then the following 4 lines of code will build a polynomial

that changes sign at k1; k2 and k3:

y1 = x� k2;
y2 = y2

1
;

y3 = y2 � (k3 � k2)
2;

y4 = y3 � y1;

S will contain, in addition to these sign changes, a total of at most dn�5
2
e pairs of sign changes

and single sign changes. A polynomial can be built using n � 5 operations to obtain these

sign changes, as explained in the proof of Claim 4.2.a. Using one more operation to multiply

the two polynomials together, the subset S can be obtained with n operations.
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If a subset S of T has property 2, then the following 5 lines of code, where k5 = k2+
k3�k2

2
,

will build a polynomial that changes sign at k1; k2; k3 and k4:

y1 = x� k5;
y2 = y2

1
;

y3 = y2 � (k3 � k5)
2;

y4 = y2 � (k4 � k5)
2;

y5 = y3 � y4;

In addition to these sign changes, S will contain a total of at most dn�7
2
e pairs of sign changes

and single sign changes, and these can be obtained with n � 7 operations. Therefore S can

be obtained with n� 1 operations.

We have demonstrated how any subset of T can be obtained using no more than n oper-

ations. Therefore, for n > 42, VCP-dimension(Pn) is at least n+ 2. ut

4.2 Upper Bounds on VCP-Dimension of Straight Line Code

One way to obtain an upper bound on the VCP-dimension of Pn is to determine the largest

number of real, distinct zeros occurring in any polynomial computed by a program in Pn.

However, since we mentioned at the beginning of the previous subsection that there are

programs in Pn that compute polynomials with a number of real, distinct zeros that is

exponential in n, this technique does not yield a good upper bound on the VCP-dimension

of the class.

To obtain better upper bounds we use recent results by Goldberg and Jerrum [GJ93] in

computational learning theory on bounding the VCP-dimension of classes parameterized by

real numbers. We use the following theorem from their work.

Theorem 4.3. [GJ93] Let C be a concept class where concepts and instances are represented

by k and n real values, respectively. Suppose that the test for membership of an instance x

in a concept c consists of an algorithm Ak;n taking k + n real inputs representing c and x,

whose runtime is t = t(k; n), and which returns the truth value x 2 c. The algorithm Ak;n is

allowed to perform conditional jumps (conditioned on equality and inequality of real values)

and execute the standard arithmetic operations on real numbers (+;�; �; =) in constant time.

Then VC-Dimension(C) = O(kt).

In our terminology a concept is a program, and an instance is an input to the program.

If we say that an instance x is in a program p (x 2 p) if and only if p(x) > 0, then the

VCP-dimension of a program class is the same as the VC-dimension of a class de�ned as in

the above theorem.
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Since we only examine programs taking one rational input, an instance can be represented

by one real value. A program p 2 Pn can be represented by 5n real values by using 5 real

numbers to encode the syntax of each line of the program. That is, line i of the program can

be represented by parameters (pi;1; pi;2; pi;3; pi;4; pi;5), where pi;1 encodes the operator, pi;2
and pi;3 encode the �rst operand, and pi;4 and pi;5 encode the second operand. The encoding

for pi;1 uses \0" for \+", \1" for \�" and \2" for \�". The encoding for pi;2 and pi;4 uses

\�1" for a constant, \0" for the input x and \j", where 1 � j � n � 1, for \yj". If the

operand is a constant, then pi;3 or pi;5 is used to store the constant, otherwise this parameter

is 0 and is not used. As an example, the following program in P3 can be represented by

p = (2; 0; 0; 0; 0; 1; 1; 0;�1; 6; 0; 2; 0; 0; 0):

p(x) := y1 = x � x;
y2 = y1 � 6;
y3 = y2 + x;
output(y3)

In order to apply Theorem 4.3., we must show how to write an algorithm that takes 5n+1

real inputs representing a program p 2 Pn and an input x and determines if p(x) > 0. The

algorithm takes O(logn) time to examine the parameters pi;j ; 1 � j � 5 and execute the code

for line i of a program. Since a program has n lines of code, the total runtime of the algorithm

is O(n logn). First the algorithm examines pi;1 to determine the operation to be performed.

Next it performs a one-sided binary search over possible values of pi;2 to determine the �rst

operand. It does the same thing to determine pi;4. Finally it performs the operation for the

ith line of code. The following is part of the code for such an algorithm.

li: if pi;1 = 0 then goto li;+
if pi;1 = 1 then goto li;�
if pi;2 = �1 then goto li;�;c
if pi;2 = 0 then goto li;�;x
if pi;2 > 1 then goto li;�;p2:1
goto li;�;y1

li;�;p2:1: if pi;2 > 2 then goto li;�;p2:2
goto li;�;y2

li;�;p2:2: if pi;2 > 4 then goto li;�;p2:3
if pi;2 = 3 then goto li;�;y3
goto li;�;y4

li;�;p2:3: if pi;2 > 8 then goto li;�;p2:5
if pi;2 > 6 then goto li;�;p2:4
if pi;2 = 5 then goto li;�;y5
goto li;�;y6

li;�;p2:4: if pi;2 = 7 then goto li;�;y7
goto li;�;y8
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li;�;p2:5: if pi;2 > 16 then goto li;�;p2:9
...

li;�;y3: if pi;4 = �1 then goto li;�;y3;c
if pi;4 = 0 then goto li;�;y3;x
if pi;4 > 1 then goto li;�;y3;p4:1
yi = y3 � y1
goto li+1

...
li;�;y3;c: yi = y3 � pi;5

Using the algorithm described above, we can apply Theorem 4.3. to obtain the following

upper bound on the VCP-dimension of the class Pn of straight line programs with n lines of

computing code.

Theorem 4.4. VCP-dimension(Pn) = O(n2 logn).

The upper bound given in the previous result depends on the operations allowed in a

straight line program. If we have a di�erent set of basic operations, then we get di�erent

bounds on the VCP-dimension. For example, if we allow not only addition, subtraction and

multiplication, but also exponentiation (denoted by ") and 
oor functions (denoted by bc),

then we �nd that the VCP-dimension of straight line programs is in�nite.

De�nition. Program class P �
n is de�ned by the following schema:

P �
n := fp j p(x) := y1 = e1;

...
yn = en;
output(yn)g;

where ei = baic or ei = ai �i bi and �i 2 f+;�; �; "g and ai; bi 2 Q [ fxg [ fyj j j < ig:

Each line of code in a program from P �
n either takes the 
oor of an operand, performs an

exponentiation, or adds, subtracts or multiplies two operands. The operands permitted are

constants, the input x, or a previous expression.
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Theorem 4.5. For n � 8, VCP-dimension(P �
n) is in�nite.

Proof. We use techniques from [GJ93] for proving lower bounds to demonstrate a subclass

of P �
8
that can shatter the set f1; 2; : : : ; dg for any d > 0. Since dummy lines can always be

added to a program, this shows that VCP-dimension(P �
n ) is in�nite for any n � 8.

The set f1; 2; : : : ; dg can be shattered by the 2d programs of the following form, where

aj = j � 2�d for 0 � j < 2d. The bit representation of each aj represents a di�erent subset

of f1; 2; : : : ; dg. When a positive integer x is input to program pj , pj extracts and outputs

the xth bit to the right of the decimal point in aj . Thus the program pj obtains the subset

fx1; : : : ; xkg where the x
th
i bit to the right of the decimal point in aj is 1 for 1 � i � k and

all other bits are 0.
pj(x) := y1 = aj ;

y2 = x� 1;
y3 = 2 " y2;
y4 = y1 � y3;
y5 = by4c;
y6 = y4 � y5;
y7 = 2 � y6;
y8 = by7c;
output(y8)

Note that only the values of the constants aj are dependent on d, so for any d > 0 a set

of 2d programs from P �
8
can be constructed to shatter f1; 2; : : : ; dg. ut

4.3 Empirically Investigating Complexity

Since there is a gap between the upper and lower theoretical bounds on the VCP-dimension

of the class Pn of straight line programs, we performed an empirical study to estimate the

complexity of this class of programs. An empirical study is also important to give an in-

dication of the \average" complexity of the class, as opposed to the worst case complexity

indicated by the VCP-dimension. Since the VCP-dimension of a program class is determined

by the existence of a set of inputs that can be shattered, the VCP-dimension may be high

even though most sets of inputs of this size cannot be shattered. Also, even though a set of

n inputs can be shattered by a program class, it may not be possible to shatter the set of

inputs with most sets of 2n programs.

The algorithm for empirically investigating complexity goes as follows:
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Algorithm to Estimate Expected Complexity

1. Generate a random input sequence of length m.

2. Generate m � 2m random programs of length n.

3. For each program, determine the subset of the input sequence that it gives.

4. Count the number of di�erent subsets obtained by the programs.

5. Repeat steps 1-4 several times to �nd the average number of distinct subsets obtainable

by a large set of programs on an input sequence of length m.

The number of di�erent subsets obtained gives a lower bound on the VCP-dimension of

the class, using a result in [HW87]. This result states that if the VCP-dimension of a class is

d, then for an input sequence S of length m, where m � d, the class will obtain no more thanPd
i=0 (

m
i ) � md + 1 di�erent subsets of S. Therefore, if a randomly selected sample from the

class Pn obtains k subsets of an input sequence of length m, then the dimension of Pn is at

least logm(k � 1).

Using this result and the empirical data in Table 1, we obtain a lower bound estimate of

3 for VCP-dimension(Pn) for n ranging from 10 to 20. This empirical lower bound is less

than the theoretical lower bound found in Section 4.1. This is because the sets of programs

in Pn that can shatter input sequences of length n+ 1 have a small probability.

Although the empirical data do not yield a useful bound on VCP-dimension(Pn), they do

give an estimate of the expected complexity of the class. We now de�ne this notion more

formally.

De�nition. The expected complexity of a class of programs P for input sizem is the expected

number of subsets of a random input sequence of length m that can be obtained by a set of

m2m randomly chosen programs.
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Table 1: Empirical Data of Expected Complexity

nnm 8 9 10 11 12 13 14 15 16

10 48 72 112 170 266 400 633 1031 1574
11 50 80 119 183 281 439 710 1106 1797
12 50 76 122 178 272 437 656 1054 1739
13 55 81 124 190 303 464 758 1207 1914
14 54 83 126 199 298 482 775 1220 2040
15 54 87 134 206 327 530 830 1338 2153
16 54 88 132 201 312 489 781 1260 2012
17 58 86 135 216 343 510 832 1333 2107
18 58 92 139 225 329 547 869 1422 2291
19 58 95 142 225 355 576 904 1454 2327
20 59 91 144 228 341 558 870 1396 2289
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We chose the bound m2m in the above de�nition for the following reason. If all subsets of

an input sequence of length m were equally likely to be obtained by a random program, then

by a well known probabilistic result, m2m random programs would be su�cient to determine

the number of subsets obtainable. The probabilistic result states that if n equally likely balls

are in an urn and n logn independent draws with replacement are made of the balls, then

the expected number of di�erent balls seen will be almost n. The \balls" in our case are

subsets of an input sequence of length m, so n is at most 2m, and thus at most m2m random

programs would be needed to determine the number of subsets. For the program classes that

we study, however, all subsets are not equally likely, but we are interested in knowing the

expected number of subsets that will be obtained from this same sample size.

For the class Pn, the expected complexity is a function of both n and m. The empirical

data above indicate that the expected complexity of Pn as a function of n for �xed m grows

linearly, and the expected complexity of Pn for a �xed n as a function of m grows as a

small degree polynomial. Because the expected complexity of Pn grows as a small degree

polynomial, only a polynomial number of random test points are needed to test a program

in this class with respect to a uniform probability distribution to ensure that with high

probability it computes a function that is approximately correct.

5 Testing If-Then-Else Statements

We now examine more complicated program classes to determine the di�culty of testing

various program constructs. We begin by looking at programs containing if-then-else state-

ments.

De�nition. We de�ne the class P if
k of programs containing one if-then-else statement as

follows:

P if
k := fp j p(x) := if a � b then

p1(x)
else
p2(x);

output(yk)g;

where � 2 f=; 6=; <;>;�;�g and a; b 2 fxg [ Q and p1; p2 2 Pk :

P if
k contains programs with one if-then-else statement where each branch contains k lines

of straight line computing code. The boolean expression in the if-then-else statement of these

programs cannot be more complicated than a comparison of the input with a constant. Let
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F if
k denote the class of functions computed by P if

k . It is obvious that Fk � F if
k since any

function in Fk can be computed by an if-then-else program that has its boolean expression

always evaluate to true and uses only the p1 block of code for computing.

5.1 Complexity of If-Then-Else Statements

In this section we compare the VCP-dimension of the class P if
k to that of straight line pro-

grams.

Theorem 5.1. VCP-dimension(P if
k ) � 2(VCP-dimension(Pk�1)).

Proof. Let VCP-dimension(Pk�1) = n and let T be a set of n points shattered by Pk�1. Let

xmin := min(T ) and xmax := max(T ), and de�ne the set T 0 := fx�(xmin�1); x�(xmax+1) j

x 2 Tg. The subset T 0
+ := fx�(xmin�1) j x 2 Tg of T 0 contains all points greater than 0 in T 0

and the subset T 0
� := fx�(xmax+1) j x 2 Tg contains all points less than 0. T 0 has cardinality

2n and it can be shattered by P if
k as follows. Given any subset S0 � T 0, let S0

+
be the subset of

S0 contained in T 0
+ and let S0

� be the subset contained in T 0
�. The set fx+(xmin�1) j x 2 S0

+g

is a subset of T , so there exists p1 2 Pk�1 that obtains this subset. Using the program p1 we

can obtain the k line program p0
1
(x) := y1 = x+ (xmin� 1); p1(y1) which obtains the subset

S0
+
of the set T 0

+
. Similarly, the set fx+(xmax+1) j x 2 S0

�g is a subset of T , so there exists

p2 2 Pk�1 that obtains this subset, and the program p02(x) := y1 = x + (xmax + 1); p2(y1)

obtains the subset S0
� of the set T 0

�. Finally, the program

p0(x) := if x > 0 then
p01(x)

else
p02(x);

output(yk)

(where the �nal \output" lines of p0
1
and p0

2
are omitted), which is in P if

k , will obtain the

subset S0 of T 0. Since the subset S0 was arbitrarily chosen, any subset of T 0 can be obtained

by P if
k , so P

if
k shatters the set T 0. ut

Theorem 5.2. VCP-dimension(P if
k ) � 2(VCP-dimension(Pk)) + 1.

Proof. Let VCP-dimension(Pk) = n, and suppose set T of cardinality 2n+ 2 is shattered by

P if
k . Consider the n + 1 smallest points in T . Since no set of n + 1 points can be shattered
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by Pk , there exists some subset S of these points that cannot be obtained by any program in

Pk. Now, consider all subsets of T that have S as the subset of the smallest n+1 points of T .

There are 2n+1 such subsets, one for each possible subset of the largest n+1 points of T . For

each of these subsets of T , the program in P if
k that obtains this subset must use both blocks of

code (that is, both clauses of the if-then-else) to obtain the subset S. Therefore, its boolean

expression must divide the n+ 1 smallest points of T into two sets. However, since the only

boolean expressions allowed are ones that compare x to a constant, any boolean expression

that divides the n + 1 smallest points of T into two sets must include all the n + 1 largest

points of T in one of these two sets. This means that each subset of T containing S obtains

a subset of the n+ 1 largest points of T using only one block of code. Therefore, this set of

n+1 points is shattered by Pk. This contradicts the fact that VCP-dimension(Pk) = n. ut

5.2 Nested vs. Sequential If-Then-Else Statements

In most large programs, many if-then-else statements are used. Sometimes these statements

follow each other in sequential order and sometimes they are nested. We now de�ne and

compare program classes containing nested if-then-else statements to classes containing se-

quential if-then-else statements to determine which are more di�cult to test.

De�nition. We de�ne the class Pnest-if
n;k of programs containing n nested if-then-else state-

ments as follows:

Pnest-if
n;k := fp j p(x) := if a1 �1 b1 then

if a2 �2 b2 then
�

�

�

if an �n bn then
p1(x)

else
p2(x)

�

�

�

else
pn(x)

else
pn+1(x);

output(yk)g;
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where �i 2 f=; 6=; <;>;�;�g and ai; bi 2 fxg [ Q and pi 2 Pk :

De�nition. We de�ne the class P
seq-if

n;k of programs containing n sequential if-then-else

statements as follows:

P
seq-if

n;k := fp j p(x) := if a1 �1 b1 then

p1(x)
else
p2(x);
...

if an �n bn then
p2n�1(x)

else
p2n(x);

output(ynk)g;

where �i 2 f=; 6=; <;>;�;�g and ai; bi 2 fxg [ Q and pi 2 Pk :

Using the same technique as in the proof of Theorem 5.1., it can be proven that VCP-

dimension(Pnest-if
n;k ) � (n + 1)(VCP-dimension (Pk�1)). That is, if a set T is shattered by

Pk�1, then a set T
0 formed from n+1 translated copies of T can be shattered by Pnest-if

n;k , where

each of the n+1 blocks of a program in Pnest-if
n;k is used to shatter one of the n+1 translated

copies of T . The following theorem �nds an upper bound for VCP-dimension(Pnest-if
n;k ) using

a similar argument as in the case of one if-then-else statement.

Theorem 5.3. VCP-dimension(Pnest-if
n;k ) � (n+ 1)(VCP-dimension(Pk)) + n.

Proof. Let VCP-dimension(Pk) = m, and suppose set T of cardinality (n + 1)(m + 1) is

shattered by Pnest-if
n;k . Consider the partition of T into n+ 1 sets of m+ 1 points, where the

m+ 1 smallest points of T are in the �rst set, the next m+ 1 points are in the next set and

so on. Since no set of m+ 1 points can be shattered by Pk , there exists a subset Si for each

of these sets of points that cannot be obtained by any program in Pk. Now, consider the

subset of T that is the union of all the Si. To obtain this subset of T , a program in Pnest-if
n;k

must contain boolean expressions that divide each of the n + 1 sets of points into di�erent

blocks of code. However, since the only boolean expressions allowed are ones that compare

x to a constant, a boolean expression can divide at most one set of points. Therefore, n + 1
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boolean expressions are needed to do this. But programs in Pnest-if
n;k only contain n boolean

expressions, so no program in Pnest-if
n;k will obtain the subset of T that is the union of the

Si. ut

In order to compare nested if-then-else constructs to sequential if-then-else constructs, we

give the following theorem which gives a lower bound for VCP-dimension(P
seq-if

n;k ).

Theorem 5.4. VCP-dimension(P
seq-if

n;k ) �VCP-dimension(Pnk)+VCP-dimension(Pnk�1) �

2nk + 1.

Proof. We use a technique similar to that used in the proof of Theorem 5.1. to prove this

theorem. Let VCP-dimension(Pnk) = m and let T be a set of m points shattered by Pnk .

Similarly, let VCP-dimension(Pnk�1) = m0 and let T 0 be a set of m0 points shattered by

Pnk�1. Let d := max(T ) and let d0 := min(T 0). If d0 > d de�ne the set S to be S := T [ T 0;

otherwise de�ne S to be S := T [ fx + (d� d0) + 1 j x 2 T 0g. Set S, which has cardinality

m+m0, contains T and a (perhaps shifted) copy of T 0.

Any subset of S can be obtained by a program in P
seq-if

n;k of the following form:

p(x) := if x � d then
p1(x)

else
p2(x);
...

if x � d then
p2n�1(x)

else
p2n(x);

output(ynk)g

where each pi 2 Pk. Since all the boolean expressions are the same, there are only two

paths that the program can take. If the input is less than or equal to d, then the program

executes p1; p3; : : :p2n�1; otherwise it executes p2; p4; : : :p2n. The code blocks p1; p3; : : :p2n�1
are chosen such that together they compute a function from Pnk that obtains the desired

subset of the m smallest points of S (that is, a subset of T ). The code blocks p2; p4; : : :p2n
are chosen such that the �rst line is y1 = x if S = T [ T 0 or is y1 = x � ((d � d0) + 1) if

S = T [ fx + (d� d0) + 1 j x 2 T 0g. The other nk � 1 lines combine to compute a function

from Pnk�1 that uses y1 as its input parameter and obtains the desired subset of T 0. That is,

it obtains the subset of T 0 whose shifted copy is the desired subset of the m0 largest points

in S.

32



Using this technique, any subset of S can be obtained, so S is shattered by P
seq-if

n;k . ut

In the following corollary we combine the results of Theorems 5.3. and 5.4. to compare

the nested branching construct with the sequential branching construct.

Corollary 5.1. For large n and k, VCP-dimension(P
seq-if

n;k ) > VCP-dimension(Pnest-if
n;k ).

Proof. Since an exact bound on VCP-dimension(Pk) is not known, we consider two cases.

1. VCP-dimension(Pk) is linear. That is, VCP-dimension(Pk) = ck + d where c; d 2 Q.

Then by Theorem 5.3., VCP-dimension(Pnest-if
n;k ) � (n+1)(ck+d)+n= nck+nd+ck+

d+n. By Theorem 5.4., VCP-dimension(P
seq-if

n;k ) � cnk+d+c(nk�1)+d = 2cnk+2d�c.

By combining these two inequalities we see that for n > ck�d+c
ck�d�1 ; 2cnk + 2d � c >

nck+nd+ck+d+n, and therefore VCP-dimension(P seq-if

n;k ) > VCP-dimension(Pnest-if
n;k ).

2. VCP-dimension(Pk) is not linear. In this case, for su�ciently large n, n( VCP-dimension

(Pk)) < VCP-dimension (Pnk). Also, since the highest degree polynomial computable

in k steps is x2
k

, for su�ciently large k, 2(VCP-dimension (Pk)) > VCP-dimension

(Pk+1). By combining these two facts and using Theorem 5.4. we see that for large n

and k, VCP-dimension (P
seq-if

n;k ) � VCP-dimension (Pnk)+ VCP-dimension (Pnk�1) >

VCP-dimension (Pnk)+
1

2
( VCP-dimension(Pnk)) > n(VCP-dimension (Pk))+

n
2
(VCP-

dimension(Pk)) = n(VCP-dimension (Pk))+ VCP-dimension(Pk)+(
n
2
�1)(VCP-dimension

(Pk)). For k > 1 and n su�ciently large, (n
2
� 1)( VCP-dimension (Pk)) > n. By

Theorem 5.3., VCP-dimension (Pnest-if
n;k ) � n( VCP-dimension (Pk))+ VCP-dimension

(Pk) + n. By combining this with the previous inequality we see that for large n and

k, VCP-dimension (P seq-if

n;k ) > VCP-dimension (Pnest-if
n;k ).

ut

This corollary shows that although nested branching constructs may be harder to under-

stand from a programmer's point of view, they are actually less complicated from a testing

point of view than are sequential branching statements.

6 Testing For Loops

Iteration is an important programming construct, so in this section we examine the complex-

ity of iteration. In particular, we look at programs containing for loops.
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De�nition. We de�ne the class P for
n;k of programs containing one for loop as follows:

P for
n;k := fp j p(x) := yj = c;

for i = l to u do
y1 = a1 �1 b1;
...

yk = ak �k bk;
output(yk)g;

where 1 � j � k and c 2 fxg [ Q and l; u 2 Z and u� l < n

and �m 2 f+;�; �g and am; bm 2 Q [ fx; ig [ fyh j 1 � h � kg:

P for
n;k contains programs with one for loop where the loop index is bounded above and

below by constants and the number of times through the loop is no more than n. There is

one initialization line before the loop and k lines of straight line computing code inside the

loop. Since a for loop must be able to access values computed in the previous iteration of

the loop, the righthand side of each line inside the loop is allowed to use any ym value, for

m between 1 and k. In order to avoid the problem of uninitialized variables, we assume that

all variables ym are initialized to 0 before the program is executed.

6.1 Complexity of For Loops

Since a for loop with constant bounds on the index variable can be unrolled into a straight

line program, every program in P for
n;k can be translated into an equivalent program in Pnk+1.

Then by applying Theorem 4.4. we can obtain an upper bound of O((nk)2 log(nk)) on the

VCP-dimension of P for
n;k . However, the structure of programs in P for

n;k is more restrictive than

that of programs in Pnk+1, so by making a closer examination of this structure we can obtain

better upper bounds on the VCP-dimension.

Any program in P for
n;k can be represented by 5k + 5 real values, where 5 real numbers are

used to encode the syntax of each line inside the loop and additional numbers are used to

encode yj , c, l and u. Using this encoding an algorithm can be written that takes as input

a program p 2 P for
n;k and an input x 2 Q and determines if p(x) > 0. The �rst part of the

algorithm is similar to the algorithm for straight line code, except that it just determines

the syntax of the body of the for loop without executing any lines of code. Since the binary

search to determine the operands for each line of code only needs to search from �2 to k

(\-2" is used to represent the loop index \i"), the runtime of the �rst part of the algorithm is

O(k log k). Next the body of the for loop is executed by the following piece of the algorithm:
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y1 = 0
...

yk = 0
yj = c

i = l

loop: y1 = a1 �1 b1
...

yk = ak �k bk
i = i+ 1
if i � u then goto loop

This piece of the algorithm has a runtime of O(nk) since it must execute the body of the

for loop once for each value of the index variable. Thus the total runtime for the algorithm

is O(k log k+ nk). Since each program is represented by O(k) real values, Theorem 4.3. can

be applied to obtain the following upper bound on the VCP-dimension.

Theorem 6.1. VCP-dimension(P for
n;k ) = O(k2(log k + n)).

6.2 Combining For Loops and If-Then-Else Statements

We now examine the complexity of two program constructs formed by combining iteration

and branching. Each of these constructs consists of a for loop with an embedded if-then-else

statement. In one construct the loop index is bounded above and below by constants, and in

the other construct the upper bound on the loop index is the input x. This change produces

a large di�erence in the testing complexity of the two constructs.

De�nition. We de�ne the class P
for(n,k),if(m)

of programs containing a for loop with an

embedded if-then-else statement and a constant upper bound on the loop index as follows:

P
for(n,k),if(m)

:= fp j p(x) := yj = a;

for i = l to u do
p1(x);
if b � c then
q1(x)

else
q2(x);

p2(x);
output(yk+m)g;

where 1 � j � k +m and a 2 fxg [ Q and l; u 2 Z and u� l < n

35



and p1 2 P 0
k1
; p2 2 P 0

k2
; qi 2 P 0

m and k1 + k2 = k

and � 2 f=; 6=; <;>;�;�g and b 2 Q [ fx; ig [ fyj j j � k1g and c 2 Q

and P 0
n := fp j p(x) := y1 = a1 �1 b1;

...
yn = an �n bn; g;

where �h 2 f+;�; �g and ah; bh 2 Q [ fx; ig [ fyj j 1 � j � k +mg:

De�nition. We de�ne the class P
for(x,k),if(m)

of programs containing a for loop with an

embedded if-then-else statement and a variable upper bound on the loop index as follows:

P
for(x,k),if(m)

:= fp j p(x) := yj = a;

for i = l to x do
p1(x);
if b � c then
q1(x)

else
q2(x);

p2(x);
output(yk+m)g;

where 1 � j � k +m and a 2 fxg [ Q and l 2 Z

and p1 2 P 0
k1
; p2 2 P 0

k2
; qi 2 P 0

m and k1 + k2 = k

and � 2 f=; 6=; <;>;�;�g and b 2 Q [ fx; ig [ fyj j j � k1g and c 2 Q :

The classes P
for(n,k),if(m)

and P
for(x,k),if(m)

contain programs with one for loop with an

embedded if-then-else statement. There is one initialization line before the loop, m lines of

straight line computing code inside each branch of the if-then-else statement, and k lines

of code inside the loop but outside the if-then-else statement. As in the class P for
n;k the

righthand side of each line inside the loop is allowed to use any yi value, for i between 1 and

k+m. In order to avoid the problem of uninitialized variables, we assume that all variables

yi are initialized to 0 before the program is executed. In class P
for(n,k),if(m)

the loop index

is bounded above and below by constants and the number of times through the loop is no

more than n, but in class P
for(x,k),if(m)

the loop index is bounded above by the input x, so

the number of times through the loop is unbounded. If the input x is not an integer, then

the upper bound on the loop index for a program in P
for(x,k),if(m)

is bxc.
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If we do not make use of the for loop in a program from P
for(n,k),if(m)

by simply recom-

puting the same function each time through the loop, then we can apply Theorems 5.1. and

4.1. and obtain a lower bound of 2m on the VCP-dimension of the class. Such a lower bound

would be obtained by a subclass of programs that use only the lines of code in the if-then-else

statement to compute a function. Similarly, we can apply just Theorem 4.1. and obtain a

lower bound of k+m+1 on the VCP-dimension of the class by using a subclass of programs

that have a boolean statement that is always true. These programs would use the m lines

of code in the true clause of the if-then-else statement and the k lines of code outside the

if-then-else statement to compute a function with straight-line code.

It is also possible to obtain a lower bound on VCP-dimension that is a function of n, the

number of times that the for loop is executed. To do this we use a class of programs that

are syntactically the same as those in P
for(n,k),if(m)

except that two initialization lines are

permitted before the for loop. The following result gives a lower bound on the VCP-dimension

of this class.

Theorem 6.2. Let class P
for(2,n,k),if(m)

contain programs that are syntactically equivalent

to those in P
for(n,k),if(m)

except that they contain two initialization lines of code before the

for loop. Then for k � 1; m � 5, VCP-dimension(P
for(2,n,k),if(m)

) � n.

Proof. The proof techniques we use are similar to those in the proof of Theorem 4.5.. We

demonstrate a subclass of P
for(2,n,1),if(5)

that can shatter the set f1; 2; : : : ; ng. Since dummy

lines can always be added to a program, this shows that VCP-dimension(P
for(2,n,k),if(m)

) � n

for any k � 1 and m � 5.

pj(x) := y2 = aj ;
y6 = 1; (or y6 = �1)
for i = 1 to n do

y1 = 2 � y2;
if y1 � 1 then
y2 = y1 � 1;
y3 = x� i;
y4 = i� x;
y5 = y3 � y4;
y6 = y6 � y5;

else
y2 = y1;
y3 = 0;
y4 = 0;
y5 = 0;
y6 = y6 � 1;

output(y6)
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The set f1; 2; : : : ; ng can be shattered by the 2n programs of the form shown above, where

aj = j � 2�n for 0 � j < 2n. The bit representation of each aj represents a di�erent subset

of f1; 2; : : : ; ng. When an integer x between 1 and n is input to program pj , pj determines

the xth bit to the right of the decimal point in aj and outputs a positive number if it is 0

or outputs 0 if it is 1. Thus the program pj obtains the subset fx1; : : : ; xkg of f1; 2; : : :ng,

where for 1 � i � k the xthi bit to the right of the decimal point in aj is 0 and the rest of

the �rst n bits to the right of the decimal point are 1.

The second initialization line of program pj is y6 = 1 if the constant aj has an even

number of 1's in its bit representation, and it is y6 = �1 if aj has an odd number of 1's.

The ith iteration through the for loop extracts the ith bit to the right of the decimal

point in aj . If this bit is one, then the factor (x� i) � (i� x) is multiplied to y6, otherwise y6
is not changed. Note that if x 6= i then the factor (x� i) � (i� x) is negative. If the xth bit

to the right of the decimal point in aj is 0, then on input x program pj multiplies an even

number of negative factors together to get the �nal value of y6, so pj(x) > 0. If the xth bit

to the right of the decimal point in aj is 1, then on input x the xth iteration through the

for loop multiplies the factor (x� i) � (i� x) = 0 to y6, so pj(x) = 0. Therefore the subset

of f1; 2; : : :ng represented by the zeros in the �rst n bit positions to the right of the decimal

point in aj is obtained by program pj . ut

We get the following upper bounds on the VCP-dimension of the classes P
for(n,k),if(m)

and P
for(x,k),if(m)

.

Theorem 6.3. VCP-dimension(P
for(n,k),if(m)

) = O(n(k+m)2 log(k +m)).

Proof. We show that any program in P
for(n,k),if(m)

can be represented by O(k + m) real

values, and we describe an algorithm with O(n(k+m) log(k+m)) runtime that can determine

for any p 2 P
for(n,k),if(m)

and x 2 Q whether p(x) > 0. Then by applying Theorem 4.3. we

obtain the desired bound.

Any program in P
for(n,k),if(m)

can be represented by 5(k+2m)+10 real values. Parameters

p1;i; : : : ; pk;i, where 1 � i � 5, encode the syntax of the k lines of code inside the for loop but

outside the if-then-else statement, parameters pk+1;i; : : : ; pk+m;i, where 1 � i � 5, encode

the syntax of the m lines of code inside the true clause of the if-then-else statement, and

parameters pk+m+1;i; : : : ; pk+2m;i, where 1 � i � 5, encode the syntax of the m lines of code

inside the false clause of the if-then-else statement. Three additional parameters encode

the initialization line yj = a, four parameters encode the boolean clause b � c, and three

parameters store k1; l and u.

The algorithm to evaluate p(x) for any program p 2 P
for(n,k),if(m)

and any x 2 Q �rst
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evaluates the initialization line and then enters a loop to evaluate the body of the for loop.

After evaluating each line of code, it checks whether k1 lines have been evaluated and, if so,

jumps to a place that evaluates the if-then-else statement. Next it evaluates the remaining

lines of code outside the if-then-else statement. Since the binary search to determine the

operands for each line of code only needs to search from �2 to k +m, the algorithm takes

O(log(k + m)) time to evaluate each line of code. Each pass through the loop evaluates

k + m lines of code, and the loop is executed at most n times, so the total runtime is

O(n(k+m) log(k+m)). ut

The following code illustrates part of the algorithm from the proof of Theorem 6.3.:

init: code for yj = a

i = l

loop: j = 1
if j > k1 then goto l0
code for line y1
j = j + 1
if j > k1 then goto l1

...
lk1 : code for boolean clause b � c

if boolean clause true then goto lk1;t
lk1;f : code for line yk1+1 using pk+m+1;i; 1 � i � 5

...
code for line yk1+m using pk+2m;i; 1 � i � 5
goto lk1;k2

...
lk1;k2 : code for line yk1+m+1 using pk1+1;i; 1 � i � 5

...
code for line yk+m using pk;i; 1 � i � 5
i = i+ 1
if i � u then goto loop

Using techniques similar to those in Theorems 4.5. and 6.2. we can show that the VCP-

dimension of the class P
for(x,k),if(m)

is in�nite.

Theorem 6.4. For k � 1; m � 2, VCP-dimension(P
for(x,k),if(m)

) is in�nite.

Proof. We demonstrate a subclass of P
for(x,1),if(2)

that can shatter the set f1; 2; : : : ; dg for
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any d > 0. Since dummy lines can always be added to a program, this shows that VCP-

dimension(P
for(x,k),if(m)

) is in�nite for any k � 1 and m � 2.

The set f1; 2; : : : ; dg can be shattered by the 2d programs of the following form, where

aj = j � 2�d for 0 � j < 2d. The bit representation of each aj represents a di�erent subset

of f1; 2; : : : ; dg. When a positive integer x is input to program pj , pj extracts and outputs

the xth bit to the right of the decimal point in aj . Thus the program pj obtains the subset

fx1; : : : ; xkg where the x
th
i bit to the right of the decimal point in aj is 1 for 1 � i � k and

all other bits are 0.

pj(x) := y2 = aj ;
for i = l to x do

y1 = 2 � y2;
if y1 � 1 then
y2 = y1 � 1;
y3 = 1

else
y2 = y1;
y3 = 0;

output(y3)

Note that only the values of the constants aj are dependent on d, so for any d > 0 a set

of 2d programs from P
for(x,1),if(2)

can be constructed to shatter f1; 2; : : : ; dg. ut

Theorem 6.4. shows that even simple program classes can be complex from a testing point

of view. This indicates that program constructs that are simple from a syntactic point of

view may not necessarily be simple to test. In particular, if there is not an upper bound on

the number of times that a construct can be executed, it may lead to programs that are not

randomly approximately testable.

7 Conclusion

Determining the di�culty of testing a program is an important part of assessing the complex-

ity of the program. Since exact testing of a program is usually impossible, it is reasonable

to use an approach that determines the di�culty of approximately testing the program. We

have done this by de�ning a measure of testing complexity known as VCP-dimension and ap-

plying this measure to classes of programs, each with the same syntactic structure. We have

investigated the VCP-dimension of straight line code, if-then-else constructs, and for loops.

We plan to apply this measure to other program constructs and combinations of constructs.

We also have empirically studied the expected complexity of straight line code.
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