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Abstract

In the single rent-to-buy decision problem, without a priori knowledge of the amount of time
a resource will be used we need to decide when to buy the resource, given that we can rent the
resource for $1 per unit time or buy it once and for all for $c. In this paper we study algorithms
that make a sequence of single rent-to-buy decisions, using the assumption that the resource use
times are independently drawn from an unknown probability distribution. Our study of this rent-
to-buy problem is motivated by important systems applications, speci�cally, problems arising
from deciding when to spindown disks to conserve energy in mobile computers [DKM, LKH,
MDK], thread blocking decisions during lock acquisition in multiprocessor applications [KLM],
and virtual circuit holding times in IP-over-ATM networks [KLP, SaK].

We develop a provably optimal and computationally e�cient algorithm for the rent-to-buy
problem. Our algorithm uses O(

p
t) time and space, and its expected cost for the tth resource use

converges to optimal as O(
p
log t=t), for any bounded probability distribution on the resource

use times. Alternatively, using O(1) time and space, the algorithm almost converges to optimal.
We describe the experimental results for the application of our algorithm to one of the

motivating systems problems: the question of when to spindown a disk to save power in a mobile
computer. Simulations using disk access traces obtained from an HP workstation environment
suggest that our algorithm yields signi�cantly improved power/response time performance over
the non-adaptive 2-competitive algorithm which is optimal in the worst-case competitive analysis
model.
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1 Introduction

The single rent-to-buy decision problem can be described as follows: we need a resource for an

unknown amount of time, and we have the option to rent it for $1 per unit time, or to buy it once

and for all for $c. For how long do we rent the resource before buying it? The best algorithm

with full prior knowledge of how long the resource will be needed (an o�ine algorithm) will buy

the resource immediately if the resource will be needed for at least c time units and rent otherwise.

An online algorithm (i.e., one without a priori knowledge of how long the resource will be needed)

that rents the resource for c units of time and then buys it incurs a cost of at most 2 times the cost

of the best o�ine algorithm. This competitive factor1 of 2 is the best possible (for deterministic

algorithms) in the worst case [KMM]. If we know of a probability distribution on the time the

resource is needed, we can usually �nd a rent-to-buy strategy whose expected cost is substantially

less than that of the online algorithm that waits c time units before buying.

In this paper we are interested in the rent-to-buy problem described above with two important

additional features motivated by practical applications. Many interesting systems problems can

be modeled well by a sequence of single rent-to-buy problems. To solve the tth single rent-to-buy

problem (or the tth round), the online algorithm can use what it has learned from the previous

t�1 rounds. (The online algorithm that waits for c time before buying in each round is still within

a factor of 2 of the best possible.) We call this the sequential rent-to-buy problem, or just the rent-

to-buy problem. In these real-life situations we can assume that the time for which the resource

is needed in each round is drawn from a probability distribution. However, it is unreasonable to

assume that the distribution is known a priori. We now describe three interesting problems modeled

by a sequence of rent-to-buy decisions.

The Disk Spindown Problem. Energy conservation is an important issue in mobile computing.

Portable computers run on battery power and can function for only a few hours before draining

their batteries. Current techniques for conserving energy are based on shutting down components

of the system after reasonably long periods of inactivity. Recent studies show that the disk sub-

system on notebook computers is a major consumer of energy [DKM, LKH, MDK]. Most disks

used for portable computers (e.g., the small, light-weight Kittyhawk from Hewlett Packard [Pac])

have multiple energy states. Conceptually, the disk can be thought of as having two states: the

spinning state in which the disk can access data but consumes a lot of energy and a spundown

state in which the disk consumes e�ectively no energy but cannot access data.2 Spinning down a

disk and spinning it up consumes a �xed amount of energy and time (and also produces wear and

tear on the disk). During periods of inactivity, the disk can be spundown to conserve energy at the

expense of increased latency for the next request. The disk spindown problem is to decide when to

spindown the disk so as to conserve energy, with acceptable latency.

The disk spindown scenario can be modeled as a rent-to-buy problem as follows. A round is

the time between any two requests for data on the disk. For each round, we need to solve the disk

spindown problem. Keeping the disk spinning is viewed as renting, since energy is continuously

expended to keep the disk spinning. Spinning down the disk is viewed as a buy, since the energy

to spindown the disk and spin it back up upon the next request is independent of the remaining

amount of time until the next disk access. The cost of the increased latency in serving the next

disk access can also be integrated into the cost of the buy, if the algorithm is given as an input the

1A k-competitive algorithm incurs a cost of at most O(1) plus k times the cost of the optimal o�ine algorithm.
2In general, the disks provide more than just two power management states, but only one state, the fully spinning

state, allows access to data.
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relative importance of conserving energy and responding quickly to disk accesses. (This is discussed

in detail in Section 6.) Based on observations of disk access patterns in workstation environments

[RuW], the times between accesses to disk (which de�ne the rounds) can be assumed to be generated

by a probability distribution. The disk spindown problem will be our main motivating application

for this study.

The Spin/Block Problem. Another interesting and important problem from multiprocessor

applications, the spin/block problem, involves threads trying to acquire locks to protect access to

shared data [KLM]. A round is de�ned by a thread requesting locked data and eventually acquiring

the lock. In a round, the system can have the thread wait (or spin) until the lock is free, incurring

a �xed cost per unit time for wasted processor cycles, or block and incur a higher context switch

overhead. The spinning can thus be viewed as renting, and a block can be viewed as a buy. In

this situation too, practical studies suggest that lock-waiting times can be assumed to obey some

unknown but time-invariant probability distribution [KLM].

The Virtual Circuit Problem. Deciding virtual circuit holding times in IP-over-ATM networks

is another scenario modeled by the rent-to-buy framework [SaK]. When carrying Internet protocol

(IP) tra�c over an Asynchronous Transfer Mode (ATM) network, a virtual circuit is opened upon

the arrival of an IP datagram, and the ATM adaptation layer has to decide how long to hold a

virtual circuit open. There are many possible pricing policies for virtual circuit holding times. As

described in [SaK, Section 5], in future ATM networks, it is expected that a large number of virtual

circuits could be held open by paying a charge per unit time to keep the circuit open. Keeping the

virtual circuit open can be thought of as a \rent" while closing it can be considered a \buy." The

inter-arrival time of packets on a circuit (i.e., the resource use times in the rent-to-buy model) can

be modeled as being drawn independently from a probability distribution [LPR, SaK].

An algorithm for the sequential rent-to-buy problem can be visualized in two ways. In any

round, the algorithm can be thought of as making sequential binary decisions of \should I buy

now?" Alternatively, we can think of the algorithm as setting a threshold or cuto� on the cost

it is willing to accrue before buying, and behaving according to the cuto�. These two views are

trivially equivalent; we adopt the second for convenience. There are two important requirements of

any good online algorithm for the rent-to-buy problem: the algorithm should produce good cuto�s,

and it should use minimal space and time to output its cuto�s. In this paper we develop online

algorithms for the rent-to-buy problem in probabilistic environments, assuming that the resource

use times are independently randomly drawn from a �xed but unknown probability distribution.

The most straightforward solution to the problem [KMM] is to store all past resource use times,

and use that cuto� b for the current round which would have had the lowest total cost had we used

it in the past. Straightforward application of results of Vapnik [Vap] implies that the expected rent-

to-buy cost of this strategy converges to that of the best �xed cuto�. One can easily see that the

cuto� b at any given time falls on (actually, near) one of the past resource use times; however, even

taking this into account, this solution is computationally expensive. For the tth round, this solution

would need space and time proportional to O(t), and this is unacceptable in system environments.

In this paper, we develop an algorithm L for the rent-to-buy problem which, for arbitrary prob-

ability distributions with support on [0;M ], converges to optimal; i.e., the cost of the algorithm

converges to the cost of the best algorithm with full prior knowledge of the distribution. More im-

portantly, for the tth round that lasts xt time, the algorithm uses O(c
p
t) space, generates its cuto�s

in O(1) time, and uses O((minfxt; cg)
p
t+log(ct)) time to update its data structures. Alternatively,

our algorithm can be adapted to work in a situation when the space it can use is limited. Presented

2



with O(s) space, our algorithm Ls uses O(1) time to generate cuto�s, O((minfxt; cg)s + log(cs))

time to update its structures, and almost converges to optimal, being away from optimal additively

by O(minfM; cg=s). The O(xt) component of the time used in updating the data structure can be

done \on the y" as the round is progressing. For example, in the disk spindown scenario, let the

tth idle time at disk be z < c seconds. Before the idle period starts, algorithm Ls outputs its rec-

ommended spindown threshold using O(1) time, and updates its data structure in O(zs+ log(ct))

time. The updates corresponding to the \zs" term can be done while the disk is waiting for the

next access.

Most practical situations are well-modeled by bounded distributions. For example, in the disk

spindown scenario, any reasonable algorithm will spin down the disk after a few minutes (say,

30 minutes) since the last access. Therefore, all idle times at disk greater than 30 minutes are

practically equivalent, and can be assumed to be 30 minutes without loss of generality, resulting in

a distribution with bounded support.

Simulations of our algorithm on disk access traces obtained from HP show that by giving a

suitable value of c to our algorithm, we e�ectively trade power for response time (latency). In

Section 6 we introduce the natural notions of excess energy and e�ective cost. The \excess energy"

discounts from the total energy the portion that every algorithm would have to spend; the e�ective

cost is a measure that merges the e�ects of energy conservation and response time performance

into one metric based on a user speci�ed parameter a, the relative importance of response time

to energy conservation. (The buy cost c varies linearly with a.) We show that our algorithm L is

best amongst the online algorithms considered in terms of e�ective cost for almost all values of a,

saving e�ective cost by 6{25% over the optimal online algorithm in the competitive model (i.e.,

the 2-competitive algorithm that spins down the disk after waiting c seconds). In addition, for

small values of a (corresponding to when saving energy is critical), our algorithm when compared

against the 2-competitive algorithm reduces excess energy by 17{60%, and when compared against

the 5 second threshold, it reduced excess energy by 6{42%.

1.1 Related Work

The single rent-to-buy problem has been studied in the worst-case setting and e�cient deterministic

and randomized algorithms have been developed for the problem by Karlin et al. [KMM]. In partic-

ular, 2-competitive deterministic algorithms and e=(e�1)-competitive randomized algorithms have

been developed. In [KMM] it was claimed that there is an adaptive algorithm achieving a com-

petitive ratio approaching e=(e � 1) on input sequences generated according to any time invariant

probability distribution. However, their technique as stated is computationally ine�cient.

For the disk spindown problem, current mobile computers spin disks down after about �ve

minutes of inactivity. In [DKM, LKH], the authors propose a more aggressive spindown policy,

and support their proposal by simulation studies on workstation and notebook traces. The studies

suggest that the gain in energy often overshadows the loss in response time. In [DKM], the com-

parison of �xed-threshold strategies is made against optimal o�ine algorithms. The authors also

mention trying out predictive disk spindown policies. Adaptive spindown policies that continually

change the spindown threshold based on perceived inconvenience to the user are studied in [DKB].

In [Gre], Greenawalt looks at the disk spindown problem assuming a Poisson arrival of requests at

disk, and studies disk spindown and reliability issues.

Karlin et al. in [KLM] have studied the spin/block problem empirically, evaluating di�erent

spin/block strategies including �xed-threshold and adaptive strategies. The virtual circuit problem

has been empirically studied by Saran et al. [SaK], where they propose a Least Recently Used
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(LRU)-based holding time policy as performing well in their studies. The �rst LRU-based holding

time policy they study is the 2-competitive algorithm described earlier in this paper, and their

second holding time policy involves estimating the mean inter-reference interval with exponential

averaging. In [KLP], Keshav et al. empirically study an adaptive policy for the virtual circuit

problem that tries to estimate the distribution of inter-arrival times by keeping a histogram of

observed inter-arrival times grouped into �xed size buckets.

In Section 2, we describe the main analytical results of the paper. We present algorithm A�

in Section 3; algorithm A� lies at the heart of our optimal rent-to-buy algorithms, L and Ls.

We analyze algorithm A� for space used, computational time, and convergence rate in Section 4.

We describe how algorithm A� can be used to get algorithms L, Ls in Section 5. We explain in

Section 6 precisely how the disk spindown problem can be modeled in the rent-to-buy framework,

when the user is concerned about energy conservation and response time performance. We present

our experimental results in Section 7 and conclude in Section 8.

2 De�nitions and Main Analytical Results

We denote the reals by IR, the nonnegative reals by IR+, and the positive integers by IN. An online

rent-to-buy algorithm is given the relative cost c � 1 of buying. It works in rounds, where in the

tth round, it �rst formulates a cuto� on the amount of time it will wait before buying, and then

gets the tth resource use time. A rent-to-buy algorithm de�nes a mapping from [n2IN(IR+)n (the

past resource use times) to IR+ (the cuto� generated). In other words, A(x1; x2; : : : ; xt) is the

cuto� generated by algorithm A in the (t+ 1)st round, when the previous resource use times were

x1; x2; : : : ; xt. If the resource use time in any round is x, then the cost of choosing cuto� b is

costc(x; b) =

(
x if x � b

b+ c otherwise.

For the disk spindown problem, the resource use time in round t corresponds to the tth idle time

at disk, and a cuto� is a spindown threshold.

Our �rst main result is an algorithm L that approaches optimal and is e�cient in terms of the

space and time it uses.

Theorem 1 For any c > 1, M > 1, there is a rent-to-buy algorithm L that on round t with resource

use time xt,

� uses O(c
p
t) space

� outputs its choice of cuto� in O(1) time, and updates its data structures in O((minfxt; cg)
p
t+

log(ct)) time, and

� incurs a cost that approaches optimal: there exists k such that for any distribution D on

[0;M ], for all large enough t 2 IN,

E~x2Dt(costc(xt; L(x1; :::; xt�1))) � inf
a
Ez2D(costc(z; a)) + k

s
ln t

t
:

Note that in Theorem 1, the same k can used for any distribution with support on [0;M ].

Further, the time and space bounds are independent of D as well. It is easy to adapt algorithm L
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to get algorithm L0 that successively increases its estimate of M , and converges to optimal for any

distribution. However, the convergence rate of algorithm L0 would depend on the distribution.

In many practical situations, we would like to �x the amount of space and time used by our algo-

rithm while converging approximately, rather than exactly, to optimal. Algorithm Ls, a restricted

space version of Algorithm L, can be used in this scenario.

Theorem 2 When presented with s > k ln2(M+c) ln ln(M+c) bytes of space, where k is a constant

independent of M and c, for the tth round, algorithm Ls outputs its choice of cuto� in O(1) time,

updates its data structures in O((minfxt; cg)s + log(cs)) time, and for any probability distribution

D on [0;M ] for all large enough t 2 IN, converges approximately to optimal:

E~x2Dt(costc(xt; Ls(x1; :::; xt�1))) � inf
a
Ez2D(costc(z; a)) +O

�
minfc;Mg

s

�
:

We simulated our algorithms for the disk spindown problem using disk access traces obtained

from an HP workstation environment. Our simulation results are described in Section 7.

One obvious approach to attack the rent-to-buy problem in probabilistic environments is to learn

the distribution on times for the rounds, calculate the optimal cuto� for the estimated distribution,

and output that cuto� for each round. This is unacceptable from the computational standpoint.

In our algorithms, we bypass the estimation of the distribution, directly estimating the e�cacy of

di�erent cuto� points. The analysis is complicated, however, by the fact that there are in�nitely

many cuto� points to evaluate at any given time on the basis of a �nite number of samples from

the distribution. We show for the rent-to-buy problem that to get a good solution, it is su�cient

to consider a small �nite set of possible cuto� points. The appropriate choice of this set depends

on the distribution, and is done using the information gained in early rounds. We call this basic

strategy that chooses the appropriate set of possible cuto�s and evaluates them to determine the

best cuto� to use in any round as algorithm A�.

Our algorithm L is based on algorithm A�. It chooses from among successively larger �nite

sets of possible cuto� points to converge to optimal. A tree data structure, which is modi�ed

dynamically, is used to store the estimated quality of each considered cuto� point. Algorithm Ls

sets appropriate parameters based on the available space s, and uses algorithm A� to converge

approximately to optimal.

We �rst describe algorithm A� which lies at the heart of our optimal algorithms L and Ls.

3 The Main Idea: Algorithm A�

Algorithm A� takes as parameters � and M , and attempts to achieve an expected cost on a given

round which is at most � greater than the expected cost incurred by the optimal cuto�. We will

also call a resource use time an \example." Our algorithms estimate optimal cuto�s based on past

resource use times; in other words, they estimate optimal cuto�s based on the examples they have

seen.

Algorithm A� works in two stages. In the �rst stage, it uses a small number of examples to

generate a small number of candidate cuto�s. (For the small number of rounds that constitute

the �rst stage, the algorithm chooses an arbitrary cuto�, say buying immediately.) It �xes these

candidate cuto�s and then starts its second stage. For the tth round in the second stage, it

evaluates the candidate cuto�s on the past t� 1 examples, and chooses the cuto� with minimum

total cost. The important point is that these small number of candidate cuto�s when generated
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carefully are su�cient to achieve a small enough cost, as described in Section 4.2. Also, updating

these cuto�s can be done e�ciently, as described in Section 4.3. We call an � such that 0 < � <

1=(ln2(M + c) ln ln(M + c)) a suitable epsilon; for technical reasons, we assume in our discussions

that � is suitable.

Note that the problem is trivial if c �M , since no reasonable algorithm would ever buy in this

case; the case of interest is when c�M .

3.1 First Stage

In the �rst stage, algorithm A� generates candidate cuto�s b0; b1; : : : ; bv by partitioning [0;M ] into

v intervals. Intuitively, to be accurate in its estimations in the second phase, algorithm A� wants

these candidate cuto�s to be close in one of two senses: either that the probability of a point falling

between them is not too large, or in absolute distance. However, for computational e�ciency, we

do not want too many candidate cuto�s. Hence, algorithm A� attempts to partition [0;M ] into

v � d4c=�e intervals, such that

1. each interval is at least �=2 in length, and

2. if an interval has length > �=2, then the interior of the interval has probability at most �=2c.

The endpoints of the intervals de�ne the candidate cuto�s.

We say that an interval satis�es the computational criterion if it is at least �=2 in length, and that

it satis�es the density criterion if the probability of the interval is at most �=2c. (In other words,

at the end of the �rst stage, algorithm A� ensures that every interval satis�es the computational

criterion, and intervals of length greater than �=2 satisfy the density criterion.) Conceptually, we

can think of algorithm A� as generating v0 intervals that each satisfy the density criterion, and

then moving the potential cuto�s apart (discarding intervals of size 0) to get v � v0 intervals such

that the computational criterion holds for each interval. As a result of the VC theory [BEH, VaC],

it is easy to partition [0;M ] into v intervals satisfying the density criterion with high probability,

by storing � = �(v ln v) examples, and calling a procedure generate cutoffs(w; �; �) on [0;M ].

The procedure generate cutoffs breaks a speci�ed interval into w intervals by taking a set �

of � examples, and ensuring that in any interval we have �=w examples from �. (The procedure

generate cutoffs can be implemented by sorting � to get � and iteratively moving through �=w

examples in � to de�ne the intervals.)

Algorithm A� implements its �rst stage in a space e�cient manner by storing at most O(v)

examples at any time. It performs the �rst stage in three phases. In the �rst phase, algorithm A�

partitions [0;M ] \roughly" into B big intervals, and in the second phase it re�nes these big in-

tervals one by one into approximately v0=B intervals each. While re�ning a speci�c big interval,

algorithm A� discards examples that do not fall in the big interval. In the third phase, algorithm A�

moves potential candidate cuto�s apart to ensure that the computational criterion is met.

Formally, algorithm A� works as follows. Let � = �=(4(c +M)), and let the array � store

the examples being retained by algorithm A�. In the �rst phase, it divides the interval [0;M ]

into B = k ln(1=�)=2 big intervals (where k is a constant independent of �, M , and is as

de�ned in Lemma 2). It does this by collecting �1 = 4kB ln(2B=�) examples and calling

generate cutoffs(B; �1; �) on interval [0;M ]. The second phase consists of B subphases, where

in the ith subphase, algorithm A� divides the ith big interval into d4c=(B�)e intervals. It does

this by sampling at most �02 = 4B(�2 + ln(2B=�)) examples, where �2 = 4kc ln(4c=(��))=(�B), and

storing the �rst �2 examples that fall within the ith big interval. Let �2;i � �2 be the number
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of examples stored in the ith subphase. Algorithm A� calls generate cutoffs(d4c=(B�)e; �2;i; �)
on the ith big interval. (We will see in Section 4.1 that �2;i = �2 with high probability.) At the

end of the second phase, we are left with the required v0 � d4c=�e intervals. In the third phase,

algorithm A� ensures that the computational criterion is met. Let the ith interval at the end of the

second phase be [l0i; r
0
i). Algorithm A� sets l0 = 0, r0 = max(�=2; r00), and processes the intervals

iteratively by setting li = ri�1, and ri = max(r0i; li + �=2). The ith interval is de�ned to be [li; ri),

and intervals such that li = ri are discarded. The total number of resulting intervals is v � d4c=�e.
The candidate cuto�s are de�ned to be bi = li, 0 � i < v, bv =M .

3.2 Second stage

In the second stage, algorithm A� repeatedly chooses the cuto� from among those in fb0; b1; :::; bvg
that performed the best in the past. Formally, it formulates its tth cuto� in the second stage as

follows. If x1; x2; :::; xt�1 are the resource use times previously seen in the second stage, for all

i 2 IN; 0 � i � v, algorithm A� sets

qi =
t�1X
j=1

costc(xj ; bi):

It uses a bi for which qi � qk for all k 2 f0; :::; vg as its cuto� for the tth round.

We now study the performance of algorithm A� in terms of space used, the convergence rate,

and time required for updates.

4 Goodness of Algorithm A�

In Section 4.1, we see that algorithm A� can be implemented with O(v) space, and generates good

cuto�s with high probability. In Section 4.2 we see that the distance algorithm A� is away from

optimal approaches � as t gets large, and in Section 4.3 we see that in the second stage the strategies

can be updated e�ciently with a tree-based data structure.

4.1 Guarantees about the First Stage

Let � = �=(4(c +M)), B = k ln(1=�)=2, �1 = 4kB ln(2B=�), and �2 = 4kc ln(4c=(��))=(�B) be

as de�ned in Section 3.1. From the discussion in Section 3.1, it follows that the space used by

Algorithm A� in the �rst stage is bounded by the number of examples we use at any time plus the

number of cuto�s we retain; i.e., the space used is bounded by B+v+maxf�1; �2g = O(v) = O(c=�).

The operations in the third phase of the �rst stage ensure that every interval satis�es the

computational criterion. We say that the �rst stage fails if at the end of the �rst stage there is

an interval of length greater than �=2 not satisfying the density criterion. The event that the �rst

stage fails is a subset of the event that at the end of the second phase, there is some interval that

does not satisfy the density criterion.

Let `� be the total number of examples we see in the �rst stage; i.e., all examples, including the

ones we discard. We now see that the �rst stage fails with low probability (i.e., probability 2�).

Lemma 1 Let `� =
l
kc ln2 ((c+M)=�) =�

m
be the number of examples seen in the �rst stage (where

k is as de�ned in Lemma 2), let � = �=(4(c+M)), and let E1 be the event that the �rst stage fails.

Then, for any � that is suitable, Pr(E1) � �=(2(c +M)).
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To prove the above lemma, we use a technique due to Kearns and Schapire [KeS]. Lemma 2

below follows immediately from the results of Blumer et al. [BEH] using the techniques of Vapnik

and Chervonenkis [VaC]. Informally, Lemma 2 says that m points are enough to simultaneously

estimate the probabilities of every interval.

Lemma 2 Choose 0 < �; � � 1=2; c � 1; and a probability distribution D on IR+. Then there

exists k > 0 such that if m =
l
k
�
(ln 1

�
+ ln 1

�
)
m
then

Pr~x2Dm

�
9a; b s.t. PrD((a; b)) � 2� and

1

m
jfj : xj 2 (a; b)gj � �

�
� �

and

Pr~x2Dm

�
9a; b s.t. PrD((a; b)) � �=2 and

1

m
jfj : xj 2 (a; b)gj � �

�
� �:

The standard Cherno� bounds will be helpful to prove Lemma 1.

Lemma 3 (Cherno�) For t independent Bernoulli trials each of which has a probability of success

at least p, let LE(p; t; r) denote the probability that there are at most r successes in the t trials.

Then, for 0 < p < 1, and 0 � q � p,

LE(p; t; qt) � e�(p�q)
2t=2p

Proof of Lemma 1: The value for `� was obtained by assuming that the �rst phase requires

us to look at �1 = 4kB ln(2B=�) examples, and the ith subphase of the second phase requires

us to look at a total of �02 = 4B(�2 + ln(2B=�)) examples, where �2 = 4kc ln(4c=(��))=(�B), and

B = k ln(1=�)=2. We bound the probability of the �rst stage failing by the probability of the event

that at the end of the second phase there is some interval that does not satisfy the density criterion.

We say that the �rst phase fails, if any big interval generated in the �rst phase has probability

greater than 2=B or less than 1=2B. We say that the ith subphase fails if any interval generated

in the ith subphase has probability greater than �=2c; the second phase fails if for any i, the ith

subphase fails. The lemma is proved if we can bound the probability of the �rst phase failing or any

of the subphases failing by �=B, since the net failure probability is then bounded by (�=B)�(B+1) �
�=(2(c +M)).

From Lemma 2, by setting � = 1=B and � = �=(2B), we can easily verify that if we look at �1
examples, the �rst phase fails with probability at most �=B. We now assume that the �rst phase

did not fail; i.e., the probability of any big interval is between 1=2B and 2=B. We could fail in

the ith subphase if we either do not get �2 examples in the ith big interval, or if after using the �2
examples we get an interval with probability > �=2c. From Lemma 3, by substituting p = 1=(2B),

r = �2, and t = �02, we see that the probability that the number of examples that fall in the ith big

interval is less than �2 is at most �=(2B). From Lemma 2, by setting � = �B=(4c) and � = �=(2B),

we see that the probability that the �2 examples did not divide the ith big interval into subintervals

with probability � �=2c is at most �=2B. Hence the probability of the ith subphase failing is at

most �=B. 2

4.2 Convergence of Algorithm A�

We have seen that the �rst stage works with high probability. The main result of this subsection

is to bound the performance of A�.

8



Theorem 3 Choose M , c such that M > c � 1. Choose any � that is suitable, and let m =l
kc ln2 ((c+M)=�) =�

m
be the number of examples seen by algorithm A� in the �rst stage, where

k is de�ned as in Lemma 2. There exists k1 > 0 such that for su�ciently large t 2 IN, for any

distribution D on [0;M ],

E(~u;~x)2Dm�Dt(costc(xt; A�(u1; :::; um; x1; :::; xt�1)))

� (infaEz2D(costc(z; a))) + �+ k1(c+M)

r
ln ((c+M)t=�)

t :

To prove the above theorem, we �rst show that if the �rst stage was successful, then one of the

possible cuto�s bj generated in the �rst stage is only �=2 away from optimal (Lemma 4). Intuitively,

by choosing the cuto� with minimal cost in the second stage, we are close to bj in cost. We then

bound the error in expected cost resulting from the �rst stage failing and prove Theorem 3.

Lemma 4 Choose 0 < � � 1=2, c � 1, s 2 IN, and a probability distribution D on [0;M ]. Choose

0 = b0 < b1 < ::: < bs =M: If for all j 2 f1; :::; sg, either PrD((bj�1; bj)) � �=2c, or bj�bj�1 = �=2,

then there exists i� 2 f0; :::; sg such that

Ez2D(costc(z; bi�)) � inf
a
Ez2D(costc(z; a)) +

�

2
:

Proof : Intuitively, if the optimal cuto� lies between bj�1 and bj , the way in which the candidate

cuto�s were chosen ensures that the interval (bj�1; bj) is \small enough" (in probability or absolute

size) so that one of bj�1 or bj is close to optimal.

Assume without loss of generality that no bi is exactly optimal; i.e., for all � > 0, there exists

an a� 62 fb0; :::; bsg, such that costc(z; a
�) = infaEz2D(costc(z; a)) + �. Choose � > 0 and �x a�,

bj�1 < a� < bj. We now show that one of i� = j � 1 or i� = j satis�es the lemma.

Case 1. Pr(bj�1; bj) � �=2c. In this case, we show that the lemma holds with i� = j � 1. If a

resource use time z lies outside of the interval [bj�1; a
�), then the cuto� a� incurs at least as much

cost as the cuto� bj�1, since a
� > bj�1. If the resource use time z 2 (bj�1; a

�], then the expected

extra cost of cuto� bj�1 is at most c �PrD((bj�1; a�)) � c � (�=2c) � �=2.

Ez2D(costc(z; bj�1)) � Ez2D(costc(z; a
�) j z 62 [bj�1; a

�)) �Prz2D(z 62 [bj�1; a
�))

+Ez2D(costc(z; a
�) + c j z 2 (bj�1; a

�]) �PrD((bj�1; a�])
� Ez2D(costc(z; a

�)) + �=2 (since PrD((bj�1; bj)) � �=2c)

� inf
a
Ez2D(costc(z; a)) + � + �=2:

Case 2. Pr(bj�1; bj) > �=2c. In this case, we show that the lemma holds with i� = j. Note that

bj � bj�1 = �=2. For all c > 1 and all distributions D, Ez2D(costc(z; a)) viewed as a function of a

is Lipschitz bounded in one direction in a sense. (This is in spite of the fact that this function of a

has jump discontinuities in general.) That is, if 0 � a1 < a2, then

Ez2D(costc(z; a2))�Ez2D(costc(z; a1)) � a2 � a1:

Hence,

Ez2D(costc(z; bj))�Ez2D(costc(z; a
�)) � bj � a� � bj � bj�1 �

�

2
;
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which implies that

Ez2D(costc(z; bj�1)) � inf
a
Ez2D(costc(z; a)) + � + �=2:

Since � > 0 was chosen arbitrarily, this completes the proof. 2

The standard Hoe�ding bounds will be useful to prove Theorem 3.

Lemma 5 (see [Pol]) Choose M > 0, a probability distribution D on [0;M ], and m 2 IN. Then

Pr~x2Dm

 ����� 1m
mX
i=1

xi �Eu2D(u)

����� � �

!
� 2e�2�

2m=M2

:

Proof of Theorem 3: Regardless of what happens in the �rst stage, for all j � s and for all

x 2 IR+, we have costc(x; bj) � c+M . Thus, applying Lemma 5, we get for each j � s, � > 0,

Pr~x2Dm

 ����� 1

t� 1

t�1X
i=1

costc(xi; bj)�Ez2D(costc(z; bj))

����� � �

!
� 2e�2�

2(t�1)=(c+M)2 :

Approximating s = d4c=�e by 8c=�, we get

Pr~x2Dm

 
9(j � s) s:t:

����� 1

t� 1

t�1X
i=1

costc(xi; bj)�Ez2D(costc(z; bj))

����� � �

!
� 16c

�
e�2�

2(t�1)=(c+M)2 :

(1)

Let j� be such that bj� is the cuto� amongst the candidates with minimum cost; i.e.,

Ez2D(costc(z; bj�)) = min
j
Ez2D(costc(z; bj));

and let ĵ� be the index of the cuto� used by A� in the tth round. Recall that

1

t� 1

t�1X
i=1

costc(xi; bĵ�) = min
j

(
1

t� 1

t�1X
i=1

costc(xi; bj)

)
:

Let E1 be the event that the �rst stage was successful, i.e., for all intervals (bj�1; bj) generated

in the �rst stage, jbj � bj�1j = �=2, or PrD((bj�1; bj)) < �=2c. We have

E(~u;~x)2Dm�Dt(costc(xt; A�(u1; :::; um; x1; :::; xt�1)))

= E(~u;~x)2Dm�Dt(costc(xt; A�(u1; :::; um; x1; :::; xt�1)) j E1) �Pr(E1)

+E(~u;~x)2Dm�Dt(costc(xt; A�(u1; :::; um; x1; :::; xt�1)) j :E1) �Pr(:E1)

� E(~u;~x)2Dm�Dt(costc(xt; A�(u1; :::; um; x1; :::; xt�1)) j E1) �Pr(E1)

+ (c+M)

�
�

2(c+M)

�
(Lemma 1)

� E(~u;~x)2Dm�Dt(costc(xt; A�(u1; :::; um; x1; :::; xt�1)) j E1) +
�
2
:

(2)

Now, assume u1; :::; um make E1 true. Fix � > 0. Let E2 be the event that all the estimates of

Ez2D(costc(z; bj)) obtained through x1; :::; xt are accurate to within �. Then

E~x2Dt(costc(xt; A�(u1; :::; um; x1; :::; xt�1)))

= E~x2Dt(costc(xt; A�(u1; :::; um; x1; :::; xt�1)) j E2) �Pr(E2)

+E~x2Dt(costc(xt; A�(u1; :::; um; x1; :::; xt�1)) j :E2) �Pr(:E2)

� E~x2Dt(costc(xt; A�(u1; :::; um; x1; :::; xt�1)) j E2)

+
16c(c+M)

� exp

�
�2�2(t� 1)

(c+M)2

�
;

(3)
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by (1). By the triangle inequality, if Ez2D(costc(z; bĵ�)) � Ez2D(costc(z; bj�)) + 2�, then for either

v = j� or v = ĵ�, �����Ez2D(costc(z; bv))�
1

t� 1

t�1X
i=1

costc(xi; bv)

����� � �:

Thus, (3) and Lemma 4 imply that if E1 is true, then

E~x2Dt(costc(xt; A�(u1; :::; um; x1; :::; xt�1)))

� (infaEz2D(costc(z; a))) +
�
2 + 2�+

16c(c +M)
� exp

�
�2�2(t� 1)

(c+M)2

�
:

Combining with (2) and setting � = 100(c +M)
p
ln ((c+M)t=�) =t completes the proof. 2

4.3 Computation Time of Algorithm A�

We now describe how the predictions of A� are made e�ciently. Let �t = x1; x2; : : : ; xt�1 be the

sequence formed by the �rst t � 1 rounds in the second stage, where xi, for 1 � i < t, is the

resource use time seen in round i. Recall from Section 3 that for the tth round, algorithm A� needs

to output a strategy bj that has minimum cost on the rounds in �t. Any updates to the data

structures used by algorithm A� need to be made e�ciently. We now describe a data structure

maintained by algorithm A� that allows predictions to be output in O(1) time and updates to be

made in O(minfxt; cg=� + log(c=�)) time. (Note that in problems of interest, c�M .)

Algorithm A� maintains the di�erent candidate cuto�s as leaves of a balanced tree T . (See

Figure 1.) We label the root of the tree by �, and the leaves of the tree from left to right as 0 : : : v,

such that the jth leaf corresponds to the cuto� bj. (For simplicity, we use the name bj for leaf j.)

Let T (x) be the subtree of T rooted at node x, and let P (x) be the path from the root to (and

including) node x. In particular, T is T (�).

With each (leaf and internal) node x, algorithm A� maintains three variables, di� (x),

min cost(x); and min cuto� (x). The algorithm maintains the following invariants for all t be-

fore the tth round. (These invariants de�ne the variables.) We refer to the total cost of an

algorithm that repeatedly uses a given cuto� over a sequence of resource use times as the cost of

that cuto� on the sequence. The cost of using cuto� bj for �t is proportional to the sum of the

di� values of the nodes in the path from the root to bj , i.e., the cost of using cuto� bj for �t is

proportional to
P

x2P (bj) di� (x). The variable min cuto� (x) is the cuto� bj with minimum cost

for �t amongst all cuto�s that are leaves of T (x). The variable min cost(x) is closely related to

the cost of the best cuto� amongst the leaves of T (x); in particular, it is the cost of the best cuto�

amongst the leaves of T (x) minus the sum of the di� values of the nodes in P (parent (x)). Formally,

min cost(x) = minbl2T (x)f
P

1�i<t cost(xi; bl)g �
P

i2P (parent(x)) di� (i): It is important to note that

since two siblings in T have the same parent, the min cost values at the two siblings can be directly

compared to get the min cuto� value at the parent.

The tree is initialized appropriately. After round t � 1, algorithm A� outputs min cuto� (�)

as its cuto� for the tth round. Let bj � xt < bj+1. For the data structure to be consistent after

request xt (the tth round), the algorithm needs to increase the cost of each cuto� bi for 0 � i � j,

by bi + c (which varies with i), and the cost of each cuto� bi for which i < m � s, by xt (which is

independent of i). As shown in Figure 1, the data structure is kept consistent by adding bi + c to

the di� value of each of the leaves 0 : : : j, and by adding xt to the di� values of each right child of

the nodes in P (bj) that is not itself in P (bj). (Notice that exactly one di� value in the path from

11
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Figure 1: Snapshot of the data structure used by algorithm A�. In the situation depicted above,

there are 8 candidate cuto�s labeled b0; : : : ; b7, appearing as leaves of the tree. The value xt falls

between b1 and b2. The path P (b1) is shown with dotted lines. The di� values of all nodes marked

with a \�" are increased by the value of the cuto� at the node plus c. The di� values of the nodes

marked with a \#" are increased by xt. The min cuto� and min cost values of all marked nodes

(whether marked with a \�" or \#" or \+") are updated.

each leaf to the root is updated.) Algorithm A� updates the min cuto� and min cost variables for

the nodes whose di� values were changed and their ancestors. The min cost values are updated

using the relation min cost(x) = minfmin cost(left child(x));min cost(right child(x))g + di� (x).

(The correctness of this update procedure follows by induction.) Also, min cuto� (x) is updated

to be the the min cuto� of the child of x that has the smaller min cost .

The number of leaves in the tree is O(c=�). The time to update the di� values of the cuto�s

bi, 0 � i � j is O(minfxt; cg=�), since each [bi; bi+1] is at least �=2 in size. Updating the other di�

values takes time proportional to the height of the tree, which is O(log(c=�)). Hence, the amount

of time to make the updates is O((minfxt; cg)=�+ log(c=�)). The leaves 0 : : : j and (most of) their

ancestors can be updated online as time passes, with an extra O(log(c=�)) processing required at

the end.

5 Getting Algorithms L and Ls from Algorithm A�

In this section we prove Theorems 1 and 2 by developing our algorithms L and Ls.

5.1 Algorithm L

Our convergent algorithm L is obtained by running A� with continually decreasing �. Clearly, if we

start A1=
p
t su�ciently far back in the past and use the cuto�s generated by it for the tth round,

12



we will have an algorithm that converges to optimal. For obvious computational reasons, we do

not want to maintain too many A�'s with di�erent �'s at the same time.

Roughly speaking, algorithm L gets over this problem by starting a new A� with � � 1=
p
t

only in round j, such that j � 4i. It \warms up" A� through 4i+2, evaluating the strategies but

not using the cuto�s generated by A�. When A� is su�ciently warmed up, algorithm L uses the

cuto�s generated by A� until the 4
i+3rd round, and then discards A�. This continual learning helps

algorithm L to converge to optimal, while maintaining only a small number of A�'s at any one time.

Let `�, the expected number of examples seen in the �rst stage by algorithm A�, be as de�ned

in Lemma 1. Formally, algorithm L does the following.

Algorithm L

begin

for each round t with resource use time xt do

begin

if there is no current A� then use a default threshold

else use the threshold generated by the current A�

endif

if t = 4i � `1=2i+2 then start a copy of A1=2i+2 and call this an active A� endif

if t = 4i and i > 2 then

discard current A�, if one exists;

set current A� to be A1=2i

endif

feed resource use time xt to each active A�

end

end

At any su�ciently large time t, there are at most three active A�'s; i.e., if 4
i � t < 4i+1, the

active A�'s are A1=2i , A1=2i+1 , and A1=2i+2 . Hence, the space used by algorithm L is at most three

times the space used by algorithm A1=2i+2 , which we know from Section 4.1 is O(c=2i) = O(c
p
t).

In round t, 4i � t < 4i+1, algorithm A1=2i has seen at least 4i � 4i�2 = (15=16) � 4i examples in its

second stage; from Theorem 3, algorithm A1=2i is away from optimal by at most

1

2i
+ k1(c+M)

s
ln(t(c +M)=2i)

15 � 4i�2 = O

0
@
s
ln t

t

1
A :

The update time bound follows from Section 4.3.

5.2 Algorithm Ls

Algorithm Ls is exactly A�, with � set appropriately such that s = B + v + maxf�1; �2;1g. (See

Section 4.1.) Since � = �(c=s), Theorem 2 follows from the discussion in Section 4. The lower

bound on s arises from � being suitable.

6 Adaptive Disk Spindown via Rent-to-Buy

As described in Section 1, the disk spindown scenario can be modeled as a rent-to-buy problem,

where spinning the disk is equivalent to renting, and a spindown is equivalent to a buy. If energy
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conservation were the sole consideration of a disk spindown algorithm, the cost of a buy, c, is the

ratio of the energy required to spindown the disk and spin it back up vs. the power to keep the

disk spinning. In practice, there are two conicting goals of a disk spindown policy: conserving

energy and preserving response time performance. In adaptive disk spindown, the user speci�es the

relative importance a of latency w.r.t. conserving energy, and the cost of the increased latency is

integrated into c, the cost of the buy. We now describe precisely how this is done.

Let Ps be the power consumed by a spinning disk. Typically, a spundown disk consumes

Psd > 0 power, where Psd is much smaller than Ps. Let T be the net idle time at disk.3 This

implies that the disk would consume at least T � Psd energy independent of the disk spindown

algorithm. While comparing disk spindown algorithms for how well they do in terms of energy

consumed, it is instructive to compare the excess energy, EX , consumed by a disk while using

spindown algorithm X; we de�ne EX as the total energy consumed by algorithm X minus T � Psd.
(This is essentially equivalent to saying that the power for keeping the disk spinning is Ps � Psd,

and the power consumed by a spundown disk is 0.)

The response time delay incurred while waiting for a spinup is proportional to the amount of

time required to spinup a spundown disk. A natural measure of the net response time delay is,

therefore, the number of operations that are delayed by a spinup. (Other measures of response

time delay are possible as discussed in Section 7.2.5, Item 4.)

In adaptive disk spindown, the user speci�es a parameter a, the relative importance of latency

w.r.t. conserving energy. Let OX be the number of operations delayed by a spinup for algorithm X.

Given a disk (spindown) management algorithm X, and a user speci�ed parameter a, we de�ne

ECX , the e�ective cost of algorithm X, as

ECX = EX + a �OX : (4)

The goal of the disk spindown algorithm is to minimize the e�ective cost. The e�ective cost models

the tradeo� between energy and response time in a natural fashion. In particular, a small value of a

implies that energy conservation is the more important activity, while a larger value of a implies

that response time is more critical.

Minimizing e�ective cost can be modeled in the rent-to-buy scenario thus. Given the relative

importance a, we determine the buy cost c. By de�nition, the value of c is the ratio of the e�ective

cost for a spindown vs. the e�ective cost per unit time to keep the disk spinning. Since a spindown

delays one operation, the e�ective cost of a spindown is Esd + a, where Esd is the total energy

consumed by a spindown and a spinup. The e�ective cost per unit time to keep the disk spinning

is Ps �Psd. Hence, c = (a+Esd)=(Ps � Psd). For a given disk, the buy cost c is linearly related to

the relative importance parameter a.

7 Experimental Results

In this section we describe the results of simulating our algorithm4 L from Section 5.1 for the disk

spindown problem. We �rst describe the methodology used in our simulations and then describe

the results of the simulation.

3We assume that operations are synchronous, and that every algorithm sees the same sequence of idle times at

disk. If this is not true, T can be de�ned as the minimum taken over all algorithms of the net idle time at disk.
4Instead of scheduling a new A� at t � 4i, in our simulations we scheduled a new A� at t � 2i.
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Characteristic
Hewlett-Packard

Kittyhawk C3014A
Quantum

Go�Drive 120
Capacity (Mbytes) 40 120

Power consumed, active, (W) 1.50 1.65

Power consumed, idle, (W) 0.62 1.00

Power consumed, spundown (W) 0.27 0.20

Power consumed, spinup (W) 2.17 5.50

Normal time to spinup (s) 1.10 2.50

Normal time to spindown (s) 0.55 6.00

Avg time to read 1 Kbyte (ms) 22.50 26.7

Table 1: Disk characteristics of the Kittyhawk C3014A and Quantum Go�Drive 120. (This table
appears in [DKM].)

7.1 Methodology

We simulated algorithm L using a disk access trace from a Hewlett-Packard 9000/845 personal

workstation running HP-UX. This trace is described in [RuW], and a portion of this trace was also

used in a previous study of disk spindown policies [DKM]. The trace was obtained by Ruemmler

and Wilkes by monitoring the disk for roughly two months; it consisted of 416262 accesses to disk.

We studied our algorithm for two disks, the Kittyhawk C3014A and the Quantum Go�Drive.
The characteristics of the two drives are given in Table 1. (This table is derived from [DKM].) For

our studies, we merged the active and idle states of the disk into one active state; notice that a

disk can read and write data only in the active state. By merging these two states we ensure that

a \buy" corresponds to a spindown. As in [DKM], we assumed that a disk access takes the average

time for seek and rotational latency. We also assumed that all operations and state transitions

take the average or \typical" time speci�ed by the manufacturer, if one is speci�ed, or else the

maximum time.

It is di�cult to determine from a disk access trace why a speci�c access arrived at disk. We

assumed that, if the disk is spundown, the application waits for the disk to spinup and complete the

requested operation, and then performs the same sequence of operations as in the original system.

In other words, although our simulations used disks that were di�erent from the one on which the

trace was collected, in our simulator we maintained the inter-arrival time of events at disk as in the

original trace: if, in the original trace, the tth access at disk arrived � seconds after the (t� 1)th

access, in our simulation, we assumed that the tth access arrived � seconds after the (t � 1)th

access was completed by the disk. The basic problem with any strategy is that data dependency

between di�erent operations cannot be derived from the trace.

We performed simulations for di�erent values of a, the relative importance of response time to

energy. For each a, we computed the buy cost c using the strategy described in Section 6. We

compared our algorithm L against the following online algorithms: the two-competitive algorithm,

which spins down the disk after c seconds of inactivity, and �xed-threshold policies that spindown

the disk after 5 seconds, 30 seconds, and 5 minutes of inactivity; we also compared algorithm L

against the optimal o�ine rent-to-buy algorithm, which knows the future and spins down the

disk immediately if the next access is to take place more than c seconds in the future. For each

algorithm X, we computed EX , the excess energy consumed, OX , the number of operations delayed

by a spinup; from these values we computed ECX , the e�ective cost of algorithm X, using (4).

15



For the HP trace, the maximum inter-arrival time was 1770.4 seconds; the maximum a we used

corresponded to a c of 1770.4.

7.2 Results

In this section we present the results of our simulations. We �rst see how the e�ective cost varies

with parameter a, and then look at how excess energy and number of operations delayed vary

with a. Recall that the parameter a is linearly related to the buy cost c. In particular, for the

Kittyhawk disk, c = 2:54 + a=1:225, and for the Go�Drive, c = 10:33 + a=1:45.

The discussion from Section 6 implies that algorithm L and the 2-competitive algorithm try to

optimize for e�ective cost as de�ned by (4). In particular, for really small values of a, algorithm L

will essentially try to reduce excess energy, and for really large values of a, algorithm L will

essentially try to reduce number of operations delayed.

7.2.1 E�ective Cost vs. a

Figures 2 and 3 show how the e�ective cost varies with parameter a using the Kittyhawk and

Go�Drive disks respectively. Each �gure plots the curves for all values of a, and a clearer view for

when a is small.

We observe that algorithm L performs best amongst the online algorithms for (almost) all values

of a. (It is roughly 1% worse than the 5 second threshold for a lying between 18 and 34 while using

the Kittyhawk disk, and for a lying between 14 and 28 while using the Go�Drive.) In particular, the
e�ective cost for algorithm L is 6{25% less than the e�ective cost of the 2-competitive algorithm

(except for a small range of values of a between 34 and 60 with the Kittyhawk disk and for a

between 28 and 58 for the Go�Drive when the e�ective costs for the two algorithms are roughly

the same).

As should be expected, each �xed threshold algorithm performs well for a very limited range

of values for a. Interestingly, the 5 second threshold for certain small values of a and the 5 minute

threshold for certain large values of a performs better than the 2-competitive algorithm.

7.2.2 Excess Energy vs. a

As discussed in Section 6, when a is small, conserving energy is more important. Figure 4 plots

the variation of excess energy with a using the Kittyhawk and Go�Drive disks for the various

algorithms.

We observe that for small values of a, algorithm L has the smallest excess energy amongst

all online algorithms. In fact, it does better than the 5 second threshold, and its curve is almost

parallel to the curve for the optimal o�ine algorithm. In particular, algorithm L saves 17{60%

more excess energy as compared to the 2-competitive algorithm, and 6{42% more excess energy as

compared to the 5 second spindown threshold for small values of a (i.e., a < 25).

We also observe that for small values of a, the 5 second threshold does better than the 2-

competitive algorithm in terms of saving excess energy. (From Figures 2 and 3, we observe that for

most of these values of a, the 5 second threshold is also better than the 2-competitive algorithm in

terms of e�ective cost.)
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Figure 2: Variation of e�ective cost with a for the Kittyhawk disk. Figure (b) zooms the portion of

the graph for small values of a. The e�ective cost of the 5 minute threshold is comparitively high

(the curve lies above 2240000), and is omitted from Figure (b).
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Figure 3: Variation of e�ective cost with a for the Go�Drive disk. Figure (b) zooms the portion

of the graph for small values of a. The e�ective cost of the 5 minute threshold is comparitively

high (the curve lies above 2700000), and is omitted from Figure (b); similarly, the curves for the

5 second and 30 second policies have been cropped at smaller values of a to show the details of the

other three curves.
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Figure 4: Variation of excess energy with a for the Kittyhawk and Go�Drive disks. The excess

energy of the 5 minute threshold using the Kittyhawk disk is 2249 KJ, and using the Go�Drive is
2708 KJ; the curves for the 5 minute threshold are omitted from the graphs.
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7.2.3 Operations Delayed vs. a

As discussed in Section 6, when a is large, we want to reduce the number of operations delayed.

Figure 5 plots the variation of number of operations delayed with a using the Kittyhawk and

Go�Drive disks for the various algorithms.
We observe two interesting phenomenon: �rst, the curves for the 2-competitive algorithm and

the optimal o�ine algorithm coincide for a large range of values for a. Second, algorithm L reduces

number of operations delayed over both these algorithms for su�ciently large a.

7.2.4 Adaptability and Rent-to-Buy

A di�erent way of viewing the tradeo� between excess energy and response time is presented in

Figure 6. In this �gure, excess energy is plotted as a function of number of operations delayed,

and the di�erent points on the curve are obtained by varying a; in particular, the value of a (or

equivalently, c) decreases from left to right along the curve. (The curve for the Go�Drive is similar
in shape and is omitted.)

Figure 6 clearly shows the tradeo� between excess energy and response time obtained by vary-

ing a. We observe that by increasing the value of one parameter a (equivalent to varying the value

of the buy cost c), we can e�ectively trade power for response time. Concerns on how to e�ectively

trade power for response time have been raised for the disk spindown problem [DKB, DKM], and

the rent-to-buy model provides an elegant way of achieving this tradeo�.

7.2.5 Other Observations

Some other observations from our simulations are as follows:

1. As mentioned in Section 7.2.2, energy conservation is crucial when a is small, and algorithm L

is best amongst the online algorithms in terms of excess energy for small a. Interestingly,

we observed that the excess energy of algorithm L is less than the excess energy of the

2-competitive algorithm for all values of a.

2. We also compared our algorithm L against Ls allowing at most 25 potential cuto�s for al-

gorithm Ls. Not surprisingly, algorithm L performed better than algorithm Ls; however,

preliminary results suggest that algorithm L typically saved only 2{5% more excess energy

than algorithm Ls. Allowing more potential cuto�s for algorithm Ls might help.

3. In our simulations, we used at most 300 cuto�s for our algorithm L. The computation time

for the algorithm was therefore minimal. Interestingly, algorithm L did not change its cuto�s

too often in stage 2. (The cuto� changed between 14{56 times when measured over all values

of a.)

4. For measuring response time performance, we used the metric of the number of operations

delayed. An alternative measure of response time performance is RX , the number of read

operations delayed by a spinup for algorithm X [DKM]. This metric rede�nes the e�ective

cost from (4) as E + a � RX . The rent-to-buy model can be easily modi�ed to evaluate this

measure, by having di�erent costs for a spindown (i.e., di�erent c's) depending on whether

the operation is a read or a write. We plan to consider the e�ect of this modi�cation to the

rent-to-buy cost in future work.
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Figure 6: Excess Energy, EL, as a function of the number of operations delayed, OL, for algorithm L.

The graph was obtained by varying a (i.e., c); the value of a increases along the curve from left to

right.
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Figure 7: Number of reads delayed as a function of a for the various algorithms, while the rent-to-

buy algorithms are optimizing using the de�nition of e�ective cost from (4). This graph is purely

for illustration and comparison with Figure 5a. See Section 7.2.5, Item 4.

For purely comparison purposes, Figure 7 plots the number of reads delayed as a function of a

for the di�erent algorithms; the algorithms are still optimizing for e�ective cost as de�ned

by (4). (In other words, the rent-to-buy algorithms think they are optimizing for number of

operations delayed, while we measure the number of reads delayed.) Interestingly, the curves
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from Figure 7 are similar to the corresponding curves from Figure 5a, suggesting that we

should expect to obtain similar results as presented in this paper by using the number of

reads delayed metric instead of the number of operations delayed metric, when we modify the

de�nition for e�ective cost appropriately.

8 Conclusions

In this paper we have looked at the problem of a sequence of unit rent-to-buy choices where the

resource use times are independently drawn from an unknown probability distribution. We have

looked at computationally e�cient strategies whose expected cost for the tth resource use converges

to optimal as t!1 for any bounded probability distribution on the resource use times. We have

also looked at a �xed-space algorithm which almost converges to optimal. We are currently looking

at modeling the resource use times as being generated by a Hidden Markov Model (HMM) and

have optimality results for special types of HMMs. Recently, Markov models have been e�ectively

used to analyze caching and prefetching algorithms assuming user requests to pages in cache are

generated by Markov sources [KPR, KrV, ViK].

Simulations of our algorithm for the disk spindown problem using disk access traces obtained

from HP suggest that the rent-to-buy model is a good way to study disk spindown and related

systems issues; in particular, a single parameter c e�ectively models the tradeo� between power

and response-time. We also introduced the new metric of \excess energy" that really reects the

relative performance in terms of energy consumed of one disk spindown algorithm against another.

We introduced a natural notion of \e�ective cost" that incorporates the two metrics of excess

energy, and number of operations delayed weighted by a user speci�ed parameter a, into one cost.

We observed that our algorithm L out-performed other online algorithms in terms of e�ective cost

for almost all values of a; in particular, it had 6{25% less e�ective cost than the 2-competitive

algorithm. In addition, for small values of a (corresponding to when saving energy is critical), we

observed that our algorithm L saves 17{60% more of excess energy as compared to the 2-competitive

algorithm, and 6{42% more excess energy as compared to the 5 second �xed threshold.
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