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External-Memory Graph Algorithms 
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We present a collection of new techniques for designing 
and analyzing efficient external-memory algorithms for 
graph problems and illustrate how these techniques can 
be applied to a wide variety of specific problems. Our 
results include: 

Proximate-neighboring. We present a simple 
method for deriving external-memory lower bounds 
via reductions from a problem we call the “proxi- 
mate neighbors” problem. We use this technique to 
derive non-trivial lower bounds for such problems 
as list ranking, expression tree evaluation, and con- 
nected components. 

PRAM simulation. We give methods for efficiently 
simulating PRAM computations in external mem- 
ory, even for some cases in which the PRAM algo- 
rithm is not work-optimal. We apply this to derive 
a number of optimal (and simple) external-memory 
graph algorithms. 

Time-forward processing. We present a general 
technique for evaluating circuits (or “circuit-like” 
computations) in external memory. We also use 
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this in a deterministic list ranking algorithm. 

Deterministic 3-coloring of a cycle. We give 
several optimal methods for 3-coloring a cycle, 
which can be used as a subroutine for finding large 
independent sets for list ranking. Our ideas go 
beyond a straightforward PRAM simulation, and 
may be of independent interest. 

External depth-first search. We discuss a method 
for performing depth first search and solving re- 
lated problems efficiently in external memory. Our 
technique can be used in conjunction with ideas 
due to Ullman and Yannakakis in order to solve 
graph problems involving closed semi-ring compu- 
tations even when their assumption that vertices fit 
in main memory does not hold. 
Our techniques apply to a number of problems, in- 

cluding list ranking, which we discuss in detail, finding 
Euler tours, expression-tree evaluation, centroid decom- 
position of a tree, least-common ancestors, minimum 
spanning tree verification, connected and biconnected 
components, minimum spanning forest, ear decompo- 
sition, topological sorting, reachability, graph drawing, 
and visibility representation. 

1 Introduction 

Craph-theoretic problems arise in many large-scale com- 
putations, including those common in object-oriented 
and deductive databases, VLSI design and simulation 
programs, and geographic information systems. Often, 
these problems are too large to fit into main memory, 
so the input/output (I/O) between main memory and 
external memory (such as disks) becomes a significant 
bottleneck. In coming years we can expect the signif- 
icance of the I/O bottieneck to increase to the point 
that we can ill afford to ignore it, since technological 
advances are increasing CPU speeds at an annual rate 
of 40-60% while disk transfer rates are only increasing 
by 7-10% annually [20]. 

Unfortunately, the overwhelming majority of the 
vast literature on graph algorithms ignores this bottle- 
neck and simply assumes that data completely fits in 
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main memory (as in the usual RAM model). Direct introduce the following shorthand notation to represent 
applications of the techniques used in these algorithms the I/O complexity of each of these primitives: 
often do not yield efficient external-memory algorithms. 
Our goal is to present a collection of new techniques that 
take the I/O bottleneck into account and lead to the de- 

scan(x) = &, 

sign and analysis of I/O-efficient graph algorithms. which represents the number of I/OS needed to read 2 

1.1 The Computational Model. In contrast to 
items striped across the disks, and 

solid state random-access memory, disks have extremely 
long access times. In order to amortize this access time 

sort(z) = & log,,, ;, 

over a large amount of data, typical disks read or write 
large blocks of contiguous data at once. An increasingly 

which is proportional to the optimal number of I/OS 

popular approach to further increase the throughput of 
needed to sort 2 items striped across the disk [19]. 

I/O systems is to use a number of independent devices in 
parallel. In order to model the behavior of I/O systems, 
we use the following parameters: 

N = # of items in the problem instance 

M = # of items that can fit into main memory 

B = # of items per disk block 

D = # of disks in the system 

where M < N and 1 << DB 5 M/2. In this paper we 
deal with problems defined on graphs, so we also define 

V = # of vertices in the input graph 

E = # of edges in the input graph. 

Note that N = V+ E. We assume that E 2 V. Typical 
values for workstations and file servers in production 
today are on the order of lo6 < A4 5 lo’, B M 103, and 
1 5 D < 100. Problem instances can be in the range 
1O’O < N < 1012. - - 

Our measure of performance for external-memory 
algorithms is the standard notion of I/O complexity 
for parallel disks [26]. We define an input/output 
operation (or simply I/O for short) to be the process 
of simultaneously reading or writing D blocks of data, 
one to or from each of the D disks. The total amount of 
data transferred in an I/O is thus DB items. The I/O 
complexity of an algorithm is simply the number of I/OS 
it performs. For example, reading all of the input data 
will take at least N/DB I/OS, since we can read at most 
DB items in a single I/O. We assume that our input is 
initially stored in the first N/DB blocks of each of the 
D disks. Whenever data is stored in sorted order, we 
assume that it is striped, meaning that the data blocks 
are ordered across the disks rather than within them. 
Formally, this means that if we number from zero, the 
ith block of the jth disk contains the (iDB + jB)th 
through the (iDB + (J’ + l)B - 1)st items. 

Our algorithms make extensive use of two funda- 
mental primitives, scanning and sorting. We therefore 

1.2 Previous Work. Early work in external- 
memory algorithms for parallel disk systems concen- 
trated largely on fundamental problems such as sorting, 
matrix multiplication, and FFT [l, 19, 261. The main 
focus of this early work was therefore directed at prob- 
lems that involved permutation at a basic level. Indeed, 
just the problem of implementing various classes of per- 
mutation has been a central theme in external-memory 
I/O research [l, 6, 7, 8, 261. 

More recently, external-memory research has moved 
towards solving problems that are not as directly related 
to the permutation problem. For example Goodrich, 
Tsay, Vengroff, and Vitter study a number of problems 
in computational geometry [12]. Further results in this 
area have recently been obtained in [lo, 271. There has 
also been some work on selected graph problems, includ- 
ing the investigations by Ullman and Yannakakis [23] 
on problems involving transitive closure computations. 
This work, however, restricts its attention to problem 
instances where the set of vertices fits into main memory 
but the set of edges does not. Vishkin [25] uses PRAM 
simulation to facilitate prefetching for various problems, 
but without taking blocking issues into account. Also 
worth noting is recent work [ll] on some graph traver- 
sal problems; this work primarily addresses the problem 
of storing graphs, however, not in performing specific 
computations on them. Related work [9] proposes a 
framework for studying memory management problems 
for maintaining connectivity information and paths on 
graphs. Other than these papers, we do not know of 
any previous work on I/O-efficient graph algorithms. 

1.3 Our Results. In this paper we give a 
number of general techniques for solving a host of graph 
problems in external memory: 

l Proximate-neighboring. We derive a non-trivial 
lower bound for a problem we call the “proxi- 
mate neighbors” problem, which is a significantly- 
restricted form of permutation. We use this prob- 
lem to derive non-trivial lower bounds for such 
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problems as list ranking, expression tree evaluation, 
and connected components. 

PRAM simulation. We give methods for efficiently 
simulating PRAM computations in external mem- 
ory. We also show by example that simulating 
certain non-optimal parallel algorithms can yield 
very simple, yet I/O-optimal, external-memory al- 
gorithms. 

Time-forward processin-a general technique for 
evaluating circuits (or “circuit-like” computations) 
in external memory. Our method involves the use 
of a number of interesting external-memory data 
structures, and yields an efficient external-memory 
algorithm for deterministic list ranking. 

Deterministic 3-coloring of a cycle-a problem cen- 
tral to list ranking and symmetry breaking in graph 
problems. Our methods for solving it go beyond 
simple PRAM simulation, and may be of indepen- 
dent interest. In particular, we give techniques to 
update scattered successor and predecessor colors 
as needed after re-coloring a group of nodes without 
sorting or scanning the entire list. 

External depth-first search. We discuss a method 
for performing depth first search and solving re- 
lated problems efficiently in external memory and 
how it can be used, in conjunction with techniques 
due to Ullman and Yannakakis, to solve graph 
problems involving closed semi-ring computations 
even when their assumption that vertices fit in main 
memory does not hold. 
We apply these techniques to some fundamental 

problems on lists, trees, and graphs, including list rank- 
ing, finding Euler tours, expression-tree evaluation, cen- 
troid decomposition of a tree, lowest-common ancestors, 
minimum spanning tree verification, connected and bi- 
connected components, minimum spanning forest, ear 
decomposition, topological sorting, reachability, graph 
drawing, and visibility representation. 

2 Lower Bounds: Linear Time vs. Permutation 
Time 

In order to derive lower bounds for the number of I/OS 
required to solve a given problem it is often useful to 
look at the complexity of the problem in terms of the 
permutations that may have to be performed to solve 
it. In an ordinary RAM, any known permutation of N 
items can be produced in O(N) time. In an N processor 
PRAM, it can be done in constant time. In both cases, 
the work is O(N), which is no more than it would 
take us to examine all the input. In external memory, 
however, it is not generally possible to perform arbitrary 
permutations in a linear number (O(scan(N))) of I/OS. 
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Instead, it is well-known that @(Penn(N)) I/OS are 
required in the worst case [1, 261 where 

perm(N) = min 
1 

;,sort(N) . 
1 

When M or L? is extremely small, N/D = O(B . 
scan(N)) may be smaller than sort(N). In the case 
where B and D are constants, the model is reduced to 
an ordinary RAM, and, as expected, permutation can 
be performed in linear time. However, for typical values 
in real I/O systems, the sort(N) term is smaller than 
the N/D term. If we consider a machine with block size 
B = lo4 and main memory size M = lo’, for example, 
then sort(N) < N/D as long as N < 1040~oo4, which is 
so absurdly large that even the estimated number of 
protons in the universe is insignificant by comparison. 

We can show that the lower bound R(perm(N)) 
holds even in some important cases when we are not 
required to perform all N! possible permutations: 

LEMMA 2.1. Let A be an algorithm capable of per- 
forming (N!)“NC d’ff z erent permutations on an in- 
put of size N, where 0 < cx 5 1 and c are con- 
stants. Then at least one of these permutations requires 
O(perm(N)) I/OS. 

Proof Sketch. The proof is an adaptation and gen- 
eralization of that given by Aggarwal and Vitter [l] for 
the special case (Y = 1 and c = 0. 0 

In order to apply the lower bound of Lemma 2.1 to 
graph problems, we will first use it to prove a lower 
bound on the proximate neighbors problem. In later 
sections, we will show how to reduce the proximate 
neighbors problem to a number of graph problems. 
The proximate neighbors problem is defined as follows: 
Initially, we have N items in external memory, each 
with a key that is a positive integer k < N/2. Exactly 
two items have each possible key value k. The problem 
is to permute the items such that, for every k, both 
items with key value k are in the same block. We can 
now lower bound the number of permutations that an 
algorithm that solves the proximate neighbors problems 
is capable of producing. 

LEMMA 2.2. Solving the proximate neighbors prob- 
lem requires n(perm(N)) I/OS in the worst case. 

Proof Sketch. We define a block permutation to be 
an assignment of items to blocks. The order within 
blocks is unimportant. There are thus N!/(B!)NIB 
block permutations of N items. We show that to solve 
the proximate neighbors problem an algorithm must be 
capable of generating 

N! 
- a ((B!)&4) 2N/2(B!)NIB(N/2)! - 
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block permutations. Thus, using an additional scan(N) 
I/OS to rearrange the items within each block, it could 
produce fi/(N1j4) permutations. The claim than 
follows from Lemma 2.1. 0 

Given the lower bound for the proximate neighbors 
problem, we immediately have lower bounds for a 
number of problems it can be reduced to. 

COROLLARY 2.1. The following problems all have 
an I/O lower bound of fl(perm(N)): list ranking, Eu- 
ler tours, expression tree evaluation, centroid decompo- 
sition of a tree, and connected components in sparse 
graphs (E = O(V)). 

Proof Sketch. All these bounds are proven using in- 
put graphs with long chains of vertices. The ability to 
recognize the topology of these graphs to the extent re- 
quired to solve the problems mentioned requires solving 
the proximate neighbors problem on pairs of consecutive 
vertices in these chains. 0 

Upper bounds of O(soti(N)) for these problems 
are shown in Sections 5 and 6, giving optimal results 
whenever perm(N) = @(sort(N)). As was mentioned 
above, this covers all practical I/O systems. The key 
to designing algorithms to match the lower bound of 
Lemma 2.2 is the fact that comparison-based sorting can 
also be performed in @(sort(N)) I/OS. This suggests 
that in order to optimally solve a problem covered by 
Lemma 2.1 we can use sorting as a subroutine. Note 
that this strategy does not work in the ordinary RAM 
model, where the sorting takes R(nlogn) time, while 
many problems requiring arbitrary permutations can be 
solved in linear time. 

3 PRAM Simulation 

In this section, we present some simple techniques for 
designing I/O efficient algorithms based on the simula- 
tion of parallel algorithms. The most interesting result 
appears in Section 3.2: In order to generate I/O-optimal 
algorithms we resort in most cases to simulating PRAM 
algorithms that are not work-optimal. The PRAM algo- 
rithms we simulate typically have geometrically decreas- 
ing numbers of active processors and very small constant 
factors in their running times. This makes them ideal 
for our purposes, since the I/O simulations do not need 
to simulate the inactive processors, and thus we get op- 
timal and practical I/O algorithms. 

We show in subsequent sections how to combine 
these techniques with more sophisticated strategies to 
design efficient external-memory algorithms for a num- 
ber of graph problems. Related work on simulating 
PRAM computations in external memory was done by 
Cormen [6]. The use of PRAM simulation for prefetch- 
ing, without the important consideration of blocking, is 

explored by Vishkin [25]. 

3.1 Generic Simulation of an O(N) Space 
PRAM Algorithm. We begin by considering how 
to simulate a PRAR4 algorithm that uses N processors 
and O(N) space. In order to simulate such a PRAM 
algorithm, we first consider how to simulate a single 
step. This is a simple process that can be done by 
sorting and scanning, as shown in the following lemma. 

LEMMA 3.1. Let A be a PRAM algorithm that uses 
N processors and O(N) space. Then a single step of A 
can be simulated in O(sort(N)) I/OS. 

Proof Sketch. Without loss of generality, we assume 
that each PRAM step does not have indirect memory 
references, since they can be removed by expanding 
the step into O(1) steps. To simulate the PRAM 
memory, we keep a task array of O(N) on disk in 
O(scan(N)) blocks. In a single step, each PRAM 
processor reads O(1) operands from memory, performs 
some computation, and then writes O(1) results to 
memory. To provide the operands for the simulation, 
we sort a copy of the contents of the PRAM memory 
based on the indices of the processors for which they 
will be operands in this step. We then scan this copy 
and perform the computation for each processor being 
simulated, and write the results to the disk as we do so. 
Finally, we sort the results of the computation based on 
the memory addresses to which the PRAM processors 
would store them and then scan the list and a reserved 
copy of memory to merge the stored values back into 
the memory. The whole process uses O(1) scans and 
O(1) sorts, and thus takes O(sort(N)) I/OS. 0 

To simulate an entire algorithm, we merely have to 
simulate all of its steps. 

THEOREM 3.1. Let A be a PRAM algorithm that 
uses N processors and O(N) space and runs in time T. 
Then A can be simulated in O(T . sort(N)) I/OS. 

It is fairly straightforward to generalize this theo- 
rem to super-linear space algorithms. There are some 
important special cases when we can do much better 
than what would be implied by Theorem 3.1, however. 

3.2 Reduced Work Simulation for Geomet- 
rically Decreasing Computations. Many simple 
PRAM algorithms can be designed so as to have a “geo- 
metrically decreasing size” property, in that after a con- 
stant number of steps, the number of active processors 
has decreased by a constant factor. Such algorithms are 
typically not work-optimal in the PRAM sense, since all 
processors, active or inactive, are counted when evalu- 
ating work complexity. When simulating a PRAM with 
I/O, however, inactive processors do not have to be sim- 
ulated. This fact can be formalized as follows: 
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THEOREM 3.2. Let A be a PRAM algorithm that 
solves a problem of size N by using N processors and 
O(N) space, and that after each of O(log N) stages, 
each of time T, both the number of active processors 
and the number of memory cells that will ever be used 
again are reduced by a constant factor. Then A can be 
simulated in external memory in O(T . sort(N)) I/O 
operations. 

Proof. The first stage consists of T steps, each of 
which can, by Lemma 3.1, be simulated in O(T.sort(N)) 
I/OS. Thus, the recurrence 

Z(N) = O(T . sort(N)) + Z(CXN) 

characterizes the number of I/OS needed to simulate the 
algorithm, which is O(T . sort(N)). iTI 

4 Time-Forward Processing 

In this section we discuss a technique for evaluating the 
function computed by a bounded fan-in boolean circuit 
whose description is stored in external memory. We 
assume that the labels of the nodes come from a total 
order <, such that for every edge (v, w) we have v < 20. 
We call a circuit in such a representation topologically 
sorted. 

Thinking of vertex u as being evaluated at “time” v 
motivates our calling such an evaluation time-forward 
processing of the circuit. The main issue in such 
an evaluation, of course, is to insure that when one 
evaluates a particular vertex one has the values of its 
inputs currently in main memory. 

In Section 4.1 we introduce the concept of buck- 
eting, which will prove to be of central importance in 
time-forward processing. In Section 4.2 we describe the 
construction of a tree on time. Finally, in Section 4.3 
we demonstrate how bucketing can be used to navigate 
a tree on time in order to solve the circuit evaluation 
problem. Later, in Section 5.4, we demonstrate the use 
of time forward processing to find large independent sets 
for list ranking. 

4.1 Bucketing. Divide and conquer is a classic 
technique that is useful in the design of I/O-efficient 
algorithms. When trying to minimize I/O, it is usually 
best to try to divide into as many subproblems as 
possible. The maximum number of subproblems is 
typically M/B because you want to use at least one 
block for each subproblem. It often turns out that 
,/m subproblems works better when you are trying 
to use parallel disks. If the subproblems are of equal 
size, a recursion depth of O(logMIB(N/S)) reduces to 
problems of size S. For example, to sort N numbers, 
it suffices to O(dm) splitters, partition the input 

according to the splitters, recurse and concatenate the 
recursively sorted lists. 

In order to divide up a problem, we maintain a set 
of buckets which support the following operations: 

1. Allocate a new bucket. 

2. Add one record to a bucket. 

3. Empty a bucket, placing the records in a sequential 
list. 

The order of the the records in the list from emptying 
a bucket is not required to be the order in which the 
records were added to the bucket. Once the input is 
divided into buckets, each bucket is a subproblem to be 
solved recursively. 

Of course, the bucketing problem is easy if there 
is only one disk: we just allocate one block of memory 
to each bucket and flush it to disk when it gets full. 
In the presence of multiple disks, however, we must be 
sure to guarantee that each bucket is stored roughly 
evenly across the parallel disks; this is the fundamental 
problem addressed in [19]. 

An overview of a possible approach is to keep one 
block of main memory allocated to each bucket. When 
that block is filled up, we flush the contents to a buffer 
of D blocks, and when the buffer is full, we write at least 
half the blocks to disk in a single I/O. Let median(b) be 
the median value of the number of blocks from bucket b 
stored on each of the D disks. We keep the buckets 
balanced across disks by maintaining the invariant that 
for every bucket b the most blocks from b on any one disk 
is at most one more than median(b). For each bucket b, 
by definition of median, at least half the disks can be 
written to without violating theinvariant. Thus, any set 
of [O/2] blocks can be written to a set of [O/Z] disks 
in a single I/O, maintaining the invariant. The most 
out-of-balance any bucket b can become is to have its 
blocks evenly distributed on about half the disks, with 
no blocks on the other half of the disks. Bucket b can 
then be read with at most about double the optimal 
number of I/OS. A bucket containing g items may 
thus be emptied using O(max{l, scan(g)}) I/OS. All 
of the reads and writes effectively use at least half the 
bandwidth, except when emptying a bucket containing 
less than DBj2 items. The writes are striped for error 
correction purposes, but the reads are not, which is 
needed for optimality. 

THEOREM 4.1. A series of i insertions and e empty 
operations on O(M/B) buckets can be be performed with 
O(e + scan(i)) I/OS. 

4.2 Building a Tree on Time. Let us return, 
then, to the circuit-evaluation problem. Recall that we 
are given a topologically ordered circuit with V vertices, 
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and we wish to compute the values of the vertices 
in order. Intuitively, after calculating the value of a 
vertex U, we send the value LLforward in time” to each 
future time step at which it will be needed. 

We split memory into two pieces of size M/2, 
one for bucketing and one for holding values needed 
for an interval of time. We then break up time 
into intervals needing a total of at most M/2 inputs 
each. For example, for a fan-in 2 circuit, each interval 
is of the form [l + jM/4, (j + l)M/4]. We make 
these intervals the leaves of a balanced tree T, which 
we call the “time tree,” so that T ha&, branching 
factor f and height h, where f is a parameter of 
our method and h = O( (log # intervals)/(log(M/2B))), 

say 2 log~4/,~ (4V/M). It will turn out that about 
fh buckets are required, yielding constraints fh 2 
M/2B and fh 2 # intervals. For example, if we 
choose f = J%/?%, then we require that dm 2 

2 log,/, (4V/M), which is satisfied assuming 

(4.1) (,/?i@i?)- > 4V/M. 

This assumption does not depend on the number D of 
parallel disks. For typical machines, M/B is in the 
thousands, so this is not a restrictive assumption. 

4.3 Moving into the Future. We can use 
the time tree constructed in the previous subsection to 
partition time. Let us say that vertex w lies in interval s. 
If we remove the path from s to the root of the time 
tree, the tree breaks up into (f - 1)h subtrees, whose 
leaves are all of the intervals except for s. We maintain 
a bucket for each of these subtrees. When the value of u 
is computed, for each edge (w, w), we send the value of 
u to a bucket representing the subtree containing w, or 
just keep it in memory if w lies in interval s. 

When the current time crosses a interval boundary, 
the current interval s changes, and the path up to the 
root changes too. As a result, the subtrees induced by 
removing the path from s to the root change. Each 
vertex that is on the new path, but was not on the old 
path, corresponds to a subtree that is split. The bucket 
corresponding to the old subtree is emptied, and the 
values are added to the new buckets where they belong. 
Any particular value is involved in at most h splits. The 
total number of I/O operations is O(h . scan(E)). 

This approach works for a general class of problems. 
The main requirement is to specify, in advance, a 
partition of time into O(N/M) intervals, each of which 
uses at most M/2 inputs. The internal nodes can be 
arbitrary functions. It is not necessary to know the 
exact time a value will be needed. It is sufficient be able 
to specify the destination interval. By keeping c = O(1) 
intervals in memory simultaneously, it suffices to send 

a value to within c - 1 intervals before the time it is 
needed. Summing up, then, we have the following: 

THEOREM 4.2. A topologically ordered circuit with 
N edges can be evaluated with O(sort(N)) I/OS if 
dmlog(M/2B) 2 21og(2N/M). 

5 List Ranking 

In this section, we demonstrate how the lower bound 
techniques of Section 2 and the PRAM simulation 
techniques of Section 3 can be put together to produce 
an optimal external-memory algorithm. 

The problem we consider is that of list ranking. We 
are given an N-node linked list L stored in external 
memory as an (unordered) sequence of nodes, each with 
a pointer nezt to the successor node in the list. Our goal 
is to determine, for each node 21 of L, the ranlcof w, which 
we denote rank(v) and define as the number of links 
from 2, to the end of the list. We assume that there is a 
dummy node co at the end of the list, and thus the rank 
of the last node in the list is 1. We present algorithms 
that use an optimal @(sort(N)) I/O operations. The 
lower bound for the problem comes from Corollary 2.1. 

5.1 An Algorithmic Framework for List 
Ranking. Our algorithmic framework is adapted from 
the work of Anderson and Miller [2]. It has also been 
used by Cole and Vishkin [5], who developed a deter- 
ministic version of Anderson and Miller’s randomized 
algorithm. 

Initially, we assign rank(v) = 1 for each node ‘u in 
list L. This can be done in O(scan(N)) I/OS. We then 
proceed recursively. First, we produce an independent 
set of O(N) nodes. The details of how this independent 
set is produced are what separate our algorithms from 
one another. Once we have a large independent set S, 
we use O(1) sorts and scans to bridge each node v in the 
set, as described in [2]. We then recursively solve the 
problem on the remaining nodes. Finally, we use O(1) 
sorts and scans to re-integrate the nodes in S into the 
final solution. 

In order to analyze the I/O-complexity of an algo- 
rithm of the type just described, we first note that once 
the independent set has been produced, the algorithm 
uses O(soti(N)) I/O s and solves a single recursive in- 
stance of the problem. If the independent set can also 
be found in O(soti(N)) I/OS, then the total number of 
I/OS done in the nonrecursive parts of the algorithm is 
also O(sort(N)). 

Since 0 (N) nodes are bridged out before recursion, 
the size of the recursive problem we are left with is 
at most a constant fraction of the size of our original 
problem. Thus, according to Theorem 3.2, the I/O- 
complexity of our overall algorithm is O(sort (N)). All 
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that remains is to demonstrate how an independent set 
of size O(N) can be produced in O(sort(N)) I/OS. 

5.2 Randomized Independent Set Construc- 
tion. The simplest way to produce a large independent 
set is a randomized approach based on that first pro- 
posed by Anderson and Miller [2]. We scan along the 
input, flipping a fair coin for each vertex 21. We then 
make two copies of the input, sorting one by vertex and 
the other by successor. Scanning down these two sorted 
lists in step, we produce an independent set consisting 
of those vertices whose coins turned up heads but whose 
successors coins turned up tails. The expected size of 
the independent set generated this way is (N - 1)/4. 

5.3 Deterministic Independent Set Con- 
struction via 3-Coloring. Our first deterministic 
approach relies on the fact that the problem of find- 
ing an independent set of size 0(N) in an N-node list L 
can be reduced to the problem of finding a 3-coloring of 
the list. We equate the independent set with the 0(N) 
nodes colored by the most popular of the three colors. 

In this section, we describe an external-memory 
algorithm for 3-coloring L that performs O(sort(N)) 
I/O operations. We make the simplifying assumption 
here (and also in the next section) that the block size B 
satisfies B = O(N/ logct) N) for some fixed integer 
t > 0.l This assumption is clearly non-restrictive in 
practice. Furthermore, for simplicity, we restrict the 
discussion to the D = 1 case of one disk. The 
load balancing issues that arise with multiple disks are 
handled with balancing techniques akin to [18, 261. 

The 3-coloring algorithm consists of three phases. 
Colors and node IDS are represented by integers. 

1. In this phase we construct an initial N-coloring 
of L by assigning a distinct color in the range 
[O,... ,N - l] to each node. This phase takes 
O(scan(N)) I/OS. 

2. Recall that B = O(N/ logct) N) for some fixed 
inte er t > 0. 

7 
In this phase we produce a 

(1% ‘+‘) N)-coloring. We omit the details in this 
extended abstract. The method is based upon 
a non-trivial adaptation of the deterministic coin 
tossing technique of Cole and Vishkin [5]. The 
total number of I/OS performed in this phase is 
O(t . sort(N) + (log@+‘) N)2). 

3. In the final phase, for each i = 3, .., log(tsl) N - 1, 
we re-color the nodes with color i by assigning them 
a new color in the range [0, 1,2]. This phase is 

‘The notation log(“) N is defined recursively as follows: Now we briefly sketch our algorithms to the prob- 
log(l) N = log N, and log(i+l) N = log logci) N, for i 2 1. lems listed. Lower bounds are similar to Corollary 2.1. 

performed iteratively in 0(10g(~+‘) N + soti( 
I/OS per iteration, where Ni is the number of 
vertices with color i (from the previous phase). We 
omit the details in this extended abstract. The 
total number of I/OS performed in this phase is 

logct+‘) N- 1 

c O(l% ctfl) N + sort(NJ) 

i=o 

= O(sort(N) + (log@+l) iv)2). 

The overall time complexity of the 3-coloring algo- 
rithms is thus O(t. sort(N) + (log(t+l) N)2). Since t is a 
constant and B = O(N/ logct) N), we get the following 
time bound: 

LEMMA 5.1. The N nodes of a list L can be 3- 
colored with O(sort(N)) I/O operations. 

Recalling the algorithmic framework for list ranking 
of Section 5.1, we obtain the following result: 

THEOREM 5.1. The N nodes of a list L can be 
ranked with optimal O(sort (N)) I/O operations. 

5.4 Deterministic Independent Set Compu- 
tation via Time-Forward Processing. We can use 
time-forward processing to construct an alternate proof 
of Lemma 5.1 for the case when M/B is not too small 
(which provides an alternate condition to the constraint 
on B not being too large). In this case we separate the 
edges of the cycle into forward edges {(a, b) ( a < b} 
and backward edges {(a, b) ] a > b}. Each of these is 
a set of chains. We then color the forward edges with 
colors 0 and 1, coloring the first vertex on a chain 0, and 
then alternating. We color the backward edges with 2 
and 1, starting each chain with 2. If a vertex is given 
two different colors (because it is the beginning or end 
of a chain in both sets) we color it 0 unless the two col- 
ors are 1 and 2, in which case we color it 2. This gives 
a 3-coloring of a N-vertex cycle in O(sort(N)) I/OS. 

We can also use time-forward traversal to compute 
list ranking more directly than by removing independent 
sets-just calculate the ranks of the vertices along the 
chains in the forward and backward sets, and then 
instead of bridging over an independent set, bridge over 
entire chains. We give the details in the full version. 

6 Additional Applications 

In this section we show that the techniques presented 
in Sections 2-5 can be used to solve a variety of 
fundamental tree and graph problems. These results 
are summarized in Tables 1-3. We believe that many 
more problems are amenable to these techniques. 
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For expression tree evaluation, we compute the depth 
of each vertex by Euler Tour and list ranking, and sort 
the vertices first by depth and then by key such that (i) 
deeper nodes precede higher nodes, and (ii) the children 
of each node are contiguous, and (ii;) the order of the 
nodes on each level is consistent with the ordering of 
their parents. We then keep pointers to the next node 
to be computed and to the next input value needed. 
The two pointers move sequentially through the list of 
nodes, so all of the nodes in the tree can be computed 
with O(scan(N)) additional I/OS. Centroid decompo- 
sition of a tree can be performed similarly. 

The least common ancestor problem can be reduced 
to the range minima problem using Euler Tour and list 
ranking [3]. We construct a search tree S with O(N/B) 
leaves, each a block storing B data items. Tree S is a 
complete (M/B)-ary tree with O(logMjB(N/B)) levels, 
where each internal node w of S corresponds to the items 
in the subtree S, rooted at v. Each internal node u 
stores two lists maintaining prefix and suffix minima of 
the items in the leaves of S,, respectively, and a third 
list maintaining M/B items, each a minimum of the 
leaf items of the subtree rooted at a child of v. The K 
batched queries are performed by sorting them first, so 
that all queries can be performed by scanning S O(1) 
times. If K > N we process the queries in batches of N 
at a time. 

For the minimum spanning tree (MST) verification 
problem, our technique is based on that of King [14]. 
We verify that a given tree T is an MST of a graph G 
by verifying that each edge (u, u) in G has weight at 
least as large as that of the heaviest edge on the path 
from u to ZJ in T. First, using O(soti(V)) I/OS, we 
convert T into a balanced tree T’ of size O(V) such 
that the weight of the heaviest edge on the path from 
u to v in T’ is equal to the weight of the heaviest 
edge on the path from ‘u. to v in T. We then compute 
the lowest common ancestor in T’ of the endpoints 
of each edge of G. Using the technique described 
above to process the pairs V at a time, this takes 
O((E/V)so?-t(V)) I/OS. Finally, we construct tuples 
consisting of the edges of G, their weights and the lowest 
common ancestors of their endpoints, and, using the 
batch filtering technique of [12], we filter these tuples 
through T’, V at a time. This batch filtering takes 
O((E/V)sort(V)) I/OS. When a tuple hits the lowest 
common ancestor of the endpoints of its edge, it splits 
into two queries, one continuing on towards each of 
its endpoints. If, during subsequent filtering, a query 
passes through an edge whose weight is less than its 
own, the algorithm can stop immediately and report 
that T is not an MST of G. If this never happens, then 
T is an MST. 

CHIANG ET AL. 

For connected components and minimum spanning 
forest, our algorithm is based on that of Chin et al. [4]. 
Each iteration performs a constant number of sorts on 
current edges and one list ranking to reduce the num- 
ber of vertices by a constant factor. After O(log(V/M)) 
iterations we fit the remaining M vertices to the main 
memory and solve the problem easily. For biconnected 
components, we adapt the PRAM algorithm of Tarjan 
and Vishkin [22], which requires generating an arbi- 
trary spanning tree, evaluating an expression tree, and 
computing connected components of a newly created 
graph. For ear decomposition, we modify the PRAM 
algorithm of Maon et al. [17], which requires generating 
an arbitrary spanning tree, performing batched lowest 
common ancestor queries, and evaluating an expression 
tree. Note that all these problems can be solved within 
the bound of computing minimum spanning forest. Our 
randomized algorithm reduces this latter bound by de- 
creasing in each iteration the numbers of both edges and 
vertices by a constant factor, using an external-memory 
variation of the random sampling technique by [13, 151 
and the previously mentioned minimum spanning tree 
verification method. 

Planar St-graphs were first introduced by Lempel, 
Even, and Cederbaum [16], and have a variety of appli- 
cations in Computational Geometry, motion planning, 
and VLSI layout. We obtain the given upper bounds by 
modifying the PRAM algorithms of Tamassia and Vit- 
ter [21], and applying the list ranking and the PRAM 
simulation techniques. 

7 Depth First Search and Closed Semi-Ring 
Computation 

Many algorithms for problems on directed graphs are 
easily solved in main memory by depth first search 
(DFS). We analyze the performance of sequential DFS, 
modifying the algorithm to reprocess the graph when 
the number of visited vertices exceeds O(M). We 
present a graph with V vertices and E edges by three 
arrays. There is a size-E array A containing the edges, 
sorted by source. Size V arrays Start[i] and Stop[i] 
denote the range of the adjacency list of i. Vertex i 
points to vertices {A[j] ( Start[i] < j I Stop[i]}. 

DFS maintains a stack of vertices corresponding to 
the path from the root to the current vertex in the 
DFS tree. The pop and push operations needed for 
a stack are easily implemented optimally in I/OS. For 
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Problem Notes Lower Bound Upper Bound 

Euler Tour WSONW) O(so4W) 
Expression Tree Evaluation Bounded Degree Operators flZ(s4W) O(so4W) 
Centroid Decomposition fxso4W) O(so~(Jo) 
Least Common Ancestor K Queries 0((1+ K/N)sori(N)) 

Table 1: I/O-efficient algorithms for problems on trees. The problem size is N = V = E + 1. 

Problem Notes Lower Bound Upper Bound 

Minimum Spanning Tree O((EIVh~(V)) 
Verification 
Connected Components, O(min{soti(V2), 
Biconnected Components, 1wvw~ so4w) 
Minimum Spanning Forest, Sparse graphs (E = O(V)) n(sort(V)) O(so~W>> 
and Ear Decomposition closed under edge contraction 

Randomized, with probability wEIv)sor~(v)) 
1 - exp( -E/ log’(l) E) 

Table 2: I/O-efficient algorithms for problems on undirected graphs. 

each current vertex, examine the incident edges in the 
order given on the adjacency list. When a vertex is first 
encountered, it is added to a search structure, put on 
the stack, and made the current vertex. Each edge read 
is discarded. When an adjacency list is exhausted, pop 
the stack and retreat the path one vertex. 

The only problem arises when the search structure 
holding visited vertices exceeds the memory available. 
When that happens, we make a pass through all of the 
edges, discarding all edges that point to vertices already 
visited, and compacting so that all of the edges in each 
adjacency list are consecutive. Then we empty out the 
search structure and continue. 

The algorithm must perform O(1) I/OS every time 
a vertex is made the current vertex. This can only 
happen 2V times, since each such I/O is due to a pop 
or to a push. The total additional number of I/OS due 
to reading edge lists is O(scan(E) + V). The search 
structure fills up memory at most O(V/M) times. Each 
time the search structure is emptied, O(scan(E)) I/OS 
are performed. 

THEOREM 7.1. Let G be a directed graph contain- 
ing V vertices and E edges in which the edges are given 
in a list that is sorted by source. DFS can be performed 
on G with O((l + V/M)scan(E) + V) I/OS. 

COROLLARY 7.1. Let G be a directed graph con- 
taining V vertices and E edges in which the edges are 
given in a list that is sorted by source. Then one can 
compute the strongly connected components of G and 
perform a topological sorting on the strongly connected 

Ullman and Yannakakis have recently presented 
external-memory techniques for computing the transi- 
tive closure of a directed graph [23]. They solve this 
problem using O( dfs(V, E) + scan(V2 dm)) I/OS, 
where dfs(V, E) is the number of I/OS needed to per- 
form DFS on the input graph in order to find strongly 
connected components and topologically sort it. They 
assume that V < M, and under that assumption, they 
give an O(scan(E) + V) algorithm for DFS. In their 
other routines, small modifications to the algorithms 
allow for full blocking even when V > M. Our DFS al- 
gorithm works for the general case when V > M, and its 
I/O complexity is always less than the scan(V2dm) 
term in complexity of transitive closure. Thus, we get 
the following corollary to Corollary 7.1 and the work of 
Ullman and Yannakakis: 

COROLLARY 7.2. The transitive closure of a graph 
can be computed in O(scan(V2dm)) I/OS. 

8 Conclusions 

We have presented a number of techniques for designing 
and analyzing external-memory algorithms for graph 
theoretic problems and showed a number of applications 
for them. Our techniques, particularly proximate neigh- 
bors problem lower bounding, derivation of I/O-optimal 
algorithms from non-optimal PRAM algorithms, and 
time-forward processing, are general enough that they 
are likely to be of value in other domains as well. Ap- 
plications to memory hierarchies and parallel memory 
hierarchies will be discussed in the full paper. 

components using 0( (1 + V/M)scan(E) + V) I/OS. Although we did not specifically discuss them, the 



148 CHIANG ET AL. 

3 Problem Notes Lower Bound Upper Bound 
Reachability K queries O((l+ K/V)soti(V)) 
Topological Sorting Q(so%V)) O(S~W>> 
Drawing and, 2V - 5 bends R(sort(V)) O(so~(V)) 
Visibility Representation O(V2) area 

Table 3: I/O-efficient algorithms for problems on planar St-graphs. Note that E = O(V) for these graphs. 

constants hidden in the big-oh notation tend to be small 
for algorithms based on our techniques. For example, 
randomized list ranking can be done using 3 sorts per IllI 
recursive level, which leads to an overall I/O complexity 
roughly 12 times that required to sort the original 
input a single time. An implementation along these 
lines has been written using an alpha version of TPIE, P21 

a transparent parallel I/O environment designed to 
facilitate the implementation of I/O efficient algorithms 
from a variety of domains [24]. We expect to implement 

1131 

additional algorithms using TPIE and publish empirical 
results regarding their efficiency in the near future. 
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