
SIAM J. COMPUT.
Vol. 14, No. 2, May 1985

1985 Society for Industrial and Applied Mathematics
016

OPTIMUM ALGORITHMS FOR A MODEL OF DIRECT CHAINING*

JEFFREY SCOTT VITTERt AND WEN-CHIN CHEN$

Abstract. Direct chaining is a popular and efficient class of hashing algorithms. In this paper we study
optimum algorithms among direct chaining methods, under the restrictions that the records in the hash table
are not moved after they are inserted, that for each chain the relative ordering of the records in the chain
does not change after more insertions, and that only one link field is used per table slot. The varied-insertion
coalesced hashing method (VICH), which is proposed and analyzed in [CV84], is conjectured to be optimum
among all direct chaining algorithms in this class. We give strong evidence in favor of the conjecture hy
showing that VICH is optimum under fairly general conditions.

Key words, analysis of algorithms, searching, information retrieval, hashing, coalesced hashing, data
structures, optimality

1. Introduction. There are many classes of hashing algorithms in use today"
separate chaining, coalesced hashing, linear probing, double hashing, and quadratic
probing, to name a few. (More details can be found in [Knu73].) Comparisons between
hashing algorithms in different classes are often difficult, because each class has its
own assumptions, storage requirements, and tradeoffs. For example, some hashing
algorithms (as in [Bre73]) do extra work during insertion in order to speed up later
searches. In some applications, the preferred class of hashing methods is determined
by the special nature and requirements of the application. The task is then to find the
optimum algorithm within that class.

This paper is concerned with optimum algorithms within one popular class of
hashing algorithmsmdirect chaining without restructuring. This implies that the lists
coalesce. Throughout this paper, we will denote the number of inserted records by N
and the number of slots in the hash table by M’. We assume that there is a predefined
and quickly computed hash function
(1) hash: {all possible keys}-> { 1, 2,. ., M}
that assigns each record to its hash address in a uniform manner. The first M slots,
which serve as the range of the hash function, are called the address region; the
remaining M’-M slots make up the cellar.

Direct chaining works as follows: The search for a record with key K begins at
slot hash (K) and continues through the linked chain of records until either the record
is found (i.e., the search is successful) or else the end of the list is reached (i.e., the
search is unsuccessful). When a record with a key K is inserted, it must become part
of the chain that includes slot hash (K), so that later searches for that record will
succeed.

In this paper we study optimum direct chaining algorithms under the following
model: the records cannot be moved once they are inserted into the hash table (e.g.,
the records might be "pinned" to their locations by pointers to them from outside the
table, or the records might be very large so that moving them is expensive), the relative
ordering of the records in each chain does not change after more records are added,

Received by the editors December 20, 1983, and in revised form September 24, 1984. This research
was supported by an IBM contract.

t Department of Computer Science, Brown University, Providence, Rhode Island 02912. The research
of this author was supported in part by the National Science Foundation under grant MCS-81-05324 and
by ONR and DARPA under contract N00014-83-K-0146 and ARPA Order No. 4786.

Department ofComputer Science, Brown University,Providen.ce, Rhode Island 02912. Present address,
GTE Laboratories Inc., Waltham, Massachusetts 02245.

490



DIRECT CHAINING WITH COALESCING LISTS 491

and there is only one link field per table slot. This model does not allow restructuring
of the hash table while the table is being constructed.

Under this model, when a record collides with another record during insertion
(i.e., its hash address is already occupied), an empty slot is allocated to store the new
record, and that slot is linked into the chain containing slot hash (K) at some point
in the chain after slot hash (K). We call a record that collides during insertion a
collider. Insertion algorithms in this model can differ from one another only in the
ways that the following two decisions are made:

(1) Which empty slot is allocated to store the collider?
(2) At what point in the chain following slot hash (K) should the collider be

linked?
The measures of performance we use to compare algorithms is the number of

probes per successful search and the number ofprobes per unsuccessful search. In both
cases this is the number of distinct slots accessed during the search. We use the
probability model that the MN sequences of hash addresses are equally likely. For
successful searches, we also assume that each of the N inserted records in the hash
table is equally likely to be the object of the successful search. For insertions and
unsuccessful searches, we assume that each of the M address region slots is equally
likely to be the hash address for the unsuccessful search. In other words, insertions
and searches are assumed to be random.

When there is no cellar, the way in which decision is made is not important, as
far as the average search performance is concerned. In the case in which there is a

cellar, most methods use a statically-ordered available-slot list, in which empty slots
are allocated in some fixed relative order. Performance seems to be best when cellar
slots get higher priority over noncellar slots on the available-slot list. When that is the
case, a collider is stored in an empty cellar slot, if one is available. When the cellar
gets full, subsequent colliders must be stored in the address region. This may cause
collisions with records inserted later. For example, in Fig. 1, LEO collides with
FRANCIS during insertion and is stored in the address region (in slot 10), since there
is no cellar. When GARY is inserted later, GARY collides with LEO at slot 10. Thus
GARY and LEO become part of the same chain, even though they have different hash
addresses. This phenomenon, which we cail coalescing, tends to make search times
longer. Intuitively, it makes sense to give higher priority to the cellar slots on the
available-slot list, because storing a collider in the address region can cause coalescing
to occur during a later insertion.

Several methods have been proposed for handling decision 2, all having the generic
name of coalesced hashing. The original method, late-insertion coalesced hashing
(LICH), was introduced in [Wi159] and analyzed in [Knu73], [Gui76], [GK81], [Vit82b],
[Vit83], and [CV84]. In LICH, a collider is linked to the end of the chain that contains
slot hash (K). The early-insertion coalesced hashing method (EICH) proposed in
[Vit82b] and [Kno84] inserts each collider into the chain at the point immediately after
slot hash K ).

For the special case of standard coalesced hashing (in which there is no cellar)
these two methods are referred to as LISCH and EISCH. An example is given in Fig.
1. The record WEN collides with FRANCIS at slot 1. In the LISCH method illustrated
in Fig. (a), WEN is linked at the end of the chain containing FRANCIS. With EISCH
in Fig. (b), WEN is inserted into the chain at the point between FRANCIS and LEO.
The average successful search time in Fig. l(b) is slightly better than in Fig. l(a),
because inserting WEN immediately after FRANCIS (rather than at the end of the
chain) reduces the search time for WEN from four probes to two and increases the



492 JEFFREY SCOTT VITTER AND WEN-CHIN CHEN

3

4

5

6

7

9

I0

DON

WEN

GARY

DAN

Keys: FRANCIS DON LEO JEFF DAN GARY WEN
Hash Addresses: (a)(b) 3 4 3 I0

ave. # probes per succ. search: (a) 13/7 1.86, (b) 12/7 1.71.
ave. # probes per unsucc, search: (a) 17 / 10 1.7, (b) 17 / 10 1.7.

FIG. 1. Standard coalesced hashing, M’= M 10, N 7. (a) LISCH, (b) EISCH.

search time for LEO from two probes to three. The result is a net decrease of one
probe. The expected search performance for EISCH is derived in [CV83] and [Kno84];
EISCH results in faster searches, on the average, than does LISCH.

When there is a cellar, however, LICH performs better than EICH, as illustrated
in Fig. 2. The insertion of WEN using EICH in Fig. 2(b) causes both cellar records
LEO and JEFF to move one more link further from their hash addresses. That does
not happen using LICH in Fig. 2(a).

The varied-insertion coalesced hashing method (VICH) was introduced in [Vit82b]
as a means of combining the strong points of both LICH and EICH without their

(a) LICH
address size 9

FRANC!S

8 ’DON’
4

B SHARON
7 wEN

(11) LEO

(b) EICH
address size 9

(c) VICH
address ize

FRANCIS

DON

SHARON -..
WEN

GARY

JEFF -.,

LEO

Keys: FRANCIS DON LEO JEFF DAN GARY WEN SHARON
Hash Addresses: 3 3 8

ave. # probes per unsucc, search: (a) 18/9 2.0, (b) 24/9 2.67, (c) 18/9 2.0.
ave. # probes per succ. search: (a) 21/8 2.63, (b) 22/13 2.75, (c) 20/13 2.5.

FIG. 2. Coalesced hashing, M’-- 11, M =9, N 8. (a) LICH, (b) EICH, and (c) VICH.



DIRECT CHAINING WITH COALESCING LISTS 493

weaknesses. In VICH, the collider is linked into the chain directly after its hash address
(as in EICH) except when the cellar is full, there is at least one cellar slot in the chain,
and the hash address of the collider is the location of the first record in the chain; in
that case, the collider is linked into the chain directly after the last cellar slot in the
chain. When there is no cellar, VISCH is identical to EISCH. An example of VICH
appears in Fig. 2(c). The analyses of LICH, EICH, and VICH given in [CV84] show
that VICH performs better, on the average, than both LICH and EICH.

In the next section we conjecture that VICH is optimum among all direct chaining
methods, under the model explained above. The main result of this paper is a vote in
favor of this conjecture, showing that VICH is optimum under the above conditions
when cellar slots are given priority on the available-slot list.

2. Search-time optimality of varied-insertion. In this section we investigate the
search-time optimality of VICH among chaining methods that insert records directly
into the hash table. The sizes of the address region and cellar are fixed. We assume
that records cannot be moved once they are inserted. We also assume that the relative
ordering of the records in the chains does not change after more records are inserted.
In other words, the optimization illustrated in Fig. 3(c) is not allowed. Finally, we
assume that there is only one link field per table slot.

The major open question is whether VICH is optimum under this model. We
conjecture that the answer is yes. We will use the term admissible to refer to any direct
chaining insertion algorithm that satisfies the assumptions of the above model.

Conjecture. Varied-Insertion Coalesced Hashing (VICH) gives the optimum
expected search times among all admissible chaining methods, with the probability
assumptions that the MN sequences of hash addresses are equally likely and that
insertions and searches are random.

In this section we give strong support for the conjecture" We show that VICH
uses a greedy method of inserting records, that is, VICH is a locally optimum admissible
method for inserting a single record. For the special case in which there is no cellar,
we show that VICH is not only locally optimum, but also globally optimum. The main
result is showing that VICH is globally optimum among all admissible chaining methods
that give the cellar slots priority on the available-slot list.

In coalesced hashing we typically allocate available empty slots in the order M’,
M’- 1, M’-2, ., which means that the cellar slots are allocated before the address
region slots. However Lemma shows that for any given ordering of the available-slot

() (b)

FRANCIS %, FRANCIS FRANCIS

3 LEO %. 3 LEO 3 LEO --"
4 DON - 4 DON 4 DON

Keys: FRANCIS DON LEO JEFF
Hash Addresses: 3

ave. # probes per succ. search: (b) 9,,/4 2.25, (c) 8,/4 2.0.

FIG. 3. Hash table (a) is an optimum arrangement of the first three inserted records FRANCIS, DON,
and LEO, as far as subsequent searches are concerned. Table (b) pictures the result of inserting JEFF using
VICH. Table (c) achieves better successful search times than (b) by reordering the chain so that DON precedes
LEO. Assuming that the records cannot be moved once they are inserted, there is no optimum arrangement of
the four records in which LEO precedes DON as in (a).



494 JEFFREY SCOTT VITTER AND WEN-CHIN CHEN

list, the chains that are formed are the same regardless of which admissible chaining
method is used, except for the order of the individual records within the chains.

LEMMA 1. For any given ordering of the available-slot list and for any admissible
chaining methods, the partition of the inserted records into chains is the same.

Proof. We prove this lemma by induction on the number of records inserted in
the table. Assume that the partition of the inserted records into chains is the same for
all admissible chaining methods after k records are inserted. Let record R (with key
K) be the next record inserted. If R does not collide when inserted, then all admissible
chaining methods insert R at its hash address hash (K). If R collides when inserted,
then all admissible chaining methods link R into the chain containing location
hash (K). Thus the partition ofthe records into chains is still the same for all admissible
chaining methods after k + insertions. This proves the lemma.

It is easy to see that permuting the order of the cellar slots on the available-slot
list does not affect search performance at all. The following lemma shows that the
order of the address region slots on the available-slot list can be permuted among
themselves without affecting the average search performance. The rigorous statement
of the lemma uses the terminology that two hash tables are homotopic if and only if
their chains can be paired off in a 1-1 correspondence so that the search times for the
ith records in two corresponding chains are the same, for each and for any pair of
corresponding chains. The formal definition of homotopic appears in [Vit82a], which
used the notion in connection with deletion algorithms that preserve randomness.

LEMMA 2. For any admissible chaining algorithm, andfor any two orderings of the
address region slots in the same fixed positions on the available-slot list, there is a l-1
correspondence between the two classes of Mrv hash tables obtained by using the two
available-slot lists such that each pair of corresponding tables is homotopic.

Proof. We prove this lemma by constructing explicitly the 1-1 correspondence.
Let al, a2, ’’’, aM and tr(al), cr(a2), ’’’, or(aM) be the two orderings of the
available-slot list. The hash table obtained by inserting k records with hash addresses
hi, hE, "’’, hk using the first ordering of the available-slot list is homotopic to the
hash table obtained by the insertion of records with hash addresses o’(hl), or(hE),
cr(hk) using the latter ordering. For each i, the record in slot in the first table is in
slot r(i) in the second table.

The following definitions are used to prove the remaining results of this section.
A chain of records RI, RE, "’’, Rk, inserted in that order by linking algorithms A,
A2, "’’, Ak, respectively, can be defined as follows: The chain [(R, A)] is the chain
containing R only. Given a chain LI =[[" .[[(R, A)], (RE, A2)], "], (Rk-, Ak-)],
the chain L=[L, (Rk, Ak)] is obtained by linking Rk into LI by using algorithm Ak.
For simplicity, we will use [(R1, AI), ’’’, (Rk, Ak)] to denote L. If a record R is
contained in a chain L--[(RI, AI), ", (Rk, Ak)], then we define Search (R, L) to be
the number of probes required to search successfully for R in L, and Search (L) to be
l<=i<_k Search (Ri, L). We also define loc (R) to be the absolute location in the hash
table of the slot containing R, and b(R, L) to be the number of records that are stored
in slots in the chain L following R, whose hash addresses are either loc (R) or one of
the slots before R in L.

Theorem shows that for successful searches, VICH is locally optimum among
all admissible chaining methods. VICH uses a greedy method of inserting records, in
that each individual insertion is done so as to minimize the resulting average successful
search time.

THEOREM |. Given a record R with key K and a chain L containing location
hash K), an optimum place to link R into L in order to minimize Search L’), where L’



DIRECT CHAINING WITH COALESCING LISTS 495

is the chain obtained by linking R into L, is immediately before the first noncellar slot
following slot hash (K) in the chain, or else at the end of the chain if no such noncellar
slot exists.

Proof. If slot hash (K) is the last slot in L, then all admissible chaining methods
link R immetiiately after slot hash (K). Therefore, we will assume that before R is
inserted, slot hash (K) is not the last slot in L and that record R is stored in a slot
in chain L that follows slot hash (K). Suppose that there are two different methods
A and B that link record R into chain L. Method A links R immediately after the
slot containing R. Method B links R immediately before the slot containing R. Let
LA denote the chain [L, (R, A)] and Ln denote the chain [L, (R, B)]. We will prove
the theorem by showing that

(2) Search (LA) >- Search (Ln),

and that if the slot that contains R is a cellar slot, then

(3) Search (LA) Search Ln ).

Since method A links R into chain L immediately after, the slot containing R
and method B links R into chain L immediately before the slot contining R, we have

(4) Search (R, LA) Search (R, La)+ l;

and

(5) Search (R, Ln)= Search (R1, LA)-b 1.

Formula (5) follows from the fact that R cannot be stored at its hash address, or else
it would not be in the chain L. For those records R’ that are stored in slots following
R in L, and whose hash addresses are loc (R), we have

(6) Search (R’, LA)- Search (R’, Ln)+ 1.

Since the hash address of R’ is loc (R1) and R is linked immediately after R in LA,
it requires one more probe to search for R’ in LA. Note that if R is stored in the
cellar, then there are no records R’ with hash addresses loc (R1). Finally, if R is one
of the remaining records in both chains, we have

(7) Search (R, LA) Search (R, Ln).

This proves (2) and (3), and thus proves the theorem.
The following theorem shows that in the case in which there is no cellar, then

VISCH is not only locally optimum, but also globally optimum.
THEOREM 2. Assume that there is no cellar. For any set of records R, R2, "’’, Rk

thatforms a chain, with the assumption that the Mk possible sequences ofhash addresses
hi, hE, ", hk are equally likely, the average unsuccessful and successful search times on
the chain are optimized by the VISCH (=EISCH) ordering of the records in the chain.

Proof. Lemma shows that the partition of the inserted records into chains is the
same for all admissible chaining methods. Since the average unsuccessful search time
on a chain depends on the length of the chain and not on the ordering of the records
within the chain, then by Lemma l, the average unsuccessful search times are the same
for all admissible chaining methods.

To prove that VISCH is optimum for the successful search case, we need the
following formula. Let L be the chain [(RI, At),..., (Rk, Ak)]; then

(8) Search (L)= k + b(g,, L).
l<ik



496 JEFFREY SCOTT VITTER AND WEN-CHIN CHEN

This formula can be proved as follows: From the definition of Search (L), we have

(9) Search L Search Ri, L).
lik

Now consider each record Ri in chain L. If Search (Ri, L) s, then s probes are required
to search for Ri in L. Let R,, ..., Ri_, be the records stored in the slots in L that are
probed while searching for R. The search for R contributes to each of the following
terms" d(R, L), ..., b(R_,, L). It also contributes to the term k in the right-hand
side of (8). Therefore, the search for R contributes s to both sides of (8). This proves
(8).

Now we prove the optimality of VISCH for successful searches by induction on
k, the number of records in the chain. Assume that for a given set of records R1, ,
Rk, with random hash addresses hi, "’’, hk, the average successful search times on
the chain are optimized by the VISCH ordering of the records in the chain. We will
show that VISCH still gives the optimum ordering for the records RI, , Rk+l, where
Rk+l is the next record inserted. The hash address of Rk+l can be any of the M address
region slots, with equal probability. Formally, if we let Lv denote the chain
[(RI, VISCH), ., (Rk, VISCH)] and let LA denote the chain [(R1, A), ., (Rk, A)],
for any admissible chaining method A, then with the assumption of induction

(10) Search (Lv) <-, Search (LA)

we will show

(11) 2
: l--i-k

and

Search ([Lv, (S,,VISCH)])<= E Search (lEA, (Si, VISCH)])

(12) Search ([LA,(S,,VISCH)])<--E E Search ([LA,(S,,A)]),

where S is a record with hash address loc (R) and the symbol under represents
the summation condition "all possible sequences of hash addresses hi, "’’, hk such
that records R1, ’’’, Rk are linked together to form a chain." Inequalities (11) and
(12) combined prove that VISCH is optimum for successful searches.

Inequality (12) is true from Theorem 1, which showed that VICH is locally
optimum. Inequality (11) is shown in the following way by applying (8): If the record
Si is linked into chain Lv immediately after the slot containing R by using VISCH,
then we have

(13) Search ([Lv, (S,, VISCH)])= 2+ b(R,, Lv)+ Search (Lv).

This formula is true, since after the insertion of S, it requires two probes to search
for Si in [Lv, (S, VISCH)], and it requires one more probe to search for those records
stored in slots in Lv that follow R and whose hash addresses are either loc (R) or
one of the slot before Ri in Lv. From (13), the left-hand side of (11) is equal to

(14)
Y E (2+ b(R,, Lv)+Search (Lv))=Y (2k+kSearch (Lv)+ Y th(R,, Lv))
: l--ik : l--ik

Y’, (k + k + Search (Lv)).



DIRECT CHAINING WITH COALESCING LISTS 497

The last equality follows from (8). Similarly, the right-hand side of (11) is equal to

(15) (k+(k+ 1) Search (LA)).

Thus, (11) follows from (10) immediately.
From the above arguments, we conclude that VISCH gives the optimum ordering

of records in the chain that minimizes both the successful and unsuccessful searches
times. This proves the theorem.

The weakness of Theorem 2 is that EICH is also a greedy insertion method, but
with a cellar EICH is definitely not optimum. The next theorem strengthens the previous
results. It shows that when the cellar slots get priority on the available-slot list, VICH
is globally optimum.

THEOREM 3. Assume that the cellar slots are given priority on the available-slot list.
_For any set of records R, R2, "’’, Rk that forms a chain, with the assumption that all
possible hash addresses hi, h2, "’’, hk are equally likely, the average unsuccessful and
successful search times on the chain are optimized by the VICH ordering of the records
in the chain.

Proof We first note that for each chain the hash address of each cellar slot is the
location of the first slot of the chain. Now we show that VICH optimizes the average
unsuccessful search times. Let us assume that the noncellar slots in the chain are in
relative positions p, p2,..., Pa-, Pa in the chain, counting backwards from the end
of the chain. Note that <= p <=. <= p_ <- Pa k, where k is the length of the chain.
The average unsuccessful search time on the chain is

(16) (p,+p,_t+ +p)
a

which can be minimized by letting p 1, P2 2, , p_ a- 1. This means that all
the cellar slots in the chain immediately follow the first slot in the chain. This is feasible,
since the hash addresses of all the cellar slots are the location of the first slot of the
chain. VICH yields the above ordering, and thus minimizes the average unsuccessful
search times on the chain.

To prove that VICH optimizes the average successful search times, we will show
that (a) the optimum placements of the cellar slots in the chain are immediately after
the first slot of the chain, and that (b) the optimum relative ordering of the noncellar
slots is the ordering obtained by using VICH.

(a) Assume that an ordering of records in the chain is obtained by using method
A, in which a cellar slot immediately follows a noncellar slot. Let records R and R2
be the records stored in the noncellar slot and the cellar slot, respectively. We assume
that R is not the start of the chain. Assume also that another ordering of records in
the chain is obtained by using method B, which is the same as that for A except that
R immediately precedes R in the chain. Let LA denote the chain obtained by using
method A, and Ln denote the chain obtained by using method B. It suffices to show that

(17) Search (LA) >= Search Ln ).

Since the hash address of R2 is the location of the first slot of the chain, we have

(18) Search (R, LA)= Search (R2, LR)+ 1.

Also, we have

(19) Search (R, LR)= Search (R, LA)+ 1,



498 JEFFREY SCOTT VITTER AND WEN-CHIN CHEN

since the slot containing R2 precedes immediately the slot containing R in LB. For
those records R’ that are stored in slots following Rl in LA, and whose hash addresses
are loc (R1), we have

(20) Search (R’, LA)-- Search (R’, LB)+ 1.

This follows since loc (R2) must be probed to search for R’ in chain LA. For the
remaining records R in both chains, we have

(21) Search (R, LA)= Search (R, .LB).

This shows that the optimum placements of the cellar slots are immediately after
the first slot of the chain.

(b) By the same arguments as those in the proof of Theorem 2, we can prove that
the optimum relative ordering of the noncellar slots is the ordering obtained by using
the VICH method.

From (a) and (b), we conclude that the average successful search time on the
chain is optimized by the VICH ordering of the records in the chain, l]

In order to prove the conjecture that VICH is globally optimum, it suffices to
show that the best way to allocate empty slots for colliders is to have an available-slot
list in which the cellar slots have higher priority than the address region slots. The
conjecture would then follow from Lemma l, Lemma 2 and Theorem 3.

The difficulty with proving the conjecture is due to the many exotic hash algorithms
that must be considered if the cellar slots are not given priority on the available-slot
list. The priorities assigned to slots on the available-slot list might be dynamic, for
example. For that reason, the optimum algorithm in our model could turn out to be
a method that is not practical. We believe that such is not the case. We conjecture that
VICH, which has a very efficient implementation, is optimum in our model.

3. Conclusions and open problems. We have given strong evidence in support of
our conjecture that VICH is optimum among all direct chaining methods, under the
assumptions that the records are not moved once they are inserted, that for each chain
the relative ordering of its record does not change after further insertions, and that
there is only one link field per table slot. In particular, we have shown that the conjecture
is true under the additional condition that cellar slots are given priority on the
available-slot list. Intuition suggests that this extra condition will always be true for
optimum algorithms under the above assumptions, however, determining whether the
conjecture is true in general seems to be quite challenging. If VICH is shown not to
be optimum, it is hopeful that the insights gained from the proof will lead to the
construction of an optimum algorithm.

There are other interesting open problems concerning this model of hashing. One
problem is to study the performance of coalesced hashing in external searching, as
discussed in [Vit82b]. Another problem concerns deletion algorithms that preserve
randomness. Preserving randomness means that deleting a record is in some sense like
never having inserted it. In particular, the formulas for the average search times after
N random insertions intermixed with d deletions are the same as the formulas for he
average search times after N-d random insertions. The formal notion of what it
means to preserve randomness is defined in [Vit82a]. A deletion algorithm for coalesced
hashing is given in [Vit82a] and shown to preserve randomness for late-insertion
standard coalesced hashing (LISCH). The authors have recently discovered deletion
algorithms that preserve randomness for LICH, EICH, and VICH. It seems that in
order to preserve randomness, a deletion algorithm must relocate some records from



DIRECT CHAINING WITH COALESCING LISTS 499

time to time, which may not be possible if the records are "pinned" to their locations
and are not allowed to be moved. Deletion algorithms that do not relocate records
(and do not preserve randomness) should therefore also be studied. It is an open
problem to determine how the average search times are affected by deletion algorithms
that do not preserve randomness.

[Bre73]

[CV83]

[CV84]
[GI(8]

[Gui76]

[Kno84]
[Knu73]

[Vit82a]

[Vit82b]
[Vit83]

[Wi159]

REFERENCES

R. P. BRENT, Reducing the retrieval time ofscatter storage techniques, Comm. ACM, 16 (1973),
pp. 105-109.

W. C. CHEN AND J. S. VIq"FER, Analysis of early-insertion standard coalesced hashing, this
Journal, 12 (1983), pp. 667-676.

Analysis ofnew variants ofcoalesced hashing, ACM Trans. Database Systems, to appear.
D. n. GREENE AND D. E. KNUTH, Mathematics for the Analysis of Algorithms, Birkhauser,

Boston, 1981.
L. J. GUIBAS, The analysis of hashing algorithms, PhD dissertation, Computer Science Dept.,

Technical Report STAN-CS-76-556, Stanford Univ., Stanford, CA, August 1976.
G. D. KNOTT, Direct chaining with coalesced lists, J. Algorithms, 5(1) (1984), pp. 7-21.
D. E. KNUTH, The Art of Computer Programming. Vol. 3: Sorting and Searching, Addison-

Wesley, Reading, MA, 1973.
J. S. VITTER, Deletion algorithmsfor hashing that preserve randomness, J. Algorithms, 3 (1982),

pp. 261-275.
, Implementations for coalesced hashing, Comm. ACM, 25 (1982), pp. 911-926.
, Analysis of the search performance of coalesced hashing, J. Assoc. Comput. Mach., 30

(1983), pp. 231-258.
F. A. WILLIAMS, Handling identifiers as internal symbols in language processors, Comm. ACM,

2 (1959), pp. 21-24.


