
SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

1982 Society for Industrial and Applied Mathematics
0097-5397/83/1204-0006 $01.25/0

ANALYSIS OF EARLY-INSERTION STANDARD COALESCED HASHING*

WEN-CHIN CHEN- AND JEFFREY SCOTT VITTERtt

Abstract. This paper analyzes the early-insertion standard coalesced hashing method (EISCH), which
is a variant of the standard coalesced hashing algorithm (SCH) described in [Knu73], [Vit80] and [Vit82b].
The analysis answers the open problem posed in [Vit80]. The number of probes per successful search in
full tables is 5% better with EISCH than with SCH.

Key words, analysis of algorithms, hashing, coalesced hashing, early-insertion, data structures, average-
case

1. Introduction. One of the well-known data structures for information storage
and retrieval is co’alesced hashing, which was introduced in [Wi159] and analyzed in
[Vit80], [Vit82bl, [Knu73] and [GK81]. We will assume that each package of informa-
tion is stored in computer memory as a record. There is a special field in each record,
called the key, that uniquely identifies it. The job of a searching algorithm is to take
an input K and return the record (if any) that has K as its key.

For purposes of notation, we let M’ denote the number of slots in the hash table.
The first M slots, which serve as the range of the hash function, are called the address
region the remaining M’-M slots make up the cellar. We assume that the pre-defined
hash function

(1) hash {all possible keys} {1, 2,. , M}
assigns each record to its hash address in a random (uniform) manner. We say that
a collision occurs when the hash address of a record is already occupied, and the
record must be inserted elsewhere. The special case in which M M’ and there is no
cellar is called standard coalesced hashing.

The coalesced hashing method has the property that a record is not moved once
it is inserted. The algorithm can be described as follows: Given a record with key K,
the algorithm searches for it in the hash table, starting at its hash address hash(K)
and following the links in the chain. If the record is found, the search is successful;
otherwise, the end of the chain is reached and the search is unsuccessful, in which
case the record is inserted as follows: If position hash(K) is empty, then the record
is stored at that location; otherwise, the record is stored in the largest-numbered
empty slot in the table and is linked into the chain that contains slot hash(K) (at
some point after slot hash (K)). There are two different ways to link that record into
the chain. The conventional method is to link the record to the end of chain that
contains slot hash (K). The second method, which was named early-insertion by Gary
Knott, inserts the record into the chain immediately after slot hash(K) by rerouting
pointers. Insertion can be done faster with the early-insertion method when it is known
a priori that the record is not already present in the table, since it isn’t necessary, to
search to the end of the chain.

A formal description of the conventional insertion method appears below. Let
us assume that each of the M’ contiguous slots in the coalesced hash table has the

* Received by the editors March 10, 1982, and in revised form October 5, 1982. This research was
supported in part by an IBM Research contract.

t Department of Computer Science, Brown University, Providence, Rhode Island 02912.
t The research of this author was supported in part by National Science Foundation grant MCS-81-

05324.

667

668 WEN-CHIN CHEN AND JEFFREY SCOTT VITTER

following organization"

E

KEY other fields LINK

For each value of between 1 and M’, EMPTY[if is a one-bit field that denotes
whether the ith slot is unused, KEY[if stores the key (if any), and LINK[if is either
the index to the next spot in the chain or else the null value 0.

Algorithm C (conventional coalesced hashing search and insertion). This algorithm
searches an M’-slot hash table, looking for a given key K. If the search is unsuccessful
and the table is not full, then K is inserted.

The size of the address region is M; the hash function hash returns a value
between 1 and M (inclusive). For convenience, we make use of slot 0, which is always
empty. The global variable R is used to find an empty space whenever a collision
must be stored in the table. Initially, the table is empty, and we have R =M’+ 1;
when an empty space is requested, R is decremented until one is found. We assume
that the following initializations have been made before any searches or insertions
are performed: M [/3M’], for some constant 0</3-< 1; EMPTY[i]-true, for all
0 <-i -<M’; and R M’+ 1.

C1. (Hash) Set hash (K). (Now 1 -< =< M.)
C2. (Is there a chain?) If EMPTY[if, then go to step C6. (Otherwise, the ith

slot is occupied, so we will look at the chain of records that starts there.)
C3. (Compare.) If K KEY[if, the algorithm terminates successfully.
C4. (Advance to next record.) If LINK[if O, then set LINK[if and go back

to step C3.
C$. (Find an empty slot. The search for K in the chain was unsuccessful, so we

will try to find an empty table slot to store K.) Decrease R one or more times until
EMPTY[R becomes true. If R 0, then there are no more empty slots, and the
algorithm terminates with overflow. Otherwise, append the R th cell to the chain by
setting LINK[i]R then set R.

C6. (Insert new record.) Set EMPTY[i]faise, KEY[i]K, LINK[i]-O, and
initialize the other fields in the record.

The early-insertion method can be implemented by the following two
modifications" First, we add the assignment "Set f i" at the end of step C2, so that
j stores the hash address hash (K). The second modification replaces the last sentence
of step C5 by "Otherwise, link the R th cell into the chain immediately after the hash
address/" by setting LINK[R LINK[f], LINK[j] R then set R."

An example of the two methods is given in Fig. 1. The record WEN collides with
FRANCIS at slot 1. With the conventional insertion method pictured in Fig. l(a),
WEN is linked to the end of the chain containing FRANCIS, whereas in the early-
insertion method in Fig. l(b), WEN is inserted into the chain at the point between
FRANCIS and JOHN. The average successful search time in Fig. 1 (b) is slightly better
than in Fig. l(a), because inserting WEN immediately after FRANCIS (rather than
at the end of the chain) reduces the search time for WEN from four probes to two

EARLY-INSERTION STANDARD COALESCED HASHING 669

1

8

4

5

6

7

8

9

10

(a)SCH (b)EISCH
’FRANCIS FRANCIS -..-,

DON

BOB

WEN
PARIS

JEFF
JOHN

4

5

6

7

8

9

i0

DON

BOB

WEN
PARIS

JEFF
JOHN

Keys: FRANCIS DON JOHN BOB JEFF PARIS WEN
Hash Addresses’ 3 1 4 3 10

ave. # probes per successful search: (a) 13/7 1.136, (b) 12/7 1.71.
ave. # probes per unsuccessful search: (a) 17/10 1.7, (b) 17/10 1.7.

FIG. 1. Standard coalesced hashing, M’ M 10, N 7. (a) SCH, (b) EISCH.

and increases the search time for JOHN from two probes to three. That results in a
net decrease of one probe.

The analyses of coalesced hashing that have appeared in the literature have
concentrated on the conventional method, in which a record is always linked to the
end of the chain. Knuth [Knu73] analyzes the special case of standard coalesced
hashing (SCH), in which M M’ and there is no cellar. Vitter [Vit82b] analyzes the
more general coalesced hashing method (CH), for which the cellar may be nonempty.

In this paper, we derive exact formulas for the average number of probes per
search for the early-insertion standard coalesced hashing method (EISCH). This solves
the open problem posed in [Vit80]. The average unsuccessful search times for the
EISCH and SCH methods are the same, but the average successful search time is up
to 5% better with EISCH than with SCH. The performance of early-insertion method
when there is a cellar (EICH) is still unknown.

2. The main result. In this section we develop the probability model used in our
analysis of early-insertion standard coalesced hashing EISCH and we state our main
result, Theorem 1, which expresses the average number of probes per successful search
for EISCH. We use the following parameters in our analysis:

N the number of inserted records,

M’= the number of slots in the hash table,

a N/M’= the load factor.

These quantities satisfy 0 _-<N <_- M’ and 0 -<_ a <_- 1. Since there is no cellar in the EISCH
method, the address region size M is equal to the table size M’.

In the average-case analysis, we assume that an unsuccessful search can begin at
any of the M slots in the address region with equal probability. This includes the
special case of insertion. Similarly, each record in the hash table has the same chance
of being the object of any given successful search. In other words, all searches and

670 WEN-CHIN CHEN AND JEFFREY SCOTT VITTER

insertions involve random keys. This model can be formalized by the following
definitions.

DEFINITION 1. The sequence ala2’’’ aN, where l<-ai<-M, is called a hash
sequence. Every such sequence represents the insertion of N records into a hash table
of address size M; element a. denotes the hash address of the fth inserted record
(i.e., hash (key of/’th record) a.).

In our analysis, we will use the number of probes per search, i.e., the number of
slots traversed, as a measure of search performance.

DEFINITION 2. We let Pv and PN denote the random variables describing the
number of probes in unsuccessful and successful searches in a SCH table containing
N records. Similarly, we let/5v and/ss be the random variables describing the number
of probes in unsuccessful and successful searches in a EISCH table containing N
records.

The sample space for P;v and/5;v is

(2) $’={[a, a2, au; a]ll <-a, <-M, l <=a <-M},

where ala2"’as represents the hash sequence of the N inserted records, and a is
the starting address of the unsuccessful search. The Ms+l elements in S’ each have
probability 1/Ms+l. The values ofP and/5 at sample point [al, a2, aN; a]E S’
are denoted by P’[al, a2, aN; a] and P’[a, a:, a; a].

Similarly, the sample space for Ps and Ps is

(3) $={[aa, a2, au; n]ll <-_a <-M, l <-n <-N},

where ala2"’as represents the hash sequence of the N inserted records, and
n specifies that the nth inserted record is the object of the successful search.
The NMs elements in S each have probability 1/NMN. The values of PN and/ss at
sample point [al, a2," ",aN;hiES are denoted by Ps[al, a2," ",as;hi and
Ps[a 1, az, aN; n].

DEFINITION 3. For SCH, the average unsuccessful and successful search times
are defined by

(4)
1

C’-u k’/N+I M hash sequences
P’[a l, a2, aN;a],

(5)
1

E PN[al, az,’’" ,aN;n].Cs NMN MN hash sequences

For EISCH, the average unsuccessful and successful search times are defined by

(6)
1

CN MN+I
M hash sequences

l<=a<=M

P’Ea, az, aN ;a],

(7)
1

E Ps[al, aa,"" ,aN;n].Cs NMs
M hash sequences

Knuth [Knu73] analyzes the standard coalesced hashing method SCH, and derives
the following unsuccessful and successful search times, as functions of loading factor

EARLY-INSERTION STANDARD COALESCED HASHING 671

(8)

(9)

+ 1- 1 +(e2’ 1 2a),

1((M2)
N

____N) 1N-1
CN l+g 1+ -1-

1 1
l +-a (e2 l-2a)+-a.

In particular, we have C 2.10 and CM 1.80, when the table is full (i.e., when
load factor a 1).

As Fig. 1 shows, the chains in SCH and EISCH contain the same elements,
possibly in different orders. Since the average time for an unsuccessful search depends
only on the length of the chains and not on the order of keys within the chains, the
average unsuccessful search times C and ’kr for SCH and EISCH are equal.

The following theorem is the main result of this paper. It gives the average
successful search time for EISCH, using the probability model described in Definitions
1-3.

THEOREM 1. In an M-slot early-insertion standard coalesced hash table containing
N inserted records, the average number ofprobes in a random successful search is

(10) CN= 1+ -.
In asymptotic form, this can be expressed as

(11) Nl(e 1),

where M, N-+ oo and a N/M remains constant. The approximation error is roughly
e/(2M).

The graphs in Fig. 2 reflect the fact that EISCH is slightly better than SCH. For
example, when the table is full (i.e., load factor a 1), we have CN 1.80 and CN 1.72,
so EISCH is about 5% faster. The difference between the expected number of probes
per successful search for SCH and EISCH is not significant when a is small. When
the table is half full (i.e., load factor a .5), we have CN 1.31 and Cv 1.30, which
is only a 0.5% improvement. One reason for this is that search times improve only
when searching for records contained in chains of length greater than 3; when the
load factor is small, the chains are usually short.

3. Prooi of the theorem. The derivation of the successful search time for EISCH
is more difficult than the analysis of SCH for the following reason: Any coalesced
hash table has the property that the hash address of the kth record in a chain (k > 1)
must be the location of one of the k- 1 predecessors in the chain. In a random SCH
table, each of the k 1 locations can be the hash address of the kth record with equal
probability 1/(k- 1). However, that is not true in a random EISCH table, as Fig. 3
illustrates. The hash address of the fourth (k -4) record in a random chain of length
4 is the location of the first record in the chain with probability 2/6, it is the location
of the second record with probability 1/6, and it is the location of the third record

672 WEN-CHIN CHEN AND JEFFREY SCOTT VITTER

1.8

/.6

1.2

1.0 Illl.,

"1’1 I"’I

I,i,,,11

0 0.2 0.4 0.6 0.8

EISCH

1, .,I

Load Factor

FIG. 2. The average number o]probes per success[ul search/or EISCH and SCH.

with probability 3/6. Our analysis is more difficult because it must take this into
account.

For notational simplicity, the parameter M, which denotes the number of slots
in the hash table, will not be written, but rather shall be implicit in all the terms
defined in this section. In order to prove Theorem 1, let us start with some definitions.

DEFINITION 4. We let AN denote the quantity NMNN, where N is the average
successful’search time defined in Definition 3.

DEFINITION 5. For 1 =<i =<f =<l, we let cN(l, i,f) denote the number of chains
among all the MN hash tables that satisfy the following two properties:

(1) the length of the chain is l;
(2) the hash address ot the/’th record in the chain is the location of one of the

first records in the chain.
We should note that cN(/, i,/’) 0 for l > N. For/" or/" + 1, the term cN(l, i, i) is
equal to the total number of chains of length among all the MN hash tables, since
every chain has the property that the hash address of the/’th record in the chain
(/> 1) must be the location of a preceding record.

From the above remarks we have the following lemma.

EARLY-INSERTION STANDARD COALESCED HASHING 673

Seuenc of
hash addresses

11.41
1144
1114
11IS

Order of the
keys in the
chain

adcb
adbc
abdc
acbd
acdb
abed

Key tiiat occupies the
hash address of the
last key in the chain

b
b
b

Relative position
in the chain
of that key

1

FIo. 3. The keys a, b, c and d are inserted (in that order) into an EISCH table containing M’= 4 slots.
This table describes all six possible chains of length 4 in an EISCH table in which the keys a, b, c and d are
stored in locations 1, 4, 3 and 2, respectively. The last column shows that the hash address of the last record
in the chain is more likely to be the position of the third record in the chain rather than that of the second or
the first.

LEMMA 1. The summation Zl_lN,lilCN([i, i) is equal to NMN.
The following lemma expresses the quantity AN we want to evaluate in terms of

CN(I, i,/).
LEMMA2. ThetermANisequaltoNMN +BN, whereBN lzN.lzi<j_tcN(l, i,]).
Proof. First we will show that AN .itzN.izjtcN(l, i,]). A search for the]th

record in a chain of length l requires]- + 1 probes if the hash address of the]th
record is the location of the ith record of the chain. Thus, searching for the]th record
contributes]- + 1 to AN, which, by definition, is the sum of the contributions of the
NM searches among all theMN hash tables. The search for the]th record contributes
1 to each of the following] + 1 terms: cN(l, i,]), cN(l, + 1,])," ", CN(l,],]). Hence,
we have

AN= Z cN(l, i,]) ., cN(l, i,]) + . CN(l, i,]).
l_l_N ll_N l<--_l<N
li_j_l li =j_l _i<]_l

The first summation is equal to NM, by Lcmma 1. The second summation is the
definition of BN. []

To evaluate BN, we need the following recurrence.
LEMMA 3. The term cN(l, i,]) defined in Definition 5 satisfies the recurrence

CN+(I, i,/) (M I)CN(I, i,]) + (i I)CN (I 1, I,] I)

(12) +(]-i- 1)cN(/- 1, i,]- 1)

+ (l-])c(l- 1, i,])+ /=+c:v(l- 1, i, i)

for 1 <-N <-M- 1, 1 <- <] <-_ <-N + 1. The notation $R denotes 1 if the relation R is
true and 0 otherwise.

Proof. Let’s consider theMN distinct hash sequences for N inserted records. The
only chains that can contribute to cN+(/, i,]) after the (N + 1)st insertion are chains
that contribute to cN(l, i,]), cN(l-- 1, i-- 1,]-- 1), cN(l-- 1, i,]-- 1), CN(l-- 1, i,]) and
cN(l--l,i,i).

When <N + 1, a chain that contributes to cN(l, i,]) after N insertions will
contribute to cN+l(/, i,]) after the next insertion if the hash address of the inserted
record is the location of one of the M- records outside the chain. This accounts for
the (M-I)CN(I, i,]) term.

When > 1, a chain that contributes to cN(l- 1, 1,]- 1) after N insertions will
contribute to cN+(l, i,]) after the next insertion if the hash address of the inserted

674 WEN-CHIN CHEN AND JEFFREY SCOTT VITTER

record is the location of one of the first i- 1 records in the chain. This accounts for
the (i- 1)cr(/- 1, 1,/’- 1) term.

When f > + 1, a chain that contributes to cv(1-1, i,- 1) after N insertions will
contribute to CN/I(1, i, f) after the next insertion if the hash address of the inserted
record is the location of one of the records between the th and (f- 2)nd records,
inclusively, in the chain. This accounts for the (f 1)Cn(/- 1, i,]- 1) term.

When/" < l, a chain that contributes to Czv(l-1, i,) after N insertions will con-
tribute to cN/l(l, i, [) after the next insertion if the hash address of the inserted record
is the location of one of that last l-f records in the chain. This accounts for the
(1-f)cr(l- 1, i,]) term.

When] + 1, any chain of length l-1 after N insertions will contribute to
cs+(l, i,]) after the next insertion if the hash address of the inserted record is the
location of the ith record in the chain. This accounts for the 8=+1(/- 1, i, i) term. [3

LEMMA 4. The term BNdefined in Lemma 3 is equal toM(M + 1)N (M +N)M
for 1 <-N <-M.

Proof. Substituting Lemma 3 into Bu, we have, for 1 <_-N -<M- 1,

BN+I Y’. CN+l(l,i,])
I_--</=<N+I

lNi<]<--I

2 (M l)c(l, i,]) + .
I_--</NN+I 2__</__<N+l
_i <j <--I 1.<-i <]<=l

(i-1)Cr(1-1, i-1,]- l)

E
2N/<=N+I

(]--i--1)CN(1--1, i,]--l)+ 2 (l--])CN(1- 1, i,])

+ 8i=i+IcN(l--l,i,i)
2_</_<N+l

l<--i<]l

2 (M- l)cn(1, i,]) + .. ic(l, i,]) + ., (] i)c(l, i,])
I__</__<N+I <_l<__N <__l<_N

<--i <] <_l O<___i <i <--I <_i <--] _l

+ 2 (1 + 1 --])CN(I, i,]) +]=iCN(l, i, i)
<=l_<_N

1i<</+1 l<-i<-<=l

Y’. (M- 1)c(l, i,]) + 2 ic(l, i,]) +
l<_l<_N l<__l<_N
<_i.<j<l <_i.<]<_l

(]--i)cN(t,i,])

+ Y’. (l+l--])cN(l,i,])+ Y. cr(l,i,i)
<_l<=N <=l<=N

l<=i<j<=l l<-i

=(M+I) E c(l, i, f)+ E cN(l, i, i)
II<=N I<=I<_N
l<=i<]<__l l<__i<__l

(M + 1)BN +NM.
The last step follows from the definition of BN and from Lemma 1. By telescoping
and by the fact that B 0, we get

BN =M(M + 1)r -(M+N)M.
Now, we are finally ready to prove Theorem 1. Combining Lemma 2 and Lemma

4, we have

An NMN +Bn M(M + 1)N -MN+.

EARLY-INSERTION STANDARD COALESCED HASHING 675

Thus, we get

(13) CN NM

We can express this in asymptotic form as

(14) (v --1(e 1),

where N, M--> oo and a N/M remains constant in the range 0 _-< c-< 1. The error
term is approximately e’/(2M).

4. Conclusions and open problems. We have analyzed the early-insertion stan-
dard coalesced hashing method (EISCH) and have shown that this method is slightly
better than the standard coalesced hashing method (SCH). The average unsuccessful
search times for these two methods are the same, but the average successful search
time for EISCH is 5% better when the table is full.

Some interesting open problems concerning early-insertion remain unsolved. The
early-insertion method can be used when there is a cellar and M <M’. We call this
generalization EICH. The search performance of EICH is still unanalyzed. However,
we conjecture that EICH is inferior to the coalesced hashing method (CH), since in
EICH a chain’s records that are stored in the cellar come at the end of the chain,
whereas in CH they come immediately after the first record in the chain. In Fig. 4(b),
the insertion of WEN causes both the cellar records JOHN and JEFF to move one
link further from their hash addresses. That doesn’t happen in Fig. 4(a).

Many hashing applications require that certain records be inserted and then later
deleted. The best deletion algorithms are the ones that preserve randomness, because
deleting a record is in some sense like never having inserted it. In particular, the
formulas for the average search times after N random insertions intermixed with d
deletions are the same as the formulas for the average search times afterN d random
insertions. The formal notion of what it means to preserve randomness is defined in
[Vit82a].

1

2

3

4

6

7

8

(o)

FRANCIS

DON

BOB

WEN
PARIS

JEFF

JOHN

2

4

5

6

7

8

(o)

(b)E]CH
FRANCIS

DON

BOB

WEN
PARIS -."

JEFF
JOHN

Keys’ FRANCIS DON JOHN BOB JEFF PARIS WEN
Hash Addresses: 8 1 4 1 1 8

ave.] probes per successful search: (a) 14/7 2.0, (b) 16/7 2.286.
ave.]] probes per unsuccessful search: (a) 13/t3 1.625, (b) 17/8 2.125.

FIG. 4. Coalesced hashing, M’ 10, M 8, N 7. (a) CH, (b) EICH.

676 WEN-CHIN CHEN AND JEFFREY SCOTT VITTER

A deletion algorithm for coalesced hashing is given [Vit82a] and shown to preserve
randomness for standard coalesced hashing (SCH). To delete a record, the algorithm
removes it from the table, and then it repeatedly reinserts the record in the remainder
of the chain, if any. There is a modification of this deletion algorithm that performs
the reinsertions using the early-insertion idea. It does not preserve randomness for
SCH, but it may possibly be "better-than-random." An interesting question is how
this modified deletion algorithm (which uses early-insertion) affects the search times
for EISCH. It does not preserve randomness, but it may possibly be better-than-
random. There is currently no known deletion algorithm that preserves randomness
for the EISCH, EICH and CH methods.

Addendum. Since the time this article was submitted, the authors have solved
the first open problem listed in 4. The analysis of the search time of early-insertion
coalesced hashing for the general case (when there is a cellar) appears in Analysis of
some new variants of coalesced hashing, Department of Computer Science, Brown
University, Providence, RI, Technical Report No. CS-82-18, June 1982. That report
also describes and analyzes a new method called varied-insertion coalesced hashing
that performs better than both the unmodified method and the early-insertion method.

REFERENCES

[GK81] D.H. GREENE AND D. E. KNUTH, Mathematics for the Analysis of Algorithms. Birkhauser,
Boston, 1981.

[Knu73] D. E. KNUTH, The Art of Computer Programming. Volume 3: Sorting and Searching. Addison-
Wesley, Reading, MA, 1973.

[Vit80] J.S. VITTER, Analysis ofcoalesced hashing, PhD dissertation, Department of Computer Science,
STAN-CS-80-817 Tech. Rep. Stanford University, Stanford, CA, August 1980.

[Vit82a] ., Deletion algorithms for hashing that preserve randomness. J. Algorithms, 3 (1982), pp.
261-275.

[Vit82b] ., Analysis of the search performance of coalesced hashing, J. Assoc. Comput. Mach., 30
(April 1983).

[Wil59] F.A. WILLIAMS, Handling identifiers as internal symbols in language processors, Comm. ACM,
2 (1959), pp. 21-24.

