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Abstract: Data mining is a process of discovering useful patterns (knowledge)
hidden in extremely large datasets. Classification is a fundamental data mining
function, and some other functions can be reduced to it. In this paper we
propose a novel classification algorithm (classifier) called MIND (MINing in
Databases). MIND can be phrased in such a way that its implementation is
very easy using the extended relational calculus SQL, and this in turn allows
the classifier to be built into a relational database system directly. MIND is
truly scalable with respect to I/O efficiency, which is important since scalability
is a key requirement for any data mining algorithm.

We have built a prototype of MIND in the relational database management
system DB2 and have benchmarked its performance. We describe the working
prototype and report the measured performance with respect to the previous
method of choice. MIND scales not only with the size of datasets but also
with the number of processors on an IBM SP2 computer system. Even on
uniprocessors, MIND scales well beyond dataset sizes previously published for
classifiers. We also give some insights that may have an impact on the evolution
of the extended relational calculus SQL.

1. Introduction

Information technology has developed rapidly over the last three decades. To make
decisions faster, many companies have combined data from various sources in rela-
tional databases [16]. The data contain patterns previously undeciphered that are
valuable for business purposes. Data mining is the process of extracting valid, pre-
viously unknown, and ultimately comprehensible information from large databases
and using it to make crucial business decisions. The extracted information can be
used to form a prediction or classification model, or to identify relations between
database records.

Since extracting data to files before running data mining functions would require
extra I/O costs, users of IM as well as previous investigations [20, 19] have pointed
to the need for the relational database management systems to have these functions
built in. Besides reducing I/O costs, this approach leverages over 20 years of research
and development in DBMS technology, among them are:
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salary age credit rating
65K 30 Safe
15K 23 Risky
75K 40 Safe
15K 28 Risky

100K 55 Safe
60K 45 Safe
62K 30 Risky

Table 1: Training set

• scalability,

• memory hierarchy management [30, 33],

• parallelism [5],

• optimization of the executions [6],

• platform independence, and

• client server API [27].

The classification problem can be described informally as follows: We are given a
training set (or DETAIL table) consisting of many training examples. Each training
example is a row with multiple attributes, one of which is a class label . The objective
of classification is to process the DETAIL table and produce a classifier, which
contains a description (model) for each class. The models will be used to classify
future data for which the class labels are unknown (see [4, 28, 26, 9]).

Several classification models have been proposed in the literature, including neu-
tral network, decision trees, statistical models, and genetic models. Among these
models, decision tree model is particularly suited for data mining applications due
to the following reasons: (1) ease of construction, (2) simple and easy to under-
stand, and (3) acceptable accuracy [29]. Therefore, we focus on decision tree model
in this paper. A simple illustration of of training data is shown in Table 1. The ex-
amples reflect the past experience of an organization extending credit. From those
examples, we can generate the classifier shown in Figure 1.

Although memory and CPU prices are plunging, the volume of data available
for analysis is immense and getting larger. We may not assume that the data are
memory-resident. Hence, an important research problem is to develop accurate clas-
sification algorithms that are scalable with respect to I/O and parallelism. Accuracy
is known to be domain-specific (e.g., insurance fraud, target marketing). However,
the problem of scalability for large amounts of data is more amenable to a gen-
eral solution. A classification algorithm should scale well; that is, the classification
algorithm should work well even if the training set is huge and vastly overflows in-
ternal memory. In data mining applications, it is common to have training sets with
several million examples. It is observed in [24] that previously known classification
algorithms do not scale.

Random sampling is often an effective technique in dealing with large data
sets. For simple applications whose inherent structures are not very complex, this
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Figure 1: Decision tree for the data in Table 1

approach is efficient and gives good results. However, in our case, we do not favor
random sampling for two main reasons:

1. In general, choosing the proper sample size is still an open question. The
following factors must be taken into account:

• The training set size.

• The convergence of the algorithm. Usually, many iterations are needed
to process the sampling data and refine the solution. It’s very difficult
to estimate how fast the algorithm will give a satisfactory solution.

• The complexity of the model.

The best known theoretical upper bounds on sample size suggest that the
training set size may need to be immense to assure good accuracy [13, 21].

2. In many real applications, customers insist that all data, not just a sample
of the data, must be processed. Since the data are usually obtained from
valuable resources at considerable expense, they should be used as a whole
throughout the analysis.

Therefore, designing a scalable classifier may be necessary or preferable, although
we can always use random sampling in places where it is appropriate.

In [24, 29, 18], data access for classification follows “a record at a time” access
paradigm. Scalability is addressed individually for each operating system, hardware
platform, and architecture. In this paper, we introduce the MIND (MINing in Data-
bases) classifier. MIND rephrases data classification as a classic database problem
of summarization and analysis thereof. MIND leverages the extended relational cal-
culus SQL, an industry standard, by reducing the solution to novel manipulations
of SQL statements embedded in a small program written in C.

MIND scales, as long as the database primitives it uses scale. We can follow
the recommendations in [3, 22] that numerical data be discretized so that each
attribute has a reasonable number of distinct values. If so, operations like his-
togram formation, which have a significant impact on performance, can be done in
a linear number of I/Os, usually requiring one, but never more than two passes
over the DETAIL table [36]. Without the discretization, the I/O performance
bound has an extra factor that is logarithmic but fortunately with a very large
base M/B, which is the number of disk blocks that can fit in internal mem-
ory.
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One advantage of our approach is that its implementation is easy. We have
implemented MIND as a stored procedure, a common feature in modern DBMSs.
In addition, since most modern database servers have very strong parallel query
processing capabilities, MIND runs in parallel at no extra cost. A salient feature of
MIND and one reason for its efficiency is its ability to do classification without any
update to the DETAIL table.

We analyze and compare the I/O complexities of MIND and the previous
method of choice, the interesting method called SPRINT [29]. Our theoretical
analysis and experimental results show that MIND scales well whereas SPRINT
can exhibit quadratic I/O times.

We describe our MIND algorithm in the next section; an illustrative example
is given in Section 4. A theoretical performance analysis is given in Section 5.
We revisit MIND algorithm in Section 6 using a general extension of current SQL
standards. In Section 7, we present our experimental results. We make concluding
remarks in Section 8.

2. The algorithm

2.1. Overview

A decision tree classifier is built in two phases: a growth phase and a pruning phase.
In the growth phase, the tree is built by recursively partitioning the data until each
partition is either “pure” (all members belong to the same class) or sufficiently
small (according to a parameter set by the user). The form of the split used to
partition the data depends upon the type of the attribute used in the split. Splits
for a numerical attribute A are of the form value(A) ≤ x, where x is a value in
the domain of A. Splits for a categorical attribute A are of the form value(A) ∈ S,
where S is a subset of domain(A). We consider only binary splits as in [24, 29] for
purpose of comparisons. After the tree has been fully grown, it is pruned to remove
noise in order to obtain the final tree classifier.

The tree growth phase is computationally much more expensive than the subse-
quent pruning phase. The tree growth phase accesses the training set (or DETAIL
table) multiple times, whereas the pruning phase only needs to access the fully
grown decision tree. We therefore focus on the tree growth phase. The following
pseudo-code gives an overview of our algorithm:

GrowTree(TrainingSet DETAIL)
Initialize tree T and put all of records of DETAIL in the root;
while (some leaf in T is not a STOP node)

for each attribute i do
form the dimension table (or histogram) DIM i;
evaluate gini index for each non-STOP leaf at each split value
with respect to attribute i;

for each non-STOP leaf do
get the overall best split for it;

partition the records and grow the tree for one more level according to the
best splits;
mark all small or pure leaves as STOP nodes;

return T ;
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2.2. Leaf node list data structure

A powerful method called SLIQ was proposed in [24] as a semi-scalable classification
algorithm. The key data structure used in SLIQ is a class list whose size is linear
in the number of examples in the training set. The fact that the class list must be
memory-resident puts a hard limitation on the size of the training set that SLIQ
can handle.

In the improved SPRINT classification algorithm [29], new data structures at-
tribute list and histogram are proposed. Although it is not necessary for the at-
tribute list data structure to be memory-resident, the histogram data structure
must be in memory to insure good performance. To perform the split in [29], a hash
table whose size is linear in the number of examples of the training set is used.
When the hash table is too large to fit in memory, splitting is done in multiple
steps, and SPRINT does not scale well.

In our MIND method, the information we need to evaluate the split and perform
the partition is stored in relations in a database. Thus we can take advantage of
DBMS functionalities and memory management. The only thing we need to do is
to incorporate a data structure that relates the database relations to the growing
classification tree. We assign a unique number to each node in the tree. When
loading the training data into the database, imagine the addition of a hypothetical
column leaf num to each row. For each training example, leaf num will always
indicate which leaf node in the current tree it belongs to. When the tree grows,
the leaf num value changes to indicate that the record is moved to a new node by
applying a split. A static array called LNL ( leaf node list) is used to relate the
leaf num value in the relation to the corresponding node in the tree. By using a
labeling technique, we insure that at each tree growing stage, the nodes always have
the identification numbers 0 through N −1, where N is the number of nodes in the
tree. LNL[i] is a pointer to the node with identification number i. For any record
in the relation, we can get the leaf node it belongs to from its leaf num value and
LNL and hence we can get the information in the node (e.g. split attribute and
value, number of examples belonging to this node and their class distribution).

To insure the performance of our algorithm, LNL is the only data structure that
needs to be memory-resident. The size of LNL is equal to the number of nodes in
the tree, so LNL can always be stored in memory.

2.3. Computing the gini index

A splitting index is used to choose from alternative splits for each node. Several
splitting indices have recently been proposed. We use the gini index, originally
proposed in [4] and used in [24, 29], because it gives acceptable accuracy. The
accuracy of our classifier is therefore the same as those in [24, 29].

For a data set S containing N examples from C classes, gini(S) is defined as

gini(S) = 1 −
C∑

i=1

p2
i (1)

where pi is the relative frequency of class i in S. If a split divides S into two subset
S1 and S2, with sizes N1 and N2 respectively, the gini index of the divided data
gini split(S) is given by

gini split(S) =
N1

N
gini(S1) +

N2

N
gini(S2) (2)
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The attribute containing the split point achieving the smallest gini index value
is then chosen to split the node [4]. Computing the gini index is the most expensive
part of the algorithm since finding the best split for a node requires evaluating the
gini index value for each attribute at each possible split point.

The training examples are stored in a relational database system using a table
with the following schema: DETAIL(attr1, attr2, . . . , attrn, class , leaf num), where
attr i is the ith attribute, for 1 ≤ i ≤ n, class is the classifying attribute, and
leaf num denotes which leaf in the classification tree the record belongs to. In
actuality leaf num can be computed from the rest of the attributes in the record
and does not need to be stored explicitly. As the tree grows, the leaf num value
of each record in the training set keeps changing. Because leaf num is a computed
attribute, the DETAIL table is never updated, a key reason why MIND is efficient
for the DB2 relational database. We denote the cardinality of the class label set
by C, the number of the examples in the training set by N , and the number of
attributes (not including class label) by n.

3. Database implementation of MIND

To emphasize how easily MIND is embeddable in a conventional database system
using SQL and its accompanying optimizations, we describe our MIND components
using SQL.

3.1. Numerical attributes

For every level of the tree and for each attribute attr i, we recreate the dimension
table (or histogram) called DIM i with the schema DIM i(leaf num, class , attr i,
count) using a simple SQL SELECT statement on DETAIL:

INSERT INTO DIM i

SELECT leaf num, class, attr i, COUNT(*)
FROM DETAIL
WHERE leaf num <> STOP
GROUP BY leaf num, class, attri

Although the number of distinct records in DETAIL can be huge, the maximum
number of rows in DIM i is typically much less and is no greater than (#leaves in
tree) × (#distinct values on attr i) × (#distinct classes), which is very likely to be
of the order of several hundreds [25]. By including leaf num in the attribute list
for grouping, MIND collects summaries for every leaf in one query. In the case that
the number of distinct values of attr i is very large, preprocessing is often done in
practice to further discretize it [3, 22]. Discretization of variable values into a smaller
number of classes is sometimes referred to as “encoding” in data mining practice [3].
Roughly speaking, this is done to obtain a measure of aggregate behavior that may
be detectable [25]. Alternatively, efficient external memory techniques can be used
to form the dimension tables in a small number (typically one or two) linear passes,
at the possible cost of some added complexity in the application program to give
the proper hints to the DBMS, as suggested in Section 5.

After populating DIM i, we evaluate the gini index value for each leaf node at
each possible split value of the attribute i by performing a series of SQL operations
that only involve accessing DIM i.



354 M. Wang et al.

It is apparent for each attribute i that its DIM i table may be created in one pass
over the DETAIL table. It is straightforward to schedule one query per dimension
(attribute). Completion time is still linear in the number of dimensions. Commercial
DBMSs store data in row-major sequence. I/O efficiencies may be obtained if it is
possible to create dimension tables for all attributes in one pass over the DETAIL
table. Concurrent scheduling of the queries populating the DIM i tables is the simple
approach. Existing buffer management schemes that rely on I/O latency appear
to synchronize access to DETAIL for the different attributes. The idea is that
one query piggy-backs onto another query’s I/O data stream. Results from early
experiments are encouraging [31].

It is also possible for SQL to be extended to insure that, in addition to optimizing
I/O, CPU processing is also optimized. Taking liberty with SQL standards, we write
the following query as a proposed SQL operator:

SELECT FROM DETAIL
INSERT INTO DIM 1{leaf num, class, attr1, COUNT(*)

WHERE predicate
GROUP BY leaf num, class, attr1}

INSERT INTO DIM 2{leaf num, class, attr2, COUNT(*)
WHERE predicate
GROUP BY leaf num, class, attr2}

...
INSERT INTO DIM n{leaf num, class, attrn, COUNT(*)

WHERE predicate
GROUP BY leaf num, class, attrn}

The new operator forms multiple groupings concurrently and may allow further
RDBMS query optimization.

Since such an operator is not supported, we make use of the object extensions
in DB2, the user-defined function (udf) [32, 10, 17], which is another reason why
MIND is efficient. User-defined functions are used for association in [2]. User-defined
function is a new feature provided by DB2 version 2 [10, 17]. In DB2 version 2,
the functions available for use in SQL statements extend from the system built-in
functions, such as avg, min, max, sum, to more general categories, such as user-
defined functions (udf). An external udf is a function that is written by a user in
a host programming language. The CREATE FUNCTION statement for an external
function tells the system where to find the code that implements the function. In
MIND we use a udf to accumulate the dimension tables for all attributes in one
pass over DETAIL.

For each leaf in the tree, possible split values for attribute i are all distinct values
of attr i among the records that belong to this leaf. For each possible split value, we
need to get the class distribution for the two parts partitioned by this value in order
to compute the corresponding gini index. We collect such distribution information
in two relations, UP and DOWN .

Relation UP with the schema UP(leaf num, attr i, class , count) can be gener-
ated by performing a self-outer-join on DIM i:
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INSERT INTO UP
SELECT d1.leaf num, d1.attr i, d1.class, SUM(d2.count)
FROM (FULL OUTER JOIN DIM i d1, DIM i d2

ON d1.leaf num = d2.leaf num AND
d2.attr i ≤ d1.attr i AND
d1.class = d2.class

GROUP BY d1.leaf num, d1.attr i, d1.class)

Similarly, relation DOWN can be generated by just changing the ≤ to > in the
ON clause. We can also obtain DOWN by using the information in the leaf node
and the count column in UP without doing a join on DIM i again.

DOWN and UP contain all the information we need to compute the gini index
at each possible split value for each current leaf, but we need to rearrange them in
some way before the gini index is calculated. The following intermediate view can
be formed for all possible classes k:

CREATE VIEW Ck UP(leaf num, attr i, count) AS
SELECT leaf num, attr i, count
FROM UP
WHERE class = k

Similarly, we define view Ck DOWN from DOWN .
A view GINI VALUE that contains all gini index values at each possible split

point can now be generated. Taking liberty with SQL syntax, we write

CREATE VIEW GINI VALUE(leaf num, attr i, gini) AS
SELECT u1.leaf num, u1.attr i, fgini

FROM C1 UP u1, . . . ,CC UP uC , C1 DOWN d1, . . . ,CC DOWN dC

WHERE u1.attr i = · · · = uC .attr i = d1.attr i = · · · = dC .attr i AND
u1.leaf num = · · · = uC .leaf num = d1.leaf num = · · · = dC .leaf num

where fgini is a function of u1.count, . . . , un.count, d1.count, . . . , dn.count accord-
ing to (1) and (2).

We then create a table MIN GINI with the schema MIN GINI (leaf num,
attr name, attr value, gini):

INSERT INTO MIN GINI
SELECT leaf num, : i, attr i, gini
FROM GINI VALUE a
WHERE a.gini=(SELECT MIN(gini)

FROM GINI VALUE b
WHERE a.leaf num = b.leaf num)

Table MIN GINI now contains the best split value and the corresponding gini
index value for each leaf node of the tree with respect to attr i. The table formation
query has a nested subquery in it. The performance and optimization of such queries
are studied in [6, 26, 15].

We repeat the above procedure for all other attributes. At the end, the best
split value for each leaf node with respect to all attributes will be collected in table
MIN GINI , and the overall best split for each leaf is obtained from executing the
following:
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CREATE VIEW BEST SPLIT (leaf num, attr name, attr value) AS
SELECT leaf num, attr name, attr value
FROM MIN GINI a
WHERE a.gini=(SELECT MIN(gini)

FROM MIN GINI b
WHERE a.leaf num = b.leaf num)

3.2. Categorical attributes

For categorical attribute i, we form DIM i in the same way as for numerical at-
tributes. DIM i contains all the information we need to compute the gini index for
any subset splitting. In fact, it is an analog of the count matrix in [29], but formed
with set-oriented operators.

A possible split is any subset of the set that contains all the distinct attribute
values. If the cardinality of attribute i is m, we need to evaluate the splits for all the
2m subsets. Those subsets and their related counts can be generated in a recursive
way. The schema of the relation that contains all the k-sets is Sk IN (leaf num,
class , v1, v2, ..., vk, count). Obviously we have DIM i = S1 IN . Sk IN is then gen-
erated from S1 IN and Sk−1 IN as follows:

INSERT INTO Sk IN
SELECT p.leaf num, p.class, p.v1, . . . , p.vk−1, q.v1, p.count + q.count
FROM (FULL OUTER JOIN Sk−1 IN p, S1 IN q

ON p.leaf num = q.leaf num AND
p.class = q.class AND
q.v1 > p.vk−1)

We generate relation Sk OUT from Sk IN in a manner similar to how we gen-
erate DOWN from UP . Then we treat Sk IN and Sk OUT exactly as DOWN and
UP for numerical attributes in order to compute the gini index for each k-set split.

A simple observation is that we don’t need to evaluate all the subsets. We only
need to compute the k-sets for k = 1, 2, . . . ,�m/2� and thus save time. For large m,
greedy heuristics are often used to restrict search.

3.3. Partitioning

Once the best split attribute and value have been found for a leaf, the leaf is split
into two children. If leaf num is stored explicitly as an attribute in DETAIL, then
the following UPDATE performs the split for each leaf:

UPDATE DETAIL
SET leaf num = Partition(attr1, . . . , attrn, class, leaf num)

The user-defined function Partition defined on a record r of DETAIL as follows:

Partition(record r)
Use the leaf num value of r to locate the tree node n that r belongs to;
Get the best split from node n;
Apply the split to r, grow a new child of n if necessary;
Return a new leaf num according to the result of the split;
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attr1 attr2 class leaf num
65K 30 Safe 0
15K 23 Risky 0
75K 40 Safe 0
15K 28 Risky 0

100K 55 Safe 0
60K 45 Safe 0
62K 30 Risky 0

Table 2: Initial relation DETAIL with implicit leaf num

Figure 2: Initial tree

leaf num attr1 class count
0 15 2 2
0 60 1 1
0 62 2 1
0 65 1 1
0 75 1 1
0 100 1 1

Table 3: Relation DIM 1

However, leaf num is not a stored attribute in DETAIL because updating the
whole relation DETAIL is expensive. We observe that Partition is merely applying
the current tree to the original training set. We avoid the update by replacing
leaf num by function Partition in the statement forming DIM i. If DETAIL is
stored on non-updatable tapes, this solution is required. It is important to note
that once the dimension tables are created, the gini index computation for all
leaves involves only dimension tables.

4. An example

We illustrate our algorithm by an example. The example training set is the same
as the data in Table 1.

Phase 0: Load the training set and initialize the tree and LNL. At this stage,
relation DETAIL, the tree, and LNL are shown in Table 2 and Figure 2.

Phase 1: Form the dimension tables for all attributes in one pass over DETAIL
using user-defined function. The result dimension tables are show in Table 3–4.

Phase 2: Find the best splits for current leaf nodes. A best split is found through
a set of operations on relations as described in Section 2.

First we evaluate the gini index value for attr1. The procedure is depicted in
Table 5–13.
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leaf num attr2 class count
0 23 2 1
0 28 2 1
0 30 1 1
0 30 2 1
0 40 1 1
0 45 1 1
0 55 1 1

Table 4: Relation DIM 2

leaf num attr1 class count
0 15 1 0
0 15 2 2
0 60 1 1
0 60 2 2
0 62 1 1
0 62 2 3
0 65 1 2
0 65 2 3
0 75 1 3
0 75 2 3
0 100 1 4
0 100 2 3

Table 5: Relation UP

We can see that the best splits on the two attributes achieve the same gini index
value, so relation BEST SPLIT is the same as MIN GINI except that it does not
contain the column gini . We store the best split in each leaf node of the tree (the
root node in this phase). In case of a tie for best split at a node, any one of them
(attr2 in our example) can be chosen.

Phase 3: Partitioning. According to the best split found in Phase 2, we grow the
tree and partition the training set. The partition is reflected as leaf num updates
in relation DETAIL. Any new grown node that is pure or “small enough” is marked
and reassigned a special leaf num value STOP so that it is not processed further.
The tree is shown in Figure 3 and the new DETAIL is shown in Table 14. Again,
note leaf num is never stored in DETAIL, so no update to DETAIL is necessary.

Phase 4: Repeat Phase 1 through Phase 3 until all the leaves in the tree become
STOP leaves. The final tree and DETAIL are shown in Figure 4 and Table 15.

5. Performance analysis

Building classifiers for large training sets is an I/O bound application. In this section
we analyze the I/O complexity of both MIND and SPRINT and compare their
performances.

As we described in Section 2.1, the classification algorithm iteratively does two
main operations: computing the splitting index (in our case, the gini index) and
performing the partition. SPRINT [29] forms an attribute list (projection of the
DETAIL table) for each attribute. In order to reduce the cost of computing the
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leaf num attr1 class count
0 15 1 4
0 15 2 1
0 60 1 3
0 60 2 1
0 62 1 3
0 62 2 0
0 65 1 2
0 65 2 0
0 75 1 1
0 75 2 0

Table 6: Relation DOWN

leaf num attr1 count
0 15 0.0
0 60 1.0
0 62 1.0
0 65 2.0
0 75 3.0
0 100 4.0

Table 7: Relation C1 UP

leaf num attr1 count
0 15 2.0
0 60 2.0
0 62 3.0
0 65 3.0
0 75 3.0
0 100 3.0

Table 8: Relation C2 UP

gini index, SPRINT presorts each attribute list and maintains the sorted order
throughout the course of the algorithm. However, the use of attribute lists com-
plicates the partitioning operation. When updating the leaf information for the
entries in an attribute list corresponding to some attribute that is not the split-
ting attribute, there is no local information available to determine how the entries
should be partitioned. A hash table (whose size is linear in the number of training
examples that reach the node) is repeatedly queried by random access to determine
how the entries should be partitioned. In large data mining applications, the hash
table is therefore not memory-resident, and several extra I/O passes may be needed,
resulting in highly nonlinear performance.

MIND avoids the external memory thrashing during the partitioning phase
by the use of dimension tables DIM i that are formed while the DETAIL table,
consisting of all the training examples, is streamed through memory. In practice,
the dimension tables will likely fit in memory, as they are much smaller than the
DETAIL table, and often preprocessing is done by discretizing the examples to
make the number of distinct attribute values small. While vertical partitioning of
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leaf num attr1 count
0 15 4.0
0 60 3.0
0 62 3.0
0 65 2.0
0 75 1.0

Table 9: Relation C1 DOWN

leaf num attr1 count
0 15 1.0
0 60 1.0
0 62 0.0
0 65 0.0
0 75 0.0

Table 10: Relation C2 DOWN

leaf num attr1 gini
0 15 0.22856
0 60 0.40474
0 62 0.21428
0 65 0.34284
0 75 0.42856

Table 11: Relation GINI VALUE

DETAIL may also be used to compute the dimension tables in linear time, we
show that it is not a must. Data in and data archived from commercial data-
bases are mostly in row major order. The layout does not appear to hinder perfor-
mance.

If the dimension tables cannot fit in memory, they can be formed by sorting in
linear time, if we make the weak assumption that (M/B)c ≥ D/B for some small
positive constant c, where D, M , and B are respectively the dimension table size, the
internal memory size, and the block size [7, 36]. This optimization can be obtained
automatically if SQL has the multiple grouping operator proposed in Section 3.1
and with appropriate query optimization, or by appropriate restructuring of the
SQL operations. The dimension tables themselves are used in a stream fashion
when forming the UP and DOWN relations. The running time of the algorithm
thus scales linearly in practice with the training set size.

Now let’s turn to the detailed analysis of the I/O complexity of both algorithms.
We will use the parameters in Table 16 (all sizes are measured in bytes) in our
analysis.

Each record in DETAIL has n attribute values of size ra, plus a class label that
we assume takes one (byte). Thus we have r = nra +1. For simplicity we regard ra

as some unit size and thus r = O(n). Each entry in a dimension table consists of
one node number, one attribute value, one class label and one count. The largest
node number is 2L, and it can therefore be stored in L bits, which for simplicity
we assume can fit in one word of memory. (Typically L is on the order of 10–20. If
desired, we can rid ourselves of this assumption on L by rearranging DETAIL or a
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leaf num attr name attr value gini
0 1 62 0.21428

Table 12: Relation MIN GINI after attr1 is evaluated

leaf num attr name attr value gini
0 1 62 0.21428
0 2 30 0.21428

Table 13: Relation MIN GINI after attr1 and attr2 are evaluated

  ...

1

2

0

LNL

0

1 2

age<=30

salary<=62K

yes no

Figure 3: Decision tree at Phase 3

copy of DETAIL so that no leaf num field is needed in the dimension tables, but
in practice this is not needed.) The largest count is N , so rd = O(log N). Counts
are used to record multiple instances of a common value in a compressed way, so
they always take less space than the original records they represent. We thus have

Dk ≤ min{nN, V C2krd}. (3)

In practice, the second expression in the min term is typically the smaller one, but
in our worst-case expressions below we will often bound Dk by nN .

Claim 1. If all dimension tables fit in memory, that is, Dk ≤ M for all k, the I/O
complexity of MIND is

O

(
LnN

B

)
, (4)

which is essentially best possible.

Proof. If all dimension tables fit in memory, then we only need to read DETAIL
once at each level. Dimension tables for all attributes are accumulated in memory
when each DETAIL record is read in. When the end of DETAIL table is reached,
we’ll have all the unsorted dimension tables in memory. Then sorting and gini index
computation are performed for each dimension table, best split will be found for
each current leaf node.

The I/O cost to read in DETAIL once is rN/B = O(nN/B), and there are L
levels in the final classifier, so the total I/O cost is O(LnN/B).

Claim 2. In the case when not all dimension tables fit in memory at the same
time, but each individual dimension table does, the I/O complexity of MIND is

O

(
LnN

B
logM/B n

)
. (5)
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attr1 attr2 class leaf num
65K 30 Safe 1
15K 23 Risky 1
75K 40 Safe 2⇒STOP
15K 28 Risky 1

100K 55 Safe 2⇒STOP
60K 45 Safe 2⇒STOP
62K 30 Risky 1

Table 14: Relation DETAIL with implicit leaf num after Phase 3

  ...

1

2

3

4

0

LNL

0

1 2

3 4

age<=30

salary<=62K

yes no

yes no

Figure 4: Final decision tree

attr1 attr2 class leaf num
65K 30 Safe 4⇒STOP
15K 23 Risky 3⇒STOP
75K 40 Safe STOP
15K 28 Risky 3⇒STOP

100K 55 Safe STOP
60K 45 Safe STOP
62K 30 Risky 3⇒STOP

Table 15: Final relation DETAIL with implicit leaf num

Proof. In the case when not all dimension tables fit in memory at the same time, but
each individual dimension table does, we can form, use and discard each dimension
table on the fly. This can be done by a single pass through the DETAIL table when
M/n > B (which is always true in practice).

MIND keeps a buffer of size O(M/n) for each dimension. In scanning DETAIL,
for each dimension, its buffer is used to store the accumulated information. When-
ever a buffer is full, it is written to disk. When the scanning of DETAIL is fin-
ished, many blocks have been obtained for each dimension based on which the
final dimension table can be formed easily. For example, there might be two entries
(1, 1, 1, count1), (1, 1, 1, count2) in two blocks for attr1. They are corresponding to
an entry with leaf num = 1, class = 1, attr1 = 1 in the final dimension table
for attr1 and will become a entry (1, 1, 1, count1 + count2) in the final dimension
table. All those blocks that corresponds to one dimension are collectively called an
intermediate dimension table for that dimension.
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M size of internal memory
B size of disk block
N # of rows in DETAIL
n # of attributes in DETAIL (not including class label)
C # of distinct class labels
L depth of the final classifier
Dk total size of all dimension tables at depth k
V # of distinct values for all attributes
r size of each record in DETAIL
ra size of each attribute value in DETAIL (for simplicity,

we assume that all attribute values are of similar size.)
rd size of each record in a dimension table
rh size of each record in a hash table (used in SPRINT)

Table 16: Parameters used in analysis

Now the intermediate dimension table for the first attribute is read into memory,
summarized, and sorted into a final dimension table. Then MIND calculates the gini
index values with respect to this dimension for each leaf node, and keeps the current
minimum gini index value and the corresponding (attribute name, attribute value)
pair in each leaf node. When the calculation for the first attribute is done, the
in-memory dimension table is discarded. MIND repeats the same procedure for the
second attribute, and so on. Finally, we get the best splits for all leaf nodes and
we are ready to grow the tree one more level. The I/O cost at level k is scanning
DETAIL once, plus writing out and reading in all the intermediate dimension tables
once. We denote the total size of all intermediate dimension tables at level k by
D′

k. Note that the intermediate dimension tables are a compressed version of the
original DETAIL table, and they take much less space than the original records
they represent. So we have

D′
k ≤ nN.

The I/O cost at each level is

O


 1

B

∑
0≤k<L

D′
k +

LnN

B


 = O

(
LnN

B

)
.

In the very unlikely scenario where M/n < B, a total of logM/B n passes over
DETAIL are needed, resulting in a total I/O complexity in (5).

Now let’s consider the worst case in which some individual dimension tables do
not fit in memory. We employ a merge sort process. An interesting point is that the
merge sort process here is different from the traditional one: After several passes in
the merge sort, the lengths of the runs will not increase anymore; they are upper
bounded by the number of rows in the final dimension tables, whose size, although
too large to fit in memory, is typically small in comparison with N .

We formally define the special sort problem. We adopt the notations used
in [35]:

N = problem size (in units of data items),
M = internal memory size (in units of data items),
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B = block size (in units of data items),

m =
M

B
, number of blocks that fits into internal memory,

where 1 ≤ B ≤ M < N .
The special sort problem can be defined as follows:

Definition 1. There are N ′(N ′ � N) distinct keys, {k1, k2, . . . , kN ′}, and we
assume k1 < k2 < . . . < kN ′ for simplicity. We have N date items (kx(i), counti),
for 1 ≤ i ≤ N , 1 ≤ x(i) ≤ N ′.

The goal is to obtain N ′ data items with the key in sorted increasing order and
the corresponding count summarized; that is, (ki, COUNTi), where

COUNTi =
∑

1≤k≤N,x(k)=i

countk

for 1 ≤ i ≤ N ′.

Lemma 1. The I/O complexity of the special sort problem is

O

(
N

B
log M

B

N ′

B

)
(6)

Proof. We perform a modified merge sort procedure for the special sort problem.
First N/M sorted “runs” are formed by repeatedly filling up the internal mem-
ory, sorting the records according to their key values, combining the records with
the same key and summarizing their counts, and writing the results to disk. This
requires O(N

B ) I/Os. Next m runs are continually merged and combined together
into a longer sorted run, until we end up with one sorted run containing all the N ′

records.
In a traditional merge sort procedure, the crucial property is that we can merge

m runs together in a linear number of I/Os. To do so we simply load a block from
each of the runs and collect and output the B smallest elements. We continue this
process until we have processed all elements in all runs, loading a new block from
a run every time a block becomes empty. Since there are O(logm

N/B
m ) levels in

the merge process, and each level requires O(N
B ) I/O operations, we obtain the

O(N
B logm

N
B ) complexity for the normal sort problem.

An important difference between the special sort procedure and the traditional
one is that in the former, the length of each sorted run will not go beyond N ′ while
in the latter, the length of sorted runs at each level keeps increasing (doubling)
until reaching N .

In the special sort procedure, at and after level k = �logM/B N ′/B	, the length

of any run will be bounded by N ′ and the number of runs is bounded by �N/B
mk 	.

(For simplicity, we will ignore all the floors and ceilings in the following discussion.)
From level k + 1 on, the operation we perform at each level is basically combining
each m runs (each with a length less than or equal to N ′) into one run whose length
is still bounded by N ′. We repeat this operation at each level until we get a single
run. At level k + i, we combine N/B

mk+i−1 runs into N/B
mk+i runs and the I/O at this

level is
N/B

mi−1

(
1 +

1
m

)
.
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We will finish the combining procedure at level k + p where p = logm
N/B
n′ ,

n′ = N ′/B. So the I/O for the whole special sort procedure is:

2
N

B
k +

N

B
(1 +

1
m

) +
N/B

m

(
1 +

1
m

)
+ · · · + N/B

mp−1

(
1 +

1
m

)

≤ 2
N

B
logm n′ +

N

B

(
1 +

1
m

)
1

1 − 1/m

≈ 2
N

B
logm n′ +

N

B

= O

(
N

B
logm n′ +

N

B

)

= O

(
N

B
log M

B

N ′

B

)
.

Now we are ready to give the I/O complexity of MIND in the worst case.

Theorem 1. In the worst case the I/O complexity of MIND is

O


nNL

B
+

nN

B

∑
0≤k<L

logM/B

Dk

B


 , (7)

which is

O

(
LnN

B

log nN
B

log M
B

)
. (8)

In most applications, the log term is negligible, and the I/O complexity of MIND
becomes

O

(
LnN

B

)
, (9)

which matches the optimal time of (4).

Proof. This is similar to the proof in Claim 2. At level k of the tree growth phase,
MIND first forms all the intermediate dimension tables with total size D

′

k in ex-
ternal memory. This can be done by a single pass through the DETAIL table,
as follows. MIND keeps a buffer of size O(M/n) for each dimension. In scanning
DETAIL, MIND accumulates information for each dimension in its correspond-
ing buffer; whenever a buffer is full, it is written to disk. When the scanning of
DETAIL is finished, MIND performs the special merge sort procedure for the disk
blocks corresponding to all (not individual) dimension tables. At the last level of
the special sort, the final dimension table for each attribute will be formed one by
one. MIND calculates the gini index values with respect to each dimension for each
leaf node, and keeps the current minimum gini index value and the corresponding
(attribute name, attribute value) pair in each leaf node. When the calculation for
the last attribute is done, we get the best splits for all leaf nodes and we are ready
to grow the tree one more level.

The I/O cost at level k is scanning DETAIL once, which is O(nN/B), plus the
cost of writing out all the intermediate dimension tables once, which is bounded by
O(nN/B), plus the cost for the special sort, which is O(N

B logM/B Dk/B).
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So the I/O for all levels is

LnN

B
+

1
B

∑
0≤k<L

D
′

k +
nN

B

∑
0≤k<L

logM/B

Dk

B

which is

O


LnN

B
+

nN

B

∑
0≤k<L

logM/B

Dk

B


 .

Now we analyze the I/O complexity of the SPRINT algorithm. There are two
major parts in SPRINT: the pre-sorting of all attribute lists and the construct-
ing/searching of the corresponding hash tables during partition. Since we are deal-
ing with a very large DETAIL table, it is unrealistic to assume that N is small
enough to allow hash tables to be stored in memory. Actually those hash tables
need to be stored on disk and brought into memory during the partition phase. It
is true that hash tables will become smaller at deeper levels and thus fit in memory,
but at the early levels they are very large; for example, the hash table at level 0
has N entries.

Each entry in a hash table contains a tid(transaction identifier) which is an
integer in the range of 1 to N , and one bit that indicates which child this record
should be partitioned to in the next level of the classifier. So we have

rh =
1 + log N

8
.

We can estimate when the hash tables will fit in memory, given the optimistic
assumptions that all memory is allocated to hash tables and all hash tables at each
node have equal size; that is, a hash table at level k contains N/2k entries. Thus, a
hash table at level k fits in memory if rhN/2k ≤ M , or

2k ≥ N

M

(
1 + log N

8

)
. (10)

For sufficiently large k, (10) will be satisfied, that is, hash tables become smaller at
deeper nodes and thus fit in memory. But it is clear that even for moderately large
detail tables, hash tables at upper levels will not fit in memory.

During the partition phase, each non-splitting attribute list at each node needs
to be partitioned into two parts based on the corresponding hash table. One way
to do this is to do a random hash table search for each entry in the list, but this is
very expensive. Fortunately, there is a better way: First, we bring a large portion
of the hash table into memory. The size of this portion is limited only by the
availability of the internal memory. Then we scan the non-splitting list once, block
by block, and for each entry in the list, we search the in-memory portion of the
hash table. In this way, the hash table is swapped into memory only once, and each
non-splitting attribute list is scanned N/M times. For even larger N , it is better
to do the lookup by batch sorting, but that approach is completely counter to the
founding philosophy of the SPRINT algorithm.

A careful analysis gives us the following estimation:

Theorem 2. The I/O complexity of SPRINT is

O

(
nN2 log N

BM

)
(11)
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Proof. To perform the pre-sort of the SPRINT algorithm, we need to read DETAIL
once, write out the unsorted attribute lists, and sort all the attribute lists. So we
have

IOpresort = O

(
nN

B
log M

B

N

B

)
.

From level 0 through level k − 1, hash tables will not fit in memory. At level i
(0 ≤ i ≤ k − 1), SPRINT will perform the following operations:

1. Scan the attribute lists one by one to find the best split for each leaf node.

2. According to the best split found for each leaf node, form the hash tables and
write them to disk.

3. Partition the attribute list of the splitting attribute for each leaf node.

4. Partition the attribute lists for the n− 1 non-splitting attributes for each leaf
node.

Among these operations, the last one incurs the most I/O cost and we perform it
by bringing a portion of a hash table into memory first. The size of this portion
is limited only by the availability of the main memory. Then we scan each non-
splitting list once, block by block, and for each entry in the list, we search the
in-memory portion of the hash table and decide which child this entry should go in
the next level. In this way, the hash table is swapped into memory only once, and
the non-splitting list is scanned multiple times. The I/O cost of this operation is

O

(
nNhi

B

)

where hi is the number of portions we need to partition a hash table into due to
the limitation of the memory size.

From level k to level L the hash table will fit in memory, and the I/O costs for
those levels is O((L − k)nN/B) , which is significantly smaller than those for the
previous levels.

So the I/O cost of SPRINT becomes

O


nN

B
log M

B

N

B
+

∑
0≤i≤k−1

nNhi

B
+

(L − k)nN

B


 (12)

Note that we have

hi =
rhN

2iM
=

N

2iM

(
1 + log N

8

)

So
N

M

(
1 + log N

8

)
≤

∑
0≤i≤k−1

hi ≤
2N

M

(
1 + log N

8

)
(13)

Applying (13) to (12), we get the I/O complexity of SPRINT in (11).

Examination of (8) and (11) reveals that MIND is clearly better in terms of
I/O performance. For large N , SPRINT does a quadratic number of I/Os, whereas
MIND scales well.
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6. Algorithm revisited using schema SQL

In Section 3.1, we described the MIND algorithm using SQL-like statements. Due to
the limitation of current SQL standards, most of those SQL-like statements are not
supported directly in today’s DBMS products. Therefore, we need to convert them
to currently supported SQL statements, augmented with new facilities like user
defined functions. Putting logic within a user-defined function hides the operator
from query optimization. If classification was a subquery or part of a large query,
it would not be possible to obtain all join reorderings, thereby risking suboptimal
execution.

Current SQL standards are mainly designed for efficient OLTP (On-Line Trans-
actional Processing) queries. For non-OLTP applications, it is true that we can
usually reformulate the problem and express the solution using standard SQL.
However, this approach often results in inefficiency. Extending current SQL with
ad-hoc constructs and new optimization considerations might solve this problem
in some particular domain, but it is not a satisfactory solution. Since supporting
OLAP (On-Line Analytical Processing) applications efficiently is such an important
goal for today’s RDBMSs, the problem deserves a more general solution.

In [23] an extension of SQL, called SchemaSQL, is proposed. SchemaSQL offers
the capability of uniform manipulation of data and meta-data in relational multi-
database systems. By examining the SQL-like queries in Section 3.1, we can see
that this capability is what we need in the MIND algorithm. To show the power of
extended SQL and the flexibility and general flavor of MIND, in this section, we
rewrite all the queries in Section 3.1 using SchemaSQL.

First we give an overview of the syntax of SchemaSQL. For more details see
[23].

In a standard SQL query, the tuple variables are declared in the FROM clause. A
variable declaration has the form 〈range〉〈var〉. For example, in the query below,
the expression student T declares T as a variable that ranges over the (tuples of
the) relation student(student id, department, GPA):

SELECT student id
FROM student T
WHERE T.department = CS AND T.GPA = A

The SchemaSQL syntax extends SQL syntax in several directions:

1. The federation consists of databases, with each database consisting of rela-
tions.

2. To permit meta-data queries and reconstruction views, SchemaSQL permits
the declaration of other types of variables in addition to the tuple variables
permitted in SQL.

3. Aggregate operations are generalized in SchemaSQL to make horizontal and
block aggregations possible, in addition to the usual vertical aggregation in
SQL.

SchemaSQL permits the declaration of variables that can range over any of the
following five sets:

1. names of databases in a federation,

2. names of the relations in a database,
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3. names of the columns in the scheme of a relation,

4. tuples in a given relation in database, and

5. values appearing in a column corresponding to a given column in a relation.

Variable declarations follow the same syntax as 〈range〉〈var〉 as in SQL, where var
is any identifier. However, there are two major differences:

1. The only kind of range permitted in SQL is a set of tuples in some relation
in the database, where in SchemaSQL any of the five kinds of range can be
used to declare variables.

2. The range specification in SQL is made using constant, i.e., an identifier
referring to a specific relation in a database. By contrast, the diversity of
ranges possible in SchemaSQL permits range specifications to be nested, in
the sense that it is possible to say, for example, that R is a variable ranging
over the relation names in database D, and that T is a tuple in the relation
denoted by R.

Range specifications are one of the following five types of expressions, where db,
rel, col are any constant or variable identifiers.

1. The expression → denotes a range corresponding to the set of database names
in the federation.

2. The expression db → denotes the set of relation names in the database db.

3. The expression db :: rel → denotes the set of names of column in the schema
of the relation rel in the database db.

4. db :: rel denotes the set of tuples in the relation rel in the database db.

5. db :: rel.col denotes the set of values appearing in the column named col in
the relation rel in the database db.

For example, consider the clause FROM db1 → R, db1 :: R T . It declares R as
a variable ranging over the set of relation names in the database db1 and T as a
variable ranging over the tuples in each relation R in the database db1

Now we are ready to rewrite all the SQL-like queries in Section 3.1 using
SchemaSQL. Assume that our training set is stored in relation DETAIL in a data-
base named FACT . We first generate all the dimension tables with the schema
(leaf num, class, attr val , count) in a database named DIMENSION , using a sim-
ple SchemaSQL statement:

CREATE VIEW DIMENSION :: R(leaf num, class, attr val , count) AS
SELECT T.leaf num, T.class, T.R,COUNT(*)
FROM FACT :: DETAIL → R,

FACT :: DETAIL T
WHERE R <>′ class′ AND

R <>′ leaf num′ AND
T.leaf num <> STOP

GROUP BY T.leaf num, T.class, T.R
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The variable R is declared as a column name variable ranging over the column
names of relation DETAIL in the database FACT , and the variable T is declared as
a tuple variable on the same relation. The conditions on R in the WHERE clause make
the variable R range over all columns except the columns named class and leaf num.
If there are n columns in DETAIL (excluding columns class and leaf num), this
query generates n VIEWs in database DIMENSION , and the name of each VIEW is the
same as the corresponding column name in DETAIL. Note that the attribute name
to relation name transformation is done in a very natural way, and the formation
of multiple GROUP BYs is done by involving DETAIL only once.

Those views will be materialized, so that in the later operations we do not need
to access DETAIL any more.

Relations corresponding to UP with the schema (leaf num, attr val , class ,
count) can be generated in a database named UP by performing a self-outer-join
on dimension tables in database DIMENSION :

CREATE VIEW UP :: R(leaf num, attr val , class, count) AS
SELECT d1.leaf num, d1.attr val , d1.class,SUM(d2.count)
FROM (FULL OUTER JOIN DIMENSION :: R d1,

DIMENSION :: R d2,
DIMENSION → R

ON d1.leaf num = d2.leaf num AND
d1.attr val ≤ d2.attr val AND
d1.class = d2.class

GROUP BY d1.leaf num, d1.attr val , d1.class)

The variable R is declared as a relation name variable ranging over all the
relations in database DIMENSION . Variables d1 and d2 are both tuple variables
over the tuples in each relation R in database DIMENSION . For each relation in
database DIMENSION , a self-outer-join is performed according to the conditions
specified in the query, and the result is put into a VIEW with the same name in
database UP .

Similarly, relations corresponding to DOWN can be generated in a database
named DOWN by just changing the ≤ to > in the ON clause.

Database DOWN and database UP contain all the information we need to com-
pute all the gini index values. Since standard SQL only allows vertical aggregations,
we need to rearrange them before the gini index is actually calculated as in Sec-
tion 3.1. In SchemaSQL, aggregation operations are generalized to make horizontal
and block aggregations possible. Thus, we can generate views that contain all gini
index values at each possible split point for each attribute in a database named
GINI VALUE directly from relations in UP and DOWN :

CREATE VIEW GINI VALUE :: R(leaf num, attr val , gini) AS
SELECT u.leaf num, u.attr val , fgini

FROM UP :: R u,
DOWN :: R d,
UP → R

WHERE u.leaf num = d.leaf num AND
u.attr val = d.attr val

GROUP BY u.leaf num, u.attr val

where fgini is a function of u.class, d.class, u.count, d.count according to (1)
and (2).
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R is declared as a variable ranging over the set of relation names in database
UP , u is a variable ranging over the tuples in each relation in database UP , and
d is a variable ranging over the tuples in the relation with the same name as R in
database DOWN . Note that the set of relation names in databases UP and DOWN
are the same. For each of the relation pairs with the same name in UP and DOWN ,
this statement will create a view with the same name in database GINI VALUE
according to the conditions specified. It is interesting to note that fgini is a block
aggregation function instead of the usual vertical aggregation function in SQL.
Each view named R in database GINI VALUE contains the gini index value at
each possible split point with respect to attribute named R.

Next, we create a single view MIN GINI with the schema MIN GINI (leaf num,
attr name, attr val , gini) in a database named SPLIT form the multiple views in
database GINI VALUE :

CREATE VIEW SPLIT :: MIN GINI (leaf num, attr name, attr val , gini) AS
SELECT T1.leaf num, R1, T1.attr val , gini
FROM GINI VALUE → R1,

GINI VALUE :: R1 T1

WHERE T1.gini =(SELECT MIN(T2.gini)
FROM GINI VALUE → R2,

GINI VALUE :: D2 T2

WHERE R1 = R2 AND
T1.leaf num = T2.leaf num)

R1 and R2 are variables ranging over the set of relation names in database
GINI VALUE . T1 and T2 are tuple variables ranging over the tuples in relations
specified by R1 and R2, respectively. The clause R1 = R2 enforces R1 and R2

to be the same relation. Note that relation name R1 in database GINI VALUE
becomes the column value for the column named attr name in relation MIN GINI
in database SPLIT . Relation MIN GINI now contains the best split value and the
corresponding gini index value for each leaf node of the tree with respect to all
attributes.

The overall best split for each leaf is obtained from executing the following:

CREATE VIEW SPLIT :: BEST SPLIT ( leaf num, attr name, attr val) AS
SELECT T1.leaf num, T1.attr name, T1.attr val
FROM SPLIT :: MIN GINI T1

WHERE T1.gini =(SELECT MIN(gini)
FROM SPLIT :: MIN GINI T2

WHERE T1.leaf num = T2.leaf num)

This statement is similar to the statement generating relation BEST SPLIT in
Section 3.1. T1 is declared as a tuple variable ranging over the tuples of relation
MIN GINI in database SPLIT . For each leaf num, (attr name, attr val ) pair that
achieving the minimum gini index value is inserted into relation BEST SPLIT .

We have shown how to rewrite all the SQL-like queries in MIND algorithm using
SchemaSQL. In our current prototype of MIND, the first step, generating all the
dimension tables from DETAIL, is most costly and all the later steps only need to
access small dimension tables. We use udf to reduce the cost of the first step. All
the SQL-like queries in Section 3.1 in the later steps are translated into equivalent
SQL queries. Those translations usually lead to poor performance. But since those
queries only access small relations in MIND, the performance loss is negligible.
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While udf provides a solution to our classification algorithm, we a believe general
extension of SQL is needed for efficient support of OLAP applications.

An alternative way to generate all the dimension tables from DETAIL would
be using the newly proposed data cube operator [14] since dimension tables are
different subcubes. But it usually takes a long time to generate the data cube
without precomputation and the fact that the leaf num column in DETAIL keeps
changing from level to level when we grow the tree makes precomputation infeasible.

7. Experimental results

There are two important metrics to evaluate the quality of a classifier: classification
accuracy and classification time. We compare our results with those of SLIQ [24]
and SPRINT [29]. (For brevity, we include only SPRINT in this paper; comparisons
showing the improvement of SPRINT over SLIQ are given in [29].) Unlike SLIQ and
SPRINT, we use the classical database methodology of summarization. Like SLIQ
and SPRINT, we use the same metric (gini index) to choose the best split for each
node, we grow our tree in a breadth-first fashion, and we prune it using the same
pruning algorithm. Our classifier therefore generates a decision tree identical to the
one produced by [24, 29] for the same training set, which facilitates meaningful
comparisons of run time. The accuracy of SPRINT and SLIQ is discussed in [24, 29],
where it is argued that the accuracy is sufficient.

For our scaling experiments, we ran our prototype on large data sets. The main
cost of our algorithm is that we need to access DETAIL n times (n is the number
of attributes) for each level of the tree growth due to the absence of the multiple
GROUP BY operator in the current SQL standard. We recommend that future DBMSs
support the multiple GROUP BY operator so that DETAIL will be accessed only once
regardless of the number of attributes. In our current working prototype, this is done
by using user-defined function as we described in Section 3.1.

Owing to the lack of a classification benchmark, we used the synthetic database
proposed in [1]. In this synthetic database, each record consists of nine attributes as
shown in Table 17. Ten classifier functions are proposed in [1] to produce databases
with different complexities. We run our prototype using function 2. It generates
a database with two classes: Group A and Group B. The description of the class
predicate for Group A is shown below.

Function 2, Group A
((age < 40) ∧ (50K ≤ salary ≤ 100K)) ∨
((40 ≤ age < 60) ∧ (75K ≤ salary ≤ 125K)) ∨
((age ≥ 60) ∧ (25K ≤ salary ≤ 75K))

Our experiments were conducted on an IBM RS/6000 workstation running AIX
level 4.1.3. and DB2 version 2.1.1. We used training sets with sizes ranging from
0.5 million to 5 million records. The relative response time and response time per
example are shown in Figure 5 and Figure 6 respectively. Figure 5 hints that our
algorithm achieves linear scalability with respect to the training set size. Figure 6
shows that the time per example curve stays flat when the training set size increases.
The corresponding curve for [29] appears to be growing slightly on the largest cases.
Figure 7 is the performance comparison between MIND and SPRINT. MIND ran
on a processor with a slightly slower clock rate. We can see that MIND performs
better than SPRINT does even in the range where SPRINT scales well, and MIND
continues to scale well as the data sets get larger.

We also ran MIND on an IBM multiprocessor SP2 computer system. Figure 8
shows the parallel speedup of MIND.
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attribute value
salary uniformly distributed from 20K to 150K
commission salary ≥ 75K ⇒ commission = 0 else

uniformly distributed from 10K to 75K
age uniformly distributed from 20 to 80
loan uniformly distributed from 0 to 500K
elevel uniformly chosen from 0 to 4
car uniformly chosen form 1 to 20
zipcode uniformly chosen from 10 available zipcodes
hvalue uniformly distributed from

0.5k100000 to 1.5k100000,
where k ∈ {0, . . . , 9} is zipcode

hyear uniformly distributed from 1 to 30

Table 17: Description of the synthetic data

Figure 5: Relative total response time. The y-value denotes the total response time
for the indicated training set size, divided by the total response time for 5 million
examples.

Another interesting measurement we obtained from uniprocessor execution is
that accessing DETAIL to form the dimension tables for all attributes takes 93%–
96% of the total execution time. To achieve linear speedup on multiprocessors, it
is critical that this step is parallelized. In the current working prototype of MIND,
it is done by user-defined function with a scratch-pad accessible from multiple
processors.

8. Conclusions

The MIND algorithm solves the problem of classification within the relational
database management systems. Our performance measurements show that MIND
demonstrates scalability with respect to the number of examples in training sets
and the number of parallel processors. We believe MIND is the first classifier to
successfully run on datasets of N = 5 million examples on a uniprocessor and
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Figure 6: Relative response time per example. The y-value denotes the response
time per example for the indicated training set size, divided by response time per
example when processing 5 million examples.

Figure 7: Performance comparison of MIND and SPRINT

yet demonstrate effectively non-increasing response time per example as a function
of N . It also runs faster than previous algorithms on file systems.

There are four reasons why MIND is fast, exhibits excellent scalability, and is
able to handle data sets larger than those tackled before:

1. MIND rephrases the data mining function classification as a classic DBMS
problem of summarization and analysis thereof.

2. MIND avoids any update to the DETAIL table of examples. This is of sig-
nificant practical interest; for example, imagine DETAIL having billions of
rows.
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Figure 8: Speedup of MIND for multiprocessors. The y-value denotes the total
response time for the indicated training set size, divided by the total response time
for 3 million examples.

3. In the absence of a multiple concurrent grouping SQL operator, MIND takes
advantage of the user-defined function capability of DB2 to achieve the equiv-
alent functionality and the resultant performance gain.

4. Parallelism of MIND is obtained at little or no extra cost because the RDBMS
parallelizes SQL queries.

We recommend that extensions be made to SQL to do multiple groupings and
the streaming of each group to different relations. Most DBMS operators currently
take two streams of data (tables) and combine them into one. We believe that we
have shown the value of an operator that takes a single stream input and produces
multiple streams of outputs.
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