

Engineering Management

Field Project

Evaluating the Productivity of Software
Engineers in Enterprise Development

By

Stephen J. Pack

Fall Semester, 2010

An EMGT Field Project report submitted to the Engineering Management
Program and the Faculty of the Graduate School of The University of Kansas

in partial fulfillment of the requirements for the degree of
Master‘s of Science

 Tom Bowlin
 Committee Chairperson

 Mike Kelly
 Committee Member

 John Bricklemyer
 Committee Member

 Date accepted:____________________________

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213392774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Acknowledgements

 I would like to thank my many mentors, coworkers, and managers at

Cerner, where I have been given the opportunity to grow and take on interesting

challenges such as the question that fueled this research. In particular, thanks to

Drew Clippard and David Edwards, who have helped shape my understanding of

development practices and pushed improvement through example.

 The faculty of the Engineering Management program has been central to

formalizing the knowledge derived from my work experience, and I am grateful to

my committee for their time on this project.

 Finally, thanks to my wife and parents for their patience and

encouragement throughout the degree program.

3

Executive Summary

 Managing and evaluating the work of software engineers creating complex

products at large corporations is particularly challenging with no standardized

system to recognize productivity. Cerner Corporation, a leading supplier of

healthcare information technology solutions, gives managers substantial latitude

in tracking productivity, yielding high variance. The research reported here

involves an examination of relevant background literature and interviews of

Cerner associates with multiple roles in the organization as well as the author's

own background.

 By identifying the essential components of good software engineering and

potential measurement systems, the research yields a design that the author will

use to track the productivity of his direct report engineers in the next annual

performance period. In it, the primary metric is the completion of story points, an

Agile software development representation of the relative size and complexity of

work to be done. Tracking the introduction of defects is an indicator of an

engineer's code quality, although sufficient context must be captured. Finally, a

peer feedback system helps ensure the manager recognizes performance from

other perspectives.

4

Table of Contents

Acknowledgements .. 2

Executive Summary .. 3

Table of Contents ... 4

Introduction ... 5

Literature Review .. 9

Whether to Measure ... 9

Classical Units of Measurement .. 10

Engineers Make More than Code .. 15

Measurement in Agile Methodologies ... 18

Defining Valuable Output .. 21

Research Procedures ... 22

Results ... 24

Interviews ... 24

Interview Analysis ... 35

Conclusion .. 37

Design ... 38

Suggestions for additional work .. 41

Bibliography .. 43

5

Introduction

 Front-line managers of software engineers at large corporations are often

responsible for writing annual reviews or otherwise evaluating the performance of

their direct reports. Beyond providing feedback on skill and career development,

evaluations often include discrete choices in allocation of compensation and

promotions, effectively forcing a rank-ordering. Therefore, it is important to have

a system that is clearly communicated and justly executed both within a team

and across the organization, so managers have confidence they are making the

right decisions and engineers recognize the fairness of the process.

 A process in which a manager submits an evaluation entirely barren of

recognized inputs other than the manager's thoughts could be seen by engineers

as meaningless and arbitrary; with no controlling factors present, the output is

potentially highly subjective, whether intentional or not. Additionally, such

evaluations could be unduly influenced by factors such as time skew, with the

successes and failures at the beginning and end of an evaluation period likely to

have more impact in memory than those in the middle.

 In comparison to other fields of engineering, software is notorious for late

delivery and poor quality, so a desire to implement more scientific management

to control teams and individuals is understandable, including correctly identifying

both outstanding and poor performers. However, the system complexity,

interdependencies, and long time-to-market of large enterprise development

6

preclude tracking back the outcomes of a software product to a single engineer.

Additionally, the wide variance between types of projects different teams work on

yield incomparable work packages. Daily coding practices would be expected to

vary highly due to different technologies, architectural targets, team cultures, and

experience levels. It is therefore necessary to develop an evaluation system

around inputs and outputs that are more controlled and recognizable to a close

observer.

 Managers typically have a technical education and background,

themselves having risen from an engineering position. Given this engineering

history, it is perhaps not surprising that there have been systems devised to put

numeric values on the output of engineers' work, based on the notion that

irrefutable measurements lead to the most objective system possible. However,

measurements are no panacea, as they can be misleading, manipulated,

encourage undesired or unforeseen outcomes, and undermine morale depending

on application.

 Software engineers have a strong self-image of the highly-skilled

professionals they are and an inherent suspicion that many metrics have little

correlation to achieved value. Measurements on an individual level gathered and

acted on by observers distant from the development team are particularly

suspect, as normalization is attempted across different environments with highly

relevant context missing. Yet software engineers will readily agree that abilities

are far from equal, with orders-of-magnitude separating the best and worst

7

performers. Furthermore, engineers are well-positioned to quickly recognize into

which category a colleague falls, since it is possible to feign competence to a

manager or especially an executive far longer than a peer with whom one works

daily. This holds particularly when there is a high degree of cross-visibility on

project work.

 The evolution of software project management styles has significant

interplay with evaluating individual and team performance. The "waterfall"

approach in which each stage of a project -- for example, requirements, design,

coding, and testing -- is completed before the next stage is started has been

phased out at many companies in favor of more iterative approaches, in which

the stages occur more simultaneously and are quickly cycled through. Business

benefits of the latter are largely beyond the scope of this work, but include more

rapid value delivery to customers and ability to respond easily to changing

requirements. One consequence of this shift is that measurements that are only

possible when substantial analysis has occurred early in the project lifecycle

have no grounding in an iterative approach.

 The purpose of this research project is to examine the existing scholarship

in the evaluation of productivity of software engineers and research

contemporary thoughts from practitioners in the field at many levels and with

disparate points of view. Productivity evaluations at both the team and individual

level are examined, since both are relevant, and there is often a management

temptation to derive one if the other exists. For example, if individual metrics are

8

calculated, they tend to be rolled up to team scorecards, and conversely, team

measurements may be broken down to individual attribution. At Cerner

Corporation, the evaluation process is entrusted to the front-line managers.

Despite some guidance on how to improve openness and objectiveness, it most

often yields the aforementioned uncontrolled process with few recognized inputs.

Through the analyses of previous works, existing processes, and original

research, a system design will be developed, which the author intends to pilot

test and refine with the team of engineers he manages at Cerner.

9

Literature Review

 Attempts to measure the output of software engineers are as old as the

profession. The first question examined is the broader one of whether to attempt

measurement, or if it is inherently futile. Then, two of the most widely-known

classes of software measurement are discussed, including their continued

evolutions. Next, the full nature of a software engineer's work beyond creating

code is explored. This has also led to the recent growth of Agile methodologies,

a complicating factor in individual measurement. Finally, the question of how

management should value output is offered.

Whether to Measure

 Most literature related to the topic of measurement focuses on what to

measure rather than whether to measure. However, the latter question is far

from settled in the broader research, due to "the costs and potential for

dysfunction associated with measurement in organizations" (Austin 1996, 4), with

abundant examples of manipulative actions to get the numbers desired rather

than achieve organizational goals. Particular caution is advised against metrics

intended to motivate such as those that continue to rise over time, as workers

take increasing shortcuts, and "measured performance trends upward; true

performance declines sharply" (Austin 1996, 15).

10

 Many advocate a middle path of balanced, contextual use, as "research

indicates that indiscriminate use and undue confidence in [quantitative measures]

result from insufficient knowledge of the full effects and consequences" (Ridgway

1956, 240). Measurement may be employed as a tool assisting internally-

motivated employees to achieve organizational goals, but its presence can yield

a threatening environment of external motivation. There is a tendency for

managers to rely heavily on such measures when present, as "it is easier to

defend ratings consistent with formal indicators of performance" rather than

incorporating subjective corrections based on all available qualitative and

quantitative information (Austin 1996, 71).

Classical Units of Measurement

 Any form of measurement requires agreement on a standard unit to

measure. Such a unit could serve in many calculations of developer productivity,

including the number of units produced by an engineer in a given period and the

number of defects found per unit. What unit this is -- and whether one exists at

all -- is the center of much existing scholarship. "The difficulty with measuring

productivity is that of measuring development output. Software development

doesn‘t have a universal, perfect output measure, but some proxies do make

sense in specific contexts and for specific purposes" (Erdogmus 2008, 4).

 Norman Fenton indicated "that much published work in software metrics is

theoretically flawed" (Fenton 1994, 199) as before any measurement is

determined, "you need to know whether you want to measure for assessment or

11

for prediction" (Fenton 1994, 200). Yet in the effort to satisfy all needs with a

single approach, the metrics discussed in the following paragraphs have been

used by industry practitioners to both assess and predict the performance of both

individuals and organizations. Existing scholarship has focused much more

heavily on the latter, as organization-wide metrics are easier to quantify and

analyze. Furthermore, "although external attributes like reliability of products,

stability of processes, or productivity of resources tend to be the ones we are

most interested in measuring, we cannot do so directly. We are generally forced

to measure indirectly in terms of internal attributes" (Fenton 1994, 205), so much

work is devoted to getting the internal to better correlate with the external.

 The most primitive form of measuring a software engineer's output is

counting the lines of code (LOC) written. This system began to emerge with

computer programming itself in the 1950's (Jones 2008, 72). As Fenton points

out, "even as simple a measure of length of programs as lines of code requires a

well defined model of programs which enables us to identify unique lines

unambiguously" (Fenton 1994, 199), though tooling could assist this model by

imposing standard formatting and counting procedures.

 However, modern high-level languages allow programmers to write far

more complex logic in fewer lines of code, as well as writing that logic using a

variety of algorithms. At the most basic level, "this measure is easily distorted by

code cloning, a discouraged practice that leads to poor design and difficult-to-

change code" (Erdogmus 2008, 5). Such obvious manipulations could be

12

machine-detected, but automated analysis could not distinguish 100 lines of

inefficient code from 10 lines of elegant code that may have taken refinement to

write. Furthermore, no comparisons would be possible between one

programming language and another due to inherent differences in how many

lines of code it takes to create one logical statement. As teams and individuals

are increasingly versatile in the language chosen for a given project, this would

yield significant statistical incomparability. Therefore, the simplicity of LOC has

generally been rejected by modern literature in favor of counting function points

(FP) as a metric of relative system complexity and normalized unit on which to

measure.

Allan Albrecht published the first paper on an FP method while a Program

Manager at IBM in 1979 (Behrens 1983, 648), in which he explains the

improvement FP presents. The "productivity measurement avoids a dependency

on measures such as lines-of-code that can have widely differing values

depending on the technology" (Albrecht 1979, 84). The primary motivation for

such a system was not evaluating individual engineers but rather estimating time

and effort at the management level, since "at least 85 percent of the software

managers in the world jump into projects with hardly a clue as to how long they

will take" (Jones 195). Additionally, Albrecht examined a single organization

within IBM, warning that while there is a broad desire to improve productivity,

"comparisons between organizations must be handled carefully" as there are

likely appropriate variances in processes and definitions (Albrecht 1979, 84).

13

Initially, Albrecht's FP system was a formula of inputs, outputs, inquiries, and

master files, each weighted based on a discovered proportion to application

function delivering customer value (Albrecht 1979, 85). Many implementations of

FP now exist, based on a variety of statistical implementation differences

(Maxwell 2001, 23).

 Recent literature asserts that "function point metrics have become the

dominant measurement instrument" in much of the world (Jones 2008, 73) and

further that well-trained, certified manual counters of the most common systems

have high levels of accuracy (Jones 2008, 79). However, criticisms of FP

methods abound as well. Behrens analyzed many projects over two years and

found that the number of hours needed per FP was higher in projects with more

FPs, that is, "as projects become larger, their unit costs become higher"

(Behrens 1983, 649). This indicates that there are factors affecting development

time unaccounted for in abstract measures, such as the complexity of growing

enterprise systems.

 As a compensation mechanism, Albrecht initially allowed manual

adjustment to the formula (Albrecht 1979, 85). While The Mythical Man-Month is

not primarily concerned with productivity measurement, it may partially explain

the need for such adjustment, examining the declining efficiency experienced

when adding resources to projects due to managing increased complexity and

channels for communication (Brooks 1995). Yet attempts to crudely address this

declining productivity with size have been shown to backfire. "As past research

14

had revealed large diseconomies of scale, the trend in the banks was to break

large software-development projects into smaller projects. However, these

smaller projects‘ proportionally larger overhead made them less productive"

(Maxwell 2001, 83).

 In discussing the International Software Benchmarking Standards Group's

simple formula – project delivery rate equals work effort in hours divided by

project size in FP – it is noted that "such a metric does not take account of the

different tasks undertaken during a project, each impacting on other tasks" nor

the impact of different costs across the phases of the project (Flitman 2003, 382).

The types of operations managed in an enterprise "differ so greatly that the

relative values of the different outputs may legitimately be different" (Flitman

2003, 383). From this analysis, an evolved approach with discretionary

weighting is formed that "may be appropriate where units can properly value

inputs or outputs differently, or where there is a high uncertainty or disagreement

over the value of some input or outputs" (Flitman 2003, 390), although such

weighting flexibility allows substantial manipulation. Flitman's proposed

calculations are based on a centralized repository of software projects to use for

comparison.

 However, another analysis showed that company and sector were the two

greatest factors in productivity variance (Maxwell 2000, 82), concluding that

company-centric project repositories serve as the best benchmark for valid

comparability. Correctly capturing the work effort for these systems is not trivial

15

due to differences in whose time is counted and the mechanism. For example, in

"one organization ... the total effort data available for the same project from three

different sources in the company differed in excess of 30 percent" (Maxwell 2001,

23).

Engineers Make More than Code

 Other authors step back from both LOC and FP systems, attacking the

assumption underlying these systems that a software engineer's role is solely

creating code that fulfills requirements. "While some people may be responsible

for implementing features, others may play a supporting role -- helping others to

implement their features. Their contribution is that they are raising the whole

team's productivity -- but it's very hard to get a sense of their individual output"

(Fowler 2003). For example, designing, testing, documentation, knowledge

sharing, managing interdependencies, and learning new technologies consume

increasing proportions of time, lessening that spent purely on code creation.

Going further, software engineers could be considered "mostly in the human

communication business" (DeMarco 1999, 5) due to the amount of coordination

with project teams. "The entire focus of project management ought to be the

dynamics of the development effort," but evaluation of people "is often based on

their steady-state characteristics: how much code they can write" rather than how

they truly contribute to the complete body of work (DeMarco 1999, 10). Jones

also points out this evolution of engineer activities in his criticism of LOC, but

sees it supporting rather than detracting from an FP system (Jones 2008, 72).

16

 However, a rationale against measuring at all is the temptation to

standardize procedures solely for the purpose of measurement, which could

make the work less fulfilling (DeMarco 1999, 17), because "in such processes [as

software development], non-repetitiveness is an essential property of the task"

(Austin 1996, 106). Observing that "measurement schemes tend to become

threatening and burdensome," DeMarco goes so far as to say management

should not have any visibility to measurements, but instead that individuals

should be empowered to self-improve (DeMarco 1999, 60-61).

 In examining an individual coding competition, it was found that speed to

completion of the best outperformed the average by over a factor of two

(DeMarco 1999, 46). Nevertheless, evaluating engineer productivity requires

assessing more than just quantity, whether in units of LOC, FP, or in this case,

comparative speed. "Do [work-standards] take account of quality, or only

numbers?" (Deming 1982, 21). In focusing on previous scholarship around

software complexity, which could serve as an input for either of these models as

a broad indicator of quality, Fenton asserts that "the search for a general-purpose

real-valued complexity measure is doomed to failure" (Fenton 1994, 201),

although "specific attributes of complexity, such as the maximum depth of nesting

... and the number of paths of various types, can all be measured rigorously and

automatically" (Fenton 1994, 202). That is, while many meaningful

measurements can be produced that can inform an intelligent understanding,

there is no ordinal of quality into which all can be synthesized.

17

 Fenton is frustrated that measurements are tweaked and correlated in an

attempt to drive closer toward a comprehensive metric rather than accepting

piecemeal measurements as intrinsically useful, writing that "an analogy would

be to reject the usefulness of measuring a person‘s height on the grounds that it

tells us nothing about that person‘s intelligence". He goes on to criticize the more

complex systems derived from FP at its most basic as "analogous to redefining

measures of height of people in such a way that the measures correlate more

closely with intelligence" (Fenton 1994, 205).

 Engineers are increasingly responsible for testing their own code. These

tests may be automated, in which an engineer writes code that tests code, or

manual tests in which a component is executed as a user would consume it. The

decision on type of testing to use is impacted by tool availability, tradeoffs of time

constraints, and place in the development cycle. Although such testing makes

development take longer, it pays off in any system that must be supported, since

finding a defect early is an order of magnitude less costly to fix (Vegas 2003, 3).

 The amount of time required for testing could be accounted for in FP

estimation, and tools are available to ascertain whether some form of testing is

complete, but none sufficiently account for the type and quality of testing. This is

one distinction between the more measurable short-term process and the "real

productivity" it impacts (Erdogmus 2008, 6). A corollary argument would be for

defects found after developer testing to be counted against the developer's

productivity. However, other than a raw count, no clear scaled, comparable

18

measurement exists that can be understood by anyone other than a close

observer familiar with the project. "In the case of an attribute like ‗criticality‘ of

software failures an empirical relation system would at best only identify different

classes of failures and a binary relation ‗is more critical than‘" (Fenton 1994,

201), providing no additional context.

Measurement in Agile Methodologies

 The growth in popularity of Agile methods in software development in the

last decade further complicates the use of measurement systems. One of the

key principles in Agile is the notion that management trust "self-organizing

teams" (Fowler 2001), in which the team commits to delivering functionality but

the individual contributors choose what they can best do to fulfill that

commitment. In a separate personal writing, the lead author of the first Agile

thesis recognizes that it may be possible to measure a team's productivity in this

environment, getting "a rough sense of a team's output by looking at how many

features they deliver per iteration" (Fowler 2003) and the complexity of those

features.

 However, beyond the variation in how the individual engineers contribute,

there is also the fact that Agile approaches focus on iteratively improving the

system over time with dynamic planning. For instance, in the Scrum framework

of Agile development, development teams estimate complexity in units of story

points, a relative measure of how long each story will take (Schwaber 2004).

While having high correlation to true delivered value, "coarse-grained

19

measures—such as those based on function points, user stories, story points,

use cases, scenarios, and features—tend to be less uniform and more prone to

low-value instability" (Erdogmus 2008, 5). While conceptually similar to FP, story

points are expressly intended to be a rough, iterative estimate of how long it will

take that development team to accomplish, rather than an objective measure.

For example, if a team evaluating a new story has just completed a similar

project using the same technologies, they would likely assign a lower relative

story point value than a team for which it would be new territory. FP would not

vary in this situation.

More fundamentally, Agile methods reject heavy upfront analysis, whether

in requirements formalization or deliberate counting based thereupon. "Classical

estimation methods need well defined requirements. Agile methodologies don‘t

support this behaviour" (Schmietendorf 2008, 113). Agile practitioners typically

use a non-linear set of values when assigning story points, such as 1, 2, 3, 5, 8,

13, 20, 40, and 100, ―to avoid a false sense of accuracy for large time estimates‖

(Kniberg 2007, 34), and the process of assigning points is done quickly in an

open team discussion. Indeed, in rejecting another metric model that requires

difficult estimation of size, Fenton assents that FP solves this ambiguity by

having size "computed directly from the specification" (Fenton 1994, 204), but

Agile repudiates the need for such a detailed specification with the central tenet

of "Working software over comprehensive documentation" (Fowler 2001).

20

 An approach to ensuring efficiency and excellence can be found in

practitioners of one Agile framework, Extreme Programming (XP). XP

emphasizes rapid development cycles to respond to changing requirements,

often recommend Pair Programming, in which two engineers develop code jointly

on one computer. This technique is a linchpin of XP, as "it is dangerous to do XP

without pair programming. One primary reason is that the pairs keep each other

honest. XP is a minimalist approach, so it is essential that many of the practices

actually get done" (Williams 2003, 177). Thus, completeness and correctness of

work is enforced by professional pride, knowing the partner will call out

deficiencies.

While practitioners of modern development frameworks may reject

classical counting techniques like LOC and FP, it does not necessarily follow that

an individual engineer's development activities must be entirely opaque, free

from management control, or that one cannot be judged against another. As

software metric supporter Tom Gilb said, "Anything you need to quantify can be

measured in some way that is superior to not measuring it at all" (DeMarco 1999,

59). Multiple measurements, including counting techniques, may be integrated

and normalized to assist forming a complete picture. While rejecting

"measurement acquiescence", Erdogmus recognizes "context-dependent and

proximate measures can still be very valuable" (Erdogmus 2008, 6) "provided we

understand why we‘re doing it, and provided we‘re aware of limitations"

(Erdogmus 2008, 4).

21

Defining Valuable Output

Whether it is desirable or possible to measure the business or other

external impact of the output of individual developers is another matter of

exploration. If one engineer implements fewer FPs in a period than another

engineer but his result in higher profit, perhaps he could be considered most

productive (Fowler 2003). However, engineers in large enterprises often have

limited control over what products they work on, and many layers stand between

them and the customer, so sales may not be a fair metric. More importantly,

when large numbers of engineers contribute to massive systems sold for millions

of dollars, examining a single person's business impact would be impossible.

These attributes compound the fact that "employees true output (such as value to

the organization) is often intangible and difficult to measure; in its place,

organizations choose to measure inputs" (Austin 1996, 18) such as those

discussed in the preceding paragraphs.

22

Research Procedures

 In order to propose a system to evaluate software engineers in an

enterprise setting, the author first analyzed contemporary industry views and

implementation approaches by conducting interviews across a representative set

of specialists. All interviews were conducted with associates of Cerner

Corporation (―Cerner‖), a major supplier of healthcare information technology

solutions. Management at Cerner is decentralized, giving front-line managers

substantial latitude to create and implement their own policies and practices.

Therefore, while all interviewees were employees of the same company, it was

expected that a wide variety of attitudes, information, and experience on the topic

of engineer evaluation would be encountered.

 Potential interviewees were solicited from internal corporate online

communities of software engineers, software architects, technical project

management, and senior management of development. Additional individuals

were specifically targeted based on work history and responsibilities. Of

respondents, interviewees were chosen who represented a wide sampling of

roles and organizations. The interviews were conducted using the following

questions:

1. What are the characteristics of a good software engineer, and is it really

an ―engineering‖ profession?

23

2. How can the characteristics of a good software engineer be best judged

objectively?

3. What should the aspects of ―productivity‖ be as applied to this profession?

Is defect accountability part of that? (Defect accountability is a formal,

enterprise-wide system Cerner has introduced and refined over the past

two years to track on the person responsible for the presence of a defect,

with aggregate reporting to senior management.)

4. How could we identify, track, and react to the vastly varying quality and

quantity of engineers‘ output?

5. Can any part of the output of an engineer be measured numerically by an

outside observer?

6. How should evaluations be done? Should some form of peer feedback be

a consideration in evaluating engineers?

 The interviews and literature review are taken together with the author's

experiences and reflections to form the basis of the new evaluation design, which

the author plans to implement in the next review cycle.

24

Results

Interviews

 Fulfilling the need for a sampling of roles and organizations, opinions on

measurement were collected through interviews with each of the Cerner

associates listed in Table 1 in October 2009.

Table 1. Interviewees

Name Role Organization

Brandon Heck Software Engineer Millennium Services

Steve Giboney Technical Project Manager Healthe

Katie Carter Technical Project Manager Foundations

Scott Schroering Lead Architect Millennium Services

Dan Plubell Director & Knowledge Architect Acute Care

Katie Lofton Business Analyst Development Operations

Brandon Heck

 Brandon Heck's response to the question #1 focused on quality work,

including proactively finding defects. He mentioned the work always needs to be

"accomplished within a reasonable timeframe," although establishing such a

timeframe is difficult when only starting with use cases or requirements. He also

noted the many collaborative aspects of software engineering that make it a mix

of art and science, taking it beyond ―just pumping code.‖ For question #2, Heck

25

said evaluation is difficult since the aspects he identified of quality and speed can

be traded off against each other. He saw some value in setting a timeframe for

completion as long as it was reached with true buy-in from the engineer rather

than being imposed. However, every miss should not be treated as a failure, as

he noted ―you can‘t know everything about a project until you‘re done with it.‖

The difficulty of counting defects was a further complicating factor.

 Heck's response to question #3 was that an engineer‘s productivity can be

evaluated by a close observer, but he believes a metric to be impossible,

primarily due to the mix of art in the profession he discussed in the first question.

As individuals practice their craft differently, while there may be best practice

guidelines, strictly defining various aspects of project completion such as the

amount of testing would ―adversely affect the culture‖ because ―self-value would

decline‖ in an environment of complying to minimums. He believed defect

accountability could be useful but necessitates significant context into the nature

and situation of each defect, as mere counts are meaningless.

 For question #4, Heck recognized that "healthcare is complicated" and

engineers often develop primarily in either breadth of functionality or depth of

understanding. Such varying approaches to the problem domain yield different

types of familiarity and output, which interact valuably in a team context while

difficult to isolate to the individual contributions. Therefore, for question #5, he

believed "a metric is difficult if not impossible, because too many things change,

and engineers practice their craft differently." If useful measurements could be

26

created, Heck recognized trends would help indicate good and poor

performance, but would need to be interpreted in context.

 Responding to question #6, while generally saying, "I don‘t think

performance can be measured objectively" due to its complexity, Heck

nevertheless advocated for progress evaluation. Such evaluation should be

done by someone close to the engineer throughout, rather than someone looking

primarily at the finished product or a metric by-product. He thought an executive

or other individual more removed from the daily work could be swayed by

personal characteristics. Given the amount of collaboration and interaction

between team members, he believes peer feedback using a system of structured

questions as well as open-ended comments should also be integrated in a

system.

Steve Giboney

 Giboney's response to question #1 gave primary weight to engineers

having the drive to solve problems, saying he is ―not satisfied until they‘re

innovative.‖ He believes that software engineering is distinct from other

engineering disciplines, as the field is not as "empirical" as classical engineering

professions and there can be no single defined process. Instead, he prefers a

framework to identify and respond to changes as quickly as possible. The main

characteristic he looks for in question #2 is an engineer making use of

teammates without being reliant on them, so that all can attain maximum

productivity.

27

 In question #3, Giboney immediately rejected counting LOC or FP.

Instead, he believes that transparency -- for example, from using an Agile

approach -- can help understanding of an engineer‘s productivity and highlight

underlying issues or barriers, but one ―can‘t estimate with any degree of

accuracy‖ due to the unknowns and interruptions. Although his team uses Agile

story points, they are only to help forecast and used only collectively, recognizing

particularly that the larger the project, the less accurate the forecast likely is. His

team does track individual defect accountability, but he expressed doubt that is

the optimal mechanism to drive quality or motivation. Instead, he would like to

experiment with approaches such as pair programming to identify issues earlier

in a fundamentally different way, but has not fully explored the institutional

implications and levels of support or barriers. He would prefer a metric that

tracks not the mere presence of a defect but its implications, such as

troubleshooting and support engineering effort required, wasted resource

consumption, and client outages.

 On question #4, Giboney indicated that "solving problems more elegantly

than requirements points to a higher quality or more productive engineer."

However, it is not possible to "predict or set out as measurement" what makes a

solution elegant. Instead, evaluation of quality must be carried out by a familiar

observer, such as in the context of code reviews. Similarly, responding to

question #5, he thought individual measurement might be acceptable in trivial

engineering tasks such as "very repetitive programming or report generation," but

28

not higher-order problem-solving. Instead, he believed measurement could be

useful at a team level, tracking the performance of a component or the number of

issues logged over a six-month period, with the team then interpreting.

 Giboney's response to question #6 was direct: the team members

themselves "know who pulls their weight and who they go to" for expertise.

Therefore, peer feedback would be a helpful input to managers, who could

combine this with their own opinion. As this is fundamentally a system of dealing

with people, he believes it to be inherently subjective, not something expressible

in numbers.

Katie Carter

 Carter, for question #1, found engineering fundamentals in the need for a

software engineer to think quickly and process information to solve problems.

However, she drew a distinction in the significantly less predictable nature of

software development roadblocks and how long a project will take to complete.

Continuing to question #2, she believes that software architects or any others

very familiar with the work have the ability to predict the amount of time a project

will take, and project postmortems on missed deadlines could examine whether

the estimate or work effort was off.

 For question #3, Carter thought productivity evaluation to be quite

straightforward, evaluating whether the engineer met the forecast set by the

architect as previously discussed. However, beyond meeting that binary

29

condition, she thinks it is important how the work was completed, such as

whether the engineer is ―reasonably able to solve issues‖ encountered and

provides transparent status updates to stakeholders.

 Carter, in question #4, found no purely systematic way to identify quality.

Tracking back defects to the originating engineer may be helpful, while

outstanding performances must simply be subjectively identified, calling them out

to the team for instructiveness and filing them away for performance reviews. On

question #5, she said that any metric of code output may be "very valuable input"

to a manager "very close," but it could not be used as a pure number absent that

context.

 Finally, for question #6, Carter does herself ask for peer feedback,

additionally listening in to code and technical design meetings as sources of

indirect information. She said the information gathered through those

mechanisms on individuals as well as project-level consumer feedback, outage

analysis, and postmortems to understand team successes and improvements

must be "subjectively processed" by a manager able to "see through

smokescreens."

Scott Schroering

 Schroering's response to question #1 values those who plan well and "see

the big picture," demonstrating a capability to envision the future, as opposed to

those who code as they go since those engineers' projects tend to drag on. Part

30

of this quality is the ability to see problems ahead of time. He believes the

biggest barrier preventing software development from being a more mature

engineering discipline is the unpredictable client support work that constantly

affects projects. On question #2, Schroering finds promise in the increasing use

of Agile processes as a way to raise the visibility of progress and problems

quickly, thereby gauging an individual's progress. He believes the setting of and

accountability to daily goals under Agile can gain commitment from all

participants and help ―filter through the excuses.‖ He specifically contrasted such

processes to the use of Microsoft Project, which despite its high degree of

precision is treated as merely a loose guideline due to consistent inaccuracy.

 Schroering responded to question #3 that ideal productivity cannot be fully

expressed for a given project. Instead, engineers should ―go the extra mile to

identify existing issues while working on their project to reduce future work effort,‖

implementing the required functionality while testing effectively and considering

the big picture. For example, the most productive engineer is one who can

identify an issue with the requirements or technical specification early rather than

simply implementing what is given, so wasted effort is avoided. In this spirit, he

believes a system tracking defects back to individual can be helpful for the

engineer to learn from mistakes through root cause analysis, but the aggregate

reporting is not really helpful without knowing the severity of the problem or the

comparative scope of the project in which it was created.

31

 On question #4, Schroering had doubts on the ability of code reviews to

identify quality as they "often aren't detailed enough." While he recognized Agile

techniques such as pair programming would deliver the necessary detail, he

believed it would not have management support as there is "not enough time" to

put two engineers on one computer. He believed the best test of quality was

having the code exercised in the field: if few issues occur, "it shows that desired

holistic thought." For question #5, he believed there is "value to some extent in

having an outside observer to find continuing trends – close team members

might be more smoke screened by excuses, [since they are] involved in the day-

to-day." He could also imagine doing only team-level tracking externally such as

publishing project plans and measuring the achievement.

 Schroering's response to question #6 advocated managers soliciting

opinions and observations from technical and subject matter experts, but he did

not believe peer input would be effective. Above all, he believed it important for

an evaluation "to give constructive feedback even to good performers," and he

thought peer feedback might be too kind. A tool that makes such feedback

anonymous might abate that, but he thought an overall structure in which the

best performers naturally "rise to the top" is the ideal team environment.

Dan Plubell

 Plubell's characteristics for question #1 focused on mental agility and

memory, such as a general curiosity to learn and "take things apart." In this, he

found similarities with other engineering professions, but believes the software

32

field to have a much less well-defined skill set, such as varied languages and

architectures. Responding to question #2, he pointed to task ambiguity

preventing objective measurement, but he asserted that the important qualities

he identified and general attitude could easily be observed by others with whom

the engineer interacts.

 On question #3, Plubell identifies that ambiguity at the outset of a project

as making it undesirable to measure individuals against meeting an estimate.

Nevertheless, he believes estimating is important. Since estimating is based on

experience, knowledge, and judgment, a systematic approach to break down a

project into units of work can help find similarities to past work. He believes a

postmortem is important as a mechanism of continuous improvement, both at the

individual level to estimate task time and the project level through a centralized

database to track history. He is careful to note that such a system could be

calibrated to drive good estimates, but different teams could not be compared,

undermining the appeal of rolling up data to the organization level for

performance review banding.

 His response to question #4 saw little opportunity for systematic digesting

of good and bad performances. Instead, both "take context," such as "the

projects they‘re working on and the [type of] work they‘re doing," as some work is

far more complex. The good can be filed away and celebrated in the review,

while the bad may be learning opportunities. Nevertheless, when interpreted

with sufficient context, trending may help identify continuing problems and

33

successes. For question #5, he echoed his response to the third question,

pointing to the inability to normalize systems that have been calibrated separately

as a barrier to metrics being comparable by an outside observer.

 For question #6, Plubell believed a team-based, calibrated measurement

"that serves as a proxy of reality" would be an ideal input for evaluations.

Measurements would necessarily be digested in the context of the manner in

which the work was done, considering less quantifiable attributes such as

teamwork, communication, and attitude. Peer feedback -- perhaps cloaked by

anonymity -- could be helpful, but he believes far more important is "an engaged

manager" who is "observing the team." One measurement that has been

proposed for Agile teams at Cerner is tracking the story points a team commits to

and successfully delivers. His concern with asking either individuals or teams for

estimates and then penalizing for misses is that padding would occur to make the

numbers look good.

Katie Lofton

 On question #1, Lofton indicated a good engineer is one who writes

―understandable, efficient, and maintainable‖ code and constantly learns and

improves. For question #2, she believed those characteristics could ideally be

gathered as side effects of development, but stressed the need to have both a

good process and good tools that support it.

34

 On question #3, she believed productivity could be defined as the proper

implementation of Minimum Marketable Features (MMF) within the prescribed

time window while meeting defined quality measures, with defect accountability a

tool used in evaluating quality. She rejected LOC and FP as abstractions, since

neither relates whatsoever to value delivered to customers as MMF does, but

also recognized that team difference in defining the size of MMFs would prevent

organization-level comparisons.

 She responded to question #4 by saying that the measure of quantity and

quality delivered by an engineer must ultimately be the financial impact, as

innovation must be marketable and actually implemented by clients.

Recognizing the possibility an engineer might happen to be on a bad

development team or a solution with a bad sales team, she might only use return

on investment at a corporate level, but contribution as a resource at the team

level. She stressed that "you have got to be able to use software engineers as a

resource," with less latitude given to middle management for allocation. She

addressed question #5 foundationally, asserting that using any type of

measurement "empowers" engineers "even though they tend to object to it the

strongest, since it gives some validity beyond an opinion." Additionally, she said,

"any metric used consistently within one team has some merit," while recognizing

the corollary that metrics are often incomparable between teams due to

inconsistency.

35

 For question #6, she advocated gauging productivity based on MMF

delivery as an objective input into evaluation, but would not recommend the

numbers being shared, primarily because "quantitative visibility within peer

cohorts causes problems."

Interview Analysis

 Before measurement can be considered, an understanding of the optimal

traits against which measurement is being performed is necessary, which was

the focus of the first two questions. While some consensus was found at a basic

level, those in leadership positions all had substantially wider definitions of a

good software engineer, giving more weight to attributes and approach that lead

to career growth over the long-term rather than the week-to-week project

deliverable. Additionally, subtle differences existed were exposed in further

consideration. For example, Lofton, the only interviewee with no work history as

a software engineer in formal development but whose role involves developing

and tracking metrics to evaluate the development organization, had the most

narrowly-focused definition of a good engineer. Overall, while all interviewees

were able to quickly define attributes that could make one software engineer

superior to another, none believed these most important attributes able to be

tracked through metrics like LOC or FP. Similarly, all interviewees agreed that

evaluations must be inherently subjective and should include substantial input

from those close to the engineer, despite differing on the optimal sources,

mechanism, and manifestation.

36

 Responses to many of the questions varied substantially based on the

nature of the work done by the interviewees‘ teams. For example, Brandon

Heck's responses were representative of engineering on teams involved in new

innovation, as they must begin work on projects with unclear scope and

unforeseen hurdles. On the other hand, Katie Carter recognized that a lot of

coding on her team is relatively more predictable due to similarity with past

projects. Nevertheless, there were many similarities of opinion of technical

practitioners even across such differences. For example, both Heck and Carter

made it clear that consideration should be paid to the correctness of the code

created in a project

 The general appeal of measurement was also highly influenced by an

individual's role and experience. Heck's opinions on measurement often recalled

those of DeMarco that the danger of implementing them poorly may outweigh

any possible benefit to be gained. Additionally, he called out those portions of

the job such as writing tests that are discarded in the metrics discussed in the

literature review, which focus predominantly on the implementation of

functionality. Lofton's approach is from the business perspective of treating

engineers as resources, with the desire to maximize the output of the investment

in a project.

37

Conclusion

 In considering the literature and interviews, it seems possible to implement

a more mature and systematic approach to evaluating the productivity of

software engineers, thereby improving the fairness of the performance evaluation

system from the typical current state, while not becoming driven solely by

numbers. Underlying this design is the recognition that both engineers and their

managers would benefit from having inputs to the process to ensure the

evaluation of productivity is not one merely of subjective impressions. Proper

implementation also requires a substantial amount of delegation from executives

to trust that the engineering managers are evaluating individual engineers

effectively using the metrics, without detailed oversight. However, it does not

follow that executives would therefore have no visibility into or control of the

system; managers would be held accountable for their role in the performance of

the team as a whole.

 Since software development teams deliver business value in different

ways based on development process and project type, any possible metric of

work completion would not work for all teams. Whatever metrics a manager

decides is appropriate for their team, it is important that they be meaningful

proxies of reality, tempered by the recognition that they will paint an imperfect

and partial picture. Collection of the measurements must not impose substantial

overhead on anyone other than perhaps the manager. Agile development

approaches in particular have no tolerance for work that does not deliver

38

customer value. Conversely, it is important that measurements not be chosen

merely because they are the easiest to gather from whatever tools and

processes the team happens to be currently using. Such an approach would

both undermine the meaningfulness of the metrics as representative, and

adherence to such metrics would yield additional inertia preventing the team from

moving to improved tools or processes in the future.

 One of the most important factors in ensuring the system does not

become dominated by metrics is to communicate them only to the front-line

managers of engineers, rather than creating a cross-organizational scorecard

that might be rolled up for executives or even one shared within the team. The

presence of such systematic reports would inherently communicate to both

engineers and front-line managers that managing those numbers is the most

important output, rather than maximizing business value. Additionally, such use

of metrics would indicate a false comparability while also inducing a harmful

normalization of work in order to more closely approach such comparability. On

the other hand, the front line manager, as a close, informed observer, has the

necessary understanding to digest the gathered metrics within the context of the

individual, the team, and the project, including the non-measurable attributes of

work.

Design

 Therefore, this author intends to gather the metrics and inputs described

below for his engineer direct reports over the next annual performance period.

39

Taken together, they help interpret both the "what" and "how" of an engineer's

output. These measurements will not be exposed directly to the engineers on

either an individual or group basis, nor will the executive levels be given visibility

into them. The purpose of the metrics is to provide an objective backing to what

is a necessarily subjective process.

Story point commitment and completion per development iteration

 Broadly speaking, story point completion is the primary number gauging

the output of development work using the Agile process, as the team-based

estimating takes into account the size and complexity of the work to be done to

implement a narrowly-scoped piece of functionality. While the estimate on any

one story may be higher or lower than the actual engineering work needed, it

should trend toward equilibrium and will certainly yield consistency across the

team. This factor makes systematic tracking important to understand how

engineers are truly performing, rather than sporadic notation of successes or

failures that may be aberrant. The commitment an engineer makes per iteration

is an important corollary to the completion number, as it provides an insight into

whether that engineer is more often helping or hindering the entire team from

making its deliveries.

Defect accountability tracking, including severity

 Defect accountability is the process of tracking back all defects reported

on released software to the original committer of the problematic code. While

40

Cerner's current approach is to report defect counts per engineer, the more

meaningful metric would capture the severity in terms of what functionality was

lost, how often it occurred, what the client impact was, and the context of the

original coding. That last attribute is perhaps the most important, as a manager

must apply judgment when comparing two defects that exhibit the same

attributes of outward severity but one occurred as the result of carelessness in a

straightforward project while the other was an unforeseen flow in an extremely

complex project.

An annual anonymous peer feedback system

 Finally, the feedback system will require all engineers to provide annual

feedback about all others, with the manager getting anonymous, aggregated

reports on each. Using a mix of discrete choice and open-ended questions,

engineers will be asked to examine the work of their peers in the aspects of

technical implementation, architecture and design decisions, team

communications, flexibility, and leadership. The feedback on how an engineer is

operating from a teamwork perspective is important so the environment does not

become poisoned, and peer feedback can indicate this in a different way than

management oversight alone. Gaining code-related feedback is helpful in getting

a more detailed view that can only come from those who are constantly involved

in each other's work through the process of code reviews.

41

Suggestions for additional work

 The most apparent next step would be to track the performance of

individual engineers and teams over a period such as a year, comparing three

styles of productivity evaluation on different teams: one that relies on observation

and informal feedback, another in which the above design is implemented,

tracking metrics and formal feedback only at the manager level, and a third in

which it is made clear that all metrics will be reported up executive channels.

Each approach could be analyzed from the perspective of the team achieving its

stated project goals, front-line manager feedback on their confidence of correctly

understanding the productivity of engineers and belief that outputs are being

appropriately measured, executive opinion on the performance of the team, and

engineer feedback on the fairness and effectiveness of the system.

 Depending on the outcome, incremental work may be warranted in

improving the formal feedback system. For example, the wording and types of

questions asked could have substantial impact on the outcome, so evaluating

possible formats and implementing a comparative study with multiple teams

could improve the utility of the system.

 Additionally, there are structural influences on productivity beyond those

reflecting an engineer's ability and application that are outside the scope of this

paper. Further study of those tools and processes that enable and hinder

42

individuals from maximizing productivity would be helpful in achieving the shared

goal of improved performance, while also providing the grounding necessary to

resist the urge to constantly seek to adapt the latest fad on offer in the constantly

evolving software field.

43

Bibliography

Albrecht, Allan J. ―Measuring Application Development Productivity.‖

Proceedings of the Joint SHARE, GUIDE, and IBM Application Development

Symposium, Monterey, California, October 14-17, 1979: 83-92.

Austin, Robert D. Measuring and Managing Performance in Organizations. New

York: Dorset House, 1996.

Behrens, Charles A. "Measuring the Productivity of Computer Systems

Development Activities with Function Points." IEEE Transactions on Software

Engineering SE-9, no. 6 (November 1983): 648-652.

Brooks, Frederick P. The Mythical Man-Month: Essays on Software Engineering.

2nd ed. Boston: Addison-Wesley, 1995.

DeMarco, Tom and Timothy Lister. Peopleware: Productive Projects and Teams.

2nd ed. New York: Dorset House, 1999.

Deming, W. Edwards. "Improvement of Quality and Productivity through Action

by Management." National Productivity Review (Winter 1981/1982): 12-22.

Erdogmus, Hakan. "Measurement Acquiescence." IEEE Software (March/April

2008): 4-6.

Fenton, Norman. "Software Measurement: A Necessary Scientific Basis." IEEE

Transactions on Software Engineering 20, no. 3 (March 1994): 199-206.

Flitman, Andrew. "Towards meaningful benchmarking of software development

team productivity." Benchmarking: An International Journal 10, no.4 (2003): 382-

399.

Fowler, Martin, and Jim Highsmith. "The Agile Manifesto." Software Development

9, no. 8 (August 2001).

44

Fowler, Martin. "Cannot Measure Productivity." Martin Fowler's Bliki, entry posted

August 29, 2003, http://martinfowler.com/bliki/CannotMeasureProductivity.html

(accessed January 14, 2010).

Jones, Capers. Applied Software Measurement: Global Analysis of Productivity

and Quality. 3rd ed. New York: McGraw-Hill, 2008.

Kniberg, Henrik. Scrum and XP from the Trenches. Toronto: C4Media, 2007.

Maxwell, Katrina D., and Pekka Forselius. "Benchmarking Software Development

Productivity." IEEE Software (January/February 2000): 80-88.

Maxwell, Katrina D. "Collecting Data for Comparability: Benchmarking Software

Development Productivity." IEEE Software (September/October 2001): 22-25.

Ridgway, VF. "Dysfunctional Consequences of Performance Measurements."

Administrative Science Quarterly (September 1956): 240-247.

Schmietendorf, Andreas, Martin Kunz, and Reiner Dumke. "Effort estimation for

Agile Software Development Projects." Proceedings of the Software

Measurement European Forum, Milan, Italy, May 28-30, 2008: 113-123.

Schwaber, Ken. Agile Project Management with Scrum. Redmond: Microsoft

Press, 2004.

Vegas, Sira, Natalia Juristo, and Victor R. Basili. Identifying Relevant Information

for Testing Technique Selection: An Instantiated Characterization Schema.

Dordrecht, Netherlands: Kluwer Academic Publishers Group, 2003.

Williams, Laurie, and Robert R. Kessler. Pair Programming Illuminated. Boston:

Pearson Education, 2003.

