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Chapter 1
Introduction

In 1918, Edward Thorndike observed that “Whatever exists at all exists in some 

quantity. To know it thoroughly involves knowing its quantity as well as its 

quality” (p. 16). From the time Thorndike made this simple statement, it has become 

a defining principle of educational measurement. The belief that traits and abilities 

could be examined quantitatively launched the field of psychometrics.

In 1923, Boring defined intelligence as “what the tests test.” IQ tests were 

constructed, and the scores on those tests were translated directly as intelligence. The 

same has been done for many other traits, most notably, personality. The circular 

logic of Boring’s definition confounds both intelligence researchers, and those who 

seek to further the field of measurement. However, this early definition propelled 

psychometric research into the dynamic domain it is today.

Since that time, in both psychology and education, one goal has become a 

major focus: diagnosis. For psychologists, this may mean characterizing personality 

traits or identifying psychological disorders. In the world of education, diagnosis 

means the identification of cognitive abilities or skills, particularly those relevant to 

large-scale assessment. Though the implementation of legislation such as No Child 

Left Behind (2001) has placed more emphasis on skill measurement and diagnosis in 

recent years, ability and intelligence have historically been focal points for 

psychologists and educational researchers.

Although the idea of psychometric assessment is not new, the world of 

educational testing has higher consequences than ever before. National educational 
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policy has made school funding dependent upon student performance on 

standardized tests, and poor performance can penalize needy students and schools 

even further. Furthermore, the material that is presented on these tests drives the 

curriculum, a practice often referred to as “teaching to the test.” It is important to 

note that not only what is assessed, but how it is assessed has implications for what 

happens in education (Johnston & Costello, 2005). Therefore, it is paramount that 

educational tests be constructed to be as valid and efficient as possible. 

Modern psychometrics has evolved over a series of stages beginning with 

simple models in classical test theory (CTT), to more complex latent variable models 

in item response theory (IRT). Increasing importance is placed not only on the types 

of general ability measured by large-scale assessments, but also on the individual 

skills that make up ability. Stakeholders want diagnostic measurements that reflect 

higher-order cognitive processes rather than test-specific strategies (Leighton & 

Gierl, 2007). To obtain this diagnostic information both the instruments used to 

assess individuals and the statistical procedures used to analyze the assessments must 

be designed with diagnostic properties in mind. Therefore, more recently, the latent 

framework of IRT has been applied to categorical latent variable models, which 

allow examinees to be categorized into diagnostic groups. 

These Diagnostic Classification Models (DCM) are powerful analytic tools that 

provide information about student knowledge and ability by assessing skills 

demonstrated through a variety of testing frameworks. These models are particularly 

useful when diagnostic decisions about proficiency are required (Rupp & Templin, 



2008a). In order for these procedures to be effective, the input for the models must 

be carefully considered. The set of skills an instrument measures as well as the 

patterns of these skills—which are reflected in the items on a test—determine the 

quality of the diagnostic information that can be obtained from these models.

For DCM, the skills represented by items are modeled using a Q-matrix. 

Tatsouka (1995) called the patterns of skills measured by these models knowledge 

structures and developed the Q-matrix to reflect examinee mastery of skills. Through 

a pattern of 0’s and 1’s, the Q-matrix establishes the relationships between latent 

variables representing knowledge structures (columns) and individual items on an 

assessment (rows) (Rupp & Templin, 2008b). Because the information contained 

within Q-matrix is the primary driver of the usefulness of a DCM, correct 

specification of the Q-matrix is essential.

When these assessments are written, experts in the field are often consulted to 

construct the items based on the skills deemed necessary to demonstrate proficiency 

in the content area. Therefore, incorporating expert opinion into the evaluation of 

skills on established instruments is important for accurate Q-matrix specification. 

However, because higher-order skills can be difficult to measure, experts often 

disagree on which of these skills are truly required to correctly respond to items. It is 

for this reason that probabilistic Q-matrix estimation, which allows for uncertainty, 

may lead to more accurate Q-matrices and, by extension, to better diagnostic 

information. The goal of the current work is to discover the most appropriate 

structure for the Q-matrix for each test and evaluate the impact of differing Q-matrix 



structures on the quality of the models and their diagnostic information. The primary 

hypothesis of this investigation is that using probabilistic estimation methods for Q-

matrix construction will yield DCMs with better fit, more stable parameter estimates, 

and more accurate classification rates.

To begin, it is important first to understand the emergence of psychometric 

theory and its impact on the current philosophy of cognitive diagnostic assessment. 

Further, the theory and applications of diagnostic classification, as well as how these 

models can be applied to reading comprehension tests, must be understood. Finally, 

probabilistic procedures will be applied to empirical data collected from adult 

education participants on a series of reading comprehension tests to demonstrate the 

usefulness of probabilistic estimation in discovering the structure of the Q-matrix.



Chapter 2

Background

Early Psychometric Theory

The most simplistic view of educational testing begins with classical test 

theory. Classical test theory (CTT) assumes that the test score (Y) of an individual 

consists of the true score (T), or ability of the examinee, plus measurement error (E), 

and is given as follows:

 

  

 (Lord, 1968). Using CTT, researchers began with the precept that traits or abilities 

can be known absolutely and that the true score represents the pure trait underlying 

an observed score (Osterlind, 2006). As with all measurement, the key to 

determining the true score is isolation and definition of the error around a measured 

score. 

While CTT began the tradition of psychometric modeling of error, it has 

several shortcomings. Perhaps the most significant of these is that CTT does not 

allow the researcher to separate item characteristics from person characteristics. In 

CTT, the proportion of individuals who correctly answer the item is used to calculate 

item difficulty, and the measure of individual ability is dependent upon not only 

correct responses to items but also on item difficulty. Like Boring’s (1923) 

definition, this logic is clearly circular. 



Also, problems associated with test-retest reliability in CTT led researchers to 

develop parallel forms of tests. Parallel forms involve creating different items for 

each form, but items across forms are matched on difficulty such that the two tests 

have the same overall difficulty score. True parallel forms are difficult to create and 

even harder to verify (Hambleton, Swaminathan, & Rogers, 1991). In light of these 

drawbacks, a new psychometric procedure, item response theory (IRT), was 

developed.

IRT followed CTT as a means of measuring individual ability or traits. IRT 

models can be used to measure an individual’s performance on a test as a function of 

some latent trait. In educational settings, this latent trait is often referred to as ability. 

IRT is used to describe not only the degree to which an individual possesses this 

latent trait, but also how the latent trait influences performance on a test 

(Marcoulides, 1999).

IRT holds several advantages over CTT. The latent framework allows a 

researcher to explain the relationship between individual ability and performance on 

a measurement device (Hambleton et al., 1991). Also, IRT models consider multiple 

facets of item responses. A single parameter model, commonly called the Rasch 

(1960) model, frames individual ability within the context of difficulty. However, in 

modern psychometrics both item and examinee characteristics hold importance, and 

models which allow the simultaneous evaluation of items and examinees are 

generally favored.



More complex IRT models were developed which predicted ability based not 

only on difficulty, but also on the power of items to discriminate between examinees 

with high versus low ability. As the technique advanced, models that allowed for the 

possibility of accurate guessing by examinees were also developed (Hambleton et al., 

1991). These parameters allowed for more rigorous analysis, reducing the amount of 

noise in the models created by guessing and differing levels of ability. 

Although IRT models contributed a great deal to understanding examinee 

ability and item and test characteristics, they left some questions unanswered. IRT, as 

a latent trait model, allowed researchers to understand individual ability and item 

functioning, but ability in the IRT framework represented a single construct rather 

than the underlying cognitive processes that make up ability.

Cognitive Diagnostic Assessment

The field of educational measurement is becoming increasingly focused on 

diagnostic measurements of cognitive ability as a means of large-scale assessment. 

Leighton and Gierl (2007) point out that this shift in focus requires a new philosophy  

that relies less on correlational evidence collected after tests have been administered 

and more on tests as an endeavor of scientific inquiry. This new philosophy is often 

labeled cognitive diagnostic assessment (CDA). CDA provides information about the 

cognitive processes underlying examinee performance and, by evaluating response 

patterns, provides richer information than traditional standardized assessment 

procedures, which focus on a general ability or response tendency in a single domain 

(Yang & Embretson, 2007).



Yang and Embretson (2007) outline three primary cognitive characteristics 

which are the focus of CDA. The first is the identification of skills profiles, which 

represent the most important skills of a given domain. The second is procedural 

knowledge and higher-order networks. Finally, a primary focus for CDA is cognitive 

processes or components. The focus of this work is the application of CDA theory 

and, more specifically, diagnostic classification models (DCM) to empirical data for 

determining skills profiles and the appropriate identification of skills on assessments.

While CTT and IRT provide frameworks for measuring ability, both techniques 

focus on a single measure. Once an assessment has been given and student ability 

calculated, comparisons of student performance fall along a continuum. Norms may 

be used to establish cutoffs which divide students into categories which represent 

levels of proficiency, but it is impossible to know what characteristics separated 

those students in one category from those in another. This leaves little information 

about how to improve the standing of those students in lower proficiency categories 

(Henson & Templin, under review). CDA seeks more informative categorizations, by 

which the specific skills of each class of examinees can be known, and Diagnostic 

Classification Modeling (DCM) is the type of latent class modeling by which this is 

accomplished.

Diagnostic Classification Models

Latent class models are extensions of latent trait models which focus on 

categorizing examinees into one of K latent classes based on their responses to a 

number of items on a given assessment (Maris, 1999). DCM is a latent class 



modeling procedure in which an examinee’s responses to dichotomous test items are 

modeled as a function of the latent class to which the examinee belongs (Templin & 

Henson, 2006). The use of these models to assess the psychometric properties of 

both learners and test items is wide-ranging in purpose, specification, and name. The 

same family of models has also been called cognitive diagnosis models (Templin & 

Henson, 2006), cognitive psychometric models (Rupp, 2007), multiple classification 

latent class models (Maris, 1999), and most recently, diagnostic classification models 

(Rupp & Templin, 2008b). Whatever the label, these models are special cases of 

latent class models that are used to draw connections between response data 

collected from participants and the properties of test items. Though DCM can be 

applied to many research disciplines, the focus here is on the applicability of these 

models for cognitive diagnostic assessment, where identifying classes of individuals 

based on skill patterns is useful, especially when a researcher is considering revising 

testing procedures or instructional strategies. The true advantage of this theoretical 

framework can only truly be seen when tests are designed using cognitive diagnostic 

assessment principles; when items on a test are designed with a specific set of skills 

in mind. Retrofitting these models to previously designed tests is less useful as 

coverage of each skill by items on the test may not be complete or it may not be 

possible to accurately identify which skills are reflected in each item.

In DCM, each latent class is defined as a set of examinees sharing a particular 

attribute pattern or profile. Each latent class represents a unique pattern of skills 

which an examinee has either mastered or not. Those examinees with the skills to 



correctly answer an item are defined as ‘masters’ while those lacking a skill or skills 

are classified as ‘non-masters’. The pattern of mastery and non-mastery for an 

examinee across all test-relevant skills determines his or her attribute profile. For a 

test with K relevant attributes, an attribute profile can be expressed as a K-

dimensional row vector, αi, for each examinee, i, comprising binary entries. An entry 

of ‘1’ in position k indicates mastery of the kth attribute in the profile and an entry of 

‘0’ indicates non-mastery. The number of latent classes, then, is 2k. For example, if 

only two skills are measured, there are four latent classes: an examinee has mastered 

neither skill (00), the examinee has mastered only the first skill (10), the examinee 

has mastered only the second skill (01), and the examinee has mastered both skills 

(11). An individual’s attribute profile, then, is one of these possible response patterns.

DCM differs from traditional IRT modeling in that the examinee characteristics 

which are being modeled are multiple, dichotomous skills rather than single, 

continuous latent traits. More specifically, whereas IRT models use a single ability 

measure to model an examinee’s response, DCM uses a pattern of skills, which an 

examinee has either mastered or not, to model the probability of a correct response to 

a given item. The general goal of DCM is to use item responses to identify the 

correct latent class, and thereby the set of attributes, of each examinee.

Rupp and Templin (2008b) provide a definition of DCM which outlines eight 

criteria distinctly characterizing these models:

Diagnostic classification models (DCM) are probabilistic, confirmatory, 
multidimensional latent-variable models with a simple or complex loading 
structure. They are suitable for modelling observable categorical response 
variables and contain unobservable (i.e., latent) categorical predictor variables. 



The predictor variables are combined in compensatory and noncompensatory 
ways to generate latent classes. DCM enable multiple criterion-referenced 
interpretations and associated feedback for diagnostic purposes, which is 
typically provided at a relatively fine-grain size. This feedback can be, but does 
not have to be, based on a theory of response processing grounded in applied 
cognitive psychology. Some DCM are further able to handle complex sampling 
designs for items and respondents, as well as heterogeneity due to strategy use 
(p. 226).

The first two criteria refer specifically to the nature of the models. DCM are 

multidimensional and confirmatory. A second set of criteria define how the models 

are specified: the complexity of their loading structures, the types of observed and 

latent variables that are used, and the lack of interactions among latent predictor 

variables. Finally, several criteria define how these models are used. They allow 

criterion-referenced interpretations that are diagnostic in nature, and they are flexible 

enough to model heterogeneity.

DCM are multidimensional because they include latent predictor variables, the 

number of which is determined by the number of skills assessed. Furthermore, 

hierarchical diagnostic classification models have been proposed (de la Torre & 

Douglas, 2004). The confirmatory nature of DCM arises out of the use of the Q-

matrix as a loading structure. The 0’s and 1’s contained in the Q-matrix specify a 

hypothesis about response patterns. The Q-matrix is to DCM what the factor loading 

matrix is to factor analysis (Rupp & Templin, 2008b). A priori specification of this 

matrix, therefore, is a testable hypothesis about the structure of the model, making it 

a confirmatory procedure.

Unlike FA procedures that often have simple loading structures, DCM models 

specific, discrete latent variables which are the product of multiple component skills 



and require more complex loading structures. Both observed response variables and 

latent predictor variables are categorical in nature, as opposed to the more familiar 

continuous framework of FA and IRT. Also, unlike FA and IRT, DCM does allow for 

interactions among latent variables (Rupp & Templin, 2008b). In fact, DCMs 

estimate all possible interactions between latent variables.

DCM also has the appeal of modeling many types of heterogeneity. These 

models are not restricted to modeling individual response patterns, but can be used to 

investigate between-subject differences in response patterns, as well as within-

subject response patterns for individuals across tasks, and several other research 

questions. This wide-ranging applicability is due in part to the number of DCM 

variants that can be specified. The models can be either conjunctive or disjunctive. In 

conjunctive models, all attributes that are required must be mastered by an examinee 

in order to provide a correct response. Disjunctive models, however, require that only 

one of the necessary attributes for a given item be mastered in order for an examinee 

to provide a correct response. 

Two specific models are considered for the current work: the DINA model and 

the DINO model. The DINA (Deterministic Inputs, Noisy “And” Gates) Model 

(Haertel, 1989; Junker & Sijtsma, 2001; Macready & Dayton, 1977) is a model that 

predicts the probability of a correct response on an item given only the skill or skills 

determined to be necessary for that item. If the examinee possesses the skill 

necessary to answer the item, the probability of a correct response is high, but if the 

examinee does not possess the skill necessary to answer the item, the probability of a 



correct response is low. The model is non-compensatory, which means the lack of a 

necessary skill cannot be compensated for by the possession of another skill.  

The DINA model is conjunctive model and models the response of examinee i 

to item j through a dichotomous random variable, Xij. A binary indicator of skill ξij is 

first established for each examinee for each skill k where qjk is the Q-matrix entry for 

item j on skill k and αik is the attribute vector for examinee i:

 

 (2)

 If a skill is not required for a given item, then qik = 0 and αik = 1 regardless of 

the individual’s attribute pattern; however if a particular skill for that item is 

required, then  qik = 1, and the individual’s mastery (or non-mastery) of that skill is 

now relevant. The product terms dictates the conjunctive property of the model. All 

necessary skills must mastered (αik = 1) in order for ξij = 1.  If the examinee is 

missing even one relevant attribute ξij = 0. 

Much like IRT models, DCM accounts for the possibility that an examinee may 

correctly guess an item response. Therefore, included in the model is the probability 

even when ξij = 0 an examinees gives a correct response. This is referred to as the 

guess parameter, gj. In addition to the guess parameter, these models also consider 

that an examinee who has mastered all the relevant skills may ‘slip’ and answer 

incorrectly. Therefore, an additional parameter estimates the probability that even 

when ξij = 1 an examinee fails to give a correct response. This is the slip parameter, 



sj. In the case that the examinee does possess all of the necessary skills, the 

probability that a correct response is given is one minus the “slip” parameter. In the 

case that an examinee does not possess the appropriate skills, the probability of a 

correct response is given as zero plus the “guess” parameter. Given both the slip and 

guess parameters, the conditional probability of examinee i responding correctly to 

item j is the following:

 

 (3)

Because many of the reading comprehension skills employed by examinees can 

be compensated for, or overlap with, other strategy options which the examinee may 

or may not possess, the conjunctive nature of the DINA model is somewhat limiting. 

This has particular consequences for the guess parameter which may be inflated 

because an examinee could lack the specified strategy for an item, but compensate 

by using another strategy. This compensation is not accounted for by the model and 

the difference between using a compensating strategy and simply guessing would be 

indistinguishable.

In contrast, the DINO (Deterministic Inputs, Noisy “Or” Gates) Model 

(Templin & Henson, 2006) does allow for compensating skills. For the DINO model, 

the binary indicator of skill ωij is defined as follows:

 

 (4)



Because the model is compensatory ωij = 1 if an examinee has mastered as 

least one relevant skill and ωij = 0 only if none of the relevant skills are mastered. 

Here the slip parameter is interpreted as the probability that an examinee with 

mastery of at least one attributes fails to correctly respond to an item. In contrast to 

the DINA, where lack of mastery on only one required attribute defines the guess 

parameter, for the DINO the guess parameter is the probability that an examinee who 

is lacking all relevant attributes correctly responds to the item. Therefore, the 

conditional probability that an examinee correctly responds to an item is given as 

follows:

 

 (5)

Conditional upon an examinee’s latent class membership, the probability of a 

positive response (i.e., a correct response or item endorsement, depending upon the 

item type) to a given item is determined by the match between the attributes 

represented by the examinee’s latent class and the attributes thought to be relevant to 

the item and specified in the Q-matrix.  

No matter what type of model is specified, they generally are fit under the 

assumption that the Q-matrix is correctly specified (Maris, 1999). The Q-matrix is 

“the core element that determines the quality of the diagnostic feedback for the 

instrument,” and so the cost of misspecifying the Q-matrix can be extreme (Rupp & 

Templin, 2008a, p. 80). In most DCM models, the Q-matrix is established using 



strictly binary values for each item based on whether or not a particular skill is 

required. Occasionally, determining the necessity of a given skill for each item can 

be relatively straightforward. For example, the skills required to answer an item on a 

math test can be easily established by visual examination of the symbols (addition, 

subtraction, etc.). However, on more subjective tests, such as reading comprehension 

tests, the underlying skills required by each item may be more difficult to determine.  

 Henson and Templin (under review) point out that, while constructing the Q-

matrix is the most crucial and difficult step in DCM, it is often taken for granted. It is 

assumed that experts correctly identify exactly the skills needed; no more, no less. 

However, this assumption may not always be true, and the consequences of violating 

it can be seen in model parameter estimates, classification rates for examinees, and 

overall model fit. The appropriateness of the Q-matrix is often overlooked and as a 

result poorly fitting models due to Q-matrix misspecification cannot be identified as 

poorly fitting or corrected (de la Torre, 2008).

Because of these concerns, studies are now being conducted to determine the 

consequences of Q-matrix misspecification across a range of conditions. The impact 

of Q-matrix misspecification will be different for a conjunctive model than it is for a 

disjunctive model. Rupp and Templin (2008a) conducted a simulation study to 

examine the consequences of Q-matrix misspecification for the DINA model. The 

authors generated a known Q-matrix and then created several modified Q-matrices 

by deleting or adding extra items. Comparisons of models using the true Q-matrix 

were then compared to models using the modified Q-matrices.  Their results showed 



that when an extra skill is required, the slip parameter will be inflated while the 

guess parameter remains somewhat unaffected. However, when a required skill is 

omitted from the Q-matrix the guess parameter will be overestimated while the slip 

parameter remains somewhat unaffected (Rupp & Templin, 2008a). Items on an 

assessment, like individuals, have skill patterns or combinations. Each item may 

require from one to all of the skills in any combination. In order for individuals to be 

accurately classified, it is important that their skill pattern be reflected in at least one 

item on an assessment. In their simulation study, Rupp and Templin (2008a) also 

found that when an individual’s skill pattern was not represented by any item on an 

assessment that individual was completely misclassified. 



Chapter 3

Current Study Methods

Although some work has been done to determine the consequences of Q-matrix 

misspecification, less has been done to investigate methods which may improve the 

quality of Q-matrix construction. The purpose of the current study is to explore a 

probabilistic estimation procedure for Q-matrix construction.

Two key sources of data were utilized: expert opinions from which the Q-

matrices were derived and participant data. Six experts were consulted to evaluate 

the possible skills that could be used on each item. The binary attributes in a 

cognitive diagnosis model represent the skills required to provide a correct response 

to each item. The participant data for the study come from literacy tests which were 

given to a set of examinees in adult basic education programs. Three literacy tests, 

the Comprehensive Adult Student Assessment System (CASAS), the National 

Assessment of Educational Progress (NAEP), and the Graduate Equivalency Degree 

(GED), were examined.

Skill Identification in Reading Comprehension

To investigate the skills needed for each item, the experts evaluated items on 

two tests on the basis of the type of reading strategy required to correctly answer 

each item. The experts included three Ph.D. scientists and one M.A. scientist, all 

specializing in learning disabilities. Additionally, one Ph.D. and one M.A. scientist 

specializing in reading were consulted. The reading specialists had a range of 8 to 24 

years of teaching experience in grades K-12. Each of the experts had knowledge of 



standardized achievement measures and assessment, reading instruction practices 

and patterns, reading skills, and strategy instruction.

The experts were trained in strategy identification using additional forms of the 

tests examined in this study. The panel worked through one practice test together to 

clearly define and identify the six skills. In identifying relevant skills for each item, 

the experts were asked to identify which single skill was most likely necessary for an 

examinee to correctly respond to each item. This forced choice framework limits 

somewhat the information that was ultimately used to construct the Q-matrices for 

each test. Each researcher then worked independently on a second practice form and 

the definitions were re-examined. From these practice sessions, the definitions of the 

skills were laid out.

In some instances, skills measured by assessments are relatively easy to 

identify. Consider that a student is given the following set of problems:

If the student is able to successfully answer the entire set, it is easy to arrive 

at the conclusion that the student possesses the ability to add and possibly subtract. 

However, with more complex problems, such as reading comprehension, 

determining what skill is needed to correctly answer an item is much more difficult. 



Reading is a complex task, and it is difficult to observe the underlying skills an 

examinee is applying when answering comprehension questions.

Using strategies in reading requires several simultaneous processes. 

Assuming an examinee utilizes multiple strategies, one correct strategy must be first 

selected, applied, and monitored (Wixson & Lipson, 1991). Given changes in text 

structure, context, or even difficulty of the passage, the appropriate strategy may 

change across, or even within, passages on a test. Additionally, it is not always the 

case that there is only a single appropriate strategy. A student asked to answer the 

math problems above could not substitute subtraction for addition and still arrive at 

the correct answer. However, a student asked to read and comprehend a passage of 

text may implement a strategy such as ‘Determining the Main Idea’, ‘Summarizing’ 

the passage, self-questioning, or any combination of these and arrive at a correct 

response.

The panel of experts was formed to determine which reading skills would be 

necessary to correctly answer each item. Specifically, the skills examined here are 

‘Determining the Main Idea’, ‘Summarizing’, ‘Drawing Inferences’, ‘Generating 

Questions’, ‘Creating Visual Images’, and ‘Looking for Clues’ (Hock and Mellard, 

2005). Relevant skills were determined based on several criteria: previous research 

on literacy, definitions which were established, and the experts’ practice rating the 

items. 

 ‘Determining the Main Idea’ is defined as selecting, deleting, condensing, and 

paraphrasing information to uncover what the author thinks is most important in the 



paragraph. ‘Summarizing’ involves many of the same processes (selecting, deleting, 

and condensing) but for an entire passage rather than for a single paragraph. If the 

drawing inference strategy is required a reader needs to draw on prior knowledge, fill 

in details, and elaborate on what had been read to answer an item relating to a given 

selection. The ‘Generating Questions’ strategy is used when a reader begins to ask 

questions about setting, plot, characters, cause and effect, problem solutions, and 

other critical thinking requirements. ‘Creating Visual Images’ is most commonly 

used with very symbolic or highly descriptive selections. A reader transfers the 

words or clues into a mental image which can then be retained to help answer the 

questions. ‘Looking for Clues’ requires a student to examine a picture or caption, 

visually inspect a graph, or pull clues from the text such at titles, authors, headings, 

and key words. A reader may possess any combination of these skills, so correctly 

answering an item is a function of matching the strategy essential for a correct 

response to the item. 

Participants

All subjects were selected from 14 adult basic education (ABE) programs in 

Kansas and Missouri. Participants in the study must have met the qualifications for 

enrollment in an adult education program. Qualifications included withdrawal from 

secondary education, age of 16 years or older, standardized tests scores below the 

maximum possible, and US citizenship or foreign national status.

The U.S. Department of Education’s National Reporting System (NRS) 

functional reading levels derived from the Comprehensive Adult Student Assessment 



(CASAS) diagnostic test scores (CASAS, 2002) were used to categorize participants 

in the study. The NRS uses six adult educational levels where level one is Adult 

Basic Education (ABE) Beginning Literacy, level two is ABE Beginning Basic, level 

three is Low Intermediate ABE, level four is High Intermediate ABE, level five is 

Low Adult Secondary Education (ASE) and level six is High ASE. Participants in 

each of the six functional reading levels were pooled and a random sample was taken 

at each level from 713 willing participants recruited from ABE and ASE programs. 

A goal of sixty participants was set for each level, but due to the low incidence of 

level one and level two participants in the population, fewer participants were 

available for these levels. The final sample size was 312 (29 at level one, 44 at level 

two, 58 at level three, 61 at level four, 59 at level five, and 61 at level six). 

It should also be noted that the reading tests examined here, with the 

exception of the CASAS, are designed primarily for students along a typical, or 

normally developing, educational trajectory. The world of adult education is a special 

population whose skills, presumably, map onto those of their younger counterparts 

who are on the typical trajectory. However, because the skills are obtained in a 

different time frame, and perhaps even a different sequence, the skills utilized by this 

population could differ greatly from the tests’ intended population. This fact 

increases the need for understanding what the tests are measuring and what skills are 

required to successfully complete the items.

Assessments



The first test evaluated in this study was the Level C Reading Test of the 

CASAS. The CASAS is used to assess functional literacy in adults, and the Level C 

Reading Test evaluates examinees at approximately a sixth grade level. It consists of 

39 items and requires skills relating to the interpretation of materials commonly 

encountered at home, at work, and in a community setting, such as charts, graphs, 

and advertisements. The test is timed; examinees are allowed 45 minutes to complete 

the items.

The format of the CASAS reading test involves a passage of text, a chart, or a 

graph followed by several questions pertaining to information provided within the 

material. A certain level of reading mastery is required to answer each item correctly. 

Because the items have varying formats, it is assumed that a range of reading skills 

could be employed in order to form a response to each item. Because of the nature of 

the CASAS as a test of functional literacy, many of the selections lend themselves to 

‘Looking for Clues’ and ‘Drawing Inferences’, whereas the NAEP and GED had 

much greater variability in the utilization of the six skills. 

The National Assessment of Education Progress (NAEP) was also examined. 

A 24-item reading comprehension sub-test was the focus of this analysis. Short 

paragraphs are provided and the examinee is asked to read the passage and then 

answer the multiple-choice questions that follow. Unlike the functional nature of the 

CASAS, the NAEP tests for reading comprehension skills within connected prose. 

The NAEP is designed for participants at higher skill levels, and therefore was only 

administered to those participants in Intermediate ABE and ASE levels (NRS levels 



3-6). Both the nature of the test and the smaller sample make examination of the 

NAEP very different from the CASAS.

The Graduate Equivalency Degree (GED) test consists of 20 multiple-choice 

items drawn from short passages of connected prose. The GED was administered 

only to NRS levels five and six as it is intended for adult education participants 

nearing the end of their training. Because adult education programs are designed for 

adults who did not complete their high school education, the GED is the primary 

goal for many adults who enroll. Therefore, much of the training within these 

programs is designed toward passing this exam, so the skills necessary to correctly 

respond to items on the GED are of primary concern for adult education instruction.

Q-Matrix Estimation

To investigate the structure of Q-matrix, both the DINA and DINO models 

were fit with two Q-matrices: a deterministic Q-matrix created from expert ratings 

and a probabilistic Q-matrix created using an MCMC estimation algorithm. First, a 

traditional (deterministic) Q-matrix was established by aggregating the experts’ 

ratings of skills on items. In order to receive a 1 on any strategy half of the raters had 

to endorse the use that strategy for the item; otherwise a 0 value was assigned. In 

most cases only one strategy was endorsed by four or more raters. Also, based on 

expert ratings, the probability of a strategy being required was estimated. The 

probability is given as the number of experts endorsing a strategy on an item out of 

the total number of experts. For the probabilistic Q-matrix, rather than rounding the 



aggregated ratings to 0 or 1 this value was used as a prior probability for the 

estimation procedure. 

The difference in format between tests, specifically the CASAS, meant that 

some skills would not be used on all tests; therefore the deterministic Q-matrices for 

each of the literacy tests contain different combinations of the possible six skills.

Finally, the models were fit using two estimation procedures: one for the 

probabilistic Q-matrix models, and another for the deterministic Q-matrix models. 

First, the parameters for the probabilistic Q-matrices were estimated using a 

Bayesian algorithm. The process is led by the prior probability distribution derived 

from the aggregation of expert opinion. At each iteration, each Q-matrix element is 

estimated as either 0 or 1. The final likelihood for each element of the Q-matrix is 

determined by the number of iterations in the algorithm where the element was equal 

to 1. For each test, the estimation was performed using the DINA model parameters 

and again using the DINO model parameters. Because of the complex nature of these 

models, a large number of iterations were necessary to ensure stability. Therefore, an 

MCMC chain length of 50,000 iterations, with a thinning interval, of 20 was used. 

The first 40,000 iterations were discarded as a burn-in period. Convergence of the 

MCMC estimation was checked using plots for the item parameters. As the algorithm 

progresses, each element in the probabilistic Q-matrix may change its value from 0 

to 1 or vice versa. The results of this estimation were then used to form a new Q-

matrix where elements with a value below 0.5 were set to zero and elements with a 

value at or above 0.5 were set to one. This algorithm-based Q-matrix is what was 



used as input for the DCM. Both the DINA and DINO models were estimated using 

an EM algorithm and the goodness of fit was checked.

The process for the deterministic Q-matrix was much simpler. The original Q-

matrix was used, and the respective DCM parameters were also estimated using an 

EM algorithm. The goodness of fit of the analysis was also noted.



Chapter 4

Results

For each of the three tests, item means, variances, and correlations were run 

(see Table 1-3).

Q-matrix Estimation 

The final Q-matrices for each model differed based on the level of endorsement 

of each attribute. Tables 4-13 show the final item by attribute patterns for each 

model. Table 14 summarizes which attributes were relevant for each model. For the 

CASAS, experts endorsed only the ‘Looking for Clues’ strategy above the .5 

threshold; therefore, the deterministic Q-matrix consisted of only one attribute. 

Using the estimation algorithm, the probabilistic Q-matrix for the CASAS under 

DINA initially had three attributes: ‘Drawing Inferences’, ‘Generating Questions’, 

and ‘Looking for Clues’. Using this Q-matrix, however, the model failed to estimate 

parameters because of an inappropriate information matrix. Because only one skill 

was endorsed on a small number of items, the Q-matrix did not provide sufficient 

input information for each of the skill patterns. Therefore, the Q-matrix was 

collapsed into two attributes, combining the ‘Drawing Inferences’ and ‘Generating 

Questions’ attribute into using ‘Looking for Clues’ as the second attribute. Under the 

DINO condition, the initial probabilistic Q-matrix contained two attributes: 

‘Generating Questions’ and ‘Looking for Clues’. Again, with this Q-matrix as input, 

the model estimation failed due to an inappropriate information matrix, as only two 



items required ‘Generating Questions’, so the Q-matrix was modified to contain only  

the ‘Looking for Clues’ attribute.

For the NAEP, the experts endorsed four attributes, and the deterministic Q-

matrices included ‘Determining the Main Idea’, ‘Summarizing’, ‘Drawing 

Inferences’, and ‘Looking for Clues’. The probabilistic Q-matrix under DINA 

included three attributes: ‘Summarizing’, ‘Drawing Inferences’, and ‘Looking for 

Clues’. The three-attribute Q-matrix also had a inappropriate information matrix, as 

the ‘Drawing Inferences’ attribute was only required on two items; therefore, an 

alternative probabilistic Q-matrix was constructed with two attributes, dropping 

‘Drawing Inferences’. Under the DINO condition, the probabilistic Q-matrix 

contained four attributes: ‘Determining the Main Idea’, ‘Summarizing’, ‘Drawing 

Inferences’, and ‘Looking for Clues’.

Finally, for the GED test, the experts again endorsed four of the available six 

skills: ‘Determining the Main Idea’, ‘Summarizing’, ‘Drawing Inferences’, and 

‘Looking for Clues’. With the probabilistic estimation, five attributes emerged in the 

Q-matrices; however, some items had no attributes endorsed at or above the 0.5 

cutoff. For each of the probabilistic conditions (DINA and DINO), two Q-matrices 

were constructed. The first Q-matrix relaxed the 0.5 cutoff to 0.2, which was the 

largest cutoff value that would allow every item to have at least one required skill. 

The second Q-matrix retained the strict 0.5 cutoff and contained items for which no 

skills were required. Under the DINA condition, the relaxed Q-matrix contained five 

attributes: ‘Determining the Main Idea’, ‘Summarizing’, ‘Drawing Inferences’, 



‘Generating Questions’, and ‘Looking for Clues’. The strict Q-matrix contained only 

4 attributes, leaving out ‘Generating Questions’. Under the DINO condition, both the 

relaxed and the strict Q-matrices mirrored the DINA condition.

Given the finding of Rupp and Templin (2008a) that accurate classification of 

individuals relies heavily on the representation of all possible skill patterns in the 

items on an assessment, it is also interesting to compare the patterns in the 

deterministic versus the probabilistic Q-matrices. For the CASAS models, under the 

DINA condition only one skill was required, so there is only a one possible skill 

pattern. Under the DINO condition, the deterministic Q-matrix required three skills, 

and four of the seven possible skill patterns were represented (see Table 5). The 

probabilistic Q-matrix, like those for the DINA model required only one skill.

For the NAEP models, the deterministic Q-matrix required 4 skills, which 

allows for 15 possible skill combinations. Of those, 9 were represented by the items 

(see Table 6). The probabilistic DINA Q-matrix for the NAEP required only 2 skills, 

and all 3 resulting skill combinations are represented by the items (see Table 7). The 

probabilistic DINO Q-matrix required the same 4 skills as the deterministic Q-

matrix, but only covered 7 of the 15 possible skill combinations (see Table 8). 

Additionally, because the two Q-matrices use same skills, an item-by-item 

comparison of skill combinations is possible. A total of 17 of the 24 items have the 

same skill combinations for both the deterministic and the probabilistic Q-matrix 

conditions. The seven items with different skill combinations have 2 items where the 

probabilistic Q-matrix ‘deleted’ a skill, 3 items where the probabilistic Q-matrix 



‘added’ a skill, and 2 items for which the skill combination was entirely different. 

The two skill patterns represented by the deterministic Q-matrix that were missing 

from the probabilistic Q-matrix are 0010 and 1100. The impact of missing skill 

combinations as well as the addition or deletion of skills can be examined through 

the classification rates and slip and guess parameters.

For the GED models, 4 skills were required by the deterministic Q-matrix, for a 

total of 15 skill patterns of which 8 were represented (see Table 9). Under the relaxed 

probabilistic DINA estimation, the Q-matrix required 5 skills for 31 skill 

combinations (see Table 10). The GED’s 20 items cannot represent all of the possible 

skill combinations and only 9 were. Under the strict condition, the probabilistic Q-

matrix with DINA estimation required 4 skills and 6 of the 15 skill combinations 

were represented (see Table 11). Five of these combinations matched those from the 

deterministic Q-matrix. One new combination (1110) was added and 3 combinations 

(0101, 0110, and 1010) were lost. Additionally, 11 items match skill combinations 

from deterministic to probabilistic, 7 items dropped skills, six of which resulted in 

having no required skills, 1 item had added skills, and 1 item had an entirely 

different attribute pattern.

Under the DINO condition, the relaxed probabilistic Q-matrix required 5 skills 

and 8 skill combinations were represented (see Table 12). The strict probabilistic Q-

matrix required 4 skills and 5 skill combinations were represented (see Table 13). All 

5 skill combinations match those in the deterministic Q-matrix; however 3 

combinations were lost: 0011, 0101, and 1010. Item-by-item comparisons show that 



12 items match those of the deterministic Q-matrix, 7 have skills deleted, 5 of which 

resulted in having no skills required, and 1 items had an added skill.

Classification

 The classification rates for all models showed high proportions of examinees 

lacking all relevant attributes. This is particularly true for the GED models, which 

ranged from 64% to 90% of examinees falling into this class. For the NAEP, the 

classification of individuals with 0000 attribute patterns was higher for the 

probabilistic DINO Q-matrix (37%) than for the deterministic DINO Q-matrix 

(30%); however, for the GED the probabilistic Q-matrices reduced the proportion of 

examinees classified under the 0000 pattern (see Table 15). 

The class proportions for the models with a single-attribute Q-matrix matched 

across conditions; however some disagreement arose between models with two-

attribute Q-matrices. Although the CASAS test with a probabilistic DINA estimated 

Q-matrix required a different first attribute (‘Drawing Inferences and Generating 

Questions’) than the NAEP test with a probabilistic DINA estimated Q-matrix 

(‘Summarizing’), both Q-matrices endorsed ‘Looking for Clues’ as a required 

strategy. The results of the CASAS model suggest that 96% of examinees were 

lacking the ‘Looking for Clues’ attribute, whereas the NAEP model suggests that 

only 67% of examinees were lacking the skill. Table 17 shows the cross-

classification of these individuals. Only the 01 skill pattern is of interest, as the first 

skill differs between the two tests. Of the 64 examinees identified as possessing only 



the ‘Looking for Clues’ attribute by the NAEP model, only two were classified that 

way by the CASAS model. 

For three sets of models, a comparison of classification rates for deterministic 

versus probabilistic Q-matrix models was possible. Because the true classification 

proportions cannot be known, concordance rates between the two types of models 

were examined. The NAEP test with DINO estimation had 100% correspondence 

between the deterministic and the probabilistic Q-matrix models, despite the fact that 

two skill combinations present in the deterministic Q-matrix were dropped in the 

probabilistic Q-matrix. For the GED test, however, the correspondence rates for both 

DINA and DINO models was much lower. Under the DINA condition, the 

deterministic and probabilistic Q-matrix models classified examinees the same only 

61% of the time, and 25% of the discordant pairs were on attribute patterns that were 

present in one, but missing in the other Q-matrix condition. For the DINO model, the 

correspondence rate was only 70%, and almost 9% of the discordant pairs were due 

to the presence of a skill combination in only one of the two Q-matrix conditions.

Slip and Guess Parameters

Subtracting the deterministic Q-matrix parameters from the probabilistic Q-

matrix parameters, general patterns for change can be observed. The high 

proportions of examinees classified as lacking all relevant skills led to large guessing 

parameters and often very low slip parameters; however, for many of the models, the 

probabilistic Q-matrix models reduced the overall magnitude of slip and guess 

parameters. For the CASAS test, using DINA estimation, the mean change for both 



slip (Δs = -0.019) and guess (Δg = -0.119) parameters was negative, suggesting that 

overall classifications were more accurate with the probabilistic estimation. The 

largest change was -0.30 for the slip parameter and -0.22 for the guess parameter. 

The DINO estimation of the CASAS test was identical for the deterministic and 

probabilistic Q-matrix conditions because of the single-attribute Q-matrix.

Fitting the DINA model to the NAEP data showed that the probabilistic Q-

matrix performed less well than the deterministic Q-matrix model with positive 

average change for both slip (Δs = 0.041) and guess (Δg = 0.051) parameters (see 

Table 23). The largest change was 0.542 for the slip parameter and 0.113 for the 

guess parameter. The probabilistic model used a two-attribute Q-matrix, and only 5% 

of examinees were classified as having all the necessary attributes, so the extremely 

large change in the slip parameter may be a result of this low proportion of masters. 

The DINO yielded somewhat mixed results for the NAEP data (see Table 24). 

Although there was only one item with a slip parameter greater than zero, the 

probabilistic Q-matrix had a lower magnitude of slip for that item (Δs = -0.004). 

Additionally, although some of the guessing parameters were a great deal lower for 

the probabilistic Q-matrix (Δgi = -0.342), and the mean change showed lower 

guessing overall for the deterministic Q-matrix (Δg = 0.012). Seven items had 

different skill combinations in the probabilistic condition. Though, the slip 

parameters provide little information about the impact of the addition or deletion of 

skills from items, the guess parameter for the two items for which a skill was deleted, 

the guess parameter was inflated. 



Finally, for the GED, the results clearly indicate improvements in slip and 

guess parameters with the probabilistic Q-matrix. The extremely low proportion of 

examinees classified as masters of all specified attributes led to slip parameters equal 

to zero for all items on the GED test under all model conditions; however, the guess 

parameters were much larger and on average decreased with the probabilistic Q-

matrix models. Under DINA conditions, the average change in guess parameters is 

low for both the relaxed and strict probabilistic Q-matrix conditions compared to the 

deterministic Q-matrix but favoring the probabilistic Q-matrix in both cases (Δgr = 

-0.013, Δgs = -0.015; see Table 25). The greatest degree of change for the guess 

parameter under the relaxed Q-matrix was -0.109, and for the guess parameter under 

the strict Q-matrix the largest change was -0.130. Nine items have different skill 

combinations from the deterministic to the probabilistic conditions, and 7 of those 

items had skills deleted. For these items, the general pattern showed lower guess 

parameters despite the fact that a missing skill should inflate the guess parameter; 

however, 6 of the 7 items required no skills.

 Under DINO conditions, the average change for the guess parameters was 

even larger than for the DINA models (Δgr = -0.039, Δgs = -0.035; see Table 26). For 

the DINO model conditions, the largest absolute change for the guess parameter 

under the relaxed Q-matrix was -0.142, and the largest change for the guess 

parameter under the strict Q-matrix was -0.126. In the probabilistic Q-matrix, 8 items 

had different skill combinations from the deterministic condition and 7 of those items 

had skill deleted. The effect of deleted skills on the guess parameter was mixed. 



Sometimes it was lower where for other items it was higher. Again, the majority of 

items with deleted skills required no skills.

DCM Fit Indices 

Table 27 shows the model fit comparisons for each set of models. Because the 

Q-matrix for each of three CASAS models contained only one attribute the fit 

indices for these models are identical despite the differing model conditions. Under 

the DINA condition for the CASAS, however, the probabilistic Q-matrix, which 

contained two attributes, showed better fit (AIC = 13228.426) than the model in the 

deterministic Q-matrix condition (AIC = 14025.635). The DINA model for the 

NAEP also showed better fit with the probabilistic Q-matrix (AIC = 6267.040) 

compared to the deterministic Q-matrix (AIC = 6616.356). The same is true for the 

NAEP under DINO model conditions where the probabilistic model AIC = 6577.140 

and the deterministic model AIC = 6621.739.

The GED is the only test that showed better model fit under the deterministic 

Q-matrix condition. For the DINA model, the deterministic model AIC = 3090.565, 

where the relaxed probabilistic model AIC = 3783.711. The strict probabilistic model 

fit was close to that of the deterministic model, but was still slightly higher (AIC = 

3091.791). The strict probabilistic Q-matrix for GED with the DINO model showed 

better fit (AIC = 3105.529) than either the deterministic model (AIC = 3230.266) or 

the relaxed probabilistic model (AIC = 3803.109). 



Additionally, most of the models show high entropy1, suggesting good fit and 

high classification certainty, with the exception of the GED DINO model using the 

relaxed probabilistic Q-matrix (Entropy = 0.793). 

1 Entropy is an absolute fit statistic which is a measure of classification uncertainty, 

where 1.00 means that all individuals have been classified with absolute certainty so 

that values closer to 1.00 indicate better fitting models.



Chapter 5

Discussion

Overall, there is limited evidence to support the hypothesis that probabilistic 

estimation methods for Q-matrix construction will yield DCMs with better fit, more 

stable parameter estimates, and more accurate classification rates. While some 

models indicate that the probabilisitic estimation yielded all of these advantages, 

other models produced more ambiguous results. If the data for this study had been 

derived from tests designed for this purpose, the results might be more conclusive. 

Since these models were retrofit to existing standardized tests, only limited 

conclusions can be drawn.

Both the deterministic and the probabilistic Q-matrices tended toward overuse 

of a single attribute. The ‘Looking for Clues’ strategy was sometimes the only 

attribute endorsed, and even when the Q-matrix contained other attributes, ‘Looking 

for Clues’ was used for most of the items either alone or in addition to another 

strategy. Because of this over-endorsement several problems and questions arise. 

From a theoretical perspective, the overuse of a single strategy suggests that the tests 

examined do not adequately measure all of the underlying aspects of reading 

comprehension. The fact that experts failed to identify other skills as necessary for 

many of the items on these tests suggests that either these measurement tools may be 

limited in their ability to truly identify reading skills or that the skills underlying 

reading are poorly defined in this study. This is particularly true of the CASAS, 

which is expected, based on the nature of the test, to measure functional literacy 



rather than a higher-order skill. The over-endorsement of skills could also be due in 

part to the directions experts were given with regard to rating the items. The experts 

were rating items in a forced-choice situation, where they were asked to rate which 

skill was most likely required rather than to identify any skills that might be required. 

If the experts had been allowed to select one or more skills that might be relevant to 

each item, many of these issues might have been resolved. Also, more skill patterns 

may have been represented, which would have implications for classification rates 

and slip and guess parameters as well. 

From a modeling perspective, the over-endorsement of a single item is 

problematic for model estimation. First, it can cause identification problems which 

prevent accurate estimation of the model. This is demonstrated by the probabilistic 

Q-matrices for the CASAS test in both DINA and DINO conditions, and the 

probabilistic DINA Q-matrix for the NAEP model, which did not provide sufficient 

input for successful model estimation. Attributes in these Q-matrices had to be 

dropped or combined in order to estimate the DCM.

Additionally, the over-endorsement of a single attribute can lead to 

classification problems. Rupp and Templin (2008a) found that when all possible 

attribute combinations were not represented in the Q-matrix, examinees with those 

attribute patterns were misclassified. The classification rates may have been 

distributed more evenly if more skill patterns could have been represented, which 

may be a direct result of the forced choice framework given to the experts.



None of the Q-matrices examined here contain all the possible attribute 

patterns, and as a result, the classification rates for all models are suspect. Cross-

classification of examinees points to this problem. For the two-attribute Q-matrix 

models, the NAEP and the CASAS were compared. Although the tests are different, 

as is the first attribute in the pattern, the pattern of possessing only the second skill, 

‘Looking for Clues’, differs greatly for examinees in both conditions. In fact, the 

correspondence rate is only 3%. If the skill is universally defined, then examinees 

who possess the skill for one test should also possess it for another test. It is difficult, 

however, to conclude that this problem is solely an issue of poor model specification. 

It could be the result of poor definition of the skill or an inability of examinees to 

apply a skill in different contexts. 

Cross-classification also showed that for those attribute patterns which were 

present in one Q-matrix but not in another, misclassifications did occur; however this 

is not the only cause of the misclassification. In the case of the NAEP with DINO 

estimation, the missing skill combination had no effect on classification rates, as the 

two models had 100% correspondence. For the GED with the DINA estimation 25% 

of the misclassification can be attributed to missing skill combinations, and just as 

Rupp and Templin (2008a) found, no individual with an unrepresented skill 

combination was classified the same across conditions. Since the true Q-matrix is 

unknown, it is difficult to determine if this is truly a misclassification, but the lack of 

correspondence points to the importance of skill combinations for consistent 

classification of individuals. For the GED under the DINO estimation, only about 



9% of the disagreement in classification came as a result of missing skill patterns, 

but only one individual with a missing skill pattern was classified the same across 

conditions. 

Some of these classifications problems could also be the result of the low class 

probabilities for many of the attribute profiles. Classification rates showed extremely 

high proportions of examinees in a single class: lacking all relevant skills. High rates 

of misclassification as a result of poor Q-matrix specification could cause these 

lopsided proportions. For the GED, probabilistic Q-matrix estimation lowered the 

proportion of examinees classified as having no relevant skills, suggesting that the 

probabilistic Q-matrix may be more appropriate; however, it is difficult to draw a 

definitive conclusion because the true classification is unknown. The high proportion 

of examinees lacking all relevant skills could also be indicative of inappropriate 

tests. The CASAS is the only one of the three tests designed specifically for this 

population. The NAEP and GED require higher level skills, and were not even 

administered to the students with lower skill levels. Additionally, the skills and 

strategies used by struggling adult readers may be different from those implemented 

by younger, more typically developing readers. Given that the high proportion of 

students classified as lacking relevant skills for the CASAS as well, however, 

problems with model specification cannot be ruled out as a cause for the 

classification rates.

In addition to classification rates, slip and guess parameters were examined to 

evaluate the quality of deterministic versus probabilistic Q-matrices. For several 



models, the slip and guess parameters were reduced on average. Slip and guess 

parameters both indicate ‘mistakes’ made by examinees based on their skill set. If the 

Q-matrix is misspecified, the mistake can be attributed to the model rather than to the 

examinee. The CASAS test with the DINA model, and the GED DINA and DINO 

models all showed lower slip and guess parameters with the probabilistic Q-matrix, 

suggesting that it provides more accurate estimation that the deterministic Q-matrix. 

Under the strict probabilistic conditions for GED models, even when skills 

were deleted for items, the guess parameters were lower. This is a little puzzling, as 

previous research has demonstrated that the omission of required skills inflates the 

guess parameter. Because the slip parameters were at or near zero for these models, 

and the true Q-matrix is unknown, it is difficult to say whether the probabilistic 

matrices omitted a necessary skill or the deterministic Q-matrices required an 

unnecessary skill. Therefore, the lower guess parameters in the probabilistic 

condition could indicate a more appropriate Q-matrix, but it is difficult to definitely 

conclude. Other models, showed lower slip and guess parameters with the 

deterministic Q-matrix making concrete conclusions about the effectiveness of 

probabilistic Q-matrix estimation even more difficult.

While classification rates and model parameters can provide feedback about the 

performance of the model, the fit indices give the most conclusive measure of quality 

by providing information about the appropriateness of the model for the given data. 

Table 27 shows the model fit for each set of models. Comparing deterministic Q-

matrix models to their probabilistic counterparts, in almost every case the 



probabilistic model is the better fitting model. The CASAS test with DINO 

estimation has equivalent deterministic and probabilistic models because of the 

single-attribute Q-matrices. Also, the GED test with DINA estimation is the one 

exception where the deterministic Q-matrix yields better model fit than the 

probabilistic Q-matrix. The relaxed and strict Q-matrices for the GED test were also 

examined. The strict models showed better fit in both DINA and DINO conditions, 

and the entropy for the DINA model was low. This is an important consideration for 

Q-matrix construction, suggesting that endorsing no skills for some items is better 

than endorsing skills when the probability of that skill being required for an item is 

less than 0.5. Overall, the fit indices indicate that the probabilistic estimation of Q-

matrices for DCM is useful and can produce better fitting, more appropriate, models 

with higher levels of certainty in classification rates.



Chapter 6

Conclusions

On the surface, it seems the current study has raised more questions than 

provided answers. The inconsistency in the findings suggests that probabilistic 

estimation could be useful in the construction of appropriate Q-matrices for 

diagnostic classification models, but more work is needed. Several shortcomings in 

the design of the study could be easily remedied. First, the assessments which were 

chosen were perhaps not entirely appropriate for the examinees to which they were 

administered.  The tests were designed for ‘normally’ developing readers, and the 

unique characteristic of adult readers may change response patterns as well as skill 

utilization. Additionally, the assessments examined here were not designed under a 

cognitive diagnostic assessment framework. The purpose of the tests is more general. 

Tests constructed using this framework and with items designed to represent skills 

more equitably might lead to improvements in discovering appropriate Q-matrices. 

Finally, the forced-choice skill identification by experts limits the usefulness of 

the probabilistic estimation. If raters were allowed to select all possible skills instead 

of only the most likely, more skills may be endorsed by raters more often and 

provide a wider range of required skills in the Q-matrix. Also, experts were asked to 

simply select absolutely the necessity of a given skill for each item. If experts were 

allowed to provide the probability that a skill or skills were required for items, the 

prior probability matrix might be more informative and lead to even more 

appropriate posterior probabilities from which the Q-matrix can be constructed.



Overall, the results indicate that probabilistic estimation in the construction of 

Q-matrices could be useful. The importance of a correctly specified Q-matrix cannot 

be overstated, but is often underestimated. While DCM is an increasingly useful 

technique, the quality of these models and their ability to provide meaningful 

diagnostic information relies heavily on the appropriateness of the Q-matrix. 

Therefore, it is important to pursue methods that provide better information and more 

accurate Q-matrix construction. Probabilistic estimation procedures are a promising 

development.
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Appendix



Table 1: Item Descriptives for CASAS Test

Item Mean Variance
Item-Total 

Correlation
1 0.450 0.500 0.238
2 0.700 0.459 0.260
3 0.500 0.502 0.304
4 0.560 0.498 0.363
5 0.800 0.400 0.356
6 0.640 0.481 0.415
7 0.500 0.502 0.325
8 0.600 0.492 0.519
9 0.560 0.498 0.595
10 0.730 0.445 0.442
11 0.410 0.494 0.242
12 0.500 0.502 0.526
13 0.560 0.498 0.237
14 0.570 0.497 0.400
15 0.480 0.502 0.434
16 0.400 0.492 0.362
17 0.510 0.502 0.145
18 0.450 0.500 0.513
19 0.360 0.481 0.299
20 0.350 0.478 0.349
21 0.380 0.487 0.446
22 0.580 0.495 0.554
23 0.250 0.434 0.231
24 0.680 0.468 0.534
25 0.180 0.385 0.096
26 0.430 0.497 0.476
27 0.320 0.468 0.279
28 0.440 0.498 0.547
29 0.440 0.498 0.521
30 0.280 0.450 0.098
31 0.470 0.501 0.341
32 0.540 0.500 0.358
33 0.530 0.501 0.403
34 0.250 0.434 0.018
35 0.490 0.502 0.558
36 0.300 0.459 0.031
37 0.200 0.400 0.223
38 0.590 0.494 0.174
39 0.450 0.500 0.373



Table 2: Item Descriptives for NAEP

Item Mean Variance
Item-Total 

Correlation
1 0.800 0.397 0.315
2 0.820 0.381 0.282
3 0.710 0.450 0.362
4 0.380 0.488 0.019
5 0.600 0.490 0.326
6 0.660 0.477 0.209
7 0.640 0.483 0.307
8 0.700 0.462 0.439
9 0.400 0.491 0.193
10 0.700 0.462 0.389
11 0.540 0.500 0.489
12 0.220 0.412 0.407
13 0.480 0.501 0.184
14 0.600 0.492 0.369
15 0.320 0.466 0.092
16 0.540 0.499 0.366
17 0.680 0.466 0.410
18 0.700 0.457 0.404
19 0.840 0.363 0.408
20 0.670 0.471 0.255
21 0.660 0.475 0.364
22 0.650 0.478 0.287
23 0.740 0.437 0.365
24 0.580 0.496 0.260



Table 3: Item Descriptives for GED

Item Mean Variance
Item-Total 

Correlation
1 0.330 0.474 0.231
2 0.350 0.480 0.010
3 0.190 0.395 -0.001
4 0.100 0.295 0.325
5 0.500 0.502 0.247
6 0.590 0.494 0.323
7 0.590 0.494 0.080
8 0.510 0.502 0.201
9 0.260 0.439 0.082
10 0.280 0.449 0.158
11 0.380 0.488 0.198
12 0.360 0.483 -0.002
13 0.630 0.486 0.269
14 0.410 0.494 0.139
15 0.710 0.454 0.186
16 0.590 0.494 0.338
17 0.530 0.501 0.175
18 0.170 0.379 0.214
19 0.280 0.449 0.067
20 0.680 0.470 0.212



Table 4: Q-matrix for CASAS Under Deterministic DINA and DINO and 
Probabilistic DINO Conditions

Attribute Determining the 
Main Idea Summarizing Drawing 

Inferences
Generating 
Questions

Visual 
Images

Looking for 
Clues

1 0 0 0 0 0 1
2 0 0 0 1* 0 1
3 0 0 0 0 0 1
4 0 0 0 0 0 1
5 0 0 0 0 0 1
6 0 0 0 0 0 1
7 0 0 0 0 0 1
8 0 0 0 1* 0 1
9 0 0 0 1* 0 1
10 0 0 0 0 0 1
11 0 0 0 0 0 1
12 0 0 0 0 0 1
13 0 0 0 0 0 1
14 0 0 0 0 0 1
15 0 0 0 0 0 1
16 0 0 0 0 0 1
17 0 0 0 0 0 1
18 0 0 0 0 0 1
19 0 0 0 0 0 1
20 0 0 0 0 0 1
21 0 0 0 0 0 1
22 0 0 0 0 0 1
23 0 0 0 0 0 1
24 0 0 0 0 0 1
25 0 0 0 0 0 1
26 0 0 0 0 0 1
27 0 0 0 0 0 1
28 0 0 0 0 0 1
29 0 0 0 0 0 1
30 0 0 0 0 0 1
31 0 0 0 0 0 1
32 0 0 0 0 0 1
33 0 0 0 0 0 1
34 0 0 0 0 0 1
35 0 0 0 0 0 1
36 0 0 0 0 0 1
37 0 0 0 0 0 1
38 0 0 0 0 0 1
39 0 0 0 0 0 1

*Items in probabilistic DINO only. Deleted before estimation.



Table 5: Q-matrix for CASAS Under Probabilistic DINA Condition

Attribute Determining the 
Main Idea Summarizing Drawing 

Inferences
Generating 
Questions

Visual 
Images

Looking for 
Clues

1 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 0 1
4 0 0 0 0 0 1
5 0 0 0 0 0 1
6 0 0 0 0 0 1
7 0 0 0 0 0 1
8 0 0 0 1 0 1
9 0 0 0 1 0 1
10 0 0 0 0 0 1
11 0 0 0 0 0 1
12 0 0 1 0 0 0
13 0 0 0 0 0 1
14 0 0 0 1 0 1
15 0 0 0 0 0 1
16 0 0 0 0 0 1
17 0 0 1 0 0 1
18 0 0 0 0 0 1
19 0 0 0 0 0 1
20 0 0 0 0 0 1
21 0 0 0 0 0 1
22 0 0 0 0 0 1
23 0 0 0 0 0 1
24 0 0 0 0 0 1
25 0 0 0 0 0 1
26 0 0 0 0 0 1
27 0 0 0 0 0 1
28 0 0 0 0 0 1
29 0 0 0 0 0 1
30 0 0 0 0 0 1
31 0 0 1 0 0 1
32 0 0 0 0 0 1
33 0 0 0 0 0 1
34 0 0 0 0 0 1
35 0 0 0 0 0 1
36 0 0 0 0 0 1
37 0 0 0 0 0 1
38 0 0 0 0 0 1
39 0 0 0 0 0 1

Bolded items represent unique skill combinations.



Table 6: Q-matrix for NAEP Under Deterministic Condition

Attribute Determining the 
Main Idea Summarizing Drawing 

Inferences
Generating 
Questions

Visual 
Images

Looking for 
Clues

1 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 0 1
4 0 1 0 0 0 0
5 1 0 0 0 0 0
6 0 0 0 0 0 1
7 1 1 0 0 0 0
8 0 1 0 0 0 0
9 1 0 0 0 0 1
10 0 0 1 0 0 0
11 0 1 0 0 0 0
12 0 0 1 0 0 1
13 0 0 0 0 0 1
14 0 1 0 0 0 0
15 0 1 0 0 0 0
16 0 1 0 0 0 0
17 0 1 1 0 0 0
18 0 0 0 0 0 1
19 0 1 0 0 0 1
20 0 1 0 0 0 0
21 0 1 0 0 0 0
22 0 0 0 0 0 1
23 0 0 0 0 0 1
24 0 0 1 0 0 0

Bolded items represent unique skill combinations.



Table 7: Q-matrix for NAEP Under Probabilistic DINA Condition

Attribute Determining the 
Main Idea Summarizing Drawing 

Inferences
Generating 
Questions

Visual 
Images

Looking 
for Clues

1 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 0 1
4 0 1 0 0 0 0
5 0 1 0 0 0 0
6 0 1 0 0 0 0
7 0 1 0 0 0 1
8 0 1 0 0 0 0
9 0 0 0 0 0 1
10 0 1 0 0 0 0
11 0 1 0 0 0 0
12 0 1 0 0 0 1
13 0 0 0 0 0 1
14 0 1 0 0 0 0
15 0 1 0 0 0 0
16 0 1 0 0 0 0
17 0 1 0 0 0 1
18 0 0 0 0 0 1
19 0 0 0 0 0 1
20 0 1 1* 0 0 0
21 0 1 1* 0 0 0
22 0 0 0 0 0 1
23 0 0 0 0 0 1
24 0 1 0 0 0 0

*Items deleted before estimation



Table 8: Q-matrix for NAEP Under Probabilistic DINO Condition

Attribute Determining the 
Main Idea Summarizing Drawing 

Inferences
Generating 
Questions

Visual 
Images

Looking for 
Clues

1 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 0 1
4 0 1 0 0 0 0
5 1 0 0 0 0 0
6 1 0 0 0 0 0
7 0 0 0 0 0 1
8 0 1 0 0 0 0
9 0 0 0 0 0 1
10 0 1 0 0 0 0
11 0 1 0 0 0 0
12 0 0 0 0 0 1
13 0 0 0 0 0 1
14 0 1 0 0 0 0
15 0 1 0 0 0 0
16 0 1 0 0 0 0
17 0 1 0 0 0 0
18 1 0 0 0 0 1
19 0 1 0 0 0 1
20 0 1 0 0 0 0
21 0 1 0 0 0 0
22 0 0 0 0 0 1
23 0 0 1 0 0 1
24 0 1 1 0 0 0

Bolded items represent unique skill combinations.



Table 9: Q-matrix for GED Under Deterministic Condition

Attribute Determining the 
Main Idea Summarizing Drawing 

Inferences
Generating 
Questions

Visual 
Images

Looking for 
Clues

1 0 1 0 0 0 1
2 1 0 1 0 0 0
3 0 0 1 0 0 0
4 0 1 0 0 0 0
5 0 0 1 0 0 0
6 1 0 0 0 0 0
7 0 1 1 0 0 0
8 1 0 0 0 0 0
9 0 1 0 0 0 0
10 1 0 1 0 0 0
11 0 1 0 0 0 0
12 0 0 1 0 0 0
13 0 0 1 0 0 0
14 0 0 0 0 0 1
15 0 0 1 0 0 0
16 0 0 0 0 0 1
17 0 0 0 0 0 1
18 1 0 0 0 0 0
19 0 0 1 0 0 1
20 0 1 0 0 0 0

Bolded items represent unique skill combinations.



Table 10: Q-matrix for GED Under Relaxed Probabilistic DINA Condition

Attribute Determining the 
Main Idea Summarizing Drawing 

Inferences
Generating 
Questions

Visual 
Images

Looking for 
Clues

1 0 0 0 0 0 1
2 1 1 1 0 0 0
3 1 1 1 1 0 1
4 1 1 1 0 0 0
5 0 0 1 0 0 0
6 1 0 0 0 0 0
7 0 1 1 0 0 0
8 1 0 0 0 0 0
9 0 1 0 0 0 0
10 1 0 1 1 0 1
11 0 0 1 0 0 0
12 0 0 1 0 0 0
13 0 0 1 0 0 0
14 0 0 0 0 0 1
15 0 0 1 0 0 0
16 0 0 0 0 0 1
17 0 0 0 0 0 1
18 1 0 0 0 0 0
19 0 0 1 0 0 1
20 0 1 0 0 0 0

Bolded items represent unique skill combinations.



Table 11: Q-matrix for GED Under Strict Probabilistic DINA Condition

Attribute Determining the 
Main Idea Summarizing Drawing 

Inferences
Generating 
Questions

Visual 
Images

Looking for 
Clues

1 0 0 0 0 0 1
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 1 1 1 0 0 0
5 0 0 1 0 0 0
6 1 0 0 0 0 0
7 0 0 0 0 0 0
8 1 0 0 0 0 0
9 0 1 0 0 0 0
10 0 0 0 0 0 0
11 0 0 1 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 1
15 0 0 1 0 0 0
16 0 0 0 0 0 1
17 0 0 0 0 0 1
18 1 0 0 0 0 0
19 0 0 1 0 0 1
20 0 1 0 0 0 0

Bolded items represent unique skill combinations.



Table 12: Q-matrix for GED Under Relaxed Probabilistic DINO Condition

Attribute Determining the 
Main Idea Summarizing Drawing 

Inferences
Generating 
Questions

Visual 
Images

Looking for 
Clues

1 0 0 0 0 0 1
2 1 0 1 0 0 0
3 0 0 1 0 0 0
4 0 1 0 0 0 0
5 0 1 1 0 0 0
6 1 0 0 0 0 0
7 0 0 1 0 0 0
8 1 0 0 0 0 0
9 0 1 0 0 0 0
10 1 0 1 1 0 1
11 0 1 0 0 0 0
12 0 0 1 0 0 0
13 0 1 1 1 0 1
14 0 0 0 0 0 1
15 0 0 1 0 0 0
16 0 0 0 0 0 1
17 0 0 0 0 0 1
18 1 0 0 0 0 0
19 0 0 1 0 0 0
20 0 1 0 0 0 0

Bolded items represent unique skill combinations.



Table 13: Q-matrix for GED Under Strict Probabilistic DINO Condition

Attribute Determining the 
Main Idea Summarizing Drawing 

Inferences
Generating 
Questions

Visual 
Images

Looking for 
Clues

1 0 0 0 0 0 1
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 1 0 0 0 0
5 0 1 1 0 0 0
6 1 0 0 0 0 0
7 0 0 1 0 0 0
8 1 0 0 0 0 0
9 0 1 0 0 0 0
10 0 0 0 0 0 0
11 0 1 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 1
15 0 0 1 0 0 0
16 0 0 0 0 0 1
17 0 0 0 0 0 1
18 1 0 0 0 0 0
19 0 0 1 0 0 0
20 0 1 0 0 0 0

Bolded items represent unique skill combinations.



Table 14: Q-matrix Attributes by Model

AttributeAttribute Determining 
the Main Idea Summarizing Drawing Inferences Generating 

Questions
Visual 
Images

Looking 
for Clues

CASAS Deterministic

DINA Prob  *  *

DINO Prob  **

NAEP Deterministic

DINA Prob  **

DINO Prob

GED Deterministic

DINA Relaxed 
Prob

DINA Strict 
Prob

DINO Relaxed 
Prob

DINO Strict 
Prob

*Combined into one strategy before DCM estimation
**Deleted before DCM estimation



 Table 15: Class Membership in Proportions for Models with Four Attributes

Model

NAEP NAEP NAEP GED GED GED GED

Model DINA DINO DINO DINA DINA DINO DINOModel
Deterministic Deterministic Probabilistic Deterministic Strict 

Probabilistic Deterministic Strict 
Probabilistic

Pattern
0000 0.399 0.298 0.373 0.717 0.637 0.902 0.690
0001 0.039 0.031 0.035 0.053 0.018 0.035 0.035
0010 0.237 0.386 0.127 0.018 0.089 0.000 0.115
0011 0.022 0.031 0.031 0.018 0.018 0.009 0.009
0100 0.009 0.075 0.013 0.035 0.097 0.009 0.027
0101 0.000 0.000 0.018 0.009 0.009 0.009 0.009
0110 0.018 0.018 0.022 0.009 0.027 0.000 0.009
0111 0.009 0.000 0.000 0.000 0.009 0.009 0.009
1000 0.083 0.039 0.154 0.062 0.035 0.009 0.044
1001 0.018 0.018 0.013 0.027 0.018 0.009 0.018
1010 0.083 0.031 0.101 0.018 0.018 0.000 0.009
1011 0.026 0.031 0.035 0.009 0.009 0.000 0.009
1100 0.018 0.009 0.026 0.009 0.009 0.009 0.009
1101 0.013 0.018 0.013 0.009 0.000 0.000 0.009
1110 0.013 0.004 0.039 0.000 0.009 0.000 0.000
1111 0.013 0.013 0.000 0.009 0.000 0.000 0.000



Table 16: Class Membership in Proportions for Models with One or Two Attributes

Model
CASAS CASAS CASAS CASAS NAEP

Model DINA DINA DINO DINA DINAModel
Deterministic Probabilistic Deterministic Probabilistic Probabilistic

Pattern
0 0.944 0.944 0.944
1 0.056 0.056 0.056
00 0.585 0.605
01 0.010 0.281
10 0.375 0.061
11 0.030 0.053



Table 17: Cross-Classification Probabilistic DINA Estimation for CASAS by NAEP 
Models

Pattern 00 01 10 11
00 71 33 6 5
01 1 2 0 0
10 60 27 8 7
11 6 2 0 0

*Row categories represent CASAS 
classifications while column categories 
represent NAEP classifications.

 



Table 18: Cross-Classification Deterministic by Probabilistic Q-Matrix for NAEP 
with DINO Estimation

*Row categories represent deterministic Q-matrix classifications while column categories represent 
probabilistic Q-matrix classifications.



Table 19: Cross-Classification Fixed by Probabilistic Q-Matrix for GED with DINA 
Estimation

*Row categories represent deterministic Q-matrix classifications while column categories represent 
probabilistic Q-matrix classifications.



Table 20: Cross-Classification Fixed by Probabilistic Q-Matrix for GED with DINO 
Estimation

*Row categories represent deterministic Q-matrix classifications while column 
categories represent probabilistic Q-matrix classifications.



Table 21: Slip and Guess Parameters for CASAS Test with DINA Model

Item Deterministic Q-matrixDeterministic Q-matrix Probabilistic Q-matrixProbabilistic Q-matrixItem Slip Guess Slip Guess
1 0.124 0.372 0.111 0.297
2 0.062 0.684 0.000 0.642
3 0.000 0.490 0.000 0.373
4 0.000 0.573 0.000 0.447
5 0.000 0.855 0.000 0.800
6 0.000 0.698 0.000 0.552
7 0.187 0.465 0.112 0.334
8 0.000 0.658 0.000 0.501
9 0.000 0.642 0.000 0.453

10 0.130 0.738 0.221 0.645
11 0.337 0.497 0.224 0.376
12 0.000 0.551 0.000 0.339
13 0.180 0.533 0.000 0.416
14 0.000 0.611 0.000 0.421
15 0.121 0.544 0.221 0.403
16 0.000 0.410 0.000 0.282
17 0.175 0.509 0.000 0.393
18 0.119 0.441 0.110 0.259
19 0.000 0.326 0.000 0.248
20 0.302 0.413 0.000 0.336
21 0.181 0.366 0.221 0.220
22 0.000 0.625 0.000 0.447
23 0.319 0.245 0.445 0.215
24 0.000 0.712 0.000 0.574
25 0.226 0.190 0.219 0.142
26 0.000 0.434 0.000 0.331
27 0.190 0.312 0.218 0.191
28 0.065 0.416 0.000 0.210
29 0.000 0.392 0.000 0.225
30 0.169 0.288 0.000 0.216
31 0.160 0.514 0.000 0.384
32 0.000 0.490 0.000 0.384
33 0.000 0.476 0.000 0.355
34 0.535 0.280 0.498 0.255
35 0.128 0.553 0.251 0.335
36 0.498 0.335 0.499 0.316
37 0.499 0.213 0.625 0.125
38 0.000 0.612 0.000 0.499
39 0.000 0.442 0.000 0.313



Table 22: Slip and Guess Parameters for CASAS Test with DINO Model

Item Deterministic Q-matrixDeterministic Q-matrix Probabilistic Q-matrixProbabilistic Q-matrixItem Slip Guess Slip Guess
1 0.124 0.372 0.124 0.372
2 0.062 0.684 0.062 0.684
3 0.000 0.490 0.000 0.490
4 0.000 0.573 0.000 0.573
5 0.000 0.855 0.000 0.855
6 0.000 0.698 0.000 0.698
7 0.187 0.465 0.187 0.465
8 0.000 0.658 0.000 0.658
9 0.000 0.642 0.000 0.642

10 0.130 0.738 0.130 0.738
11 0.337 0.497 0.337 0.497
12 0.000 0.551 0.000 0.551
13 0.180 0.533 0.180 0.533
14 0.000 0.611 0.000 0.611
15 0.121 0.544 0.121 0.544
16 0.000 0.410 0.000 0.410
17 0.175 0.509 0.175 0.509
18 0.119 0.441 0.119 0.441
19 0.000 0.326 0.000 0.326
20 0.302 0.413 0.302 0.413
21 0.181 0.366 0.181 0.366
22 0.000 0.625 0.000 0.625
23 0.319 0.245 0.319 0.245
24 0.000 0.712 0.000 0.712
25 0.226 0.190 0.226 0.190
26 0.000 0.434 0.000 0.434
27 0.190 0.312 0.190 0.312
28 0.065 0.416 0.065 0.416
29 0.000 0.392 0.000 0.392
30 0.169 0.288 0.169 0.288
31 0.160 0.514 0.160 0.514
32 0.000 0.490 0.000 0.490
33 0.000 0.476 0.000 0.476
34 0.535 0.280 0.535 0.280
35 0.128 0.553 0.128 0.553
36 0.498 0.335 0.498 0.335
37 0.499 0.213 0.499 0.213
38 0.000 0.612 0.000 0.612
39 0.000 0.442 0.000 0.442



Table 23: Slip and Guess Parameters for NAEP Test with DINA Model

Item Deterministic Q-matrixDeterministic Q-matrix Probabilistic Q-matrixProbabilistic Q-matrixItem Slip Guess Slip Guess
1 0.000 0.570 0.000 0.675
2 0.000 0.714 0.000 0.695
3 0.000 0.513 0.000 0.596
4 0.000 0.314 0.542 0.370
5 0.000 0.408 0.000 0.464
6 0.000 0.544 0.000 0.575
7 0.000 0.460 0.000 0.495
8 0.366 0.490 0.085 0.529
9 0.000 0.330 0.000 0.315

10 0.000 0.525 0.082 0.564
11 0.000 0.251 0.000 0.364
12 0.000 0.074 0.000 0.079
13 0.000 0.395 0.000 0.392
14 0.000 0.341 0.000 0.435
15 0.000 0.218 0.490 0.262
16 0.000 0.322 0.159 0.376
17 0.000 0.452 0.000 0.518
18 0.000 0.421 0.000 0.527
19 0.000 0.599 0.000 0.706
20 0.000 0.498 0.000 0.525
21 0.000 0.466 0.000 0.483
22 0.000 0.482 0.000 0.519
23 0.000 0.543 0.000 0.631
24 0.000 0.394 0.000 0.458



Table 24: Slip and Guess Parameters for NAEP Test with DINO Model

Item Deterministic Q-matrixDeterministic Q-matrix Probabilistic Q-matrixProbabilistic Q-matrixItem Slip Guess Slip Guess
1 0.000 0.517 0.000 0.563
2 0.000 0.642 0.000 0.300
3 0.000 0.409 0.000 0.484
4 0.000 0.303 0.000 0.321
5 0.000 0.385 0.000 0.401
6* 0.000 0.546 0.000 0.556
7* 0.000 0.360 0.000 0.436
8 0.422 0.385 0.333 0.471
9 0.000 0.333 0.000 0.334
10 0.000 0.487 0.000 0.539
11 0.000 0.212 0.000 0.277
12* 0.000 0.047 0.000 0.082
13 0.000 0.382 0.000 0.401
14 0.000 0.334 0.000 0.370
15 0.000 0.203 0.000 0.214
16 0.000 0.266 0.000 0.277
17* 0.000 0.356 0.000 0.400
18* 0.000 0.395 0.000 0.401
19 0.000 0.575 0.000 0.606
20 0.000 0.489 0.000 0.457
21 0.000 0.426 0.000 0.412
22 0.000 0.425 0.000 0.488
23* 0.000 0.508 0.000 0.520
24* 0.000 0.457 0.000 0.428

* Skill combinations differ between deterministic and probabilistic Q-
matrices: Items 6 and 7 have entirely different combinations, items 12 and 
17 have one skill deleted in the probabilistic Q-matrix, items 18, 23, and 24 
have one skill added in the probabilistic Q-matrix



Table 25: Slip and Guess Parameters for GED Test with 
DINA Model

Item Deterministic Q-matrixDeterministic Q-matrix Relaxed Probabilistic Q-
matrix

Relaxed Probabilistic Q-
matrix

Strict Probabilistic Q-
matrix

Strict Probabilistic Q-
matrixItem

Slip Guess Slip Guess Slip Guess
1* 0.000 0.357 0.000 0.259 0.000 0.269
2*^ 0.000 0.374 0.000 0.356 0.000 0.371
3*^ 0.000 0.123 0.000 0.197 0.000 0.220
4* 0.000 0.012 0.000 0.037 0.000 0.014
5 0.000 0.382 0.000 0.341 0.000 0.272
6 0.000 0.448 0.000 0.477 0.000 0.424
7*^ 0.000 0.567 0.000 0.477 0.000 0.491
8 0.000 0.423 0.000 0.457 0.000 0.425
9 0.000 0.271 0.000 0.162 0.000 0.141
10*^ 0.000 0.247 0.000 0.180 0.000 0.198
11* 0.000 0.286 0.000 0.309 0.000 0.285
12*^ 0.000 0.382 0.000 0.346 0.000 0.390
13*^ 0.000 0.564 0.000 0.563 0.000 0.539
14 0.000 0.289 0.000 0.326 0.000 0.365
15 0.000 0.651 0.000 0.651 0.000 0.615
16 0.000 0.522 0.000 0.475 0.000 0.471
17 0.000 0.476 0.000 0.493 0.000 0.550
18 0.000 0.083 0.000 0.119 0.000 0.134
19 0.000 0.254 0.000 0.214 0.000 0.210
20 0.000 0.590 0.000 0.608 0.000 0.624
* Skill combinations differ between deterministic and strict probabilistic Q-matrices: Item 11 has an 
entirely different combination, items 1, 2, 3, 7, 10, 12 and 13 have at least one skill deleted in the 
strict probabilistic Q-matrix, item 4 has 2 skills added in the strict probabilistic Q-matrix.
^ Items for which no skills were required.



Table 26: Slip and Guess Parameters for GED Test with DINO Model

Item Deterministic Q-matrixDeterministic Q-matrix Relaxed Probabilistic Q-
matrix

Relaxed Probabilistic Q-
matrix

Strict Probabilistic Q-
matrix

Strict Probabilistic Q-
matrixItem

Slip Guess Slip Guess Slip Guess
1* 0.000 0.284 0.000 0.221 0.000 0.293
2*^ 0.000 0.337 0.000 0.347 0.000 0.386
3*^ 0.000 0.157 0.000 0.154 0.000 0.204
4 0.000 0.039 0.000 0.040 0.000 0.013
5* 0.000 0.441 0.000 0.406 0.000 0.315
6 0.000 0.530 0.000 0.485 0.000 0.443
7* 0.000 0.549 0.000 0.515 0.000 0.482
8 0.000 0.471 0.000 0.495 0.000 0.450
9 0.000 0.265 0.000 0.124 0.000 0.172
10*^ 0.000 0.226 0.000 0.176 0.000 0.193
11 0.000 0.353 0.000 0.358 0.000 0.284
12*^ 0.000 0.402 0.000 0.281 0.000 0.382
13*^ 0.000 0.614 0.000 0.472 0.000 0.554
14 0.000 0.357 0.000 0.370 0.000 0.345
15 0.000 0.693 0.000 0.660 0.000 0.630
16 0.000 0.542 0.000 0.461 0.000 0.491
17 0.000 0.485 0.000 0.429 0.000 0.516
18 0.000 0.144 0.000 0.182 0.000 0.123
19 0.000 0.250 0.000 0.257 0.000 0.195
20 0.000 0.646 0.000 0.575 0.000 0.614
* Skill combinations differ between deterministic and strict probabilistic Q-matrices: Items 1, 2, 3, 7, 
10, 12 and 13 have at least one skill deleted in the strict probabilistic Q-matrix, item 5 has one skill 
added in the strict probabilistic Q-matrix.
^ Items for which no skills were required.



Table 27: Model Fit Comparison
ModelModelModel Fit ResultsFit ResultsFit ResultsFit Results

Test Model Q-matrix AIC BIC Adj. BIC Entropy
CASAS DINA Deterministic 14025.635 14318.497 14067.954 0.984
CASAS DINA Probabilistic 13228.428 13817.858 13313.601
CASAS DINO Deterministic 14025.635 14318.497 14067.954 0.984
CASAS DINO Probabilistic 14025.635 14318.497 14067.954 0.984
NAEP DINA Deterministic 6616.356 7984.665 6720.106 0.934
NAEP DINA Probabilistic 6267.040 6606.545 6292.783
NAEP DINO Deterministic 6621.739 7990.048 6725.489 0.917
NAEP DINO Probabilistic 6577.140 7945.449 6680.890 0.929
GED DINA Deterministic 3090.565 4004.240 2945.470 0.988
GED DINA Probabilistic 1 3783.711 5613.788 3493.086 0.793
GED DINA Probabilistic 2 3091.791 4005.465 2946.695 0.981
GED DINO Deterministic 3230.266 4143.941 3085.170 0.994
GED DINO Probabilistic 1 3803.109 5633.186 3512.484 0.944
GED DINO Probabilistic 2 3105.529 4019.204 2960.433 0.984


