
	
  
	
  

COST-EFFECTIVENESS OF INTRAVENOUS NICARDIPINE VERSUS  
SODIUM NITROPRUSSIDE FOR POSTOPERATIVE HYPERTENSION  

AFTER CARDIAC SURGERY 
 

BY 

 

BRIAN JOSEPH BARNES 

 

Submitted to the graduate degree program in Clinical Research and the Graduate Faculty  
of the University of Kansas in partial fulfillment of the requirements for the degree of  

Master of Science. 
 

 

 

___________________________________         

Chairperson Sue Min Lai, PhD, MS, MBA 

 

       

___________________________________        

Dennis W. Grauer, PhD 

 

  

___________________________________      

Patricia A. Howard, PharmD, FCCP, BCPS 

  

Date Defended: November 30th, 2010 



ii	
  
	
  

 

 

 

 
The Thesis Committee for BRIAN JOSEPH BARNES 

certifies that this is the approved version of the following thesis: 
 
 
 
 
 

COST-EFFECTIVENESS OF INTRAVENOUS NICARDIPINE VERSUS  
SODIUM NITROPRUSSIDE FOR POSTOPERATIVE HYPERTENSION  

AFTER CARDIAC SURGERY 
 

 

 

 

 

 

 

 

 

      ___________________________________ 

Chairperson Sue Min Lai, PhD, MS, MBA 

 

       

Date approved: _______________ 



iii	
  
	
  

 

ABSTRACT  

Postoperative hypertension after cardiac surgery is common and associated with substantial 

morbidity. Both sodium nitroprusside (SNP) and nicardipine (NIC) are effective in its 

management. SNP is inexpensive, but associated with labile blood pressure (BP) control, cardiac 

ischemia, and metabolite toxicity. NIC is well tolerated and provides stable BP control, but is 

limited by high acquisition cost. We conducted a cost-effectiveness analysis from an institutional 

perspective of NIC versus SNP in subjects experiencing postoperative hypertension after cardiac 

surgery.  

A retrospective, cohort study identified subjects who underwent coronary artery bypass 

grafting (CABG) and/or valve surgery at our institution between 2007-2009. We included adults 

experiencing postoperative hypertension requiring ≥30 minutes of either NIC or SNP. 

Institutional-specific data from the Society of Thoracic Surgeons and University HealthSystem 

Consortium national databases and our financial and electronic medical records were used. The 

number of infusion rate changes divided by the infusion duration was calculated. We considered 

≥ 1 dose change/hour to represent excessive dose changes and presumably uncontrolled blood 

pressure. The rate per 100 subjects in each group who avoided excessive dose changes served as 

the efficacy variable for the economic model. Direct postoperative costs were calculated. Data 

were compared with t, Wilcoxon Rank Sum, Chi-square, or Fisher’s exact tests as appropriate. 

Log-binomial regression was used to control for surgery type and severity of illness. 

Of the 112 subjects identified, 72 received NIC and 40 SNP. Demographics including 

hypertension history, number of preoperative antihypertensive agents, surgery type, and 

postoperative length of stay were not significantly different. NIC required significantly fewer 
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dose changes/hour (1.2±1.6) versus SNP (1.7±1.8, p=0.004). After controlling for surgery type 

and severity of illness, the risk of excessive dose changes was 60% higher in those subjects 

prescribed SNP compared to those prescribed NIC (adjusted relative risk = 1.60, 95%CI, 1.10-

2.34, p=0.0147). In the entire cohort and each specific surgery type, NIC remained cost-effective 

when compared to SNP.  

NIC use may be limited due to decisions based solely upon acquisition costs. We found 

that NIC resulted in less frequent dose changes and was cost-effective when compared to SNP in 

the treatment of post-cardiac surgery hypertension. 
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INTRODUCTION 

In the United States, 552,000 open-heart surgical procedures are performed annually (2006 data), 

including coronary artery bypass grafting (CABG), valve replacement or repair, and thoracic 

aortic procedures.1 Of these procedures, 253,000 patients underwent 448,000 CABG procedures 

as a treatment for severe coronary artery disease.1 The mean inpatient hospital charge for CABG 

is $112,337 (2007 data). CABG is associated with an in-hospital mortality rate of 1.95%.1 

Whereas, 104,000 involve surgical valve procedures that have a mean inpatient charge of 

$157,888 (2007 data). The in-hospital mortality rate for those undergoing valve surgery is 4.7%.1 

Despite significant advancements in these procedures, morbidity associated with the operations 

remains substantial.  

One of the most common complications of cardiac surgery is hemodynamic instability. 

Patients are rarely normotensive early after surgery. Approximately 22%-54% of patients 

develop postoperative hypertension which is primarily due to an increased systemic vascular 

resistance.2-7 Postoperative hypertension may be life-threatening and is associated with 

significant morbidity, including myocardial ischemia or infarction, poor ventricular function, 

hemorrhage, cerebrovascular accidents, and renal failure.7-13 Risk factors for postoperative 

hypertension are poorly characterized but are reported to include preoperative factors such as 

history of hypertension, diabetes, vascular disease, advanced age, and renal disease.14 

Intraoperative risk factors include surgery type, technique and duration as well as anesthesia 

technique and agents used.14 Postoperative risk factors include: pain, anxiety, hypothermia, 

anesthetic emergence, hypoxia, hypercarbia, endotracheal tube placement, bladder distension, 

antihypertensive agent withdrawal, hypervolemia, hypovolemia, myocardial ischemia, drug 
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interactions, increased intracranial pressure, pulmonary embolism, vasopressor therapy, and 

brochodilator use.14 

The management of postoperative hypertension involves removal or treatment of 

potential underlying etiologies (e.g. treatment of pain or anxiety, raising core body temperature, 

etc) and frequently necessitates the use of intravenous antihypertensive agents. Several 

intravenous drug choices are available for this indication including: beta-blockers, hydralizine, 

fenoldopam, enalaprilat, nitrates, and calcium channel blockers. As a result of their strong 

vasodilatory actions and rapid onset of action, sodium nitroprusside (SNP) and nicardipine (NIC) 

are most frequently used to treat postoperative hypertension following cardiac surgery.14  

SNP is a potent vasodilator that affects both the arterial and venous side of the circulatory 

system. The parent compound is metabolized by the blood vessels to nitric oxide which activates 

the guanyl cyclase-cyclic guanosine monophosphate (GMP) pathway leading to potent 

vasodilation.15 This leads to significant reductions in systemic vascular resistance, mean arterial 

pressure, pulmonary vascular resistance, and cardiac preload. These changes typically result in 

an increase in cardiac output. Administration of SNP usually begins with a starting dose of 0.25-

0.5 mcg/kg/min continuous infusion, which is increased every 5 to 10 minutes in increments of 

0.5-1 mcg/kg/min until the blood pressure is within a desired range.16 The product labeling 

suggest a maximum infusion rate of 10 mcg/kg/min, however, in clinical practice infusion rates 

infrequently exceed 5 mcg/kg/min due to the risk of acute cyanide toxicity (which is a byproduct 

of SNP metabolism).14-17 

Like SNP, NIC is also a potent vasodilator; however, NIC differs from SNP in that it 

selectively dilates the arterial side of the circulatory system.17 NIC is a dihydropyridine calcium 

channel blocker which prevents calcium ions from entering vascular smooth muscle cells. 
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Vascular smooth muscle contraction depends upon extracellular calcium ion movement into 

these cells through specific ion channels. Unlike the non-dihydropyridine calcium channel 

blockers verapamil and diltiazem, NIC has minimal effect on cardiac conduction or 

inotropy.14,15,18 NIC causes a significant reduction in systemic vascular resistance, mean arterial 

pressure, and an increase in cardiac output. Unlike SNP, pulmonary vascular resistance and 

cardiac preload are not usually altered by NIC. For a more gradual reduction in blood pressure, a 

continuous infusion of NIC is typically initiated at 5mg/hour and increased by 2.5 mg/hour every 

15 minutes up to a maximum infusion rate of 15mg/hour. Following obtainment of the desired 

blood pressure the NIC infusion rate is often decreased to 3 mg/hour to avoid hypotension. For a 

more rapid reduction in blood pressure the time between infusion rate changes can be decreased 

from every 15 minutes to every 5 minutes. Clinically, and in early clinical trials, NIC has been 

administered as a 2.5 mg IV bolus (repeated every 10 minutes for up to 12.5 mg total) and then 

transitioned to a continuous infusion for maintenance of blood pressure.    

The ideal drug to treat postoperative hypertension would be potent, titratable, available in 

an intravenous formulation, have a rapid onset of action, and a short elimination half-life.14,19 

While SNP possesses these characteristics, and has been used frequently for this indication, it 

carries with it other less desirable properties. For example, after administration of SNP many 

patients experience excessive preload reduction as a result of strong venous dilation; this may 

precipitate hypotension and require volume resuscitation to normalize blood pressure.14-17 As a 

consequence of the hypotension, patients may also experience a reflex tachycardia, creating 

increased oxygen demands on the heart.15,17 Shunting in the pulmonary and coronary systems, 

which causes worsening of tissue oxygenation, has also been experienced with SNP use.4,14,15,17 

Conceivably, this would prolong the required duration of mechanical ventilation. Lastly, the 
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potential for patients to accumulate toxic metabolites during administration of SNP has an 

unacceptably high prevalence.16,17 

More recently, intravenous NIC has been considered an effective alternative to SNP.19-28 

While NIC possesses the same desirable properties of an ideal agent for postoperative 

hypertension, it lacks the adverse effects of SNP described above.18 Investigations comparing 

NIC and SNP have concluded that the drugs possess an equivalent ability to reduce blood 

pressure.19-28 However, NIC has been associated with a more rapid time to obtainment of the 

goal blood pressure.19-28 Additionally, once the blood pressure goal is achieved studies have 

concluded NIC requires significantly less dose changes, indicating a more stable blood pressure 

during NIC use.19,22,26,28 Also of clinical importance is the fact that NIC has not been associated 

with excessive venous dilation or reflex tachycardia.19-28  

LITERATURE REVIEW 

To date, four small clinical trials have compared NIC to SNP for the management of 

hypertension in patients undergoing coronary artery bypass grafting (CABG).20-24 van Wezel and 

colleagues conducted a randomized, open-label, single center, controlled trial of subjects 

undergoing isolated and elective CABG. The results of this study are published as two separate 

manuscripts.20,21 They conducted an extensive hemodynamic assessment and an 

electrocardiographic and enzymatic screening for myocardial ischemic changes after sternotomy. 

Subjects were excluded if they had a left ventricular end-diastolic pressure >12 mmHg, a left 

ventricular ejection fraction <50%, atrioventricular conduction defects, unstable angina, or were 

to undergo any other cardiac surgical procedure (e.g. valve replacement, etc.). One-hundred and 

twenty patients were eligible for inclusion and were administered intravenous NIC (n=40), SNP 

(n=40), or no study drug (n=40). Active drug was initiated prior to surgery 10 minutes after 
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intubation, at an initial infusion rate of 3 mcg/kg/min for NIC and 1 mcg/kg/min for SNP. 

Infusion rates were adjusted to maintain blood pressures between 80 to 120% of the (post-

intubation) baseline blood pressure. Infusions were not discontinued until after sternotomy. 

Hemodynamic and electrocardiographic assessments were conducted 10 minutes after intubation 

(baseline), just prior to incision, and after sternotomy and the pericardial sack was opened.  

 Baseline demographics, including age, weight, left ventricular end diastolic pressure, 

severity of coronary artery disease, oral preoperative medication use, and preoperative 

hemodynamics, were similar between groups. Subjects administered NIC received a mean (±SD) 

infusion rate of 2.9±0.9 mcg/kg/min (7.1 mg/hr for a 70kg patient) for a mean (±SD) duration of 

33±7 minutes. Subjects administered SNP received a mean (±SD) infusion rate of 1.7±0.5 

mcg/kg/min for a mean (±SD) duration of 30±4 minutes. Among the control patients, 43% 

(17/40) required the unplanned administration of SNP (after sternotomy and assessment) to 

control perioperative hypertension. Compared to baseline, improvements in the post-sternotomy 

hemodynamics were noted in subjects receiving SNP and NIC. These groups both experienced 

significantly lower mean arterial blood pressures (MAP), systemic vascular resistance (SVR), 

significantly higher cardiac index (CI), and no changes in pulmonary capillary wedge pressures 

(PCWP). In contrast, the control group did not experience improvements in MAP, SVR, CI, but 

experienced a significant increase in PCWP.  After sternotomy the percent of subjects who 

experienced changes on electrocardiogram consistent with myocardial ischemia differed between 

groups. Ten percent (4/40) of those receiving NIC, 25% (10/40) of those receiving SNP, and 

28% (11/40) in the control group experiencing this adverse event. Post-sternotomy creatine 

phosphokinase-MB (CKMB) was measured in subjects and found to be elevated (>70 IU/L) in 

2.5% (1/40) of subjects in the control and NIC groups, and 5% (2/40) in the SNP group. The 
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authors concluded that SNP and NIC were equally effective at controlling hypertension after 

sternotomy, however, myocardial ischemia occurred in half as many patients treated with NIC 

when compared to those receiving SNP or no antihypertensive drug therapy.  

David and colleagues conducted a randomized, open-label, multi-center trial of subjects 

undergoing isolated CABG.22 The primary study objective was the percent of subjects reaching a 

predefined MAP goal of <90 mmHg within 50 minutes after initiation of treatment for 

postoperative hypertension. To be eligible for enrollment, subjects had to experience an elevation 

of MAP >100 mmHg within 3 hours after isolated CABG. Subjects were excluded if they had: 

left ventricular end-diastolic pressure >15 mmHg, left ventricular ejection fraction <45%, 

frequent or severe arrhythmias, required any other cardiac surgical procedure (e.g. valve 

replacement, etc.), NYHA class III or IV heart failure, severe liver failure, or had renal failure. 

Seventy-four subjects were eligible for inclusion and were randomized to treatment within 10 

minutes of being admitted to the intensive care unit, subsequently, 36 subjects were administered 

intravenous NIC, and 38 subjects received SNP. Infusion rates were adjusted per protocol to 

maintain MAP at 85±5 mmHg. Subjects receiving NIC, were administered 2.5mg IV boluses 

(every 10 minutes up to 12.5 mg) and transitioned to an initial continuous infusion between 2-4 

mg/hr. SNP was administered as a continuous infusion starting at 0.5 mcg/kg/min up to a 

maximum dose of 6 mcg/kg/min.  

Baseline demographics, including age, gender, weight, body surface area, left ventricular 

ejection fraction and other hemodynamic parameters, history of myocardial infarction or 

hypertension, severity of coronary artery disease, and cardiopulmonary bypass or aortic cross 

clamp time were similar between groups. Subjects administered NIC received a mean (±SD) 

infusion rate of 6.6±5.1 mg/hour and subjects administered SNP received a mean (±SD) infusion 
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rate of 1.43±0.74 mcg/kg/min. Of those who were randomized to NIC, 92% (35/38) reached the 

primary outcome (MAP<90 within 50 minutes) within 26±24 minutes. Whereas, 82% (29/36, 

p>0.05 compared to NIC) of those randomized to SNP reached the primary outcome within 

36±16 minutes (p<0.01 compared to NIC). Those subjects receiving SNP experienced a 

significant increase in heart rate (SNP=+13 bpm, NIC=+2 bpm, p<0.001) after drug initiation, 

and elevations in pulmonary artery pressure (PAP), right atrial pressure (RAP) and PCWP. 

Those given NIC experienced an increase in cardiac index and a decrease in SVR compared to 

those receiving SNP. NIC provided more stable blood pressure control with 51±24% of MAP 

readings being within the pre-specified range goal (80-90 mmHg), compared with 36±16% of 

those receiving SNP being within this range (p=0.058). The number of dose changes made after 

reaching the dosing plateau (dose stable for 20 minutes) was significantly lower in the NIC 

group (1.1±1.6) compared to the SNP group (2.7±2.6, p<0.01). Subjects receiving NIC 

experienced severe hypotension (defined as MAP <70 mmHg) less frequently (20%) than those 

in the SNP group (85%). Presumably due to the arterial selectivity, those in the NIC group 

required less postoperative blood (924±644 mL versus 1306±901 mL, p=0.08) and total fluid 

intake (2410±934 mL versus 3003±1095 mL, p=0.05) compared with the SNP group. The 

authors concluded that SNP and NIC were equally effective at reducing hypertension after 

CABG, however unlike SNP, NIC provided more stable blood pressure control, less severe 

hypotension, and had a positive impact on several other clinically important variables that benefit 

myocardial oxygen balance. 

Combes and colleagues conducted a randomized, open-label, single center trial of 

subjects undergoing CABG.23 The primary study objective was the effectiveness of either NIC or 

SNP in lowering MAP <85 mmHg. To be eligible for enrollment, subjects had to experience an 
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elevation of MAP >95 mmHg for 10 minutes after CABG. Subjects were excluded if they had 

cardiac, renal or hepatic failure. Twenty subjects were eligible for inclusion and were 

randomized to treatment. Four subjects treated with SNP required discontinuation of therapy 

secondary to severe hypotension and thus, 6 subjects were administered intravenous SNP, and 10 

subjects received NIC and were eligible for analysis. Subjects receiving NIC, were administered 

2.5mg IV boluses (every 10 minutes up to 12.5 mg) and transitioned to an initial continuous 

infusion between 2-4 mg/hr. SNP was administered as a continuous infusion starting at 0.5 

mcg/kg/min up to a maximum dose of 6 mcg/kg/min.  

Baseline demographics, including age, weight, body surface area, hemodynamic 

parameters, history of hypertension, number of bypass grafts, and cardiopulmonary bypass times 

were similar between groups. Subjects administered NIC received a mean (±1 SD) infusion rate 

of 3.3±0.7 mg/hr and subjects administered SNP received a mean (±1 SD) infusion rate of 

4.5±2.4 mcg/kg/min. On average, those randomized to NIC experienced a statistically significant 

decrease in MAP within 15 minutes of drug initiation (decrease in MAP from 105±17 to 97±15, 

p<0.05), whereas those randomized to SNP did not experience a statistically significant decrease 

in MAP until 60 minutes of drug initiation (decrease in MAP from 110±13 to 93±14, p<0.05). 

For the first 60 minutes after drug initiation, NIC provided a significantly lower MAP when 

compared to SNP. This difference was no longer statistically significant at the 60 minute, 6, 12, 

and 24 hour assessments. Systemic vascular resistance index was also significantly lower in the 

NIC group compared to the SNP group at the 15, 30, 45, and 60 minute time points. With 

exception of one patient in the SNP group experiencing a myocardial infarction, no other patients 

experienced ischemia. The authors concluded that SNP and NIC were effective at reducing 



9	
  
	
  

hypertension after CABG, however unlike SNP, NIC provided more timely blood pressure 

control and less severe hypotension.  

Kwak and colleagues conducted a randomized, open-label, single center trial of subjects 

undergoing CABG.24 The primary study objective was the effectiveness of either NIC or SNP in 

maintaining systolic blood pressure (SBP) between 120-140 mmHg. To be eligible for 

enrollment, subjects had to experience an elevation of SBP >150 mmHg within 6 hours after 

CABG. Subjects were excluded if they had neurologic or renal abnormalities, a left ventricular 

ejection fraction < 40%, required treatment preoperative with vasodilators, or needed reoperation 

after CABG secondary to hemorrhage. Forty-seven subjects were eligible for inclusion and were 

randomized to treatment. Twenty-six subject were administered intravenous NIC, and 21 

subjects received SNP. Curiously, both NIC and SNP were initiated at 2 mcg/kg/min (8.4 

mg/hour for a 70kg patient) as a continuous infusion for 10 minutes, despite the equipotency of 

NIC and SNP having never being previously described. If the SBP was higher than 140 mmHg, 

the infusion was increased by 1 mcg/kg/min every 10 minutes until the subjects were within the 

120-140 mmHg goal range. If the SBP decreased below 120 mmHg, the infusions were held; if 

the SBP dropped below 100 mmHg, phenylephrine was used to increase blood pressure.  

Baseline demographics, including age, gender, body surface area, history of myocardial 

infarction, baseline hemodynamics, and use of beta blockers, angiotensin-converting enzyme 

inhibitors, or nitrates were similar between groups. Subjects administered NIC received a mean 

cumulative dose (±SD) of 25±21 mg over a mean duration of 183±150 minutes. Subjects 

administered SNP received a significantly larger mean cumulative dose (±SD) of 55±58 mg 

(p<0.001) over a significantly longer mean duration of 554±457 minutes (p<0.001). The 

prevalence of hypotension requiring intervention with phenylephrine was higher in the NIC 
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group with 23% (6/26) needing intervention, compared with 5% (1/21) in the SNP (p=N/S). 

According to the authors, this was potentially the result of a relatively high average infusion rate 

of NIC at 8.4 mg/hr. Ten minutes after the initiation of the infusion, those receiving either NIC 

or SNP experienced a statistically significant decrease in SBP compared to the pre-infusion SBP 

(p<0.05). At this same study time point, those receiving NIC experienced significant 

improvements in CI, SVI, and SVR when compared to the SNP group (p<0.05). In contrast with 

the result of van Wezel and colleagues, Kwak et al did not observe a clinically significant 

increase (e.g. >70 IU/L) in CKMB after drug initiation, suggesting a lack of ischemic event 

occurrence. While the CKMB values 60 minutes after the initiation of the infusions were higher 

(p<0.05) than baseline, none of the post infusion CKMB values exceeded 25 IU/L. The authors 

concluded that both SNP and NIC decrease SBP effectively, however the onset in which NIC 

provides benefit is faster than SNP and the required duration of infusion is shorter with NIC.  

To date, the largest clinical trial investigating the management of postoperative 

hypertension after cardiac surgery with intravenous dihydropyridine calcium channel blockers 

and sodium nitroprusside was conducted by Aronson and colleagues.25 This study did not 

compare SNP and NIC head-to-head but rather evaluated a new agent, clevidipine (CLV), which 

is an ultra-short acting dihydropyridine calcium channel blocker (similar to nicardipine). The 

Evaluation of CLevidpine In the Perioperative Treatment of Hypertension Assessing Safety 

Events trial (ECLIPSE) consisted of three prospective, randomized, open-label, multi-center 

trials of subjects undergoing cardiac surgery, during which CLV was compared to nitroglycerin 

(NTG), SNP, and NIC. The primary objective of the study was to compare the safety of CLV to 

these three commonly used perioperative antihypertensive drugs. The safety assessment utilized 

a composite endpoint of death (all cause), stroke (hemorrhagic or ischemic), myocardial 
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infarction, and renal dysfunction. The secondary endpoint included an assessment of the efficacy 

of the drugs magnitude and duration of blood pressure excursions above or below a predefined 

SBP range. To accomplish this, the study evaluated the area under the curve (AUC) of the blood 

pressure excursions, normalized per hour. This was analyzed as the summation of the integrated 

SBP-time curve excursions, capturing the product of magnitude (mmHg) and duration (minutes) 

of blood pressure outside the predetermined SBP ranges. The SBP ranges were 65-135 mmHg 

intraoperatively (from chest incision to closure), and 75-145 mmHg preoperatrively and 

postoperatively. A post-hoc analysis was conducted to evaluate tighter blood pressure ranges 

(raising the lower end of the blood pressure range by 10, 20, and finally 30 mmHg) and to 

control for confounders of the risk of death. Eligible subjects were >17 years old, schedule to 

undergo cardiac surgery including on or off-pump CABG, minimally invasive CABG, and/or 

valve replacement or repair. Subjects were excluded if: they were females of childbearing 

potential, had a cerebrovascular accident ≤ 3 months before randomization, were 

intolerate/hypersensitive to calcium channel blockers, sodium nitroprusside, or nitroglycerin, 

allergic to the lipid vehicle of clevidipine, required permanent ventricular pacing, were 

participating in another clinical trial within 30 days of study start, or had a condition deemed by 

the investigator to place the patient at risk for participating. In the CLV vs NTG sub-study, 268 

patients received CLV and 278 NTG.  In the CLV vs SNP sub-study, 296 patients received CLV 

and 283 SNP.  In the CLV vs NIC sub-study, 188 patients received CLV and 193 NIC.  Active 

drug was initiated at the discretion of, and titrated to a range deemed appropriate by, the study 

physician at the subjects’ institutions. All antihypertensive medication use was recorded. CLV 

was initiated at an infusion rate of 0.4 mcg/kg/min and was titrated as tolerated in doubling 

increments every 90 seconds up to a rate of 3.2 mcg/kg/min. Rates higher than 3.2 and up to 8 
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mcg/kg/min were tolerated for only 2 hour durations secondary to lipid load restrictions, which 

could not exceed 2.5 g/kg/24h. The administration of NTG, SNP, and NIC were not regulated by 

the clinical trial protocol and were to be administered as they normally would in clinical practice.  

Baseline demographics, in all three sub-studies were similar between groups. A history of 

hypertension requiring medication was common among all participants, and was significantly 

higher (96% versus 89%) in the CLV group compared to those receiving NIC. Surgical type and 

complexity did not differ between groups, with CABG being the most commonly performed 

procedure (~75%), followed by valve only surgery (12%). The remaining subjects underwent 

CABG+valve or repeat cardiac surgery. With exception of the CLV versus NTG study, infusion 

rates, volumes, and durations were not significantly different between the groups. In the CLV 

versus SNP study, the use of adjunctive antihypertensive agents was higher among those 

randomized to SNP. The primary composite safety outcome did not differ significantly between 

CLV and NTG or NIC. However, the incidence of the 30 day all cause mortality was higher in 

the SNP group (4.7%) than CLV (1.7%, p=0.0445). Multiple logistic regression for treatment 

effect (CLV vs SNP) as an independent variable in a model that included influential variables 

such as duration of surgery, age, BP excursion AUC, and medical history did not find a 

significant association between drug use and mortality (OR=1.968, 95%CI 0.619-6.257, p=0.25) 

When all three studies were combined, CLV was shown to better maintain SBP within the pre-

specified blood pressure range than the comparators. This was largely driven by wider 

excursions in BP in the NTG and SNP groups. When compared with NIC, CLV did not 

demonstrate superior control until the target range was narrowed by 30 mm Hg (i.e. 105-145 

pre/postop and 95-135 intraop, p=0.0231). The authors concluded that CLV was as safe as the 
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NTG, SNP, and NIC in this setting and provided more stable blood pressure control only when 

compared to NTG and SNP.  

NIC has been compared to SNP in other patient populations with similar results to the 

previously described studies in cardiac surgery. Halpern and colleagues published a prospective, 

randomized, multicenter trial comparing NIC versus SNP in 139 post-surgical patients.19 They 

concluded that NIC and SNP were equally effective at reducing blood pressure, but that NIC 

controlled blood pressure more rapidly and required less dose changes (1.5±0.2 versus 5.1±1.4, 

p=0.05). Adverse effects were observed in 7% of those receiving NIC (5/71) and 18% of those 

receiving SNP (12/68). Dorman and colleagues published a prospective, randomized, double-

blind, controlled single-center trial comparing NIC versus SNP in 60 patients undergoing carotid 

endarterectomy who experienced breakthrough hypertension postoperatively.26 They found that 

83% of those randomized to NIC versus 23% of those receiving SNP achieved blood pressure 

control within 10 minutes (p<0.01). After control was obtained, 41% (12/29) of the NIC subjects 

versus 83% (24/29) of the SNP subjects required additional titrations of their infusions (p<0.05). 

Roitberg and colleagues published a prospective, randomized, open-label, single-center trial 

comparing NIC versus SNP in 163 patients with subarachnoid or intracerebral hemorrhage 

needing blood pressure control.27 Subjects randomized to NIC (74) required 5.7 dose adjustments 

per day, which was significantly less than those subjects randomized to SNP (89) who required 

8.8 dose adjustments per day (p=0.0012), despite maintaining the same percent of time within 

blood pressure parameters (NIC=66% versus SNP= 69%, p=n/s). NIC subjects required fewer 

adjunctive medications (1.4) to maintain blood pressure control when compared to SNP subjects 

(1.9, p=0.043). Suri and colleagues published a retrospective, observational study of subjects 

experiencing intracerebral hemorrhage using data from Premier (a national hospital discharge 
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database, date range 7/05-6/06).28 They sought to evaluate the impact of NIC versus SNP on 

risk-adjusted in-hospital mortality, length of stay, and total hospital costs. They concluded that 

after adjustment for baseline risk of mortality (using the 3M APR-DRG), subjects treated with 

SNP (n=530) were more likely to experience in-hospital death (OR 1.7 95%CI 1.3-2.2, 

p=0.0003) than those treated with NIC (n=926). After adjustment for age, baseline mortality risk, 

and institutional characteristics, they did not find significant differences in length of stay 

(NIC=7.8 days, SNP=8.0 days, p=0.50) or total hospital costs (NIC=$14,536, SNP=$14,974, 

p=0.63) among patients who survived to hospital discharge. 

METHODS 

Research Objective and Impact: 

The overall objectives of this proposal were to compare blood pressure stability and cost-

effectiveness of NIC compared with SNP in subjects experiencing postoperative hypertension 

after cardiac surgery. The expected outcome of this research was to determine if despite a higher 

acquisition cost, NIC remains a cost-effective therapy compared to SNP. The results of this cost 

effectiveness study has an important positive impact as many providers limit the use of NIC due 

to decisions based upon drug acquisition costs alone. Determining if NIC is a more cost-effective 

therapy provides further support and justification for the use of NIC in post-cardiac surgical 

hypertension. To accomplish the overall objective of this study the following hypothesis was 

tested with the specific aims outlined below. 

Hypothesis:  

Despite a higher acquisition cost, NIC provides more stable blood pressure control and will 

remain a cost-effective therapy when compared to SNP. 
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Specific Aims: 

1) Compare the stability of blood pressure control with NIC versus SNP  

2) Determine the cost-effectiveness of NIC compared with SNP in subjects experiencing 

postoperative hypertension after cardiac surgery. 

Study Design and Setting: 

Single center, retrospective, cohort study conduced in a cardiothoracic surgical service of an 

urban, tertiary care, teaching hospital (650 beds). 

Study Subjects: 

Source of subjects 

During 2007 and 2008, Mid America Thoracic and Cardiovascular Surgery, Inc. at The 

University of Kansas Hospital performed ~550 cardiac surgical procedures annually. Among 

these cases, 60% were isolated CABG, 7% were isolated valve surgery, 13% were combined 

CABG and valve surgery, and the remaining 20% involved other cardiothoracic surgeries (e.g. 

thoracic aortic procedures, etc.). Since our institution’s electronic medical record was initiated on 

11/19/2007 subjects were enrolled if they were admitted between 11/19/2007 and 12/31/2009. 

Given our average cardiac surgical volume of ~550 cases annually, this study period provided 

approximately ~1200 subjects (550 cases/year * 2.2 years) to screen for NIC or SNP use. 

Criteria for eligibility 

Adult subjects (≥18 year old) were included if they underwent cardiac surgery requiring 

cardiopulmonary bypass (specifically isolated CABG, isolated valve, or combined CABG and 

valve surgery) and developed postoperative hypertension requiring treatment with either NIC or 

SNP.  Male and female subjects from all ethnic groups were eligible for inclusion. Subjects not 
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receiving NIC or SNP, those exposed to either drug for less than 30 minutes, those receiving 

both NIC and SNP, or subjects whose medical records did not contain the necessary data for 

analyses were excluded.  

Sampling method 

Institution specific data in the University Health System Consortium database, was queried for 

patients in the ‘cardiothoracic surgery’ product line who utilized the individual resources ‘NIC’ 

or ‘SNP’ (n=158 met this criteria). Forty-six subjects were excluded for the following reasons: 

receiving both NIC and SNP (n=25), receiving < 30 minutes of NIC (n=1), receiving < 30 

minutes of SNP (n=1), missing data in the electronic medical record (n=7 in the NIC group, n=6 

in the SNP group), met criteria but underwent non-CABG or non-valve cardiac surgery (n=4 in 

NIC group, n=2 in SNP group). One-hundred-twelve subjects remained available for analysis 

including 72 subjects who received NIC, and 40 who received SNP.   

Data Sources: 

Demographics, outcomes, and financial data were obtained from the following sources: 1) 

institution-specific data submitted to the University Health System Consortium national database 

(used to identify cardiac surgery patients prescribed NIC or SNP and obtain severity of illness 

risk scores); 2) institution-specific data submitted to the Society of Thoracic Surgery’s (STS) 

national database (used to obtain pre, peri, and postoperative demographics and outcomes); 3) a 

manual review of our institutions electronic medical record (to obtain medication and vital sign 

specific data), and 4) our institution’s microaccounting system (to obtain activity-based direct 

cost). 
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Human Subjects Approval, Data Collection, and Fidelity: 

Institutional review board approval (with waiver of informed consent) was obtained. Protected 

Health Information (names, record numbers, dates of birth, etc) were protected from 

unauthorized access and review. Data was collected using modern, password, virus, fire-walled 

protected mobile computers and entered into Microsoft Excel version 2007. Manual data 

collection was completed by a trained research assistant. A random sample of collected data 

from 10% of study subjects was audited for quality control.  

Analyses: 

Specific aim 1) Compare the stability of blood pressure control with NIC versus 

SNP.  

Blood pressure stability was captured via two methods. The primary assessment method was the 

number of medication infusion rate changes per hour of exposure to the infusion of NIC or SNP. 

Given the retrospective design of this study, variables related to blood pressure goals (e.g. 

percent of time at goal, time to goal, etc.) were unobtainable as each patient is given a unique 

goal in clinical practice (which is often unspecified in the chart). However, an obtainable, 

applicable, and clinically meaningful indicator of controlled blood pressure is the number of dose 

changes divided by the total duration of the infusion of either NIC or SNP, excluding the time 

the infusion was temporarily held. A drug with a faster time to goal and ability to maintain stable 

blood pressure will have a lower dose change per hour ratio compared to a drug which is either 

less effective or that is less able to maintain a stable blood pressure. This variable was calculated 

by determining the difference between the start time and the end time of the NIC or SNP 

infusion, minus any duration of time the infusion was not administered. The start time had to 
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occur after ICU admission from the operating room and end prior to transfer from the ICU to the 

telemetry floor. To permit evaluation of this effectiveness variable using categorical and 

pharmacoecomonic data analyses techniques, we stratified the continuous dose change per hour 

variable into a binary variable split into either < 1 or ≥ 1 dose change per hour. We referred to 

those requiring ≥ 1 dose change per hour as having excessive dose changes and presumably 

unstable blood pressure control.  

A secondary assessment of blood pressure stability assessed the minimum and maximum 

systolic blood pressure and heart rate while subjects were receiving the infusion. The mean and 

standard deviation of these indicators of hemodynamic stability were compared between those 

subjects receiving NIC and SNP. This variable was collected using a graphical display of vital 

signs in our electronic medical record, after determining the start, stop, and hold times of the 

infusions. This second assessment adds additional information since a common complication of 

the use of intravenous antihypertensive agents is varying degrees of hypotension. Patients 

frequently compensate for the sudden drop in blood pressure by rapidly and profoundly 

increasing heart rate. It is highly desirable to avoid these complications, early after cardiac 

surgery to minimize detrimental increases in myocardial oxygen demand.  

Specific aim 2) Determine the cost-effectiveness of NIC compared with SNP in 

subjects experiencing postoperative hypertension after cardiac surgery. 

This aim was evaluated by four cost-effectiveness models, using an institutional perspective, 

which were created with Microsoft Excel, all of which included the following variables:  

• Effectiveness variable: rate per 100 subjects receiving either NIC or SNP who avoided 

excessive dose changes (i.e. subjects with an average dose change per hour <1). 
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• Cost variable: the average activity-based, direct, postoperative cost for subjects 

prescribed either NIC or SNP.  

The four models included subjects receiving either NIC or SNP who underwent 1) any cardiac 

surgery (i.e. CABG, valve, or both), 2) isolated CABG, 3) isolated valve surgery, and 4) 

combined CABG and valve surgery. To determine if fluctuations in cost would change our 

results, we increased the actual postoperative cost variable by 10% for those subjects prescribed 

NIC (the more expensive drug) and by reducing the actual cost of SNP (the cheaper drug) by 

10%. Under the condition where a drug therapy was less costly and more effective than its 

competitor it was considered a dominant therapy. Under the condition where a therapy was more 

costly but more effective, or less costly and less effective, the incremental cost-effectiveness 

ratio (ICER) was evaluated. If a therapy was more costly and less effective it was considered a 

dominated therapy. The incremental cost-effectiveness ratios for each model were calculated by 

dividing the difference in the cost variable by the difference in the effectiveness variables for 

subjects receiving either NIC or SNP using the following equation: 

     ICER = 

| average postoperative costs of NIC subjects - average postoperative costs of SNP subjects | 

| rate per 100 NIC subjects with dose changes < 1 – rate per 100 SNP subjects with dose changes < 1 | 

While subject to much debate, ratios ranging from $25,000:1 to $100,000:1 have been 

considered cost-effective when studies have evaluated the cost per life-year gained.29 However 

when comparing two specific therapeutic agents, an ICER much lower than this would be 

necessary to suggest cost-effectiveness. Our ICER calculated for this study represents the 

additional costs incurred by our institution to provide a single patient a therapy which yields 

more stable blood pressure requiring less than 1 dose change per hour on average. Two separate 
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incremental cost effectiveness ratios (ICERs) were calculated; ICER 1 that utilized the actual 

costs, and ICER 2 that used the varied cost data describe above.   

Statistical methods - univariate analyses: 

Using SAS (version 9.2), patient demographics and outcome variables were compared using 

standard statistical methodology. Categorical data were analyzed using contingency tables and 

chi-square analysis. Contingency tables containing > 20% of cells with expected counts less than 

5, or any tables with expected counts ≤ 2, were analyzed with Fishers exact tests. Continuous 

variables were assessed for normality using SAS proc univariate output, including the Shapiro-

Wilk’s tests, box plots, and normal probability (quantile-quantile) plots. If data were non-

normally distributed, an attempt was made to transform the data to a normal distribution using 

various mathematical operators (e.g. natural log, etc). Continuous, normally distributed data with 

equal variances were analyzed using t-tests and reported as means ± standard deviations. If the 

variance between groups were found to significantly differ, we used Satterthwaite's 

approximation to determine p values. Continuous data, which were non-normally distributed and 

transformation unsuccessful, were analyzed with Wilcoxon Rank Sum tests and reported as 

medians ± ranges.  

Statistical methods - controlling confounders: 

Demographics that may likely confound our categorical outcome (≥ 1 dose change per hour) 

were adjusted for using a multiple variable regression technique. Log-binomial regression was 

chosen over logistic regression due to the common frequency of our outcome (58% of those 

prescribed SNP experienced ≥ 1 change / hour). In the setting of a common binary outcome 

logistic regression overestimates the influence of independent variables on the dependent 

variable, whereas log-binomial regression better approximates true relative risk.30 The following 
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variables with p values < 0.15 were included in the initial model as independent variables: drug 

(SNP or NIC), operation type (CABG or Valve or CABG+Valve), severity of illness 

(minor/moderate or major/extreme), risk of mortality (minor/moderate or major/extreme), history 

of renal failure (yes or no), history of myocardial infarction (yes or no), gender (male or female), 

age (in years) at the time of surgery, and weight (in kg) at the time of surgery. Drug and severity 

of illness remained significant predictors of the ≥ 1 dose changer per hour outcome and therefore 

were included in the final model. Operation type approached significance, and is likely clinically 

influential, so it was retained in the final model as well. Model convergence was assessed. 

Goodness of fit was evaluated by assessment of the Akaike information criterion (AIC) values.  

Severity of illness and risk of mortality scores: 

Risk scores were obtained from the University HealthSystem Consortium (UHC) database and 

were used to compare both severity of illness and risk of mortality between those prescribed NIC 

or SNP. These multivariate models are calculated by the all-patient refined diagnosis related 

grouper (APR-DRG) developed by Iezzoni and colleagues for 3M Health Information 

Systems.31,32 The models assign an ordinal level (i.e. minor, moderate, major, and extreme) of 

illness severity and risk of mortality. Additionally, they provide a specific probability of 

mortality (expressed as a percent) for each subject in the UHC database. Independent variables 

included in the models are: risk of mortality subclass (for determining % probability of 

mortality), patient age, patient sex, transfer from another acute care hospital, transfer from 

skilled nursing facility, or transfer from a long term care facility, low socioeconomic status 

(based on Medicaid, Self-Pay, Charity as primary payer), emergent admit status, race, and 

several comorbid conditions defined by AHRQ. Comorbid conditions were based from the work 

of Elixhauser and colleagues and included: congestive heart failure, valvular disease, pulmonary 
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circulation disorders, peripheral vascular disorders, hypertension (complicated and 

uncomplicated), paralysis, other neurological disorders, hypothyroidism, renal failure, liver 

disease, peptic ulcer disease excluding bleeding, AIDS, lymphoma, metastatic cancer, solid 

tumor without metastasis, rheumatoid arthritis/collagen vascular diseases, coagulopathy, obesity, 

weight loss, fluid and electrolyte disorders, blood loss anemia, deficiency anemias, alcohol 

abuse, drug abuse, psychoses, and depression.33 UHC adds additional variables for patients 

undergoing CABG or valve surgery. Additional independent model variables for patients 

undergoing CABG include: pre-operative intra-aortic balloon pump use, ventilator on day of 

admission, previous CABG, aortic stenosis, and multi-vessel CABG. Additional independent 

model variables for patients undergoing valve surgery include: current CABG, previous CABG, 

use of extracorporeal membrane oxygenator, and presence of mitral valve regurgitation.  

Sample size and statistical power:   

Using n= [(z1-α/2 +z1-β)2 (2*σ2)]/(µ1-µ2) 2 to calculate the sample size needed for each of two 

groups for a two sided t-test, we must know both the mean result (µ) from each group and their 

respective variance (σ2). At present there does not exist published literature describing the 

comparative outcomes regarding dose changes per hour between NIC and SNP after cardiac 

surgery. However, Neutel et al published the comparative results of a randomized controlled trial 

of NIC versus SNP in the treatment of severe hypertension.34 In this paper they report a similar 

efficacy variable to that proposed in our study: “dose adjustments per hour required to maintain 

blood pressure reduction”. In this research, they report 0.54±0.1 ∆/hour for NIC and 1.49±0.2 

∆/hour for SNP (mean±SEM, p<0.05). Converting SEM to standard deviation is necessary for 

sample size calculations, thus we used SD=SEM+√n to generate the following data (mean±SD): 

0.54±0.469 ∆/hour for NIC and 1.49±1.63 ∆/hour for SNP. Neutel and colleagues do not report 
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the results of a test for equal variance between these groups, therefore in place of the above 

equation, we used the following sample size equation for non-equal variance or sample sizes: 

n= { (z1-α/2 +z1-β)2  *  [(σ2
1+σ2

2)/k)] } / (µ1-µ2) 2 

where k = n2/n1 (the proportion of subjects in each arm) 

This calculation indicates that 25 subjects per group would be capable of detecting a significant 

difference (with α=0.05 and β=0.2) between the groups for this outcome. Given that we do not 

know the means and variance of other outcomes (such as length of stay) we conservatively 

planned to oversample subjects meeting the inclusion/exclusion criteria in the prespecified time 

period. 

RESULTS 

Baseline Demographics: 

Baseline demographics are reported in Tables 1a and 1b below. In general subjects prescribed 

NIC tended to have more concomitant diseases such as renal failure and a history of myocardial 

infarction and thus were at a higher risk of mortality, however they were at a lower severity of 

illness at admission than the SNP subjects. Among factors reported to contribute to postoperative 

hypertension, subjects in the NIC and SNP groups were well balanced. Importantly, the history 

of hypertension, the preoperative blood pressure and heart rate, and the number of 

antihypertensive agents used preoperatively were nearly identical between the groups. However, 

patients receiving NIC had a significantly higher history of renal failure when compared to those 

receiving SNP (19% versus 5%, p=0.0363), which is a reported predictor of postoperative 

hypertension.14 While not statistically significant, clinical differences between those receiving 

NIC and SNP were noted among the following variables.   

• SNP subjects were 5 years older, p=0.0670 
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• NIC subjects weighed 4 kg more, p=0.0852 

• NIC subjects preoperative serum creatinine was 0.3 mg/dL higher, p=0.0845 

• NIC subjects had a higher myocardial infarction history, 21% versus 10%, p=0.1433 

• Using a categorical score for risk of mortality (calculated UHC score), 32% of NIC subjects 

were classified as being at a major or extreme risk of mortality compared to 18% in the SNP 

group, p=0.1014 

• Using a categorical score for severity of illness (calculated UHC score), 53% of SNP subjects 

were classified as being at a major or extreme category compared to 43% in the SNP group, 

p=0.3629 

• Surgical type did not differ statistically but clinically the proportions were not ideally 

balanced. 

o CABG: NIC 61% versus SNP 48%, p=0.2334 

o VALVE: NIC 29% versus SNP 35%, p 0.6714 

o CABG + VALVE: NIC 10% versus SNP 18%, p=0.3711 
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TABLE 1a: Baseline Categorical Demographics. 
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TABLE 1b: Baseline Continuous Demographics. 
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Antihypertensive Drug Use: 

Preoperative and peri-infusion antihypertensive drug therapy use did not differ substantially 

between the groups. Specific utilization by drug class is reported in Table 2. When combined as 

a total number of antihypertensive drugs used before surgery, NIC subjects were prescribed 

2.3±1.7 medications and SNP subjects were prescribed 2.2±1.6 medications, p=0.8341. During 

the infusion of NIC or SNP, the number and pharmacologic category of medications did not 

differ significantly between the groups with exception of the SNP group being prescribed 

concomitant intravenous nitroglycerin more often (98%) than NIC subjects (82%, p=0.0171). 

Interestingly, the duration of infusion (median hours, range) was significantly shorter for subjects 

prescribed SNP (7.5, 0.6-49.2) compared to NIC subjects (3.1, 0.5-19.3, p=0.0072). Further 

investigation revealed that significantly more SNP subjects required continuation of their 

intravenous nitroglycerin infusions after discontinuation of SNP, suggesting a continued need for 

intravenous antihypertensive management (60% post SNP infusion IV nitroglycerin use in the 

SNP exposed group versus 13% in the NIC group, p<0.0001). Concomitant use of inotropes 

during either the NIC or SNP infusions tended to be higher among the NIC group (13% use) 

compared to the SNP group (3%, p=0.0754). However, after the infusion of either NIC or SNP 

was discontinued, subjects who had received SNP required significantly more antihypertensive 

agents for presumed blood pressure management (required 2.6±1.5 medications) when compared 

to NIC subjects (required 1.5±1.3 medications, p=0.0006). 
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TABLE 2: Medication Use.  
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TABLE 2: Medication Use. (CONTINUED) 

Specific Aim #1: Compare the stability of blood pressure control with NIC 

versus SNP.  

Dose change per hour: 

In our univariate analysis (see Table 3), the average dose change per hour, our surrogate marker 

for blood pressure stability, differed significantly between the groups with subjects prescribed 

NIC requiring 1.2±1.6 changes per hour compared to 1.7±1.8 changes per hour required in the 
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SNP group (p= 0.0038). Thirty-eight percent (27/72) of NIC subjects and 57% (23/40) of SNP 

required ≥ 1 dose change per hour, our arbitrary cut point to indicate unstable blood pressure, 

which differed significantly (p=0.0489). Of interest, the average minimum and maximum 

infusion rate for NIC was 3.9±1.7 and 10.3±4.3 mg/hour, respectively. The average minimum 

and maximum infusion rate for SNP was 0.5±0.3 and 1.6±0.9 mcg/kg/min, respectively. Using 

log-binomial regression to adjust for severity of illness and surgery type, we found the risk of 

excessive dose changes was 60% higher in those subjects prescribed SNP compared those 

prescribed NIC (adjusted relative risk = 1.6030, 95%CI, 1.0971-2.3420, p=0.0147). No other 

confounders were found to significant influence our outcome. 

TABLE 3: Continuous Outcomes. 

Hemodynamic stability:  

Systolic blood pressure, diastolic blood pressure, and heart rate before, during, and after the 

infusions of either NIC or SNP are summarized in Table 4. Blood pressure and heart rate were 

nearly identical in both study groups before and after the infusions of NIC and SNP. Comparison 

of the systolic blood pressures before the infusions between those prescribed NIC (139±22 



31	
  
	
  

mmHg) and SNP (134±16 mmHg) suggest that the occurrence of hypertension was not different 

between the groups (p=0.2197). Evaluation of the minimum systolic blood pressures during the 

infusion between those prescribed NIC (96±12 mmHg) and SNP (98±10 mmHg) suggest that the 

occurrence of hypotension was not different between the groups (p=0.3155). Finally, the 

maximum heart rate during the infusion between those prescribed NIC (94±17 mmHg) and SNP 

(91±12 mmHg) suggest that the occurrence of reflex tachycardia was not different between the 

groups (p=0.3148). 

TABLE 4: Hemodynamic Data. 

Specific Aim #2: Determine the cost-effectiveness of NIC compared with SNP 

in subjects experiencing postoperative hypertension after cardiac surgery. 

The results of cost-effectiveness analyses for the entire cohort and for subjects undergoing 

isolated CABG, isolated valve surgery, and combined CABG and valve surgery are provided in 

Table 5. Two separate incremental cost effectiveness ratios (ICERs) are provided; ICER 1 that 

utilized the actual costs, and ICER 2 that used varied costs. That is, we increased the actual 

postoperative cost variable for those subjects prescribed NIC (the more expensive drug) by 10% 
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and reduced the actual cost of SNP (the cheaper drug) by 10%. In the entire cohort, NIC was an 

economically dominant therapy as it was more effective at a lower cost. When the costs were 

varied in the entire cohort, dominance was lost, however the ICER remained very low at $195:1. 

Therefore use of NIC rather than SNP, would require our institution to pay an additional $195 to 

provide a single patient NIC which yields more stable blood pressure requiring less than 1 dose 

change per hour on average. In the isolated CABG cohort, NIC was no longer dominant but its 

ICER ranged between $93:1 for the actual cost and up to $358:1 when the costs were varied. In 

the isolated valve cohort, NIC again was a dominant therapy when using actual costs, and had an 

ICER of $263:1 when the costs were varied. In the combined CABG and valve cohort, NIC was 

a dominant therapy when using actual costs, and had an ICER of $159:1 when the costs were 

varied. Caution in interpreting the results from this combined subgroup should be taken as the 

number of subjects who underwent combined CABG and valve surgery that met inclusion 

criteria was small (7 per group).  

TABLE 5: Cost-Effectiveness Analyses. 
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Summary of Findings:  

In this population of patients undergoing CABG, valve, or combined CABG/valve surgery, NIC 

is associated with significantly less dose adjustments per hour than SNP when used to manage 

acute postoperative hypertension. When evaluated as a continuous outcome, subjects who were 

prescribed NIC required an average of 1.2 dose changes per hour compared to the 1.7 changes 

per hour required among those prescribed SNP (p=0.004). We found that 58% (23/40) of the 

SNP subjects required excessive dose changes (defined as ≥ 1 dose change per hour), whereas 

only 38% (27/72) of NIC subjects required this level of dose adjustment (p=0.0489). After 

adjustment for surgery type and severity of illness, SNP remained significantly associated with 

excessive dose changes (adjusted relative risk = 1.6030, 95%CI, 1.0971-2.3420, p=0.0147). 

Hypotension and reflex tachycardia are common side effects of antihypertensive agents used to 

manage postoperative hypertension. We did not find significant differences in the minimum 

systolic blood pressure or maximum heart rate while subjects were receiving NIC or SNP. Using 

activity-based postoperative costs and an institutional perspective; we found NIC was an 

economically dominant therapy in the entire cohort, in isolated valve surgery, and in the 

combined CABG plus valve surgery patient populations. In these patient populations, subjects 

prescribed NIC experienced excessive dose changes less frequently, and had a lower 

postoperative direct cost when compared to those prescribed SNP. In the isolated CABG cohort, 

economic dominance did not exist, since the use of NIC was associated with an increased cost of 

$1,400. Despite this, the use of NIC yielded an incremental cost-effectiveness ratio of $93:1, 

suggesting our institution would need to spend an additional $93 per patient to reduce the 

number of dose changes required among subjects prescribed NIC to less than one per hour. 

When costs were varied, NIC was no longer an economically dominant therapy in any cohort, 
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however it remained associated with low incremental cost-effectiveness ratios ranging from 

$159:1 to $358:1.   

DISCUSSION 

Despite a more favorable clinical profile, the acquisition cost of NIC is substantially higher than 

that of SNP. At the time of this study, our institutions’ admixture (drug and fluid) cost for NIC 

was $220 (50mg NIC in 500 mL of 0.9% sodium chloride) compared to $5.36 for SNP (50 mg 

SNP in 250 mL of 5% dextrose solution). Given the higher acquisition costs but superior efficacy 

of NIC compared with SNP, a formal cost-effectiveness analysis is a clear knowledge gap in the 

existing medical literature. The rationale that underlies this research is that, presumably, a 

positive impact of NIC on patient outcomes could offset its higher acquisition costs by saving 

costs elsewhere. NIC has consistently demonstrated improved hemodynamic efficacy (e.g. faster 

and more stable control); which in turn is likely to influence other variables that increase costs. 

Presumably, faster and more stable control of blood pressure would reduce ICU (and potentially 

hospital) length of stay. More efficacious reductions and stability of blood pressure should also 

influence postoperative bleeding and blood transfusion rates, both of which significantly increase 

hospital costs. Lastly, given the substantially greater impact on venous dilation, SNP has been 

reported to increase the need for postoperative volume resuscitation.22 Such aggressive 

resuscitation frequently causes a dilutional anemia and subsequently may increase blood 

transfusion requirements. To date, a cost-effectiveness analysis has not been conducted 

comparing SNP to NIC after cardiac surgery. Because cardiac surgery is a high volume 

procedure for many institutions, characterizing this knowledge gap is of important clinical 

interest to prescribers, formulary decision makers, and hospital administrators.  
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Comparison of Major Findings to Existing Literature:  

While it is clear significant work remains in this field, the present study adds to the growing 

body of evidence demonstrating that NIC provides superior blood pressure control when 

compared to SNP. Specifically, this work concludes that subjects who were prescribed NIC 

required an average of 1.2 dose changes per hour compared to the 1.7 changes per hour required 

among those prescribed SNP (p=0.004). Admittedly, the study’s retrospective design required we 

use a surrogate endpoint for blood pressure stability; however, we feel it represents an accurate 

and useful retrospective measure of blood pressure control, as antihypertensive agent infusion 

rates are not changed unless the blood pressure is not at a desired level. One exception exists 

which involves the infusion-weaning period for intravenous vasoactive drugs. Since both NIC 

and SNP require a “titrate to off” period, we assume the number of changes needed during this 

period still reflects the ability of an agent to provide control, even during the weaning phase. 

When evaluated using a cut point of ≥ 1 dose change per hour, we found that SNP was 

significantly associated with a 60% higher risk of excessive dose changes when compared to 

NIC, after controlling for surgery type and severity of illness.  These findings are unique in that 

most other comparative studies of these agents are limited to isolated CABG.20-24 Aronson and 

colleagues work25 and the present study further expand our understanding of the differences 

between NIC and SNP use in other cardiac surgical populations involving isolated valve and 

combined CABG/valve surgery patient populations in addition to isolated CABG.  

In comparison to previously reported studies in cardiac surgery, the infusion rates of NIC 

(average min/max = 3.9 / 10.9 mg/hour) and SNP (average min/max = 0.5 / 1.6 mcg/kg/min) 

used in our study are similar. NIC dosing in previous work ranges from 3.3 to 8.4 mg/hour and 
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SNP dosing ranges from 1.4 to 4.5 mcg/kg/min.20-24 Our study differs from previously reported 

outcomes relative to hemodynamic instability. We did not find significant differences between 

NIC or SNP subjects in the minimum systolic blood pressure or maximum heart rate experienced 

while on either infusion. In contrast, David and colleagues reported less tachycardia and 

hypotension with NIC.22 Aronson and colleagues reported subjects exposed to SNP spent more 

time outside a pre-specified blood pressure range than those treated with intravenous NIC or 

clevidipine.25 However, Kwak and colleagues found that 23% of subjects prescribed NIC versus 

5% of those prescribed SNP, required intervention with phenylephrine (an intravenous alpha-

agonists which raises blood pressure) to treat hypotension experienced while receiving either 

infusion.24  

Dose changes as a marker for blood pressure control and stability have been reported by 

four other authors.19,22,27,33 A single publication within cardiac surgery reported a similar finding 

to the present study results regarding the number of dose changes per hour (present study, NIC = 

1.2, SNP = 1.7, p=0.004). David and colleagues reported that after reaching a stable blood 

pressure plateau, NIC required 1.1 dose change per hour to maintain blood pressure compared to 

SNP requiring 2.7 hourly changes (p=0.01).22 In a post-surgical patient population, Halpern and 

colleagues found NIC required a total of 1.5 dose changes to achieve a therapeutic blood 

pressure versus 5.1 changes needed in the SNP group (p=0.05).19 In a population of patients who 

suffered intracerebral hemorrhage, Roitberg and colleagues found NIC required 5.7 dose changes 

per day versus the 8.8 changes needed in the SNP group (p=0.0012).27 In a population of patients 

with severe hypertension, Neutel and colleagues reported that NIC required 0.5 dose adjustments 

per hour required to maintain blood pressure reduction compared to SNP requiring 1.5 

(p<0.05).34 
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To date, one published study has compared the financial difference in hospital costs 

between patients prescribed NIC or SNP. Suri and colleagues published a retrospective, 

observational study of subjects with intracerebral hemorrhage using data from Premier (a 

national hospital discharge database).28 In this study, they investigated risk-adjusted in-hospital 

mortality, length of stay, and total hospital costs. They concluded subjects treated with SNP were 

more likely to experience in-hospital mortality but did not find significant differences in length 

of stay or total hospital costs (NIC=$14,536, SNP=$14,974, p=0.63) among patients who 

survived to hospital discharge. To our knowledge, the present study is the first reported cost-

effectiveness analysis comparing NIC to SNP for the treatment of postoperative hypertension. 

We found that NIC remains cost effective in all three surgery types investigated (isolated CABG, 

isolated valve, and combined CABG/valve surgeries). We reported a second set of cost-

effectiveness analyses, which increased the cost of the NIC group by 10% and decreased the cost 

of the SNP group by 10%. This was done to determine if our results would be the same under 

more strained economic parameters. As a result of an aging population, patients undergoing 

cardiac surgery are increasingly complicated by more comorbid conditions, and in general have a 

higher severity of illness and risk of mortality. In turn, it follows that such a population would 

represent a higher cost to an institution. While economic dominance (more effective, cheaper 

drug) was no long present under these varied economic conditions, we still found very low 

incremental cost-effectiveness ratios ranging from $159:1 to $358:1. It is our opinion that many 

surgeons would see NIC as a financially sound investment to provide more stable blood pressure 

control.  
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Limitations: 

Like all retrospective investigations, the present study contains several noteworthy limitations. 

While comparable in sample size to other similar published studies,20-24 our study has a relatively 

small sample size, which may have presented an opportunity for type II statistical errors. 

Additionally, given the non-interventional design of this study, selection bias is likely present in 

some degree with more complex patients likely being prescribed NIC more often than SNP. We 

attempted to control for this using regression techniques described above. Given our 

retrospective study design, each patient is likely to have different blood pressure goals and 

specified ranges postoperatively, due to complications such as stroke or renal failure. Therefore, 

we were unable to use a specific blood pressure range as was done by Aronson and colleagues in 

their prospective work.25 As a result, we were required to utilize surrogate markers of blood 

pressure stability (e.g. dose change per hour and proportion of subjects with ≥ 1 dose change per 

hour).  While we see inclusion of various cardiac surgical procedures (isolated CABG, isolated 

valve, and combined CABG/valve) as a strength and opportunity to explore differences between 

these groups, others may prefer homogeneity in study populations. To address this concern, we 

included surgery type in the multiple variable log-binomial regression model. Several variables 

that likely influence postoperative hypertension were not feasibly captured by this dataset, 

including postoperative anxiety, pain, and hypoxia. It is therefore impossible for us to conclude 

that we have accounted for all possible confounders. Additionally, while the care of patients 

undergoing cardiac surgery is heavily standardized, we are unable to definitively conclude each 

patient received the same quality of care and practice styles by their providers. 
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CONCLUSIONS 

NIC use may be limited due to decisions based upon acquisition costs alone. We found that NIC 

resulted in a reduced need for dose adjustment when compared to SNP, presumable due to more 

stable BP control. After controlling for surgery type and severity of illness, the risk of excessive 

dose changes remained significantly higher in those subjects prescribed SNP compared those 

prescribed NIC. Despite a higher acquisition cost than SNP, NIC proved to be cost-effective in 

avoiding excessive dose changes among the entire cohort, and specifically in patients undergoing 

isolate CABG, isolated valve, and combined CABG/valve surgeries.  

Impact on Clinical Practice:  

In our opinion, use of NIC should not be restricted based on drug cost. Our data suggest that in 

isolated valve and combined CABG/valve surgery, the use of NIC represents an institutional 

opportunity to reduce postoperative costs overall. In isolated valve surgery and combined 

CABG/valve surgery, NIC was more effective and less expensive. If providers believe spending 

an additional $93 per patient is financially worth reducing the number of dose changes per hour 

to less than 1, which presumably is a result of superior blood pressure control, then the use of 

NIC in isolated CABG is also justified. 

Future Research:  

A prospective, randomized trial, comparing the impact of NIC versus SNP should evaluate blood 

pressure excursions (capturing both the number, and area under the curve of the excursions) from 

a pre-specified blood pressure range in this population. The influence of these excursions on 

length of stay, postoperative costs, and 30-day mortality should be investigated.  



40	
  
	
  

 
REFERENCES 

1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, 

Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, 

Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, 

Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, 

Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J; on behalf of the 

American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart 

disease and stroke statistics—2010 update: a report from the American Heart Association. 

Circulation. 2010;121:e46–e215. 

2. Estafanous FG, Tarazi RC: Systemic arterial hypertension associated with cardiac surgery. 

Am J Cardiol. 1980;46:685. 

3. Wallach R, Karp RB, Reves JG et al. Pathogenesis of paroxysmal hypertension developing 

during and after coronary artery bypass surgery: a study of hemodynamic and humoral 

factors. Am J Cardiol. 1980;46:559-565. 

4. Fremes SE, Weisel RD, Baird RJ et al. Effects of postoperative hypertension and its 

treatment. J Thorac Cardiovasc Surg. 1983;86:47-56. 

5. Weinstein GS, Zabetakis PM, Clavel A et al. The renin-angiotensin system is not responsible 

for hypertension following coronary artery bypass grafting. Ann Thorac Surg. 1987;43:74-

77. 

6. Cruise CJ, Skrobik Y, Webster RE et al. Intravenous labetalol versus sodium nitroprusside 

for treatment of hypertension postcoronary bypass surgery. Anesthesiology. 1989; 71:835-

839. 



41	
  
	
  

7. Roberts AJ, Niarchos AP, Subramanian VA, et al: Systemic hypertension associated with 

coronary artery bypass surgery: predisposing factors, hemodynamic characteristics, humoral 

profile, and treatment. J Thorac Cardiovasc Surg. 1977;74:846-859. 

8. Cheung AT. Exploring an optimum intra/postoperative management strategy for acute 

hypertension in the cardiac surgery patient. J Card Surg. 2006;21:S8–S14. 

9. Aronson S, Boisvert D, Lapp W. Isolated systolic hypertension is associated with adverse 

outcomes from coronary artery bypass grafting surgery. Anesth Analg. 2002;94:1079-1084. 

10. Reich DL, Bennett-Guerrero E, Bodian CA, Hossain S, Winfree W, Krol M. Intraoperative 

tachycardia and hypertension are independently associated with adverse outcome in 

noncardiac surgery of long duration. Anesth Analg. 2002;95:273-277. 

11. Weiss SJ, Longnecker DE. Perioperative hypertension: an overview. Coron Artery Dis. 

1993;4:401-406. 

12. Charlson ME, MacKenzie CR, Gold JP, Ales KL, Topkins M, Shires GT. Intraoperative 

blood pressure. What patterns identify patients at risk for postoperative complications? Ann 

Surg. 1990;212:567-580. 

13. Charlson ME, MacKenzie CR, Gold JP, Ales KL, Topkins M, Fairclough GP Jr, Shires GT. 

The preoperative and intraoperative hemodynamic predictors of postoperative myocardial 

infarction or ischemia in patients undergoing noncardiac surgery. Ann Surg. 1989;210:637-

648.  

14. Haas CE, LeBlanc JM. Acute postoperative hypertension: A review of therapeutic options. 

Am J Health-Syst Pharm. 2004;61:1661-1675. 



42	
  
	
  

15. Oates JA, Brown NJ. Antihypertensive agents and the drug therapy of hypertension. In: 

Hardman JG, Limbird LE, eds. Goodman & Gillman’s the pharmacologic basis of 

therapeutics. 10th ed. New York: McGraw-Hill; 2001:871-900.  

16. Nitropress, package insert. Lake Forrest, IL: Hospira, Inc; 2004 Dec. 

17. Friederich JA, Butterworth JF. Sodium nitroprusside: twenty years and counting. Anesth 

Analg. 1995;81:152-162. 

18. Cardene IV, package insert. Bedminster, NJ: EKR Therapeutics, Inc; 2008 May. 

19. Halpern NA, Goldberg M, Neely C, Sladen RN, Goldberg JS, Floyd J, Gabrielson G, 

Greenstein RJ. Postoperative hypertension: a multicenter, prospective, randomized 

comparison between intravenous nicardipine and sodium nitroprusside. Crit Care Med. 

1992;20:1637-1643.  

20. van Wezel HB, Koolen JJ, Visser CA et al. Antihypertensive and anti-ischemic effects of 

nicardipine and nitroprusside in patients undergoing coronary artery bypass grafting. Am J 

Cardiol. 1989;64:22H-27H. 

21. van Wezel HB, Koolen JJ, Visser CA et al. The efficacy of nicardipine and nitroprusside in 

preventing poststernotomy hypertension. J Cardiothorac Anesth. 1989;3:700-706. 

22. David D, Dubois C, Loria Y. Comparison of nicardipine and sodium nitroprusside in the 

treatment of praroxysmal hypertension following aortocoronary bypass surgery. J 

Cardiothorac Vasc Anesth. 1991;5:357-361. 

23. Combes P, Durrand M. Comparison of nicardipine and sodium nitroprusside in the treatment 

of hypertension after coronary bypass surgery (a pilot study). Acta Anaesthesiol Belg. 

1992;43:113-119. 



43	
  
	
  

24. Kwak YL, Oh YJ, Bang SO, Lee JH, Jeong SM, Hong YW. Comparison of the effects of 

nicardipine and sodium nitroprusside for control of increased blood pressure after coronary 

artery bypass graft surgery. J Int Med Res. 2004;32:342-350. 

25. Aronson S, Dyke CM, Stierer KA, Levy JH, Cheung AT, Lumb PD, Kereiakes DJ, Newman 

MF. The ECLIPSE trials: comparative studies of clevidipine to nitroglycerin, sodium 

nitroprusside, and nicardipine for acute hypertension treatment in cardiac surgery patients. 

Anesth Analg. 2008;107:1110-1121. 

26. Dorman T, Thompson DA, Breslow MJ et al. Nicardipine versus nitroprusside for 

breakthrough hypertension following carotid andarterectomy. J Clin Anesth. 2001;13:16-19. 

27. Roitberg BZ, Hardman J, Urbaniak K, Merchant A, Mangubat EZ, Alaraj A, Mlinarevich N, 

Watson KS, Ruland S. Prospective randomized comparison of safety and efficacy of 

nicardipine and nitroprusside drip for control of hypertension in the neurosurgical intensive 

care unit. Neurosurgery. 2008;63:115-120. 

28. Suri MF, Vazquez G, Ezzeddine MA, Qureshi AI. A multicenter comparison of outcomes 

associated with intravenous nitroprusside and nicardipine treatment among patients with 

intracerebral hemorrhage. Neurocrit Care. 2009;11:50-55.  

29. Cohen DJ and Reynolds MR. Interpreting the Results of Cost-Effectiveness Studies. J Am 

Coll Cardiol. 2008;52:2119-2126. 

30. McNutt LA, Wu C, Xue X, and Hafner JP. Estimating the Relative Risk in Cohort Studies 

and Clinical Trials of Common Outcomes. Am J Epidemiol. 2003;157:940-943. 

31. Meurer S. Mortality Risk Adjustment Methodology for University Health System's Clinical 

Data Base. In Mortality Measurement. February 2009. Agency for Healthcare Research and 



44	
  
	
  

Quality, Rockville, MD. Available at: http://www.ahrq.gov/qual/mortality/Meurer.htm 

Assessed on: November 17, 2010. 

32. 3M Health Information Systems, ed, All Patient Refined Diagnosis Related Groups: 

Definition Manual, 3M Health Information Systems, Wallingford, CT (2005), p. 993.  

33. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with 

administrative data. Med Care. 1998;36:8-27. 

34. Neutel JM, Smith DH, Wallin D, Cook E, Ram CV, Fletcher E, Maher KE, Turlepaty P, 

Grandy S, Lee R, et al. A comparison of intravenous nicardipine and sodium nitroprusside in 

the immediate treatment of severe hypertension. Am J Hypertens. 1994;7:623-628. 

 
 


