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Abstract 

The use of the Random Decrement Technique (RDT) for estimating panel damping 

loss factors ranging from 1% to 10% is examined in a systematic way, with a focus on 

establishing the various parameters one must specify to use the technique to the best 

advantage.   

Throughout, loss factors are estimated in full or 1/3rd octave frequency bands with 

standard 1/3rd octave center frequencies. The full octave filters, which are more 

computationally efficient than the 1/3rd octave filters, are chosen in the experimental analysis 

of the damped plates with varied loss factor levels.  

Two computational models are examined: a single degree of freedom oscillator and a 

computational model of a uniform rectangular panel. The panel computational model is a 

finite element model of a rectangular plate mechanically exited at a single point.  These 

models are used to establish a systematic process for evaluating: the appropriate narrow band 

filter selection; trigger conditions; record length required as a function of frequency and 

damping level; the averaging scheme; and, the curve–fitting scheme for assigning loss factors 

in narrow frequency bands.   

Loss factor estimates for three damped plates are computed using the “optimized” 

Random Decrement estimation algorithm and compared with estimates from the Impulse 

Response Decay Method.   For the highly damped plates, RDT out–performed IRDM because 

the loss factors from IRDM are underestimated. For lightly damped plates, RDT and IRDM 

are consistent in most frequency bands. 
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1 Introduction 

The purpose of this chapter is to introduce some of the basic concepts and terms 

associated with the identification of vibration characteristics of a system, in particular the 

“damping loss factor”. This chapter also includes discussion of the contemporary 

experimental loss factor estimation techniques, their application and limitations. Finally, the 

chapter is concluded with an outline of the thesis.  

A vibration, in its general sense, is a periodic motion about an equilibrium position 

due to a disturbing force. Undesired vibrations can cause premature fatigue and unpleasant 

noise. The vibratory response of a system is usually a function of three variables: mass, 

stiffness and damping. Most of the contemporary damping estimation techniques are 

restricted to lower damping levels; hence, the challenge here lies in being able to accurately 

estimate the higher damping. 

1.1 Damping 

The vibrations induced in a structure due to a finite–duration excitation do not last 

forever and eventually “damp–out”. This ability of a structure to dissipate vibrational energy 

is associated with an important characteristic of the system, known as damping which can be 

quantified as damping ratio(ζ ) or loss factor(η ).When subjected to persistent excitation, a 

structure has the highest amplitude of vibratory response at its natural frequency, which 

depends on the structure’s mass and stiffness. The overall response level of a structure is 

inversely proportional to its damping.[1] Thus, the level of damping is an important design 

variable in noise reduction, earthquake resistant structures, instrument safety, and definition 

of flutter boundaries for airfoils. Therefore, accurate estimation of damping, usually 

experimentally, is an integral and critical part of all types of dynamic analyses. 
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For an inadequately damped structure, damping can be added explicitly. Additionally  

damping can be broadly classified as either active or passive. Active damping, generally in a 

narrow frequency band, is enforced by use of external devices such as actuators. On the 

contrary, passive damping is a method used to increase damping by application of layer(s) of 

energy dissipating materials. Passive damping treatments are simple to apply, cost effective 

and rather well established.  

Constrained Layer Damping (CLD) is one of the most commonly used passive 

damping treatments. In CLD, a base structure is coated with a thin layer of damping material 

(usually viscoelastic material) which is then covered by a constraining layer (cover sheet). 

Under dynamic loading, this layer of damping material undergoes shear and dissipates 

energy, as represented in Figure 1.[2] This process, for addition of damping, is simple and 

cost effective as compared to other methods.  

Constraining
Layer

Damping 
Layer

Base
StructureLow Shear in 

Damping Layer

High Shear in
Damping Layer

 
Figure 1: Schematic of constrained layer damping treatment. Reprinted with permission from 
Reference 2. 

1.2 Damping Loss Factor 

The equation of motion for a single Degree Of Freedom (1DOF) system, acted upon 

by force, is given by 

                                                      )(tfxkxcxm =++
•••

                                             (eqn. 1.1) 
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where, 

)(tf  is the externally applied force as a function of time 

m is the mass of the system 

c  is the damping coefficient of the system 

k  is the stiffness of the system 

x  is the displacement of the system  

•
x  is the velocity of the system 

••
x  is the acceleration of the system. 

It is not uncommon to express damping as “damping loss factor” (or simply loss 

factor), the latter being the ratio of dissipated and total energy. The relation between the 

damping ratio and loss factor is given by following equation 

                                                            
Q

1
2 =⋅= ζη                                             (eqn. 1.2) 

where,  

mk

c

⋅
=

2
ζ  is the damping ratio 

mk ⋅2  is the critical damping 

η   is the loss factor 

Q   is the quality factor. 

The above relation is accurate, within 5%, for the values of loss factor that are less 

than 0.3.[1,2] However, the loss factor can also be represented in terms of: ratio of energies, 

decay rate and half power bandwidth frequencies. A few of these relations are discussed in 

the following section.  



 4 

1.3 Experimental Loss Factor Estimation 

A real structure can have multiple natural frequencies in a frequency band of interest. 

For each mode of vibration a unique loss factor exists, i.e. damping in real structures is 

frequency dependent. For a system’s reliable design, accurate damping estimation is very 

important. Unlike other system properties, such as mass and stiffness, estimation of loss 

factor is rarely straightforward and it is most often evaluated experimentally. Most of the 

experimental techniques for loss factor estimation rely on the assumption of a linear system 

with viscous damping.[3] On one hand, underestimation of loss factor may result in an 

unacceptable design, requiring damping to added, thereby increasing weight; on the other, 

overestimation of loss factor may lead to failure before the predicted life and/or discomfort 

because of unwanted and/or under–suppressed vibrations.[4] 

The equation of motion for a Multiple Degree Of Freedom (MDOF) system is: 

  [ ] [ ] [ ]{ } { }FXKXCXM =+






+







 •••

                                 (eqn. 1.3) 

where, 

[ ] represents a square matrix 

{ } represents a column vector 

M  is the mass matrix, for a linear system 

C  is the damping matrix 

K  is the stiffness matrix 

F  is the vector of externally applied force 

X  is the vector of displacement 

•
X  is the vector of velocity 
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••
X  is the vector of acceleration. 

 A linear MDOF system can be decoupled to identify system characteristics for each 

mode of vibration. With such an approach, the frequency dependent loss factor can be 

estimated at each of the system’s natural frequencies. 

The techniques discussed in the following section can be used to compute the loss 

factor of structures excited by persistent excitation and these techniques are based on the 

measure of total energy loss from the structure. In general, these loss factor estimation 

techniques can be classified as time domain or frequency domain. For further simplification, 

in this report, the techniques are segregated as decay–rate–based techniques and Frequency 

Response Function (FRF)–based (or alternatively from relations of Fast Fourier 

Transformation (FFT) of input and output) techniques.  

1.3.1 Loss Factor Estimation Techniques Based on Transient Decay 

This section describes some of the methodologies involved with computing loss 

factor from the Decay Rate (DR) of free decay. The decaying (i.e. transient) response of the 

structure can be generated by either impulse or interrupted steady–state excitation. The 

following three loss factor estimation techniques use different approaches to calculate the 

time domain Impulse Response (IR) or free decay: 

1. Random Decrement Technique (RDT) 

2. Impulse Response Decay Method (IRDM) 

3. Reverberation Decay Method (RDM). 

For the above three techniques the procedure to evaluate loss factor – from the decay 

rate of an impulse response or free decay – is the same. To evaluate the decay rate, of 

exponentially decaying signal, Hilbert transform is often employed. This transform 
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essentially yields the envelope of free decay. In fact, the magnitude of Hilbert transformation 

of the impulse response is nearly equal to the exponential decay, as shown in Figure 2, that is: 

    ))(( thHe tn ≈⋅⋅− ζω                                                (eqn. 1.4) 

where,  

()H  is the Hilbert transformation of a function 

)(th  is the impulse response function.  
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Figure 2: Impulse response and exponential decay of 1DOF system 

Lyon [1], in his book titled “Theory and Application of Statistical Energy Analysis”, 

suggests that the decay rate is easily determined when the response signal is plotted as the 

log–rms amplitude versus time. The decay rate obtained by the log–rms amplitude is 

equivalent to decay rate estimated using the log of the exponential decay versus time. In 

either approach, the decay rate of exponentially decaying envelope – in dB/sec – is measured. 



 7 

For a single mode and constant loss factor, the dB decay curve is linear with the slope of this 

curve being equal to the decay rate. (Refer to Figure 2 and 3). The dB decay, of an impulse 

response, can be calculated by the following equation  

   |))((|log20_ 10 thHDecaydB ⋅=                                   (eqn.1.5) 

 
Figure 3: dB decay curve of 1DOF system 

The following equation (derived in Chapter 2, section 2.3) provides a relation 

between decay rate and loss factor: 

                                                             
nf

DR

⋅
=

3.27
η                                             (eqn. 1.6) 

where, 

DR  is the decay rate (dB/sec) 

nf  is the natural frequency or central frequency of a band (Hz). 
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1.3.1.1 Random Decrement Technique (RDT) 

The Random Decrement Technique (RDT) was developed by Henry Cole[5] in the 

late 1960’s. Driven by the motive of “on–line failure detection” by monitoring the damping 

of a structure (excited by white noise, which is difficult to measure); Cole intuitively came up 

with a process of averaging the time samples with the same initial conditions to obtain the 

free decay. Later, Vandiver[6] proved that the averaged response is a free decay only when 

the excitation is Gaussian, zero–mean, white noise.  

The process of evaluating the free decay from the random response, by means of 

RDT, is entirely in the time domain. RDT, unlike most other techniques, is solely based on 

response measurements. The underlying principle of RDT lies in the extraction of free decay 

from random response by averaging a large number of samples with identical initial 

conditions (or “trigger conditions”). In one such trigger setting, as shown in Figure 4, the 

local peak in the measured response inside the trigger band is called a “trigger”. The trigger 

sets up the initial condition for the free decay. 

Trigger Band

Lower
Trigger
Level

Upper
Trigger
Level

Detected Trigger

 
Figure 4: Schematic of a triggering event 



 9 

In RDT, the time history of response – whether displacement, velocity or acceleration 

– is monitored and once a triggering event, i.e. pre–specified slope and amplitude, is detected 

a sample of appropriate length is recorded. When a large numbers of these samples with the 

same triggering condition are averaged, the random component of the zero–mean response 

“vanishes” and only the free decay “survives”. In Figure 5, first three subplots illustrate the 

triggered samples from a response filtered in a narrow frequency band. The final subplot is an 

average of 1000 such samples. Although, some “beating” is observed, the averaged response 

clearly decays. The beating indicates there are two or more resonances within the narrow 

frequency band.  

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1000

-500

0

500

1000

Triggered Response #1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-1000

-500

0

500

1000

Triggered Response #2

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-1000

-500

0

500

1000

Triggered Response #3

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-500

0

500

Average of 1000 Triggered Responses

Time (sec)

R
es

po
ns

e
R

es
po

ns
e

R
es

po
ns

e
R

es
po

ns
e

 
Figure 5: Schematic of the Random Decrement Technique 
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As RDT is not very popular among structural dynamists, the literature pertaining to 

the same is very limited with respect to other known techniques, such as IRDM. 

Mathematical explanations of RDT have already been published, but the limitations and 

optimum variable settings for experimental analysis are still a matter for study.  

Ewing et al [7] have shown that RDT out–performed IRDM when applied to thin 

plates, especially in the case of high damping loss factor. Theoretically, RDT can be used for 

any damping levels, but is not recommended for lightly damped structures. The reasons will 

become clear through discussion presented in subsequent chapters. 

1.3.1.2 Impulse Response Decay Method (IRDM) 

Impulse Response Decay Method (IRDM) is based on evaluating the narrow–band 

impulse responses of a structure from the FRF, using inverse Fourier transformations. The 

excitation can be either steady–state using a mechanical shaker, or transient using an impulse 

hammer. The FRF is retrieved from the time domain data and/or directly from many turn–key 

Data AcQuisition (DAQ) systems. Frequency domain filtering, as shown in Figure 6 and 

explained in detail in section 2.4.3.1.2, is implemented to extract band–limited FRFs which 

when inverted, in the Fourier sense, will yield a narrow–band decaying impulse response. 

The loss factor is estimated based on the decay rate of the impulse response. 

IRDM is sensitive to the type of hammer tip used for impulsive excitation at a point. 

The hard tip hammer can be used to excite a wide range of frequencies while the soft tip 

hammer will excite only lower frequency modes. On the other hand, if a hard tip is used on a 

very lightly damped structure, exciting the structure with a single “hit” is nearly impossible – 

double–hits result. If the excitation point is located on a node line, the loss factors will be 

over estimated.[8,9] With some engineering judgment and precaution taken during 

experimentation, these errors can be overcome.  
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Figure 6: Schematic of Impulse Response Decay Method 



 12 

1.3.1.3 Reverberation Decay Method (RDM) 

Loss factor estimation from the Reverberation Decay Method (RDM) is based on the 

calculation of the decay rate of free vibrations after the steady state excitation is suddenly 

interrupted. The structure is allowed to reach a steady state before interrupting the force. 

When the vibration energy reaches steady state, the energy density at any point comprises 

two components: one from the direct field (forced vibration) and the other from the 

reverberant field (free vibration). When the excitation source is “switched–off”, the steady 

state energy density starts to decay.[10] Based on the decay characteristics of the free 

vibration, the loss factor is computed. Figure 7 represents the theoretical response of a 1DOF 

system excited by persistent force which is interrupted at the fifth second. The response 

beyond the fifth second is referred as free vibration (or decay) and its decay characteristics 

are identical to that of an impulse response. 
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Figure 7: Response to interrupted steady state force – Reverberation Decay Method 
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1.3.2 Half Power Bandwidth Method (HPBWM) 

The Half Power BandWidth Method (HPBWM) is a frequency domain technique, in 

which the loss factor is estimated from the FRF. The performance of this technique is 

optimum only for isolated modes for which the half power points can be reliably calculated. 

In practice this is often the case only for the fundamental (lowest) natural frequency for a 

structure or structural element. The half power points are 3dB below the maximum 

magnitude of the isolated mode’s FRF. The schematic of HPBWM is presented in Figure 8. 

The loss factor can be measured from the observed natural frequency and the half power 

frequencies using the following equation: 

                                                       
nf

ff 122
−

==⋅ ηζ                                             (eqn. 1.7) 

where,  

1f  and 2f   are the half power frequencies 

nf    is the natural frequency. 

The FRF is defined as: 

                                                           
)(

)(
)(

ω
ωω

F

X
H =                                                  (eqn. 1.8) 

where, 

)(ωH   is the Frequency Response Function (FRF) 

)(ωX   is the Fourier transformation of response 

)(ωF    is the Fourier transformation of force. 
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Figure 8: Schematic of Half Power BandWidth Method 

The HPBWM is relatively simple and relies only on the measurement of FRF, which 

can be obtained as an output from most commercially–available data acquisition software. 

Experimental measurements, in general, do not yield a smooth and noise–free frequency 

response function. In order to obtain a smooth FRF, the response signal needs to be filtered 

and FRFs have to be averaged. For accurate estimation of loss factor, especially for lightly 

damped structures, the frequency resolution of the measured FRF should be high enough to 

capture the peak in the FRF and the half power frequencies. To reduce experimental error, the 

value of loss factor should be averaged over multiple excitation and response points on the 

structure. 
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If a structure is symmetric or close to being symmetric, there is a high probability of 

multiple peaks existing in a small frequency range, and separation of these “close modes” 

might not be simple. Two close modes will result in a beating phenomenon, which is 

recognizable in the time domain record. This technique is not recommended when either the 

FRF of the structure is modally dense in the desired frequency band, i.e. when it is difficult to 

separate the modes, or if the structure has a high loss factor.  

1.3.3 Power Input Method (PIM) 

Principles involved with Power Input Method (PIM) are based on the very definition 

of the loss factor, and hence there is no theoretical limitation to this technique. The loss 

factor, using PIM, is defined in terms of dissipated power and total energy through the 

following relations: 

                                                     
2

D D

Tot Tot

P E

E E
η

ω π
= =

⋅ ⋅ ⋅
                                           (eqn. 1.9) 

where,  

η  is the loss factor 

ω  is the frequency in radians/sec 

DP  is the dissipated power  

DE   is the dissipated energy 

TotE   is the total mechanical energy. 

 If a structure is excited to a steady state condition, the input power equals the 

dissipated power, so: 

                                                          
Totc

IN

Ef

P

⋅⋅⋅
=

π
η

2
                                            (eqn. 1.10) 
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where, 

DP  is the dissipated power  

INP  is the input power and IND PP =  

cf   is the band’s central frequency (Hz). 

Since the PIM is based on steady state response measurements, i.e. after the 

transients have died out, a continuous source of power, or excitation, is required for the 

process. Frequency domain filtering is typically implemented to estimate loss factors in 

narrow frequency bands, thereby establishing the frequency–dependency of the loss factor. 

The accuracy of loss factor estimates along with the number of required measurement points 

has been a topic of discussion in many papers. With appropriate care taken during 

experimentation, PIM can be used for all frequency ranges and damping levels.[2] 

1.3.4 Common Issues Associated with Experimental Loss Factor Estimation 

It is important to understand the requirements and limitations of methods involved 

with loss factor estimation as no one method is applicable to all situations. Most of the 

techniques fail to accurately estimate high loss factors, particularly when insufficient or 

limited information is available.[11] 

The positioning of sensors and excitation points plays a critical role when taking 

measurements from multiple input and output locations on the structure. In general, it is 

important not to excite a structure at a node line, which may result in rigid body response or 

to measure response from a point on node line. To efficiently simulate a continuous system 

and remove spatial effect in measurements, it is suggested to record and analyze long sets of 

time history of responses from multiple locations, preferably randomly chosen, on the test 

specimen.  
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For analysis involving multiple input–output locations on the structure, slope fitting 

can be another tricky and sensitive issue. If a large number of slope fits are to be executed by 

an operator, human error is inevitable and the results may not be reproducible. Hence, it is 

recommended to use an automated slope fitting algorithm. All the slope fits on the decay 

curves should be at least visually inspected to avoid possibility of a biased error.  

For the experimental evaluation of the IRDM and RDT, LabVIEW “virtual 

instruments” are used. Further experiment–related variables and processing issues are 

discussed in detail in Chapter 2.  

1.4 Scope of Work 

The foremost purpose of this research is to establish RDT as a main–stream method 

for loss factor estimation, by understanding the effect of variables associated with the 

technique and recommending process variables for them. This is accomplished by simulating 

the response of a spring–mass–damper (1DOF) and a plate, as a simple representation of 

Multiple Degree of Freedom (MDOF) systems. 

To establish RDT for MDOF systems, a model of a thin plate is created in MSC/ 

NASTRAN and used to study the parameters affecting the loss factor estimation. Frequency 

domain and time domain filtering approaches have been implemented and are compared on 

equal grounds. In the experimental analysis of plates the loss factor estimates from the RDT 

are compared to estimates from IRDM. Methods and results published herein and the other 

papers published by KUAE authors on RDT will give structural dynamists a better insight 

into the effect of the process variables associated with experimental loss factor estimation. 

During this research, two versatile and powerful data acquisition and analysis codes were 

written. These software codes, which incorporate the results and conclusions drawn from this 

research, can perform the analysis in real time. 
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RDT has been successfully implemented to estimate loss factors, and the technique 

performed equally well or better than IRDM for high damping loss factor estimation. Though 

the objective of better understanding of RDT has been achieved by providing closed–end 

solutions to some of the problems associated with it, additional improvements are possible. 

1.5 Thesis Layout 

RDT and the theory associated with it is examined and discussed in Chapter 2. This 

chapter begins with a literature review of previously published work on RDT and is followed 

by the mathematical foundations related to the technique. Chapter 2 includes the discussion 

of possible process variables, such as triggering and filters settings. These variables could 

significantly affect the accuracy of the loss factor estimated from RDT and hence, these 

variables are analyzed for implementation of RDT to computational and experimental models 

of MDOF systems. Finally, Chapter 2 is concluded with sections on possible averaging 

schemes and experimental set up. 

  Chapter 3 is aimed at the evaluation of loss factor estimates using RDT. The results 

are divided in three parts: first, is the study of a simulated 1DOF system; second, is the study 

of MDOF computational plate model; and finally, the experimental loss factor estimation and 

comparison of loss factor estimates from RDT with IRDM.  

In Chapter 4 conclusions, from the results, are discussed. Chapter 5 very briefly 

provides the recommendations for future studies. This is followed by list of references and 

appendices. The appendices include MATLAB codes and a detailed comparison of loss factor 

estimates from frequency and time domain filtering approaches. 
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2 Theoretical Background of Random Decrement Technique 

The purpose of this chapter is to provide a detailed description of the principles and 

the variables associated with the Random Decrement Technique (RDT) for experimental loss 

factor estimation. A literature review of the previously published work and the mathematical 

foundation of RDT are also included in this chapter. The studies of parameters important to 

RDT are presented for both SDOF and MDOF sytems. Latter sections contain the description 

of experimental setup required for loss factor estimation using RDT. 

From the analysis of free decay, presented and discussed in Section 2.4.2.2, it is 

noted that the normalized acceleration and displacement have the same decay rate. Thus, the 

loss factor computed from these decay rates will also be equal. Henceforth, the term 

“response” is generalized to apply to acceleration, velocity or displacement measurements. 

2.1 Random Decrement Technique 

Response of a system to Gaussian white noise excitation is theoretically equal to the 

time domain convolution of force and impulse response function. When a large number of 

selected samples from a very long time history of random response measurement with the 

same initial conditions are averaged, the random component of response averages out to zero 

and only the free decay (or, “Randomdec Signature”) survives. The procedure of extracting 

the free decay from the random response is entirely in the time domain (Refer to Figures 4 

and 5). The choice of the “trigger” or initial conditions, length of samples, filter settings and 

averaging schemes is a central part of this research.  

RDT, unlike IRDM and modal curve–fitting techniques, is based solely on the 

response of a system to random excitation. As such, one’s expectations for loss factor 

estimation using RDT might be somewhat low. In fact, Ewing et al [7] have shown that RDT 
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out–performs other techniques based on input–output relationships for panels with very high 

damping loss factors (≈ 0.1).  For such highly– damped structure, there can be a significant 

portion of the structure which is not experiencing “reverberant field” conditions, especially in 

higher frequency bands.  That is, localized disturbances “die–out” before they can reflect off 

boundaries, thereby establishing a reverberant field and “vibration”.  Therefore, the usual 

input–output relationships of vibration are not in force.  Specifically, the response is higher 

than what would be expected in a reverberant field where the energy is, more or less, 

uniformly distributed.  Instead, energy is flowing away from the excitation point, so the 

energy level in the “near field” (near the excitation) is higher than elsewhere, resulting in a 

higher response level than when vibration is occurring.  Since response is inversely 

proportional to damping, the loss factor predicted by vibration theory is therefore 

underestimated.  

The advantage of RDT stems from the fact that it does not depend on an input–output 

relationship. Instead, the temporal decay rate characteristic of a point on a structure with a 

given loss factor is also the decay rate of that point's response autocorrelation function.  

Actually, most implementations of RDT do not estimate the autocorrelation function, but do 

estimate what amounts to the positive portion of it, which possesses the same decay rate.  It 

simply does not matter if a response is measured inside the near field or not.  Processes like 

IRDM and modal curve–fitting are, presumably, best implemented by not including response 

measurements in the near field.  

For the computational studies herein, the analytical FRF is convolved with a random 

force, producing an arbitrarily–long decaying response signal.  This signal is then used for the 

decay signature extraction.  The filtered response, in specified (typically octave–wide) 

frequency bands, is then decomposed to an ensemble of responses with same triggering event. 
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In the discussed analyses the trigger setting refers to attainment of response in a pre–selected 

amplitude band with zero slope. The average of this set of triggered responses, theoretically, 

removes the effect of the randomness of excitation.   

2.2 Literature Review 

RDT is simple and easy to implement for identification of vibration characteristics of 

structures acted upon by stochastic forces. The technique has not been widely used in 

damping loss factor estimation and only a handful of people have published papers on the 

theoretical description and application of RDT. Hence, the following brief literature review is 

categorized based on authors and their contributions to the technique. 

Cole H. [5, 12] 

Henry Cole, in the late 1960s, published the first paper on RDT. He was looking for 

“a simple and direct method for translating the response time history into a form meaningful 

to the observer”.[22] Cole was trying to develop a method for on–line failure detection in 

structures by measuring the change in vibration characteristics, such as the decay rate of a 

structure. For example, if a bolt comes loose, the decay characteristics will change. If this 

change in damping can be measured with respect to the unflawed structure, the defect can be 

detected well in advance of failure. Cole found it difficult to measure ambient loads acting on 

the structure, inspiring him to develop a method based on the measurement of response only. 

Three of the main conclusions from Cole’s NASA contractor report [5] and paper [12] are: 

1. The randomdec signature is equivalent to the free vibration decay, with initial 

conditions equal to the trigger settings. 

2. The randomdec signature is stable in form and scale, under ambient loading; 

thus, it can be used for on–line failure detection and damping measurement. 
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3. The randomdec signature from narrow–band time histories is a more efficient 

way of estimating damping or failure than the input–output based approach. 

 Cole was also successful in estimating damping ratio for a lightly damped non–linear 

systems. 

 Vandiver J. K. et al [6] 

The development of RDT by Cole was primarily intuitive. In 1982,Vandiver et al [6] 

provided a mathematical basis for RDT. They proved that the randomdec signature, in 

general, is not equivalent to the free decay. In fact, the randomdec signature is proportional to 

the autocorrelation function. The randomdec signature is equal to free decay only for the 

1DOF system, excited by Gaussian white noise. These mathematical relations from Vandiver 

et al’s work are included in the subsequent subsections. 

Ibrahim S. R., Brincker R. and Asmussen J. C. [11, 13–22] 

As individuals and together, Ibrahim, Brincker and Asmussen have published a 

substantial number of papers on RDT. Asmussen’s dissertation [22], on the application of 

RDT for modal analysis, has the best mathematical description of RDT and the parameters 

associated with it. Brincker et al [13] have provided an excellent explanation of the 

mathematics and methodologies for estimation of autocorrelation and cross–correlation using 

RDT. Ibrahim also came up with a more general vibration analysis technique known as the 

“Ibrahim Time Domain Modal Testing Technique”. Asmussen, Brinker and Ibrahim also 

proposed a vector triggering technique as an alternative, viable option to RDT. The Vector 

Random Decrement (VRD) functions are equivalent to free decays. The study of VRD 

technique was considered to be beyond the scope of this research and is not studied as a part 

of this thesis. 
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Kijewski T. and Kareem A. [23, 24] 

Kijewski and Kareem published their work on the reliability of RDT for the 

estimation of structural damping when some of the trigger conditions, associated with RDT, 

are relaxed. Allowing overlapping is another such condition in which two or more 

consecutive triggered samples share some part of the time history. They concluded that the 

effect of overlapping on loss factor estimation is marginal. In this research only non–

overlapping samples, i.e. 0% overlap or uncorrelated triggered samples, were employed to 

evaluate the randomdec signature. In their research, they used the triggering conditions in its 

“strictest sense”, i.e. selecting only the response peaks in a particular amplitude window. 

Their triggering approach is adapted for the research on RDT provided herein.  

2.3 Theoretical Background 

The randomdec signature, 0xD , is proportional to the autocorrelation function, )(τxR , 

of the system according to following equation [6]:  

                                                  )0(/)()( 00 xxx RRxD ττ =                    (eqn. 2.1) 

where, 

12 tt −=τ  is a dummy (or secondary) time variable 

2t and 1t  corresponds to values of time ‘t’ on linear time scale 

0x   is the initial displacement, or trigger’s amplitude level 

0

•
x   is the initial velocity, or trigger’s slope; if peaks in the response are selected 

  as trigger then, 00 =
•
x .  
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For a single degree of freedom system, excited with Gaussian, zero–mean, white 

noise, the randomdec signature is equivalent to the autocorrelation function, as given in 

equation 2.2, below. 

                                    ])()(|)([)( 010120

••
==≡ xtxandxtxtxEDx τ                   (eqn. 2.2) 

The autocorrelation function can be normalized to represent the following form:  

           )cos()( τωτ τζω
dx

nCeR −=                                (eqn. 2.3) 

where,  

C = )0(/0 xRx  

nω  is the natural frequency 

dω  is the damped natural frequency 

ζ  is the damping ratio 

)(tx  is the measured response. 

Comparing equation 2.1 and 2.3, it can be concluded that the randomdec signature is 

equivalent to free decay for a 1DOF system excited with Gaussian, zero–mean, white noise. 

[24] Figure 9 represents a response record satisfying a trigger event (top figure), the resulting 

autocorrelation function and the magnitude of the Hilbert transformation of the positive 

portion of the autocorrelation function (bottom figure). 

The Gaussian white noise has a constant power spectral density but random phase. 

The Figure 10 illustrates the frequency domain characteristics of a simulated band–limited 

random force. In this figure, the power spectral density of force is constant, non–zero, in the 

frequency range of 10 Hz to 200 Hz. The random response generated from this force will also 

be random and in a narrow–band of 10 Hz to 200 Hz.  
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Figure 9: Schematic of process of loss factor estimation using autocorrelation functions 
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Figure 10: Gaussian white noise – Frequency Domain 
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 A random response, as shown in Figure 11, can be generated by convolving a random 

force with the impulse response of a 1DOF system. To estimate the free decay characteristics 

of the system, using the RDT, narrow–band filtering needs to be implemented. If the random 

response is filtered using a narrow–band filter the out–of–band frequencies in the random 

response are eliminated. Filtering options are discussed in Section 2.4.2.3. The filtered 

response of the response given in Figure 11 by using a filter centered at 200 Hz, is plotted in 

Figure 12. Note the resulting nearly uniform rate of zero–crossing indicative of narrow–band 

response. 
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Figure 11: Unfiltered random response of a 1DOF system with fn = 200 Hz 
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Figure 12: Filtered random response using bandpass filter with center frequency of 200 Hz (for a 
1DOF system with fn = 200Hz) 
 

The impulse response function for a 1DOF system is mathematically described as: 

                                           )sin()( t
m

e
th d

d

tn

⋅
⋅

=
⋅⋅−

ω
ω

ωζ

                                          (eqn. 2.4) 

where,  

)(th  is the impulse response function 

m is the mass of the system. 

The exponential decay, tne ⋅⋅− ωζ , for a 1DOF system subjected to non–zero initial 

displacement and zero velocity, is identical to the exponential decay of the impulse response 

function. From the Hilbert transformation of decaying response, the exponential decay or 

envelope can be computed. The loss factor can be then calculated by measuring the decay 

rate of this envelope and using the following relation [1,8]: 
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nf

DR

⋅
=

3.27
η                                                    (eqn. 2.5) 

where, 

nf  is the 1DOF system’s natural frequency; when dealing with a MDOF system, nf  is 

replaced by cf  – the band’s central frequency  

DR is the decay rate of the response and Hilbert transformation of the response in dB/sec. 

 Equation 2.5 can be derived as follows: 

t

H
DR

∆
∆=  

where,  

H  is measured in decibels, that is: 

)(log20 1
101

tneH ⋅⋅−⋅= ωζ  

)(log20 2
102

tneH ⋅⋅−⋅= ωζ  

⇒ )log20(log20 10110212 etetHHH nn ⋅⋅⋅⋅−−⋅⋅⋅⋅−=−=∆ ωζωζ  

12 ttt −=∆  

nn f⋅= πω 2  

⇒
eft

H

n 10log202 ⋅⋅⋅⋅∆
∆=

π
ζ  

5757.54log220 10 =⋅⋅ eπ  

⇒
nf

DR

⋅
==

288.27
2 ηζ  

It is evident from equation 2.5 that the decay rate is proportional to the loss factor and 

is inversely proportional to the band’s central frequency. This implies that the free vibrations 
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for lightly damped structure will last longer as compared to free vibration of a highly damped 

structure. The process of computing loss factor from the decay rate of impulse response or 

free decay is discussed in section 1.3.1 and is presented in the Figure 13, below. 
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Figure 13: Schematic of process of damping loss factor estimation 
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2.4 Processing Parameter Study 

For the efficient use of RDT, the data processing parameters associated with the 

technique need to be understood. Some of these parameters play a significant role in accurate 

estimation of loss factor. The parameter settings are judged on two criteria: first, their effect 

on the accuracy of estimated loss factor; and second, their effect on the data processing 

efficiency. Based on the above two criteria, the optimum parameter settings are chosen for 

implementation in the experimental validation of RDT. 

2.4.1 Research Methodology 

The process parameters and their impact on accuracy of loss factor estimate using 

RDT are evaluated on three different models: 

1. Spring–Mass–Damper (1DOF) simulations 

2. Finite Element Analysis (FEA) of a thin rectangular plate model – using MSC/ 

NASTRAN to compute the FRFs 

3. Experimental validation by comparison with IRDM estimates of loss factor using 

three damped plates. 

For a 1DOF system, the effect of sample length, trigger settings and type of 

averaging (direct averaging or averaging of the autocorrelation functions) are examined. The 

optimized settings from analysis of a 1DOF system are used in the study of the computational 

plate model. If a particular value of a variable leads to a poor loss factor estimate in the 

analysis of the 1DOF system, that particular variable setting was not used in the analysis of 

the MDOF system.  

The computational plate used in this study has 16 output locations at which the FRFs 

are computed. The critical findings, regarding the process parameters, of this computational 
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study form the basis of experimental analysis of a real structure. The experimental 

evaluations of RDT were accomplished using 3 DAMPED plates, with different damping 

levels. Finally the loss factor estimates from RDT and IRDM are compared.  

2.4.2 Single Degree of Freedom System 

 In the following sections, the first study of parameter settings for efficient 

implementation of RDT in loss factor estimation is discussed.   

2.4.2.1 Damping Loss Factor Range 

Most of the experimental loss factor estimation techniques rely on the assumption of 

viscous damping. Typically, for structures treated with constrained layer damping, the loss 

factor will range between 0.01 and 0.1.[1] These empirical damping loss factors for thin steel 

and aluminum plates are represented in Figure 14 (adapted from Figure 9.4 of Reference 1). 

Thus, computational plate models with loss factors of 0.01 and 0.1 were simulated. The plates 

analyzed experimentally also have estimated loss factors in the same range. 
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Figure 14: Empirical damping loss factors for steel and aluminum thin plates and shells in the 
size range of 0.1 and 10m.  
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2.4.2.2 Length of Sample 

In an experimental analysis, the length of sample should be long enough to capture 

the complete decay of the randomdec signature, i.e. until the measured response is at the 

noise floor. The length of triggered sample and the number of triggers will dictate the length 

of response measurement to be recorded for data analysis. To optimize the memory usage and 

reduce computation time, a target sample length needs to be established. As discussed in 

earlier sections, the decay rate is proportional to loss factor and hence the length of sample 

can be expressed as a function of loss factor. 

To determine the target length of sample, free decays for different damping levels 

and frequencies are plotted. In experimental analyses, the response of the plate will be 

measured by an accelerometer. Therefore, the normalized acceleration’s free decay for the 

same frequency and damping levels are plotted, along with normalized displacement, in 

Figure 15.  

For a 1DOF system, the transient displacement response is given by: 

                                  )sin()( φωωζ +⋅⋅= ⋅⋅− tetx d
tn                     (eqn. 2.6) 

and transient acceleration response is given by the following relation: 

{ })cos(2)sin()()( 222 φωωωζφωωωζωζ +⋅⋅⋅⋅⋅−+⋅⋅−⋅⋅= ⋅⋅−
••

ttetx ddnddn
tn  

              (eqn. 2.7) 

where, 

21 ζωω −= nd  

 It can be noted that the exponential decay of displacement and acceleration, from 

equation 2.6 and 2.7, are equal to tne ⋅⋅− ωζ . Therefore, for a constant damping level, the 



 33 

numbers of cycles for vibrations to damp–out will remain the same in all the frequency 

bands.  

 For one such case, when the damping loss factor is 0.1 and the frequency range is 

100 Hz to 6300 Hz, the transient response of displacement and normalized acceleration are 

plotted in Figure 15. 
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Figure 15: Comparison of normalized impulse response of displacement and acceleration 

To verify that the acceleration and response will yield the same decay rate, and in 

turn the same loss factor, the dB decay curves for acceleration and displacement are plotted in 

Figure 16. For a defined loss factor and central frequency, the decay rate for displacement 

and acceleration appear identical. Further, this study was performed for multiple damping 

loss factor values ranging between 0.0025 and 0.5.  
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Figure 16: Comparison of dB decay of displacement and acceleration 

It is concluded that for a particular level of damping, the length of sample in terms of 

number of cycles, can be established as a fixed parameter for the entire frequency range. The 

number of cycles to damp–out versus the damping loss factor is plotted, on a log–log plot, in 

Figure 40 of section 3.1.1. The empirical relation, equation 2.8, is derived from the slope of 

the curves presented in Figure 40. The optimum length of sample (or triggered sample) to 

record the complete decay of the free response is given by: 

                  
est

N
η

2.2≅                                                       (eqn. 2.8) 

where, 

N  Length of sample in terms of cycles, for narrow–band time history 

estη  Initial “guess” of the loss factor. 
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Equation 2.8 indicates that the length of sample in terms of cycles is independent of 

the frequency and is only dependent on the loss factor. That is, for a lightly damped structure, 

the length of sample will be longer than the length of sample for a highly damped structure. 

The length of measured response should be at least equal to the cumulative length of all the 

triggered responses required to be averaged to compute the randomdec signature (because the 

triggered samples have no overlap). This is an important observation, especially for lower 

damping levels or central frequencies, for which very long time records are needed to be 

recorded and analyzed.  

2.4.2.3 Filter Selection 

If the structure is excited by random white noise, the response will also be random in 

nature. To extract a response in a narrow frequency band, or for a single mode, band pass 

filtering needs to be implemented. Computation of a randomdec signature from narrow–band 

time histories is statistically more efficient.[12] By filtering the measured response, noise and 

the other out–of–band information can be removed and the resulting randomdec signature 

will be “cleaner”.[15,16]  

Filtering is the first step to condition the data for analysis; therefore, it should be 

understood in detail. During the analysis of RDT, it is observed that filtering is one of the 

most time consuming process, especially when the random response is required to be filtered 

in multiple frequency bands.  

In general, filters can be classified as Infinite–duration Impulse Response (IIR) filter 

and Finite–duration Impulse Response (FIR) filters. Unlike the IIR filters, the FIR filters are 

always stable in form. FIR filters can have exactly linear phase and the design methods are 

generally linear.[25] Kaiser window filters (FIR) were chosen over the other FIR filters 

because of the relatively better control over the filter design parameters and ease in 
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implementation. All the filters used in this study are designed using MATLAB’s Filter 

Design and Analysis Tool (FDA Tool), which is represented in Figure 17. 

Filter Order 

Type of Filter

 
Figure 17: FDA Tool design window for The Mathworks MATLAB R2009a 

In the field of structural dynamics and acoustics it is common to analyze a signal in 

frequency bands with constant percentage bandwidths, for example full and one–third octave 

bandwidths. In the computational and experimental studies, reported herein, both 1/3rd and 

full octave bandpass filters are studied. The filter in Figure 17 is designed for central 

frequency of 100 Hz for a full octave bandwidth, that is, 70.7 to 141.4 Hz. The parameters 

associated with this filter design, to be implemented using the MATLAB’s FDA Tool, are 

explained through the following Figures 18 and 19.  
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Figure 18: Filter design parameters – MATLAB FDA Tool 

For the Figure 18:  

Fstop1  is the end of the first stopband (Hz) 

Fstop2  is the beginning of the second stopband (Hz) 

Fpass1  is the beginning of the passband (Hz) 

Fpass2  is the end of the passband (Hz) 

Fs  is the sampling frequency (in Hz) 

cf   is the band’s central frequency (Hz) 

Astop1  is the first stopband attenuation (dB) 

Astop2  is the second stopband attenuation  (dB) 

Apass  is the passband attenuation (dB) 

Order  is the filter order of the designed filter 
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 For 1/3rd octave bandpass filters “octave factor” or OctaveF  is 21/6.[1] 

For full octave bandpass filters OctaveF  is 21/2.[1] 

To define the filter boundaries, the “roll–off” frequencies are calculated in terms of 

the percentage, or %B ,of the width of the passband.  

Octavec FfBFstop /)1(1 % ⋅−=  

Octavec FfFpass /1=  

Octavec FfFpass ⋅=2  

Octavec FfBFstop ⋅⋅+= )1(2 % . 

 The central frequencies, fc, for which the performance of RDT is analyzed, are: 

100 Hz, 125 Hz, 160 Hz, 200 Hz, 250 Hz, 315 Hz, 400 Hz, 500 Hz, 630 Hz, 800 Hz, 1000 

Hz, 1250 Hz, 1600 Hz, 2000 Hz, 2500 Hz, 3150 Hz, 4000 Hz, and 5000 Hz. 

The filter design parameters for 1/3rd octave filters and full octave filters are 

presented in Figure 19. 
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fc /21/6
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Frequency

fc *21/6

fc /21/2 fc *21/2 (1+B%)*fc*2
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1/2

(1+B%)*fc*2
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1/6

Fpass1 Fpass2 Fstop2Fstop1

Fpass1 Fpass2 Fstop2Fstop1

 
Figure 19: Filter design parameters for 1/3rd and full octave bands (Representation only – not to 
scale) 
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 “Tight filter bands” correspond to higher stop band attenuations and/or a narrow 

passband, i.e. higher magnitude of Astop1 and Astop2 and/or smaller %B . As the OctaveF  for 

1/3rd octave is smaller than the OctaveF  of full octave, the 1/3rd octave bands will be tighter 

than the full octave filter bands. 

To test the effect of filters on decay rate, i.e. loss factor, a simple computational 

experiment was conducted. In this experiment, the impulse response of a 1DOF system with a 

natural frequency of 100 Hz and loss factor of 0.01 is “contaminated” with impulse responses 

of 10Hz, 50Hz and 170Hz. Filters of different attenuations and bandwidth were created and 

implemented to filter out the unwanted out–of–band frequencies. The following four filters 

with the same central frequency of 100 Hz and full octave bandwidth were created to study 

the effect of filters: 

1. 10th Order Filter – 6dB stopband attenuation 

2. 100th Order Filter – 6dB stopband attenuation 

3. 166th Order Filter – 20dB stopband attenuation 

4. 315th Order Filter – 40dB stopband attenuation. 

All filters cause a “group delay” in the filtered response; however the group delay 

does not alter the decay characteristics. For a Kaiser Window (FIR filter), the group delay is 

half of the filter order. Time delay is equal to the product of the group delay and time 

increment ‘dt’. Hence, for a filter with higher order, the associated group delay and time 

delay will be also higher. In Figure 20, the filtered response and the time delay associated 

with different filters are plotted. It can be observed that for this 1DOF computational 

experiment, the response filtered with 315th order filter has the highest group delay and the 

response with 10th order filter has the least group delay. This observation is consistent with 

theory which states that higher filter order causes higher group delay.  
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The group delay introduced in the filtered response, to be analyzed using RDT, will 

only delay the detection of the first trigger. Therefore, there is no impact of group delay on 

the process of loss factor estimation using RDT. When time domain filters are to be used for 

IRDM, the length of measured response should be long enough to record the complete decay 

of the impulse response. Failing to follow this may result in inaccurate damping estimation.  
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Figure 20: Comparison of group delay for different filter order 

2.4.2.4 Quality of the Filtered Response 

Filters are evaluated based on their ability to filter out the unwanted out–of–band 

frequencies. The Fourier transformation of a signal is often used to represent the signal in the 

frequency domain. In MATLAB, Fast Fourier Transformation (FFT) algorithms are 
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implemented to analyze the filtered signal in the frequency domain. The peaks in the 

magnitude of transformed signal (in the frequency domain) correspond to the dominating 

modes (or frequencies) and for a 1DOF system only one such peak is expected.  

For the previously–discussed 1DOF system, in section 2.4.2.3, the filtered responses 

in the frequency domain are plotted in Figure 21. The 315th order filter has removed all the 

out–of–band frequencies as the only peak noted corresponds to the desired 100 Hz mode. The 

10th order filter failed to eliminate all “out–of–band” frequencies: 10 Hz, 50 Hz and 170 Hz, 

and this is concluded from the prominent peaks, corresponding to the out–of–band 

frequencies, in the FFT of the filtered response. A further, detailed simulated 1DOF system 

study on filters is included in section 3.1.4. 
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Figure 21: Comparison of quality of filtered response 
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For the MDOF computational plate model, created in MSC/ NASTRAN, there are 

two possible filtering options: time domain and frequency domain. Both of these options are 

discussed in later parts of this chapter. 

2.4.2.5 Effect of Filters on dB Decay Curve 

As discussed earlier in previous sections, 2.4.2.3 and 2.4.2.4, lower order filters fail 

to clean the contaminated signal. Therefore, the dB decay of the response filtered using the 

lower order filters will correspond to the decay of long lasting, lower frequency modes, in 

this case the10 Hz mode. The dB decay curves of the filtered responses are plotted in Figure 

22. The very initial decay rates of filtered impulse response from all the filters are consistent 

with the decay rate of the targeted 100 Hz mode with a loss factor of 0.01. From the dB decay 

curve of response filtered using the 10th order filter (red curve) it is very difficult to identify 

the region in which the decay rate can be accurately estimated. On the other hand, the filtered 

response from the 315th order filter (magenta curve) has an identifiable region – 0 second to 

2.5 seconds – in which the decay rate is almost equal to the decay rate of the 100 Hz mode 

with a loss factor of 0.01. 

Clearly, the output from the lower order filters that are contaminated with the out–of–

band frequencies makes it difficult to accurately measure the targeted decay rate of simulated 

1DOF system. The secondary decay curve of filtered response is of the lower frequency 

mode, which has a lower decay rate than the decay rate of the 100 Hz mode. Therefore, the 

loss factor computed from the secondary dB decay curve will underestimate the decay rate of 

the desired 100 Hz mode. 
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Figure 22: Comparison of dB decay for response filtered from different order filters 

2.4.2.6 Effect of Triggering 

The purpose of triggering in RDT is to extract response records with the same initial 

conditions.  When a large number of these triggered responses are averaged, the random 

elements of the random response, which are presumed to have zero–mean, will “disappear”, 

leaving only the decaying response with the trigger setting as the initial condition.  The initial 

conditions used here are a reasonably high value of positive displacement with essentially 

zero slope – characteristic of a “twang” excitation (hold and release, like a guitar string). 

Such initial conditions are recommended by Kijewski and Kareem.[23,24]  Figure 23, 

represents the schematic of a triggering scheme based on the definition of “lower trigger 

level”, which the response must exceed to be a candidate trigger point. If the response 
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“peaks” above this level and decreases below this level before exceeding an “upper trigger 

level”, the peak constitutes a triggering event.    
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Figure 23: Schematic of triggering 

A study has been performed in which the lower triggering level and the width of the 

triggering band are varied. The number of triggered samples available for averaging, i.e. to 

compute the randomdec signature, will depend on the definition of the lower and upper 

trigger levels. For a finite length time history of measured response, the following are found 

to be true: 

1. Increasing the lower triggering level beyond a certain value results in detection of 

a fewer number of triggers 

2. Increasing the width of the triggering band (or spread) results in detection of 

more triggers. 
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 In Chapter 3, the outcome of the study of the effect of changing the trigger level and 

bands is discussed in detail. Based on the observations for a simulated 1DOF study, reported 

in Section 3.1.2, a lower trigger level of twice the standard deviation of random response 

( σ⋅2 ) and a trigger band of width equal to one–fifth of the lower trigger level is 

recommended for the MDOF computational and experimental analysis. 

2.4.3 Computational Plate – NASTRAN Model 

The computational model is a thin plate, used in a previous studies [7,26], with in–

plane dimensions a by b, an aspect ratio, a/b, of 1.5, a thickness ratio, b/t, of   385 and a 

specific stiffness, E/ρ, of 2.59 * 107  Nm/kg.  The damping loss factor, η, is assigned values of 

0.01 and 0.1.  The plate is considered to be free of external supports and is loaded by a 

concentrated mechanical force. 

Although an analytical model is undoubtedly available, a computational model has 

been developed using MSC/ NASTRAN. QUAD4 elements (of dimensions, A by B) with a 

quadrilateral element fineness of approximately 80 (b/B or a/A) have been used to create a 

regular, rectangular mesh. As such, the spatial Nyquist frequency–at which modal half–

wavelengths approach the element width (A or B)–has been shown to be approximately 10 

kHz. The mechanical loads are applied in the center of one quadrant of the plate to a single 

node, modeling physical loading via the bottom surface of a small force gage through which 

the load would be applied in a physical experiment. Responses to excitation at the single 

forcing point were computed at approximately 17 points as indicated in Figure 24, wherein 

each square region represents 100 elements. There are a total of 9,600 square–shaped 

QUAD4 elements in the computational plate model.  In testing completed for the physical 
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model, the external force was exerted by an electrodynamic shaker via a thin stinger 

(tplate/Dstinger = 3), with a force gage attached to the plate.  

(a) (b)

4 Possible
Excitation Points

100 Square-Quad4  Elements

 
Figure 24: Computational plate model – MSC/ NASTRAN 

For the computational studies, the best frequency resolution for a frequency response 

function (FRF) attempted is 1 Hz over a 10 kHz frequency range. These FRFs were inverted 

using the inverse Fourier transform, resulting in the analogous impulse response functions. 

Based on the frequency resolution, ∆f = 1 Hz, and the number of ‘lines’ in the FRF, Nlines = 

10,000, the length of the IRF is 1/ ∆f = 1 second. Since there were ‘Nlines’ lines in the FRF, 

the number of response points in the impulse response function is 2.Nlines = 20,000, which 

corresponds to the temporal resolution of 1/20,000 = 50 microseconds. As such, the temporal 

resolution in the computational studies allows resolution up to 10 kHz, but only useful 

responses up to about 5 kHz. 
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2.4.3.1 Filtering 

As discussed earlier, filtering is required to obtain narrow–band time histories, 

ideally to result in only one mode per frequency band. From the MSC/ NASTRAN 

computational plate model, only the FRFs were available. However, RDT requires time–

domain responses. Therefore, to get a random response, the impulse response is first 

computed by the inverse Fourier transformation of the FRFs. This impulse response is then 

convolved with a simulated time domain random force to generate the time history of a 

random response. Therefore, filtering can either be applied to the resulting response, that is, 

Time Domain Filtering (or TDF), or to the FRF before convolution, that is, 

Frequency Domain Filtering (or FDF).  

In the conventional, i.e. experimental approach, RDT loss factor estimation process, 

only the time domain filtering is possible because only output measurements from 

accelerometers or strain gages are recorded. In Chapter 3 and Appendix A, the loss factor 

estimates from FDF and TDF approaches are compared. This comparative study of TDF and 

FDF can be used as a reference when dealing with filtering options to make a better choice.  

2.4.3.1.1 Time Domain Filtering (TDF) 

The TDF approach relies on the filters created using the MATLAB’s FDA Tool for 

filtering the long time histories of the response in finite width frequency bands. The steps 

involved in time–domain filtering, also graphically represented in Figure 25, for a MDOF 

computational plate model are: 

1. FRFs from a desired output location on the plate are extracted from the MSC/ 

NASTRAN output files. For the simulated plates, these FRFs are for a frequency 

scale of 0 Hz to 10 kHz.  
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2. The impulse response for the system, which comprises of all possible modes 

below the Nyquist frequency, 10 kHz, is calculated by inverting the complete 

FRF in the Fourier sense.   

3. The time domain response is generated by convolving the impulse response with 

a long time domain random force, thereby allowing for many triggered time 

records to be extracted later.  

4. The random response is then filtered by using filters created in MATLAB to 

produce the narrow–band time history. 

5. The randomdec signature is calculated from each narrow–band response. The 

loss factor can be estimated from the decay rate of randomdec signature, using 

equation 2.5. 

2.4.3.1.2 Frequency Domain Filtering (FDF) 

As the process’s name suggests, the narrow–band response is calculated using filters 

in the frequency domain. The steps involved, as represented in Figure 26, with FDF are:  

1. The complete FRF is evaluated in a similar way as discussed in TDF approach.  

2. The FRFs are filtered in frequency domain by “zero–padding” the FRF elements 

corresponding to out–of–band frequencies. By computing the inverse, in Fourier 

sense, of this “chunked” FRF the narrow–band impulse response is estimated.  

3. The convolution of this band–limited impulse response with a long random force 

yields a narrow–band response. 

4. The process to calculate the loss factor from the free decay is the same as 

discussed in the TDF section.  
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Figure 25: Schematic of Time Domain Filtering 
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Figure 26: Schematic of Frequency Domain Filtering 
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2.4.3.2 Averaging Schemes – Extracting the Free Decay 

 For the case of a single degree of freedom system excited with white noise, (a 

stationary, Gaussian process), the autocorrelation function is equal to the free decay.[5,6] The 

fact that the decay of  the autocorrelation function of random response is equivalent to the 

free decay of response offers an option to select one of two possible averaging schemes, 

discussed in following section, to extract the free decay rate. The direct method is to average 

the triggered responses; the alternate way is to average the autocorrelation functions of 

triggered response samples.  

2.4.3.2.1 Averaging the Triggered Responses – Direct Averaging 

When a system is excited by Gaussian, zero–mean, white noise, the response is also 

zero–mean random response. If a large numbers of samples with the same initial conditions 

from a long record are averaged, the random component of the response “averages out” and 

only the transient decay survives. In Figure 27, the first three subplots represent the three 

triggered samples, with similar initial conditions, from a long time history of measured 

response. The last subplot in this figure is the average of 1000 such triggered samples which 

is basically the randomdec signature. 

2.4.3.2.2 Averaging the Autocorrelation Functions 

The randomdec signature is proportional to the autocorrelation function which when 

normalized to initial conditions, is equal to the free decay of the system. In this averaging 

scheme, the positive autocorrelation functions from the triggered responses are averaged. In 

Figure 28, the first three subplots correspond to the positive part of the autocorrelation 

functions of triggered samples. The final subplot is the average of 1000 such autocorrelation 
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functions. The average of autocorrelation functions and triggered responses should be 

equivalent to the normalized free decay. These relations are discussed in the theoretical 

description and literature review, presented earlier in this chapter. 
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Figure 27: Averaging the triggered responses nullify the random component from the response 
leaving only the free decay 
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Figure 28: Averaging the autocorrelation function of triggered responses yields the free decay 

In Figure 29, the normalized free decays of response from the above–mentioned 

averaging schemes, are plotted. The dB decays, for both averaging approaches, are plotted in 

Figure 30. The decay rate and the free decay obtained from both techniques seem to be in 

agreement for “early” times (< 0.05 sec). The autocorrelation averaging, however, better 

shows the expected decay rate for ‘long’ times (> 0.05 sec). 
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Figure 29: Comparison of free decays for different averaging schemes  
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Figure 30: Comparison of dB decays for different free decay averaging schemes 
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2.4.3.3 Averaging Schemes – Estimating the dB Decay 

There are 16 available output locations for the computational plate model. From each 

output location, one randomdec signature can be processed. Loss factors can be calculated 

from one of three potential approaches to estimate the final dB decay. The difference in these 

possible methodologies is the step in the process of loss factor estimation at which the 

averaging is done, i.e., before or after taking the log10 or the Hilbert transformation.  The 

possible averaging schemes are:  

1. LF1 approach – The free decays from all the output locations are averaged. This 

scheme is graphically presented in Figure 31 

2. LF2 approach – The exponential decays or envelopes of free decays from all the 

output locations are averaged. This scheme is graphically presented in Figure 32 

3. LF3 approach – The dB decay curves from all the output locations are averaged. 

This scheme is graphically presented in Figure 33. This approach is consistent to 

the averaging scheme used in conventional IRDM loss factor estimation when 

response is measured from multiple locations on a panel.[7] 

Once the dB decay curves from which the loss factor is to be estimated are 

calculated, an automated slope–fitting algorithm, discussed in the following section, is used 

to measure the decay rate. For the computational plate model, a comparative study of loss 

factor estimates, averaged over the entire frequency range, is presented in Appendix A and is 

summarized in Section 3.2. LF2 and LF3 are most promising approaches, while, and LF1 is 

the least promising. 

The potential benefit of the LF3 scheme over LF2 schemes is that in the former 

approach, the dB decay curves from all output locations are available and if one of the decay 

rates has poor characteristics it is relatively simple to reject that particular decay curve. In 
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experimental analysis, the LF3 approach was chosen over LF2 because the averaging scheme 

associated with LF3 is easier to implement in practice. The LF3 approach is analogous to 

averaging of the estimated loss factors from multiple response locations.  
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Figure 31: Schematic of LF1 averaging approach 
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Figure 32: Schematic of LF2 averaging approach 
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Figure 33: Schematic of LF3 averaging approach 
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2.4.3.4 Slope Fitting – Estimating the Decay Rate  

Loss factors are estimated from the decay rate in dB/sec. The dB decay curves from 

experimental or computation analyses are rarely linear. Therefore, to estimate decay rate, a 

least squares linear curve fit can be implemented. The curve fitting can be user defined 

(manual) or it can be automated. For multiple input–output locations and multiple frequency 

bands, automated slope fitting is strongly recommended. 

Manual slope–fitting may turn out to be a better option for a small number of dB 

decay curves, but when a large number of curves are to be fitted, human error in fitting a 

curve is inevitable and the results are difficult to reproduce. On the other hand, automated 

slope fitting is faster and efficient, but must be studied extensively before general use. It is 

suggested that the slope fitting should be automated with some supervision or control over 

the process. In the analysis presented, all the slope fits from which the loss factors are 

estimated are visually inspected. For decay curves on which the slope fitting does not seem to 

work accurately, the manual slope fitting approach is enforced. 

  The proposed automated slope–fitting algorithm identifies the local ‘peaks’ in the dB 

decay curves and then fits a least squares linear curve through them. For the slope fitting, the 

user specifies the start and end points on the dB decay curve. The slope of the least squares 

linear curve fit is the decay rate. If less than two peaks are detected, manual slope fitting is 

chosen over the automated slope fitting approach to avoid bias.  

Equation 2.5, as derived in section 2.3, provides a relation between the decay rate and 

the loss factor: 

                                                             
cf

DR

⋅
=

3.27
η                                             (eqn. 2.5) 
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where, 

DR is the decay rate (dB/sec) =   Negative of the slope of the least squares linear curve fit  

cf  is equal to frequency band’s central frequency (Hz). 

 Figure 34 presents the dB decay curves from different averaging schemes, as 

explained in section 2.4.3.3.  
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Figure 34: Comparison of dB decays for different dB decay estimation schemes 

Figures 35 to 37 correspond to slope fitting on the dB decay curves from different 

averaging schemes. In these figures, the black markers ‘*’ are the local peaks in the dB decay 

curve and the black line is the linear slope fit through the indicated local peaks. MATLAB’s 

least squares linear curve fitting function is used for implementation of the automated slope 

fitting. 
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Figure 35: Slope fit and loss factor estimation from LF1 approach 
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Figure 36: Slope fit and loss factor estimation from LF2 approach 
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Figure 37: Slope fit and loss factor estimation from LF3 approach 

2.4.4 Experimental Validation 

The final objective of this research is to experimentally validate RDT for loss factor 

estimation. This is achieved by evaluating the loss factor of three different plates with 

damping treatments applied to them. The plate’s dimensions and expected damping levels are 

provided in Table 1. Plate 1 is the most damped and Plate 3 is the least damped amongst the 

three plates. The estimated damping loss factor of all the three plates is in the range of 0.1 

and 0.01, which is the loss factor range studied for the simulated MDOF computational plate 

model. Hence the conclusions drawn for the computational models have been directly 

adapted in the experimental validation studies. 

  Filters were created using the MATLAB’s FDA Tool and implemented using 

MATLAB codes; i.e. the analysis is mainly off–line. The RDT loss factor estimates for the 
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plates are compared to loss factors estimates by IRDM. An in–house LabVIEW code for 

real–time analysis has been used to estimate the damping loss factor using IRDM. In IRDM, 

both hammer and shaker excitations were used to compute FRFs. Frequency domain filtering 

is implemented to extract the band–limited impulse response functions from the 

accelerometer data. The excitation and measurement location were the same in RDT– and 

IRDM–based loss factor analysis. 

The accelerometers used, PCB Model # 352A71, were small and light weight (0.64 

gms) which is negligible as compared to the mass of plate. The plates were excited at four 

different locations and the response was measured by eight accelerometers. In Figure 39 the 

excitation locations are indicated by red squares and the response measurement locations are 

represented by green circles. These excitation and response locations were randomly chosen 

so as not to excite the structure at expected node lines. The sampling frequency for the 

experimentation was 20 kHz, which is sufficiently high to analyze the system’s response up 

to a band with central frequency of 5 kHz.  

All plates were hung from two thin steel wires to simulate free boundary conditions. 

For persistent random excitation, a mechanical shaker is used. The power delivered by the 

shaker can be amplified from the gain setting on the power amplifier or through the virtual 

‘knob’ on the LabVIEW front panel. A force gage is used to measure the input force, though 

in RDT the force information is not used at all. Through a thin, flexible stinger the 

mechanical excitation from the shaker is transferred to the plate thereby avoiding moment–

loading. The force gage is positioned between the stinger and the point of application on the 

plate. Response of the plate from eight different locations is measured by accelerometers 

positioned on the opposite side of the test specimen from the force gage and shaker.  
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The measured signals are “conditioned” using a 16–channel signal conditioner. The 

excitation to the mechanical shaker and the measured signals (acceleration and force) are 

converted from analog to digital form using a NI PXI–1033 chassis. A LabVIEW code is 

used to record these processed signals in either ‘.txt’ or ‘.lvm’ format. The schematic of the 

experimental setup is shown in Figure 38. 

 
Figure 38: Schematic of the experimental setup 

The sensitivities and description of the transducers and instruments used are provided 

below:  

Hardware 

1. Chassis – NI PXI 1033 

2. Signal Conditioner – ICP 16 channel 

3. Amplifier – LDS PA25E Power Amplifier 

4. Shaker – LDS V203 

5. Transducers 

1. Impulse Hammer – Modally Tuned  
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PCB Model # 086C03 with a sensitivity of 10 mV/lb for plastic vinyl tip 

2. Accelerometers (8 used) 

PCB Model # 352A71 with a sensitivity of between 9.13 mV/g to 10.16 mV/g 

3. Force Gage 

PCB Model # 708 A50 with a sensitivity of 49.83 mV/lbf 

       
Figure 39: Plates with damping treatments for experimental analysis 

 Plate 1 Plate 2 Plate 3 

Base Plate Al CLAD 2024–T3 

34.9 x 20.29 x 0.16002 

cm3 

5052–H34 

34.7 x 20.10 x 0. 3055 

cm3 

Mild Steel 

39.37x63.50x0.6350 

cm3 

Viscoelastic 

Material 

3M F9469PC 

0.0127 cm thick 

3M F9469PC 

0.0127 cm thick 

3M F9469PC 

0.0127 cm thick 

Constraining 

Layer 

Al CLAD 2024–T3 

34.9x20.29x0.0508 cm3 

Al CLAD 2024–T3 

34.7x20.1×0.0508 cm3 

Brass Sheet 

25.4x10.16x0.0127 cm3 

Coverage Full Full Partial 

Estimated 

Loss Factor 

≈ 0.1 ≈0.07 ≈0.01 

Table 1: Description of plates used in experimentation 
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In the estimation of loss factor for Plates 1 and 2 using RDT, 500 triggered samples 

are averaged. For the lightly damped plate, 200 triggered samples are averaged to estimate 

the randomdec signature, from which the decay rate is measured.  

A LabVIEW code, which incorporates all the conclusions and recommendations from 

this research, has been developed for real time analysis. It is recommended that in the future, 

all the RDT or IRDM analysis should be done in real time using this LabVIEW code.  
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3 Results and Discussion 

This chapter is aimed at the discussion of the accuracy and efficiency of RDT for loss 

factor estimation. Section 3.1 and 3.2 provide the qualitative analysis of parameters affecting 

loss factor estimation for the 1DOF and computational plate models. The chapter concludes 

with a comparison of experimentally–determined loss factors from RDT and IRDM.  

3.1 1DOF Simulation  

3.1.1 Length of Sample 

It is recognized in section 2.4.2.2 that the number of cycles provides a better 

representation of the length of a triggered sample needed for loss factor estimation. For a 

simulated 1DOF system with constant damping, the number of cycles to damp out the 

vibration remains nearly constant over the entire frequency range. In Figure 40, the number 

of cycles to damp–out,N , is plotted versus the simulated loss factor, estη , on a log–log plot. 

The curves in Figure 40, which are almost linear on the log–log plot, can be algebraically 

described as:  

                          
est

N
η

2.2≅                                                       (eqn. 2.6) 

where, 

N  is length of sample in terms of cycles, for a narrow–band time history 

estη  is the initial “guess” of the loss factor during experimentation. 

From equation 2.6, it is noted that the length of triggered sample is inversely 

proportional to the loss factor. Therefore, a lightly damped structure will be required to have 

a longer randomdec signature than that of highly damped structure. Though the numbers of 
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cycles to damp–out over the entire frequency range are constant for a specified damping 

level, the randomdec signature in a lower frequency band will last longer – in terms of time to 

damp–out (in seconds) – than the length of randomdec signature corresponding to a higher 

frequency band. If, non–overlapping triggered samples are used to calculate the randomdec 

signature, the length of time history to be measured will depend on the loss factor and the 

lowest frequency under consideration for loss factor analysis. 

In RDT the loss factor is calculated from the decay rate of the randomdec signature. 

For a better estimate of the damping characteristics, the ensemble of triggered samples should 

be long enough to record the complete decay of vibrations. As the decay rate of a lightly 

damped structure is small, it will vibrate for a longer time. As the triggered sample’s length 

increases, computation or processing time also increases. Thus, RDT is not recommended for 

loss factor estimation in very lightly damped structures and/or in lower frequency bands. 
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Figure 40: Loss factor Vs. Sample length, in terms of cycles 
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3.1.2 Trigger Level and Trigger Band 

For the simulated 1DOF system, to study the trigger level and trigger band, the 

randomdec signature is estimated from multiple triggering conditions. The observations for 

this simulated experiment are included in Figures 41 and 42. Ideally, an infinite number of 

triggered samples are required to be averaged to completely remove the random component 

of the measured response.[5] But because of practical limitations on data acquisition, only a 

finite number of triggered samples can be recorded. If the triggering condition is very strict, 

such as very high trigger levels and/or very narrow trigger bands, fewer triggers are detected.  

Asmussen[22] has noted that for a level–crossing triggering scheme a trigger level 

between σ  and σ⋅2  is a good choice, where σ  is the standard deviation of the random 

response. From the results herein for loss factor estimation, a lower trigger level of σ⋅2  and 

trigger band of 20% of the lower trigger level were considered as a better choice of trigger 

settings when compared to other possible combinations. Since the variation in estimated loss 

factor is under 15%, it cannot be neglected that the possible reason for this deviation is the 

automated slope fitting algorithm. 

 It is evident from Figure 41, for a simulated 1DOF system with loss factor of 0.1 and 

natural frequency of 1000 Hz, the 15 to 20% triggered band performed better than other 

possible trigger settings. However, from results presented in Figure 42, for a simulated 1DOF 

system with loss factor of 0.01 and natural frequency of 1000 Hz, it is clear that 20% 

triggered band performed successfully. In both cases the length of triggered sample is based 

on equation 2.6 and a total of 250 triggered samples are averaged to compute the free decay. 

Therefore, for computational and experimental analysis, a trigger level of σ⋅2  and trigger 

band of 20% is used. For Figures 41 and 42, the following parameters associated with trigger 

settings are defined as: 
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σ

0x
TLF =                                                      (eqn. 3.1) 

where, 

TLF   is the trigger level factor and  

0x   is the lower trigger level 

σ   is the standard deviation of the measured response 

                                                      






 +=
100

1 %T
Spread                                              (eqn. 3.2) 

where, 

Spread   is the trigger band in terms of percentage of lower trigger level amplitude 

%T   is the width of trigger band as percentage of 0x . 
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Figure 41: Study of trigger level and trigger band (for 1DOF system with simulated LF = 0.1) 
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Figure 42: Study of trigger level and trigger band (for 1DOF system with simulated LF = 0.01) 

3.1.3 Effect of Number of Triggers 

The theory of RDT is based on extraction of decaying randomdec signature by 

averaging samples with the same initial conditions from a narrow–band response 

measurement.  Although, an infinite number of triggered samples are required to retrieve the 

true free decay (or randomdec signature), only a finite number of triggers can be detected 

from the finite length of the response measurement. Therefore, a realistic approach would be 

to average as many triggered responses as possible. To determine the effect of the number of 

triggers used for loss factor estimation, the following study is performed.  

3.1.3.1 Effect of Number of Triggers on dB Decay 

The number of triggered samples averaged to compute the free decay controls the 

quality of dB decay rate, from which the loss factor is to be estimated. In Figures 43 and 44, 



 73 

the dB decay curves of normalized randomdec signatures corresponding to different numbers 

of triggered samples averaged are plotted.  

The red line in Figures 43 and 44 corresponds to the expected dB decay of a 

simulated 1DOF system. It is evident that if larger numbers of triggered samples are 

averaged, a smooth and almost linear dB decay is observed. Alternatively, it can be 

concluded that the initial dB decay converges to the analytical (or expected) dB decay curve 

with increase in number of triggered samples that have been averaged. The initial dB decay 

from averaging the autocorrelation function seems to have a higher slope than expected, and 

is relatively more linear when compared to the dB decay computed using the direct averaging 

approach. These observations are consistent for loss factor levels between 1% and 10%. 
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Figure 43: Study of the effect of number of triggers on dB decay (for a 1DOF system with 
simulated LF = 0.1 and fn=1000 Hz). 
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Figure 44: Study of the effect of number of triggers on dB decay (for a 1DOF system with 
simulated LF = 0.01 and fn=1000 Hz) 

3.1.3.2 Direct Averaging or Averaging Autocorrelation Functions 

In Chapter 2, it was established that the decay of autocorrelation function of random 

response is equivalent to the free decay of response. Thus, the randomdec signature can be 

measured by averaging either the triggered responses directly or the autocorrelation functions 

of triggered responses.  

The number of samples required to be averaged for accurate estimation of the loss 

factors are calculated for both averaging schemes (direct averaging and averaging 

autocorrelation functions). In Figures 45 and 46, for a simulated 1DOF system with natural 

frequency of 1000 Hz and loss factor of 0.1 and 0.01, respectively, the results of this study 

are reported. The following observations can be drawn from Figures 45 and 46: 
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1. Accuracy of loss factor estimation increases with the number of triggered 

samples being averaged.  

2. Averaging autocorrelation functions converges quickly, i.e. by averaging fewer 

triggered samples, to a slightly overestimated loss factor.  

From Figure 45 it can be noted that for a simulated 1DOF system with loss factor 

of 0.1, the averaging of autocorrelation functions converges to a slightly 

overestimated loss factor in about 50 triggered samples. A similar trend is 

observed for the system with a loss factor of 0.01. 

3. Directly averaging the triggered responses converges accurately to the simulated 

loss factor but with a relatively large number of triggered samples.  

It is noted, from Figures 45 and 46, for a loss factor of 0.1 and 0.01, the direct 

averaging approach converged to simulated the loss factor at about 500 triggered 

samples.  

It is recommended to use the direct averaging approach if sufficiently long time 

histories are available to extract the required number of samples for averaging. If fewer 

numbers of triggers are detected, the alternative approach, i.e. averaging the autocorrelation 

functions, can be implemented with the knowledge that the estimates will be slightly biased 

(high). 

The averaging autocorrelation functions approach has a potential advantage over the 

direct averaging approach, particularly in the analysis of lightly damped structure and/or in 

lower frequency bands. In the experimental and computational studies that are included in 

later sections of this chapter, loss factor estimates from both approaches will be analyzed. 
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Figure 45: Study of effect of number of triggers on loss factor estimation (for a 1DOF system 
with simulated LF = 0.1) 
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Figure 46: Study of effect of number of triggers on loss factor estimation (for a 1DOF system 
with simulated LF = 0.01) 
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3.1.4 Filtering 

Since structures have multiple natural frequencies, bandpass filtering is implemented 

to analyze the structure’s damping  in multiple frequency ranges. To study the effect of filters 

on loss factor estimation, a simulated experiment has been devised. A single impulse 

response is generated by summing up impulse responses with natural frequencies of 400 Hz, 

500 Hz, 600 Hz, 700 Hz, 800 Hz, 1000 Hz, 1250 Hz, 1350 Hz, 1450 Hz, 1550 Hz and 1650 

Hz. All these modes have a simulated loss factor of 0.05, which is the intermediate value of 

loss factor range under consideration in this document. Different filters are used to extract the 

1000 Hz mode and analyze the effect of filters on group delay, filter order and loss factor 

estimation. Results of this analysis are tabulated in Table 2. 

It is discussed in section 2.4.2.4 that a tighter and highly attenuated filter will yield a 

better narrow–band data. Both of these parameters, i.e. stopband attenuation and passband 

width, have a direct effect on filter order. In general, the computation time is higher if the 

filter order is higher. In terms of processing time, usually the analysis with implementation of 

lower order filters is faster. Another important result of the filter study, reported in Table 2, is 

that if the stopband attenuation is high, the wider filter will yield a better result and if the 

filter band is narrow, lower stopband attenuation should be adopted. The higher order filters, 

with very high attenuation and a tighter band, tend to overestimate the loss factor.  

For experimental and computational work related to RDT reported herein, filters with 

stopband attenuation of 20 or 40dB and roll off frequencies of +/– 10% (i.e. B%) of the 

extremes of filtering bands are used as filter settings. 
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          Attenuation (dB) 

Band Width (or B%) with respect 

to 

Band Edge Frequencies 

20 dB 40 dB 60 dB 80 dB 

Filter Order 216 411 667 923 

Group Delay 108 205.5 333.5 461.5 

Computation Time  (sec) 0.014771 0.014872 0.018113 0.021568 

40 % 

Measured Loss Factor 0.03774 0.0393 0.0397 0.0393 

Filter Order 288 548 889 1231 

Group Delay 144 174 444.5 615.5 

Computation Time  (sec) 0.012590 0.015923 0.020883 0.023389 

30 % 

Measured Loss Factor 0.0385 0.0408 0.0413 0.0450 

Filter Order 432 821 1334 1846 

Group Delay 216 410.5 667 923 

Computation Time (sec) 0.014031 0.017488 0.023286 0.029481 

20 % 

Measured Loss Factor 0.0459 0.0427 0.0481 0.0480 

Filter Order 864 1642 2667 3692 

Group Delay 432 821 1333.5 1846 

Computation Time  (sec) 0.136432 0.022761 0.033606 0.053053 

10 % 

Measured Loss Factor 0.0495 0.0516 0.0521 0.0542 

Table 2: Effect of filter settings on loss factor estimation (0.05 is the simulated loss factor for the 
model) 
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3.2 Computational Plate Model (MDOF) 

To evaluate the performance of RDT, two simulated plate models with loss factors of 

0.01 and 0.1 were created. For these models, parameters like filter order and averaging 

scheme were standardized based on the results obtained from a 1DOF system. The automatic 

slope selection algorithm was chosen over manual slope fitting in this analysis.  

For the computational plate model, the effect of the following parameters on the 

accuracy of loss factor estimated using RDT are evaluated: 

1. Simulated loss factor  

a. 10% or 0.1 

b. 1% or 0.01 

2. Filtering 

a. Filtering bands 

i. Full octave  

ii. 1/3rd octave  

b. Filtering scheme 

i. Time domain filtering: TDF  

ii. Frequency domain filtering: FDF  

3. Averaging schemes – to estimate the randomdec signature 

a. Direct averaging that is without (w/o) averaging autocorrelation functions  

b. Averaging autocorrelation functions 

4. Number of triggered samples averaged to retrieve the randomdec signature 

a. For simulated loss factor of 0.1: 50, 100, 250, 500 

b. For simulated loss factor of 0.01: 50, 100, 150, 200. 
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Appendix A provides a detailed review of the above parameters through Figures A.1 

to A.16. Also in Appendix A:  

Figures A.17 and A.18 – compares loss factor in full and 1/3rd octave frequency 

bands, 

Figures A.19 and A.20 – compares loss factor for TDF and FDF,  

Figures A.21 and A.22 – compares loss factor computed from direct averaging and 

averaging the autocorrelation functions. 

Tables 5 through 8, in Appendix A, summarize the loss factor averaged over the 

entire frequency range, 100 Hz to 5 kHz. 

The Figures 47 and 48 represent the estimated loss factor, using RDT, in 1/3rd and 

full octave frequency bands with LF3 approach and both possible averaging schemes (to 

compute the randomdec signature).  

3.2.1 Filtering Scheme – FDF or TDF 

Both, Time Domain Filtering (TDF) and Frequency Domain Filtering (FDF) 

approaches have successfully predicted the simulated loss factors for the computational plate 

models. For practical applications of RDT, only time domain filtering is used as it is based on 

absence of knowledge of the input force.  

3.2.2 Choice of Filtering Bands –  1/3rd Octave or Full Octave Bands 

Full octave filters are wider in frequency band than the 1/3rd octave filters. For this 

reason, the full octave filters with the same central frequency as that of 1/3rd octave band have 

lower filter order. It is observed from Figures A.17 and A.18 that the loss factor estimated in 

1/3rd octave filtered response are essentially the same as the estimates from full octave filtered 

response. The filter order for full octave bands are lower than the filter order of 1/3rd octave 
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band, hence the full octave filters will be faster. The marginally enhanced performance of 

1/3rd octave filters can be spared for computationally faster full octave filters. 

3.2.3 Averaging Schemes 

Direct averaging and averaging of autocorrelation functions provided consistent 

results for damping levels of 0.1 and 0.01. Unlike, the 1DOF system, the latter approach did 

not overestimate the loss factor of 0.1. For the loss factor of 0.01 almost all the averaging 

schemes have slightly over–estimated the loss factor. This may be due to the possibility of the 

excitation point being positioned on multiple node lines.[8,9] 

The averaging of autocorrelation function converges quickly with fewer triggers to 

the simulated loss factor, hence it is recommended for experimental analysis. Also in these 

simulations, modal damping was constant for all the modes. For a simulated loss factor of 0.1 

(highly damped plate) averaging of autocorrelation functions performed better than the direct 

averaging approach, in both full and 1/3rd octave bands. 

LF2 and LF3 averaging schemes have performed better than the LF1 averaging 

approach. LF3 is finally chosen over LF2 because of higher flexibility in experimental 

application. Results included herein are for the LF3 approach only.  
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Figure 47: RDT – Loss factor estimates for computational model with simulated LF = 0.1 
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Figure 48: RDT – Loss factor estimates for computational model with simulated LF = 0.01 
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Based on the study of the computational plate model and the results obtained, we can 

recognize that loss factor estimation using RDT is promising, in particular for higher loss 

factors (comparing Figures 47 and 48). It is concluded that the optimum setting for 

experimental loss factor estimation would include: 

1. Time Domain Filtering in full octave bands centered at 1/3rd octave central 

frequencies, 

2. Averaging the dB decay curves (LF3 scheme) for loss factor estimation is chosen 

over other the two approaches (LF1 and LF2), 

3. Automated slope fitting works and is highly recommended, 

4. Length of triggered sample can be calculated based on eqn. 2.6, 

5. Kaiser Window (FIR Filter), with 40dB stopband attenuation at +/–10% of the 

passband frequencies have successfully performed as filter parameters. 

Table 3 and 4 represent the estimated loss factor for MDOF system with simulated 

loss factor of 0.1 and 0.01, respectively. For the computational model with a simulated loss 

factor of 0.1, a total of 500 triggered samples are averaged. For the case of computational 

model with a loss factor of 0.01, a total of 200 triggered samples are averaged.  

 The loss factor estimates for the highly damped computational models are more 

accurate if 1/3rd octave filtering and autocorrelation averaging are implemented. On the other 

hand, the loss factor estimates for the lightly damped computational plate are most accurate 

when direct averaging and full octave bands are used.   

Frequency Band  

Averaging Scheme Full Octave 1/3rd Octave 

Direct Averaging 0.1107 0.1095 

Averaging Autocorrelation 0.0946 0.1025 

Table 3: Averaged LF, over the entire frequency range, for computational plate model (MDOF 
with simulated LF = 0.1) – Summary of Table 5 
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Frequency Band  

Averaging Scheme Full Octave 1/3rd Octave 

Direct Averaging 0.0103 0.0129 

Averaging Autocorrelation 0.0120 0.0123 

Table 4: Averaged LF, over the entire frequency range, for computational plate model (MDOF 
with simulated LF = 0.01) – Summary of Table 6 

3.3 Experimental Results 

Figures 49 through 51 show the loss factor estimated by RDT and IRDM for three 

damped plates in full octave bands. These plates all had constrained layer damping treatments 

which produced damping loss factors in the range of 1% to 10%.  These tests were conducted 

simply to assess the level of agreement between RDT and IRDM.  

  For the RDT results, the data processing also included averaging the dB decay from 

the autocorrelation of the triggered response in full octave bands with the largest number of 

triggers available. The IRDM results were obtained both using persistent random excitation 

and using an impulse hammer.   

 It can be noted, for all three plates tested, that hammer tests have not yielded the best 

loss factor estimates. Also there is considerable underestimation beyond 2500 Hz, which 

possibly is due to the impulse hammer tip selected for which the performance decreases with 

frequency. For mechanical excitation, the loss factor estimated using IRDM and RDT have a 

similar trend.    

 RDT’s computational efficiency (processing time requirements) is lower for the 

lightly damped plates evaluated because of the longer record required, from which the 

triggered samples are to be detected. In cases like these, only high frequency bands should be 

selected or averaging based on autocorrelation should be used, as it converges in a smaller 

number of triggered samples (but slightly overestimates).  
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 From previous work by Dande and Ewing[26], it is expected that IRDM 

underestimates loss factor of highly damped plates. This underestimation is also observed in 

the experimental study reported herein. By way of explanation, the “direct field” will 

dominate the response near the point of excitation and the “reverberant field” will dominate 

at large distances, i.e. away from the excitation point. The radius of the direct field is directly 

proportional to the loss factor and frequency band under analysis.[1] Thus, for a plate which 

is highly damped, there is higher probability of having more accelerometers positioned inside 

the direct field. The kinetic energy inside the direct field is higher than that in the reverberant 

field. For a highly damped and small plate, loss factor estimation based on randomly 

positioned accelerometers – which have a higher probability of being inside the direct field 

will underestimate damping. In the case of a lightly damped plate, the direct field is small and 

hence more of accelerometers, randomly placed, will be positioned outside the direct field. 

Therefore, for a lightly damped plate, the loss factor is more likely to be estimated from the 

accelerometers in the reverberant field – which is a key assumption of any method based on 

an input–output relationship.  

 Hence, it is hypothesized that the loss factor calculated from the accelerometers 

inside the direct field will be underestimated, especially for the highly damped plates which 

have relatively larger direct field. Loss factor estimated using RDT, which is entirely a time 

domain technique, does not seem to be affected by positioning of accelerometers inside or 

outside the direct field.  

 For impulsive excitation, a modally tuned impulse hammer with a plastic vinyl tip is 

used. In general, the loss factor estimated using this plastic vinyl hammer tip is acceptable up 

to 2500 Hz. In experimental analysis provided in following sections, it is observed that for 

highly damped plates, the hammer excitation does not generate promising results. It is 
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possible that the impulsive excitation provided lacks sufficient energy to effectively excite 

the highly damped structure.   

 In the presented experimental analysis, the measured random response is filtered in 

full octave bands. The trigger settings considered are: trigger level of twice the standard 

deviation of response and a trigger band is 20% of the lower trigger level. Only LF3 

averaging scheme is considered in the loss factor estimation of following three plates.  

3.3.1 Plate 1 – Results 

 Plate 1 has the highest damping level amongst the three plates analyzed for loss 

factor estimation. Based on discussion presented before this section, it is expected that the 

frequency domain techniques, such as IRDM, will tend to underestimate the loss factor. A 

total of 500 triggered samples were averaged to generate the randomdec signature. Following 

observations can be made based on estimated loss factors plotted in Figure 49: 

1. RDT and IRDM (with shaker excitation) have a good agreement in the 1000Hz 

and above frequency range. Unlike RDT, IRDM (with shaker excitation) 

underestimated the loss factors in lower frequency ranges (i.e. below 500 Hz).  

2. The IRDM hammer test results are not consistent with the loss factors estimated 

from RDT or IRDM for persistent mechanical excitation. 
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Figure 49: RDT – Experimental loss factor estimates for Plate 1 

3.3.2 Plate 2 – Results 

Plate 2 is the intermediately–damped plate amongst the three plates analyzed. A total of 500 

triggered samples were averaged to generate the randomdec signature. IRDM has performed 

relatively better for this plate. The following observations can be made based on estimated 

loss factors plotted in the Figure 50: 

1. RDT loss factor estimates have moderately good agreement with IRDM (with 

persistent mechanical excitation).  

2. IRDM with impulse excitation has relatively better loss factor estimation for this 

plate. The problem with loss factor estimation in the higher frequency bands 

persists and loss factor is underestimated. 
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3. IRDM, with either shaker or impulse excitation, has a “dip” in loss factor 

estimation curve in the 200Hz to 400Hz frequency range. In IRDM frequency 

domain filtering is implemented, hence, it is possible that the dominating mode 

may have had a natural frequency at the “edge” of the frequency band, and may 

have not been adequately sampled.  
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Figure 50: RDT – Experimental loss factor estimates for Plate 2 

3.3.3 Plate 3 – Results 

 Plate 3 is the least damped plate amongst the three plates being analyzed and has 

partial constrained layer damping treatment. The lightly damped plate required a longer time 

history to extract triggers. But due to practical limitations on the DAQ, a finite length time 

history is recorded which yielded 200 triggered samples in the 100 Hz frequency band. 

Hence, 200 triggered samples were averaged to generate the randomdec signature. Averaging 
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autocorrelation functions underestimated the loss factor as compared to direct averaging. This 

is an atypical trend based on the study of Plate 2 and the computational simulations. The loss 

factor estimated for this plate, using IRDM and RDT have a very good agreement. These 

results are presented in Figure 51.  
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Figure 51: RDT – Experimental loss factor estimates for Plate 3 
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4 Conclusions 

This chapter is aimed at the discussion of conclusions for efficient implementation of 

RDT in loss factor estimation. This discussion is guided by the experience gained in 

experimental studies using the “optimum” parameter settings from the computational studies.  

4.1 Length of Sample 

The length of triggered sample (or randomdec signature), in terms of cycles to damp–

out, is a function of damping loss factor. The following relation is derived empirically and 

has been implemented to optimize the length of time history of response to be measured.  

                  
est

N
η

2.2≅                                                       (eqn. 2.8) 

The triggered samples have no overlap; therefore, the length of measured response 

should be at least equal to the cumulative length of all the triggered samples. From equation 

2.8, it is noted that the length of triggered samples – in terms of cycles – is independent of 

frequency. But the length of randomdec signature or triggered sample in terms of seconds is 

inversely proportional to frequency and will be longer for lower frequencies. Therefore, the 

length of time history to be recorded in an experiment should be based on the lowest 

frequency under consideration.  

4.2 Filtering  

 Filtering is first step in the RDT to “condition” the measured response in narrow 

frequency bands for loss factor analysis. In the computational and experimental loss factor 

estimation, filters with a stopband attenuation of 40 dB and a surplus width of passband equal 

to 10% yielded the best results.   
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4.2.1 Group Delay 

 The group delay or time delay due to filtering is inevitable but it does not affect the 

decay characteristics. The group delay only causes a delay in the detection of the first trigger. 

Group delay is directly proportional to the filter order, i.e. for higher filter order the group 

delay will be higher. 

4.2.2 Filter Order 

 It is recognized that higher order filters can successfully eliminate the out–of–band 

frequencies. The dB decay of response, filtered with a higher order filter, is noise–free and 

the initial decay – from which the loss factor is to be estimated – is more prominent with 

higher order filters.  

The higher order filters, with very high attenuation and/or a tighter band, tend to 

overestimate the loss factor. If the stopband attenuation is high, a wider filter will yield better 

results. If the filter is too narrow, lower stopband attenuation is preferred.  

4.2.3 TDF vs. FDF 

 For the computational plate models, both filtering schemes – TDF and FDF – were 

successfully used in the overall process to accurately estimate the simulated loss factor. For 

RDT–based loss factor analysis, the force causing the excitation is not measured. Thus, the 

usual input–output based FDF can not be implemented. But the equivalency of TDF and FDF 

has been established.  

4.2.4 1/3rd Octave vs. Full Octave Filters 

Full octave and 1/3rd octave filters performed essentially the same, but 1/3 octave 

filters are more computationally–intensive making them less attractive. In the experimental 
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analysis, only full octave wide filters, centered at 1/3rd octave central frequencies, are 

selected.  

4.3 Triggering    

If the triggering conditions are very strict, such as very high trigger levels and/or very 

narrow trigger bands, fewer triggers are detected. A trigger setting with a lower trigger level 

of twice the standard deviation of response and a trigger band of 20% has been shown to 

typically produce the best results in the computational studies. Therefore these trigger 

conditions were also used for the experimental loss factor estimations. 

If a large number of triggered samples are averaged, the quality of the randomdec 

signature and dB decay improves. That is, by increasing the numbers of triggered samples in 

the averaging process, the performance of RDT for loss factor estimation can be enhanced.  

4.4 Averaging Schemes to Estimate the Decaying Response 

 Although averaging the autocorrelation function approach converges quickly, i.e. 

with only a few triggered samples averaged to retrieve the randomdec signature, it tends to 

slightly overestimate the loss factor. On the contrary, the direct averaging approach displays 

slow convergence but accurately predicts the loss factor.   

 For a time history in which few triggers are detected, the averaging autocorrelation 

function approach is recommended if the amount of data available is limited.   

 In the following section, the results for the above–mentioned averaging schemes are 

discussed with respect to LF1 and LF3 averaging approaches.  
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4.5 Averaging Schemes to Estimate the dB Decay  

 If the response is measured from multiple locations on a plate, the loss factor can be 

estimated using either the LF1, LF2, or LF3 averaging scheme. For the computational plate 

model, the LF1 averaging scheme’s performance is inferior with respect to LF2 and LF3 

averaging schemes. Averaging the dB decay curves, i.e. the LF3 averaging scheme, is 

recommended for the experimental loss factor estimation process.  

 For the computational plate models with simulated loss factor of 0.1 and 0.01, the 

estimated loss factor – in full octave band and utilizing time domain filtering – is averaged 

over the entire frequency range. 

 From Table 7, estimated loss factors have a variance of:  

1. 5.4% using the LF3 approach and 8.5% using the LF1 approach for direct 

averaging 

2. 10.7% using the LF3 approach and 21.2% using the LF1 approach for the 

averaged autocorrelation function approach. 

 From Table 8, estimated loss factors have a variance of: 

1. 20.0% using the LF3 approach and 31.0% using the LF1 approach for the direct 

averaging approach 

2. 3.0% using the LF3 approach and 47.0% using the LF1 approach for averaging 

autocorrelation functions. 

Clearly the LF3 averaging approach provides a lower variance of loss factor 

estimates. 
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4.6 Automatic Slope Fitting   

 An automated slope fitting algorithm – based on fitting a linear curve through the 

local maxima/ peaks in the dB decay curve – performed efficiently and is implemented in the 

experimental and computational studies.  

 Slope fitting is a repetitive, at times monotonous, process when multiple frequency 

bands are under analysis. Therefore, automated slope fitting is strongly recommended.  

4.7 Experimental Performance of RDT  

Based on the computational 1DOF and MDOF plate model, the following parameters 

are selected for experimental loss factor estimation using RDT: 

1. Triggering level – Twice the standard deviation 

2. Triggering band – 20% of lower trigger level 

3. Filtering scheme – time domain filtering using full octave filters with 40 dB 

attenuation and 10% surplus passband width 

4. Averaging scheme (to estimate the dB decay ) – LF 3, i.e. averaging the dB 

decay curves 

5. Slope fitting – Automated. 

Based on results presented in Figures 49 and 50, for Plates 1 and 2, it is observed that 

RDT out–performed IRDM. For these relatively highly damped plates, IRDM (with 

impulsive excitation) rarely predicted loss factors that are consistent with loss factor 

estimates from either RDT or IRDM with persistent random excitation. It is hypothesized that 

this underestimation of measured loss factor, for the impulsive excitation–based IRDM, is 

due to the larger radius of the direct field associated with high damping.  Apparently, 
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impulsive excitation is less effective for establishing a reverberant field than the persistent 

excitation. 

For the lightly damped plate, Plate 3, the loss factor estimates from RDT and IRDM 

are consistent. For Plate 3, the direct averaging approach overestimated loss factor as 

compared to the averaging autocorrelation approach. This is an anomalous trend, as it is 

expected that using the averaged autocorrelation functions will result in over–estimated loss 

factor, as noted in the 1DOF and MDOF computational models.  
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5 Recommendations for Further Study 

RDT has successfully performed for the 1DOF computational model, a computational 

plate model and plates treated with constrained layer damping. However, further studies are 

indicated.  

Panel damping loss factors of most interest in the aerospace industry typically range 

between 0.01 and 0.1. It is suggested that if RDT is to be used on lightly damped structures 

(loss factors below 0.01) preference should be given to analysis in higher frequency bands.  

The conclusion of experiments on three damped plates in the laboratory is that the 

RDT and IRDM provide similar estimates of damping for plates with loss factors between 

1% and 10%.  Testing on more complicated structures is now needed.  

One topic for further study is to evaluate loss factors using acoustic excitation. Since 

the applied force need not be measured, this makes acoustic excitations appealing. 

The loss factor estimates by IRDM, for a highly damped plate, under–predicted when 

using impulse excitation. It is recommended that the cause of the underestimation of loss 

factor when using an impulse hammer should be investigated.  

Filters add a finite damping to the filtered response. This additional damping will 

cause overestimation of the loss factor, which is more evident in higher order filters and for 

systems with lower loss factors. It is recommended that the effect of finite damping added 

because of filtering should be evaluated in future studies. 
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Appendix A: Computational Plate Model – Extended Study 

This appendix is aimed at providing a detailed review of loss factor estimation 

process and effect of various parameters on its accuracy. The study herein is only for the 

computational plate model. These results were considered as a basis for establishing 

parameters for the experimental analysis.  

The results are categorized in the following chart to facilitate the reader to identify a 

particular study of interest. These results compare the LF1, LF2 and LF3, the averaging 

schemes to obtain the dB decay, for various damping levels, filtering and averaging schemes.  

 LF = 10%    

 Frequency Domain Filtering Time Domain Filtering 

 w/ autocorrelation w/o autocorrelation w/ autocorrelation w/o autocorrelation 

1/3rd Octave Figure A. 3 Figure A. 1 Figure A. 4 Figure A. 2 

Full Octave Figure A. 7 Figure A. 5 Figure A. 8 Figure A. 6 

     

 LF = 1%    

 Frequency Domain Filtering Time Domain Filtering 

 w/ autocorrelation w/o autocorrelation w/ autocorrelation w/o autocorrelation 

1/3rd Octave Figure A. 11 Figure A. 9 Figure A. 12 Figure A. 10 

Full Octave Figure A. 15 Figure A. 13 Figure A. 16 Figure A. 14 

 

In Appendix A, the averaging schemes to estimate the free decay are defined as: 

1. w/ autocorrelation   – Averaging the autocorrelation functions  

2. w/o autocorrelation – Direct averaging 

 The Figures A.1 to A.16, have three subplots and these subplots correspond to the 

loss factor estimates for averaging schemes: LF1, LF2 and LF3.  The four curves, in these 

subplots, represent the loss factors estimated from the randomdec signature computed by 
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averaging different numbers of triggered samples. The title in following figures is in the 

format – ‘LFi Comparison (LF = X%; Filtering Type; Filtering Band; Averaging Scheme)’. 

The terms in the title are defined as: 

LFi Comparison     – i is the index, 1 to 3, to define the type of averaging scheme utilized for  

  computing dB decay is compared 

  first subplot – LF1 approach 

         second subplot – LF2 approach and  

         third subplot – LF 3 approach 

LF = X%                 – simulated loss factor – X% is equal to either 1% or 10% 

Filtering Type        – type of filtering scheme – FDF or TDF  

Filtering Band        – width of filtering band – 1/3rd octave or full octave 

Averaging Scheme – w/ Autocorrelation or w/o Autocorrelation. 

 The legend, common for all three subplots in following figures, indicate the 

respective loss factor curves for different number of triggered samples been averaged for 

computation of the randomdec signature.  

 The x–axis defines the frequency range – 100 Hz to 10 kHz – for analysis of loss 

factor in central frequency bands from 100 Hz to 5 kHz. 

Figures A.17 and A.18  – compares loss factor in full and 1/3rd frequency octave 

bands, 

Figures A.19 and A.20 – compares loss factor for TDF and FDF, and  

Figures A.21 and A.22  – compares loss factor for direct averaging and averaging 

       autocorrelation function approach.  

Tables 5 through 8 summarize the results by tabulating estimated loss factors 

averaged over the entire frequency range – 100 Hz to 5 kHz. 
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Figure A. 1: Computational Model (LF = 0.01, 1/3rd Octave, Direct Averaging, FDF) 
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Figure A. 2: Computational Model (LF = 0.01, 1/3rd Octave, Direct Averaging, TDF) 
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Figure A. 3: Computational Model (LF = 0.01, 1/3rd Octave, Averaging Autocorrelation, FDF) 
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Figure A. 4: Computational Model (LF = 0.01, 1/3rd Octave, Averaging Autocorrelation, TDF) 
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Figure A. 5: Computational Model (LF = 0.01, Full Octave, Direct Averaging, FDF) 
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Figure A. 6: Computational Model (LF = 0.01, Full Octave, Direct Averaging, TDF) 
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Figure A. 7: Computational Model (LF = 0.01, Full Octave, Averaging Autocorrelation, FDF) 
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Figure A. 8: Computational Model (LF = 0.01, Full Octave, Averaging Autocorrelation, TDF) 
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Figure A. 9: Computational Model (LF = 0.1, 1/3rd Octave, Direct Averaging, FDF) 
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Figure A. 10: Computational Model (LF = 0.1, 1/3rd Octave, Direct Averaging, TDF) 
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Figure A. 11: Computational Model (LF = 0.1, 1/3rd Octave, Averaging Autocorrelation, FDF) 
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Figure A. 12: Computational Model (LF = 0.1, 1/3rd Octave, Averaging Autocorrelation, TDF) 



 115 

10
2

10
3

10
-1

Lo
ss

 F
ac

to
r

LF1 Comparison (LF = 10%; FDF; Full Octave; w/o Autocorrelation)

10
2

10
3

10
-1

Lo
ss

 F
ac

to
r

LF2 Comparison (LF = 10%; FDF; Full Octave; w/o Autocorrelation)

10
2

10
3

10
-1

Frequency (Hz)

Lo
ss

 F
ac

to
r

LF3 Comparison (LF = 10%; FDF; Full Octave; w/o Autocorrelation)

 

 

50 Triggers 100 Triggers 250 Triggers 500 Triggers
 

Figure A. 13: Computational Model (LF = 0.1, Full Octave, Direct Averaging, FDF) 
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Figure A. 14: Computational Model (LF = 0.1, Full Octave, Direct Averaging, TDF) 
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Figure A. 15: Computational Model (LF = 0.1, Full Octave, Averaging Autocorrelation, FDF) 
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Figure A. 16: Computational Model (LF = 0.1, Full Octave, Averaging Autocorrelation, TDF) 
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Figure A. 17: Computational Plate (LF=0.01) Summary – Loss Factor Comparison – Full or 1/3rd 

Octave Filter Bands  
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Figure A. 18: Computational Plate (LF=0.1) Summary – Loss Factor Comparison – Full or 1/3rd 
Octave Filter Bands  
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Figure A. 19: Computational Plate (LF=0.01) Summary – Loss Factor Comparison – TDF and 
FDF  
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Figure A. 20: Computational Plate (LF=0.1) Summary – Loss Factor Comparison – TDF and 
FDF  
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Figure A. 21: Computational Plate (LF=0.01) Summary – Loss Factor Comparison – Direct 
Averaging or Averaging Autocorrelation  
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Figure A. 22: Computational Plate (LF=0.1) Summary – Loss Factor Comparison – Direct 
Averaging or Averaging Autocorrelation  
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A.1 Summary of Computational Plate Model – Tabular Form 

  Simulated Loss Factor = 0.1 

  FDF TDF 

  1/3rd Full 1/3rd Full 

LF1 Direct Averaging 0.0882 0.0745 0.1021 0.0915 

 Averaging Autocorrelation 0.1095 0.0991 0.1258 0.1212 

LF2 Direct Averaging 0.0906 0.0858 0.1022 0.0947 

 Averaging Autocorrelation 0.0880 0.0915 0.0963 0.1065 

LF3 Direct Averaging 0.0930 0.0846 0.1025 0.0946 

 Averaging Autocorrelation 0.0961 0.0936 0.1095 0.1107 

 
Table 5: Averaged loss factors over entire frequency range – MDOF Computational plate model 
with simulated LF=0.1 
 

  Simulated Loss Factor = 0.01 

  FDF TDF 

  1/3rd Full 1/3rd Full 

LF1 Direct Averaging 0.0113 0.0113 0.0138 0.0131 

 Averaging Autocorrelation 0.0117 0.0102 0.0176 0.0147 

LF2 Direct Averaging 0.0111 0.0112 0.0126 0.0122 

 Averaging Autocorrelation 0.0106 0.0095 0.0135 0.0112 

LF3 Direct Averaging 0.0110 0.0110 0.0123 0.0120 

 Averaging Autocorrelation 0.0102 0.0089 0.0129 0.0103 

 
Table 6: Averaged loss factors over entire frequency range – MDOF Computational plate model 
with simulated LF=0.01 
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  Simulated Loss Factor = 0.1 

  FDF TDF 

  1/3rd Full 1/3rd Full 

LF1 Direct Averaging 11.8 25.5 2.1 8.5 

 Averaging Autocorrelation 9.5 0.9 25.8 21.2 

LF2 Direct Averaging 9.4 14.2 2.2 5.3 

 Averaging Autocorrelation 12.0 8.5 3.7 6.5 

LF3 Direct Averaging 7.0 15.4 2.5 5.4 

 Averaging Autocorrelation 3.9 6.4 9.5 10.7 

 
Table 7: Deviation of averaged loss factor from simulated loss factor (%) – MDOF 
Computational Plate Model with Simulated LF=0.1 

 

  Simulated Loss Factor = 0.01 

  FDF TDF 

  1/3rd Full 1/3rd Full 

LF1 Direct Averaging 13.0 13.0 38.0 31.0 

 Averaging Autocorrelation 17.0 2.0 76.0 47.0 

LF2 Direct Averaging 11.0 12.0 26.0 22.0 

 Averaging Autocorrelation 6.0 5.0 35.0 12.0 

LF3 Direct Averaging 10.0 10.0 23.0 20.0 

 Averaging Autocorrelation 2.0 11.0 29.0 3.0 

 
Table 8: Deviation of averaged loss factor from simulated loss factor (%) – MDOF 
Computational Plate Model with Simulated LF=0.01 
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Appendix B: MATLAB Codes 

B.1 Random Force Generation 
%%% Random Force Generator Code  
clc  
clear all  
close all  
  
Fms=1; % Force Amplitude  
fs=20000; % Sampling Frequency  
npts=fs*10.5; % Number of Points, 10.5 is number of seconds of da ta  
deltaf=fs/npts; % Frequency Increment  
f_low=64; % Lowest Frequecy  
f_high=8000; % Highest Freqeuency  
band=f_high–f_low; % Force Band  
f_cutoff_low=round(f_low/deltaf)+1;  
f_cutoff_high=round(f_high/deltaf)+1;  
So=Fms/band;  
P=zeros(npts/2+1,1);  
P(f_cutoff_low:f_cutoff_high,1)=So*ones(f_cutoff_hi gh–
f_cutoff_low+1,1);  
N=length(P);  
level=P/2;  
level=npts*(npts*deltaf)*level;  
level=sqrt(level);  
phase=2*pi*rand(N,1);  
Fw=level.*(cos(phase)+i*sin(phase));  
Fw(N+1:2*(N–1))=conj(flipud(Fw(2:N–1)));  
f=real(ifft(Fw)); % Random Force  
force=f;     
%%% Saving the generated force  
save force_10pt5_Seconds_fs_20000_set_1.mat  force 
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B.2 NASTRAN FRFs to Full FRFs  
%%% For converting NASTRAN FRFs to Full FRFs  
clc  
clear all  
close all 
  
for  quad=1:4  
    for  position=1:4  
        for  input=1:4  
            eval([ 'load 
input_' ,num2str(input), '_quadrant_' ,num2str(quad), '_' ,num2str(positi
on), ';' ])  
            half_FRF=zeros(1,10000);  
            
eval([ 'raw_FRF=input_' ,num2str(input), '_quadrant_' ,num2str(quad), '_'
,num2str(position), '(2:10001);' ])  
            conj_FRF=conj(raw_FRF);  
            other_half_raw_FRF=fliplr(conj_FRF);  
            FRF=[raw_FRF other_half_raw_FRF];  
            eval([ 'save 
FRF_input_' ,num2str(input), '_quad_' ,num2str(quad), '_position_' ,num2s
tr(position), '.mat FRF;' ])  
            clear half_FRF  raw_FRF conj_FRF  other_half_raw_FRF  FRF 
        end  
    end  
end  
clear  
  
for  quad=1:4  
    for  position=1:4  
        avgFRF=zeros(1,20000);  
        for  input=1:4  
            eval([ 'load 
FRF_input_' ,num2str(input), '_quad_' ,num2str(quad), '_position_' ,num2s
tr(position), '.mat;' ])  
            avgFRF=avgFRF+FRF/4;  
            clear FRF  
        end  
        position_number=position+4*(quad–1)  
        FRF=avgFRF;  
        eval([ 'save 
10perc_LF_FRF_position_' ,num2str(position_number), '.mat FRF' ])  
        clear avgFRF FRF position_number  
    end  
end  
clear  
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B.3 Filtered Response Generation – Time Domain Filtering 
%%% Filtered Response Generation  
%%% Step1 IR generation  
%%% Step2 Convolution of IR and Random Force  
%%% Step3 Full Octave Filtering  
%%% Step4 One–Third Octave Filtering  
clc  
clear all  
close all  
  
%%% Converting the FRF to impulse responses, 16 are  total o/p 
locations  
for  i=1:16  
    eval([ 'load 10perc_LF_FRF_position_' ,num2str(i), '.mat' ])  
    IR_long=real(ifft(FRF));  
    IR=IR_long(1:2000);  
    figure(i)  
    time=1/20000:1/20000:.1;  
    plot(time,IR)  
    eval([ 'save 10perc_LF_IR_position_' ,num2str(i), '.mat IR' ])  
    clear  
end  
clear  
%%% Generating random force and impulse responses t o get random 
force  
for  i=1:16  
    for  ii=1:25        
        eval([ 'load 1perc_LF_IR_position_' ,num2str(i), '.mat' ])  
        eval([ 'load 
force_10pt5_Seconds_fs_20000_set_' ,num2str(ii), '.mat' ])  
        
eval([ 'non_refined_convolved_response_LF_1perc_fs_20000_s et_' ,num2st
r(ii), '=conv(IR,force);' ])     
        
eval([ 'response_LF_1perc_fs_20000_set_' ,num2str(ii), '=non_refined_co
nvolved_response_LF_1perc_fs_20000_set_' ,num2str(ii), '(1:10.5*20000)
;' ])  
        
eval([ 'response=response_LF_1perc_fs_20000_set_' ,num2str(ii), ';' ])  
        eval([ 'save 
response_LF_1perc_fs_20000_position_' ,num2str(i), '_set_' ,num2str(ii)
, '.mat response;' ])  
        eval([ 'clear response IR force 
response_LF_1perc_fs_20000_set_' ,num2str(ii), ' 
non_refined_convolved_response_LF_1perc_fs_20000_se t_' ,num2str(ii)])  
        data=[i ii]  
    end  
end  
clear  
%%% Full Octave Filters are created using FDATool, stored and 
recalled  
%%% Full octave filtering  
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load Full_Octave_Filters.mat  
for  i=1:16  
    for  ii=1:25  
        fc=[100 125 160 200 250 315 400 500 630 800  1000 1250 1600 
2000 2500 3150 4000 5000];     
        for  iii=1:length(fc)             
            eval([ 'load 
response_LF_1perc_fs_20000_position_' ,num2str(i), '_set_' ,num2str(ii)
, '.mat' ])  
            frequency=fc(iii);  
            
eval([ 'filtered_response=filter(filter' ,num2str(frequency), ',1,respo
nse);' ])  
            eval([ 'save 
full_octave_filtered_' ,num2str(frequency), 'Hz_response_LF_1perc_fs_2
0000_position_' ,num2str(i), '_set_' ,num2str(ii), '.mat 
filtered_response' ])  
            data=[i ii frequency]  
            clear filtered_response  response  frequency  
        end  
    end  
end  
clear  
%%% ONe–Third Octave Filters are created using FDAT ool, stored and 
recalled  
%%% One–Third octave filtering  
load One_Third_Octave_Filters.mat  
for  i=1:16  
    for  ii=1:25  
        fc=[100 125 160 200 250 315 400 500 630 800  1000 1250 1600 
2000 2500 3150 4000 5000 6300];     
        for  iii=1:length(fc)  
            eval([ 'load 
response_LF_1perc_fs_20000_position_' ,num2str(i), '_set_' ,num2str(ii)
, '.mat' ])  
            fc=[100 125 160 200 250 315 400 500 630  800 1000 1250 
1600 2000 2500 3150 4000 5000 6300];     
            frequency=fc(iii);  
            
eval([ 'filtered_response=filter(filter' ,num2str(frequency), ',1,respo
nse);' ])  
            eval([ 'save 
one_third_octave_filtered_' ,num2str(frequency), 'Hz_response_LF_1perc
_fs_20000_position_' ,num2str(i), '_set_' ,num2str(ii), '.mat 
filtered_response' ])  
            data=[i ii frequency]  
            clear fc  filtered_response  response  frequency  
        end  
    end  
end  
clear 
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B.4 Filtered Response Generation – Frequency Domain Filtering  
%%% Filtered Response Generation  
%%% Step1 Full FRF to Chunked FRF  
%%% Step2 IR from Chunked FRF  
%%% Step3 Convolution of IR and Random Force  
%%% Step4 Full Octave Chunk Filtering  
%%% Step5 One–Third Octave Chunk Filtering  
clc  
clear all  
close all  
  
%%% Full octave CHUNK filtering  
for  i=1:16  
    for  ii=1:25  
        fc=[100 125 160 200 250 315 400 500 630 800  1000 1250 1600 
2000 2500 3150 4000 5000];     
        for  iii=1:length(fc)  
            frequency=fc(iii)  
            eval([ 'load 10perc_LF_FRF_position_' ,num2str(i), '.mat' ])  
            startfrequency=round((1/sqrt(2))*freque ncy);  
            endfrequency=round((1*sqrt(2))*frequenc y);  
            FRF_for_IR=[zeros(1,startfrequency–1) 
FRF(startfrequency:endfrequency) zeros(1,10000–endf requency) 
zeros(1,10000–endfrequency) FRF(20000–endfrequency: 20000–
startfrequency) zeros(1,startfrequency–1)];  
            IR=real(ifft(FRF_for_IR));  
            eval([ 'load 
force_10pt5_Seconds_fs_20000_set_' ,num2str(ii), '.mat' ])  
            
eval([ 'non_refined_convolved_response_LF_10perc_fs_20000_ set_' ,num2s
tr(ii), '=conv(IR,force);' ])     
            % using only first 10.5 seconds of response  
            
eval([ 'response_LF_10perc_fs_20000_set_' ,num2str(ii), '=non_refined_c
onvolved_response_LF_10perc_fs_20000_set_' ,num2str(ii), '(1:10.5*2000
0);' ])  
            
eval([ 'filtered_response=response_LF_10perc_fs_20000_set_ ' ,num2str(i
i), ';' ])  
            eval([ 'save 
full_octave_chunk_filtered_' ,num2str(frequency), 'Hz_response_LF_10pe
rc_fs_20000_position_' ,num2str(i), '_set_' ,num2str(ii), '.mat 
filtered_response' ])  
            i  
            ii  
            eval([ 'clear filtered_response 
response_LF_10perc_fs_20000_set_' ,num2str(ii), ' 
non_refined_convolved_response_LF_10perc_fs_20000_s et_' ,num2str(ii),
' force IR startfrequency endfrequency FRF_for_IR' ])  
        end  
    end  
end  
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clear  
%%% One–Third octave CHUNK filtering  
for  i=1:16  
    for  ii=1:25  
        fc=[100 125 160 200 250 315 400 500 630 800  1000 1250 1600 
2000 2500 3150 4000 5000 6300];     
        for  iii=1:length(fc)  
            frequency=fc(iii)  
            eval([ 'load 10perc_LF_FRF_position_' ,num2str(i), '.mat' ])  
            startfrequency=round((1/(2^(1/6)))*freq uency);  
            endfrequency=round((1*(2^(1/6)))*freque ncy);  
            FRF_for_IR=[zeros(1,startfrequency–1) 
FRF(startfrequency:endfrequency) zeros(1,10000–endf requency) 
zeros(1,10000–endfrequency) FRF(20000–endfrequency: 20000–
startfrequency) zeros(1,startfrequency–1)];  
            IR=real(ifft(FRF_for_IR));  
            eval([ 'load 
force_10pt5_Seconds_fs_20000_set_' ,num2str(ii), '.mat' ])  
            
eval([ 'non_refined_convolved_response_LF_10perc_fs_20000_ set_' ,num2s
tr(ii), '=conv(IR,force);' ])     
            % using only first 10.5 seconds of response  
            
eval([ 'response_LF_10perc_fs_20000_set_' ,num2str(ii), '=non_refined_c
onvolved_response_LF_10perc_fs_20000_set_' ,num2str(ii), '(1:10.5*2000
0);' ])  
            
eval([ 'filtered_response=response_LF_10perc_fs_20000_set_ ' ,num2str(i
i), ';' ])  
            eval([ 'save 
one_third_octave_chunk_filtered_' ,num2str(frequency), 'Hz_response_LF
_10perc_fs_20000_position_' ,num2str(i), '_set_' ,num2str(ii), '.mat 
filtered_response' ])  
            i  
            ii  
            eval([ 'clear filtered_response 
response_LF_10perc_fs_20000_set_' ,num2str(ii), ' 
non_refined_convolved_response_LF_10perc_fs_20000_s et_' ,num2str(ii),
' force IR startfrequency endfrequency FRF_for_IR' ])  
        end  
    end  
end  
clear 



 133 

B.5 Triggered Response Generation 
%%% Triggered Data Generation  
%%% This code generates triggered response from the  filtered, time 
domain  
%%% or frequency domain. jjj is total number of tri ggers  
clc  
clear all  
close all  
  
    for  position=1:16  
        position_123=position  
        for  freq=1:19  
            fc=[100 125 160 200 250 315 400 500 630  800 1000 1250 
1600 2000 2500 3150 4000 5000 6300];  
            frequency=fc(freq)  
            fs=20000; %%% Sampling Frequency  
            cycles=222; %%% Length of sample  
  
            ncorr=round(cycles*fs/frequency);  
            trigger_level_factor=2; %%% Trigger Level  
            spread=1.2; %%% Trigger Band  
            overlap_factor=0; %%% Overlap in consequitive triggered 
samples  
  
            setindex=1;  
            eval([ 'load 
one_third_octave_filtered_' ,num2str(frequency), 'Hz_response_LF_1perc
_fs_20000_position_' ,num2str(position), '_set_' ,num2str(setindex), '.m
at filtered_response' ])  
            respc=filtered_response;  
            clear filtered_response  
            trigger_level=std(respc)*trigger_level_ factor;  
  
            i=2;  
            j=0;  
            while  i<(length(respc)–ncorr+2)  
                if  respc(i)>=trigger_level && 
respc(i)<trigger_level*spread && respc(i–1)<trigger _level  
                    trig1=i;  
                    while  respc(i)>=trigger_level && 
respc(i)<trigger_level*spread && i<(length(respc)–n corr+2)  
                        i=i+1;  
                        if  respc(i+1)<trigger_level  
                            trig2=i;  
                            [aa bb]=max(respc(trig1 :trig2));  
                            if  respc(trig1+bb–
1)<trigger_level*spread && respc(trig1+bb–1)>trigge r_level && 
(trig1+bb–1)~=0  
                                j=j+1;  
                                triggerindex(j)=tri g1+bb–1;  
                                triggerdata(:,j)=re spc(trig1+bb–
1:trig1+bb–1+ncorr–1);  
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                            end  
                                i=i+round((1–overla p_factor)*ncorr); 
% for uncorrelated  
                                break  
                        end  
                    end  
                else                                          
                    i=i+1;  
                end  
                pqr=j;  
  
                if  i>=(length(respc)–ncorr)  
                    i=2;  
                    setindex=setindex+1;  
                    if  setindex>25  
                        break  
                    end  
                    clear filtered_response  respc  
                    eval([ 'load 
one_third_octave_filtered_' ,num2str(frequency), 'Hz_response_LF_1perc
_fs_20000_position_' ,num2str(position), '_set_' ,num2str(setindex), '.m
at filtered_response' ])  
                    respc=filtered_response;  
                    clear filtered_response  
                end  
  
                if  j>1000  
                    break  
                end         
            end  
            setindex=setindex–1;  
            eval([ 'save 
triggered_one_third_octave_filtered_' ,num2str(frequency), 'Hz_respons
e_LF_1perc_fs_20000_position_' ,num2str(position), '.mat triggerdata 
j' ])  
            j  
            clear i  j  aa bb trig1  trig2  respc  ncorr  setindex  pqr  
frequency  trigger_level  triggerindex  triggerdata  frequency  
        end  
        clear position  
    end  
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B.6 Loss Factor Estimation Code – Averaging Autocorrelation 
%%% Loss Factor Comparison – With Autocorrelation  
%%% For this code the triggered samples are loaded  
clc  
clear all  
close all  
  
for  iiii=1:4  
    for  freq=1:18  
        accelnum=16  
        for  position=1:accelnum  
            fc=[100 125 160 200 250 315 400 500 630  800 1000 1250 
1600 2000 2500 3150 4000 5000 6300];  
            frequency=fc(freq);  
            eval([ 'load 
triggered_one_third_octave_filtered_' ,num2str(frequency), 'Hz_respons
e_LF_10perc_fs_20000_position_' ,num2str(position), '.mat' ])  
            trignumbers=[50 100 250 500];  
            jjj=trignumbers(iiii)  
             
            avgdata1=mean(transpose(triggerdata(:,1 :jjj)));  
            avg_xcorr_response=zeros(2*length(avgda ta1)–1,jjj);  
            for  ii=1:jjj  
                data=triggerdata(:,ii);  
                avg_xcorr_response(:,ii)=xcorr(data );             
            end  
            avgdata2=mean(transpose(avg_xcorr_respo nse(:,1:jjj)));  
            avgdata=avgdata2(length(avgdata1):2*len gth(avgdata1)–1);  
  
            if  position==1  
                avg_response=zeros(1,length(avgdata ));  
                avg_hilbert=zeros(1,length(avgdata) );  
                avg_logdecay=zeros(1,length(avgdata ));  
            end  
  
            
avg_response=avg_response+(avgdata/max(avgdata))/ac celnum;  
            
avg_hilbert=avg_hilbert+abs(hilbert(avgdata/max(avg data)))/accelnum;  
            
avg_logdecay=avg_logdecay+20*log10(abs(hilbert(avgd ata/max(avgdata))
))/accelnum;  
            position  
  
            clear triggerdata  
        end  
  
        dB_decay_avg_response=20*log10(abs(hilbert( avg_response)));  
        dB_decay_avg_hilbert=20*log10(abs(avg_hilbe rt));  
        dB_decay_avg_logdecay=avg_logdecay;  
  



 136 

        ncorr=length(avgdata);  
        dt=1/20000;  
        timescale=dt:dt:ncorr*dt;  
         
        startperc=round(0e–2*ncorr+1) %%% Start percent for slope 
fitting  
        endperc=round(50e–2*ncorr+1) %%% End percent for slope 
fitting  
  
        figure(frequency)  
        subplot(2,2,1);  
        plot(timescale,dB_decay_avg_response, 'r' );hold on  
        plot(timescale,dB_decay_avg_hilbert);hold on  
        plot(timescale,dB_decay_avg_logdecay, 'g' );hold on  
        axis tight  
        title([ 'DB Decay Comparison' , ' @ ' ,num2str(frequency), ' 
Hz' ])  
        legend( 'DB Decay from Avg Free Decay' , 'DB Decay for Avg 
Envelope of All Output Points' , 'Avg DB Decay of All Output Points' )  
  
        %%%% 
        for  iii=1:3  
            if  iii==1  
                data=dB_decay_avg_response;  
            elseif  iii==2  
                data=dB_decay_avg_hilbert;  
            elseif  iii==3  
                data=dB_decay_avg_logdecay;  
            end  
  
            figure(frequency)  
            subplot(2,2,1+iii)  
            plot(timescale,data);hold on;  
            axis([0 ncorr*dt min(data) max(data)]);  
            ylabel( 'DB Decay' )  
            xlabel( 'Time' )  
  
            k=0;  
            if  frequency<400 %%% Between 100 & 315 HZ  
                i=5;  
                while  i<endperc  
                   if  data(i)>data(i–1) && data(i)>data(i–2) && 
data(i)>data(i–3)  
                       if  data(i+1)<data(i) && data(i+2)<data(i) && 
data(i+3)<data(i)  
                           pt=data(i);  
                           pt_i=i;  
                           k=k+1;  
                           ptarray(k)=data(i);  
                           pt_iarray(k)=i;  
                       end  
                   end  
                   i=i+1;  
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                end  
            end  
  
            if  frequency>315 && frequency<1600 %%% Between 400 & 
1250 Hz  
                i=4;  
                while  i<endperc  
                   if  data(i)>data(i–1) && data(i)>data(i–2)  
                       if  data(i+1)<data(i) && data(i+2)<data(i)  
                           pt=data(i);  
                           pt_i=i;  
                           k=k+1;  
                           ptarray(k)=data(i);  
                           pt_iarray(k)=i;  
                       end  
                   end  
                   i=i+1;  
                end  
            end  
  
            if  frequency>1250 && frequency<6300 %%% Between 1600 & 
5000 Hz  
                i=3;  
                while  i<endperc  
                   if  data(i)>data(i–1)  
                       if  data(i+1)<data(i)  
                           pt=data(i);  
                           pt_i=i;  
                           k=k+1;  
                           ptarray(k)=data(i);  
                           pt_iarray(k)=i;  
                       end  
                   end  
                   i=i+1;  
                end  
            end  
            if  k>=2  
                ptarray1=ptarray;  
                pt_iarray1=dt*(pt_iarray);  
                plot(pt_iarray1,ptarray1, 'g*' );hold on  
                p=polyfit(pt_iarray1,ptarray1,1);  
                x=0:dt:ncorr*dt;  
                y=polyval(p,x);  
                plot(x,y, 'g' );  
                slope=p(1);  
                lossfactor_slopefit(iii)=–slope/(27 .3*frequency)  
%                 title(['DB Decay from Avg Free De cay 
LF:',num2str(lossfactor_slopefit(iii)),' @ ',num2st r(frequency),' 
Hz'])  
                clear pt  pt_i  k  ptarray  pt_iarray  ptarray1  
pt_iarray1  p x y  slope  data  
            else  
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                lossfactor_slopefit(iii)=–(data(sta rtperc)–
data(endperc))/(timescale(startperc)–
timescale(endperc))/(27.3*frequency)  
%                 title(['DB Decay from Avg Free De cay 
LF:',num2str(lossfactor_slopefit(iii)),' @ ',num2st r(frequency),' 
Hz'])  
                clear pt  pt_i  k  ptarray  pt_iarray  ptarray1  
pt_iarray1  p x y  slope  data  
            end  
        end  
        
eval([ 'loss_factor_' ,num2str(jjj), '(freq,:)=lossfactor_slopefit' ])  
    end  
end  
eval([ 'lossfactormatrix=[loss_factor_' ,num2str(trignumbers(1)), ' 
loss_factor_' ,num2str(trignumbers(2)), ' 
loss_factor_' ,num2str(trignumbers(3)), ' 
loss_factor_' ,num2str(trignumbers(4)), ']' ])  
  
figure(12345)  
loglog(fc(1:18),loss_factor(:,1), '–r*' );hold on 
loglog(fc(1:18),loss_factor(:,2), '–v' );hold on  
loglog(fc(1:18),loss_factor(:,3), '–g^' ); hold on; grid on  
title( 'Loss Factor Estimation (i/p LF=0.1, One–Third Octa ve & FDF)' )  
legend( 'Avg Response' , 'Avg Hilbert' , 'Avg dBDecay' )  
xlabel( 'Frequency (Hz)' )  



 139 

B.7 Loss Factor Estimation Code – Direct Averaging 
%%% Loss Factor Comparison – Without Autocorrelatio n  
%%% Direct Averaging  
%%% For this code the triggered samples are loaded  
clc  
clear all  
close all  
  
for  iiii=1:4  
    for  freq=1:18  
        accelnum=16  
        for  position=1:accelnum  
            fc=[100 125 160 200 250 315 400 500 630  800 1000 1250 
1600 2000 2500 3150 4000 5000 6300];  
            frequency=fc(freq);  
            eval([ 'load 
triggered_one_third_octave_filtered_' ,num2str(frequency), 'Hz_respons
e_LF_10perc_fs_20000_position_' ,num2str(position), '.mat' ])  
            trignumbers=[50 100 250 500];  
            jjj=trignumbers(iiii)  
            avgdata=mean(transpose(triggerdata(:,1: jjj)));  
  
            if  position==1  
                avg_response=zeros(1,length(avgdata ));  
                avg_hilbert=zeros(1,length(avgdata) );  
                avg_logdecay=zeros(1,length(avgdata ));  
            end  
  
            
avg_response=avg_response+(avgdata/max(avgdata))/ac celnum;  
            
avg_hilbert=avg_hilbert+abs(hilbert(avgdata/max(avg data)))/accelnum;  
            
avg_logdecay=avg_logdecay+20*log10(abs(hilbert(avgd ata/max(avgdata))
))/accelnum;  
            position  
  
            clear triggerdata  
        end  
  
        dB_decay_avg_response=20*log10(abs(hilbert( avg_response)));  
        dB_decay_avg_hilbert=20*log10(abs(avg_hilbe rt));  
        dB_decay_avg_logdecay=avg_logdecay;  
  
        ncorr=length(avgdata);  
        dt=1/20000;  
        timescale=dt:dt:ncorr*dt;  
  
        startperc=round(0e–2*ncorr+1) %%% Start percent for slope 
fitting  
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        endperc=round(25e–2*ncorr+1) %%% End percent for slope 
fitting  
  
        figure(frequency)  
        subplot(2,2,1);  
        plot(timescale,dB_decay_avg_response, 'r' );hold on  
        plot(timescale,dB_decay_avg_hilbert);hold on  
        plot(timescale,dB_decay_avg_logdecay, 'g' );hold on  
        axis tight  
        title([ 'DB Decay Comparison' , ' @ ' ,num2str(frequency), ' 
Hz' ])  
        legend( 'DB Decay from Avg Free Decay' , 'DB Decay for Avg 
Envelope of All Output Points' , 'Avg DB Decay of All Output Points' )  
  
        %%%% 
        for  iii=1:3  
            if  iii==1  
                data=dB_decay_avg_response;  
            elseif  iii==2  
                data=dB_decay_avg_hilbert;  
            elseif  iii==3  
                data=dB_decay_avg_logdecay;  
            end  
  
            figure(frequency)  
            subplot(2,2,1+iii)  
            plot(timescale,data);hold on;  
            axis([0 ncorr*dt min(data) max(data)]);  
            ylabel( 'DB Decay' )  
            xlabel( 'Time' )  
  
            k=0;  
            if  frequency<400 %%% Between 100 & 315 HZ  
                i=5;  
                while  i<endperc  
                   if  data(i)>data(i–1) && data(i)>data(i–2) && 
data(i)>data(i–3)  
                       if  data(i+1)<data(i) && data(i+2)<data(i) && 
data(i+3)<data(i)  
                           pt=data(i);  
                           pt_i=i;  
                           k=k+1;  
                           ptarray(k)=data(i);  
                           pt_iarray(k)=i;  
                       end  
                   end  
                   i=i+1;  
                end  
            end  
  
            if  frequency>315 && frequency<1600 %%% Between 400 & 
1250 Hz  
                i=4;  
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                while  i<endperc  
                   if  data(i)>data(i–1) && data(i)>data(i–2)  
                       if  data(i+1)<data(i) && data(i+2)<data(i)  
                           pt=data(i);  
                           pt_i=i;  
                           k=k+1;  
                           ptarray(k)=data(i);  
                           pt_iarray(k)=i;  
                       end  
                   end  
                   i=i+1;  
                end  
            end  
  
            if  frequency>1250 && frequency<6300 %%% Between 1600 & 
5000 Hz  
                i=3;  
                while  i<endperc  
                   if  data(i)>data(i–1)  
                       if  data(i+1)<data(i)  
                           pt=data(i);  
                           pt_i=i;  
                           k=k+1;  
                           ptarray(k)=data(i);  
                           pt_iarray(k)=i;  
                       end  
                   end  
                   i=i+1;  
                end  
            end  
            if  k>=2  
                ptarray1=ptarray;  
                pt_iarray1=dt*(pt_iarray);  
                plot(pt_iarray1,ptarray1, 'g*' );hold on  
                p=polyfit(pt_iarray1,ptarray1,1);  
                x=0:dt:ncorr*dt;  
                y=polyval(p,x);  
                plot(x,y, 'g' );  
                slope=p(1);  
                lossfactor_slopefit(iii)=–slope/(27 .3*frequency)  
%                 title(['DB Decay from Avg Free De cay 
LF:',num2str(lossfactor_slopefit(iii)),' @ ',num2st r(frequency),' 
Hz'])  
                clear pt  pt_i  k  ptarray  pt_iarray  ptarray1  
pt_iarray1  p x y  slope  data  
            else  
                lossfactor_slopefit(iii)=–(data(sta rtperc)–
data(endperc))/(timescale(startperc)–
timescale(endperc))/(27.3*frequency)  
%                 title(['DB Decay from Avg Free De cay 
LF:',num2str(lossfactor_slopefit(iii)),' @ ',num2st r(frequency),' 
Hz'])  
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                clear pt  pt_i  k  ptarray  pt_iarray  ptarray1  
pt_iarray1  p x y  slope  data  
            end  
        end  
        
eval([ 'loss_factor_' ,num2str(jjj), '(freq,:)=lossfactor_slopefit' ])  
    end  
end  
eval([ 'lossfactormatrix=[loss_factor_' ,num2str(trignumbers(1)), ' 
loss_factor_' ,num2str(trignumbers(2)), ' 
loss_factor_' ,num2str(trignumbers(3)), ' 
loss_factor_' ,num2str(trignumbers(4)), ']' ])  
  
figure(12345)  
loglog(fc(1:18),loss_factor(:,1), '–r*' );hold on 
loglog(fc(1:18),loss_factor(:,2), '–v' );hold on  
loglog(fc(1:18),loss_factor(:,3), '–g^' ); hold on; grid on  
title( 'Loss Factor Estimation (i/p LF=0.1, One–Third Octa ve & FDF)' )  
legend( 'Avg Response' , 'Avg Hilbert' , 'Avg dBDecay' )  
xlabel( 'Frequency (Hz)' )  
 
 


