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ABSTRACT 
 
Trilobites were a diverse group of arthropods that left an extensive fossil record which are 

today used today to study macroevolutionary patterns and processes.  A new species and 

form of olenelloidea trilobites (Nevadella keelensis n. sp. and Esmeraldina rowei) are 

described from the lower Cambrian Sekwi Formation, Canada.   One particular clade of 

trilobites, the Devonian calmoniid trilobites of the Malvinokaffric Realm, was hailed as a 

classic paleontological example of an adaptive radiation.  Three aspects of the radiation 

were examined in detail: diversification rates, biogeography, and morphological change.  

The rates of speciation calculated from stratigraphy were highest when sea level was 

lowest suggesting causal effect of abiotic factors in speciation.  A phylogenetic 

biogeographic analysis indicated a geographically complex area, and this geographic 

complexity created various opportunities for speciation via allopatry through sea level 

changes.  The geometric morphometric analysis of morphological change during the 

radiation did not show a signal of ecological filling.     Ultimately, adaptive radiations—

including some classic cases—may be caused primarily by abiotic factors of speciation.   
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CHAPTER 1 
 

THE NATURE OF EVOLUTIONARY RADIATIONS: A CASE 
STUDY INVOLVING DEVONIAN TRILOBITES 

 
INTRODUCTION 

 

Evolutionary radiations are macroevolutionary-level phenomena that can be studied in the 

extant biota and the fossil record.  Given that one of the basic aspects of evolutionary 

radiations is the production of new species, a taxic approach sensu Eldredge (1979) to the 

study of these radiations, with a focus on calculating rates of speciation and analyzing 

biogeographic patterns, can yield important information on the processes that drive them 

(Eldredge and Cracraft 1980).  Further, a phylogenetic framework is very useful for 

studying radiations because phylogenetic information is crucial for calibrating underlying 

rates of diversification.  Phylogenies can also be used to tease apart the relative roles that 

intrinsic factors (such as competition and adaptation) and extrinsic factors (such as climate 

and geology) play in generating evolutionary radiations.  There has been some difficulty in 

divorcing process from pattern in studies of evolutionary radiations; this is apparent by the 

pervasive usage of the term adaptive radiation (Eldredge and Cracraft 1980, Givnish and 

Sytsma 1997, Schluter 2000, Vogler and Goldstein 1997).  While it is important to 

examine the intrinsic mechanisms of divergence, such as adaptation, studies of 

evolutionary radiations have often overlooked the extrinsic factors—the geological, 
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climatic, and environmental aspects which are key mechanisms to speciation (Cracraft 

1982a, Mayr 1942).  One important way of examining extrinsic factors is to consider the 

biogeographic patterns in the radiating clade.  In particular, geographic range is known to 

affect speciation and extinction rates and is in turn very much affected by environmental 

and geological changes (Rode and Lieberman 2005).  Here we use phylogenetic 

information in concert with biogeographic and evolutionary rate studies to analyze a clade 

of Devonian trilobites, the calmoniids, that has been hailed as a classic example (see 

Eldredge and Cracraft, 1980 and Lieberman, 1993) of an adaptive radiation preserved in 

the fossil record. 

Biogeographic analyses, when performed in a phylogenetic context, make it 

possible to infer mode of speciation and determine the relative prevalence of vicariant 

differentiation or range expansion associated with diversification.  Ultimately, if a primary 

reason for rapid diversification is a multitude of allopatric events, it may suggest that it 

was not adaptive phenomena that solely or even primarily motivated the radiation, 

although at all times the organisms must have maintained their adaptive character.   

Analyses of taxonomic rate patterns during evolutionary radiations are also useful.  

The general pattern of evolution can be deconstructed into components of evolutionary 

rates (Gilinsky and Bambach 1987, Rode and Lieberman 2005, Sepkoski 1998, Stanley 

1979, Vrba 1987).  While an increase in taxonomic diversity can be caused by unusually 

high rates of speciation, normal rates of speciation coupled with exceptionally low rates of 

extinction could also cause such patterns.  Thus far, however, it appears that evolutionary 

rates during evolutionary radiations are generally associated with high speciation rates, at 
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least early in the radiation, and these subsequently decline, often quite rapidly (Eldredge 

and Cracraft 1980, Hulbert 1993b, Lieberman 2001b, Lieberman et al. 1991). 

Eldredge and Cracraft (1980) identified a number of patterns expected in a clade 

undergoing an adaptive radiation: rapid appearance of numerous closely related species; 

monophyletic status of the clade; confinement to an endemic area; and high morphological 

diversity.  These prerequisites all appear to be present in the calmoniids.  In particular, they 

are a morphologically diverse group of acastid trilobites endemic solely to the 

Malvinokaffric Realm (Fig. 1.1) (Eldredge and Ormiston 1979).  This study focuses on a 

diverse monophyletic clade within the calmoniids—the Metacryphaeus group—which 

contains over 40 species; furthermore, they have been subjects of cladistic analysis 

(Lieberman 1993, Lieberman et al. 1991).  

Here, we characterize the dynamics of speciation and extinction rates in this clade 

of calmoniids during its evolutionary radiation.  Further, we determine the role 

biogeographic and geologic factors played in motivating its diversification.  The calmoniid 

radiation appears to follow a pattern of explosion followed by evolutionary quiescence, 

and these dynamics seem to be related to the geographic and geologic setting of their area 

of endemism: the Malvinokaffric Realm.  This suggests that adaptation did not play the 

formative role in this radiation, although clearly it was involved at some level.  
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Paraná

Parnaíba
Amazon

Argentina

Bolivia

South Africa

Falklands

FIGURE 1.1.  Map of the Malvinokaffric Realm ca. 400 Ma (modified from Cocks and Torsvik 2002) 

with the position of the South Pole indicated by a cross.  Position of areas used in the biogeographic 

analysis of Devonian trilobites also shown.
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MATERIALS AND METHODS 

 

Phylogeny of Metacryphaeus group 

 

The analyses of paleobiogeography and evolutionary rates utilized the phylogenetic 

framework of the Metacryphaeus group calmoniids presented in Lieberman et al. (1991) 

and Lieberman (1993).  More recently described species were appended to the phylogeny, 

in particular:  Metacryphaeus kegeli and M. meloi from the Parnaíba Basin of Brazil 

(Carvalho et al. 1997); M. australis from the Paraná Basin of Brazil (Carvalho and 

Edgecombe 1991); Eldredgeia eocryphaeus, Wolfartaspis liebermani, and the genus 

Gemellus from the Scaphocoelia assemblage and Icla Formation of Bolivia (Carvalho et al. 

2003); Talacastops zarelae and T. sp. nov. A from the Talacasto Formation of Argentina 

(Edgecombe et al. 1994); and M. caffer from the Fox Bay Formation of the Falkland 

Islands (Carvalho 2006).  The resulting phylogeny incorporated 44 species (Fig. 1.2). 

 

Paleobiogeography 

 

The method used in this study was a modified version of Brooks Parsimony 

analysis (hereafter mBPA) which can capture information about congruent speciation 

events resulting from either a contraction of distributional range (vicariance) or range 

expansion (Lieberman 2000, Lieberman and Eldredge 1996).  This method has been  
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B,Ar,SA

B,Ar,SA

B,SA

Vicariance events

Geodispersal events

FIGURE 1.2.  Phylogenetic relationships of the Metacryphaeus group calmoniids modified from Lieber-

man et al. (1991) and Lieberman (1993) with new taxa added in as described in the text.  Abbreviations 

indicate biogeographic areas of occurrence (Am, Ar, B, F, Pb, Pr, SA for Amazon, Argentina, Bolivia, 

Falklands, Parnaíba, Paraná, and South Africa, respectively).  
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described in detail in Lieberman and Eldredge (1996), Lieberman (2000, 2003, 2005) and 

Maguire and Stigall (2008).  A brief discussion is given here and the interested reader is 

referred to these papers and the references therein for additional discussion.  This historical 

biogeographic method discovers relationships between biogeographic areas and determines 

whether speciation events coincide with geologic processes separating or joining areas, 

such as tectonic evens and changes in relative sea level. 

 mBPA replaces the terminal taxa of a cladogram with their area of occurrence and 

then performs unordered Fitch parsimony optimization on each of the ancestral nodes.  

Two matrices can be constructed that are used to uncover evidence for congruence in both 

vicariance (Table 1.1) and geodispersal (Table 1.2) respectively.  A parsimony analysis is 

then conducted on the matrices using equally weighted, ordered, multistate characters.  In 

this particular case, the exhaustive search option of the PAUP* 4.0b10 software was 

utilized to determine the most parsimonious cladogram(s) (Swofford 2002).  Then, a 

bootstrap analysis with 1000 replicates was used to test the robustness.    

The areas used in the biogeographic analysis were defined based on geological 

criteria and history of endemism of the basins (Fig. 1.1).  In particular, because they 

contained large numbers of endemic taxa, Eldredge and Ormiston (1979) recognized 

several valid biogeographic regions within the Malvinokaffric Realm, and our area 

designations basically follow theirs.  However, the Sub Andean areas in Bolivia and 

southern Peru were considered as a single area, as these locations have strong geological 

associations and co-occurring endemic species (Eldredge and Ormiston 1979, Isaacson and 

Sablock 1988).  While some Eastern Americas Realm faunal elements have been found in 
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the middle Amazon Basin (Boucot 1988) and in the Parnaíba Basin, typical Malvinokaffric 

Realm calmoniids are also found there (Copper 1977), and thus for this analysis the areas 

were considered discrete and separate biogeographic units within the Malvinokaffric 

Realm. 

 

Taxonomic Rates 

 

A phylogeny can be used to constrain the timing of cladogenetic events if it is 

assumed that sister-taxa diversify concurrently (Edgecombe 1992, Smith 1994).  As there 

are no grounds for inferring that any one of the taxa considered was the direct ancestor of 

any other taxon, this assumption seems reasonable (cf. Engelmann and Wiley 1977).  

Speciation and extinction rates were calculated (Table 1.3) using a standard birth-death 

exponential growth model; (Stanley 1979) was an early advocate for the applicability of 

the exponential model and it has been used extensively with fossil data to study speciation 

and extinction rates (Lieberman 2001b, Weiss-Schneeweiss et al. 2006).  In our study the 

methods of taxonomic rate calculations proposed by Foote (2000a, 2000b) were applied as 

these measure diversity crossing interval boundaries, providing a more seamless estimation 

of rate over time that is unaffected by interval lengths and presence of singleton taxa.  

Artificial edge effects (see Foote 2000b) are unlikely to play an important role in the 

origination and extinction rate values derived herein because the taxa being analyzed 

originate in the Lochkovian and disappear in the Frasnian.  
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TABLE 1.1.  Matrix derived from biogeographic character states for a modified Brooks 

Parsimony analysis for geodispersal patterns.  The ancestor denotes the ancestral 

biogeographic condition and served as an outgroup.  The other locations used in the 

biogeographic analysis are discrete areas in the Malvinokaffric Realm.  Character states 1 

and 2 are derived states.  The 80 characters refer to the nodes within the phylogenetic tree 

from the root to the leaves.    

           10         20         30         40         50         60         70         80 
           .          .          .          .          .          .          .          . 

Ancestor 000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0  
Bolivia 110011111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1100111111 1 

Argentina 111000000 2000000000 0000000000 0000000002 0200000000 0000000000 0000000000 0000000000 0 

Falkland 000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000021 1001000000 0 

S. Africa 110111000 0000020000 0000000000 0000000000 0000000000 0000000000 0000000000 2000000000 0 

Paraná 000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000002 0000000000 0 

Parnaíba 000000000 0000200000 0000000000 0000000000 0000000000 0000000000 0000000021 0110000002 0  

Amazon 000000000 0002000000 0000000000 0000000000 0000200000 2000020000 0000000000 0000000000 0  

 
 

TABLE 1.2.  Matrix derived from biogeographic character states for a modified Brooks 

Parsimony analysis for vicariance patterns.  The ancestor denotes the ancestral 

biogeographic condition and served as an outgroup.  The other locations used in the 

biogeographic analysis are discrete areas in the Malvinokaffric Realm.  Character states 1 

and 2 are derived states.  The 80 characters refer to the nodes within the phylogenetic tree 

from the root to the leaves.    

           10         20         30         40         50         60         70         80 
           .          .          .          .          .          .          .          . 

Ancestor 000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0  
Bolivia 111121211 0110001111 1111111111 1111111110 1011011111 0111101111 1111111110 0211111110 1 

Argentina 112110000 1000000000 0000000000 0000000001 0100000000 0000000000 0000000000 0000000000 0 

Falkland 000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000010 1112000000 0 

S. Africa 111221100 0000010000 0000000000 0000000000 0000000000 0000000000 0000000000 1000000000 0 

Paraná 000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 0000000000 0 

Parnaíba 000000000 0000100000 0000000000 0000000000 0000000000 0000000000 0000000010 0221000001 0 
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The number of first and last appearances was tabulated using the stratigraphic 

occurrence data for each species (Fig. 1.3).  Cladogenesis was also interpreted to involve 

some extinction, following the discussion above, as the ancestor ceases to exist after the 

speciation event.  Correlation of the different sections was obtained from temporal 

stratigraphic correlations of palynomorphs (Grahn 2005, for South American basins) and 

event stratigraphy (Cooper 1986, for South Africa and Falkland).  Consensus on the 

absolute chronology of the Devonian is still debated; thus, to avoid any potential biases 

and to increase the potential resiliency of the results, a number of different time scales 

were used, in particular, House and Grady (2004), Tucker et al. (1998), and Kaufmann 

(2006). 

 

RESULTS 

 

Biogeographic analysis 

 

The phylogeny with biogeographic states mapped to terminals and nodes indicated 

most speciation events in calmoniids transpired within individual areas of endemism.  

Many of the transitions between nodes on the tree are associated with no major changes in 

geographic range (Fig. 1.2), at least not at the scale of major tectonic barriers and areas of 

endemism.  Whether this actually represents sympatric differentiation, or smaller scale 

within-region vicariance, could not be determined at this time.  However, there is some 

evidence for vicariance and geodispersal (see Fig. 1.2) as indicated by contractions and  
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Givetian

Frasnian

Famennian

Eifelian

Emsian

Pragian

Lochkovian

FIGURE 1.3. Phylogeny of the Metacryphaeus group calmoniid trilobites modified from Lieber-

man et al. (1991)and Lieberman (1993).  Solid lines indicate known occurrence of species sampled 

in the fossil record.  Dotted lines indicate inferred origination based on the ghost-lineage methodol-

ogy (Edgecombe 1992b, Smith 1994) of sister taxa divergence. Devonian time calibrations were 

obtained through radiometric dating (House and Gradstein 2004, Kaufmann 2006, Tucker et al. 

1998) and stratigraphic correlations were based on analysis of palynomorph and event stratigraphy 

(Cooper 1986, Grahn 2005).

12



expansions (respectively) of the geographic regions occupied by ancestors and their 

descendents. 

Application of mBPA to the data matrix in Table 1.1 yielded a single best 

vicariance tree with a number of well-resolved branches (Fig. 1.4).  There were 12 

parsimony informative characters and the tree length was 93 steps, with a consistency 

index of 0.936, a retention index of 0.739, and a g1=-0.62.  The g1 value supports a left 

skewed tree distribution at a p = 0.01 (Hillis and Huelsenbeck 1992).  A bootstrap analysis 

showed high support for area relationships between Bolivia and South Africa, Argentina 

and Bolivia-South Africa, and the Falklands and Parnaíba Basin.  The parsimony analysis 

of the geodispersal matrix (Table 1.2) produced one best tree of length 106 steps with a 

consistency index of 0.877, a retention index of 0.48, and a g1=-0.265.  The g1 statistic also 

shows a left skewed tree distribution, though the p-value does not show statistical 

significance (Hillis and Huelsenbeck 1992).  Only the Falkland and Parnaíba branch and 

the Bolivia-South Africa-Argentina branch had a bootstrap support value over 50 on the 

geodispersal tree.  Except for the failure of Paraná to consistently associate with the 

Parnaíba-Falkland branch in the vicariance tree, the vicariance and geodispersal area 

cladograms are identical.  (Note, the two trees are not in conflict as the position of Paraná 

in the vicariance tree simply reflects absence of evidence.)  When the vicariance and 

geodispersal trees are similar, it suggests the biogeographic processes controlling 

vicariance are the same as those governing geodispersal (Lieberman 2000, 2003, 

Lieberman and Eldredge 1996). This typically implicates cyclical processes that may at 

times cause vicariance and other times geodispersal.  In the case of marine invertebrates  
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Ancestor

Paraná

Amazon

Parnaíba

Falkland

Argentina

South Africa

Bolivia

52

57 79
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TL = 106
RI = 0.48
CI = 0.877
g1= -0.265

TL = 93
RI = 0.739
CI = 0.936
g1= -0.62

FIGURE 1.4.  Results of a modified Brooks Parsimony Analysis examining the biogeographic 

relationships of areas within the Malvinokaffric Realm during the Devonian.  Numbers on 

branches indicate bootstrap support over 50.  A,  Area cladogram derived from analysis of the 

geodispersal matrix.  B, Area cladogram derived from analysis of the vicariance matrix.  

Abbreviations TL, RI, CI, g1 are used for tree length, retention index, consistency index, and 

skewness.
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like trilobites, those cyclical processes likely involved repeated episodes of sea level rise 

and fall (Lieberman 2000, 2003, 2005, Lieberman and Eldredge 1996).  

 

Taxonomic rates 

 

There are only two stages in the Devonian over which any speciation transpires.  

Results for speciation rate basically agree for the Kaufmann (2006) and House and 

Gradstein (2004) timescales.  In particular, in both cases there is a very high initial 

speciation rate during the Lochkovian, which declines during the second stage of the 

Devonian.   By the Emsian speciation rate falls to zero.  Using dates from Tucker et al. 

(1998), speciation rate starts lower, and plateaus during the Early Devonian (Fig. 1.5).   

The different timescales show very similar patterns in extinction rate (Fig. 1.6).  

The initial moderate extinction rate is—for the most part—due to cladogenetic extinction.  

There are no recorded last appearances during the Emsian, but the rate of extinction 

increases during the Middle Devonian, peaks during the Givetian and stays moderately 

high into the Late Devonian.   

The pattern of diversity change during the evolutionary radiation appears to be 

divided into three discrete phases: initial high speciation rate for the early Devonian; an 

interval of stability with no speciation or extinction events for about 9-17 Ma during the 

Emsian; and a final phase of no speciation rate coupled with moderate extinction rate. 
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FIGURE 1.5. Speciation rates of calmoniid trilobites plotted against stages of the 

Devonian.  Rates were calculated based on a birth-death model using the first appear-

ance of fossil taxa coupled with sister-taxa divergence to constrain the origination 

times to a phylogeny.  Calculations were performed using three different Devonian 

time scales: Tucker et al. (1998); House and Gradstein (2004); and Kaufmann (2006).
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FIGURE 1.6. Extinction rates in calmoniid trilobites plotted against stages of 

the Devonian.  Rates were calculated based on a birth-death model and the 

inferred appearance of fossil taxa as shown in Figure 4.  Calculations were 

performed using three different Devonian time scales: Tucker et al. (1998); 

House and Gradstein (2004); and Kaufmann (2006).
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DISCUSSION 

 We have employed a taxic approach (sensu Eldredge 1979) to study an 

evolutionary radiation, emphasizing analyses of rates of speciation and biogeographic 

patterns.  Results using mBPA suggest that the context of speciation events in the 

Malvinokaffric Realm was crucial for this particular radiation: Earth history factors played 

a fundamental role in the radiation, with a complex geographic setting, and changing 

climatic factors overlaid, setting the stage for the calmoniid radiation.  As such, the 

radiation seems to represent an excellent example of species sorting mediated by Vrba's 

(1984) effect hypothesis—processes operating at the organismal level initiates species 

diversification within the clade.  In particular, early on there were multiple opportunities 

for geographic barriers to form and fall as sea level fell and rose, allowing for vicariance 

and geodispersal to effectively multiply opportunities for speciation events in trilobites 

manifold (Fig. 1.7a and b).  Our biogeographic results indicate strong signal in both the 

geodispersal and vicariance matrices, which suggests some overlying congruent geological 

or climatic processes were influencing the radiation.  Further, we note that the strong 

support for a close association of Bolivia, South Africa, and Argentina (Fig. 1.2) in the 

area cladograms makes sense given the geographic position of these basins during the 

Devonian (Isaacson and Sablock 1988).  (The only divergent relationship in this regard is 

the position of the Falkland Islands.  Although they grouped biogeographically with the 

Parnaíba Basin, the Falklands may have been on the eastern side of South Africa at the 

time [Torsvik and Cocks 2004]).  Moreover, most of the speciation events appeared to 

have occurred in situ in Bolivia, probably involving repeated vicariance and geodispersal 

within the smaller basins contained therein (although there were also geodispersal and 

18 



vicariance events between Bolivia and other parts of the Malvinokaffric [Fig. 1.2]).  

Bolivia seems to have served as the biodiversity hotspot of the Malvinokaffric Realm.  

Others have advanced the idea that evolutionary radiations involve a centralized 

biodiversity hotspot (Erwin 1979); however, these ideas have usually focused on adaptive 

shifts as the mode, without considering allopatric speciation as the primary mechanism 

(Vogler and Goldstein 1997).    

Not only do the congruent patterns in the individual area cladograms indicate Earth 

history factors played a key role in the radiation, but the similarity between the vicariance 

and geodispersal trees suggest it was repeated episodes of sea level rise and fall that played 

the primary role.  This provides a means for explaining why the radiation happened, but it 

also provides a means for explaining why the evolutionary rates subsequently subsided and 

the radiation ended.  In particular, not only were there several major episodes of sea level 

rise and fall in the Devonian, but overall, relative sea level was increasing throughout the 

Devonian.  (Cooper 1986, Johnson et al. 1985). 

 A breakdown of the taxonomic rates during the diversification of the 

Metacryphaeus group shows high initial speciation rates for the first 9 myrs, followed by 

no speciation events (Fig. 1.5).  It appears that speciation rates were highest when sea level 

was relatively low.  In a sense, oscillations in sea level, facilitated by osciliations in 

climate and geological changes, may be what was turning on and turning off the speciation 

faucet.  However, when sea level became too high (Fig. 1.7c), subsequent oscillations in 

sea level no longer caused geographic isolation and vicariance and formerly endemic 

regions stayed homogenized and the speciation faucet remained in the off position. 
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Geodispersal

Sea level
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C

FIGURE 1.7. A model showing how sea-level changes might affect biogeographic 

patterns and episodes of speciation in species such as trilobites inhabiting different 

marine basins.  Regression allows for physical separation of the basins leading to 

vicariance (A).  Transgression joins formerly isolated basins and allows for range 

expansion of taxa leading to geodispersal (B).  If overall sea-level becomes too high, 

sea level rise and fall may no longer be sufficient to cause vicariant events (C).    
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Notably, a pattern of initial peak in rates of evolution, with subsequent decline, was 

recognized previously in the calmoniids (Eldredge and Cracraft 1980) and has been 

described for other evolutionary radiations.  In these other radiations, this was generally 

explained by invoking the initial filling of ecological space in an adaptive radiation sense 

(Phillimore and Price 2008, Simpson 1953).  The types of taxa considered in our study 

make it very difficult to consider the ecological aspects of the radiation, and we would not 

preclude these as playing some role in the radiation.  However, biogeographic patterns in 

the calmoniids also indicate the important influence of external physical factors. 

 The flip side of the radiation is of course the demise of the calmoniid group.  

Extinction rates in the calmoniids show bimodality with time.  Early on in the Devonian, 

extinction rates were high.  However, this was due to cladogenetic extinction associated 

with divergence of ancestral lineages.  Extinction falls to zero in the early part of the 

Middle Devonian, and then there is an uptick later in the Middle and in the Late Devonian 

(Fig. 1.6).  Over these intervals, rates of extinction involved true lineage disappearance. 

Still, these extinction rates in the late Middle Devonian and Late Devonian can only be 

considered moderate and were not dramatically high (Lieberman 2001b, e.g. Stanley 1979, 

Vrba 1987).  It would appear that it was the absence of speciation after the Early Devonian, 

coupled with moderate extinction that caused the ultimate demise of the calmoniids.  This 

matches a more general pattern documented for the Late Devonian biodiversity crisis: it 

was not precipitated by a dramatic increase in extinction rates, but instead by a decline in 

speciation rates associated with a decline in geographic provincialism (McGhee 1996b, 

Rode and Lieberman 2004, 2005).   This pattern may be due to the lack of opportunities for 
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allopatric differentiation caused by the global rise in relative sea level (Rode and 

Lieberman 2004, 2005).   

 Given the apparent association between external physical factors—sea level 

changes and climate—and speciation rates in this radiation, this vindicates the important 

role these play in the history of life (Eldredge 1989, Lieberman 2000, Vrba 1980).  Often, 

the adaptive character of evolutionary radiations is stressed (though not always, e.g. 

Cracraft 1982a, Eldredge and Cracraft 1980, Lieberman 1993, Platnick 1992) and clearly 

these must have played some role.  Ultimately, though, “adaptive” radiations are also 

likely a product of geologic complexity coupled with recurrent union and separation of 

areas causing multiple allopatric events.  Subsequent morphological divergence may have 

caused the uniquely adapted forms, with apparent adaptive patterns, but an initial cause is 

the abiotic processes facilitating isolation.   

This examination of an evolutionary radiation finds important associations between 

abiotic processes and rapid speciation through multiple events of geodispersal and 

vicariance in a geographically complex area.  A future promising avenue for research may 

be examining other evolutionary radiations to take into account the geographic setting and 

abiotic factors affecting speciation via opportunities for allopatry.   
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CHAPTER 2 
 

NEW INFORMATION ON OLENELLINE TRILOBITES FROM THE 
EARLY CAMBRIAN SEKWI FORMATION, NORTHWESTERN 

CANADA 
 

INTRODUCTION 

 

Olenellines are a diverse and biogeographically, biostratigraphically and 

evolutionarily significant Early Cambrian trilobite group.  The Lower Cambrian of the 

Mackenzie Mountains, Canada, has yielded a number of species of olenelline trilobites 

described in Fritz (1972, 1973).  This study presents new material collected from 

N63˚31.160’ W 128˚10.285’, approximate altitude 1768 meters (Fig. 2.1), the Nevadella 

zone of the Early Cambrian (Branchian) Sekwi Formation, Mackenzie Mountains, 

Northwestern Territories, Canada.  The material of interest hails from a locality that has 

facies of a distinctive lithology relative to other localities in the Sekwi Formation: they are 

principally red siltstones whereas the Sekwi Formation regionally is composed principally 

of shallow to deep-water carbonate interbedded with black shale (Fritz 1976a, 1976b; 

Krause and Oldershaw 1978; Dilliard et al. In press).  Material occurs in the units 230-240 

meters above the base of the section (Fig. 2.2).  Olenelline genera known from the 

Nevadella zone of the Sekwi Formation include the eponymous Nevadella Raw, 1936, 

along with Bradyfallotaspis Fritz, 1972, and Holmiella Fritz, 1972.  
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SYSTEMATIC PALEONTOLOGY 

Terminology used follows Lieberman (1998, 1999, 2001).  Specimens are housed 

in the Prince of Wales Northern Heritage Center, Yellowknife, Northwest Territories, 

Canada (PWNHC) and the University of Kansas Natural History Museum and Biodiversity 

Institute, Division of Invertebrate Paleontology (KUMIP).  Quotation marks around taxon 

name denotes a paraphyletic group, following Wiley (1979). 

 

Order Redlichiida Richter, 1932 

Suborder Olenellina Walcott, 1890 

Superfamily “Nevadioidea” Hupé, 1953 

Genus Nevadella Raw, 1936 

 Nevadella keelensis new species 

(Figs. 2.3c and 2.3d) 

=  ?Nevadella sp. 2 Fritz, 1972, p. 24, pl. 5, figs. 12-15. 

TYPES: Holotype cephalon KUMIP 319926 and paratype PWNHC 2009.20.47 from 

locality given above (Figs. 2.1, 2.2).   

OTHER MATERIAL EXAMINED:  Fragmentary cephala PWNHC 2009.20.48 and 

2009.20.49 from same locality.      

ETYMOLOGY: Named after the Keele River, the large river that the locality overlooks.  
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FIGURE 2.3.  Specimens collected from Lower Cambrian Sekwi Formation, Northwest Territo-

ries, Canada.  a,b, Esmeraldina sp. aff. rowei (Walcott, 1910). a, cephalon, dorsal view, KUMIP 

319926, x 2.0; b, oblique view of a, x 2.0.  c, d, cephala of Nevadella keelensis n. sp. c, dorsal 

view of holotype, KUMIP 319927, x 2.0. d, partial cephalon, dorsal view, PWNHC 2009.20.47, 

x 2.0.  
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DIAGNOSIS:  Glabella tapering evenly and slightly anteriorly. Anterior border relatively 

wide, length (exsag.) approximately equal to length (sag.) of L0.  Frontal lobe does not 

contact anterior border furrow; plectrum present.  S2 straight and not conjoined medially. 

Extraocular region broad, width (tr.) approximately 100-120 percent width of glabella at 

L1.  

DESCRIPTION: Cephalic length (sag.) 45-55 percent of width (tr.).  Anterior cephalic 

border moderately long, length (exsag.) equal to length (sag.) of L0, may be rounded ridge 

or flattened ledge.  Frontal lobe does not contact anterior border furrow; plectrum present.  

Anterior margins of frontal lobe at each side of midline deflected posteriorly at roughly 40 

degree angle relative to transverse line.  Length (sag.) of LA long, equal to 1.5 times length 

of L0 and L1 medially.  Lateral margins of LA proximal to lateral margins of L0.  Ocular 

lobes contact frontal lobe at posterior parts of frontal lobe; outer band of ocular lobe near 

lateral margin of LA does not expand prominently exsagittally; ocular lobes gradually 

increase dorso-ventral elevation between axial furrows and mid-point of ocular lobes; 

region of anterior part of ocular lobe between putative visual surfaces is in contact with 

LA.  Line from posterior tip of ocular lobe to junction of posterior margin of lobe with 

glabella forms 15-20 degree angle with sagittal line.  Posterior tips of ocular lobes 

developed opposite medial part of distal margin of L0 or S0.  Width of interocular area 

approximately equal to 1.0-1.4 times width of ocular lobe at its midlength.  Distal margins 

of L3 is straight.  S3 either not prominently incised or poorly preserved, not conjoined. 

Lateral margins of glabella between L0-L2 convergent.  S2 not conjoined medially, 

straight, and directed inward and posteriorly at roughly 35-45 degrees to transverse line.  

L2 and L3 do not merge distally.  Distal margins of L2 when proceeding anteriorly 
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converge.  S1 convex anteriorly and sinuous.  Distal sector of S0 is convex anteriorly with 

proximal end well posterior of distal end.  Extraocular region opposite L1 broad, width (tr.) 

approximately 100-120 percent width of glabella at L1.  Genal spine angle developed 

opposite medial part of distal margin of L0.  Intergenal angle relative to transverse line 

deflected at roughly -10 to 5 degrees.  Posterior cephalic border transverse.  

DISCUSSION: Nevadella keelensis shares characters of both Nevadella and the closely 

related Nevadia, and a future revision of the two genera may be necessary.  In this case, the 

bulk of the character information supports an assignment of this species to Nevadella.  For 

instance, LA is relatively long (sag.) which is typical of Nevadella and not Nevadia 

according to the phylogenetic hypothesis and generic assignments presented in Lieberman 

(2001).  Further, S0 is convex anteriorly as in Nevadella, and the anterior and lateral 

borders are relatively longer (sag.) and wider (tr.).  However, there are some characters 

more consistent with an assignment to Nevadia.  For instance, the cephalon is relatively 

broad (tr.) and S2 is straight, as in Nevadia.   Unfortunately, no intergenal ridge is 

preserved in this material—another character used to distinguish between the genera.  

Nevadella keelensis n. sp. can be distinguished from Nevadia weeksi Walcott, 1910 by 

having a relatively shorter (tr.) extraocular area and longer (exsag.) anterior border.  

Nevadella keelensis also does not have a conjoined S3 and S2, contra the condition in 

Nevadia weeksi.  Nevadia fritzi (Lieberman 2001a) differs from N. keelensis by having a 

relatively shorter ocular lobe; conjoined S3; and the glabella constricting at L1.  Note that 

several other species have the glabella constricting at approximately L1 or L2 including 

Nevadella mountjoyi Fritz, 1992, N. eucharis (Walcott 1913), N. perfecta (Walcott 1913), 

N. parvoconica (Fritz 1992), and Nevadia bacculenta (Fritz 1972).  Also, N. keelensis 

29 



differs from Nevadia bacculenta in having a more evenly tapering glabella and relatively 

longer ocular lobes.  Nevadia faceta (Fritz 1972), another species found in the Mackenzie 

Mountains, has a shorter extraocular area relative to N. keelensis and the glabellar furrows 

are more prominently conjoined.  Fritz (1972) described and illustrated Nevadella sp. 2 

from the Sekwi Formation and although this material is poorly preserved and incomplete it 

appears closely similar to N. keelensis in the form and shape of the anterior border, the 

glabellar furrows, and the plectrum, and they are questionably treated as conspecific. 

 

Superfamily Olenelloidea Walcott, 1890 

Family Holmiidae Hupé, 1953 

Subfamily Holmiinae Hupé, 1953 

Genus Esmeraldina Resser and Howell, 1938 

Esmeraldina sp. aff. rowei (Walcott 1910) 

(Figs. 2.3a and 2.3b) 

= Holmia rowei  Walcott, 1910 (partim), p. 292, Pl. 29, figs. 2-4, 7-11. 

= Esmeraldina rowei  Fritz, 1995, p. 714, figs. 5.1, 6.1-6.12, 7.1-7.3, 10.10, 10.11; 

Lieberman, 1998, p. 71, fig. 3.4; Lieberman, 1999, p. 86. figs. 15.1, 15.3; 

Hollingsworth, 2006, p. 319, figs. 9.1-9.9, 9.12 (see for more complete synonymy). 

= ?Holmia rowei Walcott. Fritz, 1973, p. 12. 

= ?Esmeraldina rowei (Walcott). Fritz, 1992, p. 17. 
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= ?Esmeraldina rowei (Walcott). Fritz, 1995, p. 714. 

MATERIAL EXAMINED: Cephalon KUMIP 319927 from locality described above.      

DISCUSSION: This specimen can be assigned to the Holmiidae based on a number of 

diagnostic characters including, but not limited to, a forward expanding glabella, the 

convex and prominently vaulted extraocular area, and the presence of a spine or node at the 

axial part of L0.  Further, it possesses a number of characters also shared by Esmeraldina 

rowei as described by Fritz (1995).  However, poor preservation of some features 

precludes definitive assignment to this species.  A prominent difference from the 

description of Fritz (1995) is in the occipital spine which does not jut out narrowly and 

abruptly from the occipital ring, but tapers dorsally from the posterior border of the 

occipital ring (Fig. 2.3a).  This may be an artifact of the variation within the species as 

discussed by Hollingsworth (2006).  This specimen bears the shape of the narrower form 

(Hollingsworth 2006) where the ocular lobes are close to the glabellar axial furrows and 

the posterior border is transverse.  Esmeraldina rowei is discussed in greater detail in (Fritz 

1995, see Hollingsworth 2006 for a full discussion of E. rowei forms, Lieberman 1998, 

2001a)   

    Fritz (1973, p. 12) mentioned that he had observed E. rowei (or a species closely similar 

to it) in the Mackenzie Mountains. Fritz later (1992, p. 17, and 1995, p. 714) questionably 

synonymized his material with E. rowei.  It could not be determined whether his material is 

indeed conspecific with the material presented here, so we have only questionably 

synonymized these.  Fritz (1973, p. 12) also described and illustrated an incomplete 

cephalon as Holmia? sp. 1 from the Mackenzie Mountains, Sekwi Formation.  Holmia? sp. 
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1 differs from E. sp. aff. rowei presented herein in having deeper axial furrows and more 

distinct glabellar furrows,  less prominent lateral lobes at L0; little constriction of glabella 

at S1; a narrower anterior border (exsag.), and a less dorsally prominent extraocular area; 

thus, at this time we do not synonymize them.  However, Hollingsworth (2006) has shown 

that E. rowei can be problematic to identify, as the species can vary in form.   
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CHAPTER 3 
 

QUANTIFYING MORPHOLOGICAL CHANGE DURING AN 
EVOLUTIONARY RADIATION OF DEVONIAN TRILOBITES 

 
INTRODUCTION 

 

    Numerous evolutionary radiations are preserved in the fossil record, and indeed, many 

of the early theoretical considerations, specifically in the context of adaptive radiations, 

were based on studies of the fossil record (e.g., Osborn 1902, Simpson 1944).   Hypotheses 

about such evolutionary radiations have largely focused on how ecological mechanisms 

could cause the rapid speciation events.  The prevailing model for adaptive radiation 

requires open ecological opportunities that allow species (and sometimes, it has been 

argued, even higher taxa) to occupy empty and new niches and subsequently proliferate 

(Phillimore and Price 2008, Schluter 2000, Simpson 1953).  This mechanism has been 

invoked to explain evolutionary radiations as small as the 15 species of Darwin’s finches 

(Grant and Grant 2007, Lack 1947) and as large as the Cambrian radiation (Bambach et al. 

2007).  Such ecologically driven speciation would be expected to generate identifiable 

patterns of morphological diversification, and the fossil record provides excellent 

opportunities to study patterns of morphological change during evolutionary radiations as 

they play out through macroevolutionary time scales (e.g., Foote 1993, Foote 1997, Smith 
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and Lieberman 1999, Wagner 1995, 2000, Wagner and Erwin 2006, Zelditch and Fink 

1996).  Here we consider patterns of morphological change during the radiation of the 

Devonian calmoniid (Calmoniidae: Phacopida) trilobites; this group has been hailed as a 

classic example of an evolutionary radiation in the fossil record (Eldredge and Cracraft 

1980, Fortey and Owens 1990, Lieberman 1993).  We specifically focus on the 

monophyletic Metacryphaeus Group within this clade; it consists of more than 40 species 

that diversified rapidly into myriad morphological forms, even at a time when global 

trilobite diversity was waning (Eldredge and Cracraft 1980).  They occurred in the cooler 

southern waters of the Malvinokaffric Realm, which was a geographically complex region 

that possessed high endemicity.  The rapid diversification of the group was mediated by 

high initial speciation rates coupled with low to moderate extinction rates; an abrupt 

decrease of speciation rates in the face of moderate extinction rates caused the eventual 

demise of the group, coincident with the Late Devonian biodiversity crisis (Abe and 

Lieberman 2009, see also McGhee 1996a, Rode and Lieberman 2004).  Our study 

considers the tempo of this radiation and how rates of speciation, extinction, and 

morphological change are associated with various abiotic and biotic factors including 

biogeography, paleoenvironment, and ecological association.  Using a phylogenetic 

framework, a geometric morphometric approach is used to quantify morphological change 

throughout the evolutionary radiation.    

    A pattern of rapid initial morphological diversification that subsequently declines (Fig. 

3.1A) has been found in many taxa (Foote 1993, 1997).  One possible interpretation of 

such a pattern is that early morphological diversification is associated with initial rampant 

ecological opportunities, followed by a decrease in morphological diversification as the  
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FIGURE 3.1.  Models with predicted morphological change and exponential diversity curves.  

Dashed lines denote morphological change and solid lines show diversity.  A) Rapid early 

morphological diversification followed by stable or decreasing morphological change.  B)  

Morphological change constant over the diversification of the clade. C)  Morphological 

change increases during diversification.  Modified from Foote (1993), although there disparity 

curves were shown.  
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available ecological niches are filled.  “Key innovations” (sensu Simpson 1953) might be 

associated with such a pattern as the acquisition of a trait would allow invasion into new 

ecological space.  In another model of morphological diversification driven by ecology, 

there is a change from a generalist form to specialized (stenotopic) forms (Eldredge and 

Cracraft 1980).  Specialization due to ecological processes could yield early morphological 

change (Fig. 3.1A) or increasing ecological divergence into specialized roles (Fig. 3.1C).  

(This assumes that the evolution of different specializations might be associated with the 

acquisition of distinctive morphologies).  

    Quantitative analyses of morphology of taxa during evolutionary radiations have 

focused mainly on indices of disparity (Erwin 2007, Foote 1993, 1997), which measure 

occupation of morphospace at a given time.  Some analyses employ phylogenetic 

relationships to measure disparity differences between and among clades (Clabaut et al. 

2007 for cichlid fishes; Harmon et al. 2003 for iguanid lizards) or between cladogenetic 

events (Wagner 1995 for rostroconch mollusks; Smith and Lieberman 1999 for ollenelloid 

trilobites; see also Harmon et al. 2003).  The phylogenetic information permits the 

evolutionary radiation to be examined through time at the level of morphological changes 

at speciation events, and also allows for comparison with diversification rates and 

biogeographic patterns.   

    Previous analyses of the biogeographic context of the calmoniid trilobite evolutionary 

radiation: (1) supported a widespread and geographically complex setting for speciation 

(Abe and Lieberman 2009, Eldredge and Ormiston 1979, Lieberman 1993); (2) suggested 

most speciation occurred in the biogeographic hotspot of Bolivia; and (3) indicated that 
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there were congruent patterns of vicariance and geodispersal (sensu Lieberman 2000) 

between different parts of the Malvinokaffric Realm related to episodes of sea-level rise 

and fall (Abe and Lieberman 2009).  These all suggest that changes in earth history, in 

particular geological and climatic changes, played a fundamental role in causing the 

radiation, matching aspects of Grant and Grant’s (2007) discussion of the radiation of 

Darwin’s finches.  However, an important role for earth history in the calmoniid radiation 

does not preclude a role for ecological factors.  Indeed, the argument has been made that 

ecological processes are the main factors affecting other cases of adaptive radiation.  For 

instance, the aforementioned Darwin’s finches as well as examples involving cichlids 

(Clabaut et al. 2007), Hawaiian spiders (Gillespie 2005), and Anolis lizards (Losos et al. 

1998) seem to be rife with instances of ecological processes involving convergence, 

character displacement, competition, and reinforcement (Schluter 2000).  By focusing on 

the morphological changes during the calmoniid radiation, we aim to tease apart the role 

ecological factors played by examining (1) whether morphological change seems to 

increase or decline through time and with cladogenetic rank, and (2) how morphological 

change varies relative to various biogeographic factors, including cases when closely 

related trilobite species have sympatric or allopatric distributions.  

  

MATERIALS AND METHODS 

 

    Calmoniids of the Metacryphaeus Group are well-preserved, abundant trilobites from 

the Devonian Malvinokaffric Realm (Eldredge and Branisa 1980).  A phylogenetic 

37 



hypothesis of the group was proposed by Lieberman et al. (1991) and Lieberman (1993) 

based on an analysis of 44 species and 50 characters.  A biogeographic analysis of the 

group and calculation of speciation and extinction rates was presented in Abe and 

Lieberman (2009). 

    Geometric morphometrics 

 Morphological change in the group was quantified using Bookstein coordinate landmark 

data of the trilobite cephalon. Shape analysis commonly is based on measurements of the 

cephalon in the morphometric literature (e.g., Foote 1989, 1990, Foote 1991, Smith and 

Lieberman 1999, Webster and Zelditch 2005) because the cephalon have easily recognized 

homologous landmarks.  Moreover, the cephala contain the bulk of character information 

used for species identification.  Although Lieberman et al. (1991) and Lieberman (1993) 

used characters of the cephalon to generate the phylogeny of the Metacryphaeus group, 

these characters were not identical to the shape-change landmarks; in addition, thoracic 

and pygidial characters were used in the analysis.  Thus, the phylogenetic and 

morphometric databases can be considered to be at least partially, though not completely, 

independent.   

    Interpreting the functional or ecological meaning of changes in the morphology of 

trilobites (or any long extinct taxon) is far from straightforward.  For instance, the grooves 

and bumps on the cephalic exoskeleton seem in part to reflect sites of muscle attachment 

leading to the stomach and limbs, such that differences in the configurations of these 

bumps and grooves could relate to differences in diet, motility, and lifestyle (Eldredge 

1971, Fortey and Owens 1990, Whittington 1997); still, the ecological and functional 
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significance of any of these differences among species is indeterminate.  Here we are 

quantifying differences in morphospace, not assuming that they must imply a difference in 

ecology, ecospace, or function. However, we follow various authors (e.g. Foote 1991, 

1993, 1997, Harmon et al. 2003, Wagner 1995, 2000, Yoder et al.) in positing that 

morphometric data (broadly construed) can provide some indication of ecospace 

occupation. 

    Landmark data were collected from digital photos of cephala (in standard dorsal 

orientation) representing 37 species (Appendix 1).  All available holaspids with no 

apparent deformation or prominent diagenesis (a total of 109 cephala) housed in the two 

major calmoniid repositories (American Museum of Natural History, AMNH: National 

Museum of Natural History, USNM) were analyzed. Features that are commonly preserved 

and that have served as the basis for previous landmark studies of trilobites were selected 

as landmarks (e.g., Smith and Lieberman 1999).  A total of 19 landmarks (5 midpoints, 14 

symmetrical pairs) was chosen (Bookstein 1997; Fig. 3.2; Appendix 2); these are at points 

that are easily homologized (MacLeod 2001).  When possible, points were digitized on 

both sides of the sagittal symmetry plane using TPSDig2 (Rohlf 2010a), and symmetrical 

pairs of points were reflected and averaged across the sagittal plane using BigFix6 (IMP 

Package, Sheets 2002); points without symmetrical pairs were used without averaging.  

Baseline points for the axis were the anteriormost point of the cephalon including the 

anterior border, and the posteromedian point of the occipital ring (Fig. 3.2).  To remove the 

non-affine effects of shape (i.e., orientation, size, translation), a generalized least-square 

Procrustes superimposition analysis was applied in TPSRelw (Rohlf 2010b).  All data are  
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FIGURE 3.2.  Landmarks used in geometric morphometric analyses shown on cephalon of 

Metacryphaeus giganteus (drawn from Cooper 1977).  Points used corresponded to midpoints, 

maxima of curvatures and intersection of furrows.  Star-shaped points denote the baseline 

(symmetry axis) from which the symmetrical pairs (not shown) were reflected.  Procrustes super-

imposed results with consensus without effects of size, rotation, and translation are shown below 
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available on the Paleobiology web archive at http://www.        and by request from the 

authors. 

    Morphological change 

 Not only is it difficult in general to identify actual ancestral descendant pairs of species in 

the fossil record (MacLeod 2001, Smith 1994), but in the particular case of the calmoniids, 

none of the criteria needed to identify specific ancestors  was met (see Engelmann and 

Wiley 1977).  For this reason, geometric morphometric methods were used in conjunction 

with ancestral character-state reconstructions to quantify morphological change along 

edges of the best available phylogenetic hypothesis for the Metacryphaeus Group.  

Ancestral character-state reconstruction of continuous characters is considered more 

reliable if no overall trend is affecting the evolution of the group (Oakley and Cunningham 

2000, Polly 2001, Webster and Purvis 2002).  In the case of the calmoniids, there do not 

appear to be any particular trends in morphology, because various species gain and lose 

ornamentation, change the vaulting of the cephalon, etc.  Estimates of ancestral shape were 

calculated using an unweighted square-change parsimony based on the Procrustes 

superimposed landmark data and using Mesquite (Maddison and Maddison 2010).  Square-

change parsimony assumes a Brownian motion model of evolutionary change and 

minimizes the sum of squares of the differences between nodes (Maddison 1991, 

Maddison and Maddison 2010).  For each internal node, an ancestral shape was 

reconstructed based on descendent morphometric data, when available.  A measure of 

morphological transition distance was calculated based on the Euclidean distances using 

the first three dimensions of relative warps that explained 70.64% of the total variation 

(41.37%, 15.69%, 13.58% for top three axes).  Most of this variation was expressed in 
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differences in the position and shape of the eyes.  The Euclidean distances were calculated 

between available reconstructed nodes and descendents.  There were some species for 

which no landmark data were available, owing to poor preservation or dearth of specimens.  

Those ancestral nodes that lacked morphometric data for their direct descendents were 

excluded from transition calculations because this makes the analyses of character change 

more conservative and less reliant on ancestral state reconstruction.  

    Analyses of morphological change through time and in relation to biogeographic 

patterns 

Comparisons were made between the magnitude of morphological change at cladogenetic 

events associated with:  (1) allopatric differentiation involving vicariance; (2) allopatric 

differentiation involving range expansion (most akin to peripatric speciation); and (3) no 

change in area, possibly involving sympatric differentiation.   The statistical analysis used 

was a non-parametric Kruskall-Wallis analysis of variance for comparisons. 

    Morphological transition distance also was considered through time to determine if 

larger morphological changes occurred earlier in the radiation.  Analyses of transition 

distances against cladistic rank also offer a measurement of morphological diversification 

through the evolution of a clade (Smith and Lieberman 1999).  The node (n) at the root of 

the tree was assigned a rank of one and each descendent node is given a rank of (n + 1).  

For parts of the tree where branches were not fully pectinate, ranks were duplicated 

accordingly, following standard practice (e.g., Norell and Novacek 1992).  Non-parametric 

analyses using Kendall’s coefficient of rank correlations between transition distance and 

cladistic rank were used.  Finally, morphological transition was compared relative to 
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speciation rates.  Speciation in the calmoniids was confined to the first two stages 

(Lochkovian and Pragian) of the Devonian (~9 myrs; Fig. 3.3), limiting our chances for 

comparisons. A non-parametric Mann-Whitney U test was used to look for significant 

differences between morphological transition distances during these two stages.   

 

RESULTS 

 

    A visualization of the total morphological diversity is shown on Figure 4 as the first two 

principal component scores of the relative warps.  This representation captures a great deal 

of the shape variation of calmoniid cephala, including the shape of the glabella, and the 

position and size of eyes, indicating that differences in morphology are being reflected by 

different geometric morphometric patterns.  As an example, Typholoniscus baini is part of 

the basal-most branch on the tree and is a morphological outlier with its unusual anterior 

facing ocular lobes that are rotated 90˚; moreover, its eyes appear to lack lenses (Cooper 

1982).  This departure from the typical calmoniid eye position, together with its flattened 

anterior margin of the glabella and relatively wide cephalon is captured in the geometric 

morphometric analysis (Fig. 3.4).  It is worth noting that the relatively distinctive eye 

morphology of Typhloniscus did not unduly influence the results of our morphological 

distance analyses because the absence of Typhloniscus n. sp. did not allow for 

reconstruction of the ancestral Typhloniscus node.  The reconstructed ancestor of the rest 

of the Metacryphaeus Group shows relatively small, standard eyes (for trilobites),  
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FIGURE 3.3.  Speciation rates during the diversification of the Metacryphaeus Group 

calmoniids.  Rates were high during the first two stages of the Devonian (~9 myrs), but 

no speciation was recorded after the Emsian (from Abe and Lieberman 2009).  Different 

lines shown are based on calculations using different Devonian time scales.
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FIGURE 3.4.  Graphical representation of morphospace from geometric morphomet-

ric analysis, using principal components plot of the first and second relative warp 

scores of calmoniid cephala.  Deformation grid and associated specimen are shown 

for A) Typhloniscus baini (basal-most taxon) B) Metacryphaeus caffer and C) 

Bouleia dagincourti (drawings from Moore 1959 and Cooper 1982).
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indicating that Typhloniscus’ distinctive anterior-facing eyes are an apomorphy of the 

genus.  

    Regarding morphology and biogeography, there are no significant differences in 

morphological transition distance between cladogenetic events that involved vicariance, 

range expansion, or in situ differentiation (Table 3.1; Fig. 3.5).  In particular, allopatric 

versus sympatric (at least at the scale that could be determined) differentiation does not 

correlate with the amount of morphological change.  Moreover, morphological transition 

distance does not change through time (Table 3.2; Fig. 3.6).  Finally, results of correlation 

analyses of morphological change with cladistic rank were not significant (Kendall’s 

coefficient of rank correlation; τ = 0.078; p = 0.44; n = 51) (Fig. 3.7), indicating that there 

was no apparent trend toward decreasing (e.g., Fig.1A) or increasing (e.g., Fig. 3.1C) 

morphological change throughout the evolutionary history of the radiation. 
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FIGURE 3.5.  Comparison of morphologic transition distance between ancestors and descendants 

at speciation events involving range expansion (geodispersal), range contraction (vicariance), 

and in situ differentiation (sympatry).  Boxes represent 25th to 75th percentile; solid circles are 

the mean for each group.   
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FIGURE 3.6.  Morphologic transition distance between ancestors and descendants during the 

different Devonian stages when diversification occurred.  Box represents 25th to 75th percentile; 

solid circles are the mean for each group.   
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TABLE 3.1.  Analysis using a non-parametric Kruskall-Wallis to test differences between 

morphological transitions depending on geographic change at cladogenesis.  These 

involved two possible allopatric modes: range expansion (geodispersal), range contraction 

(vicariance), and in situ speciation (sympatry). Phylogeny from Abe and Lieberman 

(2009). 

 N Median Av. Rank Z 

Geodispersal 5 0.02591 30.6 0.73 

Vicariance 4 0.02765 31.0 0.70 

Sympatric 42 0.01922 25.0 –1.06 

Overall 51  26.0  

H = 1.13  DF = 2  p = 0.568 
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TABLE 3.2.  Analysis of differences between morphological transitions for the first two 

stages of the Devonian using a non-parametric Mann-Whitney U test.  Speciation was 

highest during the Lochkovian and declined slightly and ended by the end of the Pragian.  

Phylogeny and speciation rates from Abe and Lieberman (2009). 

Lochkovian n = 25 Median = 0.02275 

Pragian n = 26 Median = 0.02406 

Point estimate for Lochkovian-Pragian is –0.00135 

95.1% CI for Lochkovian-Pragian is (–0.00895, 0.00773) 

Test of Lochkovian = Pragian vs Lochkovian ≠ Pragian is not significant p = 0.6993 
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DISCUSSION 

 

    Calmoniid trilobites of the Metacryphaeus Group have been held up as a classic 

example of adaptive radiation in the fossil record (Eldredge and Cracraft 1980, Fortey and 

Owens 1990), and phylogenetic and biogeographic patterns and rates of speciation within 

the group have been characterized in detail (Abe and Lieberman 2009, Eldredge and 

Cracraft 1980, Lieberman 1993, Lieberman et al. 1991).  Analyses of patterns of 

morphological change within the context of this radiation allow us to characterize the 

nature of the evolutionary patterns and processes that occurred in greater detail.  To this 

end, a geometric morphometric analysis quantified morphological change during the 

radiation using landmark data.  One crucial aspect of adaptive radiations that has been 

repeatedly identified in the literature is their ecological and competitive character, 

including the production of ecologically diverse species through numerous speciation 

events (e.g., Grant and Grant 2007, Schluter 2000).  If the Metacryphaeus Group radiation 

was fundamentally about ecologically mediated speciation, one would predict that there 

should be greater morphological changes when speciation involved ancestors and 

descendants living within the same general area, where there should be greater 

opportunities for competitive overlap and interaction, than when it involved ancestors and 

descendants living in different areas.  However, the recovered patterns of morphological 

divergence that occurred at speciation in the Metacryphaeus Group are not necessarily 

compatible with the notion of an ecologically driven adaptive radiation.  In particular, there 

were no significant differences between the amount of changes that occurred at speciation 

events involving ancestors and descendants in the same general area as opposed to 
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ancestors and descendants living in different areas (Table 3.1; Fig. 3.5).  Of course, 

important caveats do need to be raised.  For instance, we cannot verify that speciation 

events that occurred in the same area actually involved sympatry; instead, they may 

involve smaller-scale allopatry beneath our limits of resolution to assess.  This is perhaps 

most likely to involve Devonian intra-cratonic basins in Bolivia and Peru that served as the 

calmoniid biodiversity hot spot (Abe and Lieberman 2009, Eldredge and Ormiston 1979, 

Isaacson and Sablock 1988). However, certainly organisms that live in the same general 

area are more likely to be able to interact competitively than those that occur in completely 

disjunct areas.  It is also conceivable that the measures of morphology we used imply little 

if anything about species ecology.  Our landmark data did capture information about the 

trilobite cephalon, which contains anatomically and functionally important structures.  

Changes of the cephalic shape provide some information about changing ecology, but the 

nature of these is certainly unspecified; still, this is essentially what we are limited to by 

the very nature of the fossil record.  It is also possible that patterns of speciation that 

appear to occur sympatrically, or allopatrically, or the temporal patterns of speciation 

themselves simply may be artifacts of an incomplete fossil record from which we have 

little access to actual paleobiogeographic or stratigraphic distributions.  However, trilobites 

do seem to have among the very best preservation probabilities for fossil invertebrates 

(Foote and Raup 1996).  Finally, the phylogenetic patterns and the methods of 

reconstructing biogeographic patterns and ancestral morphology could be inaccurate.   

    Even considering these caveats, alternative hypotheses of abiotically mediated radiations 

must be considered since a prominent signature of an ecologically mediated radiation is 

lacking.   Instead, the more prominent aspect of the calmoniid radiation is that it appears to 
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have been influenced by the geographic complexity of the Malvinokaffric Realm during 

the Devonian.  Geographic complexity is shown by the heterogeneous areas that are broken 

up into several distinct tectonic basins, which served as areas of endemism (Abe and 

Lieberman 2009).  Allopatrically mediated radiations (termed non-adaptive radiations) 

have been documented in extant taxa (e.g., Cameron et al. 1996, Gittenberger 1991, Kozak 

et al. 2006) and even classic examples of adaptive radiations (particularly the insular 

radiations) confer important roles to allopatric mechanisms (Genner et al. 2010, Gillespie 

2005, Grant and Grant 2007).  Moreover, in addition to this geographic heterogeneity 

during the Devonian, there were several major episodes of sea-level rise and fall (Eldredge 

and Ormiston 1979, Hallam 1992, Isaacson and Sablock 1988, Johnson et al. 1985) that 

would have repeatedly isolated and then joined these basins, allowing for numerous 

opportunities for range expansion and allopatric speciation (Abe and Lieberman 2009).  

The importance of these abiotic factors in generating multiple instances of geographic 

isolation is being examined in the cichlid radiation (Genner et al. 2010, Rueber et al. 1998, 

Sturmbauer et al. 2001) and the anoles (Glor et al. 2004).  Notably, what appears to have 

led to the reduction of speciation in the calmoniids is that the sea level rose such that by 

the later part of the Middle Devonian, all of the tectonic basins in the Malvinokaffric realm 

may have been joined by marine connections.  The increase in sea level was sufficiently 

great that subsequent oscillations in sea level no longer caused repeated episodes of 

geographic isolation and range expansion (Abe and Lieberman 2009).  

    Still, we are not implying that ecological factors played no role in the radiation of these 

trilobites.  Many factors including population size and structure, mating systems, changes 

in predator-prey dynamics, and other ecological aspects could well have had an important 
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role in the morphological diversification.  In addition, the divergence that occurred in 

allopatry may be related to adaptations to distinctive environments.  It is just the absence 

of differences between morphological divergence occurring in situ, as opposed to in other 

areas, that indicates sympatrically driven, ecologically mediated speciation has not left its 

stamp on this taxonomically impressive radiation.   

    The relationship between taxonomic and morphologic diversity has been of broad 

interest to the paleontological community for some time (Foote 1993, Gould 1990, Wagner 

1995, Wills et al. 1994); thus, it is worth considering in the context of adaptive radiations 

in general and this evolutionary radiation in particular.  In the literature on evolutionary 

radiation, both early, rapid diversification and high initial disparity are sometimes 

interpreted as indicating the filling-in of empty and available ecological niches.  Once the 

ecological opportunities have been taken, speciation rates should decline and 

morphological diversity would become constrained (Fig. 3.1A).  Speciation rates for the 

calmoniids are high early and then decline (Fig. 3.3)—a pattern found in other 

evolutionary radiations (Harmon et al. 2003, Hulbert 1993a, Phillimore and Price 2008). 

Measures of disparity through time have shown similar results with the greatest 

morphological change occurring early in the radiation (see Foote 1997 for review).  

However, when the diversity of the calmoniids declined as a result of attrition caused by 

extinction, diversification did not begin anew.  This suggests that it was not merely empty 

niche space that was serving to attract new diversity; instead, speciation rate in the 

calmoniids is correlated with relative sea level and episodes of sea-level change (Abe and 

Lieberman 2009).  In addition, the magnitude of morphological change does not 

significantly increase through time (Table 3.2; Fig. 3.6) (although there are only a limited 
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number of temporal events to consider), nor does it change significantly with cladistic rank 

across the phylogeny (Fig.3.7).  However, the morphological change considered here, 

although a metric related to disparity, is not the same thing as disparity(Smith and 

Lieberman 1999).  Still, in the case of diversity patterns and morphological change, the 

calmoniid radiation seems to best match the idealized pattern shown in Figure 1B.  This 

could indicate that diversification was occurring in the absence of ecological constraints, 

but other mechanisms might be indicated, including aspects of organismal development, 

and we are hesitant to ascribe a specific cause to explain this pattern.   Notably, Mahler et 

al. (2010) found that during the evolutionary radiation of Greater Antillean anoles, the 

amount of morphological change decreases as ecological opportunities decline and 

endorsed the notion that patterns of change in overall morphology could be used to 

consider these issues.   

    Ultimately, the roles that different sorts of ecological, environmental and geological 

factors play in mediating evolutionary radiations will continue to be debated (Cameron et 

al. 1996, Eldredge and Cracraft 1980, Erwin 1992, Esselstyn et al. 2009, Gillespie 2005, 

Grant and Grant 2007, Losos et al. 1998, Petren et al. 2005, Rueber et al. 1998, Rundell 

and Price 2009, Schluter 2000, Simpson 1944, Vrba 1992).  However, in this case, the 

calmoniids of the Metacryphaeus Group were diversifying in a heterogenous environment 

comprised of several geological areas in conjunction with episodes of climatic change 

stimulated opportunities for speciation (Abe and Lieberman 2009); these episodes of 

speciation were associated with consistent morphological change.  Undoubtedly new 

neontological data will continue to be gathered to inform our understanding of what causes 

dramatic blooms of taxa to occur.  Nonetheless, we hope that data from paleontology,  

55 



 
 
FIGURE 3.7.  Morphologic transition distance versus cladistic rank across the phylogeny of the 

Metacryphaeus Group.  Root of the tree was assigned a cladistic rank of one.  Kendall’s 

coefficient of rank correlation; τ = 0.078; p = 0.44; n = 51. 
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which played the earliest role in the genesis of theories on evolutionary radiations (e.g., 

Osborn 1902, Simpson 1944), will continue to be integrated with studies from extant taxa 

to yield a more synthetic picture of the nature of evolutionary patterns and processes.   
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CHAPTER 4 
 

PALEONTOLOGY, GEOGRAPHY, AND AN EXPANDED VIEW OF 
ADAPTIVE RADIATIONS  

 
INTRODUCTION 

 

At first glance, one might anticipate that the phenomenon of adaptive radiations, 

seemingly so important to evolutionary theory, should be well constrained and 

characterized.  Instead, there has been considerable debate about what precisely constitutes 

an adaptive radiation and more importantly, what processes are behind such radiations and 

speciation in general.  To some, adaptive radiations are seen as a major evolutionary 

paradigm, uniting micro- and macroevolution (Givnish 1997); further, it has been posited  

that radiations are the process by which most of life’s diversity has speciated (e.g., Givnish 

1997, Schluter 2000, Simpson 1953).  By contrast, Olson and Arroyo-Santos (2009) 

suggested that adaptive radiations are only one extreme type of diversification pattern that 

does not represent a special phenomenon.  Moreover, the concept of adaptive radiations 

was first developed by paleontologists but is now heartily endorsed by neontologists; yet, 

neontological and paleontological interpretation of the concept have diverged throughout 

the years.  Here, the focus will be on developing a theoretically consistent view of adaptive 
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radiations that considers both paleontological and neontological perspectives and views the 

concept from both pattern- and process-based frameworks.  

 Adaptive radiation has been an important theoretical concept for many years. 

Therefore, it is not surprising that definitions abound (Givnish 1997) and that they have 

changed in focus (Erwin 1992), ensuring an extensive associated literature.  In addition, the 

fact that the adaptive radiation paradigm was originally developed in the early and mid 20th 

century, when speciation theory was different and fewer scientific methodologies were 

available augurs well for the notion that this concept needs to be revisited.  For instance, 

developments in the fields of phylogenetics, molecular systematics, biogeography, 

developmental biology, ecology, and paleontology have shed new light on ideas first 

presented by Osborn (1902) and Simpson (1944, 1953).  

The study of the fossil record has been an important source for ideas on 

macroevolution in general and evolutionary radiations in particular (e.g., Eldredge and 

Gould 1972; Eldredge 1979, 1985, 1989, 1995; Gould 1980, 1985, 1991, 2002; Vrba 1980, 

1985; Eldredge and Salthe 1984; Allmon and Ross 1990; Lieberman 1995; Jablonski 2007; 

Lieberman et al. 2007; etc.).  Paleontology’s relevance for understanding adaptive 

radiations will be a focus herein.  In particular, study of the fossil record indicates that 

macroevolutionary patterns usually are produced by the complex interaction of both biotic 

and abiotic processes working in a complex, hierarchical framework.  Another topical 

focus of this paper relates to problematic fact that the theoretical interpretation of “adaptive 

radiations” is constrained by the use of the term “adaptive” in the couplet.  For instance, 

what if a combination of seemingly non-adaptive mechanisms, such as climatic or 

geological change, is responsible for triggering an evolutionary radiation?  Allopatric 
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differentiation might involve a combination of adaptive and non-adaptive mechanisms 

(including drift).  Is such a radiation still “adaptive”?  Is it better viewed as partially 

“adaptive”?  Such questions are not hypothetical because sometimes, evolutionary 

radiations of taxa seem to be triggered by their occurrence in a geographically complex 

setting (e.g., Abe and Lieberman 2009).  The components of these mechanisms of 

evolutionary radiations (allopatry, geographic complexity, abiotic factors) will be 

considered based on examples of currently denominated “adaptive radiations.”   

 

The evolution of the adaptive radiation concept 

 

Osborn (1902) developed the term “adaptive radiation” to explain the evolution of 

ecologically diverse mammalian clades in the fossil record.  He distinguished two types of 

adaptive radiations—general and local.  General adaptive radiations were held to span 

many clades that were geographically widespread and that were characterized by 

convergence in form and ecological function.  In contrast, local adaptive radiations were 

held to be much smaller in phylogenetic and geographic scope; moreover, the taxa in 

question were supposed to have developed distinctive adaptations, and there was much less 

emphasis on convergence. Subsuming two different types of macroevolutionary patterns 

under the heading “adaptive radiation” and also linking the issues of pattern and process 

clouded the definition of “adaptive radiation” at the outset.  Moreover, his distinction 

between large-scale (“general”) and small-scale (“local”) radiations seems to have been 

largely dismissed in the subsequent literature.   
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 As one of the pioneers of what today is referred to as the Modern Synthesis, G. G. 

Simpson embraced the concept of adaptive radiation and tied it to his “explosive” 

evolutionary tempo and mode (Simpson 1944, p. 213).  Further, he attempted to modernize 

the concept by synthesizing fossil data with emerging concepts from population genetics.  

Simpson (1953) implemented Sewall-Wright’s fitness landscape to the concept of an 

adaptive landscape formed of adaptive zones through which groups could radiate via 

divergent speciation.  This view established ecologically mediated phenomena to explain 

the processes driving adaptive radiations, which might be “minor” (e.g., Galápagos 

finches) or “major” (e.g., placental mammals) radiations.  In particular, he popularized the 

idea of the empty and open adaptive landscape that could be populated quickly.  One way 

to open an adaptive landscape, according to Simpson (1953, p. 355), is by acquiring a 

particular trait or key innovation.   

Ernst Mayr’s initial (Mayr 1942) treatment of adaptive radiations was far more 

perfunctory.  He seems to have deliberately avoided the term, given that he cited Lack’s 

(1942) work on Galápagos finches.  (See quote from Mayr 1942, p. 85 below.)  Mayr 

(1942) also discussed the “explosive sympatric speciation” of the African lake cichlids 

(today, considered a classic example of an adaptive radiation) and the Hawaiian tree snails; 

he instead treated them largely as involving allopatric speciation (Mayr 1942, p. 214; Mayr 

1984).  Later, Mayr (1960) did embrace the term more fully and treated them as invasions 

of open adaptive zones and endorsed the concept of key innovations.  After the inception 

of the Modern Synthesis, the concept of adaptive radiations continued to be popular. 

Perhaps this can be attributed to the fact that, at least by some characterizations (e.g., 
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Gould and Lewontin 1979; Cracraft 1982) during the 1950’s and 60’s, ideas on adaptation 

and selection were ascendant in evolutionary theory.  

Many contemporary evolutionary biologists, especially paleontologists, began to 

avoid the term “adaptive radiation” owing to the theoretical baggage associated with the 

word “adaptive” (Eldredge and Gould 1972; Stanley 1979; Eldredge and Cracraft 1980; 

Cracraft 1982; Erwin 1982; Gould 1991; Lieberman 1993); instead the more theoretically 

neutral “taxic” or “evolutionary” radiation was used.  Further, the term “adaptive 

radiation” is most frequently invoked to explain smaller-scale radiations (similar, though 

not exactly equivalent, to the “local” type that Osborn [1902] specified).  Interestingly, 

many of these “evolutionary radiations,” despite their more neutral name, still assumed the 

existence the same ecological processes as those that drove “adaptive radiations” (e.g., 

Foote 1996), threreby suggesting that the same theoretical baggage is there.    

 

Understanding the terminological confusion: pattern versus process 

 

The term adaptive radiation has led to considerable confusion because it has been 

used primarily as a pattern-based definition with implied—though not always examined—

processes.  Both the modifier “adaptive” and the noun “radiation” are difficult to interpret 

because they can be viewed and used as either patterns or processes.  Of the term 

“adaptation” Mayr (1942) wrote (p. 85):  

The word adaptation has, unfortunately, somewhat of a double meaning, according 

to whether one sees in adaptation a process or the result of a process, in other words 

whether one considers adaptation as something active or passive.  Whenever the 
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words adaptive or adaptation occur in the following discussion, they are used in a 

descriptive sense to indicate the results of a selective process. 

 

In an evolutionary context, radiation can also denote either a pattern 

(diversification or divergence from a central lineage or form) or a process (speciation).  

Thus, the combination of the terms is doubly confusing; some definitions seem to imply a 

process on an observed pattern, whereas others specify only pattern.  This terminological 

duality was noted previously (e.g., Eldredge and Cracraft 1980;Vogler and Goldstein 

1997).  The pattern- and process-based aspects of the definition must be decoupled to 

determine when the patterns can be used to test the processes involved.  This isolation of 

patterns from processes is particularly relevant because non-adaptive processes mediated 

by abiotic factors potentially can generate some of the same patterns attributed to adaptive 

radiations, as will be discussed more fully below. 

Givnish’s (1997) review and critique of commonly used definitions of adaptive 

radiation is a useful heuristic to clarify the focus on adaptive radiations.  A summary based 

on his analysis parses definitions of radiations with respect to whether they presume 

monophyletic groups and particularly rapid speciation, and whether they are associated 

with ecological diversification is presented in Table 4.1.  A consideration of these three 

elements is critical to the development of a more precise and synthetic understanding of the 

concept of “adaptive radiation.”  

 

Must adaptive radiations be monophyletic?—Eldredge and Cracraft (1980) argued 

that adaptive radiations should occur in monophyletic clades, which seems eminently 
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reasonable.  However, as mentioned above, Osborn (1902) did not make this requirement.  

(See also Schluter 2000).  Furthermore, by restricting the definition to single clades, 

certain types of radiations would be excluded.  For instance, many of the large-scale 

radiations that generated spectacular diversity (e.g., the Cambrian, the Cenozoic mammal, 

and the Ordovician radiations) involved several different lineages within larger clades that 

were diversifying independently and simultaneously (Fig. 4.1).  This is especially true 

considering that some of the phylogenetic proliferation associated with these radiations 

likely occurred some time before the first appearance of the fossils, as part of a low-

diversity “phylogenetic fuse” (Fortey et al. 1996; Cooper and Fortey 1998; Archibald and 

Deutschman 2001; Meert and Lieberman 2004; Lieberman et al. 2007).  Absence of 

monophyly need not be limited to large radiations.  The African lake cichlids seem to have 

undergone (monophyletically) radiations within several lakes; if the entire African region 

or the entire cichlid clade is considered, then the radiation is not monophyletic (Kocher 

2004; Seehausen 2006).   

Thus, it is important to ask whether determining the monophyly of a radiating group is 

important for understanding underlying evolutionary processes.  The answer is clearly yes, 

because if scientists are testing whether group-level properties (e.g., easily interrupted 

sexual recognitions system; tendency to hybridize; sustained key innovations) of a clade 

are driving the radiations, it is important to document monophyly (Lieberman 1995; 

Lieberman and Vrba 1995).  In contrast, if extrinsic (relative to the organisms themselves) 

factors such as climate change, geological change, and availability of ecological 

opportunity are driving the radiation, then one might predict extensive diversification of 

only parts of the clade in the regions affected (documenting non-monophyly of 
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diversifying parts of the clade).  For example, consider one of many hypothesized 

mechanisms facilitating the adaptive radiation of Galápagos Finches—viz., the propensity 

of these particular finches to utilize different seed-types and diversify in 
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FIGURE 4.1.  Two representations of adaptive radiations in the literature.  A)   Non-monophyletic 

radiation composed of several different clades.  Examples of these radiations tend to be large 

scale (Cambrian, Ordovician, mammalian radiations).  B)  Evolutionary radiation within a clade, 

or stemming from a common ancestor (sensu Schluter 2000).  Key innovations and exploration 

of empty landscape by a single ancestor will generate this monophyletic pattern. 

66



their trophic structure.  (See Grant and Grant 2007 for an excellent summary of research 

findings on these organisms.)  Galápagos finches are not a monophyletic clade.  A single 

species phylogenetically nested within the group resides in Cocos Island, some 800 km 

northeast of the Galápagos Island chain (Werner and Sherry 1987).  This species is a 

generalist with diverse feeding behaviors, but it has not radiated as its Galápagos relatives 

have.  This suggests that the forece driving radiation in these finches is not solely intrinsic 

to the group; it may be partly dependent on extrinsic factors affecting the Galápagos 

members of the clade, but not their brethren on Cocos Island.  
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TABLE 4.1.  Several definitions of “adaptive radiation” taken from the literature.  These 

are characterized as to which three components of the radiation the authors focused on in 

their definitions—viz., Ancestry (the mono- or polyphyly of the radiation); Tempo (the 

association of the radiation with elevated tempos of speciation); and Ecology (the 

association of the radiation with the generation of ecologically diverse forms).  

Author Definition Primary Components of 
Definition 

 
 

Ancestry Tempo Ecology 

Osborn (1902) Differentiation of habit in several directions from a primitive 
type    

Huxley (1942) 
Invasion of different regions of the environment by different 
phylogenetic lines, which secondarily exploit different modes 
of life, within a group  

   

Simpson 
(1944, 1953) 

Approximately simultaneous divergence of numerous lines 
from the same ancestral adaptive type into different  adaptive 
zones 

   

Mayr (1970) Evolutionary divergence of members of a single phyletic line 
into a series of different niches or adaptive zones    

Stanley 
(1979) Rapid proliferation of new taxa from a single ancestral group    

Futuyma 
(1986) 

Diversification into different ecological niches by species 
derived from a common ancestor    

Erwin (1992) 

Rapid bursts of taxonomic proliferation within a single clade 
triggered by extinction, the opening of an unoccupied 
geographic region, or key adaptations that allow a clade access 
to a new area of ecological space. 

   

Guyer and 
Slowinski 
(1993) 

some organisms have features that allow them to speciate 
prolifically or if there is adaptive divergence cued by the 
appearance of some ecological stimulus 

   

Skelton 
(1993) 

An episode of significantly sustained excess of cladogenesis, 
as opposed to extinction, with adaptive divergence cued by the 
appearance of some form of ecological stimulus 

   

Givnish 
(1997) 

Origin of a diversity of ecological roles and attendant 
adaptations in different species within a lineage    

Schluter 
(2000) 

Evolution of ecological and phenotypic diversity within a 
rapidly multiplying lineage    

Losos and 
Miles (2002) 

Clades that exhibit unusually profound phenotypic divergence 
into a variety of adaptive forms     

Losos (2009) Evolutionary divergence of members of a clade involving 
adaptation to the environment in a variety of different ways    
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 How much diversity and what increases in tempo of speciation are necessary to 

invoke the term "adaptive radiation?"—  Interestingly, not all scientists have focused on 

increasing tempo in their discussions of adaptive radiations (Table 4.1).  For instance, 

Givnish (1997) stressed that the uniqueness of adaptive radiations lay in adaptive 

divergence rather than taxonomic diversification. Still, the requirement that the pace of 

taxonomic diversification increases during an adaptive radiation is central to the definitions 

of Simpson (1953), Stanley (1979), Eldredge and Cracraft (1980), Futuyma (1986), Gould 

(1991), Guyer and Slowinski (1993), Skelton (1993), and Schluter (2000).  In the context 

of diversification patterns, it should be recognized that there are two indices of taxonomic 

diversification—total diversity and rate of diversification.  Regarding the former, there is 

no consensus on how much diversity justifies use of the term adaptive radiation. Indeed, 

there is a considerable range in species numbers among cited examples of adaptive 

radiations.  Consider that the Galápagos finches comprise 14 species and Hawaiian 

silverswords 28 species, whereas African cichlids comprise about 2000 species and the 

angiosperms approximately 350,000 species (Olson and Arroyo-Santos 2009).  These 

disparities are problematic because the same ecological processes are being applied to 

radiations involving single species complexes and extrapolated to clades containing 

hundreds of thousands of species.   

Although the size of radiation is not a relevant component of most definitions, rates 

of diversification (specifically, high speciation rates) are thought by some (Table 4.1) to 

result from ecological processes that allow rapid invasion into novel, open ecological 

opportunities.  With respect to the notion that increasing evolutionary tempo is an 

important indicator of adaptive radiation, there has been some contention of what 
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constitutes “high” rates of diversification (Olson and Arroyo-Santos 2009).  The study of 

evolutionary tempo has held an important place in paleontological studies of radiations 

(Simpson 1944). Moreover, diversification models provide a rigorous way to test for high 

speciation rates against a null hypothesis (Sanderson and Donoghue 1996; Lieberman 

2001; Nee 2006).  These approaches have been applied in paleontological studies, as well 

as in analyses of molecular datasets.   

In the identification of adaptive radiations, one cannot focus solely on increasing 

diversification rate.  Patterns must be identified in both molecular phylogenetic (Harmon et 

al. 1993; Baldwin and Sanderson 1998; Agrawal 2000; Rüber et al. 2003; Phillimore and 

Price 2008) and paleontological studies (Hulbert 1993; Foote 2000; Abe and Lieberman 

2009 and others), because high initial rates of speciation subsequently decline.  The 

discovery of such a pattern often entails differing opinions about the processes that might 

cause it.   

What is the role for ecology?—Often, the high speciation rates mentioned above 

are ascribed to a rapid invasion of organisms into a geographic region or ecological 

lifestyle that facilitates numerous novel ecological opportunities, whereas declining rates 

of speciation suggest that the finite number of available niches are being filled (Simpson 

1953).  Such density-dependent cladogenesis has been invoked for both small and large-

scale radiations (Cracraft 1982; Erwin 1982; Rabosky 2009).  Nevertheless, one should be 

careful about invoking an adaptive radiation every the time the pattern of high initial and 

later declining speciation rates is recovered.  For instance, such a pattern might be an 

artifact because molecular phylogenies cannot sample extinction directly (Crisp and Cook 

2009; Rabosky 2009).  Even if the pattern is real, phylogenetic biogeographic studies of 
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fossil taxa indicate they might be caused by changing environmental conditions that first 

encouraged, but later reduced, opportunities for allopatric speciation (e.g., Abe and 

Lieberman 2009).  Phylogenetic biogeographic perspectives, when coupled with molecular 

data, may allow these issues to be considered with the extant biota (e.g., Phillimore and 

Price 2008; Esselstyn et al. 2009). 

Several scientists have argued that ecological information is critical to the 

identification of adaptive radiations.  As mentioned above, Givnish (1997) argued that 

recovery of a pattern of morphological/ecological divergence is fundamental to identifying 

an adaptive radiation, regardless of the amount of taxonomic diversification.  Schluter 

(2000) suggested that to label a radiation as "adaptive," the taxonomic group must be 

ecologically diverse; further, a particular phenotype must be associated with the use of 

particular resources or the occupation of a particular environment. Extensive tests of 

phenotype-environment correlation have been applied. Beak size is correlated with choice 

of seed type in Darwin’s finches (Grant 1986),  Leg lengths leg lengths and coloration of 

lizards of the genus Anolis are associated with habitat (Irschick and Losos 1998; Losos et 

al. 1998; 2006), and cichlid jaw morphology matches trophic groups (Clabaut et al. 2007).   

There is also an entire field, ecomorphology (Ricklefs and Miles 1994), dedicated 

to associating—via function— morphology to ecology.  This enables the use of 

morphological diversification as a proxy for ecological diversification in studies of 

adaptive radiations.  A pattern frequently used as evidence of an adaptive radiation is 

clades in which there are several independent acquisitions of purportedly ecologically 

relevant morphological traits (Losos et al. 1998; Young et al. 2009).  In fact, the original 

formulation of adaptive radiation theory grew from the observation that convergent 
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ecological types had evolved within placental and marsupial clades (Osborn 1902).  

Important modern exemplars of such a pattern include Tetragnatha spiders from the 

Hawaiian Islands (Gillepsie 2005) and Anolis lizards from the Caribbean (Losos 2009).  

The proponents of ecology as a driver of adaptive radiations sometimes have used 

convergence as evidence that selective pressures are causing the radiation (Schluter 2000).  

The advancement of ecomorphology signifies an important role for morphometric 

methods in the study of adaptive radiations.  Because many aspects of behavior and 

ecology are indeterminate for extinct species, paleontologists often must rely on preserved 

morphology to make such inferences (Van Valkenburgh 1994); it is in the fossil record 

where morphometric approaches contribute greatly to the study of evolutionary radiations.  

Morphometric approaches have been applied frequently in paleontological studies that 

focus on the meaning of disparity and its changes through time (Gould 1989; Briggs et al. 

1992; Foote 1993; 1997; Erwin 2007).   

As described already, some scientists have focused on identifying a particular 

signature of adaptive radiations in relation to diversification rates—viz., high initial rates 

that decline subsequently.  Sometimes they have ascribed a particular process to explain 

that pattern.  Some paleontologists have formulated similar approaches to studying 

disparity and identifying the patterns and processes of evolutionary radiations.  For 

example, a pattern of high initial disparity followed by constant or decreasing disparity, 

especially relative to species diversity, often has been explained by either invoking open 

ecological opportunities that subsequently close or increasing developmental constraints 

(e.g., Gould 1989; Ciampaglio 2002).  (This is not the only process that might explain such 

a pattern, and below changing opportunities for allopatric differentiation are discussed).  
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An early peak in disparity that subsequently declines, and then stays constant typifies 

many paleontological studies—e.g., Paleozoic gastropods (Wagner 1995), blastozoans 

(Foote 1992), crustaceans (Wills 1998), and angiosperms (Lupia 1999).  However, not all 

analyses have found this pattern—e.g., Briggs et al. 1992, 1994 with arthropods; Harmon 

et al. 1993 with various lizard groups; Young et al. 2009 with cichlids.  Ecology has been 

used to explain patterns characterized by concurrent disparity and exponential taxonomic 

increase without saturation without exploring alternate hypotheses (e.g., Jernvall et al. 

1996). 

Many earlier paleontological studies of disparity lack a phylogenetic framework; 

further, disparity is not typically thought of in a context that considers monophyly to be 

important.  However, as more phylogenies become available, this is likely to change, and 

some authors have tried to view disparity in a phylogenetic context (e.g., Wagner 1995; 

Smith and Lieberman 1999; Harmon et al. 2003; Stone 2003; Clabaut et al. 2007; 

Sidlauskas 2008; Abe and Lieberman 2009).  Determination of the amount of 

morphological change that occurs at speciation events has the potential to be informative 

about the role of ecological processes in motivating diversification.    

 

Using Adaptive Radiations as a Model for Integrating Ecological processes with 

Macroevolutionary Theory 

 
“Nature abhors an empty niche.”  Schluter (2000, p. 69) 
 
 Although other (non-adaptive) processes for adaptive radiations have been 

proposed—e.g., rampant hybridization (Seehausen 2004), developmental release (Gould 
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1989), and sexual selection-driven speciation (Galis 1998)—ecological explanations have 

dominated the evolutionary radiation literature.  For instance, Schluter’s (2000) ecological 

theory forms the most complete framework for  studying adaptive radiations in recent 

times (1360 times, Google Scholar 2010); this theory is so prominent in the field that it 

merits additional detailed discussion.  Schluter’s (2000) ecological theory of adaptive 

radiation considered several aspects of ecology—viz., ecological divergence; competition 

and ecological opportunity; and ecological speciation.  Ecological opportunity is the 

overarching concept joining both small and large radiations (Cracraft 1982; Erwin 1982) 

and is considered first, followed by a discussion of ecological divergence and ecological 

speciation.   

Ecological opportunity—.  Ecological opportunity applied to adaptive radiations 

posits expansion first and subsequent saturation of ecological space.  Expansion occurs 

upon:  (1) invasion of a new, unoccupied area; (2) acquiring a key innovation that opens 

previously unavailable ecological space; or (3) modification/expansion of ecological space 

(Simpson 1953; Schluter 2000).  Saturation is achieved when competitive interactions for 

resources in a finite ecological space become extensive (Benton 1996).   

 Island radiations frequently are cited as examples in which new ecological space 

becomes available (Simpson 1953; Grant 1998; Harmon et al. 2008; Losos and Ricklefs 

2009).  The extraordinary morphological diversity and endemism seen in islands has been 

attributed to a lack of predators and competitors, allowing for diversification and 

specialization of new arrivals (Darwin 1859).  One mechanism considered relevant here is 

the generalist-to-specialist hypothesis.  (See Schluter 2000 for references and criticism.)  In 

this view, generalist species can colonize new areas more easily and can be partitioned 
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ecologically into specialized niches.  In the adaptive landscape metaphor, a generalist 

would cover a much wider adaptive area, and thus, would be exposed to more adaptive 

(specialized) peaks (Simpson 1944).  A pattern of morphological change that might be 

expected in such a transition is as follows.  First, a generalist species faced with open 

ecological opportunities would rapidly diversify morphologically and ecologically.  

Second, as several species come to occupy the different adaptive peaks, there should be a 

decrease in the amount of morphological and ecological change.   

The idea of key innovations was advanced by Simpson (1953) to explain rapid 

diversification patterns during adaptive radiations, but see also Hunter (1998) and Heard 

and Hauser (1995).  A key innovation is an trait that allows an organism to invade a new 

ecological space.  (These should not be confused with species-level properties that might 

incite speciation —e.g., limited dispersal ability that subsequently affects population 

structure [Lieberman and Vrba 1995]; these are likely to be very important in explaining 

aspects of evolutionary radiations, but are not what authors typically intended when they 

invoked key innovations.)  One way key innovations have been identified is through 

phylogenetic studies, in which it is possible to study the distribution of characters in 

diverse and depauperate clades (e.g., Berenbaum et al. 1996; Bond and Opell 1998; Hunter 

1998; Hulsey et al. 2006; but see Alfaro et al. 2009).  However, because phylogenies are 

based on synapomorphies, a posteriori identification of any of these synapomorphies as 

“key innovations” could be tautological (Guyer and Slowinski 1993; Donoghue 2005).  

Another problem is finding a causal relationship between the acquisition of a trait and 

increased speciation rates. For example, Hunter and Jernvall (1995) hypothesized that 

independently acquired hypocone cusp attachment on molars of several mammal groups 
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allowed them to radiate into other trophic ecologies and speciate.  Although this trait is 

associated with herbivory, trophic success is not likely only dependent on one attachment 

on the molars. Moreover, acquiring a trait that allows access to a new adaptive zone does 

not necessarily translate to higher speciation rates (Vrba 1987; Cracraft 1990; Allmon 

1992); adaptive success is not the same as speciation potential. 

It is also important to recognize that expansion and modification of ecological 

space is a complex phenomenon that can involve changes in physical and biotic factors.  

An example of modification of current ecological space is the classic idea that mammals 

were only able to radiate after the disappearance (mass extinction) of the incumbent 

dinosaurs (Simpson 1953; Stanley 1993).  These radiations following mass extinctions are 

attributed to invasion facilitated by newly open ecological opportunities (e.g., Sepkoski 

and Miller 1985; Erwin 2001).   To complicate this issue further, other authors have 

suggested that the creation of increasing ecological complexity might trigger expanding 

opportunities for diversification through positive feedback loops (Vermeij 1977; Erwin 

1994; Bambach 2007; Erwin 2008; but see Cornette and Lieberman 2004 and Novack-

Gottshall 2007).  The Mesozoic Marine Revolution is hypothesized to exemplify this.  In 

response to increased predation pressure, the marine shelly fauna greatly diversified and 

there was increased ecological structuring (Vermeij 1977).  Co-evolutionary interactions 

could also be important in this regard (Odling-Smee et al. 2003).  

Another potential hallmark signature of an adaptive radiation is the saturation of 

ecological space.  In particular, saturation of taxonomic and morphological diversification 

has been used to validate the notion that ecospace is finite (e.g., Rabosky 2008).  Some 

have suggested that logistic growth curves characterize small and large-scale radiations 
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(Rieppel 1984; Erwin 1992; Benton 1997; Benton and Emerson 2007) which prompted the 

use of such equilibrium models; these have been applied at hierarchical levels as small as 

bacteria in a petri dish (Brockhurst et al. 2007) and as large as the evolution of all animal 

life (e.g., Sepkoski’s 1984 evolutionary faunas).  In the case of the latter, however, it is 

important to recognize that overall diversification cannot be distinguished from a random 

walk, except for the last 75 MY (Cornette and Lieberman 2004).   

Juxtaposing the arguments relating open ecological opportunities and saturation, 

there has been considerable discussion as to whether ecospace is finite and whether the 

laws of competition should even be viewed to operate in such a manner (Rieppel 1984; 

Benton 1996).  Some have also argued that adaptive zones are not ontologically relevant 

and, instead, are simply an intellectual remnant of the Neo-Darwinian synthesis (Cracraft 

1982).  In this regard, it is useful to revisit the difference between large- and small-scale 

radiations.  The metaphor that Simpson (1944, 1953) developed for adaptive zones and 

higher taxa originally was developed for populations and species (Eldredge 1985, 1989).  

In addition, the ecological theory associated with niches—incumbency, competition, 

predator-prey interactions, resource limitation, saturation, etc.—also focused on the 

population and at times the species level.  Extrapolating what happens at these lower levels 

to higher levels such as clades is neither well justified by data nor theory (Eldredge 1979, 

1985, 1989; Gould 1980, 1982; Vrba 1980, 1985; Lieberman and Dudgeon 1996).  A 

classic example focusing on competition was the idea that the decline of brachiopods was 

caused by the competitive superiority of mollusks; Gould and Calloway (1980) remarked 

that whole diverse clades are not the entities competing, and the diversification patterns in 

the two groups were much like “ships that pass in the night.”  Perhaps similarly the notion 
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that ecospace saturation explains the dynamics of large-scale evolutionary radiations may 

be problematic.  Moreover, ecosystem structure has changed significantly through time 

(detailed summary in Bambach et al. 2007) and also produced increasing environmental 

and geographic complexity.  An expanding and fluctuating ecospace suggests that 

saturation is not real.  More research is required, along with an understanding the dynamics 

of taxonomic diversification with ecospace occupation (e.g., Pie and Weitz 2005).    

 

ABIOTIC FACTORS AND ADAPTIVE RADIATIONS 

 
Above, we discussed particular patterns and the ways in which studies of adaptive 

radiations interpreted them with ecological processes.  However, a number of these 

patterns that have been attributed to ecologically mediated diversification can be explained 

by allopatric mechanisms.  In the following section, a process by which climate-driven 

allopatric speciation in geographically complex areas generates patterns of ecologically 

diverse prolific clades is proposed.  This view of radiations further supports the importance 

of abiotic factors driving evolution and calls for a re-interpretation of the adaptive radiation 

paradigm.   

 
Speciation 

 
 Speciation is central to any adaptive radiation.  Therefore, an examination of 

speciation theory could be crucial to understanding the core of adaptive radiation.  In the 

minds of most contemporary biologists, speciation centers on a sequence of geographic 

isolation, divergence, and the development of reproductive isolation (Dobzhansky 1937; 
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Mayr 1942; Coyne and Orr 2004).  A key aspect of this view of speciation is that it is a 

sequential process.  Isolation occurs when populations are separated by a geographical 

barrier that interrupts gene flow.  The disparate populations diverge (natural selection, 

drift, etc.), and given enough divergence, the populations become reproductively isolated 

such that if they were to meet, they could not interbreed successfully (Mayr 1942).   

Divergence and reproductive isolation are viewed as by-products of isolation (discussed in 

detail by Baker 2005).  These fundamental steps of speciation are the backbone of many 

evolutionary studies.  There is much debate on this sequence of steps; supporters of non-

allopatric speciation emphasize mechanisms that cause genetic divergence and 

reproductive isolation given occurring gene flow (Baker 2005), but the allopatry vs. 

sympatry debate will not be focus here.   

The importance of geographic isolation in the speciation process is clearly outlined 

by Mayr (1942, p. 187): 

 

The primary factor is thus geographic segregation and isolation, and the secondary 

factor is the gradual accumulation of genetic differences leading to morphological, 

physiological, ecological and ethological differences. 

 

This is reiterated (and preceded) by Dobzhansky (1937, p. 229), “Species formation 

without isolation is impossible.”  Perhaps more of the focus on what causes an adaptive 

radiation should be on geographic isolation because finding that there are ecological 

differences between closely related species does not mean they have undergone sympatric 

speciation.  Mayr (1942) stated, “There is no geographic speciation that is not at the same 
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time ecological and genetic speciation.”  The difference between selective forces as 

divergence mechanism and speciation mechanism is recognized (e.g., Losos and Glor 

2003); however, adaptive patterns are seldom interpreted as the product of isolation 

mechanisms through allopatric means. 

Allopatry and adaptive radiations.—The same is true of the theory of adaptive 

radiations.  Ecological causes for adaptive radiations include natural selection as the result 

of environmental change, competitive displacement, sexual selection, coevolution, 

predator-prey dynamics, and introgression.  However, the occurrence of such divergence 

mechanisms does not preclude isolation from being the primary mechanism that initiates 

speciation.  This is crucial to our understanding of the process of adaptive radiation.  Thus, 

a radiation could be mediated by factors promoting geographic isolation, but because the 

subsequent mechanism causes ecological divergence, the latter process is considered as the 

sole mechanism.  Even an allopatrically driven radiation with subsequent ecological 

divergence can produce a phenotypically diverse group.  The exceptional character of 

prolific speciation seen in some radiations could be explained by allopatry if there were 

multiple opportunities for isolation.  Such opportunities can occur in geographically 

complex regions, and these can be amplified when the taxa in such region are exposed to 

environmental change that allows for additional and simultaneous opportunities for 

isolation.   

 Consider what might be involved an allopatrically mediated adaptive radiation—(1) 

invasion into a geographically complex area with multiple areas of endemism; (2) 

expansion into all areas, facilitated by climate change, followed by subsequent isolation, 

again caused by climate change; (3) action of one or more divergence mechanisms that 
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results in reproductive isolation; and (4) repetition of the process with cycling climatic 

changes. 

 The simplest way for populations to become isolated and have their gene flow 

interrupted is physical separation (Dobhansky 1937; Mayr 1942; see Coyne and Orr 2004), 

and this is why there is a high frequency of sister-species separated by geographic barriers 

(Cracraft 1982; Wiley and Mayden 1985; Bolnick and Fitzpatrick 2007).  Such allopatric 

differentiation can be caused either by the formation of a barrier (vicariance) or movement 

across a barrier (dispersal), and there abiotic factors, such as geological and climatic 

changes, are important in mediating allopatric patterns (Lieberman 2000).  Further, a 

changing and dynamic earth is replete with phenomena that promote vicariance and range 

expansion.  In turn, such range expansion could be mediated by abiotic and biotic factors 

(Lieberman 2000).   

Because abiotic factors that cause allopatry can have profound consequences for 

evolution, it is worth considering the geologic and climatic setting of adaptive radiations.  

A tabulation of some adaptive radiations in the recent literature reveals a variety of 

different settings (Table 2); a number have occured on islands, which allow for multiple 

opportunities for allopatry.  The importance of allopatry for driving radiations is best 

exemplified by cases of so-called “non-adaptive” radiations (sensu Gittenberger et al. 

1991).  There are examples involving Albinaria snails in Greece and Crete, Porto Santo 

Island snails, and North American woodland salamanders (Gittenberger 1991; Cameron et 

al 1996; Kozak et al. 2005).  The signature of a non-adaptive radiation is a rapidly 

speciating clade that contains geographically discrete taxa that show little 

morphological/ecological diversity.  Allopatric speciation supposedly would not likely 
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have to be accompanied by niche expansion (Gitternberger 2004).  This is especially true 

given that speciation involving allopatry is a sequential process, and following geographic 

isolation divergence could cause only small phenotypic change, particularly if not 

mediated by selective forces, perhaps genetic drift.   
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TABLE 4.2.  Some recent studies since 2004 that identified a particular diversification 

pattern as an “adaptive radiation.”   

Citation Organism Location General type # of species

(Austin et al. 2004) Geckos Mascarene Islands Insular 5

(Chinn and Gemmell 2004) cockroach Celatoblatta New Zealand Local 10

(Crisp and Cook 2009b) Legumes Australia and Africa Worldwide 300

(Davis et al. 2005) Malpighiales plants Tropics Worldwide 124

(Dunbar-Co et al. 2008) Plantago plant Hawaii Insular 42

(Gillespie 2005) Tetragnatha spiders Hawaii Insular 5

(Glaubrecht and von Rintelen 
2008) Tylomenia gastropods Sulawesi lakes Lake 34

(Goldblatt et al. 2009) Iris Ferraria  Sub-Saharan Africa Wide-ranging 17

(Guzman et al. 2009) Cistus plant Mediterranean Wide-ranging 12

(Hughes and Eastwood 2006) Lupinus plant Andes Insular 85

(Irestedt et al. 2009) Ovenbirds Neotropical Wide-ranging 105

(Kassen et al. 2004) Pseudomas fluorescens Laboratory Laboratory 1

(Kocher 2004) Cichlids African Rift Lakes Lake >1000

(Koepfli et al. 2008) Mustelidae Worldwide Worldwide 59

(Lopez-Fernandez et al. 2005) Geophagine cichlids South America Wide-ranging >30

(Lukoschek and Keogh 2006) Hydrophiine sea 
snakes Indo pacific Wide-ranging 40

(Mangel et al. 2007) Rockfishes Northeast Pacific Wide-ranging 100

(Meimberg et al. 2006) Micromeria plant Canary Islands Insular 16

(Parent and Crespi 2009) Land snails Galápagos Insular 30

(Pinto et al. 2008) Anolis Mainland Wide-ranging 197

(Price 2010) Leaf warblers Eurasian Wide-ranging 80

(Sakai et al. 2006) Schiedea plant Hawaii Insular 34

(Steeman et al. 2009) Cetaceans Worldwide Worldwide 87

(Wirta et al. 2008) Dung beetles Madagascar Local >60
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Given the importance of allopatric speciation, it stands to reason that multiple 

opportunities for isolation can cause higher speciation rates.  Cracraft (1982) proposed that 

rate of speciation should be directly proportional to the evolutionary history of lithospheric 

complexity for a given interval of space and time, and it is worthwhile to expand on his 

framework.  In particular, an area can be characterized as geographically complex if it 

contains multiple, habitable and isolated areas.  Moreover, complexity increases given the 

number of possible connections between the areas, and the frequency and duration of the 

connections.  Consider an idealized example in which an abiotic change such as climate 

change causes every area to become connected to every other area and all taxa 

subsequently move between the no longer isolated areas.  Posit a subsequent climate 

change that then isolates the areas to a sufficient degree and for enough time to allow 

speciation.  Assuming speciation always follows this discontinuity and that this is the 

primary factor causing speciation and this would lead to an exponential increase in the 

number of species (S) where S = ni with n the number of areas, and i the number of events 

that connect and later disconnect the areas.  As an example, consider a region with three 

distinct areas of endemism, and starting with a single species in one of the area, and one 

cycle of climate change that first connected and then disconnected the areas, allowing 

range expansion with subsequent vicariance.  First there would be three new species.  S = 

31 = 3; upon another cycle of climate change quickly there would be 9 species with 

additional cycles producing 27, etc.  This is of course a model, but the circumstances are 

not entirely farfetched (e.g., Abe and Lieberman 2009).  This illustrates how increasing 

geographic complexity can dramatically raise speciation rates.   
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Areas of obvious geographic complexity include islands for which there are many 

cases of adaptive radiations, but this model is possible for any isolation-forming 

heterogeneous environment (e.g, river systems, mountain tops, refugia, etc.).  Because 

isolation depends upon the species in question, an area of geographic complexity for one 

species may not be so for another.  For example, a benthic marine population might be 

separated from another conspecific population by a complex sea-floor, but the complexity 

of the seafloor would not affect the pelagic species swimming above it.  Geographically 

complex places that have been targeted in the adaptive radiation literature include marine 

basins separated by relatively elevated arches (e.g., Abe and Lieberman 2009), lake 

systems connected by rivers (e.g., the East African Lake system [Johnson et al. 1996]; 

lakes in Sulawesi [Glaubrecht 2008]) and heterogenous habitat (e.g., Appalachian 

Desmognathus salamanders [Kozak et al. 2005]).  It is worth mentioning that these are 

tectonically active systems, and both climatic and plate-tectonic changes could play a role 

in isolating and joining regions in all of these places.   Geographic complexity has been 

implicated as the reason for higher diversity in a number of cases; for example, Cocos 

Island comprises a single area that contains only one species of Darwin’s finches (Grant 

and Grant 2007). 

 

The importance of climate change as a trigger for adaptive radiation 

 

Climate change can have a profound impact on diversification patterns (Vrba 1980; 

1993; 1995a,b; Benton et al. 2009).  Because the history of the Earth shows dynamic shifts 

of climate, speciation mediated by climate change is relevant to the study of radiations 
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(Benton and Emerson 2007).  Climate change triggers vicariant speciation by promoting 

geographic isolation with the formation of physical barriers and the fragmentation of 

continuous habitat.  In the marine realm, climate change often involves changes in sea 

level that connect or separate areas; this can also have important effects on the terrestrial 

realm, and there, climate change will also alter river and lake systems (e.g., Wiley and 

Mayden 1985; Rueber et al. 2009).  The Milankovitch cycles—caused by precession, 

obliquity, and eccentricity in the Earth’s orbit—are important climatic factors and today 

produce oscillations in climate of roughly 20k, 40k, and 100k years (Bennett 2001; Jansson 

and Dynesius 2002).  These cycles have been implicated in causing speciation and species 

turnover as part of the turnover-pulse hypothesis (Vrba 1980; 1995a,b).  These climate-

driven diversification pulses have left their signature in the fossil record (Vrba 1980; 

1995b; Janis 1993; Raia et al. 2005; but see Barnosky 2001).  A related concept of 

formation of multiple isolates in refugia (see reviews in Hewitt 2001; Bennett and Provan 

2008) has potential for high speciation in fragmented areas (Tainaka 2006). 

 

Adaptive radiations are produced by a complex interplay of geographic complexity, 

climate change and biotic factors 

 

However, the simple combination of geographic complexity and climate change is 

not a guarantee that a radiation will happen.  Great changes in climate occurred during the 

Quaternary, including multiple ice-ages (Webb and Bartlein 1992), but this was not 

accompanied by unusually high diversification rates (Barnosky 2005; reviewed in Bennett 

2008).  This may be because the climatic cycles were too short to produce barriers of 
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sufficient duration to allow speciation to occur (Vrba 1996; Bennett 1997; Barnovsky 

2005).  Furthermore, geographic complexity alone does not seem to always produce an 

adaptive radiation (e.g., Ricklefs and Bermingham 2007); in particular, some taxa in 

geographically complex regions may radiate whereas others do not (e.g., mockingbirds in 

the Galápagos, Grant and Grant 2007).  Thus, any model of adaptive radiation must 

consider not only abiotic factors but biotic factors as well; the abiotic factors may set the 

stage for the allopatric speciation that allows the biotic factors to come to the fore.  

 An important biotic factor may be differences in the potential for speciation among 

groups.  For instance, consider emergent, species-level properties of clades that directly 

affect the propensity to become geographically isolated.  Examples of these are considered 

in Vrba (1988) and include the limited dispersal ability of cichlids (Sturmbauer and Meyer 

1992), the wide dispersal ability of white-eyed birds (Moyle et al. 2009), host switches to 

wider-ranging prey (Wirta et al. 2008), and colonization of insular habitats of silverswords 

and tarweeds (Baldwin 2007).  Understanding these emergent properties in a hierarchical 

framework may transform Simpson’s (1953) original understanding of key innovations; he 

focused solely on organismic adaptations as key to opening ecological opportunities.   

 

Re-evaluating classic examples of adaptive radiation in light of these new views.   

Below, the African lake cichlids and calmoniid trilobites from the Devonian 

Malvinkaffric Realm (Eldredge and Cracraft 1980) are considered under the allopatric-

mediated model of radiation. 

African lake cichlids are one of the most enduring examples of adaptive radiation 

owing to their spectacular diversity and rapid diversification (Galis 1998; Kocher 2004; 
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Seehausen 2006).  Comprising about 2000 species, these fish account for about 7% of the 

total number of fish species, all contained in rift-formed lakes in East Africa.  Each major 

lake has its own independent monophyletic radiation.  Some processes invoked to explain 

this radiation include trophic differentiation (Clabaut et al. 2007), key innovations of the 

pharyngeal jaw (Liem 1973), sexual selection (Galis 2008), generalist-to-specialist 

transitions (Salzburger et al. 2005), and hybridization (Seehausen 2006).  However, the 

geographic history of the area is complex.  Substantial tectonic and climatic changes 

caused major oscillations in lake level (Johnson et al. 1996; Sturmbauer 2001; Salzburger 

et al 2005).  Congruence in patterns of radiation among all lakes suggests that single 

climatic events (refilling of lakes 10,000 years ago) could have caused the rapid speciation 

in different African lakes (Sturmbauer 2001).  A study of lake-level fluctuations of African 

cichlids in Lake Tanganyika found correlations between radiations and Pleistocene 

glaciations, which split the lake into three parts (Ruber et al. 1998).  The complete 

desiccation of Lake Victoria about 15Ka did not match the age of the cichlid radiation 

based on molecular divergence estimates; this suggests that the fish used isolated riverine 

and lacustrine refugia (Elmer 2009).  A study on reconstruction of habitat shifts based on 

phylogeny of haplochromine cichlids documented multiple movements from riverine to 

lacustrine habitats (Salzburger et al. 2005), although lake stocks remained monophyletic.  

Thus, there is ample evidence for the importance of allopatry in the lakes, suggesting that 

the divergence mechanisms producing high ecological diversity might be less important 

than allopatry.  However, how does one explain why these particular cichlids speciated in 

the lakes, and not other species?  Two possible explanations are (1) the limited dispersal 

ability that lead to high degrees of microallopatry in these cichlids (Givnish 1997), and (2) 
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their sexual-recognition systems, which are easily modified (Seehausen et al 1997; Smith 

and Kornfield 2002).  These biotic properties are not inherently adaptive and are better 

viewed as emergent, species-level properties.  Given that climate-driven isolation may 

have been the initiating factor of the radiation, it might be more appropriate to view this 

example as an allopatric -mediated adaptive radiation. 

The calmoniid trilobites were an endemic monophyletic group consisting of more 

than 40 species of morphologically diverse trilobites that diversified in the Malvinokaffric 

Realm of the Devonian (Eldredge and Cracraft 1980; Eldredge and Ormiston 1981).  This 

diverse group has been hailed as a classic example of adaptive radiation in the fossil record 

and also displays high morphological diversity.  Abe and Lieberman (2009) examined 

patterns of diversification and found high initial rates of speciation, followed by decreasing 

rates.  Biogeographic analysis of the Malvinokaffric Realm indicated an area of high 

geographic complexity with multiple intracratonic basins affected by cyclical sea-level 

regressive and transgressive events that would have allowed expansion and contraction of 

taxon ranges.  Ultimately, speciation rates were correlated with sea-level changes and 

associated geographic complexity.  A geometric morphometric approach was used to 

quantify morphological change during the evolutionary radiation in order to test the 

hypothesis that ecological divergence would show patterns of increased morphological 

diversification.  Morphological change was not found to show any ecologically- mediated 

trends within the clade.  This indicated abiotic factors were initiating the mechanisms of 

speciation.   
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CONCLUSION 

 

In this chapter, the term “adaptive radiation” was reviewed both in terms of patterns 

and processes.  The traditional view was that radiations were caused by ecological 

processes driving speciation, namely, the equilibrium model due to filling and saturation of 

ecological space.  This model has been applied to radiations of small clades (e.g., insular 

radiations), and large, non-monophyletic diversification over geological time (e.g., the 

metazoan radiation).  Invoking a process such as ecological saturation is problematic 

because there is little support for the existence of fixed, finite ecospace; it seems inaccurate 

to suggest these played a role in larger radiations.  Instead of simply focusing on biotic 

processes, abiotic factors, especially those that promote allopatry, must play a role in 

adaptive radiations.  This does not mean there is no role for adaptation in such radiations, 

but the important initiating role of geographic and climatic complexity must be considered.  

Studies of the classic examples of adaptive radiations agree with this new framework.  

Given the major role of abiotic and allopatric processes, the term “adaptive radiation” as it 

is currently used is therefore misleading, as the process causing most of them are not 

confined to ecological divergence alone.  A new understanding of radiations is emerging 

that abandons the single, deterministic process of ecological divergence as the main driver 

of evolution and speciation.   
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APPENDIX 1 

 
Specimens used in the geometric morphometrics.  Most specimens did not have accession 

numbers, so identification may not be databased. 

Location Identification Species 
AMNH 044238 Punillaspis sp. 
AMNH Pujravi z. M. venustus Eldredgeia venustus 
AMNH 047147 Eldredgeia eocryphaea 
AMNH 044260 Malvinocooperella pregiganteus
AMNH 044249 Malvinocooperella pregiganteus
AMNH 044257 "Clarkeaspis" gouldi 
AMNH 044268 Metacryphaeus rotundatus 
AMNH 044269 Metacryphaeus rotundatus 
AMNH 044263 Metacryphaeus giganteus 
AMNH 044243 Plesioconvexa praecursor 
AMNH 044240 Eldredgeia venustus 
AMNH 044274 Metacryphaeus conexus 
AMNH 17923 Vogesina lacunafera 
AMNH 17953 Vogesina lacunafera 
AMNH n/a Eldredgeia venustus 
AMNH Chacoma 49 Metacryphaeus giganteus 
AMNH Pujravi-z.Fb-9 Metacryphaeus giganteus 
AMNH Chacoma- 11 Metacryphaeus giganteus 
AMNH 26336:3 Vogesina devonica 
AMNH 26360-3 Plesiomalvinella boulei 
AMNH 26360-9 Malvinocooperella pregiganteus
AMNH branisa "15" Metacryphaeus branisai 
AMNH Limba-140 Metacryphaeus curvigena 
AMNH n/a Eldredgeia venustus 
AMNH Chacoma-184 Eldredgeia venustus 
AMNH z.Patacayama-115 Eldredgeia venustus 
AMNH 136 Metacryphaeus curvigena 
AMNH n/a Plesioconvexa praecursor 
AMNH 36745 Parabouleia calmonensis 
AMNH 36722 Bouleia dagincourti 
AMNH 44139 Plesiomalvinella boulei 
AMNH 44143 Malvinella buddae 
AMNH 44147 Palpebrops donegalensis 
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AMNH 44144 Palpebrops donegalensis 
AMNH 44141 Malvinella buddae 
AMNH 44130 Metacryphaeus tuberculatus 
AMNH 044137 Plesiomalvinella pujravii 
AMNH 44142 Malvinella haugi 
AMNH 46441 Eldredgeia venustus 
AMNH 29104 Bouleia dagincourti 
Cooper 1982 Metacryphaeus caffer 
Cooper 1982 Metacryphaeus caffer 
Cooper 1982 Metacryphaeus caffer 
Cooper 1982 Metacryphaeus caffer 
Carvalho et al. 1997 Metacryphaeus kegeli 
Carvalho et al. 1997 Metacryphaeus kegeli 
Carvalho et al. 1997 Metacryphaeus meloi 
Carvalho 2003 Wolfartaspis liebermani 
Cooper 1982 Typhloniscus baini 
Cooper 1982 Typhloniscus baini 
Cooper 1982 Typhloniscus baini 
Cooper 1982 Metacryphaeus caffer 
Edgecombe et al. 1994 Talacastops sp. 
Edgecombe et al. 1994 Talacastops zarelae 
Edgecombe et al. 1994 Talacastops zarelae 
Edgecombe et al. 1994 Bouleia cf. sphaericeps 
Wolfart 1968 Plesioconvexa praecursor 
Lieberman et al. 1991 Metacryphaeus australis 
Lieberman et al. 1991 Malvinella haugi 
Baldis and Longobucco 1977 Punillaspis argentina 
Baldis and Longobucco 1977 Punillaspis argentina 
MNRJ 33 Metacryphaeus australis 
MNRJ 35 Metacryphaeus australis 
MNRJ n/a Metacryphaeus australis 
NHNM 23815 Eldredgeia venustus 
NHNM 76-3 Malvinella buddae 
NHNM C-6 Plesiomalvinella boulei 
NHNM Pjd-2 Vogesina aspera 
NHNM Pjd-2 Malvinella buddae 
NHNM Purjavi Malvinella buddae 
NHNM i Metacryphaeus branisai 
NHNM 287920 Bouleia dagincourti 
NHNM O1-9188 Metacryphaeus conexus 
NHNM 9230 Malvinocooperella pregiganteus
NHNM O1 Metacryphaeus curvigena 
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NHNM O1-5822-9479 Plesiomalvinella pujravii 
NHNM O1 Metacryphaeus curvigena 
NHNM O1 Plesiomalvinella pujravii 
NHNM 457044 Metacryphaeus curvigena 
NHNM 468743 Metacryphaeus branisai 
NHNM 468746 Metacryphaeus curvigena 
NHNM 468741 Clarkeaspis padillaensis 
NHNM 468742 Clarkeaspis padillaensis 
NHNM 468744 Metacryphaeus branisai 
NHNM C.9 Vogesina aspera 
NHNM 9203 Malvinocooperella pregiganteus
NHNM A-24 Metacryphaeus giganteus 
NHNM 7.2 Metacryphaeus giganteus 
NHNM 7.2-5820 Plesiomalvinella boulei 
NHNM 7.2 Plesiomalvinella boulei 
NHNM 7.2 Plesiomalvinella boulei 
NHNM Patacamaya Plesiomalvinella boulei 
NHNM Branisa-8.3 Eldredgeia venustus 
NHNM Branisa-8.3 Metacryphaeus tuberculatus 
NHNM Branisa-Belen-7.9 Wolfartaspis cornutus 
NHNM Branisa-Belen-7.9 Wolfartaspis cornutus 
NHNM Branisa-Belen-7.9 Wolfartaspis cornutus 
NHNM Eremopyge-7-9 Wolfartaspis cornutus 
NHNM Branisa-Belen Malvinocooperella pregiganteus
NHNM Branisa-Belen-7.9-X69-M-196 Wolfartaspis cornutus 
NHNM Branisa-Belen-7.9 Wolfartaspis cornutus 
NHNM Branisa-Belen-7.9 Vogesina aspera 
NHNM Branisa-Belen-7.9 Vogesina aspera 
NHNM Branisa-Belen-7.9-M210 Vogesina aspera 
NHNM Branisa-7.3 Metacryphaeus conexus 
NHNM Branisa-7.7 Eldredgeia venustus 
NHNM Branisa-7.7 Eldredgeia venustus 
NHNM Branisa-7.7 Metacryphaeus tuberculatus 
NHNM Branisa-7.5 Malvinella buddae 
NHNM Branisa-7.10 Vogesina lacunafera 
NHNM Branisa-C6 Vogesina aspera 
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APPENDIX 2 
 

Description of landmark locations used in the geometric morphometric analyses on 

trilobite cephala.   

1. Anteriormost point on cephalon located on anterior margin (may be same as 2 if 

no anterior border  present) 

2. Anteriormost point of glabella 

3. Midpoint of posterior margin of S0 

4. Midpoint of anterior margin of L0 

5. Midpoint of posterior margin of L0 ; landmark placed at base if occipital spine 

or node present 

6. Anterolateral contact of axial furrow with cephalic margin 

7. Posterior distal end of S3 contact with axial furrow 

8. Posterior proximal end of S3 

9. Contact of axial furrow with transverse line to proximal end of S2 

10. Posterior distal end of S2 

11. Posterior proximal end of S2 

12. Contact of axial furrow with distal S1 

13. Proximal end of S1 

14. Contact of axial furrow with posterolateral of L1 

15. Anteriormost point at base of eye 

16. Posteriormost point at base of eye 

17. Contact of lateral cephalic margin directly transverse of proximal end of S2 

18. Anterodistal end of posterior border furrow 

19. Midpoint on eye curvature 

 




