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ABSTRACT 

 

Transcriptional and functional regulation of the breast cancer susceptibility gene 1 

(BRCA1) in the pathogenesis of sporadic breast cancers is poorly understood. We developed a 

functional assay, which assesses the ability of BRCA1 to localize to sites of DNA damage and 

form ionizing radiation-induced foci (IRIF), to screen a kinase siRNA library and thirty-two 

potential positive regulators of BRCA1 were identified. Subsequent validation resulted in 

fourteen kinases that consistently diminished BRCA1 IRIF. Secondary screening assays for three 

selected kinases determined whether siRNA-mediated knockdown of the kinases caused an 

expression or function defect of BRCA1. Repair capacity and cell survival after DNA damage 

were characterized following siRNA-mediated knockdown of these three kinases. Our long term 

goal is to describe signaling pathways that explain how the identified kinases are able to regulate 

BRCA1. This knowledge could potentially translate into a novel therapeutic approach for 

sporadic breast cancers expressing low levels of BRCA1. 
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CHAPTER I 

INTRODUCTION 

 

Breast Cancer and BRCA1 

 Breast cancer is the most commonly diagnosed non-cutaneous cancer and the second 

leading cause of mortality after lung cancer in women in the United States. In 2009, the 

American Cancer Society estimated that 254,650 new cases of invasive and in situ breast cancer 

will be diagnosed. One of the major genes associated with an increased risk for breast cancer is 

the breast cancer susceptibility gene 1 (BRCA1). Familial breast cancers account for about ten 

percent of all breast cancer cases, of which about half are due to germ-line mutations in BRCA1 

(Easton et al., 1993; Miki et al., 1994). The vast majority of breast cancer cases, however, are 

considered sporadic and have not been linked to mutations in BRCA1 (Xu and Solomon, 1996). 

Instead, 30-40% of these cases demonstrate a decreased expression of BRCA1 (Mueller and 

Roskelley, 2003; Thompson et al., 1995), which translates to approximately 80,000 newly 

diagnosed cases in 2009. The mechanism for this decreased expression is not well-defined. There 

is evidence that promoter methylation (Catteau et al., 1999; Rice et al., 1998) and protein 

degradation (Blagosklonny et al., 1999; Choudhury et al., 2004) may play a role, but neither is 

sufficient to account for all breast cancer cases. Much of the current BRCA1 literature focuses on 

its involvement in various cellular processes including cell-cycle progression, DNA damage 

repair, centrosome duplication, transcriptional regulation of downstream target genes, and 

mammary stem cell differentiation (Liu et al., 2008; Starita and Parvin, 2003; Welcsh et al., 

2000). These functions are based on its interactions with various molecules that have well-

established functions, such as RAD51 in DNA damage repair (Scully et al., 1997c) and RNA 
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polymerase II in transcriptional regulation (Atalay et al., 2002; Scully et al., 1997a). Thus, the 

role of BRCA1 is quite ubiquitous and the potential for widespread consequences when BRCA1 

is not adequately expressed is significant. This thesis outlines the studies performed in the 

development of a BRCA1 functional assay to identify novel kinase regulators of BRCA1 

expression and function that can serve as potential candidates for drug development. 

 

BRCA1: Gene, Protein and Functions 

The BRCA1 gene: Clusters of familial breast cancer cases suggested the possibility of heritable 

germ-line mutations in genes that would increase the risk for developing breast cancer and 

eventually led to the discovery of BRCA1 (Weber et al., 1994). BRCA1 was mapped to 

chromosome 17q21 in 1990 by Hall and colleagues (Hall et al., 1990) from genetic linkage 

analysis of breast cancer families and then cloned in 1994 by Miki and colleagues (Miki et al., 

1994). The human BRCA1 gene can be transcribed from two alternative promoters, α or β 

(Figure 1). The α promoter is the minimal bidirectional promoter that is situated head-to-head 

with Nbr1 (neighbor of BRCA1 gene 1) in the mouse or NBR2 in the human and has shown a 

quasi-reciprocal expression pattern (Dimitrov et al., 2001). The β promoter is unique to humans 

and contains the estrogen response element (ERE) (Xu et al., 1995; Xu et al., 1997). It may be 

possible that estrogen plays a role in BRCA1 expression because ERα can either bind the AP-1 

domain in the α BRCA1 promoter or the ERE in the β BRCA1 promoter (Jeffy et al., 2005). 

Based on sequence analysis, immunoprecipitation (IP), and other approaches, additional cis-

elements have been proposed within the minimal bidirectional promoter that regulate BRCA1 

expression. For example, the GA-binding protein α/β, a member of the ETS family of 

transcription factors, binds to three tandem ETS factor-binding domains, or RIBS element, of the

2



 

 

Figure 1: Schematic diagram of the BRCA1 gene. Panel A shows a comparative map of human 

BRCA1 and mouse Brca1. BRCA1 is an 81-kb tumor suppressor gene located on chromosome 

17q21 that encodes a 7.8 kb transcript with 24 exons. Human BRCA1 contains two alternative 

promoters, α and β. Panel B depicts the human α promoter of BRCA1 and characterized 

functional sites that regulate BRCA1 expression. The α promoter is the minimal bidirectional 

promoter that is situated head-to-head with NBR2 and contains tissue-specific transcriptional 

activity (McCoy et al., 2003). 

Brca1

11a 5 6 2442 3
α

Nbr1

Mouse

BRCA1
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NBR2

Human

A.

B.

3



positive regulatory region (PRR) and induces transcription of BRCA1 (Atlas et al., 2000). 

Alternatively, ETS-2, another member of the ETS family of transcription factors, which also 

binds the RIBS element, represses BRCA1 transcription (Baker et al., 2003). A member of the 

POU (Pit-Oct-Unc) family of transcription factors, Brn-3b, has also been shown to repress 

BRCA1 expression (Budhram-Mahadeo et al., 1999). BRCA1 expression has also been shown to 

be positively regulated by E2F1 at a conserved site while being repressed by Rb-E2F complexes 

(Wang et al., 2000a), E2F6 (Oberley et al., 2003), and p53 (Arizti et al., 2000). Rb has also been 

shown to be activated by TGF-β1 to repress BRCA1 expression (Satterwhite et al., 2000). 

Additionally, a potential CREB site was identified, which leads to constitutive BRCA1 promoter 

expression that can be affected by CpG methylation (Atlas et al., 2001; Mancini et al., 1998). 

There is also Id4, a member of the helix-loop-helix family of transcription factors, that acts as a 

negative regulator of BRCA1 expression (Beger et al., 2001). Regulatory elements have also been 

identified in the non-coding regions of the gene that can modulate expression (Suen and Goss, 

2001; Wardrop and Brown, 2005). Structural genes such as HMGA1 have also been shown to 

negatively regulate BRCA1 expression (Baldassarre et al., 2003). The 81-kb BRCA1 encodes a 

7.8 kb transcript that subsequently undergoes alternative splicing to produce the full-length 

BRCA1 or other splice variants (Miki et al., 1994). At least 12 distinct BRCA1 splice variants 

have been identified, of which 11 maintain the original open reading frame (Orban and Olah, 

2003). However, only the full length, the Δ(9,10), the Δ(11q), and the Δ(9,10,11q) variants are 

believed to be predominantly expressed in various tissues. A variant lacking most of exon 11 

localized BRCA1 to the cytoplasm, which identified two nuclear localization sequences (NLS1 

and NLS2) (Lu et al., 1996; Thakur et al., 1997). Cells transfected with the Δ(11q) variant 

showed increased levels of apoptosis (Shao et al., 1996). BRCA1 splice variants have been 
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shown to exhibit both overlapping and distinct functions, including cell cycle regulation and 

transcriptional transactivation (McEachern et al., 2003; Wang et al., 1997). Therefore, 

epigenetics, long-range DNA associations, alternative promoters, cis- and trans-elements, and 

splice variants are just some of the ways BRCA1 expression has been found to be regulated. 

 

The BRCA1 protein and its functions: The predominant protein product is an 1863 amino acid 

phosphoprotein that contains several important functional domains (Figure 2), including a RING 

domain at the N-terminus, Exon 11, and two tandem BRCT domains at the C-terminus (Miki et 

al., 1994). Exon 11 is the largest exon in BRCA1 and is known to contain two nuclear 

localization signals (NLS), which are required along with the N-terminus RING domain of 

BRCA1 for nuclear localization of BRCA1 (Fabbro et al., 2002). Each of these regions is 

involved in protein-protein interactions that are important for the various functions of BRCA1 

(Figure 2). For example, BRCA1 has been shown to interact with ATF1 (transcription factor) at 

the RING domain (Houvras et al., 2000); ZBRK1 (transcription factor) (Zheng et al., 2000), 

STAT1 (transcriptional activation) (Ouchi et al., 2000), and SWI/SNF (chromatin remodeling 

complex) (Bochar et al., 2000) at Exon 11; RNA polymerase II (transcription) (Scully et al., 

1997a) via RNA helicase A (Anderson et al., 1998), HDAC 1 and 2 (histone deacetylation) 

(Yarden and Brody, 1999), and CtIP (transcriptional co-repressor) (Yu et al., 1998) at the BRCT 

domain; c-Myc (transcription factor) at the N-terminus and exon 11 (Wang et al., 1998); 

CBP/p300 (transcriptional co-activator) at the RING and BRCT domains (Pao et al., 2000); and 

p53 (transcription factor) with Exon 11 and BRCT domain (Chai et al., 1999), all of which affect 

the function of BRCA1 in transcriptional regulation of downstream targets. BRCA1 has also 

been shown to interact with BARD1 (ubiquitylation) at the RING domain that confers the
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Figure 2: Schematic diagram of the 1863 amino acid BRCA1 phosphoprotein. The BRCA1 

protein is characterized by several important functional domains, including a RING domain near 

the amino-terminus, two tandem copies of the BRCT motif at the carboxy-terminus, and two 

nuclear localization signals (NLS1 and NLS2) within exon 11. BRCA1 functions have been 

identified via protein-protein interactions with other proteins at these domains (Rosen et al., 

2003). 
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function of BRCA1 as an E3 ubiquitin ligase (Baer and Ludwig, 2002; Polanowska et al., 2006; 

Wu et al., 1996). The interactions of BRCA1 with RAD51 (DSB repair) (Scully et al., 1997c) 

and RAD50 (DSB repair) (Zhong et al., 1999) at Exon 11, with BRCA2 (DSB repair) (Zhong et 

al., 1999) at its BRCT domain of BRCA1, and with H2AX (signals DNA damage) (Paull et al., 

2000) are important for the role of BRCA1 to function in DNA damage repair. Association of 

BRCA1 with Rad51 was the first evidence for a role of BRCA1 in homology-directed repair 

(HDR). BRCA1 can form a complex called BASC (BRCA1-associated gene surveillance 

complex), which is a collection of proteins that serves as a DNA damage sensor and includes 

tumor suppressors and DNA repair proteins MSH2, MSH6, MLH1, ATM, BLM, and the MRN 

protein complex (Wang et al., 2000b). BRCA1 can also form a complex with the centrosome to 

affect chromosome segregation (Hsu and White, 1998). Other protein-protein interactions that 

contribute to BRCA1 function are BAP1 (deubiquitylation) with the RING domain of BRCA1 

(Jensen et al., 1998) and pRB (cell cycle regulator) with Exon 11 and BRCT domain (Aprelikova 

et al., 1999) in cell growth; and GADD45 in apoptosis (Harkin et al., 1999). Thus, in cases of 

sporadic breast cancer with decreased expression of BRCA1, the consequences could be far-

reaching. 

The 3’ and 5’ UTRs have been shown to regulate BRCA1 mRNA stability and translation 

efficiency, respectively (Saunus et al., 2007; Signori et al., 2001). In addition, heregulin β1-

induced activation of PI3K/Akt increases nuclear localization of BRCA1 to enable its various 

functions (Hinton et al., 2007). It has been suggested that a defect in nuclear import of BRCA1 

may play a role in tumorigenesis (Chen et al., 1996a; Fabbro et al., 2002). BRCA1 protein can be 

regulated by phosphorylation, sumoylation, ubiquitylation and proteasomal degradation, and 

glycosylation (Blagosklonny et al., 1999; Choudhury et al., 2004; Cortez et al., 1999; Galanty et 
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al., 2009; Jensen et al., 1996; Morris et al., 2009). BRCA1 expression is also regulated in a cell 

cycle-dependent manner (Chen et al., 1996b; Gudas et al., 1996). It is low during G0 and G1 

phases, increases as cells enter the S phase and progress through the G2 and M phases before 

falling to low levels again. This regulation may be due to the E2F binding sites within the 

promoter region of BRCA1 that can mediate transcriptional activation by E2F1 and repression 

by Rb (Vaughn et al., 1996; Wang et al., 2000a). BRCA1 is stabilized as cells enter mitosis by 

heterodimeric interaction with BARD1 (Baer and Ludwig, 2002; Polanowska et al., 2006; Wu et 

al., 1996). After mitosis, BRCA1 is ubiquitylated and degraded by the proteasome (Choudhury et 

al., 2004). This change in expression of BRCA1 is also accompanied by hyperphosphorylation of 

BRCA1 as cells enter the S phase in response to DNA replication blocks (Thomas et al., 1997). 

Furthermore, phosphorylation of BRCA1 by kinases is a critical step in directing its various 

functions. Several kinases have been identified that phosphorylate BRCA1 to direct its various 

functions (Figure 3). Phosphorylation at S308 by Aurora-A is involved in the regulation of G2 to 

M transition (Ouchi et al., 2004). Phosphorylation at T509 by Akt1 is involved in nuclear 

localization and transcriptional activity of BRCA1 (Hinton et al., 2007). Phosphorylation of 

S632 by CDK4 inhibits the ability of BRCA1 to be recruited to particular promoters (Kehn et al., 

2007). Phosphorylation of S988 by Chk2 regulates DNA double-strand break repair (Zhang et 

al., 2004) and subcellular localization (Okada and Ouchi, 2003). Phosphorylation of S1143 and 

S1280 target BRCA1 to nuclear foci following alkylative DNA damage (Au and Henderson, 

2007). Phosphorylation at multiple residues including S1189, S1423, S1457, S1497, S1524 by 

ATM regulates the DNA damage response to double-strand breaks (Cortez et al., 1999). 

Phosphorylation of S1423 by ATM is important for the G2/M checkpoint (Xu et al., 2001). 

Phosphorylation of S1211, S1218, S1336 by CK2; of S1212 by NEK6; of S1497 by PKA,
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Figure 3: Schematic diagram showing sites of BRCA1 protein phosphorylation. BRCA1 

functions depend on both expression and phosphorylation. Known kinases and their 

corresponding phosphorylation sites are depicted in black while orphan phosphorylation sites are 

depicted in red (adapted from Rosen et al., 2003). 
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CDK2, and CDK1; of S1499 by CK1 and GSK3; and of S1217 and S1496 following epidermal 

growth factor (EGF) stimulation have also been studied (Olsen et al., 2006; Ruffner et al., 1999). 

Phosphorylation of S1239, S1245, S1330, S1336, S1342, S1466, T1720 by ATM/ATR were 

identified following a proteomic analysis using antibodies to phospho-SQ or phospho-TQ sites 

combined with peptide IP and SILAC (stable isotope labeling with amino acids in cell culture) 

(Matsuoka et al., 2007). Phosphorylation of S1387 by ATM regulates S-phase checkpoint after 

ionizing radiation (Xu et al., 2002). Large-scale proteomic studies have been used to identify 

various phosphorylation sites of BRCA1 following a stimulus, such as exposure to ionizing 

radiation or stimulation with EGF (Matsuoka et al., 2007; Olsen et al., 2006). However, many of 

these identified phosphorylation sites have no known associated kinase(s), including S114, S590, 

S603, T1196, Y1202, S1217, S1286, and S1496 (Blom et al., 1999). New signaling pathways 

involving BRCA1 may be evaluated by identifying the kinases that phosphorylate these putative 

sites. 

A variety of approaches have been used to understand the role of BRCA1 in genetic 

instability and tumorigenesis. These approaches include antisense RNA to selectively reduce 

BRCA1 mRNA levels (Rao et al., 1996; Thompson et al., 1995) and using BRCA1-defective cell 

lines, such as HCC1937, which has no functional BRCA1 due to a frameshift mutation (inserted 

C at nucleotide 5382) that leads to a truncated protein (Abbott et al., 1999; Tomlinson et al., 

1998), Cre-loxP to selectively disrupt BRCA1 in mammary epithelium (Xu et al., 1999), and 

transgenic mice to overexpress wild-type BRCA1 (Hoshino et al., 2007). Through these studies, 

it has been determined that loss of BRCA1 results in defective DNA damage repair, attenuated 

cell cycle checkpoints, abnormal centrosome duplication, impaired growth arrest and apoptosis, 

resulting in genetic instability and tumor formation (Deng and Scott, 2000) (Figure 4). The
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Figure 4: Schematic of BRCA1 functions. BRCA1 has a variety of critical functions, including 

DNA damage repair, cell cycle checkpoint control, and transcriptional regulation of downstream 

target genes, that are dependent on both expression and phosphorylation of BRCA1 (Deng and 

Brodie, 2000). 
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induction of BRCA1 synthesis that occurs near the G1/S boundary (Chen et al., 1996b), the 

association of BRCA1 with RNA polymerase II (Scully et al., 1997a), and the subsequent 

localization with repair proteins following DNA damage (Paull et al., 2000; Polanowska et al., 

2006; Wang et al., 2000b; Wu et al., 1996; Zhong et al., 1999) suggest a major role of BRCA1 in 

genome surveillance. As the cell replicates its DNA in S phase, phosphorylated BRCA1 can be 

recruited to areas of replication error. The same occurs when DNA is damaged via other 

mechanisms, such as ionizing radiation (IR) (Thomas et al., 1997). Additionally, our lab 

developed transgenic mice to overexpress wild-type human BRCA1 and BRCA1 mutant 

(BRCA1sv (70 amino acid N-terminal deletion) and BRCA1t340 (BRCA1 C-terminal 

truncation)) proteins, under the control of the mouse mammary tumor virus (MMTV) LTR 

promoter (Figure 5). Differential survival curves or Kaplan-Meier plots were established after 

challenging the transgenic mice and nontransgenic control to the carcinogen 7,12-

dimethylbenzanthracene (DMBA). Wild-type human BRCA1 (blue curve) has a protective effect 

against tumor development or death as seen by the delayed onset compared to the nontransgenic 

(purple curve) while the BRCA1sv mutants (green curve) exhibit a more rapid onset of tumor 

development and accelerated mortality (Figure 6). The BRCA1t340 (yellow curve) had no effect 

on mammary tumor incidence or survival compared to the nontransgenic. Therefore, the BRCA1 

construct lacking the N-terminus predisposed the mammary gland to tumor development while 

wild-type BRCA1 protected the mammary gland from tumor development. These observations 

are specific to mammary tumors since there is no difference in survival when looking at other 

tumor types (Hoshino et al., 2007). These methods have proven effective in identifying the 

functional importance of BRCA1; however, they fail to explain how BRCA1 expression is 

regulated. 
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Figure 5: MMTV-BRCA1 transgenic constructs. Schematic of the wild type human BRCA1, 

BRCA1sv (70 amino acid N-terminus deletion), and BRCA1 t340 (BRCA1 C-terminal 

truncation) cDNAs used to generate transgenic mice to overexpress the respective proteins under 

the control of the mouse mammary tumor virus (MMTV)-LTR promoter. The bar indicates the 

N-terminal RING domain, the hatched region corresponds to the nuclear localization signals, and 

the (-) designates the negatively charged BRCT domains (Hoshino et al., 2007). 
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Figure 6: Tumor specific survival for MMTV-BRCA1 transgenic lines. Panel A shows a Kaplan-

Meier curve plotting tumor-free survival from mammary tumors for mice treated with the 

carcinogen 7,12-dimethylbenzanthracene (DMBA). Panel B depicts a Kaplan-Meier curve 

plotting tumor-free survival from all other tumor types for mice treated with DMBA. L5 & L6 = 

MMTV-BRCA1 mice (n=95), NT = nontransgenic mice (n=205), L90 & L61 = MMTV-

BRCA1sv mice (n=97), L1 = MMTV-BRCA1t340 female (line 2 F58) (Hoshino et al., 2007).

A.

B.
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BRCA1 in DNA Damage Repair 

BRCA1 is involved in DNA repair by homology-directed repair (HDR) and non-

homologous end joining (NHEJ) (Snouwaert et al., 1999; Zhong et al., 2002). These repair 

pathways encompass a network of proteins that act as sensors, mediators, and effectors to 

recognize and repair DNA damage as well as to activate cell cycle checkpoints (Iliakis et al., 

2003; Yarden et al., 2002; Zhou and Elledge, 2000). This ensures that a cell with DNA damage 

such as single-strand breaks (SSBs) and double-strand breaks (DSBs) does not undergo division 

until it can be repaired. If the damage cannot be repaired, the cell undergoes apoptosis, or 

programmed cell death, to ensure the integrity of the DNA. Intact DNA damage repair systems 

are critical to maintain genomic stability and prevent tumorigenesis, as demonstrated by studies 

of patients with inherited defects in DNA-repair genes, such as xeroderma pigmentosum (defect 

in nucleotide excision repair (NER)), Nijmegen breakage syndrome (defect in NBS and 

processing of double-stranded DNA (dsDNA) breaks), ataxia telangiectasia (defect in ATM and 

HDR of dsDNA breaks), and familial breast and ovarian cancers (defect in BRCA1 or BRCA2 

and HDR of dsDNA breaks) (Thompson and Schild, 2002).  DNA damage can result from 

endogenous biochemical processes (e.g., depurination, deamination, oxidation) and exogenous 

carcinogens (e.g., radiation, alkylating agents, heterocyclic amines).  Cells employ a variety of 

mechanisms to repair DNA damage, including mismatch repair (MMR) enzymes that recognize 

normal but misincorporated nucleotides and other enzymes that detoxify (e.g., glutathione-S-

transferase) or remove DNA adducts (e.g., O6-methylguanine DNA methyltransferase).  

Additionally, base excision repair (BER) recognizes chemically altered bases caused by 

endogenous sources, NER recognizes helix-distorting adducts from exogenous sources, HDR of 

dsDNA breaks utilizes the undamaged, homologous DNA sequence to direct repair, and the 
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more error-prone NHEJ results in fusion of two dsDNA ends (van Gent et al., 2001).  One anti-

cancer treatment approach takes advantage of the failure of DNA damage repair.  Poly (ADP-

ribose) polymerase (PARP) is an enzyme that participates in BER, a mechanism that cancer cells 

with mutations in BRCA1 or BRCA2 depend on to repair their DNA damage.  These cancer cells 

become hypersensitive to chemotherapy and radiation when PARP inhibitors are given to 

prevent repair by this mechanism as well (Martin et al., 2008). 

Ionizing radiation (IR) results in DSBs, which are believed to be the most severe type of 

DNA damage that can be repaired by high-fidelity homologous recombination (Khanna and 

Jackson, 2001). BASC and DNA-PK serve as sensors for DNA damage by phosphorylating the 

histone variant H2AX (γ-H2AX) on S139, an early step in the response to DSBs (Paull et al., 

2000; Stiff et al., 2004; Wang et al., 2000b). 53BP1 and MDC1 are then recruited to γ-H2AX to 

further activate ATM, which phosphorylates a variety of downstream targets, including BRCA1 

(Cao et al., 2009; Lou et al., 2003; Stucki et al., 2005; Wang et al., 2002). Additionally, the 

Ubc13/Rnf8 and Rnf168 ubiquitin ligases polyubiquitylate γ-H2AX to recruit the 

Rap80/Abraxas/Brca1/Brcc36 complex (Chen et al., 2006; Kim et al., 2007a; Kim et al., 2007b; 

Liu et al., 2007; Shao et al., 2009a; Sobhian et al., 2007; Wang and Elledge, 2007; Wang et al., 

2007; Yan et al., 2007). A BRCA1/CtIP/MRN interaction then enables conversion of DSBs to 

single-strand DNA (ssDNA), which allows strand invasion via Rad51 into the homologous 

chromosome (Baumann et al., 1996; Chen et al., 2008; Gravel et al., 2008; Nimonkar et al., 

2008; Zhong et al., 1999). Rad51 is recruited via its interaction with BRCA2, which associates 

with BRCA1 via PALB2 and functions in the Fanconi anemia pathway (Nakanishi et al., 2005; 

Sy et al., 2009; Wang, 2007; Zhang et al., 2009). Subsequent DNA synthesis and ligation 
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complete the repair. These results demonstrate a central role for BRCA1 in coordinating 

formation of various complexes required for DNA damage repair (Figure 7). 

BRCA1 is a key component of a variety of macrocomplexes that are involved in DNA 

damage repair. BRCA1 interacts with phosphorylated Abraxas, BACH1, and CtIP as distinct 

macrocomplexes that are mediated through BRCA1 BRCT domain (Cantor et al., 2001; Wang et 

al., 2007; Yu et al., 1998). The complex consisting of BRCA1, Abraxas (CCDC98), RAP80 

(UIMC1), BRCC36, BRCC45 and MERIT40 (NBA1) enable the targeting of BRCA1 to DSBs 

and has been shown to be involved in G2/M checkpoint control (Chen et al., 2006; Feng et al., 

2009; Kim et al., 2007a; Kim et al., 2007b; Liu et al., 2007; Shao et al., 2009b; Sobhian et al., 

2007; Wang et al., 2009; Wang et al., 2007). The complex consisting of BRCA1, BACH1, and 

TOPBP1 is involved in the G1-S and intra-S checkpoint (Cantor et al., 2001; Greenberg et al., 

2006; Xu et al., 2001; Xu et al., 2002). The complex of BRCA1, CtIP, and MRN directs DNA 

resection and facilitates G2-M checkpoint control (Chen et al., 2008; Yun and Hiom, 2009). 

The presence of repair proteins at DSBs can be visualized as distinct, punctate ionizing 

radiation-induced foci (IRIF) by immunofluorescence (Scully et al., 1997b). γ-H2AX and 53BP1 

foci have been shown to form within minutes in response to IR while BRCA1 may take hours 

(Paull et al., 2000). This technique has been used extensively to examine the recruitment and 

interaction of these DNA damage repair proteins (Bekker-Jensen et al., 2006; Scully et al., 

1997b). Dysregulation in the pathway often results in altered IRIF formation. Therefore, BRCA1 

IRIF formation can be used to assess the effect of dysregulation on BRCA1 expression and 

function. 
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Figure 7: BRCA1 in homology-directed repair of double-strand breaks. DNA repair is initiated 

when surveillance proteins recognize DSBs caused by ionizing radiation. Phosphorylation of 

H2AX (γ-H2AX) by ATM and polyubiquitylation of γ-H2AX by Ubc13/Rnf8 result in activation 

and recruitment of BRCA1 to DSBs. BRCA1 then acts as the central scaffold that brings together 

the required proteins involved in repairing the DSB. 

Illustration by Shane Stecklein
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Use of RNAi in Functional Studies 

Since the completion of the human genome project, RNA interference (RNAi) has 

become a powerful genetic tool to evaluate loss-of-function and has been modified for high-

throughput screening (Echeverri and Perrimon, 2006; Moffat and Sabatini, 2006). Its role in 

post-transcriptional gene silencing (PTGS) was explored following the observation that a 

pigment-producing gene introduced into petunias suppressed expression of both the exogenous 

and endogenous gene (Napoli et al., 1990). Fire and colleagues made the discovery that PTGS 

was mediated by double-strand RNA (dsRNA) (Fire et al., 1998). Small interfering RNAs 

(siRNAs) and short hairpin RNAs (shRNAs) or shRNA in a microRNA context (shRNA-mirs) 

can be used to mediate knockdown of gene expression. siRNAs are short double-stranded RNAs 

that are 19-22 bp in length. They are introduced into target cells by transfection to cause transient 

knockdown of a target gene. shRNA and shRNA-mir constructs can be packaged into a virus and 

transduced into target cells to cause stable integration and expression of the shRNA or shRNA-

mir (Hannon and Rossi, 2004). shRNAs are produced as a single-stranded RNA of 50-70 bp in 

length that forms a stem-loop structure. shRNAs exit the nucleus and are cleaved by DICER and 

assembled into the RNA-induced silencing complex (RISC) to mediate knockdown in a sequence 

specific manner (Bernstein et al., 2001; Hammond et al., 2000; Yi et al., 2003). shRNA-mirs are 

produced as a single-stranded RNA that forms a dsRNA hairpin molecule called the primary 

polyadenylated miRNA (pri-miRNA) of 70-90 bp in length, which is cleaved by Drosha to form 

the miRNA precursor (pre-miRNA) (Lee et al., 2003; Lee et al., 2002). The pre-miRNA is 

actively transported out of the nucleus by exportin-5, cleaved by DICER, and assembled into 

RISC to mediate knockdown (Bernstein et al., 2001; Hammond et al., 2000; Lund et al., 2004; Yi 

et al., 2003) (Figure 8). siRNA-mediated knockdown was the chosen method because transient

19



 

A. B.

20



Figure 8: The biogenesis of miRNAs and siRNAs. Panel A depicts the steps and players 

necessary for proper biogenesis of miRNAs. A dsRNA hairpin molecule called the pri-miRNA is 

produced following transcription of the miRNA gene (step 1). The Drosha RNase III 

endonuclease cleaves both strands of the stem to form the pre-miRNA (step 2). The pre-miRNA 

is actively transported from the nucleus to the cytoplasm by Ran-GRP and exportin-5 (step 3). 

The Dicer RNase III endonuclease cleaves off the loop to form the miRNA:miRNA* duplex 

(step 4). A helicase enzyme (not yet identified) unwinds the duplex (step 5) and miRNA is 

loaded onto the ribonucleoprotein complex RISC while mirRNA* is degraded (step 6). The 

mature miRNA within RISC then targets mRNAs from loci unrelated to the miRNA gene and 

mediates either mRNA cleavage or translational repression. Panel B depicts the steps and players 

necessary for proper biogenesis of siRNAs. A long dsRNA is either artificially introduced into 

the target cell or naturally produced (step 1) and is processed by Dicer into many siRNAs that 

are 19-22 bp in length (steps 2-4). A helicase enzyme (not yet identified) unwinds the  siRNA 

duplexes (step 5) and the single-stranded RNA is loaded onto RISC (step 6). The mature siRNA 

within RISC then targets mRNAs from the same (or similar) loci to and mediates mRNA 

cleavage (Bartel, 2004). 
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knockdown can be achieved in a relatively short period of time, siRNAs are titratable, and 

customizable siRNA libraries are available. This approach was used to develop a systematic 

functional analysis of BRCA1 expression and function by selectively silencing kinases and 

observing BRCA1 IRIF phenotype. 

 

Summary/Specific Aims 

Transcriptional and functional regulation of the breast cancer susceptibility gene 1 

(BRCA1) in the pathogenesis of sporadic breast cancers is poorly understood. About 90% of all 

breast cancers are considered sporadic in origin, and 30-40% of these cases exhibit decreased 

expression of BRCA1 in the absence of mutations at its genetic locus. Loss of BRCA1 

accelerates growth of tumor cells, while expression of BRCA1 leads to growth arrest and 

apoptosis. Additionally, our lab has demonstrated that overexpression of wild-type BRCA1 

delays tumor formation following mutagen exposure. These observations support further 

examination of the regulatory pathways of BRCA1 to restore its expression and function. Our 

hypothesis is that an increase in BRCA1 expression enhances DNA repair capacity and protects 

cells against chemical and physical mutagens, resulting in delayed or decreased tumor onset. 

To identify potential regulators of BRCA1, a functional assay was developed based on 

the role of BRCA1 in DNA damage repair. BRCA1 acts as a central scaffold that assembles a 

complex of repair proteins to sites of double-strand breaks (DSBs) following exposure to 

ionizing radiation (IR). Immunostaining for BRCA1 reveals these repair sites as punctate 

ionizing radiation–induced foci (IRIF). The ability of BRCA1 to localize to DSBs depends on 

both its expression and phosphorylation status. The use of siRNAs enables the transient 

knockdown of a specific target and assessment of downstream effects of that knockdown. The 
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effect of siRNAs against kinases was evaluated on BRCA1 IRIF formation because 1) 

phosphorylation of BRCA1 regulates many of its functions, 2) bioinformatics provides BRCA1 

phosphorylation sites where the kinase involved is unknown, 3) kinases play key roles in 

signaling pathways that influence gene expression or phosphorylation status, and 4) kinases are 

druggable targets. Chapter 2 will describe the development of the BRCA1 functional assay, 

including the iterative process by which each step of the assay was optimized, as well as the 

implementation of the BRCA1 functional assay to screen an Ambion Silencer® Kinase siRNA 

library. Additionally, the rationale and process for identifying and validating potential regulators 

of BRCA1 expression and function will be explained. Chapter 3 will evaluate the effect of 

siRNA-mediated knockdown of three lead kinases on BRCA1 mRNA levels as well as on both 

target and BRCA1 protein levels. Chapter 4 will further assess the effect of kinase knockdown 

on the ability of cells to repair by HDR or NHEJ and the functional consequence to cell 

proliferation following DNA damage. Finally, Chapter 5 will review the significance and 

potential impact of these results to our understanding of the pathogenesis of sporadic breast 

cancers expressing low levels of BRCA1. 
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CHAPTER II 

IDENTIFY AND VALIDATE POTENTIAL REGULATORY KINASES OF 

BRCA1 EXPRESSION AND FUNCTION 

 

Introduction 

Localization of DNA repair proteins at sites of DNA damage follows a spatiotemporal 

pattern that can be visualized easily as ionizing radiation-induced foci (IRIF) using 

immunofluorescence (Bekker-Jensen et al., 2006; Scully et al., 1997). Following ionizing 

radiation (IR), BRCA1 foci formation increases both in number and size, peaking within 3-8 

hours and resolving by 24 hours (Paull et al., 2000). Dysregulation at any point of BRCA1 

expression and function could manifest as an altered IRIF phenotype. Therefore, the BRCA1 

IRIF assay was used to measure the effect of siRNA-mediated knockdown of kinases on BRCA1 

expression and function in MCF7 cells. To do so, chemically synthesized siRNAs were used 

because they are amenable to high content analysis in a timely manner and can be customized to 

target a particular class of genes. The effect of siRNAs against kinases was evaluated because 

they are involved in signaling pathways that can influence gene expression or protein function 

and are commonly dysregulated in cancer. For example, in response to DNA damage, ATM and 

ATR kinases phosphorylate various downstream target proteins, including BRCA1, which 

localizes to DSBs and serves as a central scaffold in the recruitment of associated repair proteins 

to facilitate DNA damage repair, as well as CHK1 and CHK2 to activate cell cycle checkpoints 

(Iliakis et al., 2003; Tibbetts et al., 2000; Zhou and Elledge, 2000). Assay development involved 

designing a workflow that included siRNA transfection, exposure to ionizing radiation, 

fixation/permeabilization and immunostaining of cells, as well as data collection and analysis. 
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Kinase siRNAs were introduced into MCF7 cells via chemical transfection to maximize target 

knockdown and to minimize cytotoxicity. MCF7 cells were chosen because they represent a 

mammary cell line derived from the most common subtype of invasive breast carcinoma and are 

widely used and well-documented as in vitro models of breast tumors (Lacroix and Leclercq, 

2004). Various experimental parameters were evaluated, including determining serum 

concentration, transfection reagents, and antibodies as well as establishing an optimal dose of IR, 

an optimal time following IR to stain for BRCA1, appropriate assay controls, 

fixation/permeabilization reagents and conditions, and imaging parameters. The laser scanning 

cytometer (LSC) is an emerging technology with automated imaging and analysis capabilities 

that provide quantitative information about BRCA1 IRIF. Use of the LSC enabled a standardized 

analysis based on mean fluorescence intensity. Once assay optimization was complete, 289 

kinases from an Ambion Silencer® Kinase siRNA Library were screened. The kinase siRNA 

library is composed of a diverse array of kinases from each of the major groups, including AGC 

(containing PKA, PKG, PKC families), CAMK (calcium/calmodulin-dependent protein kinase), 

CK1 (Casein kinase 1), CMGC (containing CDK, MAPK, GSK3, CLK families), STE 

(homologs of yeast Sterile 7, Sterile 11, Sterile 20 kinases), TK (tyrosine kinase), and TKL 

(tyrosine kinase-like). Three individual siRNAs targeting each kinase were assessed for their 

ability to alter BRCA1 IRIF formation. Thirty-two kinase hits were identified based on BRCA1 

IRIF expression relative to the assay controls. The list of thirty-two was reduced to fourteen by 

subsequent validation for consistent BRCA1 IRIF effects by siRNA-mediated knockdown of the 

kinase hits and increasing stringency criteria. 
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Materials and Methods 

Cells: The human epithelial mammary gland adenocarcinoma MCF7 cell line was purchased 

from ATCC (HTB-22, Manassas, VA). Cells were cultured in Minimum essential medium 

(Eagle) with Earle’s salts (Mediatech, Herndon, VA), containing 10% fetal bovine serum (FBS, 

Cambrex Bio Science, Rockland, ME), 50 U/ml each of penicillin and streptomycin (Mediatech), 

2 mM L-glutamine (Mediatech), 1 mM pyruvate (Mediatech) and 1X nonessential amino acids 

(Mediatech) (complete MEM) at 37°C in a humidified, 5% CO2-containing atmosphere. 

 

Immunofluorescence Staining: MCF7 cells (5x104) were seeded on coverslips in complete MEM 

and incubated at 37°C in 5% CO2 overnight (O/N). Prior to Protocols 1-3, cells were exposed to 

20 Gy ionizing radiation (IR) and allowed to recover for 8h before staining. Prior to Protocol 4, 

cells were exposed to 10 Gy IR and allowed to recover for 6 h before staining. 

 

Protocol 1: MCF7 cells were fixed in 3% paraformaldehyde (Electron Microscopy Sciences, 

Hatfield, PA) in PBS for 30 min on ice. Subsequently, cells were washed three times with PBS, 

and then permeabilized in 0.5% Triton X-100 (Fisher, Fair Lawn, NJ) in TBST-20 for 5 min at 

room temperature (RT). Following permeabilization, cells were washed three times with TBST-

20 and then incubated with blocking solution (10% goat serum (Santa Cruz Biotechnology, Santa 

Cruz, CA) in TBST-20) for 1 h at RT. Afterward, cells were washed three times with TBST-20, 

and then primary anti-BRCA1 mouse monoclonal IgG1 antibody incubation (Calbiochem, 

Gibbstown, NJ) was O/N at 4°C (diluted 1:100 with 3% BSA, 1% goat serum, 0.1% Triton X-

100 in TBST-20). The next day, cells were washed three times with TBST-20 prior to incubation 

with secondary AlexaFluor 488 goat anti-mouse IgG1 antibody (Molecular Probes/Invitrogen, 

26



Carlsbad, CA) (diluted 1:400 with 3% BSA, 1% goat serum, 0.1% Triton X-100 in TBST-20) for 

1 h at RT. Then, cells were washed three times with TBST-20 before the coverslips were 

mounted onto slides using Prolong Gold Antifade Reagent with DAPI (Molecular 

Probes/Invitrogen) and allowed to dry at RT for 24 h. All images were obtained using a 40X 

objective on the Nikon TE2000 microscope and processed using the MetaMorph program 

(Boyce Scientific, Gray Summit, MO, C. Vines laboratory). 

 

Protocol 2: MCF7 cells were fixed in 3% paraformaldehyde/0.02% Triton X-100 in PBS for 10 

min at RT. Afterward, cells were washed three times with PBS before permeabilization in 0.02% 

Triton X-100 in TBST-20 for 25 min at RT. Then after three washes with TBST-20, blocking 

solution (3% BSA, 5% goat serum, 0.02% Triton X-100 in TBST-20) incubation was for 90 min 

at RT. Subsequently, cells were washed three times before primary anti-BRCA1 mouse 

monoclonal IgG1 antibody (diluted 1:100 or 1:250 with 1% BSA, 1% goat serum, 0.02% Triton 

X-100 in TBST-20) incubation O/N at 4°C. The next day, following three washes with TBST-20, 

incubation with secondary AlexaFluor 488 goat anti-mouse IgG1 antibody (diluted 1:400 or 

1:1000, respectively, with 1% BSA, 1% goat serum, 0.02% Triton X-100 in TBST-20) was for 1 

h at RT. Finally, after the last three washes, coverslips were mounted onto slides with Prolong 

Gold Antifade Reagent with DAPI and allowed to dry at RT overnight. All images were obtained 

using a 40X objective on the Nikon TE2000 microscope and processed using the MetaMorph 

program. 

 

Protocol 3 (Eckner et al., 1994): MCF7 cells were fixed in 3% paraformaldehyde/2% sucrose in 

PBS for 10 min at RT, washed twice with PBS, permeabilized in ice-cold Triton X-100 buffer 
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(50 mM NaCl, 3 mM MgCl2, 200 mM sucrose, 10 mM HEPES pH=7.4, 0.5% Triton X-100) for 

5 min, washed two more times with PBS, then incubated with blocking solution (5% goat serum 

and 0.5 µg/mL Human IgG (MP Biomedicals, Solon, OH) in PBS) at 37°C and 5% CO2 for 20 

min. There were no wash steps added between blocking and primary antibody. Subsequently, 

cells were incubated in primary anti-BRCA1 mouse monoclonal IgG1 antibody diluted 1:250 

with PBS at 37°C and 5% CO2 for 20 min, and then washed three times with PBS. Next, 

secondary AlexaFluor 488 goat anti-mouse IgG1 antibody was diluted 1:1000 and incubation 

was similar to that for primary. After another three washes with PBS, the coverslips were 

mounted onto slides using Prolong Gold Antifade Reagent with DAPI and allowed to dry at RT 

for 24 h. All images were obtained using a 40X objective on the Nikon TE2000 microscope and 

processed using the MetaMorph program. 

 

Protocol 4: MCF7 cells were fixed in 4% paraformaldehyde/2% sucrose in PBS+0.1% glycerol 

(PBS-G) for 45 min at 4°C. Cells were then incubated with 0.1% NaBH4 in PBS-G for 5 min at 

RT before they were washed three times with PBS-G and permeabilized in ice-cold Triton X-100 

buffer (50 mM NaCl, 3 mM MgCl2, 200 mM sucrose, 10 mM HEPES pH=7.4, 0.5% Triton X-

100) for 5 min at RT. At this point, cells were washed three times with TBS+0.1% glycerol 

(TBS-G), then incubated with blocking solution (3% goat serum, 1% BSA, 0.1% Triton X-100 in 

TBS-G) overnight at 4°C. Subsequently, cells were incubated with primary anti-BRCA1 mouse 

monoclonal IgG1 antibody diluted 1:200 in blocking solution for 1 h at RT, washed three times 

with TBS-G, and then incubated with secondary AlexaFluor 488 goat anti-mouse IgG1 antibody 

diluted 1:1000 in blocking solution for 30 min at RT. Following another three washes with TBS-

G, cells were incubated with 0.5 μg/ml DAPI for 5 min and then washed. Cells stained in the 
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Whatman 96-well glass bottom plate were stored in 100 μl PBS-G. Cells stained on coverslips 

were mounted onto slides using Prolong Gold Antifade Reagent. Cells stained in the Nunc Lab-

Tek II 4 well chamber slides (Rochester, NY) were mounted with a coverslip using Prolong Gold 

Antifade Reagent (Molecular Probes/Invitrogen) and allowed to dry at RT for 24 h. All images 

were either obtained using a 40X objective on the Nikon TE2000 microscope and processed 

using the MetaMorph program or obtained using a 40X objective on the iCys LSC and processed 

using its associated iCys cytometric analysis program (CompuCyte, Westwood, MA). 

 

Effect of IR on BRCA1 IRIF formation: A BRCA1-specific antibody was used to stain MCF7 

cells for BRCA1 IRIF following exposure to IR. Cells were exposed to 5, 10, and 20 Gy IR and 

fixed for analysis at 8 h post-IR. Cells were stained as described in Protocol 4. All images were 

obtained using a 40X objective on the Nikon TE2000 microscope and processed using the 

MetaMorph program. 

 

Cell Cycle Analyses: Propidium iodide (PI) staining was done for cell cycle analysis by flow 

cytometry. MCF7 cells were subcultured in individual 60 mm dishes under indicated 

experimental conditions to a confluency of ~70-80% prior to fixation. MCF7 cells were 

trypsinized and 1x106 cells were fixed and permeabilized with 0.5 ml of 0.9% NaCl and 1.25 ml 

of 90% cold EtOH and then incubated for 30 min at RT. To stain, 0.5 ml of 50 μg/ml PI was 

added. 50 μl of 1 mg/ml RNase was added and then incubated at 37°C for 30 min before 

analysis. Samples were run using the BD LSRII for 10,000 cells and analyzed using the 

associated BD FACSDiva software (Becton, Dickinson and Company, Franklin Lakes, NJ). 

From the forward scatter vs. side scatter plot, a gate was established to include cells and exclude 
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debris. From the first gate, a second gate was established along a 45° angle to include all single 

cells. From there, a plot of area vs. cell count was generated and gated for sub-G0/G1, G0/G1, S, 

and G2/M. 

 

Effect of IR on cell cycle progression: The levels of IR investigated were 0, 2, 5, 10, and 20 Gy. 

At 0, 3, 6, 9, 12, 18, 24, 30, and 36 h post-IR, cells were processed for cell cycle analysis using 

the above described protocol. 

 

Effect of cell synchronization on cell cycle progression: MCF7 cells were synchronized by 

serum starvation in complete MEM without FBS but supplemented with 0.05% BSA for 30 h 

and were processed 2, 4, 8, 18, 24, 30, 36, 42, 48, and 54 h following serum release in complete 

MEM with 20% for cell cycle analysis using the above described protocol. 

 

Effect of combining cell synchronization and exposure to IR on cell cycle progression: MCF7 

cells were synchronized by serum starvation for 30 h followed by serum release for 24 h, 

exposed to 20 Gy IR, and processed 0, 1, 2, 4, 6, 8, and 12 h post-IR. A matched control set of 

unsynchronized MCF7 cells was exposed to 20 Gy IR and processed 0, 1, 2, 4, 6, 8, and 12 h 

post-IR for cell cycle analysis. 

 

Effect of combining siRNA transfection of Neg and BRCA1 siRNAs, cell synchronization, and 

exposure to IR on cell cycle progression: MCF7 cells were simultaneously transfected with 

either Neg (negative control) or BRCA1 siRNAs by chemical transfection with Lipofectamine 

RNAiMAX (Invitrogen) and cell synchronized by either serum starvation for 42 h followed by 
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serum release for 24 h or cultured first in complete MEM with reduced FBS (2% instead of 10%) 

and without antibiotics for 48 h and then complete MEM with 10% FBS and without antibiotics 

for 18 h. Cells were then exposed to 10 Gy IR and processed 0 and 24 h post-IR for cell cycle 

analysis. 

 

siRNA Transfection Optimization: 

Optimization with GAPDH siRNA and Ambion transfection reagents: A transfection method 

known as reverse transfection was used. MCF7 cells were trypsinized in 0.25% trypsin/2.21 mM 

EDTA in HBSS without sodium bicarbonate, calcium, and magnesium (Mediatech) and 

resuspended to a concentration of 1x105 cells per ml. The cells were then kept at 37°C while the 

transfection complexes were prepared. The first step in preparing the siRNA/transfection agent 

complexes was to dilute the transfection agent in OPTI-MEM I (Invitrogen) medium and 

incubate for 10 min at RT. Then the siRNA was diluted in OPTI-MEM I medium. After that, the 

diluted siRNA and diluted transfection agent were mixed, incubated at RT for 10 min, and 

dispensed into the wells of a clear 96-well plate. Finally, the MCF7 cells were mixed with the 

transfection complexes and incubated at 37°C for 48 h. 

Both knockdown and cell viability were assessed using the KDalert GAPDH Assay Kit 

(Ambion) per manufacturer’s protocol. The culture medium was aspirated from the transfected 

cells. Then 200 μl KDalert Lysis Buffer was added to each sample well and incubated at 4°C for 

20 min. 10 μl of each cell lysate was then transferred to the wells of a black 96-well plate 

followed by 90 μl of KDalert Master Mix. Finally, the increase in fluorescence over a 4 minute 

interval of time for the samples was measured using the Victor 3V plate reader (Perkin Elmer, 

Waltham, MA) with an excitation wavelength at 560 nm and an emission wavelength at 590 nm. 
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The GAPDH activity was calculated by subtracting the fluorescence reading at t0 from 

that at t4 min. The percent remaining gene expression was determined from the ratio of the 

fluorescence increase for samples transfected with GAPDH siRNA to the fluorescence increase 

for samples transfected with negative control (Neg) siRNA (Equation 1). The percent 

knockdown was calculated from the percent remaining gene expression (Equation 2). Relative 

cell viability was determined from GAPDH activity in negative control siRNA-transfected cells 

(ΔfluorescenceNeg). A comparison of cell viability among the transfection agent volumes was 

made relative to the sample transfected with the lowest volume of transfection agent. The 

optimal balance factor (OBF) was calculated from relative cell viability and percent knockdown 

(Equation 3). 

Equation 1 % remaining expression = (ΔfluorescenceGAPDH/ΔfluorescenceNeg) x 100 

Equation 2 % knockdown = 100 - % remaining expression 

Equation 3 OBF = ΔfluorescenceNeg x % knockdown 

In each experiment, positive and negative controls were run in triplicate for statistical 

analysis. The positive control was glyceraldehyde-3-phosphate dehydrogenase (GAPDH) siRNA 

and the negative control was a nontargeting, scrambled Neg siRNA. Other controls included a 

transfection agent-only control and a buffer-only control. To select a transfection agent and 

transfection agent volume, two transfection agents, siPORT Amine and siPORT NeoFX 

(Ambion, Foster City, CA), were evaluated in a 96-well plate at volumes of 0.15 μl, 0.3 μl, 0.6 

μl, and 1.2 μl. A final siRNA concentration of 10 nM, incubation with the transfection 

complexes for 48 h, and a cell density of 8x103 MCF7 cells were used. If the GAPDH positive 

control siRNA was able to reduce GAPDH expression levels by ≥  70% with ≤ 15%  cell death, 

then optimization was complete. If not, then the amount of time that cells are exposed to 
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transfection complexes was evaluated. The transfection medium was replaced at 6, 12, and 24 h 

with fresh medium, and knockdown as well as cell viability was reevaluated 48 h following 

transfection. Again, if these new conditions were able to reduce GAPDH expression levels by ≥ 

70% with ≤ 15% cell death, then optimization was complete. If not, then optimal siRNA quantity 

was determined. The amounts of siRNA evaluated were 1, 3, 10, and 30 nM final concentration. 

Again, if these new conditions were able to reduce GAPDH expression levels by ≥ 70% with ≤ 

15% cell death, then optimization was complete. If not, then cell density was optimized. The cell 

densities evaluated were 8x103and 4x103. 

Transfection efficiency was also assessed by microscopy using a FAM-labeled siRNA. 

The FAM-labeled siRNA was transfected using siPORT NeoFX in the same manner as described 

above and fluorescence was measured following the 488 laser excitation on an Olympus inverted 

fluorescence microscope (Olympus, Melville, NY) and processed using the Slidebook program 

(3i, Denver, CO). 

 

Isolation of total RNA from cells: RNA was extracted per manufacturer’s protocol using the 

RNeasy Plus RNA extraction kit (Qiagen, Valencia, CA). MCF7 cells were disrupted using 

Buffer RLT plus β-mercaptoethanol (10 μl β-ME per 1 ml Buffer RLT). For < 5x106 cells, 350 

μl of Buffer RLT was added. Each lysate was homogenized using a QIAshredder spin column 

and centrifuged using an Eppendorf 5415 D microcentrifuge (Westbury, New York) for 2 min at 

full speed (16,100xg). One volume or 350 μl of 70% ethanol was added to the homogenized 

lysate and mixed by pipetting. The sample was then transferred to an RNeasy spin column and 

centrifuged for 15 s at ≥  8000xg. The flow-through was discarded. 700 μl Buffer RW1 was 

added to the RNeasy spin column and centrifuged for 15 s at ≥  8000xg to wash the spin column 
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membrane. The flow-through was again discarded. 500 μl Buffer RPE was then added to the 

RNeasy spin column and centrifuged for 15 s at ≥  8000xg to wash the spin column membrane. 

The flow-through was again discarded. Another 500 μl Buffer RPE was added to the RNeasy 

spin column and centrifuged for 2 min at ≥  8000xg. The RNeasy spin column was placed in a 

new 2 ml collection tube and centrifuged at full speed for 1 min to eliminate any possible 

carryover of Buffer RPE. The RNeasy spin column was then placed in a new 1.5 ml Eppendorf 

tube. The RNA was eluted with 30 μl RNase-free water added directly to the spin column 

membrane and centrifuged for 1 min at ≥  8000xg. The eluate was then added to the RNeasy spin 

column membrane to concentrate the RNA further and centrifuged for 1 min at ≥  8000xg. The 

260/280 ratio and concentration of each RNA sample were determined using an 8-channel 

NanoDrop 8000 spectrophotometer and its associated software ND-8000 v1.1.1 (Thermo 

Scientific, Wilmington, DE, P. Fields laboratory). RNA samples were reverse transcribed to 

cDNA immediately following extraction. 

 

Quantitative real-time PCR (qRT-PCR): Complementary DNA (cDNA) was generated per 

manufacturer’s protocol from 1000 ng extracted RNA in a 100 μl volume using the High 

Capacity cDNA kit (Applied Biosystems, Foster City, CA). The 2x reverse transcription master 

mix prepared on ice (per 20-μl reaction) was composed of 2 μl 10X RT Buffer, 0.8 μl 25X dNTP 

Mix (100 mM), 2.0 μl 10X RT Random Primers, 1 μl MultiScribe Reverse Transcriptase, and 4.2 

μl Nuclease-free H2O. 10 μl of RNA sample was mixed with 10 μl of 2X RT master mix per 20-

μl reaction in a PCR tube. Reverse transcription of RNA to cDNA was performed in a GeneAmp 

PCR System 9700 thermal cycler (Applied Biosystems). The reverse transcription PCR program 

was run as follows: 25°C for 10 min, 37°C for 120 min, 85°C for 5 s, and 4°C for ∞. cDNA 
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samples were stored at -80°C until the qRT-PCR plate was ready to be set up. Gene expression 

of BRCA1 (Hs00173237_m1), GAPDH (Hs99999905_m1) and 18S (Hs99999901_s1) was 

detected using the TaqMan® Gene Expression assay kit (Applied Biosystems). Each PCR 

reaction was set up as follows: 9 μl cDNA + 10 μl TaqMan® Universal PCR Master Mix + 1 μl 

specific primer/probe set (BRCA1 or 18S) in a 96-well PCR plate. Controls for each set of 

experiments included the 18S housekeeping gene for normalization of Ct values to account for 

relative RNA amount, no cDNA control to assess specificity of the primer/probe set, and H2O 

only to determine background of the instrument.  Each sample was run in triplicate for statistical 

analysis. Each 20 μl reaction was run on the 7500 ABI real time PCR instrument (Applied 

Biosystems, P. Fields laboratory) with the following program: UNG incubation at 50°C for 2 

min, AmpliTaq Gold activation at 95°C for 10 min followed by 40 PCR cycles of 95°C for 15 s 

to denature and 60°C for 1 min to anneal/extend. Ct values were obtained for each sample. Data 

analysis was carried out in Microsoft Excel. An average and standard error of the triplicate Ct 

values for each sample were calculated using the equation Ctaverage = (Ct1 + Ct2 +…+ Ctn)/n and 

Ctst error = Ctstdev/sqrt(n). Each averaged Ct value was then normalized to 18S (ΔCt) and the 

corresponding standard error was calculated using the equation ΔCtst error = sqrt(Ctst error (18s)
2 + Ctst 

error (sample)
2). The ΔCt value was further normalized to Neg siRNA, or the IRIF assay control 

(ΔΔCt) and the negative ΔΔCt value was raised to the power of 2 to give relative remaining 

expression of the gene being investigated. The ΔCtst error was added to and subtracted from its 

corresponding ΔΔCt and the negative resulting value was raised to the power of 2 to give the 

positive and negative standard error. The standard error for the average of replicate experiments 

was calculated using the equation adapted from Baker and Nissim, 1963: e3 = sqrt((1/(n(n-

1)))((n1(n1-1)e1
2)+(n2(n2-1)e2

2)+(((n1n2)/n)(m1-m2)2))), where e3 refers to the new standard error, 
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n1 and n2 refer to the number of observations in the first and second group respectively, n=n1+n2, 

m1 and m2 refer to the mean in the first and second group respectively, and e1 and e2 refer to the 

standard error in the first and second group respectively. A t test was performed using GraphPad 

Prism 5 (GraphPad Software, Inc., La Jolla, CA) to determine whether the change in mRNA was 

statistically significant. 

 

Isolation of total protein from cells: The medium was removed and the cells were washed 2x 

with PBS. Cells were scraped into ice-cold PBS and transferred to a microcentrifuge tube. The 

cells were then pelleted by centrifugation at 300xg for 5 min at 4°C. The supernatant was 

removed and the pellet was lysed in modified RIPA buffer (50 mM Tris base, 150 mM NaCl , 2 

mM EDTA, 1% Triton X-100, 0.5% Na-deoxycholate, 0.1% SDS, 50 mM NaF, 5 mM Na3VO4, 

1X Sigma protease inhibitor cocktail) on ice for 30 min, vortexing occasionally. The cellular 

debris was then removed by centrifugation at 10,600xg for 30 min at 4°C. The supernatant 

containing the extracted proteins was collected and protein concentration was measured using the 

Bio-Rad Bradford protein assay. Reagent A’ was made by adding 20 μl of Reagent S to each 1 

ml of Reagent A. A standard curve was generated using BSA standards with concentrations of 0, 

0.125, 0.25, 0.5, 0.75, 1, 1.5, and 2 mg/ml in triplicate. 5 μl of standards and samples were 

pipetted in triplicate into a 96-well plate. 25 μl of Reagent A’ was added to each well using a 

multichannel pipette followed by 200 μl of Reagent B. The plate was mixed and incubated at RT 

for 15 min. The absorbance was then read at 750 nm in a Synergy microplate reader with 

associated Gen5 software (BioTek, Winooski, VT, S. Sittampalam laboratory). An average 

absorbance was calculated for each sample that was then normalized to its buffer control to 

eliminate background signal. The BSA standard curve was generated and a linear regression 
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analysis was done using GraphPad Prism 5 to interpolate the unknown baseline-corrected 

absorbance for each protein sample to a protein concentration. 

 

Western blot analysis: 100 μg of protein + 1X SDS-PAGE sample buffer (60 mM Tris-HCl 

pH=8.0, 2% w/v SDS, 4 mM EDTA, 10% v/v glycerol, 0.02% w/v bromophenol blue, 5% β-

ME) per sample was loaded onto an 8% Tris-Glycine SDS-PAGE gel (Invitrogen). The proteins 

were separated by electrophoresis for 1.5 h at 125 V in a Tris-Glycine running buffer (25 mM 

Tris base, 192 mM glycine, 0.1% SDS). The proteins were then transferred onto PVDF 

membrane at 35 V O/N at 4°C in 8% transfer buffer (25 mM Tris base, 192 mM glycine, 20% 

v/v MeOH). The PVDF membrane was then blocked in 5% milk/PBS + 0.1% Tween-20 (PBS-

T) for 1 h RT. The membrane was incubated with the primary antibody, anti-BRCA1 mouse 

mAb (Ab-1, Calbiochem), diluted 1:250 in 3% milk/PBS-T O/N at 4°C. Following incubation 

with the primary antibody, the blot was washed 1x15 min, 3x5 min in PBS-T at RT. The blot 

was then incubated with the secondary antibody, goat anti-mouse IgG, HRP-linked (GAM-HRP, 

Cell Signaling, Danvers, MA) diluted 1:5000 in 3% milk/PBS-T for 1 h at RT. To monitor equal 

protein loading, actin was detected using anti-actin (Chemicon/Millipore, Billerica, MA) at a 

1:250,000 dilution in 5% milk/PBS-T for 1 h at RT. Following incubation with anti-actin, the 

blot was washed 1x15 min, 3x5 min in PBS-T at RT. The blot was then incubated with the 

secondary antibody, GAM-HRP, at 1:10,000 in 3% milk/PBS-T for 1h at RT. Prior to 

chemiluminescent detection the blots were washed 1x15 min, 3x5 min in PBS-T and 2x5 min in 

TBS. Chemiluminescence was detected using the SuperSignal West Femto kit (Pierce 

Biotechnology, Rockford, IL) and the UVP imaging center (Upland, CA). Densitometry was 

measured for each protein band using the UVP imaging center. To determine BRCA1 protein 
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expression following siRNA-mediated knockdown of BRCA1, the measured density for BRCA1 

was normalized first to that of actin and then to that of the Neg siRNA control. 

 

Transfection of siRNA by electroporation: A protocol optimized for MCF7 cells by Amaxa for 

their nucleofection system was used. Each nucleofection sample was prepared in a well of a 96-

well round bottom plate by combining 4x105 MCF7 cells resuspended in 20 μl of Cell Line 96-

well Nucleofector Solution SE plus Supplement (Amaxa) and 2 μl 1.25 μM siRNA. 20 μl of each 

sample was then transferred using a multichannel pipette to the Amaxa 96-well Nucleocuvette 

plate. The nucleofection process was completed using the Amaxa Nucleofector Device with 96-

well Shuttle System, Nucleofector program 96-EN-130. 80 μl of culture medium was added to 

each well of the Nucleocuvette plate before 25 μl of the cells (1x105 cells) were transferred using 

a multichannel pipette to a Whatman 96-well glass bottom plate containing 175 μl pre-warmed 

media and incubated at 37°C in a humidified, 5% CO2-containing atmosphere. Additional culture 

medium was added 24 h after nucleofection to maintain cell viability. 

Nucleofection conditions were kept constant between experiments to minimize 

variability. Both positive and negative controls for the nucleofection process and the functional 

foci formation assay were run in triplicate for statistical analysis. The positive control for the 

nucleofection process was a vector pmaxGFP and the negative controls included cells with DNA 

but without application of the program and cells without DNA with application of the program, 

which were used to monitor transfection efficiency. Transfection efficiency was assessed by 

microscopy using the vector pmaxGFP, which was transfected by electroporation in the same 

manner. Fluorescence was measured following the 488 laser excitation on an Olympus inverted 

fluorescence microscope (Olympus, Melville, NY) and processed using the Slidebook program. 
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The functional assay-specific positive and negative controls were BRCA1 and Neg siRNA, 

respectively. siRNA knockdown was assessed by qRT-PCR as described above. 

 

Chemical transfection of siRNAs with RNAiMAX: For transfection in a 96-well plate, MCF7 

cells (5x104) in 0.2 ml MEM with 2% FBS without antibiotics were added to each well 

containing 60 nM final siRNA concentration (12 μl of 1.25 μM siRNA diluted in 37 μl 

OptiMEM) and 1 μl RNAiMAX/5x104 cells (Invitrogen, Carlsbad, CA) previously incubated for 

16 min at RT. For transfection in a 4-well chamber slide, MCF7 cells (9.75x105) in 0.7 ml 

medium with reduced FBS (2% instead of 10%) and without antibiotics were added to siRNA at 

a final concentration of 60 nM (42 μl 1.25 μM siRNA diluted in 133 μl OptiMEM) previously 

incubated with 4 μl RNAiMAX for 16 min at RT. The medium was replaced following 24 h 

incubation at 37°C, 5% CO2 humidified atmosphere with complete medium without antibiotics 

and reduced FBS (2% instead of 10%) and again 24 h later with complete medium without 

antibiotics. Cells were exposed to 10 Gy IR 66 h following transfection and allowed to recover 

for 6 h. The positive and negative controls were BRCA1 and Neg siRNA, respectively. 

Transfection efficiency was assessed by flow cytometric analysis using the FAM-labeled siRNA 

on the BD FACSCalibur (Becton, Dickinson and Company, Franklin Lakes, NJ). The FAM-

labeled siRNA was transfected using RNAiMAX in the same manner as described above. 

BRCA1 mRNA and protein levels were assessed by qRT-PCR and Western blot analysis, 

respectively, for siRNA-mediated knockdown of BRCA1 as described above. 

 

Kinase siRNA Library and Plate Description: The Silencer® Human Kinase siRNA Library was 

purchased from Ambion (Austin, TX), containing 2157 unique siRNAs (0.25 nmol each) 
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targeting each of 719 kinase genes within a total of 27 96-well plates. The wells in column 12 of 

every 96-well plate were left empty for the negative assay-specific control siRNA (Neg, 

scrambled) and positive assay-specific control siRNA (BRCA1). The siRNAs were initially 

reconstituted to 5 μM (mother plates) in RNase-free water (Ambion) and further diluted to a 

working concentration of 1.25 μM (daughter plates) (HTS Laboratory). 

 

Kinase siRNA Library Screen and Validation: The Silencer® Human Kinase siRNA Library was 

screened and validated using the following workflow: siRNA-mediated knockdown of a kinase 

by chemical transfection with RNAiMAX, exposure to 10 Gy IR 66 h post-transfection, staining 

using an anti-BRCA1 antibody for BRCA1 IRIF and DAPI for the nucleus, and data collection 

and analysis using the LSC. MCF7 cells were subcultured to a confluency of ~75-80% prior to 

siRNA transfection. siRNAs were introduced into MCF7 cells via chemical transfection with 

RNAiMAX as described above. The primary screen was completed in both the 96-well and 4-

well format. The validation was completed in triplicate in 4 well chamber slides. Following 66 

hour incubation, cells were exposed to 10 Gy of ionizing radiation, allowed to recover for 6 h, 

and then immunostained using Protocol 4 discussed previously. Finally, imaging and analysis of 

BRCA1 IRIF were performed using the CompuCyte LSC. For the primary screen, mean 

fluorescence intensities of DAPI and BRCA1 IRIF for one region with at least 36 images were 

measured. For the validation, mean fluorescence intensities of DAPI and BRCA1 IRIF for 6 

regions with at least 36 images per region were collected on the LSC. BRCA1 IRIF mean 

fluorescence intensity was standardized to its corresponding DAPI mean fluorescence intensity 

to account for cell density for all siRNAs. Then the adjusted IRIF value for each kinase siRNA 

was compared to that of the Neg siRNA to yield a relative IRIF expression that was then 
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normalized to a value between the BRCA1 siRNA and Neg siRNA with the BRCA1 siRNA set 

at 0% and the Neg siRNA set at 100%. 

 

Results and Discussion 

Studies to Optimize the BRCA1 Functional Assay 

Immunofluorescence Staining: Preliminary experiments were performed to optimize the 

immunofluorescence staining protocol. The general protocol for intracellular staining involves 

fixation, permeabilization, blocking, primary antibody, secondary antibody, and counterstain for 

nuclei. Several protocols were employed to better understand the localization of BRCA1 

staining. Protocol 1 yielded cells with greater polarized perinuclear compared to nuclear staining 

of BRCA1 (Figure 1A). This staining pattern suggested that the fixation and/or permeabilization 

step may have been too stringent. Triton X-100 is a detergent that is commonly used to improve 

antibody penetration by disrupting membranes, which is necessary for nuclear staining. It was 

one of several components evaluated to maximize BRCA1 detection. Different fixation and 

permeabilization reagents, primary and secondary antibody incubation conditions, as well as 

antibody choice and concentration play a role in the detection of localized BRCA1. Therefore, 

modifications were made to the protocol in an iterative manner, but the results still yielded 

similar staining characteristics (compare Figure 1A and 1B). Further modifications were adapted 

from a protocol by Eckner et al, 1994 (Eckner et al., 1994) that added sucrose to the fixation to 

adjust for osmolarity and a pH buffered permeabilization that also adjusted for osmolarity. These 

changes yielded a predominantly nuclear staining (Figure 1D). Unfortunately, the signal to noise 

ratio was poor compared to the protocols that yielded the polarized perinuclear staining of 

BRCA1 despite lower primary and secondary antibody concentrations (compare Figure 1D with 
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Figures 1A and 1B). The Eckner et al, 1994 protocol was further adjusted for incubation time 

and temperature, returned to a modified blocking reagent with detergent similar to Protocols 1 

and 2, and added a treatment with NaBH4 to help unmask antigens by reducing 

paraformaldehyde linkages. These changes improved the signal to noise ratio resulting in more 

distinct, punctate BRCA1 foci within the nucleus following DNA damage induced by IR 

(compare Figure 1F with 1A, 1B, and 1D). As discussed in Chapter I, the presence of BRCA1 

foci following exposure to IR indicates proper expression and localization of BRCA1 to sites of 

DNA damage. Finally, cells that have not been exposed to IR still stain for BRCA1 but in a more 

diffuse pattern (compare Figure 1E and 1F). The reagents and conditions established by 

Protocol 4 were kept constant for all subsequent staining of BRCA1 IRIF. 

To determine the dose of IR that provides robust, punctate BRCA1 foci, MCF7 cells were 

exposed to varying doses of IR and stained with a BRCA1-specific antibody. Exposure to 10 and 

20 Gy IR showed a greater percentage of cells with increased numbers of BRCA1 foci compared 

to 5 Gy (compare Figures 2B and 2C with 2A), However, there was greater non-specific 

staining at 20 Gy than at 10 Gy (compare Figure 2B and 2C). Therefore, subsequent exposure to 

10 Gy IR was selected for the primary screen of the kinase siRNA library. 

Before the arrival of the LSC, all immunostaining steps were performed on coverslips. 

Each coverslip was seeded with 5x104 MCF7 cells and immunostained following exposure to IR. 

With the arrival of the LSC, all immunostaining steps were performed in Whatman 96-well glass 

bottom plates. Conditions and protocols were maintained in the transition. Microscopy was used 

as a measure of readout because altered phenotypes with loss-of-function assays can be easily
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Figure 2: Effect of IR on BRCA1 IRIF formation. MCF7 cells were exposed to 5, 10, and 20 Gy 

IR and stained for BRCA1 (green) and counterstained with DAPI for the nucleus (blue) 8 h post-

IR. Panel A shows a representative image of BRCA1 IRIF formation following exposure to 5 Gy 

IR. Panel B shows a representative image of BRCA1 IRIF formation following exposure to 10 

Gy IR. Panel C shows a representative image of BRCA1 IRIF formation following exposure to 

20 Gy IR. 
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visualized by immunoflurescence. With the LSC, parameters could be defined to collect for 

specific information concerning the IRIF formation. 

An alternative approach that can be used to quantify foci is fluorescence resonance 

energy transfer (FRET) by flow cytometry. The basis for this approach involves the intentional 

excitation of one fluorochrome whose emission spectrum overlaps with the excitation spectrum 

of a second fluorochrome. The energy transfer that occurs will lead to the excitation of the 

second fluorochrome and the resulting emission can be measured. This approach would enable 

quantification of foci formation based on two proteins that are localized within the foci, which 

can facilitate investigation of the colocalization of BRCA1 with another interacting protein from 

one of the various macrocomplexes discussed in the Introduction chapter to assess a specific 

function. However, this transfer will only occur if the two fluorochromes are positioned within a 

certain distance of each other. 

 

Cell  Cycle Analyses: As discussed previously, exposure to IR leads to DSBs in the DNA. A 

network of proteins involved in the DNA damage checkpoint, including BRCA1, will recognize 

these abnormalities and initiate a signal cascade to elicit a cellular response. This cellular 

response includes activation of cell cycle checkpoints to stall progression to the next cell cycle 

phase as well as localization of repair proteins to these sites of damage. Preventing progression 

of the cell cycle ensures that a cell with a modification in its DNA does not have the capacity to 

undergo division and maintain the mutation until it can be repaired. But if the damage cannot be 

repaired, then the cell will undergo apoptosis, or programmed cell death, to ensure the integrity 

of the DNA. Thus, it is important to explore the effect of varying levels of IR on cell cycle 

progression as well as the effect of IR on BRCA1 IRIF formation. The goal was to define the cell 
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cycle profile of MCF7 cells to maximize the number of cells progressing through S, G2 and M 

phases of the cell cycle to produce a robust BRCA1 IRIF signal. 

To determine the effect of IR on cell cycle progression, increasing doses of IR were used. 

The levels of IR investigated were 0, 2, 5, 10, and 20 Gy. At the indicated times post-IR, cells 

were processed for cell cycle analysis. Cells that have not been exposed to IR show a fairly 

consistent ratio of cells in G0/G1 and S+G2/M phases for all time points investigated (Figure 

3A). As the level of IR increased, cells seemed to accumulate in S+G2/M for longer periods of 

time, suggesting that cells were halted from progressing through the cell cycle to allow for repair 

and that a longer time for repair was needed with increasing IR dose (Figures 3B-3E). 

Approximately 30 DSBs per cell per Gy IR are believed to be produced (Iliakis, 1991; Stenerlow 

et al., 2003). Because BRCA1 foci are present during the S and G2/M phases of cell cycle (Scully 

et al., 1997) and at most about 40% of unsynchronized cells are in S and G2/M (Figure 3), cell 

synchronization was evaluated. 

To determine when to stain for BRCA1 IRIF to maximize cell cycle progression of cells 

to S and G2/M phases, both the time point following serum release to expose cells to IR and the 

time point following exposure to IR was determined. To determine the time point at which to 

expose cells to IR following serum release, MCF7 cells were synchronized by serum starvation 

for 30 h and then processed at the indicated time points for cell cycle analysis. Maximal % of 

cells in S and G2/M occurred 24 h following serum release (Figure 4). To determine the time 

point at which to stain for BRCA1 IRIF, MCF7 cells were synchronized by serum starvation for 

30 h followed by serum release for 24 h (as determined by the previous set of experiments). Cells 

were exposed to 20 Gy IR and then processed for cell cycle analysis. MCF7 cells were also left 

unsynchronized, exposed to 20 Gy IR, and processed for cell cycle analysis at the same time
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points or comparison. Cell synchronization enhanced the percent of cells in S and G2/M phases 

of cell cycle (Figure 5). Based on BRCA1 foci kinetics and appearance during the S+G2/M 

phases of cell cycle (Schlegel et al., 2006), the 6 h time point was chosen for all subsequent 

analyses. 

Once siRNA transfection parameters were optimized (to be discussed), cell cycle analysis 

to determine the effect of Neg and BRCA1 siRNAs following cell synchronization and exposure 

to IR was completed. MCF7 cells were simultaneously transfected with either Neg or BRCA1 

siRNAs by chemical transfection with RNAiMAX (Invitrogen) and then cell synchronized by 

one of two methods. Cell synchronization by serum starvation for 42 h followed by serum 

release for 24 h had been previously characterized. However, when these cells were stained for 

BRCA1 IRIF, few cells remained at the end of the staining process and those that remained did 

not exhibit robust BRCA1 IRIF formation (Figure 6A). Therefore, a modified synchronization 

protocol was employed using culture medium with reduced FBS (2% instead of 10%) and 

without antibiotics for 48 h followed by complete MEM with 10% FBS and without antibiotics 

for 18 h. Cells were subsequently exposed to 10 Gy IR and stained 6 h post-IR. This 

semisynchronization process proved more successful when stained for BRCA1 IRIF (compare 

Figure 6B and 6A). Cell cycle analysis comparing the two synchronization methods yielded 

similar profiles (Figure 7). The modified semisynchronization method was maintained for all 

subsequent experiments because it demonstrated more robust BRCA1 IRIF staining with similar 

percentages of cells in S and G2/M.  Additionally, the semisynchronization of cells can maximize 

the number of cells transfected with siRNA (to be discussed) as well as cell cycle progression of 

cells to S and G2/M compared to unsynchronized (compare Figure 7A and 5A). As discussed
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Figure 5: Cell cycle analysis to determine the time point following serum release and exposure to 

IR to stain for BRCA1 IRIF. MCF7 cells were either left unsynchronized (Panel A) or 

synchronized by serum starvation using complete MEM without FBS but supplemented with 

0.05% BSA for 42 h followed by serum release in complete MEM with 20% FBS for 24 h (Panel 

B). Both populations were then exposed to 20 Gy IR and processed at the indicated time points 

post-IR for cell cycle analysis with propidium iodide to determine the time point at which to 

stain for BRCA1 IRIF. SS- = unsynchronized, SS+ = synchronized, and IR+ = irradiated. 
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Figure 6: Comparison of BRCA1 IRIF formation in synchronized vs. semisynchronized MCF7 

cells. MCF7 cells were either synchronized by serum starvation using complete MEM without 

FBS but supplemented with 0.05% BSA for 42 h followed by serum release in complete MEM 

with 20% FBS for 24 h (Panel A) or semisynchronized using culture medium with reduced FBS 

(2% instead of 10%) and without antibiotics for 48 h followed by complete MEM with 10% FBS 

and without antibiotics for 18 h (Panel B). Both populations were then exposed to 10 Gy IR and 

stained 6 h post-IR using anti-BRCA1 (green) and DAPI (blue).  
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Figure 7: Analysis to determine the effect of Neg and BRCA1 siRNAs following cell 

synchronization and exposure to IR on cell cycle. MCF7 cells were either synchronized by serum 

starvation using complete MEM without FBS but supplemented with 0.05% BSA for 30 h 

followed by serum release in complete MEM with 20% FBS for 24 h (Panel A) or 

semisynchronized using culture medium with reduced FBS (2% instead of 10%) and without 

antibiotics for 48 h followed by complete MEM with 10% FBS and without antibiotics for 18 h 

(Panel B). Both populations were then exposed to 10 Gy IR and allowed to recover for the 

indicated time points before cells were processed for cell cycle analysis with propidium iodide.  
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previously, BRCA1 expression levels are dependent on the cell cycle; it is low in G0/G1, is 

induced at the G1/S interface, and is increased throughout S and G2/M (Chen et al., 1996). 

BRCA1 phosphorylation state also changes throughout the cell cycle as well in response to DNA 

damage (Thomas et al., 1997). Based on these observations, BRCA1 IRIF formation is 

dependent on both BRCA1 expression and phosphorylation. 

 

siRNA Transfection Optimization: Experiments were performed to define the optimal 

transfection parameters in a 96-well plate format. The goal was to optimize these conditions to 

maximize specific gene knockdown and minimize transfection-associated toxicity in MCF7 

cells. Conditions evaluated that affect transfection efficiency include choice of transfection 

agent, transfection agent volume, exposure to transfection agent, siRNA quantity, and cell 

density. Once these conditions were determined, they were kept constant between experiments to 

minimize variability. 

A method known as reverse transfection was used to introduce siRNAs into cells. Cells 

are transfected with siRNA/transfection agent complexes as they adhere to a plate after 

trypsinization. This method bypasses the pre-plating step 24 h prior to transfection, thus saving 

valuable time. Initially, a GAPDH siRNA was used as the positive control. GAPDH is a 

housekeeping gene whose activity is not involved in DNA damage repair. Thus knockdown of its 

activity did not affect the study, but could be used as a measure of siRNA efficiency. A 

nontargeting Neg siRNA was used as the negative control. It is a scrambled sequence that has no 

significant homology to the human, mouse, or rat genome, so it should have no effect on 

GAPDH. Other controls used included a transfection agent-only control to identify the effects of 

60



transfection agent alone on the cells and a buffer-only control to identify the effects of mock 

transfection on the cells. 

The KDalert GAPDH Assay Kit was recommended by Ambion as a more cost- and time-

effective means of assessing siRNA delivery efficiency compared to qRT-PCR. This 

fluorescence-based assay was capable of determining both GAPDH siRNA-induced knockdown 

and transfection induced cytotoxicity. GAPDH siRNA-induced knockdown was determined by 

comparing GAPDH enzymatic activity (as measured by the conversion of NAD+ to NADH by 

GAPDH in the presence of phosphate and its substrate glyceraldehyde-3-phosphate) in cells 

transfected with GAPDH siRNA to those transfected with a negative control siRNA. Data 

interpretation was provided per manufacterer’s protocol. The optimal balance factor (OBF) was a 

way to describe and select for the parameter(s) that yield the greatest knockdown with the least 

effect on GAPDH activity of the Neg siRNA (Equation 3). Each new parameter tested used the 

conditions with the highest OBF from the previous optimization step. This method was used to 

determine the optimized combination of parameters for siRNA knockdown. 

Chemical transfection of siRNA into MCF7 cells initially proved inefficient. Parameters 

evaluated to optimize knockdown using siPORT NeoFX (Ambion) included transfection agent 

volume, siRNA concentration, and amount of time for efficient knockdown. The conditions were 

tested in a 96-well plate, using 8x103 MCF7 cells/well with a validated GAPDH siRNA and Neg 

control siRNA. The GADPH enzyme activity was assessed using the KDalert GAPDH Assay Kit 

(Ambion). The rationale was that decreased GAPDH mRNA would result in decreased GAPDH 

enzyme, so when the reaction substrates were added, the measured activity would be lower in 

cells transfected with the GAPDH siRNA. However, no combination of parameters with the 

GAPDH siRNA was able to reduce the expression levels by ≥ 70% compared to the Neg siRNA 
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(Table 1). Other transfection agents were also evaluated but yielded poor knockdown when 

assessed by either GAPDH activity or qRT-PCR (Table 2). 

A FAM-labeled siRNA was then used to assess transfection efficiency by chemical 

transfection with siPORT NeoFX as described previously. The goal of this study was to 

determine whether the poor knockdown observed was a consequence of the inability of the 

transfection agent:siRNA complexes to enter the cell or a failure of the complexes to act on the 

mRNA target. The only difference between the control well and the experimental well was 

addition of the FAM-labeled siRNA to the experimental well. A blue laser 488 nm was used to 

measure the FAM fluorescent signal and images were taken using a 40X objective on a Nikon 

inverted fluorescence microscope. The transfection agent:siRNA complexes do not appear to 

cross the membrane (Figure 8). Fluorescence was mostly observed outside the cells, suggesting 

that the poor knockdown observed was a consequence of the inability of siRNA to enter the cells 

by siPORT NeoFX. 

Another method of transfection called electroporation was explored. In contrast to the 

chemical transfection of siRNAs, transfection of siRNAs using electroporation proved more 

successful. Similar combinations of parameters were assessed to enable a direct comparison of 

the two techniques. Nucleofection involved the delivery of an electrical pulse to induce uptake of 

the siRNAs, which required that the process occur within a specially formulated buffer with a 

greater number of cells to ensure survival. GAPDH enzyme activity was again measured 

following electroporation with GAPDH and Neg control siRNAs. The conditions were tested in a 

96-well plate, using 1 x 105 MCF7 cells/well with a validated GAPDH siRNA and Neg control 

siRNA (Ambion). The GADPH enzyme activity was assessed using the KDalert GAPDH Assay 

Kit (Ambion). Knockdown of GAPDH activity improved over time and approached the
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Figure 8: A FAM-labeled siRNA (green) was used to monitor transfection efficiency by 

chemical transfection with siPORT NeoFX. Panel A shows cells that were treated with siPORT 

NeoFX transfection agent alone. Panel B shows cells that were treated with FAM-

siRNA:siPORT NeoFX transfection agent complexes. Images were taken on a Nikon inverted 

fluorescence microscope, 40X. 
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recommended percent remaining expression of ≤ 30% with all siRNA concentrations tested 

(Table 3). A 72 hour analysis time point was selected for subsequent experiments to ensure 

sufficient knockdown of target mRNA. Efficient knockdown was corroborated using a vector 

pmaxGFP to monitor transfection efficiency. The only difference between the control well and 

the experimental well was the delivery of an electrical pulse to the experimental well. A blue 

laser 488 nm was used to measure the GFP fluorescent signal and images were taken using a 

10X objective on the Olympus inverted fluorescence microscope. The majority of electroporated 

cells appear to express pmaxGFP (Figure 9), indicating improved transfection efficiency 

compared to chemical transfection. Transfection efficiency was ≥  80% after 24 h as measured on 

the BD FACSCalibur (data not shown). Similar success in knockdown of GAPDH mRNA was 

demonstrated using qRT-PCR 72 h following electroporation with a GAPDH siRNA according 

to the protocol described above (Figure 10). Knockdown of BRCA1 mRNA was also 

demonstrated using qRT-PCR 72 h following electroporation with a BRCA1 siRNA (Figure 11). 

A differential BRCA1 IRIF phenotype has been demonstrated in cells electroporated with 

Neg siRNA compared to BRCA1 siRNA. Following nucleofection, cells were incubated for 66 h 

before being exposed to 10 Gy IR. Cells were allowed to recover for 6 h and then were 

immunostained with an anti-BRCA1 antibody for BRCA1 IRIF and DAPI for the nucleus. A 

blue laser 488 nm was used to measure the BRCA1 fluorescence signal while a violet laser 405 

nm was used to measure the DAPI fluorescence signal. Cells were then imaged using a 40X 

objective on the Olympus inverted fluorescence microscope. Both BRCA1 fluorescence intensity 

and number of IRIF are greatly diminished as a result of siRNA-mediated knockdown of BRCA1 

following transfection by electroporation compared to the Neg control (Figure 12). However, 

there was a significant difference in cell morphology and numbers when comparing cells minus
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Figure 9: A vector pmaxGFP (green) was used to monitor transfection efficiency following 

transfection by electroporation. Panel A shows cells with pmaxGFP that were not pulsed in the 

Amaxa Nucleofector system. Panel B shows cells with pmaxGFP that were pulsed in the Amaxa 

Nucleofector system. Images were taken on an Olympus inverted fluorescence microscope, 10X. 
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Figure 12: Representative fluorescence images of MCF7 cells following transfection by 

electroporation. Either Neg (Panel A) or BRCA1 (Panel B) siRNAs (Ambion) at 10 nM final 

siRNA concentration were introduced into 1x105 MCF7 cells/ well in a 96-well plate using the 

Nucleofector 96-well Shuttle System, Program 96-EN-130 (Amaxa). The medium was changed 

24 h after transfection and analysis was completed 72 h post-transfection. Cells were then 

exposed to 10 Gy IR, allowed to recover for 6 h, and then immunostained with an anti-BRCA1 

antibody (green) for BRCA1 IRIF and counterstained with DAPI for the nucleus (blue). 
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siRNA that underwent the nucleofection program with cells minus siRNA that were not 

electroporated. MCF7 cells are epithelial and they spread as they adhere to a surface; however, 

following the nucleofection program, the cells tended to remain balled up and were prone to be 

washed away during the staining process. Therefore, the optimization of parameters for chemical 

transfection was revisited. 

Chemical transfection of siRNAs in MCF7 cells with the Lipofectamine RNAiMAX 

(Invitrogen, Carlsbad, CA) transfection reagent provided the greatest success. Transfection 

conditions that have consistently resulted in ≥ 70% knockdown were 60 nM final siRNA 

concentration, 1 μl RNAiMAX/5x104 cells, incubation of siRNA and transfection reagent for 16 

min at RT, and 72 h incubation at 37°C, 5% CO2 humidified atmosphere prior to analysis. The 

medium was replaced after 24 h incubation with complete medium without antibiotics and 

reduced FBS (2% instead of 10%) and again 24 h later with complete medium without 

antibiotics. Cells were exposed to 10 Gy IR 66 h following transfection and allowed to recover 

for 6 h. Following reverse transfection with BRCA1 siRNA (assay-specific positive control) and 

RNAiMAX, BRCA1 mRNA and protein levels were considerably reduced compared to the Neg 

siRNA (assay-specific negative control) (Figures 13 and 14). In addition, these conditions 

resulted in diminished BRCA1 IRIF formation (Figure 15). These data suggest that BRCA1 

siRNA leads to knockdown of BRCA1 mRNA levels and subsequent reduction of BRCA1 

protein levels such that significantly fewer BRCA1 IRIF form at sites of DSBs following 

exposure to ionizing radiation. Results from these studies defined the appropriate parameters for 

the functional BRCA1 assay and provided a baseline for comparison with BRCA1 mRNA and 

protein levels following siRNA knockdown of a potential regulator of BRCA1 expression.
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Figure 14: Analysis of BRCA1 protein levels by Western blot following chemical transfection 

with RNAiMAX. Either Neg or BRCA1 siRNAs (Ambion) at 60 nM final siRNA concentration 

were introduced into 5x104 MCF7 cells/well in a 96-well plate using 1 μl RNAiMAX 

(Invitrogen)/5x104 cells. siRNA:RNAiMAX complexes were incubated for 16 min prior to 

addition of cells. Analysis was completed 72 h post-transfection. Panel A is representative 

Western blots for BRCA1 and actin (served as loading control) following siRNA-mediated 

knockdown of BRCA1 and Panel B shows densitometry for the indicated samples. Data are 

presented as an average of the siRNA ± standard error (n=10). * denotes P < 0.0001. 
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Figure 15: Analysis of BRCA1 IRIF formation by the LSC following chemical transfection with 

RNAiMAX. Either Neg or BRCA1 siRNAs (Ambion) at 60 nM final siRNA concentration were 

introduced into 5x104 MCF7 cells/well in a 96-well plate using 1 μl RNAiMAX 

(Invitrogen)/5x104 cells. siRNA:RNAiMAX complexes were incubated for 16 min prior to 

addition of cells. Analysis was completed 72 h post-transfection. Cells were exposed to 10 Gy IR 

and stained with anti-BRCA1 antibody for BRCA1 IRIF and DAPI for the nucleus. Panel A 

shows representative images obtained using the LSC. Panel B shows relative BRCA1 expression 

for the Neg and BRCA1 siRNAs. Data are presented as an average of the siRNA ± standard error 

(n=14). * denotes P < 0.0001. 
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RNAi technology is a powerful genetic tool that can selectively knockdown the 

expression of one gene by targeting its mRNA for degradation. The rationale for using 

chemically synthesized siRNA is their specificity for the target mRNA. In addition, they are 

commercially available for the entire genome or for select gene families. They were designed 

using a stringent algorithm to ensure specificity and many have been validated for gene 

knockdown. They can be easily taken up by MCF7 cells using the established chemical 

transfection protocol. Finally, siRNAs provide the ability to evaluate the effect of one gene’s 

knockdown on BRCA1’s ability to form IRIF in a timely manner. 

 

Kinase siRNA Library Screen and Validation: The rationale for developing the functional 

BRCA1 assay together with RNAi technology is that ionizing radiation-induced foci formation 

can be easily visualized and any disturbances to foci formation may be due to dysregulation at 

any point of BRCA1 gene expression or activity. The effect of siRNAs targeting kinases was 

evaluated because there could be signal transduction pathways involving kinases that are 

activated and result in regulation of BRCA1 expression or kinases that are involved in 

phosphorylating BRCA1 and inducing its activity. This approach may prove instrumental in 

gaining a better understanding of the regulation of BRCA1 expression and function because 

downstream effects can be assessed from the potential dysregulation introduced into a cell-based 

system with a siRNA targeting a kinase that may be necessary for BRCA1 IRIF formation and 

DNA damage repair. 

Once experimental parameters for the BRCA1 functional assay were optimized, a 

Silencer® Kinase siRNA Library from Ambion was screened. Using the ability of BRCA1 to 

form IRIF following the siRNA-mediated knockdown of kinases and induction of DNA damage 
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(Figure 16A), potential kinase regulators of BRCA1 expression and function could be identified. 

If knockdown of a kinase resulted in decreased BRCA1 foci formation, then that kinase was 

identified as a potential positive regulator of BRCA1 because its presence promotes foci 

formation while its absence inhibits foci formation. Likewise, if knockdown of a kinase resulted 

in increased BRCA1 foci formation, then that kinase was identified as a potential negative 

regulator of BRCA1 since its presence inhibits foci formation while its absence promotes foci 

formation (Figure 16B). 

Three different siRNAs for each kinase were examined for BRCA1 IRIF formation 72 h 

following reverse transfection with RNAiMAX. The three different siRNAs were tested 

individually by plating in the same position in three separate 96-well plates rather than pooled to 

avoid siRNA interactions with each other that may diminish knockdown and enhance off-target 

effects since a greater total siRNA quantity may be necessary for sufficient knockdown. Foci 

formation was visualized by staining MCF7 cells with anti-BRCA1 and AlexaFluor 488 

antibodies. DAPI was included in the staining protocol to visualize the nucleus. Images of 

BRCA1 and DAPI staining were taken by the Compucyte LSC and relative BRCA1 IRIF 

expression was determined for each kinase siRNA (Figure 17). The red box in Figure 17B is an 

example of a potential positive regulator of BRCA1 because siRNA-mediated knockdown of the 

kinase resulted in a BRCA1 IRIF phenotype similar to that of the BRCA1 siRNA suggesting that 

the presence of the kinase promotes BRCA1 IRIF formation. The blue and green boxes in Figure 

17B are examples of the Neg and BRCA1 control siRNAs, respectively that established the 

dynamic range of the assay. Data from all kinase siRNAs screened were graphed in order of 

lowest IRIF expression to highest IRIF expression without regard to specific kinase siRNA with 

the relative IRIF expression of the Neg siRNA set at 100% and that of the BRCA1 siRNA set at 
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Figure 17: Representative data from the kinase siRNA library screen. Three different siRNAs for 

each kinase (in three separate 96-well plates) were evaluated in MCF7 cells for BRCA1 IRIF 

formation 72 h following reverse transfection with RNAiMAX. Panel A shows an example of 

the images collected from a 96-well plate for DAPI counterstain of the nucleus. Panel B shows 

an example of the corresponding images collected from the same plate for BRCA1 IRIF. Red 

box in panel B is an example of a potential kinase regulator of BRCA1. Blue and green boxes in 

panel B are examples of the Neg and BRCA1 siRNAs, respectively, that established the dynamic 

range of the functional assay. 
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0% (Figure 18). At least two of the three siRNAs targeting a specific kinase must alter IRIF 

expression by 2-fold or greater change in standard error from the Neg siRNA to be considered 

for further validation. A total of thirty-two kinases fulfilled this criteria and were selected for 

validation (green box in Figure 18, Table 4). A few kinases exhibited similar and even further 

diminished BRCA1 IRIF expression compared to that of the BRCA1 siRNA (red box in Figure 

18); however, they did not validate when the IRIF assay was repeated in triplicate. Additionally, 

a few kinase siRNAs resulted in a higher IRIF expression with greater than 2-fold change in 

standard error compared to the Neg control siRNA (blue box in Figure 18), but when all three 

siRNAs for that kinase were analyzed, they did not fulfill the criteria. The primary screen was 

also able to identify ATM as a kinase regulator of BRCA1, suggesting that the BRCA1 

functional assay has the potential to identify other novel kinases. ATM affects BRCA1 at the 

post-translational level by phosphorylation following exposure to IR (Cortez et al., 1999). The 

design of this foci formation assay was more conducive to identifying diminishment of BRCA1 

IRIF expression of statistical significance than enhancement of BRCA1 IRIF expression. 

As the primary screen progressed, more and more wells of each subsequent 96-well plate 

showed little or no cells by the end of the staining process. Therefore, the screening format was 

switched to a larger 4-well chamber slide format to minimize loss of cells, which appeared to 

correct the situation. It was suggested that this phenomenon may be due to mycoplasma 

contamination, so cells were discarded and another stock of MCF7 cells was used. The 

conditions of the siRNA transfection with RNAiMAX in the 4-well chamber slide format were 

scaled-up by a factor of 4 to mirror the conditions for the 96-well plate format. MCF7 cells 

(9.75x105) in 0.7 ml medium with reduced FBS (2% instead of 10%) and without antibiotics 

were added to siRNA at a final concentration of 60 nM (42 μl 1.25 μM siRNA diluted in 133 μl
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OptiMEM) previously incubated with 4 μl RNAiMAX for 16 min at RT. Kinase siRNAs 

continued to be evaluated in this manner. 

Potential kinase regulators were validated by repeating the siRNA transfection and foci 

formation assay in triplicate for statistical analysis. Validation of the thirty-two kinases selected 

from the primary screen was completed in Nunc Lab-Tek 4-well chamber slides so that more 

regions per kinase siRNA could be imaged. The conditions of the siRNA transfection were kept 

the same with a final siRNA concentration of 60 nM, 1 μl RNAiMAX/5x104 cells, incubation of 

siRNA and RNAiMAX for 16 min at RT, and analysis 72 h post-transfection. Mean fluorescence 

intensities of BRCA1 IRIF and DAPI for 6 regions with at least 36 images per region were 

collected on the LSC. Again, BRCA1 IRIF mean fluorescence intensity was standardized to its 

corresponding DAPI mean fluorescence intensity to account for cell density for all siRNAs. Then 

the adjusted IRIF value for each kinase siRNA was compared to that of the Neg siRNA to yield a 

relative IRIF expression that was then normalized to a value between the BRCA1 siRNA and 

Neg siRNA with the BRCA1 siRNA set at 0% and the Neg siRNA set at 100%. The criteria set 

to select kinases for further characterization was that at least two of the three siRNAs targeting 

each kinase in triplicate must yield a 2-fold or greater standard error change compared to the Neg 

siRNA. A total of fourteen kinases were found to meet the criteria (Figures 19-21, red boxes). 

The proposed experimental approach is dependent on the interplay of kinases and 

BRCA1 that exist within the cell line used, which may be a representative finding or unique to 

that cell line. For example, decreased expression of BRCA1 has been found in high grade ductal 

carcinomas, which are often estrogen receptor and progesterone receptor negative, while MCF7 

cells express both (Hall et al., 1990; Tang et al., 2006; Wilson et al., 1999). MCF7 cells are 

luminal and are representative of estrogen receptor postive breast cancers. Also, microarray
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studies have shown that the gene expression profile differs between estrogen receptor positive 

and negative breast cancers (Perou et al., 2000). Therefore, the utility of this functional approach 

would be enhanced by the use of other cell lines that represent the major types of invasive breast 

cancer, including luminal (MCF7), basal-like (MDA-MB-231), HER2+ (SK-BR-3), and normal 

breast-like (HMEC) (Sorlie et al., 2003) to delineate common pathways. 

Since the nature of the experimental approach precludes the optimization of every siRNA 

in the kinase library, one of three outcomes are possible: 1) the intended effect of optimal 

knockdown with minimal cytotoxicity, 2) off-target effects and/or enhanced cytotoxicity, or 3) 

insufficient knockdown. However, preemptive measures have been taken to minimize false 

positives and false negatives. For example, siRNAs against GAPDH and BRCA1 were used to 

establish the experimental parameters and were chosen based on several criteria including their 

abundance in the cell, mRNA and protein half-life, and relevance to the assay (Blagosklonny et 

al., 1999; Lekas et al., 2000; Saunus et al., 2007). By most accounts, the two were at opposite 

ends of the spectrum, so conditions that prove successful for both will likely work for targets that 

fall in between. In addition, by using individual rather than pooled siRNAs, it is possible to 

ascribe the observed effects to a particular siRNA and to define a concentration that allows 

sufficient knockdown without inducing off-target effects. Finally, subsequent validation will help 

confirm those kinases that influence BRCA1 expression and function. 

Although the siRNAs in the kinase library were designed using a stringent algorithm to 

ensure specificity and those that have been validated for gene knockdown are included, they may 

not sufficiently affect the target kinase to levels that impact BRCA1 expression and function. An 

alternative may be to evaluate pharmacologic inhibitors of kinases on BRCA1 expression and 
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function. Protein kinase inhibitor libraries are commercially available from several companies, 

including EMD Biosciences. 

Staining using an anti-BRCA1 antibody whose epitope is within the N terminus may 

detect not only IRIF with DNA damage repair but also other parallel cellular processes that 

require BRCA1, including transcription-coupled repair. Perhaps colocalization with γH2AX, an 

early marker of DNA damage (Paull et al., 2000), or use of a phospho-specific BRCA1 antibody 

will more accurately identify the foci of interest. 

Although the LSC enables high content analysis and minimizes the subjectivity inherent 

in manually imaging and counting foci, there are certain limitations that must be considered. For 

example, the software controlling the microscope cannot be programmed to image near the 

periphery of a well. Additionally, it is unable to contour cells at the edge of the image field and it 

has difficulty distinguishing apposed cells. 

Inherent redundancies in signaling pathways may exclude detection of certain kinases, 

which is unfortunate but not entirely ineffectual. The ultimate goal is to effectively translate our 

understanding of various cellular processes and pathways into a potent combination therapy that 

is both targeted and safe. Polygenic influences suggest a critical role for that pathway but a 

difficult task to dissect. 

Another approach to validating the potential regulatory kinases is to assess whether 

exogenous expression of the kinase will restore (or inhibit) BRCA1 IRIF formation in a cell line 

deficient for that kinase. This can also be done using a cell line that has been transduced with an 

shRNA-encoding lentiviral vector for stable silencing of kinase expression. 
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Ranking of Lead Kinases: Each set of three kinase siRNAs was evaluated based on the criteria 

that at least two of the three siRNAs targeting each kinase in triplicate must yield a 2-fold or 

greater standard error change compared to the Neg control siRNA. Of the fourteen kinases that 

met the criteria, four kinases had two siRNAs that dramatically diminished BRCA1 IRIF 

expression and one siRNA that appeared to have no effect on BRCA1 IRIF expression. In those 

cases, that siRNA was excluded from further calculations. These fourteen lead kinases were 

ranked based on an average of the relative BRCA1 IRIF expressions of the siRNAs targeting 

each kinase. They are presented from the least relative BRCA1 IRIF intensity to the greatest 

relative BRCA1 IRIF intensity (Figure 22). 

 

Conclusions 

 The BRCA1 functional assay workflow was developed and optimized to evaluate 

siRNAs from a kinase siRNA library to identify novel kinases that impact the ability of BRCA1 

to form IRIF following exposure to 10 Gy IR. Immunofluorescence parameters were optimized 

for visualization of distinct, punctate BRCA1 IRIF in the nucleus with an anti-BRCA1 antibody 

following exposure to IR. Cell cycle analyses of unsynchronized and synchronized MCF7 cells 

were conducted to establish a cell cycle profile that was used to determine time points for 

exposure to IR and fixation/permeabilization for immunostaining. Optimization of siRNA 

transfection conditions established that chemical transfection with RNAiMAX proved most 

successful in MCF7 cells. Following the primary screen and validation, fourteen lead kinases 

have consistently demonstrated diminished BRCA1 IRIF formation following siRNA-mediated 

knockdown and exposure to IR. MAP3K1, HCK, FGFR2, PIK4CA, and PLK3 were selected for 

further evaluation because they were the top five kinases where all three siRNAs effectively
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diminished BRCA1 IRIF formation. Subsequent secondary validation and characterization will 

be performed to determine whether the kinase regulates BRCA1 at the transcriptional level or 

post-translational level and how siRNA-mediated knockdown of these kinases will affect DSB 

repair and the ability of a cell to proliferate following DNA damage. 
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CHAPTER III 

EVALUATE THE EFFECT OF siRNA-MEDIATED KNOCKDOWN OF 

LEAD KINASES ON BRCA1 mRNA LEVELS AS WELL AS ON BOTH 

TARGET AND BRCA1 PROTEIN LEVELS 

 

Introduction 

Validation of the regulatory kinases identified from the primary BRCA1 assay will help 

determine the extent of siRNA-mediated knockdown of the target protein as well as whether the 

changes in foci formation were due to a difference in BRCA1 expression or a DNA damage 

response defect. mRNA levels for BRCA1 following siRNA-mediated knockdown of MAP3K1, 

HCK, FGFR2, PIK4CA, and PLK3 were evaluated by qRT-PCR. These kinases were selected 

because all three siRNAs targeting the kinase decreased BRCA1 IRIF levels at least 2-fold or 

greater standard error change compared to the Neg control siRNA and they exhibited the least 

relative BRCA1 IRIF intensity. Protein levels for MAP3K1, HCK, and FGFR2 as well as the 

corresponding levels of BRCA1 following siRNA-mediated knockdown of these three kinases 

were evaluated by Western blot analysis. If BRCA1 mRNA and protein levels from MCF7 cells 

following siRNA treatment are different from that of the control, this will indicate an effect of 

the kinase on BRCA1 expression. If there is no change in either mRNA or protein in siRNA 

transfected cells compared to control, then it would suggest a DNA damage response defect. 

 

Materials and Methods 

Chemical Transfection of siRNAs with RNAiMAX: MCF7 cells (9.75x105) in 3.9 ml MEM with 

2% FBS without antibiotics were added to each well of a 6-well plate containing 60 nM final 
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siRNA concentration (240 μl of 1.25 μM siRNA diluted in 760 μl OptiMEM) and 23 μl 

RNAiMAX (Invitrogen, Carlsbad, CA) previously incubated for 16 min at room temperature 

(RT). The medium was replaced following 24h incubation at 37°C, 5% CO2 humidified 

atmosphere with complete medium without antibiotics and reduced FBS (2% instead of 10%) 

and again 24h later with complete medium without antibiotics. Cells were either exposed to 10 

Gy ionizing radiation 66h following transfection and allowed to recover for 6h or left 

unirradiated before processing for RNA and protein. 

 

Isolation of Total RNA from Cells: RNA was extracted per manufacturer’s protocol using the 

RNeasy Plus RNA extraction kit (Qiagen, Valencia, CA). MCF7 cells were disrupted using 

Buffer RLT + β-mercaptoethanol (10 μl β-ME per 1 ml Buffer RLT). For < 5x106 cells, 350 μl of 

Buffer RLT was added. Each lysate was homogenized using a QIAshredder spin column and 

centrifuged using an Eppendorf 5415 D microcentrifuge (Westbury, New York) for 2 min at full 

speed (16,100xg). One volume or 350 μl of 70% ethanol was added to the homogenized lysate 

and mixed by pipetting. The sample was then transferred to an RNeasy spin column and 

centrifuged for 15 s at ≥  8000xg. The flow-through was discarded. 700 μl Buffer RW1 was 

added to the RNeasy spin column and centrifuged for 15 s at ≥  8000xg to wash the spin column 

membrane. The flow-through was again discarded. 500 μl Buffer RPE was then added to the 

RNeasy spin column and centrifuged for 15 s at ≥  8000xg to wash the spin column membrane. 

The flow-through was again discarded. Another 500 μl Buffer RPE was added to the RNeasy 

spin column and centrifuged for 2 min at ≥  8000xg. The RNeasy spin column was placed in a 

new 2 ml collection tube and centrifuged at full speed for 1 min to eliminate any possible 

carryover of Buffer RPE. The RNeasy spin column was then placed in a new 1.5 ml Eppendorf 
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tube. The RNA was eluted with 30 μl RNase-free water added directly to the spin column 

membrane and centrifuged for 1 min at ≥  8000xg. The eluate was then added to the RNeasy spin 

column membrane to concentrate the RNA further and centrifuged for 1 min at ≥  8000xg. The 

260/280 ratio and concentration of each RNA sample were determined using an 8-channel 

NanoDrop 8000 spectrophotometer and its associated software ND-8000 v1.1.1 (Thermo 

Scientific, Wilmington, DE, P. Fields laboratory). RNA samples were reverse transcribed to 

cDNA immediately following extraction. 

 

Quantitative Real-Time PCR (qRT-PCR): Complementary DNA (cDNA) was generated per 

manufacturer’s protocol from 1000 ng extracted RNA in a 100 μl volume using the High 

Capacity cDNA kit (Applied Biosystems, Foster City, CA). The 2x reverse transcription master 

mix prepared on ice (per 20-μl reaction) was composed of 2 μl 10X RT Buffer, 0.8 μl 25X dNTP 

Mix (100 mM), 2.0 μl 10X RT Random Primers, 1 μl MultiScribe Reverse Transcriptase, and 4.2 

μl Nuclease-free H2O. 10 μl of RNA sample was mixed with 10 μl of 2X RT master mix per 20-

μl reaction in a PCR tube. Reverse transcription of RNA to cDNA was performed in a GeneAmp 

PCR System 9700 thermal cycler (Applied Biosystems). The reverse transcription PCR program 

was run as follows: 25°C for 10 min, 37°C for 120 min, 85°C for 5 s, and 4°C for ∞. cDNA 

samples were stored at -80°C until the qRT-PCR plate was ready to be set up. Gene expression 

of BRCA1 (Hs00173237_m1), HCK (Hs00176654_m1) and 18S (Hs99999901_s1) was detected 

using the TaqMan® Gene Expression assay kit (Applied Biosystems). Each PCR reaction was set 

up as follows: 9 μl cDNA + 10 μl TaqMan® Universal PCR Master Mix + 1 μl specific 

primer/probe set (BRCA1, HCK or 18S) in a 96-well PCR plate. Controls for each set of 

experiments included the 18S housekeeping gene for normalization of Ct values to account for 
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relative RNA amount, no cDNA control to assess specificity of the primer/probe set, and H2O 

only to determine background of the instrument.  Each sample was run in triplicate for statistical 

analysis. Each 20 μl reaction was run on the 7500 ABI real time PCR instrument with the 

following program: UNG incubation at 50°C for 2 min, AmpliTaq Gold activation at 95°C for 10 

min followed by 40 PCR cycles of 95°C for 15 s to denature and 60°C for 1 min to anneal/extend 

(Applied Biosystems, P. Fields laboratory). Ct values were obtained for each sample. Data 

analysis was carried out in Microsoft Excel. An average and standard error of the triplicate Ct 

values for each sample were calculated using the equation Ctaverage = (Ct1 + Ct2 +…+ Ctn)/n and 

Ctst error = Ctstdev/sqrt(n). Each averaged Ct value was then normalized to 18S (ΔCt) and the 

corresponding standard error was calculated using the equation ΔCtst error = sqrt(Ctst error (18s)
2 + Ctst 

error (sample)
2). The ΔCt value was further normalized to Neg siRNA, or the IRIF assay control 

(ΔΔCt) and the negative ΔΔCt value was raised to the power of 2 to give relative remaining 

expression of the gene being investigated. The ΔCtst error was added to and subtracted from its 

corresponding ΔΔCt and the negative resulting value was raised to the power of 2 to give the 

positive and negative standard error. The standard error for the average of replicate experiments 

was calculated using the equation adapted from Baker and Nissim, 1963: e3 = sqrt((1/(n(n-

1)))((n1(n1-1)e1
2)+(n2(n2-1)e2

2)+(((n1n2)/n)(m1-m2)2))), where e3 refers to the new standard error, 

n1 and n2 refer to the number of observations in the first and second group respectively, n=n1+n2, 

m1 and m2 refer to the mean in the first and second group respectively, and e1 and e2 refer to the 

standard error in the first and second group respectively. A t test was performed using GraphPad 

Prism 5 to determine whether the change in mRNA was statistically significant. 
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Isolation of Total Protein from Cells: The medium was removed and the cells were washed 2x 

with PBS. Cells were scraped into ice-cold PBS and transferred to a microcentrifuge tube. The 

cells were then pelleted by centrifugation at 300xg for 5 min at 4°C. The supernatant was 

removed and the pellet was lysed in modified RIPA buffer (50 mM Tris base, 150 mM NaCl , 2 

mM EDTA, 1% Triton X-100, 0.5% Na-deoxycholate, 0.1% SDS, 50 mM NaF, 5 mM Na3VO4, 

1X Sigma protease inhibitor cocktail) on ice for 30 min, vortexing occasionally. The cellular 

debris was then removed by centrifugation at 10,600xg for 30 min at 4°C. The supernatant 

containing the extracted proteins was collected and protein concentration was measured using the 

Bio-Rad Bradford protein assay. Reagent A’ was made by adding 20 μl of Reagent S to each 1 

ml of Reagent A. A standard curve was generated using BSA standards with concentrations of 0, 

0.125, 0.25, 0.5, 0.75, 1, 1.5, and 2 mg/ml in triplicate. 5 μl of standards and samples were 

pipetted in triplicate into a 96-well plate. 25 μl of Reagent A’ was added to each well using a 

multichannel pipette followed by 200 μl of Reagent B. The plate was mixed and incubated at RT 

for 15 min. The absorbance was then read at 750 nm in a Synergy microplate reader with 

associated Gen5 software (BioTek, Winooski, VT, S. Sittampalam laboratory). An average 

absorbance was calculated for each sample that was then normalized to its buffer control to 

eliminate background signal. The BSA standard curve was generated and a linear regression 

analysis was done using GraphPad Prism 5 to interpolate the unknown baseline-corrected 

absorbance for each protein sample to a protein concentration. 

 

Western Blot Analysis: 50 μg of protein + 1X SDS-PAGE sample buffer (60 mM Tris-HCl 

pH=8.0, 2% w/v SDS, 4 mM EDTA, 10% v/v glycerol, 0.02% w/v bromophenol blue, 5% β-

ME) per sample was loaded onto a 4-20% Tris-Glycine SDS-PAGE gel (Invitrogen). The 
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proteins were separated by electrophoresis for 1.5 h at 200 V in a Tris-Glycine running buffer 

(25 mM Tris base, 192 mM glycine, 0.1% SDS). The proteins were then transferred onto PVDF 

membrane for 2.5 h at 35 V in 8% transfer buffer (25 mM Tris base, 192 mM glycine, 20% v/v 

MeOH). The PVDF membrane was then blocked in 5% milk/TBS (25 mM Tris pH 8.0, 135 mM 

NaCl, 2.5 mM KCl) + 0.1% Tween-20 (TBS-T) for 1 h RT. The membrane was incubated with 

primary antibody diluted in TBS-T + 0.01% sodium azide (anti-BRCA1 mouse mAb (Ab-1, 

Calbiochem) at a 1:250 dilution, anti-MEK kinase-1 rabbit pAb (MAP3K1, C-22, Santa Cruz 

Biotechnology) at a 1:250 dilution, anti-HCK rabbit pAb (N-30, Santa Cruz Biotechnology) at a 

1:250 dilution) overnight at 4°C. To monitor equal protein loading, actin was detected using anti-

actin mouse mAb (Chemicon/Millipore, Billerica, MA) at a 1:250,000 dilution in TBS-T + 

0.01% sodium azide overnight at 4°C. Following incubation with the primary antibody, the blot 

was washed 1x15 min, 3x5 min in TBS-T at RT. The blot was then incubated with the secondary 

antibody diluted in TBS-T (goat anti-mouse IgG, HRP-linked (GAM-HRP, Cell Signaling, 

Danvers, MA) at 1:5,000 for BRCA1; goat anti-rabbit IgG, HRP-linked (Cell Signaling) at 

1:5000 for MAP3K1 and HCK; and GAM-HRP at 1:10,000 for actin) for 1 h at RT. Prior to 

chemiluminescent detection the blots were washed 1x15 min, 3x5 min in TBS-T and 2x5 min in 

TBS. Chemiluminescence was detected using the SuperSignal West Femto kit (Pierce 

Biotechnology, Rockford, IL) and the UVP imaging center (Upland, CA). Densitometry was 

measured for each protein band using the UVP imaging center. To determine protein expression 

for the protein of interest following siRNA-mediated knockdown of a kinase, the measured 

density for the protein of interest was normalized first to that of actin and then to that of the Neg 

siRNA control. 
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Results and Discussion 

Effect of siRNA-mediated knockdown of lead kinases on BRCA1 mRNA levels: mRNA levels 

of BRCA1 were evaluated using qRT-PCR analysis. siRNA-mediated knockdown of MAP3K1, 

HCK, FGFR2, PI4KA, and PLK3 was achieved by chemical transfection using RNAiMAX and 

the same three siRNAs for each kinase from the primary screen and validation. RNA was 

extracted and reverse transcribed using commercially available kits per manufacturer’s protocol. 

Established TaqMan® primer/probe sets for BRCA1 and 18S were used to assess RNA 

expression. Results from the three siRNAs for each kinase were averaged for each experimental 

set and then averaged across replicate data sets and are graphed as percent BRCA1 mRNA 

expression ± standard error (Figure 1). BRCA1 mRNA expression for Neg siRNA was set at 

100%. BRCA1 mRNA expression following siRNA-mediated knockdown of BRCA1 

demonstrated effective knockdown of BRCA1 mRNA expression. siRNA-mediated knockdown 

of HCK and PLK3 showed a modest decrease in BRCA1 mRNA levels, suggesting that both 

HCK and PLK3 may play a role in regulating BRCA1 expression at the transcriptional level. In 

contrast, siRNA-mediated knockdown of MAP3K1, FGFR2, and PI4KA maintained BRCA1 

mRNA levels similar to the Neg control siRNA, suggesting that MAP3K1, FGFR2, and PI4KA 

does not regulate BRCA1 expression at the transcriptional level. The extent of knockdown of 

each of the target kinases has not been quantified at the mRNA level, except HCK (discussed 

below). Further qRT-PCR studies should be done to establish the extent of knockdown of each of 

the target kinases. Based on microarray data from Oncomine (www.oncomine.org, Compendia 

Bioscience, Ann Arbor, MI), MCF7 cells appear to express MAP3K1, HCK, and FGFR2. 
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Effect of siRNA-mediated knockdown of lead kinases on BRCA1 and target protein levels: 

Protein levels of BRCA1 and target proteins were evaluated using Western blot analysis. siRNA-

mediated knockdown of MAP3K1, FGFR2, and HCK was achieved by chemical transfection 

using RNAiMAX and the same three siRNAs for each kinase from the primary screen and 

validation. Samples were either irradiated with 10 Gy IR and allowed to recover for 6 h or left 

unirradiated. Protein was extracted, separated by electrophoresis, and detected using antibodies 

for BRCA1, target kinase, and actin (loading control) to assess protein expression. Results from 

the three siRNAs for each kinase are graphed as percent protein expression ± standard error. 

Both BRCA1 and target kinase protein expression for Neg siRNA was set at 100%. As expected, 

BRCA1 protein levels are decreased following siRNA-mediated knockdown of BRCA1. 

Preliminary results from siRNA-mediated knockdown of MAP3K1 show more robust 

knockdown of MAP3K1 protein with a concomitant decrease in BRCA1 protein for all three 

siRNAs in nonIR samples compared to IR samples, suggesting that MAP3K1 affects BRCA1 

expression at the protein level (Figure 2). Both BRCA1 and MAP3K1 protein expression are 

higher in IR samples compared to nonIR samples, suggesting that BRCA1 and MAP3K1 protein 

expression may be induced by IR. Additionally, MAP3K1 knockdown appears to increase 

BRCA1 protein expression in IR samples, which would seem contradictory to the diminished 

BRCA1 IRIF expression. However, replicate analyses of siRNA-mediated knockdown of 

MAP3K1 are needed for statistical significance. FGFR2 protein expression is significantly 

diminished with siRNA-mediated knockdown of at least two of the three FGFR2 siRNAs and a 

concomitant decrease in BRCA1 protein expression is observed (Figure 3). siRNA-mediated 

knockdown of BRCA1 leads to a decrease in FGFR2 protein expression, suggesting that BRCA1 

may positively regulate FGFR2. siRNA-mediated knockdown of HCK leads to moderately
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Figure 2: Effect of siRNA-mediated knockdown of MAP3K1 on BRCA1 protein levels. Protein 

analysis by Western blot in MCF7 cells 72 h following reverse transfection with RNAiMAX and 

either Neg, BRCA1, or three individual siRNAs targeting the indicated putative kinase regulator 

and then either left unirradiated or irradiated with 10 Gy of ionizing radiation. Panel A is 

representative Western blots for BRCA1, MAP3K1 and actin (served as loading control) 

following siRNA-mediated knockdown of MAP3K1 and Panel B shows the respective 

densitometry of each sample (n = 1). 
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Figure 3: Effect of siRNA-mediated knockdown of FGFR2 on BRCA1 protein levels. Protein 

analysis by Western blot in MCF7 cells 72 h following reverse transfection with RNAiMAX and 

either Neg, BRCA1, or three individual siRNAs targeting the indicated putative kinase regulator 

and then either left unirradiated or irradiated with 10 Gy of ionizing radiation. Panel A is 

representative Western blots for BRCA1, FGFR2 and actin (served as loading control) following 

siRNA-mediated knockdown of FGFR2 and Panel B shows the respective densitometry of each 

sample (n = 2, presented as average values ± standard error). * denotes P ≤ 0.0498, ** denotes P 

≤ 0.0042. 
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diminished HCK protein expression for both nonIR and IR samples (Figure 4). This effect is not 

due to poorly functioning siRNAs since HCK mRNA levels following siRNA-mediated 

knockdown of HCK are very low (Figure 5), suggesting that the HCK protein may be very 

stable. However, BRCA1 protein expression is reduced when HCK protein expression is 

decreased, suggesting that HCK affects BRCA1 expression at the protein level. 

 

Conclusions 

Secondary validation of kinase hits identified from the primary screen utilized qRT-PCR 

to assess for mRNA levels of BRCA1 and Western blot analysis to assess for protein levels of 

the target kinase and BRCA1. Neither siRNA-mediated knockdown of MAP3K1 nor FGFR2 

appear to affect BRCA1 mRNA expression, but both affect BRCA1 protein expression, possibly 

suggesting that they are involved in a pathway that affects either translation efficiency of 

BRCA1 protein or BRCA1 protein stability. Additionally, BRCA1 appears to positively regulate 

FGFR2 expression. This could be possible because BRCA1 has been shown to be a component 

of the RNA polymerase II holoenzyme to modulate the expression of downstream genes (Scully 

et al., 1997). Alternatively, BRCA1 may physically interact with FGFR2 to regulate its signaling 

in a manner similar to JAK-STAT3 signaling (Gao et al., 2001). siRNA-mediated knockdown of 

HCK impacts BRCA1 mRNA expression to a lesser degree than BRCA1 protein expression, 

suggesting that the effects of regulation are greater at the protein level. 

Western blot analysis to assess for target protein expression following siRNA-mediated 

knockdown of a kinase has proven more difficult because of the lack of antibodies with high 

sensitivity and specificity. Alternative approaches need to be explored to determine whether 

siRNA-mediated knockdown of a kinase has occurred. One method to improve the sensitivity
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Figure 4: Effect of siRNA-mediated knockdown of HCK on BRCA1 protein levels. Protein 

analysis by Western blot in MCF7 cells 72 h following reverse transfection with RNAiMAX and 

either Neg, BRCA1, or three individual siRNAs targeting the indicated putative kinase regulator 

and then either left unirradiated or irradiated with 10 Gy of ionizing radiation. Panel A is 

representative Western blots for BRCA1, HCK and actin (served as loading control) following 

siRNA-mediated knockdown of HCK and Panel B shows the respective densitometry of each 

sample (n = 2 for nonIR, n = 3 for IR presented as average values ± standard error). * denotes P 

≤ 0.0278, ** denotes P ≤ 0.005. 
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and specificity of available antibodies is incubation with a biotinylated secondary antibody 

followed by streptavidin-conjugated tertiary antibody. Additionally, attempts to use these 

antibodies for immunofluorescence to assess for target kinase knockdown using staining 

conditions for BRCA1 have proven difficult as well. However, optimization of staining 

conditions for each individual antibody may help resolve this issue. 
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CHAPTER IV 

EVALUATE THE EFFECT OF KINASE KNOCKDOWN ON THE 

ABILITY OF CELLS TO RESPOND TO DNA DAMAGE 

 

Introduction 

Kinases play a significant role in the regulation of cellular responses within various 

signaling pathways, such as DNA damage repair and cell cycle checkpoints. For example, the 

protein kinase A (PKA) pathway plays a role in the constitutive expression of BRCA1 via CREB 

(Ghosh et al., 2008). Furthermore, dysregulation of kinases, such as those in the PI3K, EGFR, 

and ErbB2 pathways, is prevalent in many cancers, including breast cancer (Bader et al., 2005; 

Nicholson et al., 2001). Additionally, mutations in ATM and CHK2 lead to increased breast 

cancer susceptibility (Ahmed and Rahman, 2006; Weischer et al., 2007). As mentioned in the 

Introduction, both ATM and CHK2 are involved in the phosphorylation of BRCA1 to mediate 

DSB repair (Cortez et al., 1999; Zhang et al., 2004). As the signaling pathways that connect 

these kinases to BRCA1 expression and function are being elucidated, bioinformatics suggest 

other potential kinase involvement in the regulation of BRCA1 expression and function. There 

are regulatory elements within the BRCA1 promoter that have been shown to bind specific 

transcription factors (Atlas et al., 2001; Atlas et al., 2000; Baker et al., 2003; Gilbert et al., 2010; 

Jeffy et al., 2005), but events upstream involving kinases have not yet been fully described. 

Additionally, there are phosphorylation sites in BRCA1 that do not have an associated kinase. 

DNA damage repair is a critical BRCA1 function in maintaining genomic stability and 

preventing tumorigenesis (Jasin, 2002; Khanna and Jackson, 2001; van Gent et al., 2001). The 

role of BRCA1 in the DNA damage pathway provided a model for our cell-based functional 
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assay to identify kinase regulators of BRCA1 expression and function from a kinase siRNA 

library screen. Fourteen kinases have been identified and validated where the associated siRNAs 

consistently diminished BRCA1 IRIF formation following exposure to IR. Previous chapters 

have outlined the process by which these kinases were identified and validated. This chapter 

evaluates the effect of siRNA-mediated knockdown of these kinases on the ability of cells to 

repair DNA damage and continue to survive. DSBs are generated with IR and can be repaired by 

either the error-free homologous recombination (HR) or the error-prone non-homologous end-

joining (NHEJ). Studies involving the colocalization of BRCA1 and Rad51, an important 

component in HR, within nuclear foci suggest that BRCA1 is involved in HR (Baumann et al., 

1996; Scully et al., 1997). Additionally, BRCA1 has been shown to interact with MRN, which 

participates in both HR and NHEJ, to form nuclear foci that are distinct from Rad51 (Zhong et 

al., 1999). The efficiency of repair of both mechanisms was evaluated using an established DSB 

repair assay that involves the use of an I-SceI repair reporter plasmid (DR-GFP) and an I-SceI 

expression plasmid (pCBASce) (Nakanishi et al., 2005) (We thank Maria Jasin, PhD at 

Memorial Sloan-Kettering Cancer Center for providing these plasmids). A clonogenic survival 

assay was used to measure the ability of a single cell to proliferate and form a colony of at least 

50 cells following chemical transfection of the Neg, BRCA1, and kinase siRNAs and treatment 

with IR. Findings from the repair assay demonstrated the cell repair capacity by HDR and NHEJ 

while the clonogenic assay demonstrated the role of siRNA-mediated knockdown of the kinase 

in determining sensitivity to IR. 
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Materials and Methods 

DSB Repair Assay: The repair assay involved the use of an I-SceI repair reporter plasmid (DR-

GFP) and an I-SceI expression plasmid (pCBASce). MCF7 and HeLa (immortal cell line derived 

from cervical cancer cells) cells were transfected with DR-GFP DNA by electroporation (4 μg 

DNA into 4x105 cells) and selected in puromycin (15 μg/ml for MCF7 cells and 2 μg/ml for 

HeLa cells) for 3 weeks at 37°C in 5% CO2. To test the effect of siRNA-mediated knockdown of 

a kinase on HR and NHEJ, DR-GFP-expressing MCF7 or HeLa cells were transfected with 

siRNA targeting the kinase regulator by chemical transfection with RNAiMAX as previously 

described in Chapter 2. The same three siRNAs for each kinase from the primary screen and 

secondary validation were evaluated. After 48 hours, these cells were transfected with either I-

SceI expression plasmid pCBASce or mock vector pCAGGS by electroporation (4 μg DNA into 

4x105 cells) using the using the Nucleofector 96-well Shuttle System, Program 96-EN-130 

(Amaxa) as previously described in Chapter 2. To determine the amount of repair by HR, the 

percentage of GFP+ cells was quantitated by flow cytometric analysis on the Becton Dickinson 

FACS Calibur 3 days after electroporation. An average % GFP+ cells was calculated and a t test 

was performed using GraphPad Prism 5 (GraphPad Software) to determine whether the change 

in % GFP+ cells was statistically significant. 

Genomic DNA was isolated 3 days after electroporation using the DNeasy Blood and 

Tissue Kit from Qiagen and used as the template for PCR with the following primers: DRGFP-F, 

5’-CTGCTAACCATGTTCATGCC-3’; DRGFP-R, 5’-AAGTCGTGCTGCTTATGTG-3’. PCR 

conditions were 1 cycle for 1 min at 94°C for initial denaturation; 35 cycles for 20 s at 94°C for 

denaturation, then 40 s at 54°C for annealing, and 40 s at 72°C for extension; and 1 cycle for 7 

min at 72°C for final extension. PCR products were purified using the QIAquick PCR 
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Purification Kit (Qiagen) and then digested with I-SceI (described below). The products by 

digest with I-SceI were purified using the QIAquick PCR Purification Kit (Qiagen) and then a 

half volume of the products was digested with BcgI (described below). The products by digest 

with both I-SceI and BcgI were purified using the QIAquick PCR Purification Kit (Qiagen) and 

then the products digested with I-SceI alone and both I-SceI and BcgI were separated on a 1.2% 

agarose gel in 1X TAE (40 mM Tris-acetate, 1 mM EDTA). The gel was stained with ethidium 

bromide and the ethidium signals were quantified using the UVP imaging center. 

 

Extraction of Genomic DNA: gDNA was extracted using the DNeasy Blood and Tissue Kit 

(Qiagen). Cells were centrifuged for 5 min at 300xg in an Eppendorf 5415 D microcentrifuge 

(Westbury, New York). The pellet was resuspended in 200 μl PBS. 20 μl proteinase K and 4 μl 

RNase A (100 mg/ml) were then added and incubated for 2 min at RT. 200 μl Buffer AL was 

added, mixed thoroughly by vortexing and incubated at 56°C for 10 min. 200 μl ethanol was then 

added to each sample and mixed thoroughly by vortexing. The mixture was transferred to a 

DNeasy Mini spin column and centrifuged at ≥  6000xg for 1 min. Flow-through and collection 

tube were discarded. 500 μl Buffer AW1 was then added and centrifuged for 1 min at ≥ 6000xg. 

Again the flow-through and collection tube were discarded. 500 μl Buffer AW2 was added and 

centrifuged for 3 min at full speed (16,100xg) dry the DNeasy membrane. Flow-through and 

collection tube were discarded. The DNeasy Mini spin column was placed in a 1.5 ml Eppendorf 

tube, 100 μl Buffer AE was pipetted directly onto the DNeasy membrane, incubated at RT for 1 

min, and then centrifuged for 1 min at ≥ 6000xg to elute the DNA. 
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I-SceI and BcgI Restriction Enzyme Digest: The amplified fragment of DSB repair products was 

digested with 10 units of I-SceI (2 μl of 5,000 units/ml) (New England BioLabs, Ipswich, MA) 

in 5 μl NEBuffer I-SceI (10X) plus 0.5 μl of BSA (100X) in a total reaction volume of 50 μl for 

16 h at 37°C and then heat inactivated at 65°C for 20 min. A half volume of the products was 

then digested with 20 units of BcgI (10 μl of 2,000 units/ml) (New England BioLabs) in 10 μl 

NEBuffer 3 (10X) supplemented with 20 μM S-adenosylmethionine (SAM) (2 μl of 1 mM 

SAM) in a total reaction volume of 100 μl for 4 h at 37°C and then heat inactivated at 65°C for 

20 min. 

 

Purification of PCR Products: PCR products were purified using the QIAquick PCR Purification 

Kit (Qiagen). 5 volumes of Buffer PB were added to 1 volume of the PCR sample and mixed. 

The sample was transferred to a QIAquick spin column and centrifuged for 1 min at full speed 

(16,100xg). Flow-through was discarded. 750 μl Buffer PE was added to wash the QIAquick 

spin column membrane and centrifuged for 1 min at full speed (16,100xg). Flow-through was 

again discarded. The column was centrifuged for an additional 1 min to remove residual Buffer 

PE. The QIAquick column was then placed in a 1.5 ml Eppendorf tube and the DNA was eluted 

by adding 30 μl Buffer EB, letting the column stand for 1 min, and then centrifuging for 1 min at 

full speed (16,100xg). 

 

Clonogenic Assay: The protocol for reverse transfection of MCF7 cells with RNAiMAX and 

kinase siRNAs was described in Chapter 2. Twenty-four hours post-transfection, cells were 

trypsinized, passed through a 40 μm strainer, and counted using the ViCell (Beckman Coulter, 

Brea, CA). 3,000 viable cells were plated per dish in the desired number of 60 mm dishes (6 
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dishes per siRNA to assess for dose-dependent response to IR) and incubated at 37°C in 5% 

CO2. The next day, cells were irradiated with 0, 1, 2, 4, 6, or 8 Gy of IR from a 137Cs source and 

incubated at 37°C in 5% CO2 for 10 days. The media was not changed during those 10 days. 

After 10 days, the medium was aspirated from each dish. Cells were washed once with PBS and 

then fixed with 100% methanol for 5 min at RT. The methanol was aspirated from each dish and 

the methanol fixation was repeated. The methanol was aspirated and the dishes were allowed to 

dry at RT. Colonies were stained with 2 ml of 1% crystal violet (in ddH2O) for 5 min at RT then 

washed twice with ddH2O and allowed to dry at RT. Each dish was then imaged upside-down on 

the white table (Coomassie setting) of the UVP (Upland, CA) imaging center. Each TIF file was 

opened in ImageJ (public domain, Java-based image processing program developed at the 

National Institutes of Health) and converted to an 8-bit grayscale image. Threshold was set 

equally for each image and the “Analyze Particles” program was used. Relative survival was 

calculated in Excel by comparing the number of colonies at 1, 2, 4, 6, and 8 Gy to the number of 

colonies at 0 Gy for each siRNA. Percent survival was plotted in GraphPad Prism 5 (GraphPad 

Software, San Diego, CA) and a t test was employed to determine statistical significance. 

 

Results and Discussion 

DSB Repair Assay to Assess DNA Repair Capacity: MCF7 and HeLa cell lines were established 

with an integrated copy of the DR-GFP reporter plasmid, which is composed of two inactive 

alleles of GFP, SceGFP and iGFP, separated by a puromycin resistance marker with various 

cleavage sites for SalI, HindIII, I-SceI, and BcgI (Figure 1). The SceGFP contains the 18-bp 

recognition site for the I-SceI endonuclease. Transfection by electroporation of the I-SceI 

expression vector pCBASce leads to expression of the I-SceI endonuclease, which generates a
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DSB at the I-SceI site in the SceGFP gene. The DSB can be repaired by either homology-

directed repair (HDR) or non-homologous end joining (NHEJ). HDR is an error-free mechanism 

of repair in which the broken ends use a homologous sequence elsewhere in the genome as a 

template to mediate repair synthesis while NHEJ is an error-prone mechanism of repair that 

modifies and rejoins the ends (Shrivastav et al., 2008) (Figure 1). Repair of the DSB by HDR is 

directed by the homologous downstream iGFP repeat to restore an intact GFP with loss of the I-

SceI site and introduction of a BcgI site. Repair by HDR can be directly assessed by flow 

cytometric analysis for GFP+ cells. Repair of the DSB by NHEJ also results in loss of the I-SceI 

site but does not produce a functional GFP or a BcgI site. Total repair capacity can be assessed 

by digest of PCR-amplified repair products with I-SceI alone. The contribution of repair by 

NHEJ can be directly assessed by digest of PCR-amplified repair products with both I-SceI and 

BcgI. 

To determine whether the identified kinases play a role in HDR and NHEJ, siRNA-

mediated knockdown of MAP3K1, FGFR2, and HCK in HeLa cells stably expressing the DR-

GFP reporter plasmid was performed by chemical transfection as previously described. After 48 

h, these siRNA-treated cells were transfected by electroporation with either the I-SceI expression 

vector pCBASce (+I-SceI) or the mock control vector pCAGGS (-I-SceI) using the Amaxa 

nucleofection system as previously described. Following an additional 72 h, each sample was 

split for either flow cytometric analysis or digest of PCR-amplified repair products with I-SceI 

alone or I-SceI and BcgI (Figure 2). 

Repair by HDR was more robust in HeLa cells (26.7 ± 0.3% GFP+ cells) compared to 

MCF7 cells (0.84% GFP+ cells) (Figure 3), so subsequent repair analyses were completed in 

HeLa cells. HeLa cells have frequently been used to study BRCA1 expression and function and 
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Figure 2: Schematic of the DSB repair assay workflow. Following chemical transfection of 

kinase siRNA and electroporation of either I-SceI expression vector or control vector, each 

sample was split for either flow cytometric analysis or I-SceI and BcgI digests of PCR-amplified 

repair products. Digest of PCR-amplified repair products with I-SceI alone represents total repair 

capacity. Digest of PCR-amplified repair products with both I-SceI and BcgI indicates the 

contribution to total repair by NHEJ. Flow cytometric analysis for GFP+ cells shows repair of 

DSB by HDR. 
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HDR repair 
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Figure 3: Efficiency of HDR in HeLa cells compared to MCF7 cells. A representative flow 

cytometric analysis is shown for HDR events comparing HeLa and MCF7 cells following 

cleavage of the I-SceI endonuclease site within the SceGFP portion of the GFP gene and 

subsequent repair by HDR directed by the downstream iGFP portion of the GFP gene. The GFP+ 

population shifts greenward to separate from the GFP- population. 

0% 0.84%

HeLa HeLa

MCF7 MCF7

0% 26.7%
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have proven easier to use experimentally. The expression of each of the target kinases has not 

been quantified at the protein level in HeLa cells, so further Western blot analysis should be 

done to establish the extent of knockdown of each of the target kinases. Based on microarray 

data from Oncomine (www.oncomine.org, Compendia Bioscience, Ann Arbor, MI), HeLa cells 

appear to express BRCA1, MAP3K1, HCK, and FGFR2. 

To determine total repair capacity and the contribution of repair by NHEJ, DSB repair 

products were analyzed using the described PCR assay. The genomic region surrounding the I-

SceI site after expression of I-SceI endonuclease was amplified with PCR primers that included 

DSB repair products from both HDR and NHEJ. Two bands can be visualized by ethidium 

bromide-stained agarose gel electrophoresis when the PCR-amplified DSB repair products are 

digested by either I-SceI alone or I-SceI and BcgI. The 0.65-kb band represents the uncut 

fraction while the 0.5-kb band represents the cut fraction. The percentage uncut is the ratio of the 

0.65-kb band density to the total band density (0.65-kb + 0.5-kb band densities). To determine 

how much of the amplified fragment underwent repair (total repair), the DSB repair products 

were cleaved with I-SceI alone. The uncut fraction represents total repaired products, which 

would remain uncleaved by digest with I-SceI because expression of the I-SceI endonuclease 

produces a DSB that is subsequently repaired with loss of the I-SceI cleavage site. The uncut 

fraction following digest with BcgI again represents repair by NHEJ because BcgI cleaves repair 

products from HDR. To determine how much of the amplified fragment underwent NHEJ, the 

DSB repair products were cleaved with both I-SceI and BcgI. NHEJ repair products are resistant 

to both digest with I-SceI and BcgI because expression of the I-SceI endonuclease results in 

cleavage at the I-SceI restriction site, thereby eliminating the I-SceI restriction site, and repair by 

NHEJ does not create a BcgI restriction site like repair by HDR. The cut fraction could represent 
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cells that were not successfully transfected by electroporation with pCBASce and therefore 

would be cleaved by digest with I-SceI. Another explanation could be that cells unable to repair 

by any mechanism may undergo apoptosis resulting in a greater contribution of the cut fraction 

to the total fraction. 

Initially, the effect of siRNA-mediated knockdown of BRCA1 on DNA repair capacity was 

evaluated. The control siRNA used for comparison was Neg siRNA. The repair assay-specific 

control for the I-SceI expression vector (+I-SceI) was the mock vector pCAGGS (-I-SceI). In -I-

SceI cells with Neg siRNA, the amplified fragment was completely cleaved by digest with I-SceI 

because no I-SceI endonuclease was expressed and the I-SceI cleavage site was left intact 

(Figures 4-6). The same outcome was observed when the amplified fragment was digested with 

BcgI (Figures 7-9). Digest with BcgI of -I-SceI cells should have no effect on the percentage 

uncut because there was neither expression of the I-SceI endonuclease nor generation of a DSB, 

so no repair was initiated and no BcgI site was introduced. This was confirmed by flow 

cytometric analysis of -I-SceI cells with Neg, BRCA1, MAP3K1, FGFR2, and HCK siRNAs 

where few if any GFP+ cells were detected (Figures 10-12). The +I-SceI cells with Neg siRNA 

established the baseline for total repair and repair by NHEJ. There were 63.9 ± 3.0% of repair 

products uncut by I-SceI (Figures 4-6) and 41.8 ± 4.7% of repair products uncut by I-SceI and 

BcgI (Figures 7-9). The amplified fragment was digestible with BcgI because the percentage 

uncut was less when the amplified fragment was digested with both I-SceI and BcgI (41.8 ± 

4.7%) compared to when the amplified fragment was digested with I-SceI alone (63.9 ± 3.0%), 

suggesting a contribution of the homologous repair product (i.e., cleavable by BcgI) to total 

repair. This was confirmed by flow cytometric analysis for GFP+ cells, which resulted in 

approximately 26.7 ± 0.3% GFP+ cells (Figures 10-12). Conversely, in +I-SceI cells with 
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Figure 4: HeLa cells with stably integrated DR-GFP have decreased total repair capacity 

following siRNA-mediated knockdown of MAP3K1. Repair assay in HeLa cells first transfected 

by chemical transfection with RNaiMAX and either Neg, BRCA1, or three individual siRNAs 

targeting MAP3K1 and then transfected by electroporation with either mock vector pCAGGS (-

I-SceI) or I-SceI expression vector pCBASce (+I-SceI). Panel A depicts representative images of 

the amplified products digested with I-SceI alone. Panel B quantifies the PCR results from cells 

transfected with the I-SceI expression vector and digested with I-SceI alone following siRNA-

mediated knockdown of MAP3K1. Data are presented as an average of three siRNAs ± standard 

error (n=2). * denotes P = 0.0221, ** denotes P = 0.0005. 
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Figure 5: HeLa cells with stably integrated DR-GFP have decreased total repair capacity 

following siRNA-mediated knockdown of FGFR2. Repair assay in HeLa cells first transfected 

by chemical transfection with RNaiMAX and either Neg, BRCA1, or three individual siRNAs 

targeting FGFR2 and then transfected by electroporation with either mock vector pCAGGS (-I-

SceI) or I-SceI expression vector pCBASce (+I-SceI). Panel A depicts representative images of 

the amplified products digested with I-SceI alone. Panel B quantifies the PCR results from cells 

transfected with the I-SceI expression vector and digested with I-SceI alone following siRNA-

mediated knockdown of FGFR2. Data are presented as an average of three siRNAs ± standard 

error (n=2). * denotes P = 0.0230, ** denotes P = 0.0005.  
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Figure 6: HeLa cells with stably integrated DR-GFP have decreased total repair capacity 

following siRNA-mediated knockdown of HCK. Repair assay in HeLa cells first transfected by 

chemical transfection with RNaiMAX and either Neg, BRCA1, or three individual siRNAs 

targeting HCK and then transfected by electroporation with either mock vector pCAGGS (-I-

SceI) or I-SceI expression vector pCBASce (+I-SceI). Panel A depicts representative images of 

the amplified products digested with I-SceI alone. Panel B quantifies the PCR results from cells 

transfected with the I-SceI expression vector and digested with I-SceI alone following siRNA-

mediated knockdown of HCK. Data are presented as an average of three siRNAs ± standard error 

(n=2). * denotes P = 0.0101, ** denotes P = 0.0005.  
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Figure 7: HeLa cells with stably integrated DR-GFP have normal levels of NHEJ following 

siRNA-mediated knockdown of MAP3K1. Repair assay in HeLa cells first transfected by 

chemical transfection with RNaiMAX and either Neg, BRCA1, or three individual siRNAs 

targeting MAP3K1 and then transfected by electroporation with either mock vector pCAGGS (-

I-SceI) or I-SceI expression vector pCBASce (+I-SceI). Panel A depicts representative images of 

the amplified products digested with I-SceI and BcgI. Panel C quantifies the PCR results from 

cells transfected with the I-SceI expression vector and digested with I-SceI and BcgI following 

siRNA-mediated knockdown of MAP3K1. Data are presented as an average of three siRNAs ± 

standard error (n=2). 
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Figure 8: HeLa cells with stably integrated DR-GFP have normal levels of NHEJ following 

siRNA-mediated knockdown of FGFR2. Repair assay in HeLa cells first transfected by chemical 

transfection with RNaiMAX and either Neg, BRCA1, or three individual siRNAs targeting 

FGFR2 and then transfected by electroporation with either mock vector pCAGGS (-I-SceI) or I-

SceI expression vector pCBASce (+I-SceI). Panel A depicts representative images of the 

amplified products digested with I-SceI and BcgI. Panel C quantifies the PCR results from cells 

transfected with the I-SceI expression vector and digested with I-SceI and BcgI following 

siRNA-mediated knockdown of FGFR2. Data are presented as an average of three siRNAs ± 

standard error (n=2). 
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Figure 9: HeLa cells with stably integrated DR-GFP have normal levels of NHEJ following 

siRNA-mediated knockdown of HCK. Repair assay in HeLa cells first transfected by chemical 

transfection with RNaiMAX and either Neg, BRCA1, or three individual siRNAs targeting HCK 

and then transfected by electroporation with either mock vector pCAGGS (-I-SceI) or I-SceI 

expression vector pCBASce (+I-SceI). Panel A depicts representative images of the amplified 

products digested with I-SceI and BcgI. Panel C quantifies the PCR results from cells transfected 

with the I-SceI expression vector and digested with I-SceI and BcgI following siRNA-mediated 

knockdown of HCK. Data are presented as an average of three siRNAs ± standard error (n=2). 
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Figure 10: HDR is compromised in HeLa cells stably expressing DR-GFP following siRNA-

mediated knockdown of MAP3K1 and expression of the I-SceI expression vector. Repair assay 

in HeLa cells first transfected by chemical transfection with RNaiMAX and either Neg, BRCA1, 

or three individual siRNAs targeting MAP3K1 and then transfected by electroporation with 

either mock vector pCAGGS (-I-SceI) or I-SceI expression vector pCBASce (+I-SceI). Panel A 

shows a representative flow cytometric analysis for HDR events following cleavage of the I-SceI 

endonuclease site within the SceGFP portion of the GFP gene and subsequent repair by HDR 

directed by the downstream iGFP portion of the GFP gene. The GFP+ population shifts 

greenward to separate from the GFP- population. Panel B quantifies results from Panel A as 

average percent GFP+ cells ± standard error (n=2). * denotes P < 0.0001. 
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Figure 11: HDR is compromised in HeLa cells stably expressing DR-GFP following siRNA-

mediated knockdown of FGFR2 and expression of the I-SceI expression vector. Repair assay in 

HeLa cells first transfected by chemical transfection with RNaiMAX and either Neg, BRCA1, or 

three individual siRNAs targeting FGFR2 and then transfected by electroporation with either 

mock vector pCAGGS (-I-SceI) or I-SceI expression vector pCBASce (+I-SceI). Panel A shows 

a representative flow cytometric analysis for HDR events following cleavage of the I-SceI 

endonuclease site within the SceGFP portion of the GFP gene and subsequent repair by HDR 

directed by the downstream iGFP portion of the GFP gene. The GFP+ population shifts 

greenward to separate from the GFP- population. Panel B quantifies results from Panel A as 

average percent GFP+ cells ± standard error (n=2). * denotes P < 0.0001. 
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Figure 12: HDR is compromised in HeLa cells stably expressing DR-GFP following siRNA-

mediated knockdown of HCK and expression of the I-SceI expression vector. Repair assay in 

HeLa cells first transfected by chemical transfection with RNaiMAX and either Neg, BRCA1, or 

three individual siRNAs targeting HCK and then transfected by electroporation with either mock 

vector pCAGGS (-I-SceI) or I-SceI expression vector pCBASce (+I-SceI). Panel A shows a 

representative flow cytometric analysis for HDR events following cleavage of the I-SceI 

endonuclease site within the SceGFP portion of the GFP gene and subsequent repair by HDR 

directed by the downstream iGFP portion of the GFP gene. The GFP+ population shifts 

greenward to separate from the GFP- population. Panel B quantifies results from Panel A as 

average percent GFP+ cells ± standard error (n=2). * denotes P < 0.0001. 
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BRCA1 siRNA, there was a lower amount of repair products uncut by I-SceI (26.6 ± 2.0% 

compared to 63.9 ± 3.0%) (Figures 5-7). The amount of repair products uncut by I-SceI and 

BcgI was 26.7 ± 6.3% (Figures 8-10), suggesting that the repair products were a result of repair 

by NHEJ and that repair by NHEJ was not affected because the percentage uncut following 

digest with I-SceI and BcgI was similar to the percentage uncut following digest with I-SceI 

alone. This indirectly proposed that the decrease in total repair products was due to a decrease in 

repair by HDR, which was confirmed by flow cytometric analysis. The +I-SceI cells with 

BRCA1 siRNA resulted in 4.2 ± 0.2% GFP+ cells, about a 6.4-fold decrease in GFP+ cells 

compared the +I-SceI cells with Neg siRNA (Figures 11-13). These results show that the role of 

BRCA1 is critical in HDR. 

Three kinases, MAP3K1, FGFR2, and HCK, were evaluated using the DSB repair assay. 

The same three siRNAs for each kinase from both the primary screen and secondary validation 

were used. The Neg siRNA served as the negative control and the BRCA1 siRNA served as the 

positive control. The mock vector pCAGGS (-I-SceI) served as the control for the I-SceI 

expression vector pCBASce (+I-SceI) in the DSB repair assay. In +I-SceI cells with MAP3K1, 

FGFR2, and HCK siRNAs, there was a lower amount of repair products uncut by I-SceI (40.7 ± 

5.2% for MAP3K1, 34.1 ± 6.9% for FGFR2, and 35.4 ± 5.5% for HCK compared to 63.9 ± 3.0% 

for Neg), analogous to that of BRCA1 siRNA (Figure 5-7). The amount of repair products uncut 

by I-SceI and BcgI was 38.1 ± 9.1% for MAP3K1, 31.3 ± 5.3% for FGFR2, and 32.6 ± 2.1% for 

HCK (Figures 8-10), suggesting that the repair products were a result of repair by NHEJ and 

that repair by NHEJ was not affected because the percentage uncut following digest with I-SceI 

and BcgI was similar to the percentage uncut following digest with I-SceI alone, which was also 

the case with BRCA1 siRNA. The contribution of HDR to total repair was confirmed by flow 
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cytometric analysis. The +I-SceI cells with each of the three MAP3K1 siRNAs resulted in 7.2 ± 

0.2%, 15.9 ± 0.8%, and 16.3 ± 0.9% GFP+ cells (Figure 10). The average % GFP+ cells of the 

three MAP3K1 siRNAs was 13.5 ± 1.1%, about a 2-fold decrease in GFP+ cells compared to the 

Neg control siRNA. Similar results were obtained for FGFR2 and HCK. The +I-SceI cells with 

each of the three FGFR2 siRNAs resulted in 9.4 ± 0.3%, 7.4 ± 0.4%, and 15.3 ± 0.4% GFP+ 

cells (Figure 11). The average % GFP+ cells of the three FGFR2 siRNAs was 10.9 ± 0.9%. The 

+I-SceI cells with each of the three HCK siRNAs resulted in 4.2 ± 0.3%, 14.7 ± 1.1%, and 9.8 ± 

0.3% GFP+ cells (Figure 12). The average % GFP+ cells of the three HCK siRNAs was 10.7 ± 

1.1%, about a 2.5-fold decrease in GFP+ cells compared to the Neg control siRNA. These results 

show that MAP3K1, FGFR2, and HCK play a role in HDR. 

HR and NHEJ analysis using the DR-GFP system provided valuable information 

regarding the nature and capacity of repair; however, it is labor-intensive and time-consuming. 

An alternative approach to evaluating the effect of regulatory kinase knockdown on repair of 

DSBs may be a kinetics study to monitor the disappearance of γH2AX foci following 

transfection of kinase siRNA by chemical transfection and exposure to 10 Gy IR. H2AX is 

quickly phosphorylated (γH2AX) at sites of DSBs and is believed to be retained until the damage 

is repaired. Therefore, if cells exhibit higher numbers of γH2AX foci compared to control at the 

same time point, it indicates that DSB repair is impaired. Likewise, if the cells exhibit lower 

numbers of γH2AX compared to control at the same time point, it indicates that DSB repair is 

augmented. However, this method cannot distinguish repair by HR or NHEJ. 

 

Clonogenic Assay to Assess Sensitivity to Ionizing Radiation: To determine whether siRNA-

mediated knockdown of the kinases alters the ability of cells to form colonies, the clonogenic 
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assay was used to assess cell survival following exposure to IR (Figure 13). As the dose of IR 

was increased, the percent of cells able to form colonies diminished, which indicated that fewer 

cells were able to repair the damage and continue proliferating. When a cell is exposed to IR, 

SSBs and DSBs are generated. Increasing the dose of IR increases the number of DSBs 

generated because a sufficient number of SSBs occur in the same region to generate a DSB. 

Cells that were transfected by chemical transfection with Neg siRNA set the baseline for 

comparison at each of the IR doses. Cells that were transfected with BRCA1 siRNA 

demonstrated a statistically significant decrease in the percent of cells able to form colonies at 2, 

4, and 6 Gy. Similar results were seen with siRNA-mediated knockdown of HCK (Figure 14). 

Preliminary results with siRNA-mediated knockdown of MAP3K1 and FGFR2 do not appear to 

affect survival following exposure to increasing doses of IR (Figures 15 and 16), but more 

replicates will need to be done to assess statistical significance. 

DNA damage sensors such as BASC and DNA-PK recognize these regions of damage 

and initiate a cascade of events that recruit mediators such as BRCA1 to sites of damage, which 

then acts as a central scaffold to facilitate the localization of effectors such as MRN to remove 

DNA from the 5’ end of the break in a process called resection and Rad51 to direct strand 

invasion of the overhanging 3’ end into a homologous chromosome in the case of HDR 

(Baumann et al., 1996; Bekker-Jensen et al., 2006; Wang et al., 2000; Zhong et al., 1999). The 

DNA damage pathway also activates cell cycle checkpoints (Iliakis et al., 2003; Zhou and 

Elledge, 2000) to ensure that a cell with a modification in its DNA does not undergo division 

until it can be repaired. And if the damage cannot be repaired, then the cell undergoes apoptosis, 

or programmed cell death, to ensure the integrity of the DNA. Cells that were transfected with 

Neg siRNA have functional BRCA1 and therefore an intact DNA damage repair pathway. These 
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Figure 13: Schematic of the clonogenic assay workflow. Twenty-four hours following reverse 

transfection of MCF7 cells with RNAiMAX and either Neg, BRCA1, or kinase siRNAs, cells 

were trypsinized and counted before 3,000 viable cells were plated per 60 mm dish for a total of 

six dishes per siRNA. The six dishes correspond to the six different doses of IR to which the 

cells were exposed 24 h after plating. After 10 days of incubation, colonies were stained, imaged, 

and quantified. 

siRNA-mediated knockdown of kinase
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cells are more capable of repairing the damage, which alleviates the arrest in cell cycle 

progression and allows the cells to continue proliferating to form colonies. Cells that were 

transfected with either BRCA1 siRNA, which diminishes expression of BRCA1 protein and 

subsequent participation in the DNA damage pathway, or kinase siRNAs, which either diminish 

the ability of BRCA1 to be expressed or to function in the DNA damage pathway, are more 

likely to be maintained in a cell cycle arrest or to have received the signal to undergo apoptosis 

and therefore cannot continue proliferating to form colonies.  

 Since single cells were plated at such a low density, the ability of each cell to form 

colonies was more easily distinguished. Each colony generated had a defined border that was not 

impacted by any neighboring colonies. The images were taken using the UVP imaging system 

under the same parameters of positioning, magnification, and exposure time. Use of the ImageJ 

software to differentiate and count the number of colonies based on the same signal threshold 

values as well as range of size and circularity of colonies eliminated the subjective nature of 

counting colonies. 

 

Conclusions 

siRNA-mediated knockdown of MAP3K1, HCK, and FGFR2 diminished the ability of 

BRCA1 to facilitate repair of DSBs by HDR as shown by the results of the repair assay. Only 

siRNA-mediated knockdown of HCK sensitized the cells to increasing doses of IR, which 

prevented the cells from proliferating to form colonies as seen by the results of the clonogenic 

assay. 

 

 

172



CHAPTER V 

SIGNIFICANCE AND PERSPECTIVE 

 

Potential Role of Lead Kinases in Regulating BRCA1 Expression and Function 

The primary screen identified thirty-two potential kinase regulators of BRCA1 expression 

and function, of which fourteen kinases were validated. siRNA-mediated knockdown of these 

fourteen kinases consistently demonstrated significant diminishment of BRCA1 IRIF formation 

following exposure to IR. Of the fourteen kinases, siRNA-mediated knockdown of MAP3K1, 

HCK, FGFR2, PIK4CA, and PLK3 were assessed for their effect on BRCA1 mRNA levels. 

siRNA-mediated knockdown of MAP3K1, HCK, and FGFR2 were also assessed for their effect 

on BRCA1 and target kinase protein levels. The effect of kinase siRNA-mediated knockdown on 

BRCA1 mRNA and protein levels can help determine the level at which BRCA1 is regulated. 

Additionally, siRNA-mediated knockdown of MAP3K1, HCK, and FGFR2 were further 

characterized for their ability to repair DNA damage using a DSB repair assay and their ability to 

proliferate following DNA damage induced by IR using a clonogenic assay. Each of these lead 

kinases can serve as a starting point to evaluate whether its role in existing pathways affects 

BRCA1. siRNAs can be used to selectively target each step of the identified pathway to 

determine whether knockdown of that component will recapitulate the phenotype previously 

observed with an siRNA targeting the kinase. A better understanding of the molecular 

mechanism involving the regulatory kinase and BRCA1 will provide a framework for further 

analysis of therapeutic targets that can restore BRCA1 expression and tumor suppressor function. 

FGFR2 is a member of the fibroblast growth factor receptor family that activates the 

PLCγ, PI3K/AKT, and MAPK pathways (Dailey et al., 2005). MAP3K1 is a serine/threonine 
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kinase involved in the MAP kinase cascades that include ERK1/2, JNK/SAPK, and p38 

pathways (Pearson et al., 2001). Additionally, both FGFR2 and MAP3K1 were discovered using 

genome-wide association studies of SNPs to increase susceptibility to breast cancer (Easton et 

al., 2007; Hunter et al., 2007). siRNA-mediated knockdown of both FGFR2 and MAP3K1 

resulted in significant diminishment of BRCA1 IRIF formation without affecting BRCA1 

mRNA levels. Preliminary results from siRNA-mediated knockdown of MAP3K1 suggest that 

MAP3K1 affects BRCA1 at the protein level and that both MAP3K1 and BRCA1 expression are 

induced following IR More replicates are needed of BRCA1 protein levels following siRNA-

mediated knockdown of MAP3K1 for statistical significance. siRNA-mediated knockdown of 

FGFR2 decreased BRCA1 protein levels. Using Ingenuity Pathway Analysis (Ingenuity Systems, 

Redwood City, CA), FGFR2 has been shown to interact with Grb2, an adaptor protein that links 

cell surface growth factor receptors to the Ras signaling pathway (Lu et al., 2003). Additionally, 

the SH3 domain of Grb2 has been shown to associate with the proline-rich domain of MAP3K1 

(Pomerance et al., 1998). It has also been shown that there is a feedback regulatory loop between 

ERK1/2 and BRCA1 where BRCA1 regulates ERK1/2 activation following exposure to IR and 

ERK1/2 is required for induction of BRCA1 protein post-IR by inhibiting the proteasomal 

degradation of BRCA1 (Yan et al., 2008). By decreasing FGFR2 and MAP3K1, it is possible 

that ERK1/2 activation is impaired, which leads to proteasomal degradation of BRCA1 

following exposure to IR. Decreased BRCA1 protein levels lead to decreased BRCA1 IRIF 

formation and diminished repair capacity by HR as demonstrated by these studies. 

HCK is a member of the Src family of protein tyrosine kinases that was first shown to be 

expressed in cells of the myeloid and B-lymphoid lineage and then found to be involved in 

maintaining pluripotency of embryonic stem cells (Ernst et al., 1994; Meyn et al., 2005; Quintrell 
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et al., 1987; Ziegler et al., 1987). HCK exists as two isoforms (p61 and p59 in humans) due to 

alternative translational start sites (Lock et al., 1991). HCK, like other Src family kinases, 

possesses a tyrosine kinase catalytic domain as well as a Src-homology 2 (SH2) domain (binds 

phosphorylated tyrosine residues) and a Src-homology 3 (SH3) domain (binds proline-rich 

domains) that mediate intramolecular and intermolecular interactions important in signal 

transduction (Pawson, 1995; Sicheri et al., 1997) (Figure 1). HCK may have an indirect effect 

on BRCA1 expression by transducing signals from surface receptors through internal signaling 

pathways to the nucleus. HCK has been shown to localize to the nucleus (Paliwal et al., 2007), so 

it may also be possible that HCK can directly interact with BRCA1 to affect its function. It is 

possible that HCK may regulate BRCA1 function in a kinase-dependent or independent manner. 

siRNA-mediated knockdown of HCK decreased BRCA1 mRNA levels, but this decrease does 

not completely account for the reduction seen with either BRCA1 protein or BRCA1 IRIF 

formation. Potentially, this could be due to the role of HCK in activating STAT3 and/or STAT5 

(Klejman et al., 2002; Schreiner et al., 2002). STAT3 has been shown to induce cyclins D2 and 

D3, which binds to CDK4 and CDK6 to mediate early to late G1 transition, as well as cyclin A, 

which binds to CDK2 to mediate the G1 to S phase transition (Fukada et al., 1998). Additionally, 

STAT3 is involved in downregulation of CDK inhibitors p21 and p27 (Fukada et al., 1998). 

STAT5 has been shown to participate in an enhancer complex with Sp1 to induce cyclin D2 

(Martino et al., 2001). Cyclin-CDK complex formation may be affected by siRNA-mediated 

knockdown of HCK and thus prevent Rb phosphorylation and release of E2F (Weinberg, 1995). 

The Rb-E2F complex has been shown to repress BRCA1 expression (Wang et al., 2000). Since 

both BRCA1 expression and phosphorylation are affected by cell cycle (Chen et al., 1996; Gudas 

et al., 1996; Thomas et al., 1997), the change in BRCA1 mRNA levels following siRNA-
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Figure 1: Schematic of the two isoforms of HCK. HCK exists as two isoforms due to alternative 

translational start sites. HCK contains a tyrosine kinase catalytic domain as well as a Src-

homology 2 (SH2) domain that binds phosphorylated tyrosine residues and a Src-homology 3 

(SH3) domain that binds proline-rich domains. Tyr527 is involved in an inhibitory 

intramolecular interaction with the SH2 domain while Tyr416 is involved in HCK activation 

(adapted from Hong et al., 2007). 

p59HCK

Tyr416 Tyr527

p61HCK

Tyr416 Tyr527
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mediated knockdown of HCK may be due to cell cycle alterations. To determine whether 

siRNA-mediated knockdown of HCK alters cell cycle, analysis by PI staining can be used to 

determine changes in the ratio of cells in G0/G1, S, and G2/M phases. Additionally, WB analysis 

of phosphorylated STAT3, phosphorylated STAT5, and cyclin D2 in siRNA-mediated 

knockdown of HCK can be compared to that of Neg control siRNA. Finally, the BRCA1 

promoter can be isolated by PCR and cloned upstream of the luciferase reporter (BRCA1-luc 

wt). A BRCA1-luc with mutations in the E2F sites would also be generated (BRCA1-luc E2F-). 

Cells would be transfected with either BRCA1-luc wt or BRCA1-luc E2F- to assess the effect of 

siRNA-mediated knockdown of HCK compared to that of the Neg control siRNA on the 

regulation of the BRCA1 promoter by the Rb-E2F pathway. 

siRNA-mediated knockdown of HCK led to decreased BRCA1 protein levels as well as 

decreased BRCA1 IRIF formation; however, a greater reduction in BRCA1 IRIF formation was 

noted than would be reflected by the change in BRCA1 protein levels. Additionally, siRNA-

mediated knockdown of HCK reduced DNA repair capacity by HR and led to radiosensitivity 

similar to siRNA-mediated knockdown of BRCA1. These results have demonstrated that HCK 

impacts BRCA1 in a complex manner. A link between reduced expression of HCK and reduced 

PI3K/AKT activity has been shown (Podar et al., 2004; Sagan et al., 2008). Additionally, 

reduced AKT activity led to radiosensitivity by impairing DNA repair in glioblastoma cells (Kao 

et al., 2007). Finally, phosphorylation of BRCA1 by AKT has been demonstrated in breast 

cancer cells (Altiok et al., 1999). These results suggest a potential pathway for post-translational 

regulation of BRCA1 by HCK via the PI3K/AKT pathway. WB analysis of phosphorylated AKT 

compared to total AKT following siRNA-mediated knockdown of HCK would determine 

whether HCK acts through the PI3K/AKT pathway. BRCA1 IRIF formation following siRNA-
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mediated knockdown of AKT and exposure to IR would determine whether AKT plays a role in 

the localization of BRCA1 to DSBs. Interestingly, AKT1 has been shown to inhibit BRCA1 IRIF 

formation as well as DNA repair in breast cancer cells by inducing cytoplasmic retention of 

BRCA1; however, DNA repair does not appear to depend on AKT phosphorylation of BRCA1 

(Plo et al., 2008). Another group has shown a novel AKT phosphorylation site in BRCA1 at 

S694 that promotes nuclear localization of BRCA1 and increases total BRCA1 protein 

expression by preventing proteasomal degradation (Nelson et al., 2010). Various experimental 

conditions differ between our studies, so it would be interesting to see whether our system would 

demonstrate this phenomenon. AKT has also been shown to activate CHK2, which affects both 

HR and NHEJ repair by BRCA1 (Anai et al., 2005; Zhang et al., 2004; Zhuang et al., 2006). WB 

analysis of phosphorylated CHK2 compared to total CHK2 following siRNA-mediated 

knockdown of HCK would determine whether HCK impacts BRCA1 and DNA damage repair 

via CHK2. One confounding observation was that HCK protein levels are not diminished 

anywhere near the level HCK mRNA levels are decreased. This suggests that either HCK protein 

is very stable and requires more time before the siRNA-mediated knockdown manifests at the 

protein level or the HCK polyclonal antibody may not be specific to HCK and may be reacting 

with other members of the Src family of protein tyrosine kinases that possess similar epitopes. 

HCK protein stability can be assessed by treating cells with cycloheximide to inhibit protein 

synthesis in a time-course experiment followed by Western blot of the cell lysates for HCK to 

establish protein half-life. Another method to assess protein stability is with metabolic labeling 

of cells with 35S-methionine in a pulse-chase assay. Cells incorporate the radioactively labeled 

amino acid into newly synthesized protein during the pulse phase. At various time points 

following the labeling, total protein can be extracted, immunoprecipitated for HCK, and SDS-
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PAGE-separated. The 35S-labeled HCK can be visualized by autoradiography to determine its 

decay over time while Western blot analysis for HCK can be used to determine total HCK 

protein expression. Additionally, other HCK antibodies can be evaluated, including monoclonal 

antibodies that do not cross-react with other Src family kinases such as Lyn and Fyn. 

 

Significance and Future Directions 

A screening assay has been developed that provides an opportunity to investigate BRCA1 

function with a genomic approach. A better understanding of the regulation of BRCA1 

expression and function can identify new druggable targets in the development of either a novel 

prevention or therapeutic agent for breast cancer patients. Expression of BRCA1 in non-cancer 

cells has been shown to have a protective effect against tumor development (Hoshino et al., 

2007), so the ability to modulate BRCA1 expression and function to normal levels would help 

prevent breast cancer. Tumors that lack functional BRCA1 tend to be of a basal-like phenotype, 

which is characterized by more undifferentiated tumors with an aggressive clinical behavior, 

resistance to chemotherapy, and increased risk of metastasis (Sorlie et al., 2001; Turner and 

Reis-Filho, 2006; Turner et al., 2007). Basal-like breast cancers (BLBCs) are almost uniformly 

triple-negative, meaning they lack ER, PR, and ErbB2/HER2; therefore, they do not respond to 

anti-estrogen or anti-HER2 therapies like that of luminal-type or HER2-overexpressing tumors, 

respectively. Conversely, tumors with functional BRCA1 are predominantly of the luminal type 

and are associated with more differentiated tumors that exhibit a more indolent clinical behavior, 

responsiveness to endocrine therapies, and improved survival (Yang et al., 2001). Therefore, the 

ability to modulate the expression of BRCA1 would enable differentiation of BLBCs to a more 

luminal phenotype. The critical role of BRCA1 in DNA damage repair maintains genomic 
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stability and prevents tumorigenesis. Likewise, recent studies of human breast and ovarian 

cancers in BRCA1 and BRCA2 mutation carriers have shown reversion mutations that restore the 

BRCA1 and BRCA2 reading frame, which enables resistance to agents that induce DSBs 

(Ashworth, 2008; Swisher et al., 2008). It would be interesting to test whether these resistant 

cells can be re-sensitized following downregulation of MAP3K1, HCK, or FGFR2.  

Future directions include assessing BRCA1 mRNA levels as well as BRCA1 and target 

kinase protein levels for the remaining lead kinases. Repair capacity and sensitivity to IR will 

also be assessed for these remaining lead kinases. To identify whether the kinases directly affect 

BRCA1, they can be further characterized using co-immunoprecipitation and an in vitro kinase 

assay. Cell extracts can be immunoprecipitated with an anti-BRCA1 antibody followed by 

immunoblotting with an anti-kinase antibody. The anti-BRCA1 antibody will pull down BRCA1 

and anything that is bound to it and the anti-kinase antibody will identify whether the interacting 

protein is the kinase. Likewise, cell extracts can be immunoprecipitated with an anti-kinase 

antibody and immunoblotted with an anti-BRCA1 antibody. The reverse setup will identify 

whether BRCA1 is bound to the isolated kinase. Demonstrating interaction both ways reinforces 

this relationship between BRCA1 and the kinase. For the in vitro kinase assay, a recombinant 

active kinase can be incubated with 32P-ATP and a recombinant BRCA1 in kinase buffer. 

Proteins can be separated by SDS-PAGE, and phosphorylation visualized by autoradiography. 

BRCA1 should be phosphorylated if it is a kinase substrate. It is possible that the interaction 

between the kinase and BRCA1 may either be too weak or too transient to be identified by 

immunoprecipitation. An alternative approach would be the label transfer assay. The kinase can 

be derivatized with the labeled cross-linking agent Sulfo-SBED (Pierce), which will transfer a 

biotin component to any interacting protein after the linkage is cleaved. The interacting protein 
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can be detected using streptavidin-HRP chemiluminescent substrates. Pathways can also be 

determined either using bioinformatics or arrays of siRNAs or kinase inhibitors targeting various 

pathways involving the lead kinase. The purpose of using siRNAs or kinase inhibitors against 

each step of the identified pathway is to establish a spatiotemporal relationship connecting 

BRCA1 to signaling components upstream, including the regulatory kinase. Assuming a linear 

signaling pathway, knockdown of any component in a pathway that ultimately affects BRCA1 

will recapitulate the BRCA1 IRIF phenotype previously observed with an siRNA targeting the 

kinase. The in vitro work to establish the relationship between the lead kinases and BRCA1 is 

important to better understand the basic biology as well as functional effects and consequences. 

In vivo studies with animal models are equally important to understanding the complexities of 

regulation in the context of an organism. For example, lentiviral-based knockdown of HCK or 

adenoviral-based overexpression of HCK in various cell lines that represent the major types of 

invasive breast cancer, including luminal (MCF7), basal-like (MDA-MB-231), HER2+ (SK-BR-

3), and normal breast-like (HMEC) (Sorlie et al., 2003) can be used for intraductal injection into 

cleared mammary fat pads of virgin female SCID-beige mice to assess for tumor formation and 

growth in the mammary ducts as well as progression of invasion into the surrounding stroma 

(Behbod et al., 2009). Additionally, a knockout mouse model of HCK (Lowell et al., 1994) can 

be used to evaluate mammary tumor formation following exposure to the carcinogen DMBA. 

 

Perspective 

 The development of the BRCA1 functional assay coupled with siRNA-mediated 

knockdown was able to identify novel kinase regulators of BRCA1 expression and function. For 

example, knockdown of HCK decreases BRCA1 mRNA expression, leading to decreased 
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BRCA1 protein expression and inability to localize to sites of DSBs following exposure to IR. 

The functional effect was then defective HR and the functional consequence was increased 

radiosensitivity and decreased cell survival following exposure to IR. The identification of these 

kinase regulators provides new avenues of research to better understand the pathogenesis of 

sporadic breast cancers expressing low levels of BRCA1. Additionally, the functional assay can 

be used to screen for a variety of gene classes to identify other potential regulators of BRCA1 

expression and function. 
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