Published version:

Molecular Phylogenetics and Evolution
Volume 53, Issue 3, December 2009, Pages 835-847

[image: image3.png]




 HYPERLINK "http://dx.doi.org/10.1016/j.ympev.2009.08.001" \t "doilink" doi:10.1016/j.ympev.2009.08.001
Copyright © 2009 Elsevier Inc. All rights reserved.


Phylogenetic Relationships of Flowerpeckers (Aves: Dicaeidae): Novel Insights into the Evolution of a Tropical Passerine Clade 

Árpád S. Nyári1*, A. Townsend Peterson1, Nathan H. Rice2, and Robert G. Moyle1 

1 The University of Kansas Natural History Museum and Biodiversity Institute, Dyche Hall, 1345 Jayhawk Blvd., Lawrence, KS 66045, USA.

2 Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA

1 email: arpi@ku.edu

Abstract:


Understanding the relationships and evolution of flowerpeckers has been challenging, particularly as no phylogenetic study has as yet assessed the group. Here, we present a first such analysis of this clade based on sequences of two mitochondrial genes and one nuclear intron. Our analyses offer strong support for monophyly of the Dicaeidae. Within the family, 4 Dicaeum species (D. chrysorrheum, D. melanoxanthum, D. agile, and D. everetii) had closer affinity to Prionochilus, although tests of alternative topologies could not reject reciprocal monophyly of the two genera. Across the family, overall bill shape trends from more stout bills basally to more slender and medium bills, whereas sexual dichromatism and plumage patterns show much more homoplasy. Taxonomically, generic allocations may need to be changed to reflect historical relationships better.
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1.
Introduction

Flowerpeckers (Aves, Dicaeidae) are a family of small passerine birds inhabiting mature forests, forest edges, scrublands, as well as anthropomorphically modified landscapes in some cases. They range from southern Asia south and east through the Philippine Islands, Indonesia, and New Guinea and surrounding islands, with a single species occurring across Australia. Flowerpeckers have seen considerable taxonomic attention, with previous revisions based on bill morphology, tongue structure, plumage characters, and natural history (Sharpe 1885, Mayr and Amadon 1947, Paynter 1967). These studies encountered great difficulty characterizing the relationships among flowerpeckers and establishing the limits of the clade, although it was clear that sunbirds (Nectariniidae) were the sister lineage to flowerpeckers. DNA-DNA hybridization studies (Sibley and Ahlquist 1983, 1990, Sibley and Monroe 1990, 1993) and more recent DNA sequence-based studies (Barker et al. 2002, 2004, Ericsson and Johansson 2003, Johansson et al. 2008) supported this sister relationship, but also concluded that several genera (Pardalotus, Melanocharis, Rhamphocaris) previously thought closely related (Mayr and Amadon 1947) are in fact only distantly related.

Flowerpeckers are currently divided into two genera (Prionochilus and Dicaeum), with 44 recognized species (Cheke et al., 2001, Dickinson 2003). The generic subdivision is based on a single morphological character, the length of the outermost primary, which is elongated in Prionochilus but vestigial in Dicaeum; the only documented exception is D. melanoxanthum (Mayr and Amadon 1947, Cheke et al. 2001), which also has an elongated outermost primary. A recent phylogenetic analysis of characters derived from vocalizations of 36 species of flowerpeckers suggests a basal placement of Prionochilus (Iddi et al. 2006). Most flowerpeckers are sexually dichromatic, have stouter bills than sunbirds, and display a broad variety of tongue structures (Cheke et al. 2001). Their diet is a mix of small fruits and insects, but they display a notable reliance on mistletoe fruits (Loranthaceae and Viscaceae). The current understanding of the variation, evolution, and biogeography of the family is based on different interpretations of these character sets (Mayr and Amadon 1947). 

Molecular characters can greatly enrich phylogenetic analyses of such difficult groups by providing abundant, independent, and objective characters on which to base quantitative analyses. The resulting phylogenetic frameworks can provide insights not only into relationships among members of the group of interest, but can also offer a historical framework upon which to base hypotheses of character evolution and evolutionary history (Harvey and Pagel 1991, Lanyon 1993). As such, we aim to establish explicit hypotheses of phylogenetic relationships among flowerpeckers to provide a basis for investigating the evolution of bill size and shape, tongue structure, length of the outermost primary, sexual dimorphism, and plumage patterns. Specifically, in this contribution, we explore 3 key issues: (1) monophyly of flowerpeckers, (2) monophyly of the genera Dicaeum and Prionochilus, and (3) general biogeographic patterns and character evolution within the Dicaeidae.

2.
Materials and Methods

2.1 Taxon sampling and molecular markers

Flowerpeckers present a particular challenge regarding taxon sampling for molecular phylogenetic analysis, owing largely to the broad distribution of the family across many countries, as well as to the rarity of some species, (considering the conservation status of several Philippine species where 5 species are Near Threatened, two Vulnerable, and one Critically Endangered; BirdLife International 2000). We base this study on vouchered samples of flowerpecker species collected by us and others throughout the family’s range. Our ingroup sampling includes 30 species, covering most key Dicaeum taxa in terms of phenotypic diversity (Table 1), and including all six members of Prionochilus. To provide outgroup information for rooting and polarization of character transformations, we used a broad selection of sunbird genera, as well as a leafbird (Chloropsis hardwickei) as a next closest lineage (Barker et al. 2002). 

Total genomic DNA was extracted from frozen or alcohol-preserved tissue samples using standard Qiagen tissue extraction protocols (Qiagen, Valencia, CA). Our molecular markers included established mitochondrial protein-coding genes and a nuclear intron. The mitochondrial genes nicotinamide adenine dinucleotide dehydrogenase subunit 2 (ND2; 1034 bp), ND subunit 3 (ND3; 351 bp), and the fifth nuclear intron of the transforming growth factor ß2 (TGFb2; 542 bp aligned) were amplified using the primers L5215 – H6313 (Sorenson et al., 1999), L10755 – H11151 (Chesser 1999), and TGF5 and TGF6 (Primmer et al., 2002), respectively. 

For lack of fresh tissue material, to represent two species (Table 1), we used a small fragment of toepad from museum study skin specimens as a source of DNA. We chose to include only these two species from ancient DNA sources for this study mainly because of their distinct plumage patterns, but also because of the relative recency of the museum specimens (early 1980s). For these samples, we employed rigorous laboratory protocols intended to minimize contamination and potential amplification of nuclear pseudogenes (Mundy et al. 1997). Owing to degradation of cellular DNA that is characteristic of museum study skins (Cooper et al. 1996, Willerslev and Cooper 2005) we designed specific primers that amplify smaller fragments of each marker for these two taxa. Primer sequences are available upon request from the senior author. 

All PCR amplifications were performed in 25 µl reactions using PureTaq™ RTG PCR beads (GE Healthcare Bio-Sciences Corp.). Amplified double-stranded PCR products were cleaned with ExoSAP-IT™ (GE Healthcare Bio-Sciences Corp.), and visualized on high-melt agarose gels stained with ethidium bromide. Purified PCR products were cycle-sequenced with ABI Prism BigDye™ v3.1 terminator chemistry, using the same primers as for each PCR reaction. Cycle-sequenced products were further purified using Sephadex™ spin columns (GE Healthcare Bio-Sciences Corp.), and finally sequenced on an ABI 3130 automated sequencer. Sequences of both strands of each gene were examined and aligned in Sequencher 4.1 (GeneCodes Corp.), and a final data matrix of contiguous sequences assembled using ClustalX 1.83 (Thompson et al. 1997). 

2.2. Phylogenetic reconstruction and analyses

An incongruence length difference (ILD) test (Farris et al., 1994) was performed through the program PAUP*4b10 (Swofford, 2000), by running 1000 heuristic replicates of the partition homogeneity test, to test for potential incongruence in phylogenetic signal between genes.

Phylogenetic reconstruction was performed via maximum likelihood (ML), as implemented in the software PAUP*, with TBR branch-swapping and 100 random taxon-addition replicates. ModelTest 3.7 (Posada and Crandall, 1998) was used to determine the most appropriate model of sequence evolution via the Akaike Information Criterion (AIC). Nodal support was assessed via nonparametric bootstrapping with 100 random-addition replicates. 

We also conducted Bayesian phylogenetic analyses (BA) using Markov Chain Monte Carlo (MCMC) tree searches through the program MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003). The concatenated dataset was partitioned by gene and codon positions for the nuclear intron and mitochondrial genes, respectively. ModelTest 3.7 (Posada and Crandall, 1998) was again used to establish the best-suited substitution model according to the AIC (Table 2). Two independent runs of 107 generations were conducted using the respective models of sequence evolution, with default chain heating conditions, sampling every 100 generations. Evaluation of stationarity was conducted by plotting posterior probabilities from the two runs in the program Tracer (Rambaut and Drummond 2007). Topologies sampled from the first 25% of generations were discarded as an initial “burn-in”, so a total of 75,000 trees were summarized to produce a single 50% majority-rule consensus tree. 

To compare current taxonomic treatments at the generic level, tests of topological constraints on the dataset were conducted by enforcing reciprocal monophyly between the Dicaeum and Prionochilus clades. Evaluations of the constraint against the ML tree was carried out in PAUP* with the Shimodaira-Hasegawa (SH) test, using RELL approximations (Shimodaira and Hasegawa 1999). 

We explored evolutionary patterns in some important morphological characters, which we scored through examination of specimens and, where necessary for lack of specimen material, interpretation of illustrations in field guides (Cheke et al., 2001, Robson et al. 2005). The following phenotypic character sets were scored in discrete states: general bill shape – (A) slender and longer bills, (B) medium length and thickness, or (C) short and stout bills; marked sexual dichromatism – (A) present or (B) absent; presence of carotenoids or other pigments (indicated by yellow, orange, or red color patches) – (A) present or (B) drab and lacking carotenoids; and presence of marked streaked patterns on breast or flanks independent of pigmentation – (A) present or (B) absent.

3. Results

3.1.
Sequence data characteristics

High-quality sequences of the mitochondrial genes and the nuclear intron were obtained for all modern DNA samples. Sequences were also obtained from the ancient DNA samples of D. agile and D. everetti for read lengths ≤300 bp. These short fragments were then concatenated to assemble the TGFb2, ND2, and ND3 genes in their entirety through amplification and sequencing of 3, 4, and 2 fragments respectively. Of the 4 ND2 fragments, we could not resolve clean sequence for a 200 bp region in the third quarter of the gene, so this region was coded as missing for all phylogenetic analyses. 

Sequence alignments for all taxa and genes were straightforward. The mitochondrial data showed no insertions, deletions, or anomalous stop-codon placements, and base composition was typical of this marker (Table 2), suggesting true mitochondrial origin, as opposed to corresponding to nuclear pseudogenes (Sorenson and Quinn, 1998). Gaps and insertions were noted in the nuclear sequences; although these were not coded separately in our analyses, we do make note of several synapomorphic features in the discussions that follow. 

The complete molecular dataset thus comprised 41 taxa (of which 30 were ingroup taxa) and 1925 aligned bases (Table 2). Average pairwise distance (uncorrected P) between the ingroup and members of the Nectariniidae derived from the entire dataset was 15%, while within flowerpeckers average pairwise distance ranged from 2% between D. concolor and D. pygmaeum, to 14% between D. agile and D. aeneum.
3. 2. 
Phylogenetic analyses


The partition homogenetiy test revealed no significant difference in phylogenetic signal (P = 0.84) between the three genes, so all subsequent analyses were performed on the combined dataset. We nevertheless carried out separate tree searches based on each individual gene data set (results not shown), and found no strongly supported conflicts between the topologies inferred.

ML analyses produced a single topology (likelihood score of -lnL = 21345.47240), which was broadly congruent with the consensus tree inferred via BA (Fig. 1). Ingroup monophyly was strongly supported under both ML and BA. Two main clades were recovered within flowerpeckers: one (Clade A) containing all members of Prionochilus plus Dicaeum chrysorrheum, D. melanoxanthum, D. agile, and D. everetti, hereafter referred to as the four “odd” Dicaeum; a second (Clade B) included the remaining Dicaeum species. Nodal support contrasted between these two main subdivisions: Clade A had only 59% bootstrap support and 0.89 posterior probability under ML and BA, respectively, while Clade B was unambiguously and strongly supported in both analyses (node 5, Fig.1). 


Phylogenetic patterns within Clade A (Fig.1) indicated paraphyly of Dicaeum as presently conceived, albeit with only modest support (node 2, Fig.1). ML analyses, but not BA, supported monophyly of Prionochilus.  In both analyses, the placement of Prionochilus olivaceus was especially difficult to resolve, as neither reconstruction method obtained significant support for affinities with either the remainder of Prionochilus or the four odd Dicaeum. On the other hand, strong support was obtained for groupings among the four odd Dicaeum species, in which D. chrysorrheum was placed as sister to D. melanoxanthum, D. agile, and D. everetti (node 3, Fig. 1). The rest of Prionochilus (minus P. olivaceus) was also strongly supported as a monophyletic group (node 4, Fig. 1), within which P. maculatus branched basally, followed by P. thoracicus, P. xanthopygius, and then a sister-pairing of P. plateni and P. percussus. 


Within Clade B (node 5, Fig. 1), Dicaeum anthonyi and D. bicolor were well-supported as sister taxa and branched basally, albeit with low support. Relationships recovered within the remainder of this clade were mixed, with many short internodes characterized by relatively weak support. Strong support although was recovered for the group belonging to node 6 (Fig. 1), and for nodes linking D. pygmaeum and D. concolor, and D. hirundinaceum and D. geelvinkianum.
 


Only a singe alternative topology was available for testing against the ML tree, and because it recovered a monophyletic Prionochilus, only the monophyly of Dicaeum was therefore tested. Constraining monophyly of Dicaeum during an ML search yielded a topology with both genera reciprocally monophyletic (-lnL = 21349.20942).  The Shimodaira-Hasegawa test returned a non-significant result for this topology (p = 0.248), indicating that our data could not reject monophyly of both genera.
Additional features of our molecular data provided some important insights, through informative insertions and deletions in TGFb2. The taxonomic utility of insertions and deletions in nuclear introns has been acknowledged by previous studies (Johnson et al. 2001, Moyle 2004, Moyle and Marks 2006), so here we comment on several that provide a qualitative assessment of nodal support. A 10 bp deletion in position 327-336 and a 2 bp deletion in position 417-418 were common to all taxa in Clade B (Fig. 1). A 1 bp deletion (position 251) was shared by the core Prionochilus clade (i.e., excluding P. olivaceus). Dicaeum sanguinoletum, D. pygmaeum, and D. concolor shared a 6 bp deletion (postion 402-407). In the outgroup, a 3 bp deletion (postition 194-196) was shared by the sunbird and spiderhunter clade with the exception of Arachnothera magna, and a 4 bp deletion (positions 359-362) united all Aethopyga species included in this study. 

4.
Discussion
4.1.
Flowerpecker taxonomy


This paper presents a first quantitative evaluation of phylogenetic relationships within the flowerpeckers. Analyses of the three-gene dataset recovered a monophyletic Dicaeidae, with two main subclades (node 1, Fig. 1). This topology is congruent with current taxonomic opinion that divides the family into two genera (Paynter 1967, Cheke et al. 2001, Dickinson 2003), but with some notable differences concerning membership of the two genera. 

Although it has long been recognized that flowerpeckers contained two discrete lineages (Mayr and Amadon 1947, Cheke et al. 2001), reliable character evidence supporting this division has been more elusive. The morphological character that presently unites Prionochilus, an overall longer outermost primary, is shared by D. melanoxanthum, which confounded earlier treatments (Sharpe 1885, Mayr and Amadon 1947, Paynter 1967). Our molecular dataset supports the phylogenetic affinity of D. melanoxanthum with Prionochilus, although three other Dicaeum are also grouped with D. melanoxanthum (node 3, Fig. 1) that do not possess an elongated outermost primary feather (Mayr and Amadon 1947). With our present dataset, we cannot rule out statistically the present two-clade arrangement as an appropriate treatment: specifically, our topological test did not have the statistical power to reject the constrained hypothesis of reciprocal monophyly of the genera. Two deletions in the nuclear intron (Fig. 1) support the distinctiveness of the core set of Dicaeum species as a well-supported clade. This polyphyletic Dicaeum arrangement parallels doubts previously voiced based on morphological evidence (Mayr and Amadon 1947, Cheke et al. 2001). In addition to exceptions to the pattern of outermost primary length mentioned above, other characters (e.g., bill structure and tongue anatomy) also disagreed with the present binary Dicaeum-Prionochilus split (Cheke et al. 2001, Morioka 1992). 

Given our current phylogenetic hypothesis, three options are available for integrating these results into formal taxonomy (particularly if supported by further molecular and detailed morphological evidence): (1) recognize only a single, very inclusive genus (Dicaeum would have formal nomenclatural priority in this case); (2) submerge the 4 odd Dicaeum taxa into a more inclusive Prionochilus; or (3) erect a third genus within the family to refer to the 4 odd Dicaeum, in which case the name Pachyglossa Blyth 1843 would apply. Based on our results, we suggest that the taxonomy should be amended to submerge the 4 odd Dicaeum species under the genus Prionochilus. Because of rather low statistical support for this arrangement, perhaps the most prudent arrangement is to retain the current taxonomy of this family.
Phylogenetic patterns within the core Dicaeum (Clade B) are better delineated, albeit not without uncertainties (Fig. 1). Weak support exists for the hypothesis that the clade D. anthonyi + D. bicolor forms the basal lineage within this clade, followed by D. aureolimbatum very weakly supported as sister to a strongly associated D. trigonostigma + D. australe. Further up the tree, the Mindanao endemic D. nigrilore was inferred to be sister to the more widespread Philippine endemic D. hypoleucum, with moderate nodal support. Subsequent speciation events were not well resolved with our dataset, allowing only limited inference regarding their exact relationships (node 6, Fig. 1). For example, D. concolor + D. pygmaeum is a well-supported clade, but BA placed this clade basally and ML placed them more distal in the tree. The Bornean endemic D. monticolum received moderate support as sister to the more widespread D. ignipectum. Five members of the Australo-Papuan radiation of Dicaeum contain a strongly supported D. geelvinkianum sister to D. hirundinaceum, while the position of the morphologically distinctive D. tristrami within this group was ambiguous, receiving low support relative to D. eximium and D. aeneum. 

4. 2. 
Character evolution


Incomplete taxon sampling and equivocal support for many relationships in the phylogeny preclude formal analyses of character state evolution, but it is nonetheless instructive to examine the distribution of certain character types across the phylogeny (Fig. 2).  Bill shape shows some degree of concordance with phylogenetic pattern in the Dicaeidae, with stout-billed species at the base of the tree, and slender- and medium-billed species being more derived. The transition from stout bill to more slender bills occurs within Clade B: the stout-billed species D. anthonyi and D. bicolor are placed as sister to the remaining (slender- and medium-billed) species. However, two stouter-billed species, D. tristrami and D. eximium, are mixed in with more slender-billed species in this clade, pointing towards the possibility of reversals in this trend. 

In contrast, sexual dichromatism and overall plumage patterns do not seem to correspond well with phylogeny (Fig. 2). Although all streaked species are in Clade A (P. olivaceus, P. maculatus, D. chrysorrheum, D. agile, D. everetti), they do not form a natural group.  Indeed, more generally, the more colorful, carotenoid-bearing species are intermixed with species with drab-colored plumages. The suite of taxa sister to D. concolor and D. pygmaeum all present some form of scarlet-red color patch in their plumage, the only exception being the rather drab D. tristrami. This relationship is weakly resolved by our phylogenetic reconstructions, where resolution at the base of this clade collapses the nodes supporting the more basal placement of the drab colored D. concolor and D. pygmaeum. Plumage characters did unite some closely related taxa; for example, our analyses consistently placed two taxa as sister species within this scarlet-red colored clade – D. cruentatum and D. igniferum, with both species sharing more extensive coloration dorsally, extending beyond their nape, and onto the mantle (Fig. 2). A character that has not received detailed attention beyond a purely descriptive designation appears to be iris coloration. The majority of members of our clade A have either red or orange-brownish irides, whereas members of clade B have more distinctly brownish irides. Of course, one member of the latter clade defies the trend: males of the only Australian flowerpecker, D. hirundinaceum, have distinct red irides. The anatomical and structural underpinnings of iris color have not yet been investigated, and the evolutionary significance of these differences will have to await further detailed investigations.

Given that our molecular phylogenetic analysis lacks several extant members of the family, we cannot elaborate further on the conclusiveness of evolutionary pathways of these characters. Clarifications of these uncertainties will have to await molecular data and a more robust phylogeny for all extant species, coupled with in-depth analysis of a broader suite of morphological characters. 

4. 3. 
Biogeographic patterns


Two main biogeographic radiations can be recognized within flowerpeckers: one tied to the Philippine Islands and the other, more recent, around New Guinea and its surrounding islands including mainland Australia (Fig. 2). Without a doubt, the morphologically most variable flowerpecker species, D. trigonostigma, with 17 recognized subspecies (Cheke et al. 2001), occurs over a broader area, from mainland India east to the Philippines, but not crossing Wallace’s Line. Other wide-ranging species include D. agile, D. chrysorrheum, D. concolor, and D. ignipectum. The Philippines also host the most members of the family, with 12 species endemic to the archipelago (Cheke et al. 2001, Kennedy et al. 2000). 

Wallace’s Line has played an influential role in shaping present distributions of several clades of birds (Clode and O’Brian 2001, Schulte et al. 2003). Our phylogenetic framework indicates that almost all members of Clade A (Fig. 2) presently occur in the Indo-Malayan region, without crossing Wallace’s Line. The single exception is D. agile, with populations on Sumba, Flores, Alor, and Timor (Cheke et al. 2001). The Australo-Malayan members of the family appear to have diverged more recently and more rapidly, as indicated by short internodes linking the species in clade 6 (Fig.1). D. tristrami, from Makira Island, is one of the most interesting and distinctive members of this clade: although part of the core group of sexually dichromatic species with some scarlet-red coloration in the plumage, this species has dull, brownish plumage, and no sexual dichromatism. The precise placement of this species proved difficult with our current dataset, but it is nevertheless closely associated with clades that recently dispersed into Papua-New Guinea, adjacent islands, and Australia. 

Smith and Fillardi (2007) surveyed a suite of species distributed throughout the Solomon Islands, including D. aeneum. Based on mitochondrial markers, they reported significant genetic structuring among island groups, with a maximum uncorrected pairwise distance of 7% within D. aeneum. That study represents a first look into flowerpecker molecular phylogeography, providing important insights into historical biogeographic patterns and processes in the archipelago, setting the stage for additional exploratory phylogeographic research of other flowerpecker species. 

Conclusions

Our taxon sampling contained about 70% of recognized flowerpecker species, and it nevertheless proved sufficient to elucidate major patterns of relationships and character evolution within the family. Our analyses provide a much-needed molecular-based framework for reevaluating the generic taxonomy within this family, pointing out that four Dicaeum species are actually more closely related to Prionochilus. Statistical support for the generic dichotomy within flowerpeckers received only weak confirmation, pointing towards the need of including additional molecular markers as well as complementing the taxon sampling throughout the family. The diverse morphological characters presently providing the basis for taxonomic and evolutionary inferences concerning flowerpeckers thus remain a challenging body of evidence for future research. 
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Fig. 1.

Maximum likelihood (ML, left) and Bayesian analysis (BA, right) views of phylogenetic patterns implied by analyses of the complete molecular dataset. Support values are indicated by percent bootstrap (ML, left) and posterior probability values (BA, right) above or at right of each node. Values <50 recovered by each method are not indicated at nodes. Synapomorphic deletions in the TGFb2 gene for the ingroup are indicated as black circles on branches, and are detailed further in the text. Clade letters and node numbers are referenced throughout the main text. 
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Fig. 2.

Morphological characters coded as discrete states linked to each terminal ingroup taxon as recovered by a strict consensus tree of the BA and ML analysis: overall bill shape – slender [clear], medium length and thickness [grey], shorter and stout bill [black]; sexual dichromatism – absent [white] or present [black]; plumage carotenoids – drab and lacking carotenoids [white], presence of carotenoids or other pigments [black]; streaked patterns on breast or flanks – absent [white] or present [black]. The fourth box column indicates species distribution relative to Wallace’s line – within Indo-Malayan region [white] or outside the region [black]. A distributional extent for each species is given in the rightmost panel. 
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Table 1. 
Taxonomic sampling, voucher sources, and GenBank accession numbers included in this study. Species with an asterisk indicate museum specimens from which ancient DNA has been extracted from toe pads.

	Taxon
	Voucher source1
	Sample #
	Locality
	TGFb2
	ND2
	ND3

	Ingroup
	
	
	
	
	
	

	Dicaeum aeneum
	AMNH
	DOT 6657
	Solomon Islands, Isabel Island
	GQ145327
	GQ145285
	GQ145243

	Dicaeum anthonyi
	FMNH
	429296
	Philippines, Luzon, Kalinga
	GQ145325
	GQ145283
	GQ145241

	Dicaeum agile *
	WFVZ
	41288
	Malaysia, Sabah, Tawau
	GQ145348
	GQ145306
	GQ145264

	Dicaeum aureolimbatum
	AMNH
	DOT 12599
	Indonesia, Sulawesi, Poso
	GQ145330
	GQ145288
	GQ145246

	Dicaeum australe
	ZMUC
	130804
	Philippines, Luzon 
	GQ145347
	GQ145305
	GQ145263

	Dicaeum bicolor
	FMNH
	357606
	Philippines, Mindanao, Bukidnon 
	GQ145326
	GQ145284
	GQ145242

	Dicaeum celebicum
	AMNH
	12585
	Indonesia, Sulawesi, Poso
	GQ145331
	GQ145289
	GQ145247

	Dicaeum chrysorrheum
	USNM
	B06156
	Myanmar, Sagaing
	GQ145319
	GQ145277
	GQ145235

	Dicaeum concolor
	KUNHM
	10365
	China, Guangxi, Shinwandashan Nature Preserve
	GQ145339
	GQ145297
	GQ145255

	Dicaeum cruentatum
	UWBM
	83538
	Singapore
	GQ145320
	GQ145278
	GQ145236

	Dicaeum everetti *
	WFVZ
	41290
	Malaysia, Sabah, Kota Kinabalu
	GQ145349
	GQ145307
	GQ145265

	Dicaeum eximium
	KUNHM
	5312
	New Guinea, East New Britain, Tientop Village
	GQ145345
	GQ145303
	GQ145261

	Dicaeum geelvinkianum
	KUNHM
	5143
	New Guinea, Simbu, 10 km SSE Haia
	GQ145321
	GQ145279
	GQ145237

	Dicaeum hirundinaceum
	KUNHM
	8821
	Australia, WA, 40 km W Mumbinia Station
	GQ145309
	GQ145267
	GQ145225

	Dicaeum hypoleucum
	KUNHM
	18070
	Philippines, Luzon, Mt. Labo
	GQ145328
	GQ145286
	GQ145244

	Dicaeum igniferum
	WAM
	22677
	Indonesia, Flores, Kelimutu
	GQ145329
	GQ145287
	GQ145245

	Dicaeum ignipectum
	ZMUC
	116133
	Philippine Islands, Luzon, Isabela
	GQ145346
	GQ145304
	GQ145262

	Dicaeum melanoxanthum
	AMNH
	DOT 5717
	Nepal, Malde
	GQ145312
	GQ145270
	GQ145228

	Dicaeum monticolum
	KUNHM
	17745
	Malaysia, Sabah, 58 km SSE Sipitang
	GQ145341
	GQ145299
	GQ145257

	Dicaeum nigrilore
	FMNH
	357592
	Philippines, Mindanao, Bukidnon 
	GQ145338
	GQ145296
	GQ145254

	Dicaeum pygmaeum
	KUNHM
	10959
	Philippines, Cagayan, Longog
	GQ145344
	GQ145302
	GQ145260

	Dicaeum sanguinoletum
	WAM
	22871
	Indonesia, Sumba, Waeelonda
	GQ145323
	GQ145281
	GQ145239

	Dicaeum trigonostigma
	ANSP
	1194
	Malaysia, Sabah, Mendolong
	GQ145308
	GQ145266
	GQ145224

	Dicaeum tristrami
	KUNHM
	12802
	Solomon Islands, Makira, 17.5 km S Kira Kira
	GQ145342
	GQ145300
	GQ145258

	Prionochilus maculatus
	KUNHM
	12405
	Malaysia, Sarawak, 25 km S Bintulu
	GQ145317
	GQ145275
	GQ145233

	Prionochilus olivaceus
	FMNH
	357587
	Philippines, Mindanao 
	GQ145324
	GQ145282
	GQ145240

	Prionochilus plateni
	KUNHM
	12606
	Philippines, Palawan, Puerto Princesa 
	GQ145335
	GQ145293
	GQ145251

	Prionochilus percussus
	UWBM
	67503
	Indonesia, Lingkung, Kayutanam
	GQ145311
	GQ145269
	GQ145227

	Prionochilus xanthopygius
	KUNHM
	12333
	Malaysia, Sarawak, 25 km S Bintulu
	GQ145322
	GQ145280
	GQ145238

	Prionochilus thoracicus
	LSUMNS
	47198
	Malaysia, Sabah, 8 km W Beaufort
	GQ145314
	GQ145272
	GQ145230

	
	
	
	
	
	
	

	Outgroup
	
	
	
	
	
	

	Aethopyga duyvenbodei
	ZMUC
	123924
	Indonesia, Gunung Sahengbalira
	GQ145337
	GQ145295
	GQ145253

	Aethopyga boltoni
	FMNH
	357631
	Philippines, Mindanao, Bukidnon 
	GQ145343
	GQ145301
	GQ145259

	Aehopyga siparaja
	FMNH
	358592
	Philippines, Sibuyan, Lambingan Falls
	GQ145336
	GQ145294
	GQ145252

	Aethopyga primigenius
	FMNH
	357624
	Philippines, Mindanao, Bukidnon 
	GQ145334
	GQ145292
	GQ145250

	Aethopyga christinae
	KUNHM
	10276
	China, Guangxi, Shinwandashan Nature Preserve
	GQ145332
	GQ145290
	GQ145248

	Anthreptes rectirostris
	KUNHM
	8499
	Equatorial Guinea, Centro Sur, Monte Alen National Park
	GQ145315
	GQ145273
	GQ145231

	Arachnothera magna
	KUNHM
	10401
	China, Guangxi, Shinwandashan Nature Preserve
	GQ145316
	GQ145274
	GQ145232

	Arachnothera longirostra
	KUNHM
	12706
	Philippines, Palawan, Puerto Princesa 
	GQ145310
	GQ145268
	GQ145226

	Cinnyris superbus
	KUNHM
	8678
	Equatorial Guinea, Centro Sur, Monte Alen National Park
	GQ145333
	GQ145291
	GQ145249

	Cyanomitra obscura
	KUNHM
	8563
	Equatorial Guinea, Centro Sur, Monte Alen National Park
	GQ145340
	GQ145298
	GQ145256

	Nectarinia jugularis
	FMNH
	358566
	Philippine Islands, Sibuyan 
	GQ145313
	GQ145271
	GQ145229

	Chloropsis hardwickei
	KUNHM
	10019
	China, Guangxi, Diding Headwater Nature Preserve
	GQ145318
	GQ145276
	GQ145234


Institutional abbreviations are as follows: Academy of Natural Sciences, Philadelphia (ANSP), American Museum of Natural History (AMNH), Field Museum of Natural History (FMNH), The University of Kansas Natural History Museum (KUNHM), Louisiana State University Museum of Natural Science (LSUMNS), National Museum of Natural History, Smithsonian Institution (USNM), Western Australian Museum (WAM), Western Foundation of Vertebrate Zoology (WFVZ), University of Washington Burke Museum (UWBM), Zoological Museum, University of Copenhagen (ZMUC).

Table 2. 
Characteristics and parameter estimates of the 3 genes and the mitochondrial codon partitions included in the analyses.

	
	TGFb2
	ND2
	ND3
	mtDNA 1st 
	mtDNA 2nd
	mtDNA 3rd 

	Length
	542bp (aligned)
	1032bp
	351bp
	461bp
	461bp
	461bp

	Number of variable sites
	162
	581
	180


	207
	138
	452

	Parsimony informative sites
	58
	495
	151
	157
	59
	430

	Model
	TVM+G
	GTR+I+G
	TrN+I+G
	TVM+I+G
	GTR+I+G
	GTR+G

	Freq. A
	0.2443
	0.3541
	0.3419
	0.3317
	0.1639
	0.4388

	Freq. C
	0.2288
	0.3870
	0.4012
	0.2924
	0.3299
	0.3790

	Freq. G


	0.2308
	0.0716
	0.0713
	0.1781
	0.1036
	0.0584

	Freq. T
	0.2961
	0.1873
	0.1856
	0.1977
	0.4026
	0.1238

	r [A-C]
	0.6469
	0.1870
	1.0000
	0.3617
	4.8158
	0.1125

	r [A-G]
	2.9891
	7.3444
	19.7322
	3.2252
	65.4046
	10.5714

	r [A-T]
	0.5544
	0.1799
	1.0000
	0.3758
	0.5403
	0.4878

	r [C-G]
	1.2623
	0.0839
	1.0000
	0.1153
	2.7387
	0.0000

	r [C-T]
	2.9891
	3.3325
	11.2652
	3.2252
	18.4150
	8.3023

	r [G-T]
	1.0000
	1.0000
	1.0000
	1.0000
	1.0000
	1.0000

	(
	1.2194
	0.7708
	0.9629
	1.1350
	0.4718
	1.4953

	Ts/Tv
	1.7759
	7.4509
	5.2834
	3.9619
	7.6983
	10.8125
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