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Abstract. Marburg virus represents one of the least well-known of the hemorrhagic fever-causing viruses worldwide;
in particular, its geographic potential in Africa remains quite mysterious. Ecologic niche modeling was used to explore
the geographic and ecologic potential of Marburg virus in Africa. Model results permitted a reinterpretation of the
geographic point of infection in the initiation of the 1975 cases in Zimbabwe, and also anticipated the potential for cases
in Angola, where a large outbreak recently (2004–2005) occurred. The geographic potential for additional outbreaks is
outlined, including in several countries in which the virus is not known. Overall, results demonstrate that ecologic niche
modeling can be a powerful tool in understanding geographic distributions of species and other biologic phenomena such
as zoonotic disease transmission from natural reservoir populations.

INTRODUCTION

Marburg virus and the Ebola viruses (family Filoviridae,
genera Marburgvirus and Ebolavirus) have presented a series
of enigmas for biologists and public health workers: complete
unknowns regarding these viruses include the identity of their
natural reservoir host species and the mode of transmission
from the reservoir to humans or other primates.1,2 Even the
geographic distributions of filoviruses have presented chal-
lenges, with mysteries including the geographic origin of
Ebola Reston virus.3

The known geographic distribution of outbreaks of Ebola
virus–caused hemorrhagic fever in recent years has appeared
to be more consistent geographically and ecologically than
that of outbreaks caused by Marburg virus. Ebola viruses
(Ebola Ivory Coast, Ebola Zaire, and Ebola Sudan viruses)
are known principally from evergreen tropical forest regions
in central Africa, and have shown few unexpected occur-
rences in terms of geography and ecology.4–7 Conversely,
Marburg virus has appeared only a few times, including out-
breaks in regions that would appear more diverse ecologi-
cally.8 One important commonality among known Marburg
virus outbreaks is that at least three have involved caves or
mines in the infection of the apparent index case.1,2,9–13

Few efforts have been made to map these outbreak occur-
rences and understand the ecologic regimen under which they
occur.6,14 The only existing spatially explicit study6 presented
maps of potential distribution of Marburg virus based on eco-
logic niche models derived from the four localities available at
the time. The recent (ongoing) Marburg hemorrhagic fever
outbreak in Angola fell within the extreme western areas
predicted by our 2004 models, confirming a geographically
disparate hypothesis. Since that study, however, the predic-
tive modeling approaches have improved considerably,15

which led us to revisit the 2004 predictions.
Hence, this contribution uses new advances in ecologic

niche modeling (ENM) tools and new geographic information
to improve the geographic and ecologic understanding of
Marburg virus distribution. Given the uncertain geographic
localization of the 1975 Marburg virus infections in Zimba-

bwe, we first reassess ideas as to its geographic provenance
based on the three better-known outbreaks. We then con-
tinue to examine the present Angola outbreak with respect to
the known ecology of Marburg virus, and conclude by pre-
senting a state-of-knowledge prediction of the potential geo-
graphic range of this virus.

METHODS

Ecologic niche modeling has been subjected to numerous
applications and tests based on diverse analytical ap-
proaches.16–21 The particular approach to modeling species’
ecologic niches and predicting geographic distributions used
herein (summarized below) is described in detail else-
where.22–25 Previous tests of the predictive power of this tech-
nique for diverse phenomena in various regions have been
published.25–35 The modifications described below make the
approach more robust to uncertainties in spatial localization
in occurrence points by incorporating uncertainty directly in
the modeling process.

Distributional data for known Marburg virus hemorrhagic
fever outbreaks were drawn in large part from our previous
compilation.6 However, given variation in levels of confi-
dence regarding localization of the infection of the index case,
we replaced the point-based representation in the previous
study with polygons that summarize the degree of certainty
with which each locality is known (Figure 1). The origin of the
1998 outbreak at Durba in the Democratic Republic of the
Congo (DRC) is considered to be localized with considerable
precision, and thus was represented as a circle of 5-km radius
centered on Durba,9 as was the 1987 outbreak in Kenya (5-km
radius circle centered on Mount Elgon, Kenya).13 However,
the 1980 Kenya outbreak is less clear because the index case
patient could have been infected at Nzoia, at Mount Elgon, or
at points in between.1 Thus, we represented that outbreak as
a 25-km buffer around those two localities. Since the 1975
Zimbabwe cases involved considerable uncertainty, we ini-
tially represented the geographic origins of these cases as a
25-km buffer around the convex polygon enclosing all of the
Zimbabwe points on the travelers’ itinerary, which covered
much of the country. Finally, the origin of the 2005 Angolan
outbreak remains nebulous, and may remain so (Montgomery
JM, unpublished data). Thus, we generated a polygon match-
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ing the geographic limits of Uige Province, Angola. Although
the exact dimensions of our polygons may be arbitrary, we
believe that the relative ordering of degree of certainty is
reasonable, and that it likely reflects the varying degrees of
precision with which different outbreaks are localized. To
incorporate the uncertainty of localization of these outbreaks
in our models, we generated 100 random points within each
polygon; these points were then used to represent each out-
break in our models.

Environmental data layers that were used to define the
dimensions of modeled ecologic niches for Marburg virus in-
cluded 23 electronic maps summarizing aspects of topography
(elevation, slope, aspect, compound topographic index, from
the United States Geological Survey’s Hydro-1K data set;*
0.01° resolution), and aspects of climate including 19 fine-
scale (0.01° resolution) bioclimatic variables developed as
part of the WorldClim data set:† annual mean temperature,
mean diurnal temperature range, isothermality, temperature
seasonality, maximum temperature of warmest month, mini-
mum temperature of coldest month, temperature annual
range, mean temperature of wettest quarter, mean tempera-
ture of driest quarter, mean temperature of warmest quarter,
mean temperature of coldest quarter, annual precipitation,
precipitation of wettest month, precipitation of driest month,
precipitation seasonality, precipitation of wettest quarter,
precipitation of driest quarter, precipitation of warmest quar-
ter, and precipitation of coldest quarter. All analyses were
carried out using all variables at the native spatial resolution
of 0.01°, or approximately 1 × 1 km, pixels.

The ecologic niche of a species can be defined as the con-
junction of ecologic conditions within which it is able to main-

tain populations without immigration.36,37 Several ap-
proaches have been used to approximate species’ ecologic
niches;38–43 of these, one that has seen considerable testing is
the genetic algorithm for rule-set prediction (GARP), which
includes several inferential approaches in an iterative, evolu-
tionary-computing environment.23 All modeling in this study
was carried out on a desktop implementation of GARP now
available publicly for download.‡

In GARP, available occurrence points are divided evenly
into training data sets (for rule generation) and intrinsic test
data sets (for model refinement). GARP is designed to work
based on presence-only data; absence information is included
in the modeling via sampling of pseudoabsence points from
the set of points at which the species has not been detected.
GARP works in an iterative process of rule selection, evalu-
ation, testing, and incorporation or rejection: first, a method is
chosen from a set of possibilities (e.g., logistic regression, bio-
climatic rules), and then is applied to the training data and a
rule developed; rules may evolve by a number of means (e.g.,
truncation, point changes, crossing-over among rules) to
maximize predictivity. Predictive accuracy (for intrinsic use in
model refinement) is then evaluated based on 1,250 points
resampled from the intrinsic test data and 1,250 points
sampled randomly from the study region as a whole. The
change in predictive accuracy from one iteration to the next is
used to evaluate whether a particular rule should be incorpo-
rated into the model, and the algorithm runs either 1,000
iterations or until convergence.

Given varying levels of uncertainty in localization of the
Marburg virus introduction sites (described above), we used a
new approach in ENM. Within each of the polygons de-
scribed above for each outbreak site, we produced 100 ran-

* http://edcdaac.usgs.gov/gtopo30/hydro/
† http://biogeo.berkley.edu/worldclim/worldclim.htm ‡ http://www.lifemapper.org/desktopgarp/

FIGURE 1. Polygons representing each of the known Marburg and Ebola hemorrhagic fever outbreak sites (Marburg virus outbreak sites
labeled, plus the Kikwit Ebola Zaire site, as mentioned in the text), as outlined by Peterson and others.6 The inset shows an example of random
points used to represent a particular outbreak polygon.
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dom points. These random points were then organized into
100 occurrence data sets, each having a single representative
point for each outbreak known. In this way, outbreaks for
which localization is precise will have representative points
that consistently fall in a very small area, whereas outbreaks
for which localization is not precise will have much more
variable representation, with points falling over a broader
area. This approach allows a picture of the robustness of
ENMs to site precision, and represents a considerable im-
provement over the methods used in our previous study of
filoviruses.6

To permit visualization of patterns of Marburg virus eco-
logic niche variation, we combined the input environmental
grids with the final Marburg virus ENM to create a new grid
that has a distinct value for each unique combination of en-
vironments. We exported the attributes table associated with
this grid in ASCII format. To make visualization more fea-
sible, we reduced data density by selecting a random 10% of
the table for further use; this reduced table was used for
development of scatterplots for visualization.

Normally in ENM, independent test data are set aside to
provide a validation of model predictions. In this application,
however, so few localities were available for Marburg virus
hemorrhagic fever outbreaks that we forewent this step. Be-
cause no statistical tests were possible due to small sample
sizes, we validated models based on coincidence of predic-
tions with new observations (e.g., the 2005 Angola outbreak).
As such, we used the three known northern Marburg virus
disease outbreaks (northern outbreaks), all reasonably well
documented as to place of origin, to build models and identify
suitable areas across Africa. Based on this first analysis, we
reinterpreted the most likely geographic origin of the 1975
Zimbabwe cases, and explored implications for the 2005 An-
gola outbreak. Finally, we explored the implications of all five
introductions into human populations and their ecologic char-

acteristics for a best guess as to the potential distribution of
Marburg virus across Africa. Throughout this report, we
strive to avoid overinterpretation of data and results, and
rather attempt to present our interpretation of what informa-
tion is available.

RESULTS

The size of the polygons representing each of the known
Marburg hemorrhagic fever outbreaks (Figure 1) reflects the
state of knowledge of each of the outbreaks: the initiation
points for the 1980, 1987, and 1998 (northern) outbreaks
(Kenya and DRC) are all known relatively precisely, whereas
the origin of the two southern events (1975 in Zimbabwe and
2005 in Angola) are much less precisely known.

Our results coincided closely with Marburg potential dis-
tribution maps that we published previously,6 which were
based on analyses of points, and did not consider uncertainty
in localization, as in the present analyses. Although spatial
autocorrelations in environmental datasets mean that differ-
ences between the two analyses should not be great, the pre-
diction of only part of Zimbabwe by these models is quite
interesting. In general, the uncertainty-based predictions pre-
sented herein depict a somewhat more continuous potential
distribution for Marburg virus in east Africa, particularly in
Ethiopia and across Angola, Zambia, Zimbabwe, and Mo-
zambique (note that the successful prediction of the potential
for the 2004–2005 Marburg Virus outbreak in Angola does
not depend on the uncertainty manipulation). Our original
predictions published before the outbreak anticipated the po-
tential for such an outbreak.6 Although general patterns did
not differ markedly, the potential distributional areas identi-
fied herein are suggestive of a broader distributional area
than had previously been appreciated for Marburg virus. A

FIGURE 2. Ecologic niche modeling results based on the three northern Marburg hemorrhagic fever outbreaks projected across Africa (darker
shading indicates greater model agreement in predicting presence). The inset shows Zimbabwe predictions in relation to the original polygon for
this outbreak.
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first corroboration of the models’ predictive power is their
inclusion of Lake Kyoga, Uganda, which apparently was the
source of the monkeys that started the original Marburg Virus
outbreak in 1967.

1975 Zimbabwe cases. Our first analysis was based on the
three northern outbreaks and attempted to shed light on the
nebulous 1975 Zimbabwe event. In spite of the massive north-
south environmental gradient that is manifested between

Kenya/DRC and Zimbabwe, the ENM based on the three
northern outbreaks identified areas of similar environments
in Zimbabwe. Curiously, however, the areas identified were
focused in northeastern Zimbabwe, and not in northwestern
Zimbabwe where case investigation efforts were focused8

(Figure 2).
With the kind assistance of J. L. Conrad, who led the origi-

nal investigations of the 1975 outbreak, we traced the tour

FIGURE 3. Ecologic niche modeling results based on the three northern Marburg hemorrhagic fever outbreaks and the revised knowledge of
the Zimbabwe cases (darker shading indicates greater model agreement in predicting presence). The inset shows Angola predictions in relation
to Uige Province.

FIGURE 4. Ecologic niche modeling results based on all known African Marburg hemorrhagic fever outbreaks (darker shading indicates
greater model agreement in predicting presence).
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around Zimbabwe of the young man who became the index
case patient. The Wankie roadside site that became the focus
of the case investigation was not predicted as suitable by any
of the best subsets models in this analysis, suggesting either
that it was not the infection site, or that it would represent an
extreme not otherwise appreciated in the Marburg hemor-
rhagic fever occurrence data set. The victim’s route indeed
did pass through the areas of northeastern Zimbabwe that
were identified by our ENM. Most interesting is that our
re-review of his itinerary showed that he visited a cave com-
plex in that region known as Sinoia Caves (see map in Conrad
and others8), which would fit with the known profile of the
three northern outbreaks. Given that the index case patient
was in Wankie on February 6, 1975 and at Sinoia Caves on
February 3–4, 1975, the incubation period for virus exposure
at the caves makes an almost perfect interval of 8–9 days
before onset of symptoms on February 12, 1975.8 As such,
based on the ENM predictions and on the observation of a
cave connection, we provisionally identify a region of north-
eastern Zimbabwe (Figure 2) as the likely source of the in-
fection that gave rise to the 1975 Zimbabwe cases.

2005 Angola outbreak. Using the refined information re-
garding the 1975 Zimbabwe outbreak, we produced a second

generation of ENMs for Marburg hemorrhagic fever out-
break distributions. This ENM indicated potential Marburg
virus distributional areas in a crescent extending from Ethio-
pia south through much of east Africa, and then west to An-
gola (Figure 3), including Uige Province in which the 2004–
2005 outbreak began. It is noteworthy that this general pre-
diction (an area of predicted presence in northern Angola
coinciding with Uige Province) was also present in our origi-
nal analyses,6 as well as in all analyses developed in this study,
whether the revised or original Zimbabwe locality was used.

Uige Province is 500 km from Kikwit, DRC, where the 1995
outbreak of hemorrhagic fever caused by Ebola Zaire virus
occurred,44 whereas it is approximately 1,800 km from the
nearest known Marburg hemorrhagic fever outbreak site.
Nonetheless, it fits the ecologic profile of Marburg virus (Fig-
ure 3), and not that of Ebola Zaire virus.6 This unexpected
confirmation of a somewhat counterintuitive prediction of
our previous ENMs6 suggests that the models likely hold use-
ful information regarding the geographic potential of Mar-
burg hemorrhagic fever across Africa.

Marburg virus geographic potential. Under the assumption
that the ENM predictions can inform regarding the geo-
graphic potential of Marburg hemorrhagic fever, we devel-

FIGURE 5. Exploratory analysis of modeled distribution of Marburg hemorrhagic fever outbreaks (map pixels falling into the modeled
distributional area shown as squares) with respect to cross-Africa availability of combinations of (top) annual means of temperature and
precipitation and (bottom) seasonality of temperature and precipitation (shown as black points). S.d. � standard deviation.
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oped a final ENM based on all five available known occur-
rences (Figure 4). This model shows a broad potential distri-
bution across the arid woodlands regions of Africa. In
addition to countries known to harbor Marburg virus (An-
gola, DRC, Kenya, Zimbabwe, and likely Uganda), these
models also identified Burundi, Ethiopia, Malawi, Mozam-
bique, Rwanda, Tanzania, and Zambia as having regions of
potential occurrence of the virus. Northern Cameroon holds a
small area that is broadly disjunct from known distributional
areas, but matches the ecologic profile of Marburg virus. We
suspect that Marburg virus may actually have a broad distri-
bution across eastern and southern Africa, and may present
public health risks across a much larger area than was appre-
ciated in the past. Note, however, that seroprevalence studies
do not necessarily support this prediction, pointing to an issue
for future research.10,11

Visualization and exploratory analyses of modeled Mar-
burg virus distribution with respect to climatic parameters
showed several interesting features (Figure 5). For example,
whereas Marburg is modeled as distributed throughout pre-
cipitation regimens in Africa (except the very wettest re-
gions), it is limited to areas of relatively low annual mean
temperatures. Similarly, with respect to seasonal variation,
Marburg virus is modeled as occurring in areas of low-to-
moderate seasonal variation of temperature and precipita-
tion, but not in regions of high intra-annual variation in either
dimension.

DISCUSSION

Ecologic niche modeling has great promise in interpolating
into unknown or unsampled areas of species’ geographic dis-
tributions.45–47 However, its use should be cautious because it
is a new tool and has only seen limited application to ques-
tions regarding disease transmission.

Of particular concern in the present study is the small
sample size of localities involved. Previous sensitivity analyses
have indicated that the GARP approach is relatively robust to
small sample sizes.26,27 Uncertainty regarding exact origins of
outbreaks, as well as the possibility of movement of infections
in primates before detection of the initial case,8 may work to
cloud the picture and reduce effective sample sizes yet fur-
ther. Nonetheless, if a species has a complex ecologic niche
that includes diverse environments, the sample sizes involved
in the present study (3–5 sites) may prove insufficient. The
usual effect of such problems, however, would be underesti-
mation of the species’ ecologic potential, suggesting that the
predictions outlined herein are likely to be meaningful.

The method explored herein of using random points within
polygons representing precision of localization of outbreak
sites appears to be an excellent tool for dealing with such
situations of variable uncertainty regarding occurrences. The
method produces what is in essence a spatial bootstrap that
weights occurrences known precisely more heavily than oc-
currences that are not known with such precision. Although
the essence of the predictions did not change dramatically
from our previous single-point-based predictions, our ran-
dom-point approach indeed permitted the identification of
subsets of Zimbabwe as particularly likely for Marburg virus
occurrence. This modification to the ENM approach will offer
greater robustness and reduced vulnerability to assumptions
of precise localization in future applications.
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