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ABSTRACT 

Time-series data from wide-field sensors, acquired for 
the period of a growing season or longer, capitalize on 
phenological changes in vegetation and make it possible to 
identify vegetated land cover types in greater detail. Our 
objective was to examine the utility of time-series data to 
rapidly update maps of vegetation condition and land cover 
change in Mexico as an input to biodiversity modeling. We 
downloaded AVHRR NDVI 10-day composites from the 
USGS EROS Data Center for 1992-1993 and adjusted for 
cloud contamination by further aggregating the data. In the 
first phase of our analysis, we selected training sites for 
various land cover types using a land cover map created by 
the Mexican National Institute of Statistics, Geography, and 
Informatics (INEGI) as a guide. Since there is a high degree 
of spectral variability within many of the vegetated land 
cover types, we subjected the spectral response patterns to 
cluster analysis. We then used the statistics of the clusters as 
training data in a supervised classification. We also 
compared unsupervised and univariate decision tree 
approaches, but these provided unsatisfactory results. Best 
results were achieved with a 19-class map of land use/land 
cover employing a supervised approach. 

INTRODUCTION 

Creating maps of Mexico’s vegetation types and land use 
patterns quickly and inexpensively is a key component in a 
larger NSF-funded project focused on modeling the potential 
consequences of global climate changes, on elements of 
biodiversity in Mexico. Although Landsat MSS, Landsat TM 
and SPOT have been successfully used to characterize 
regional land cover types in Mexico in the past, the large area 
and environmental heterogeneity of the county make 
mapping its general vegetation types using such high 
resolution data in an ongoing monitoring program 
impractical. 

Although the spatial resolution of the NOAA AVHRR 
sensor is coarse ( 1 . 1  km), it is in part compensated for by its 
frequency of repeat coverage, making AVHRR data and 
derived products highly useful for monitoring land cover 
change. Specifically, the Normalized Difference Vegetation 
Index (NDVI) derived from the AVHRR data set is widely 

used in monitoring continental and global vegetation 
distribution and dynamics, drought severity and location, and 
environmental deterioration [ 11. 

Previous attempts to use AVHRR data to classify 
Mexico’s vegetation types include the work of Sorani and 
Alvarez [2], who produced a hybrid cartographic product 
using AVHRR, TM, and ancillary data. Mora and Iverson [3] 
applied a principal components technique on Global 
Vegetation Index (GVI) data to generate an unsupervised 
classification for the country. The latter study took advantage 
of the phenological characteristics of vegetation revealed by 
the vegetation index for evaluating spectral responses. 

The major goal of this project was to develop a reliable 
and acceptably accurate classification methodology for 
mapping Mexico’s main vegetation formations at a country- 
wide scale, making possible the development of assessment 
and monitoring programs for revealing conditions and 
changes in land-cover types for the entire country. The 
present project used time-series AVHRR remotely sensed 
data, with broad coverage and high temporal resolution. We 
tested the applicability of AVHRR NDVI data for classifying 
Mexico’s main vegetation types to satisfy the methodological 
and conceptual needs for modeling and monitoring spatial 
and temporal patterns of biodiversity. 

METHOIDS 

The data used in this project consisted of 10-day NDVI 
composites from 1992 and 1993, provided by the Global 
Land Cover 1 km AVHRR Project of the EROS Data Center 
of the U.S. Geological Survey. To create an NDVI time series 
and to increase the probability of obtaining images free of 
cloud contamination, the three 1 0-day composites for each 
month were aggregated by selecting the maximum NDVI 
value for each pixel. The monthly NDVI images were 
examined visually to select those with minimal apparent 
cloud contamination. Nine NDVI monthly images were 
selected as being most cloud free: January 1992, April 1992, 
June 1992, October 1992, November 1992, February 1993, 
March 1993, July 1993, and August 1993. These images 
were layer stacked to create a 9-band image that was used to 
perform the vegetation classification. We examined 
supervised, unsupervised, and univariate decision tree 
classification approaches. The latter two approaches 
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provided markedly inferior results and were not considered 
further. 

An updated, high resolution land covedland use map, 
generated by INEGI using TM data, was used as the 
reference data for our classification, both for locating 
training sites and for “ground truth” data. Our vegetation 
classification followed that proposed by Rzedowski [4]. In 
addition, four land use classes (cropland, irrigated cropland, 
human-introduced grassland, and cultivated grassland) were 
added, for a total of 26 land use/land cover (LULC) classes. 
INEGI’s LULC map, which originally had more than 300 
classes, was adapted to our classification, and training areas 
were digitized for each of the 26 LULC classes across the 
country. This was done by overlaying INEGI’s vector 
coverage of land cover on the 9-layer NDVI image. 

Because of the large number of training signatures 
gathered and the potential spectral variability of the training 
sites within each class, we used a two-step approach to refine 
the signatures to be used in training the supervised classifier. 
First, for each class we subjected the signatures to a 
hierarchical cluster analysis. Then we examined each of the 
resulting clusters by viewing the spectral profiles of the 
signatures that comprised the cluster in question. Based on 
the spectral profiles, we eliminated some of the clusters and 
merged others, resulting in 135 total clusters representing the 
26 LULC classes. Some LULC classes were represented by 
nine or ten clusters (which we termed “subclasses”), while 
some were represented by only one or two. 

The signatures for the 135 subclasses were then used to 
train a maximum likelihood classifier for the nine-month 
NDVI time-series image. The output was a 26-class LULC 
map for Mexico. To assess the classification’s performance, 
we performed a correspondence analysis and created a 
standard contingency matrix. For the correspondence 
analysis, we generated 10,000 random points from the 
classified image and used the INEGI LULC map as reference 
data to cross-tabulate the results. 

Evaluation of the initial classification performance was 
followed by the inclusion or removal of subclass signatures, 

. which meant an iterative process for exploring and improving 
the classification. The results of the correspondence analysis 
provided the basis for deleting, merging, and creating new 
signatures. Of the 135 signatures generated at the beginning 
of this process, 104 signatures representing 19 classes were 
retained to perform the final classification. The final 
classification was also subjected to a generalization process, 
with a minimal area size of 10 pixels connected under the 8- 
pixel neighbor rule. We  then repeated the correspondence 
analysis for the final 19-class map. 

RESULTS 

One outcome of the iterative process for identifying 
clusters of similar signatures (i.e., subclasses) was a 
regionalization of signatures within a single class, 
demonstrating how the time-series NDVI data captured 

regional differences in phenological responses within 
vegetation formations across Mexico. An example of this is 
the regional variation in signatures within tropical deciduous 
forest. One cluster of signatures represents the northeastern 
region (Tamaulipas and San Luis Potosi), another is located 
in the southern region towards the Pacific Coast (Oaxaca, 
Guerrero, and Michoacan), a third runs parallel to the Pacific 
coast in the northwest (Sonora, Sinaloa, and Nayarit), and one 
is in the interior south in the Oaxaca highlands. 

For the initial 26-class map, an overall correspondence 
value (CV) of 46.41% (kappa = 0.4052) between the INEGI 
map and the AVHRR map was obtained. However, the CVs 
for particular LULC classes varied widely. CVs varied from 
zero (coastal dune vegetation) to more than 70% (desert scrub 
and desert sand). The area occupied by the seven LULC 
classes with CVs higher than 50% represented about half of 
the total classified image. 

Based on the results of the error matrix and CVs, and the 
similarities in geographic location and floristic structure of 
the vegetation types, the original 26 LULC classes were 
reduced to 19. LULC classes were merged as follows: (1) 
open short forest with pine-oak forest; (2) short and medium 
tropical deciduous forests; (3) short and medium tropical 
evergreen forests; (4) introduced grassland with cultivated 
grassland; (5) mesquite forest, sand desert vegetation, 
halophytic vegetation and desert scrub. This procedure 
resulted in an increase in the CVs. The overall 
correspondence value increased 8% (from 46 to 54%). LULC 
classes with CVs above 50% represented 55% of the total 
classified image. CVs for individual LULC classes ranged 
from 7.7% (coastal dune vegetation) to 82% (desert scrub). 
Comparisons of the percentage areas mapped for each class 
between the 19-class map and the INEGI reference map can 
be seen in Table 1. 

Again, following the criteria of geographic location and 
floristic affinities, a final merging of LULC classes was 
carried out in an attempt to further improve correspondence 
values. This time, cloud forest and tropical (medium) 
evergreen forest were merged with the tropical (high) 
evergreen forest, and Tamaulipan thorn scrub, subtropical 
scrub, submontane scrub, and short thorn forest were all 
merged, resulting in 14 LULC classes. In this merged 
classification, however, no significant improvement in overall 
CV (55.5%; kappa = 0.4696) was apparent. The area 
occupied by the LULC classes with CVs above 50% 
increased to almost 60% of the total area. however. 

DISCUSSION 

The results of this mapping effort demonstrate the 
capability of AVHRR-NDVI time-series data for revealing 
seasonal changes in vegetation at the country scale for 
Mexico. Even though the overall correspondence value 
obtained was relatively low ( i . e . ,  54%), the values for major 
individual LULC classes were significantly higher (82% for 
desert scrub, 67% for pine-oak forest; and 57% for tropical 
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(medium) evergreen forest). On the other hand, the three land 
use classes (irrigated cropland, seasonal cropland, and 
introduced grassland), which are estimations of the extent of 
human-transformed environments, registered CVs below 
40%. Despite these contrasts, the results suggest that year- 
round phenological behavior, as revealed by the NDVI data, 
can be used to map general patterns in the spatial distribution 
of Mexico’s main vegetation formations. The future 
deployment of new remote sensing satellites such as Terra, 
with the improved spectral and spatial resolutions of its 
MODIS sensor, will certainly enhance future mapping 
capabilities. 

We propose the 19-class LULC classification over the 
26-class and 14-class maps for the following reasons: (1) Its 
CVs improved significantly over those of the 26-class 
analysis, while the 14-class analysis showed only minor 
improvement; (2) vegetation formations such as cloud forest 
and tropical (high) rain forest need to be individually mapped 
given the critical role that these vegetation types have with 
respect to biodiversity (i.e., they include “hotspots” of 
biodiversity); and 3) the country’s different shrub formations 
(tropical thorn forest, Tamaulipan thorn scrub, submontane 
scrub, and subtropical scrub) have distinctive geographical 
distributions [4], that are important to map separately. 

Three immediate recommendations can be made to 
improve classifications further using this general approach: 
(1) Produce improved AVHRR-NDVI data sets to produce 
data with reduced cloud contamination capable of reflecting 
better phenological processes occurring in different regions; 
(2) diversify reference data sources both to improve selection 
of training areas, and to estimate the classification 
performance without relying solely on correspondence 
analysis; and (3) incorporate ancillary data, such as elevation, 
to reduce misclassifications based on spectral patterns alone. 
We expect that further refinements of this approach will 
produce robust algorithms capable of producing rapid and 
inexpensive land cover calculations for Mexico and 
elsewhere. 
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Table 1. Percentage of areal extent of 19 vegetation classes 
using a supervised classification of time-series AVHRR 
NDVI data in comparison to a reference map produced using 
TM imagery. 

Land use/ land cover class 

Desert scrub 

Pine-oak forest 
Tropical (med.) evergreen 
forest 
Tropical deciduous forest 

Tropical (high) evergreen 
forest 
Irrigated agriculture 

Tamaulipan thorn scrub 

Seasonal agriculture 

Natural grassland 

Aquatic and semi-aquatic veg. 

Introduced grassland 

Subtropical shrub 

Submontane scrub 

Thorn short forest 

Cloud forest 

Savanna 

Mangrove 

Bare soil 

Coastal dune vegetation 

Reference Supervised 
Map Classification 

(INEGI) (ISODATA) 

27.7 23.3 

16.8 15.7 

4.1 4.7 

11.1 11.4 

2.1 2.1 

4.6 2.7 

2.0 1.9 

11.4 9.5 

6.0 7.3 

0.6 0.6 

7.6 8.9 

1.6 2.1 

1.4 2.1 

0.5 0.5 

0.9 1.7 

0.4 0.7 

0.5 0.7 

0.5 4.0 

0.2 0.1 
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