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ABSTRACT 

BACKGROUND:  Current Hsp90 inhibitors are therapeutically problematic.  Although 

they induce a pro-survival heat shock response that promotes the refolding of damaged 

proteins, a confounding issue is that at these concentrations the inhibitors are 

cytotoxic, due to their ability to decrease the maturation of newly synthesized client 

proteins.  KU-32 contains a novobiocin-based scaffold that binds to the C-terminal of 

Hsp90 and induces a pro-survival heat shock response at a concentration ~10,000 fold 

lower than that needed to induce neurotoxicity.  This creates an optimal therapeutic 

window in which to operate, providing promise towards the development of novel 

neuroprotective agents. 

 

OBJECTIVE:  To evaluate whether the induction of the heat shock response through 

Hsp90 modulation could decrease or reverse the pathophysiological progression of 

diabetic peripheral neuropathy in Type-1 diabetic mice. 

 

HYPOTHESIS:  A small molecule modulator of Hsp90 will improve experimental 

diabetic neuropathy.  

 

METHODS:  After 8-12 weeks of diabetes induced by streptozotocin, the effects of 

weekly doses of KU-32 on several standard indices of diabetic neuropathy were 

measured. 
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RESULTS:  Initial toxicity studies employing the weekly intraperitoneal administration 

of 2 or 20 mg/kg KU-32 to non-diabetic mice over 6 week duration did not alter motor 

or sensory nerve conduction velocity (MNCV/SNCV), mechanical or thermal 

sensitivity, or intra-epidermal nerve fiber density. Thus, the drug alone had no effect 

on altering common measures of neuropathy.  In a 12-week intervention study, wild-

type C57 Bl/6 animals receiving a weekly treatment regimen of 20 mg/kg KU-32 for 6 

weeks exhibited a steady recovery to control levels in thermal and mechanical 

sensitivity, MNCV, and SNCV.  KU-32 did not alter metabolic control.  As Hsp70 is 

hypothesized to be a major target for KU-32, its necessity in neuroprotection was 

examined using Hsp70 double knockout mice (Hsp70.1/Hsp70.3).  In a 12-week 

intervention study, Hsp70 knockout mice receiving a weekly treatment regimen of 20 

mg/kg for 6 weeks displayed no improvements in thermal and mechanical sensitivity, 

MNCV, and SNCV.  In 8-week intervention studies, animals demonstrated recoveries 

in sensory hypoalgesia and nerve conduction velocity deficits in a dose-dependent 

manner.  KU-32 did not alter sensory nerve fiber innervation. 

 

CONCLUSIONS:  These data suggest that hyperglycemia may adversely impact the 

ability of neurons to promote refolding or decrease unfolding of mildly damaged 

proteins.  C-terminal Hsp90 modulators can improve several standard clinical indices 

of negative symptoms associated with small and large fiber dysfunction in the absence 

of improving overall metabolic control.  The affects of KU-32 appear to be dose-

dependent and require the presence of inducible Hsp70 for efficacy.  Inducible Hsp70 

is not required for the pathophysiological progression of diabetic neuropathy.   
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CHAPTER 1:  INTRODUCTION 

I.  DIABETES MELLITUS 

 The severe complications associated with diabetes mellitus will lead to nearly four 

million deaths worldwide in 2010.1  Diabetes has become an epidemic, demanding the 

attention and recognition of the United Nations as the first non-infectious disease to 

pose a serious international health threat, comparable to infectious diseases (e.g. 

HIV/AIDS, tuberculosis, and malaria).1-2  The prevalence of diabetes within the global 

population is projected to increase from 7.9% to 8.4% by 2030, affecting 439 million 

people.1   

 In 2007, the United States spent $174 billion towards the medical treatment of 17.9 

million diabetic patients, while an additional 6.6 million remained undiagnosed or 

untreated.1, 3-6  In fact, since 2002, the number of diagnosed diabetics in the U.S. has 

steadily increased at an alarming rate of one million each year.  The Center for 

Disease Control and Prevention’s (CDC’s) last report was in 2008, bearing 18.8 

million diagnoses (6.3% of the U.S. population).4, 7   

Despite its prominence in today’s society, there are very few therapeutic 

options available to treat diabetes and its associated complications.  Although 

controlled insulin therapy significantly decelerates the rate of diabetes progression, 

acute and chronic diabetic complications still develop, deteriorating individual health 

to the point of lethality.  Most of the current therapeutics addressing diabetic 

complications are geared towards symptomatic relief.8-17  This is especially true in the 

treatment of the diabetic neuropathies.  In order to better understand the current 
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treatment regimens and the potential for therapeutic advancement against diabetic 

neuropathy, an examination of the disease’s influence on neurodegeneration will be 

conducted.  A novel, multifaceted approach is needed to adequately mitigate and 

reverse the onset and progression of diabetic peripheral neuropathy. 

II.  NEUROPATHOPHYSIOLOGY 

 The Diabetes Control and Complications Trial (DCCT, 1983-1993) marked an 

important milestone in establishing the etiology of diabetic complications.  The study 

provided the first compelling evidence to support the hypothesis that hyperglycemia 

directly contributes to the development and progression of diabetes mellitus associated 

complications (i.e. neuropathy, nephropathy, retinopathy).18  Diabetic peripheral 

neuropathy is the attrition of nerve fibers within the somatic and autonomic nervous 

systems through altered glucose metabolism resulting from hyperglycemia.  It is 

estimated that 60-70% of all diabetics will experience some form of neuropathy 

throughout the course of their disease.5  The mechanisms by which hyperglycemia 

induces neurotoxicity will be addressed in the subsequent “Glucose Neurotoxicity” 

section.  However, to better understand how glucose accumulates at toxic levels within 

the neurons, the primary means of systemic blood glucose absorption must be 

examined.   

Glucose Accumulation in Neurons 

Glucose is transported across cellular membranes through glucose transporters 

(GLUTs).  This family of solute carriers contains several isoforms that are distributed 

throughout the body by tissue type.  Neuronal glucose accumulation involves 
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abnormal changes in the GLUT1, GLUT2, GLUT3, and GLUT4 isoforms as the result 

of altered endocrine signaling.  Under normal physiological conditions, transient 

increases in blood-glucose levels trigger the release of insulin, a polypeptide hormone 

secreted by β-cells in the pancreatic islets of Langerhans.19-20  Insulin binds to insulin 

receptors in hepatic, muscle (skeletal and cardiac), and adipose cell membranes.21-23  

This binding induces an intracellular signaling cascade that shuttles GLUT-4 glucose 

transporters (stored in vesicles) to the plasma membrane where they facilitate glucose 

uptake.24-25  GLUT-4 transporters serve as the body’s primary mechanism to absorb 

and clear glucose from the blood.  If the insulin signal is destroyed, or the signaling 

cascade is compromised (e.g. acquired insulin resistance/tolerance), systemic glucose 

levels rise and these tissues become malnourished and can no longer sustain normal 

physiological activity.25   

In contrast, the nervous system cannot afford sporadic or sustained periods of 

glucose deprivation and employs insulin-insensitive GLUT-1 and GLUT-3 glucose 

transporters to transport extracellular glucose.25-29  GLUT-1 facilitates glucose 

transport across endothelial cells of the blood-brain barrier (BBB), while GLUT-3 

facilitates transport across various tissues in the central and peripheral nervous 

systems.25-26, 28  As the source of insulin secretion, the pancreas must employ its own 

constitutively active GLUT-2 glucose transporters as well.25, 28, 30  When pancreatic 

glucose concentrations reach a certain threshold, the β-cells secrete insulin to cue 

muscle, fat, and liver to help clear excess glucose.25, 28  However, in type 1 diabetes, 

sustained hyperglycemia overwhelms the β-cells and causes them to shut down, 
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reducing insulin secretion and insulin-induced glucose absorption.  Without the 

insulin-activated GLUT-4 to assist in systemic clearance, glucose seeps into the 

neurons unregulated at an abnormally high rate.  To compound this problem, insulin 

also stimulates glycogen synthesis and storage in the liver via activation of glycogen 

synthase.25  In the absence of insulin, glycogen synthesis fails and gluconeogenesis 

pursues, releasing yet more glucose into the blood and increasing flux into the 

neurons.  This extra release in glucose serves as a compensatory mechanism to 

mitigate alleged, systemic “starving” conditions detected by hepatocytes.25  Overall, 

the deterioration of insulin signaling increases blood glucose levels by decreasing the 

activation of glucose transporters in adipose/muscle tissue and increasing 

gluconeogenesis.  This increase in blood-glucose concentrations drives more glucose 

into the nerves, increasing metabolic flux via glucose metabolism, which contributes 

to neurotoxicity.   

The underlying causes behind insulin degeneration and insensitivity differ 

within all three major forms of diabetes:  Type 1, Type 2, and Gestational.  Type 1 

diabetes mellitus (T1DM), which used to be referred to as “juvenile diabetes,” usually 

develops early in life, comprising 5-10% of all diabetic cases.4-6, 10, 16, 31  This 

condition typically arises when the patient’s autoimmune system targets and destroys 

β-cells, eliminating the individual’s source of insulin.4-6, 10, 16, 31-32  Approximately 

80% of Type 1 diabetics express islet cell antibodies that selectively target β-cells for 

immune-mediated elimination.10  Some patients also produce autoantibodies against 

insulin and other endocrine tissues such as the adrenal, thyroid, and parathyroid 
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glands.10  Although the root cause remains to be determined, a significant 

environmental influence has become evident through identical twin studies.32  Twin 

studies are the classic argument to evaluate exclusive genetic predisposition as both 

twins share identical genotypes and should ideally express the same phenotypes (i.e. 

diabetes) throughout life.  In documented diabetic cases involving identical twins, the 

likelihood of both twins contracting the disease is about 50%.33-36  These twin studies 

refute an exclusive genetic basis for type 1 diabetic disease development.  

Intriguingly, a small fraction of Type 1 diabetics are void of any autoimmune factors, 

but yet still display clear signs of hypoinsulinism.16, 32  The disease etiology behind 

these idiopathic diabetics remains unknown.  Nevertheless, this sect of type 1 diabetics 

cannot sufficiently produce enough insulin to alleviate neuronal hyperglycemia.16, 32  

In general, type 1 diabetes arises either through β-cell incapacitation/dysfunction 

(affecting the production and secretion of insulin) or through systemic insulin 

elimination during circulation.   

In contrast to type 1, type 2 diabetes mellitus (T2DM) typically develops 

towards the later stages of life, accounting for nearly 90% of all diabetic patients.4-5, 34  

In T2DM, the patient either develops deficits in insulin production/secretion or 

acquires a resistance to negate insulin efficacy (e.g. impaired insulin signaling).4-5, 31-32  

T2DM exhibits a relatively higher genetic predisposition in comparison to T1DM, 

often exhibiting mutations in genes associated with insulin secretion or intracellular 

signaling, such as glucokinase or Akt-2, respectively.32, 37  Typically, the 

consequences of these mutations go unnoticed early in life as the body slowly makes 
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adjustments to mitigate these shortcomings, such as increasing insulin production or 

overexpressing other intracellular signaling proteins to increase pathway sensitivity.  

However, these genetic defects compound over time and under physiological stress.  

The Diabetes Prevention Program (DPP, 1998-2001) determined that increasing age, 

obesity, and sedentary lifestyle significantly increase the development of Type 2 

diabetes.38  Controlled exercise and low-fat diets decreased the mean body weight by 

5-7% and the onset of Type 2 diabetes by 58%.38  To summarize, type 2 diabetes 

manifests itself in the later stages of life, and is associated with an increasingly 

sedentary lifestyle and obesity.  Sedentary lifestyles, obesity, and time exacerbates an 

already stressed intracellular (i.e. β-cell, adipocyte, and muscle cell) metabolic state 

acquired through genetic predisposition.  Collectively, these factors reduce/halt insulin 

secretion and sensitivity, debilitating GLUT4 glucose transporters and, thus, 

increasing neuronal metabolic demand. 

 Gestational Diabetes (GD) occurs when glucose intolerance arises during the third 

trimester of pregnancy, affecting 4% of U.S. pregnancies annually.32  GD is triggered 

by pregnancy-induced metabolic alterations that results from maternal nutritional 

irregularities (i.e. glucose) associated with fetal nourishment.4-5, 32  The etiology of GD 

is very similar to type 2 diabetes and the risk of contraction is generally higher in 

obese women, individuals with a family history of diabetes, and certain ethnic groups.  

If untreated, the disease can endanger the fetus and the mother.4-5, 32  Approximately 5-

10% of the mothers with GD will become Type 2 diabetic postpartum, while the 

chances of developing Type 2 within the next ten years (postpartum) is 40-60%.4-5, 32  
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Similar to type 2 diabetes, gestational diabetes occurs during stressful physiological 

conditions (pregnancy) that increase or cause significant fluctuations in metabolic 

demand.  Consequently, GD amplifies preexisting metabolic abnormalities that 

diminishes insulin secretion, weakens insulin sensitivity, and increases neuronal 

burden. 

 Despite their different etiologies, each type of diabetes generates hyperglycemic 

conditions that systemically alter the individual’s metabolic state, producing severe 

acute and chronic complications.  These complications include peripheral neuropathy, 

cardiovascular disease, retinopathy, and nephropathy.18, 25, 28, 38  Although 

hyperglycemia primarily drives neurodegeneration, several of the other diabetic 

complications feed neuropathic development, amplifying its progression.  These other 

complications will be discussed briefly in the context of neuropathic development in 

the proceeding section.  Thus far, only the means of neuronal glucose accumulation 

have been discussed.  The specific mechanisms by which glucose induces toxicity will 

be examined below. 

Glucose Neurotoxicity 

Hyperglycemia instills its neurotoxic effects primarily through metabolic 

congestion.  As the cell is forced to employ contingency plans to metabolize excess 

glucose, intracellular coenzyme and antioxidant supplies (e.g. NAD+, NADPH, 

Glutathione) quickly deplete.  As time progresses, the neurons reroute critical 

coenzyme and antioxidant supplies to support more crucial, life-sustaining functions.  

Ironically, failure to properly supply any of these metabolic pathways leads to cellular 
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demise.  These chokepoints arise within glycolysis, the tricarboxylic acid (TCA) 

cycle, polyol (sorbitol) pathway, and hexosamine pathway, inducing 

oxidative/nitrosative stress, inflammation, and glycemic post-translational 

modifications that alter protein expression and function.  Each of these metabolic 

pathways and their instilled physiological consequences will be addressed. 

Glycolysis and TCA Cycle 

The neuronal response to increased glycemic concentrations is to upregulate 

the main and alternate metabolic pathways.  The first line of defense is to increase 

glucose flux through glycolysis, followed by subsequent entry into the TCA Cycle 

(Figure 1.1).  Several of these metabolic steps employ the oxidizing coenzymes NAD+ 

(nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which 

reduce to NADH and FADH2, respectively.39  Each molecule of glucose typically 

yields ten molecules of NADH and two FADH2.39  These reduced coenzymes undergo 

oxidative phosphorylation in the mitochondria to collectively yield 26-28 molecules of 

ATP (adenosine triphosphate).39  However, the problem herein lies with the rapid 

saturation of hexokinase (glucokinase), which quickly surpasses its capabilities.17, 25  

This is compounded by the fact that hexokinase is often mutated in type 2 diabetics 

(discussed previously).  As the capacities of hexokinase are exceeded, the neuron must 

implement contingency plans to shunt excess glucose into relatively minor metabolic 

pathways of glucose metabolism.  These metabolic contingency plans normally consist 

of the polyol and hexosamine pathways.   
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Figure 1.1.  Metabolic demands in hyperglycemic neurons.    

Polyol (Sorbitol) Pathway 

The polyol, or sorbitol pathway, provides the majority of reinforcing support to 

glycolysis and the TCA cycle (Figure 1.1).  With glucose levels typically four times 

higher in diabetics than normal, hexokinase becomes overwhelmed and glucose 

concentrations quickly approach the KM of aldose reductase (AR) (n.b. glucose 

binding affinities:  AR << hexokinase).25  Aldose reductase utilizes the coenzyme 

NADPH (nicotinamide adenine dinucleotide phosphate) to reduce glucose to 

sorbitol.17, 25, 40  Under less stringent conditions, sorbitol oxidizes to fructose via 
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sorbitol dehydrogenase (SDH) and NAD+.40  However, the bulk of NAD+ stock is 

depleted during glycolysis and the TCA cycle, resulting in sorbitol accumulation.  The 

formation of sorbitol drains reserve NADPH stockpiles, a coenzyme required for 

glutathione reductase to convert oxidized glutathione (GSSH) back to glutathione 

(GSH).17, 25, 41  Without reduced glutathione, cellular defenses against 

oxidative/nitrosative stress (discussed below) weaken.  The surplus of hydrophilic, 

impermeable sorbitol arguably alters intracellular osmolarity, inducing swelling.17, 25, 

40-41  To compensate, neurons alter internal osmolyte (e.g. myo-inositol) 

concentrations to reduce osmotic pressure.17, 25, 41-42  Myo-inositol is an important 

precursor to an assortment of secondary messengers within various signaling 

pathways.42  However, without sound evidence, the generation of osmolar and myo-

inositol irregularities in diabetic neuropathy remains debatable.  Regardless, aldose 

reductase provides an alternate means to metabolize excess glucose upon hexokinase 

saturation.  Unfortunately, NADPH employment by AR inhibits the recycling of 

functional glutathione needed to neutralize the increasing oxidative and nitrosative 

insults in neurons (discussed below). 

Oxidative and Nitrosative Stress  

The depletion of functional glutathione and the increase in NADH with 

glycolysis/TCA cycle has serious repercussions in mitochondrial operations.  During 

oxidative phosphorylation, O2 is usually reduced to H2O.  However, a small 

percentage (1-4%) isn’t completely reduced and, instead, forms the free radical 

byproduct superoxide, O2·- (Figure 1.1).25, 40-41  The mitochondrial protein SOD 
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(superoxide dismutase) normally converts this reactive oxygen species (ROS) to H2O2, 

where catalase reduces it to H2O and O2.41  This conversion is normally reinforced by 

glutathione peroxidase, glutathione S-transferase, and thioredoxin.  However, all of 

these proteins require either NADPH or reduced glutathione to reduce H2O2.25, 41  

H2O2 reacts with iron (II) to generate iron (III), hydroxide, and hydroxyl radicals 

(Fenton and Haber-Weiss reactions) and with nitrite to form the reactive nitrogen 

species (RNS) peroxynitrite (ONOO-).25, 41  Peroxynitrite also forms when nitric oxide, 

an abundant neurotransmitter produced by nitric oxide synthase, reacts with 

superoxide.  Under hyperglycemic conditions, mitochondria produce relatively large 

quantities of ROS/RNS.41  These toxic free radicals escape the mitochondria, drain the 

cellular antioxidant defense mechanisms, and can modify cellular components (e.g. 

proteins, membranes, DNA).17, 41   One common indicator of RNS protein 

modification is the nitrosylation of tyrosine residues upon interaction with 

peroxynitrite, yielding nitrotyrosine.  ROS/RNS-induced genetic modifications 

become irreparable as many of the cell’s DNA repair mechanisms such as PARP 

(poly(ADP-ribose) polymerase) must compete for exhausted NAD+.40  Redirecting 

NAD+ to assist in genetic repairs deters glycemic clearance, leading to further glucose 

accumulation.  The battle for coenzymes to maintain homeostatic conditions is a lose-

lose situation.   

Hexosamine Pathway and Advanced Glycation Endproducts (AGEs) 

Another contingent mechanism to deal with profuse amounts of glucose is the 

hexosamine pathway, which diverges from glycolysis after the conversion of glucose 
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6-phosphate to fructose 6-phosphate (Figure 1.2).  The hexosamine pathway generates 

an abundance of uridine diphosphate-N-acetyl-D-glucosamine (UDP-O-GlcNAc).  O-

GlcNAc transferase (OGT) utilizes this metabolite to post-translationally modify (O-

GlcNAcylate) several key signaling proteins and transcription factors.25, 43-44   

 

Figure 1.2.  O-GlcNAcylation of proteins through the hexosamine pathway.    

Intriguingly, all known proteins that undergo O-GlcNAcylation can also be 

phosphorylated (e.g. p53, c-myc, estrogen receptor, and YY1).45-49  Mounting evidence 

supports extensive cross-talk between O-GlcNAcylation and phosphorylation, 

revealing both negative and positive modulation of phosphorylation regulatory 

effects.44-45, 50  Phosphorylation regulates several cellular processes, including 

intracellular signaling cascades, transcription factors, and cellular trafficking essential 

to cell growth and survival.  Abnormalities in phosphorylation and O-GlcNAcylation 

states have been implicated in diabetes and cancer; this typically arises due to changes 
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in flux through the hexosamine pathway, unmanaged kinase activity, or mutations in 

protein regulatory sites.  For example, O-GlcNAcylation of the tumor suppressor p53 

induces the expression and phosphorylation of p53, preventing proteolytic degradation 

(of p53) and inducing pro-apoptotic gene transcription.49, 51  Transcription factors 

(TFs), such as c-myc, are often upregulated and phosphorylated during cancerous 

activity, enabling the transcription of pro-survival oncogenic proteins.47, 49, 51  O-

GlcNAcylation of the c-myc’s phosphorylation site inhibits phosphorylation and 

negates TF activation, indicating a “Yin-Yang” regulatory model.47  O-GlcNAcylation 

also increases the turnover/degradation of the estrogen receptor (normally 

upregulated/hyperactive in several breast cancers), indicating a significant effect upon 

signal transduction as well.46  O-GlcNAcylation also impacts client protein recognition 

and function of several molecular chaperones/co-chaperones within the heat shock 

family (addressed in subsequent Hsp70 and Hsp40 section).  Hence, excessive O-

GlcNAcylation under hyperglycemic stress can severely disrupt the neuron’s 

homeostatic state (transcription, signal transduction, and trafficking activity), 

generating adverse survival conditions. 

In addition to O-GlcNAcylation, non-enzymatic protein glycosylation is 

common under hyperglycemic conditions, yielding stable AGEs (advanced glycation 

endproducts) by the Amadori Rearrangement.17, 25, 40-41, 52-54  In AGE formation 

(Figure 1.3), the primary amine of arginine’s δ-guanidino group (or lysine’s ε-amino 

group) attacks the anomeric carbon of glucose.52-53  The anomeric oxygen then 

becomes protonated and the free electron pair of the secondary amine attacks the 
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adjacent carbon, forming a Schiff base and releasing H2O.  Upon deprotonation of the 

charged nitrogen, subsequent deprotonation at the C-2 position affords the enolate, 

regenerating the secondary amine .52-53  Tautomerization gives the ketone product 

which can undergo cyclization to yield the Amadori complex, or AGE.52-53   

 

Figure 1.3.  Formation of AGEs through the Amadori Rearrangement. 
 

This glycoxidation permanently alters all encountered protein components 

within or supplying the peripheral nervous system (e.g. myelin proteins, neuronal 

cytoskeletal proteins, extracellular matrix proteins, and supporting 

microvasculature).17, 55-56  Extracellular AGE can bind to RAGE (receptor for AGE), 

inducing the activation of nuclear transcription factor NF-κB (Figure 1.1) in dorsal 

root ganglia (DRGs) neurons.  Activation of the AGE-RAGE-NF-κB pathway further 

induces ROS formation, nuclear DNA degradation, and caspase-3-mediated apoptosis 

.55-56  NF-κB also induces the release of the proinflammatory cytokines TNF-α (tumor 

necrosis factor-α) and IL-1β (interleukin-1β), inducing neuronal apoptosis (and 

decreasing sensation) or increasing pain, respectively.55, 57  

The most common AGE readily measured in diabetics is glycated hemoglobin 

(HbA1C).54  Specialized HbA1C indicators, similar to blood-glucose meters, can easily 
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detect percent HbA1C levels from a small blood sample.  In 2010, the ADA published 

diagnosis guidelines establishing diabetic HbA1C levels at ≥ 6.5% (48 mM) versus 

normal levels at 5-6% (31 mM) in humans; these levels match the percentages 

observed in experimental murine models.58   

Protein Kinase-C (PKC) Pathway 

Under hyperglycemic conditions, glyceraldehyde-3-phosphate (glycolysis) can 

be diverted to form 1,2-Diacylglycerol (DAG).  DAG activates several PKC isoforms 

(n.b. PKC-β), altering the expression of various angiogenic proteins (VEGF (vascular 

endothelial growth factor) and PAI-1 (plasminogen activator inhibitor-1)) and 

proinflammatory/proapoptotic proteins (NF-κB and TGF-β (transforming growth 

factor-β)).41, 59  PKC-β inhibitors (i.e. LY333531) show substantial improvements in 

motor nerve conduction velocity.59-60  However, this recovery is most likely due to 

improvements in vascular support, providing a temporary patch towards an 

increasingly complex problem.    

Hyperlipidemia and Neurodegeneration 

Additional microvascular dysfunction to the vasa nervorum (blood vessels 

supplying the nerves) stems from adipose starvation.  Adipose starvation triggers 

lipolysis, allowing free fatty acids to filter into the blood, enter the liver, and undergo 

β-oxidation.61-63  Up to 97% of all diabetics display at least one abnormal fatty acid 

level in the blood.64-65  Hyperlipidemia generates small lipoprotein molecules, 

predominately LDL-cholesterol, that bind to arterial walls, decreasing plasticity.65  

This primes the arteries to develop hardening plaques, leading to atherosclerosis.65  If 
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oxidized, LDL-cholesterol can become misconstrued as an antigen and induce an 

immune response.65  Atherosclerosis compounds the microvascular distress 

synergistically inflicted by AGEs and PKC. 

Collectively, hyperglycemia drives neurons to the point of metabolic 

exhaustion.  As the neurons operate at maximum capacity, primary and contingent 

metabolic routes saturate, coenzyme stockpiles quickly deplete, and antioxidant and 

DNA repair mechanisms fail.  These conditions disrupt intra-/intercellular 

communications, enable the accumulation of highly toxic ROS and RNS that damage 

cellular components (e.g. protein, DNA, synaptic vesicles, organelles), and allows for 

abnormal post-translational modifications (O-GlcNAc and AGEs) that alter cellular 

trafficking, signal transduction, cell morphology, and protein function/expression.  

This neuronal meltdown, in conjunction with the extrinsic pressures of ischemia and 

inflammation, drives the neuron into a degenerative state, activating the intrinsic 

apoptotic pathway.  As neuronal viability diminishes, overall innervation and control 

of peripheral tissues begins to decrease, producing increasingly severe physiological 

effects.  These physiological effects, or symptoms, are described below.  

III.  SYMPTOMOLOGY 

Diabetic peripheral neuropathy gives rise to a variety of positive, negative, and 

autonomic symptoms.  Positive symptoms entail spontaneous or heightened pain 

sensitivity, such as prickling, tingling, “pins and needles,” burning, freezing, crawling, 

itching, throbbing, constricting, or numbness.9, 11, 17, 66-67  Abnormal pain sensations in 

response to thermal and mechanical stimuli (e.g. brush of bed covers, walking) can 
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significantly alter one’s quality of life.9, 11, 17, 66-67  As the patient attempts to avoid 

aggravation of these hyperalgesic events, the individual can suffer from insomnia or 

become improperly balanced (physically), increasing the likelihood of physical injury.  

Imbalance can also result through the onset of negative symptoms:  numbness, sensory 

and motor deficits, fatigue, and on rare occasions, visual impairments.9, 11, 17, 66-67  

These debilitating conditions, combined with poor circulation, promote the 

development of foot ulcerations and infections (i.e. gangrene), eventually requiring 

amputation.  Diabetic neuropathy is the number one cause of non-traumatic, lower 

limb amputations in the U.S., averaging 82,000 each year.3, 5, 66  Nerve dysfunction 

and poor vascular support also compromise the control and structural integrity of the 

autonomic nervous system.  The autonomic neuropathies can provoke profuse 

sweating or dry skin; cardiac dysfunction (arrhythmia, infarction); gastrointestinal 

irregularities (constipation, diarrhea, heartburn, difficulty swallowing, nausea, and 

vomiting); loss of bladder sensitivity; erectile dysfunction; irregular pupil 

constriction/dilation; and a variety of metabolic abnormalities impacting the visceral 

organs (e.g. nephropathy).17, 67   

Although there are several symptoms associated with diabetic peripheral 

neuropathy, this research focuses primarily upon the treatment of sensorimotor deficits 

observed in type 1 diabetic (murine) models.  As previously stated, hyperglycemia 

drives neurons into an apoptotic state, generating an assortment of clinical symptoms 

as the disease progresses.  Current therapeutics rely heavily upon monosymptomatic 

relief, addressing only portions of the underlying mechanisms driving 
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neurodegeneration.  Several of the current therapeutic options are discussed below.  

However, a broader, multisymptomatic approach is needed to adequately combat 

diabetic neuropathy. 

IV.  THERAPEUTIC DEVELOPMENT 

Although the Ebers Papyrus arguably describes the first reported symptoms of 

diabetes mellitus nearly 3500 years ago, the first indisputable account and recorded 

treatment were by the ancient Greek physician Aretaeus (ca. 81-138 A.D.).16, 68-71  

Aretaeus first coined the term “diabetes” from the Greek word diabaínein, meaning 

siphon or pipe-like, after making the following observations: 

Diabetes is . . . a melting down of the flesh and limbs into urine . . . 
life is disgusting and painful; thirst, unquenchable; excessive 
drinking, which, however, is disproportionate to the large quantity 
of urine, for more urine is passed; and one cannot stop them either 
from drinking or making water.68  
     - Aretaeus, the Cappadocian 
  
By 1920, the best remedies of the time remained purgation and extreme 

dieting, therapies employed by Aretaeus.68-69  Individuals suffering from Type 1 

diabetes, such as “J.L.” (Figure 1.4.A.), usually died within a year of diagnosis as a 

result of malnutrition from fasting or other complications.69, 72  The discovery and 

isolation of insulin by Banting, McCleod, Best, and Collip in 1922 marked the first 

significant therapeutic means to combat diabetes.19, 69  With the discovery of insulin, 

diabetics saw not only a vast physical improvement (Figure 1.4.B.), but an increase in 

the average life expectancy as well.   
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Figure 1.4.  “J.L.” (A) before insulin treatment, December 15, 1922 – Age: 3 years, 
Weight: 15 lbs; and (B) after insulin treatment, February 15, 1923 – Age: 3 years, 
Weight 29 lbs.69 
 

While the discovery of insulin was a major stride towards treating diabetes, the 

global impact of diabetic complications is still evident today (see section I).  In his 

Nobel lecture, Dr. Banting described their discovery as:  “Insulin is not a cure for 

diabetes; it is a treatment.”73  The DCCT demonstrated that controlled, multi-daily 

insulin administration, in conjunction with glucose monitoring, significantly delayed 

further development of neuropathy, nephropathy, and retinopathy.18  Despite insulin’s 

prominent use in today’s society, it has its drawbacks.  Improper insulin management 

can result in diabetic hypoglycemia (insulin shock) that can cause severe brain damage 

or in the hyperglycemic development of potentially fatal conditions, such as diabetic 

ketoacidosis (increase in blood acidity due to abnormal ketone body concentrations) or 

diabetic coma.61-62   

Modern diabetic treatments generally offer monosymptomatic relief or 

specifically inhibit single, putative pathogenic mechanisms associated with a targeted 

complication.  Table 1.1 outlines several of the current therapeutic options available 

and their physiological impacts.   

B.A. 
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Table 1.1.  Current therapeutic approaches to treat diabetic peripheral 
neuropathy.8-17  
 
Neuropathic Therapies Physiological Impact Examples

Hormones
Insulin (human and animal) GLUT-4 glucose transport Rapid-, intermediate-, and slow-acting insulin preparations

Continuous subcutaneous insulin infusion (CSII) therapy
Insulinmimetics GLUT-4 glucose transport L-783,281

Hypoglycemic Agents
Sulfonylureas, 1st and 2nd generation Insulin secretion in β-cells Tolbutamide, Glyburide
Sulfonylureas, 3rd generation GLUT-4 glucose transport Glimepiride
Biguanides Gluconeogenesis Metformin
Thiazolidinediones Insulin efficacy Rosaglitazone, Pioglitazone
α-glucosidase inhibitors glucose absorption in gut Miglitol

Analgesics
Opioids Pain Tramadol, Oxycodone CR
NSAIDs Inflammation and pain Aspirin, Ibuprofen

Additional Pain Treatments
SSRIs Pain and depression Paroxetine, Citalopram
SSNRIs Pain Duloxetine, Venlafaxine
TCAs Pain and depression Amitriptyline, Imipramine
Anticonvulsants Pain Lamotrigine, Sodium valproate, Pregabalin
Topical Pain (localized) Isosorbide dinitrate spray, capsaicin

Antipathogenic
Aldose Reductase Inhibitors Sorbitol and NADPH depletion Fidarestat, Ranirestat, Epalrestat
PKC-β Inhibitors Ischemia Ruboxistaurin mesylate
PARP Inhibitors NAD+ depletion GPI-15427
Antioxidants ROS and RNS Lycopene, α-lipoic acid, Taurine
ACE inhibitors Hypertension Enalapril
Antiarrhytmatics Heart beat regulation Mexilitene

Surgical
Nerve decompression Pain or numbness Entrapment decompression
Amputation Necrotic/infected tissues Lower limb removal  

As with insulin, several of the current therapeutics are tailored towards 

reestablishing homeostatic glycemic levels through insulinmimetics or hypoglycemic 

agents that regulate glucose absorption, transport, or production (gluconeogenesis).  

However, all of these options retain the hazards associated with improper insulin 

management.  Assorted analgesics offer temporary pain relief and reduce 

inflammation (i.e. NSAIDs, non-steroidal anti-inflammatory drugs) at affected nerves.  

TCAs (tricyclic antidepressants) and SSRIs (selective serotonin reuptake inhibitors) 
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are also commonly prescribed for pain.  Surgical procedures, such as limb amputation, 

nerve decompression, and pancreatic transplantation, are costly and accrue additional 

safety risks to the patient.  Antirrthymatics, antihypertensive agents such as ACE 

(angiotensin-converting enzyme) inhibitors, and PKC-β inhibitors help to regulate and 

sustain adequate blood supply to the nerves.  Aldose reductase inhibitors, such as 

Ranirestat, reduce the flux of glucose through the polyol pathway and subsequent 

sorbitol production.  Finally, the mere increase in antioxidants helps to neutralize 

ROS/RNS before they can induce their cytotoxic effects.   

Currently, all 54 open clinical trials dedicated towards the treatment of diabetic 

peripheral neuropathy are symptomatic treatments  (anesthetics, anticonvulsants, 

hypoglycemic agents, gastrointestinal tract agents, anxiolytics, or antidepressants).12  

These approaches only slow the progression of the neuropathy.  Hence, what is truly 

needed is a more multifaceted approach that refortifies neuronal defenses against 

invading glucose.  This reinforcing support may be available through the upregulation 

of molecular chaperones known as heat shock proteins.      

V.  HEAT SHOCK PROTEINS AND NEUROPROTECTION 

Heat shock proteins (HSPs) are molecular chaperones that assist in the proper 

folding of nascent polypeptides, or “client proteins,” into the proper conformation 

necessary to conduct normal physiological processes.74-77  These chaperones also 

assist in the refolding of denatured proteins that might arise due to various cellular 

stressors, such as oxidative or nitrosative stress, nutrient deprivation, heat shock, pH 

fluctuations, and various pharmaceutical and toxic insults to the system.74-75, 77   
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Several of these client proteins are various oncogenic proteins that are upregulated in 

cancerous tissue, making heat shock proteins (esp. Hsp90) very attractive targets 

towards the development of novel cancer chemotherapeutics.51, 76, 78-82  Increasing the 

expression of heat shock proteins, such as Hsp90, directly influences all six hallmarks 

of cancer (Table 1.2).51, 79, 83  

Table 1.2.  The six hallmarks of cancer.51, 79  

Hallmark Hsp90 Client Proteins
Self-sufficient growth signals Raf-1, Akt, Her2, MEK, Bcr-Abl
Insensitive to anti-growth signals Plk, Wee1, Myt1, CDK4, CDK6
Evasion of apoptosis RIP, Akt, mutant p53, c-Met, Apaf-1, Survivin
Limitless replicative potential Telomerase (h-Tert)
Sustained angiogenesis FAK, Akt, Hif-1α, VEGF-R, Flt-3
Tissue invasion and metastasis c-Met, v-src  

Heat shock proteins allow cancer cells to manufacture and repair large 

quantities of protein, sustaining their operation under abnormal intracellular conditions 

(self-imposed) and encountered external stressors (e.g. metastasis, immune 

response).51, 76, 80-81  Hence, heat shock proteins enhance viability.  In contrast, the 

etiologies of several neurological disorders link directly to malfunctions in heat shock 

protein folding/refolding activity, where misfolded proteins (and their aggregates) 

induce cytotoxicity.84  Heat shock proteins serve as an intracellular quality 

assurance/quality control:  triaging proteins for either repair or flagging them for 

proteolytic degradation via ubiquitination, disaggregating aberrant protein complexes, 

stabilizing critical protein complexes, and trafficking proteins to their proper 

destinations.  Table 1.3 depicts several neurodegenerative diseases that arise as the 

result of altered (e.g. client protein mutation) or insufficient HSP:client protein 

interactions. 
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Table 1.3.  Neurological disorders associated with HSP deficiencies.84-96    

Disease Protein
Alzheimer's Disease Amyloid-β, hyperphosphorylated tau
Parkinson's Disease α-synuclein
Amyotrophic Lateral Sclerosis (ALS or Lou Gehrig’s Disease), Mutant superoxide dismutase-1 (SOD1)
Retinitis Pigmentosa Mutant rhodopsin
Huntington's Disease Mutant huntingtIn (mtt)
Spinocerebellar Ataxias (SCA) Types: 1, 2, 3, 6, 7, 12, and 17 Mutant ataxins
Spinal and Bulbar Muscular Atrophy (SBMA or Kennedy's Disease) Mutant androgen receptor
Dentatorupallidolysian Atrophy (DRPLA) Mutant atrophin-1
Creutzfeldt–Jakob Disease PrPC/PrPSc  

Upregulation of heat shock proteins not only reduces the formation of these 

abnormal proteins, but solubilizes and disbands their toxic aggregates.84, 87, 90-91, 95  As 

previously mentioned, diabetes-induced hyperglycemic stress damages or alters the 

expression and functional integrity of several proteins and transcription factors.  HSP 

client proteins are involved in numerous cellular operations that directly/indirectly 

impact neuronal survival (Table 1.4).   

Table 1.4.  Heat shock protein associations affecting neuronal viability. 

Neuroprotective Attributes Hsp90, Hsp70, & HSR-Associated Proteins
Mitochondrial regulation Mn/Cu SOD, HO-1, NOS (all isoforms), Hsp60, TOM70
Unfolded Protein Response (UPR) Grp94, Grp78, Calreticulin, IRE-1α, Perk
Evasion of apoptosis Akt, Apaf-1, Bcl-XL, Survivin
Transcription/Translation Regulation Raf-1, MEK, ERK, Akt, mTOR, GSK-3β, JAK, PARP
Insulin signaling IR, IGF-R, Akt
Vesicle maintenance Hsp40, Neural J Proteins, Hsc70
Demyelination inhibition JNK, PrPC

Vascular support Akt, Hif-1α, VEGF-R  

Thus, under hyperglycemic stress, heat shock proteins offer a potential 

mechanism to salvage damaged proteins, stabilize essential protein-protein 

interactions, sequester proteins that advocate apoptosis, and facilitate the folding and 

delivery of reinforcing protein support.  The majority of heat shock proteins can be 

upregulated through the induction of the heat shock response. 
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Hsp90 and the Heat Shock Response 

Hsp90 is a 90-kDa molecular chaperone that comprises 1-2% of all cellular 

proteins and interacts with over 200 client proteins and 50 co-chaperones.51, 76-81, 83  

There are four mammalian isoforms:  Hsp90α and Hsp90β (cytosol), Grp94 (glucose-

regulated protein-94) (endoplasmic reticulum), and TRAP-1 (tumor necrosis factor 

receptor associated protein-1) (mitochondria).  As mentioned previously, small 

molecular inhibitors of Hsp90 can induce cytotoxicity in cancer cells by preventing 

sufficient protein folding needed to sustain accelerated cancerous activities (Figure 

1.5).51, 74-83, 97  Hsp90 also constitutively binds heat shock factor-1 (HSF-1), a 

transcription factor that induces the pro-survival heat shock response (HSR).98-99   

 

Figure 1.5.  Cytotoxic versus neuroprotective roles of Hsp90 modulators.79 

Upon heat shock or inhibition of Hsp90 (homodimer), HSF-1 releases, 

phosphorylates, trimerizes, hyperphosphorylates, and translocates into the nucleus, 

wherein it binds to a series of heat shock elements (HSEs) (Figure 1.6).83, 98, 100  This 

allows for the transcription and expression of additional heat shock proteins, such as 

Hsp72 (inducible Hsp70), Hsp40, Hsp27, and additional Hsp90. 
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Figure 1.6.  Induction of the heat shock response via HSF-1 release from Hsp90.79 

Current Hsp90 inhibitors are therapeutically problematic.  N-terminal 

inhibitors, such as the benzoquinone ansamycin antibiotic geldanamycin, induce 

immediate client protein degradation while simultaneously inducing the heat shock 

response via HSF-1 release (Figure 1.7).101  C-terminal inhibitors, such as the 

coumarin antibiotic novobiocin and structural analog KU-174, induce immediate 

client protein degradation with little to no induction of the HSR.97  However, through 

the optimization and characterization of the novobiocin scaffold, a unique structural 

analog, KU-32, was created.  KU-32 delays the onset of Hsp90 client protein 

degradation in a dose-dependent manner while promptly inducing the HSR.102  Hence, 

KU-32 appears to act more as a modulator of Hsp90 activity versus an inhibitor.  This 

generates a novel therapeutic window in which to operate in and offer neuroprotection. 
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Figure 1.7.  Client protein degradation and induction of the heat shock response 
with the three known types of Hsp90 inhibitors.75 
 

Hsp90 works collaboratively with several co-chaperones, partner proteins, and 

immunophilins to form stabilized heteroprotein complexes in which it operates upon 

client proteins.  In addition to assisting in Hsp90 client protein folding, Hsp70 and 

Hsp40, also upregulated during the HSR, can form separate complexes capable of 

offering additional neuroprotective roles.  These functions are discussed briefly below.   

Hsp70 and Hsp40 

 Although there are ~13 Hsp70 isoforms, the primary focus of this section is on 

constitutive Hsc70 (heat shock cognate 70) and the inducible isoforms: Hsp72 

(humans) and Hsp70.1/Hsp70.3 (mice).103-104  There are over 40 different mammalian 

proteins that contain a signature J domain (known as “J proteins”), including Hsp40.  

The J domain enables these proteins to bind to Hsp70 and catalyze Hsp70’s ATPase 

activity.103-104  There are a multitude of combinations in which J proteins can complex 
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with Hsp70, altering substrate recognition and increasing the number of potential 

client proteins.103  Neurons employ several specialized Hsp70:J protein interactions to 

accomplish essential neuronal functions and prevent neurodegeneration (Table 1.5).104   

Table 1.5.  Hsp70 interactions with neural J proteins.104-106 

J Protein Function Location
Auxilin Clathrin exchange during endocytosis of vesicles Cytosol
GAK (Cyclin G-associated kinase) Clathrin exchange during endocytosis of vesicles Cytosol
CSPα (Cysteine string protein α) Gαs GEF (guanine nucleotide exchange factor) Synaptic vesicles

Ca2+ channel regulation
Exocytosis-associated protein repair (SNARE)

Rme-8 Endosomal trafficking regulation Endosome
Hsp40 Refolding damaged proteins Cytosol
Hsj1 Sorting of polyubiquitylated proteins for degradation Cytosol/ER
Mrj Solubilization of cytotoxic aggregates Cytosol/Nucleus
Rdj2 Gαs GEF Cytosol/Membrane

PrPC  

 Several neural J proteins show interchangeability between Hsc70 and inducible 

Hsp70 and vice versa.104-105  However, this interplay is often accompanied by 

differences in relative binding affinities.  Specialized Hsp70:neural J protein 

complexes assist in synaptic vesicle management (e.g. calcium channel regulation, 

exocytosis, endocytosis), serve as GEFs (guanine nucleotide exchange factors) to 

stimulate Gαs in G-protein coupled receptors (GPCRs), and assist in protein 

ubiquitination.  Through interactions with BAG-1 (BCL2-associated athanogene) and 

CHIP (C-terminus of Hsc70/Hsp70-interacting protein), Hsp70/Hsc70 flags 

irreparable proteins with ubiquitin.107  This enables the degradation of both Hsp90 and 

Hsp70 client proteins.  

 Hsp70 and Hsc70 also display lectin properties (i.e. binds O-GlcNAc-proteins) 

that enable them to bind O-GlcNAcylated proteins (see hexosamine pathway), 

including several heat shock proteins (Hsp70, Hsc70, Hsp90, Hsp60, and Hsp27).44-45, 

50, 108-113  It’s currently hypothesized that Hsp70/Hsc70 employs these properties to 
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protect proteins from degradation.108-109  Thus, induction of Hsp70 could additionally 

serve as a means to sequester and protect critical proteins and other chaperones (i.e. 

Hsp60) within the neuron.  However, the impact of O-GlcNAc on heat shock protein 

expression and function and substrate recognition is poorly understood.   

Preliminary Data and Hypothesis 

 Induction of the heat shock response may reinforce fatigued neurons by 

clearing irreparable proteins, refolding damaged proteins, transporting proteins to 

areas of concern, sequestering and protecting essential proteins from degradation, and 

stabilizing protein complexes.  Several of these inducible heat shock proteins (Hsp90, 

Hsp70, and Hsp40) are localized within dysfunctional organelles and associate directly 

with pathways implicated in glucose neurotoxicity.   

 Based on these premises, a preliminary study of the in vitro neuroprotective 

effects of KU-32 in SC-DRG (Schwann cell-dorsal root ganglia) co-cultures was 

undertaken.  Neuregulin-1 type II (NRG-1) specifically binds to Erb-B2/B3 receptors 

in Schwann cells and induces demyelinating hypertrophic neuropathy.114-117  Thus, the 

hypothesis was tested as to whether the prophylactic treatment of KU-32 would reduce 

the degree of NRG-1-induced demyelination of the SC-DRG co-cultures.  SC-DRG 

co-cultures were established, dosed with 0, 0.1, or 1 μM KU-32 for 2 hours, and 

subsequently administered 0 or 100 ng/ml NRG-1.116  All co-cultures were 

immunostained for myelin basic protein (red) and imaged using fluorescence 

microscopy (Figure 1.8).  KU-32 treatment of the co-cultures in the absence of NRG-1 

displayed no morphological changes.  Administration of NRG-1 reduced myelination 
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by ~25%, as indicated by reduced segment length and increased vesiculation.  

However, the pretreatment with KU-32 revealed a dose-dependent negation in 

demyelination.   

8.5% 33.2%

27.6%10.9%

8.3% 6.1%8.3%8.3%

0.1 μM KU-32

1 μM KU-32

Vehicle

0 ng/ml NRG1 100 ng/ml NRG1

 

Figure 1.8.  Pretreatment with KU-32 prevents NRG1-induced demyelination in 
dose dependent manner.  Myelinated SC-DRG co-cultures were pre-treated with the 
indicated concentrations of KU-32 for 2 hrs prior to the addition of 100 ng/ml NRG1. 
After 48 hrs, the cells were immunostained for myelin basic protein (red) and imaged 
using fluorescence microscopy.  The extent of damaged myelin segments (decrease in 
fluorescence) was expressed relative control untreated co-cultures (% damage 
indicated in each panel relative). KU-32 alone does not alter segment morphology but 
prevents the shortening and vesiculation of the segments. 
 
 In addition, the potential abilities of KU-32 to protect against hyperglycemic 

stress were also assessed in unmyelinated primary sensory neurons.  Embryonic DRGs 

were pretreated with 0.1-1 μM KU-32 for 24 hours in 25 mM glucose media (low 

glucose, LG) and then raised to 45 mM glucose (high glucose, HG) for an additional 



 

 - 30 - 
 

24 hours (Figure 1.9).  Assessment of cell viability revealed that hyperglycemia 

induced ~1.5-fold increase in DRG death.  This was negated with both KU-32 

treatments. 

 

Figure 1.9.  KU-32 protects sensory neurons against glucose-induced death.  After 
24 hours of pretreatment with 0.1-1 μM KU-32 in 25 mM glucose media (low glucose, 
LG), glucose concentrations were raised to 45 mM glucose (high glucose, HG) for an 
additional 24 hours in DRG cultures.  Cell viability was assessed and expressed as fold 
control.  Hyperglycemia induced ~1.5-fold increase in DRG death, which was negated 
via KU-32 treatment.* p < 0.05 versus LG control; ^, p < 0.003 versus HG; #, p<0.02 
versus HG (n=3). 
 

Since KU-32 protected these in vitro models of myelinated and unmyelinated 

nerves, we examined whether the induction of the heat shock response through Hsp90 

modulation could decrease or reverse the pathophysiological progression of DPN in 

Type-1 diabetic mice.  We hypothesized that a small molecule modulator of Hsp90 

will improve experimental diabetic neuropathy 
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CHAPTER 2:  MATERIALS AND METHODS 

I.  ANIMALS 

Wild-type (WT) C57 Bl/6 mice were purchased from Harlan Laboratories 

(Indianapolis, IN).  Hsp70.1/70.3 double knockout mice were attained from the 

Mutant Mouse Resource Center (San Diego, CA).  All animals were maintained on a 

12 hour light/dark cycle and maintained at 70°C and 70% humidity with ad libitum 

access to water and Purina diet 5001 chow.  All animal procedures (e.g. tagging, 

handling, fasting, blood draw, drug administration, euthanasia, and colony 

management) were conducted in accordance with NIH (National Institutes of Health) 

regulations and protocols approved by the Institutional Animal Care and Use 

Committee (IACUC).   

II.  INDUCTION OF DIABETES 

Eight-week old wild-type (WT) C57 Bl/6 mice and Hsp70.1/70.3 double 

knockout mice were rendered diabetic through a series of intraperitoneal (IP) 

injections of streptozoticin (STZ) (Sigma Aldrich, St. Louis, MO) in 200 μl sterile 

saline buffered solution (10 mM sodium citrate, 154 mM NaCl, pH 4.5).  

Streptozotocin is a nitrosourea alkyating agent that contains a glucose-moiety enabling 

selective transport by the GLUT-2 glucose transporters of the β-cells (Figure 2.1).1-2  

STZ methylates pancreatic β-cell DNA, inhibiting transcription and inadvertently 

inducing cell death.1-2   
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Figure 2.1.  Proposed mechanism of streptozotocin-induced methylation of 
pancreatic β-cell DNA. 
 
All mice were fasted overnight to minimize competitive pancreatic absorption of 

glucose, ensuring maximal STZ uptake.  Diabetic mice received daily injections of 

STZ over the course of three days at 85 mg/kg (day 1), 70 mg/kg (day 2), and 55 

mg/kg (day 3).  Mice were fasted an additional two hours post-IP injection.  Fasting 

plasma glucose levels were measured three days after the final STZ injection in 

accordance with the procedure outlined below.  Mice with FBG (fasting blood 

glucose) levels > 290 mg/dl (16 mM) were deemed diabetic and were admitted into 

the study.  Mice with FBG < 250 mg/dl were re-administered up to two additional 

STZ injections at 85 mg/kg.  Only mice with FBG > 290 mg/dl were admitted into the 

study.  Periodic reassessments of fasting plasma glucose were conducted throughout 

and at the conclusion of all studies to monitor maintenance of the diabetic phenotype.  
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Glycated hemoglobin levels (HbA1C) were also measured upon study completion to 

validate the long-term maintenance of diabetes due to the formation of advanced 

glycation endproducts. 

III.  FASTING PLASMA GLUCOSE AND GLYCATED HEMOGLOBIN MEASUREMENTS 

Blood was drawn from tip of the tail in all mice to measure fasting plasma 

glucose and glycated hemoglobin (HBA1C) levels.  Fasting plasma glucose levels were 

measured using a commercial One Touch II glucose meter (Lifescan, Milpitas, CA) 

after a 12-hour fast.  Percent glycated hemoglobin levels were measured using the 

A1C NOW+ multi test A1C kit (Bayer Healthcare, Sunnyvale, CA).  HbA1C levels ≥ 

6.5% were deemed diabetic (comparable to humans).1   

IV.  DRUG FORMULATION 

 KU-32 was synthesized in accordance with published procedures.2  The compound 

was delivered intraperitoneally based upon the mass of the specimen.  Due to 

problems with solubility, KU-32 was dissolved in 0.1 M Captisol (CyDex 

Pharmaceuticals, Lenexa, KS) in sterile 1X phosphate buffered saline (PBS) (137 mM 

NaCl, 2.7 mM KCl, 100 mM Na2HPO4, 2 mM KH2PO4, pH 7.4).  200 μl sterile 1X 

PBS were used per injection as a vehicle.  Control mice were treated with equivalent 

amounts of KU-32-free 0.1 M Captisol solution and sterile 200 μl sterile 1X PBS.  All 

injection sites were cleaned using 70% ethanol prior to an injection.   

V.  ASSESSMENT OF THERMAL SENSITIVITY 

 The Hargreaves analgesiometer (Ugo Basile, Comerio, Italy) was used to assess 

response to thermal stimuli.3  Animals were placed under a 1 L glass beaker on a glass 
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platform and allowed to acclimate for 30-40 minutes.  The Hargreaves behavioral test 

measures the response to thermal stimulation, which is mediated by small, 

unmyelinated C fibers.3-4  A focused infrared beam, increasing in intensity at ~ 

0.3°C/s, was emitted under the plantar surface of alternating hind paws; individual 

readings were taken approximately every five minutes to avoid hyperalgesia.  The 

amount of time required to induce paw withdrawal (seconds) was recorded and 

averaged (four measurements/animal).  The Hargreaves apparatus was calibrated prior 

to acclimation using a heat flux radiometer (Ugo Basile, Comerio, Italy). 

VI.  ASSESSMENT OF MECHANICAL SENSITIVITY 

The Dynamic Plantar Anasethesiometer (Ugo Basile, Comerio, Italy) was used 

to monitor response to mechanical stimuli.  The Von Frey behavioral test measures 

mechanical response to a stiff monofilament applied to the plantar surface.  Detection 

of mechanical stimulation is mediated by thinly myelinated Aδ nerve fibers.5  The Von 

Frey monofilament consists of a 0.5 mm diameter steel fiber attached to a force 

actuator.  Mice were placed within a covered plastic cubicle that rested upon a wire 

mesh platform and allowed to acclimate for 30-40 minutes.  Upon activation, the 

anethesiometer applied the tip of the monofilament to the plantar surface of alternating 

hind paws at an upward force of 8 g at a ramping speed of 2 s.  A series of five 

recordings were taken every five minutes, measuring the force (grams) necessary to 

elicit paw withdrawal and the latency associated with this response.  The five 

recordings from each animal were averaged.  The anesthesiometer was calibrated 

using a 50 g steel weight prior to specimen acclimation. 
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VII.  NERVE CONDUCTION VELOCITY 

All nerve conduction velocity measurements were conducted in accordance 

with published protocols.6  Mice were anesthetized via IP injection of either 75 mg/kg 

Nembutal or 100 mg/kg ketamine with 10 mg/kg xylazine.  Animals were only 

operated upon after confirmation of surgical anesthesia using the eye blink reflex 

method.  Motor and sensory nerve conduction velocities were measured using a 

TECA™ Synergy N2 (Carefusion, San Diego, CA) system with 12 mm subdermal 

disposable platinum/iridium bipolar needle electrodes (Cardinal Health Neurocare, 

Madison, WI).  Body temperature was monitored using a rectal probe and Physitemp 

TCAT-2DF Controller (Physitemp Instruments, Clifton, NJ) and maintained at 37°C 

using a heat lamp.   

Motor Nerve Conduction Velocity (MNCV) 

 A stimulatory electrode was placed either within the sciatic notch (proximal) or 

above the calcaneous and ventral to the achilles tendon (distal).  A recording electrode 

was inserted into the first interosseous muscle of the hind paw.  Three additional 

electrodes were placed within adjacent tissues to improve the signal:noise ratio.  

Electrical stimulation consisted of a 9.9 mA 0.05 ms duration square wave.  The 

resulting waveforms were filtered with low and high settings of 3 and 10 kHz, 

respectively.  Latencies were defined as the time between stimulus artifact and the 

onset of negative M-wave deflection.  MNCV (m/s) was calculated by dividing the 

difference between proximal and distal latencies by the distance between stimulating 

and recording electrodes.  Three MNCV values were determined and averaged.   
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Sensory Nerve Conduction Velocity (SNCV) 

 A stimulatory electrode was inserted into the tip of the second hind toe and, upon 

stimulation, delivered a 2.4-3.0 mA 0.05 ms square wave pulse that traveled to the 

receiving electrode behind the medial malleolus.  The resulting wavelengths were 

filtered with low and high settings of 3 and 10 kHz, respectively.  A series of ten 

sensory nerve action potential measurements were taken and averaged to generate a 

single waveform.  Latency was determined as the change in time between stimulus 

artifact to the onset of peak negative deflection.  SNCV was determined by dividing 

latency by the distance between stimulating and receiving electrodes. 

VIII.  EUTHANIZATION AND TISSUE HARVESTING 

All animals were euthanized in accordance with NIH guidelines and IACUC 

pre-approved protocols.  Upon completing the NCV measurements, animals were 

euthanized by cardiac excision followed by prompt decapitation.  Animals not subject 

to NCV were euthanized via CO2 asphyxiation.  Select organs and tissues were 

collected immediately.  

Sciatic, tibial, and sural nerves were dissected from both hind limbs, cut into 

smaller segments, and added to 0.2 ml mRIPA (modified radioimmunoprecipitation 

assay) buffer (50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 1% Nonidet P-40, 0.5% 

deoxycholate, 0.1% SDS, 150 mM Na2VO3, 0.5 mM Na2MoO4, 40 mM NaF, and 10 

mM β-glycerophosphate) with 1X complete protease inhibitor cocktail (Roche 

Diagnostics) on ice.  The tissue was homogenized with a Polytron fitted with a micro 

tissue tearor and centrifuged at 10,000 x g at 4°C for 10 minutes.  The supernatant was 
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collected, flash frozen on dry ice, and stored at – 20°C.  Sensory dorsal root ganglia 

were dissected and collected near the L1-L6 lumbar vertebrae using a dissection 

microscope.  DRG protein samples were collected and stored in the same manner 

described above for the nerves.  

Blood samples were vortexed with an anticoagulant (50 μl 0.3 M 

ethylenediaminetetraacetic acid (EDTA)) with 1X complete protease inhibitor cocktail 

and centrifuged at 1,500 x g at 4°C for 10 minutes.  Blood serum (supernatant) was 

collected and flash frozen on dry ice.  Kidney, liver, brain, and pancreas samples were 

also collected and frozen with dry ice and stored at – 80°C. 

The plantar integument (foot pads) of both hind paws were dissected and fixed 

using Zamboni’s fixative (3% paraformaldehyde, 15% picric acid) (Newcomer 

Supply, Middleton, WI) overnight at 4°C.  Foot pads were rinsed 2-3 times with cold 

(4°C) PBS buffer with 3 mM NaN3, pH 7.4.  All tissues were then incubated in 30% 

sucrose (cryoprotectant) overnight in 4°C and subsequently embedded in Tissue-Tek 

optimal cutting temperature compound (OCT) (Sakura USA, Torrence, CA) on dry ice 

and stored at – 80°C.  Frozen samples were cut into 30 μm sections, placed on 

Fisherbrand Superfrost Plus microscope slides, and stored at – 80°C until 

immunohistochemistry was performed to analyze intraepidermal nerve fiber density. 

IX.  INTRAEPIDERMAL NERVE FIBER DENSITY (IENFD) 

IENFD analysis was conducted using the Vectastain Elite ABC-Peroxidase kit 

for rabbit IgG (Vector Laboratories, Burglingame, CA) and anti-PGP 9.5 primary 

antibody (AbD Serotec, Raleigh, NC).  Slides were blocked using goat serum for 30 
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minutes and incubated with anti-PGP 9.5 antibody (1:1,000 dilution) at room 

temperature for three hours.  The slides were then rinsed with PBS, incubated with 

secondary antibody for one hour at room temperature, and further rinsed with cold 

PBS.  All slides were then incubated in ABC (avidin-biotin complex) solution for one 

hour at room temperature, rinsed with PBS, and incubated with NovaRED peroxidase 

substrate solution (Vector Laboratories, Burlingame, CA) for 2-3 minutes.  The 

sections were counterstained with hematoxylin (Vector Laboratories, Burlingame, 

CA), coverslipped, and imaged using Zeiss Axioplan-2 light microscope (Carl Zeiss 

Microimaging, Thornwood, NY) and a color ccd digital camera (Diagnostic 

Instruments Inc., Sterling Heights, MI).  Three images were captured from two 

different sections of two representative slides per animal (i.e. 12 images/animal).  The 

number of nerve fibers crossing the dermal/epidermal junction (immunopositive) were 

normalized to the quantified segment length. 

X.  INSULIN ELISA 

Insulin blood serum concentrations were quantified using the Mercodia Mouse 

Insulin ELISA (Enzyme-linked immunosorbent assay) kit (Mercodia AB, Uppsala, 

Sweden).  Briefly, serum protein concentration was quantified using the Bio-Rad 

Protein Assay (Bio-Rad Laboratories, Inc., Hercules, CA) and equivalent amounts of 

protein were diluted to 25 μl (mRIPA with 1X protease inhibitors) and added in 

triplicate to the 96-well ELISA plate containing bound anti-insulin antibodies.  ELISA 

calibrators and control insulin stock concentrations were employed to establish a 

calibration curve and serve as positive controls.  50 μl of peroxidase-conjugated anti-
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insulin antibody solution was added and incubated on a shaker (800 rpm) for two 

hours at room temperature.  Each well was subsequently washed six times with 0.35 

ml wash buffer, inverted on paper, and allowed to dry.  0.2 ml of 3,3’,5,5’-

tetramethylbenzidine (TMZ) solution was added to each well and incubated for 15 

minutes in the dark.  The reaction was stopped with the addition of 50 μl 0.5 M 

H2SO4, vortexed for 5-10 seconds, and the absorbance at 450 nm (A450) was read 

using a UV-Vis spectrometer.  The calibration curve was used to determine serum 

insulin concentrations within the collected samples. 

XI.  IMMUNOBLOT ANALYSIS 

Immunoblot (western blot) analyses were performed on neural tissue 

homogenates.7  Protein samples were thawed on ice and quantified via the Bradford 

assay.  20 μg of protein was separated using SDS-PAGE (sodium dodecyl sulfate-

polyacrylamide gel electrophoresis), transferred to nicrocellulose membrane, and 

stored in PBS-T (PBS buffer with Tween) at 4°C.  Membranes were blocked with 

three 20-minute washes of 5% milk in PBS-T via gentle rocking.  Membranes were 

then incubated with primary antibodies overnight at 4°C, with the exception of β–actin 

(two hours at room temperature).  Membranes were then washed in 5% blocking 

buffer three times for ten minutes each.  Upon completion, membranes were incubated 

with secondary antibodies for 1 hour (β–actin) at room temperature or 3 hours (all 

others) at 4°C.  The membranes were then washed three times for five minutes with 

PBS-T and incubated with an HRP-conjugated chemiluminescence detection kit (ECL 

Plus Western Blotting Detection Reagents, Amersham Biosciences, Buckinghamshire, 
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UK).  Autoradiography film was exposed to the chemiluminescent signal, developed, 

and the bands were quantified via densitometry using ImageJ software.  Protein levels 

were normalized to β-actin and control treatments. 

Table 2.1.  Antibodies used in the analyses.  

Antibody Manufacturer Catalog
β-actin Santa Cruz Biotechnology sc-47778
Hsp72 Stressgen Assay Designs SPA-810
Hsp90 Stressgen Assay Designs SPA-830
nNOS (NOS-1) Santa Cruz Biotechnology sc-5302
PGP 9.5 AbD Serotec 7863-0504
Goat anti-Rabbit HRP Santa Cruz Biotechnology sc-2004
Goat anti-Mouse HRP Santa Cruz Biotechnology sc-2005  

XII.  STATISTICAL ANALYSIS 

Data are presented as mean ± SEM.  After verifying equality of variances, 

differences between treatments were determined using factorial ANOVA.  Differences 

between group means were ascertained using Tukey HSD posthoc test.  Statistical 

analyses were performed using Systat 12 (Systat Software, Chicago, IL) and portrayed 

using Graphpad Prism (Graphpad Software, Inc., La Jolla, CA). 
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CHAPTER 3:  EXPERIMENTAL DESIGN 

In order to test in vivo efficacy of KU-32 against several clinical measures of 

diabetic peripheral neuropathy, several studies were conducted using the template 

depicted in Figure 3.1.  This template outlines the standard procedures employed 

during chronic 12-week intervention studies.  However, several studies were 

conducted to analyze KU-32 affects in more acute disease states (i.e. 8-week 

intervention studies), the effects of dose variation, and preliminary toxicity studies 

spanning six weeks in non-diabetic mice.  Regardless, Figure 3.1 depicts the general 

format of all studies. 

0        2        4       6       8        10      12     14    16      18       20

Induce diabetes

Weeks

FBG and HbA1C
NCV
Serum collection 
Tissue harvest

Study CompleteInitiate mechanical and sensory measurementsInitiate mechanical and sensory measurements

FBG and HbA1C
NCV validation of DPN (n = 4)

Initiate weekly KU-32 dosing, 20 mg/kg

Saline + Vehicle  (n = 12)
STZ + Vehicle     (n = 12)
Saline + KU-32    (n = 12)
STZ + KU-32       (n = 12)

 

Figure 3.1.  Experimental design of 12-week intervention study.    

In 12-week intervention studies, mice were rendered diabetic at 7-8 weeks of 

age.  The standard population size (n) per test group was generally established at 

twelve or greater.  When possible, mice were equally divided by gender and body 

weight across all treatment groups.  Two weeks after the induction of diabetes, 
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Hargreaves and Von Frey behavioral testing were initiated after the progressive 

development of sensorimotor deficits.  At twelve weeks, select control and diabetic 

mice were administered 20 mg/kg KU-32 or vehicle on a weekly basis for six weeks.  

Fasting plasma glucose levels and HbA1C levels were monitored to verify altered 

metabolic states prior to and at the conclusion of KU-32 administration.  Motor and 

sensory nerve conduction velocities were measured for benchmark specimens (four 

per treatment group) prior to KU-32 administration, and organs/tissues were extracted, 

harvested, and stored for comparison with samples collected at the end of the study.  

Upon study completion at 18 weeks, MNCV and SNCV levels were measured for all 

mice and organs/tissues were extracted, harvested and stored.  Blood and tissue 

samples were subsequently analyzed for protein content and innervation via 

immunohistochemistry (IENFD).  
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CHAPTER 4:  RESULTS 

I.  PRELIMINARY ASSESSMENTS   

Initial screens were conducted in wild-type (WT) eight-week old C57 Bl/6 

mice through weekly IP injections of 2 mg/kg KU-32, 20 mg/kg KU-32, or vehicle for 

six weeks.  KU-32 treatment alone did not significantly alter mechanical or thermal 

sensitivity, MNCV, or SNCV (Figure 4.1) when compared to non-treated control 

mice.  Thus, KU-32 had no affect on altering common measures of neuropathy.  

Affects of KU-32 on murine body weight were also analyzed during this study to 

identify any abnormal, drug-induced weight fluctuations that may pose additional 

metabolic complications (Figure 4.2).  KU-32 did not alter body weight.   
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Figure 4.1.  Preliminary in vivo assessments of KU-32 in wild-type C57 Bl/6 mice.  
C57 Bl/6 mice were administered weekly IP injections of 2 mg/kg KU-32, 20 mg/kg 
KU-32, or 0.1 M Captisol equivalent vehicle (Control) over six weeks.  KU-32 
displayed no alterations in (A) thermal and (B) mechanical sensitivity, nor changes in 
(C) MNCV or (D) SNCV.  p > 0.05 versus control. 

A. B. 

C. D. 
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Figure 4.2.  Preliminary assessment of KU-32 on body weight.  KU-32 had no 
affect on mouse body weight. 
 
II.  KU-32 IMPROVES EXPERIMENTAL DIABETIC PERIPHERAL NEUROPATHY  

In order to assess the potential efficacy of KU-32 in vivo, we induced Type I 

diabetes in wild-type C57 Bl/6 mice and allowed sensorimotor deficits to progress 

over the course of 12 weeks.  Diabetic animals clearly developed negative 

neurodegenerative symptoms by 12 weeks, where diabetic mechanical responses 

averaged 7.2 ± 0.5 g (5.7 ± 0.3 g control) and thermal responses were at 7.9 ± 0.6 s 

(5.4 ± 0.2 s control) (Figure 4.3).  However, upon completion of the 6-week KU-32 

treatment regimen (20 mg/kg KU-32 administered weekly), diabetic animals 

demonstrated a near complete recovery in both mechanical and thermal sensitivity.  

KU-32 improved mechanical sensitivity in diabetic mice to 5.8 ± 0.8 g (7.7 g STZ; 5.6 

± 0.4 g control) and thermal sensitivity to 6.2 ± 0.6 s (7.7 s STZ; 5.8 ± 0.1 s control).  

This suggests that KU-32 improved both thinly myelinated and unmyelinated nerve 

fibers at more chronic phases of DPN.  KU-32 did not alter mechanical or thermal 

sensitivity in control untreated mice.   
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Figure 4.3.  Mechanical and thermal hypoalgesia in 12-week intervention studies.  
Diabetes was induced with STZ in wild-type C57 Bl/6 mice and sensorimotor deficits 
were allowed to develop for 12 weeks.  Select diabetic and control mice were then 
treated with weekly IP injections of 20 mg/kg KU-32 or vehicle for six weeks.  KU-32 
restored normal behavioral responses in diabetic mice in both (A) mechanical and (B) 
thermal sensitivity. *, p < 0.05 compared to the time matched control; ^, p < 0.05 
compared to time matched STZ + Veh. 
 
 Motor and sensory nerve conduction velocities were also measured to assess 

KU-32’s potential impact upon nerve conduction.  At 12 weeks, nerve conduction 

velocities significantly declined in diabetic animals to 82.0 ± 10.4% MNCV and 91.0 

± 4.4% SNCV relative to control animals (Figure 4.4).  This decrease became more 

prominent as the disease progressed to study completion at 18 weeks with 74.4 ± 8.8% 

MNCV and 84.2 ± 5.6% SNCV.  While KU-32 did not alter NCV’s in control mice, 

KU-32 significantly recovered diabetic NCV to 93.6 ± 4.8% MNCV and 98.7 ± 6.7% 

SNCV.  Therefore, KU-32 reversed pre-existing conduction deficits observed in 

diabetic motor and sensory nerve fibers and prevented the further decline in NCV that 

occurred between 12 to 18 weeks of diabetes. 

A. B. 
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Figure 4.4.  MNCV and SNCV in 12-week intervention studies.  Motor and sensory 
nerve conduction velocities were conducted in anesthetized mice at 12 and 18 weeks 
to assess neurodegeneration prior to and after KU-32 administration.  MNCV and 
SNCV were normalized to vehicle-treated control mice at 12 and 18 weeks (expressed 
as percent control).  KU-32 restored diabetic MNCV and SNCV to within 95-100% of 
control NCV.  *, p < 0.01 versus time-matched untreated control; ^, p < 0.001 versus 
18 week STZ + Veh; Control MNCV:  60.4 + 2.0 m/sec;  Control SNCV:  39.3 + 1.9 
m/sec. 
 

Since KU-32 improved several of the standard clinical indices of negative 

symptoms associated with small and large fiber dysfunction, the next question became 

“How does KU-32 exert these neuroprotective effects?”  We proposed that KU-32 

may alter dysfunctional metabolic control mechanisms within diabetic animals.  To 

test this hypothesis, we measured HbA1C and FBG levels prior NCV and conducted an 

insulin ELISA to measure insulin content within serum samples collected perimortem.  

As expected, HbA1C and FBG levels were elevated in diabetic animals, averaging 11.8 

± 0.3% (4.7 ± 0.1% control) and 389 ± 83 mg/dl (135.7 ± 3.9 mg/dl control), 

respectively (Figure 4.5.A.).  Insulin concentrations were 2.5-fold greater in control 

animals (0.25 ± 0.13 nM) versus diabetic animals (0.10 ± 0.01 nM) (Figure 4.5.B.) 
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(n.b. complete annihilation of insulin production is lethal).  KU-32 had no impact 

upon any of these clinical indicators, suggesting that the compound doesn’t rejuvenate 

metabolic control. 
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Figure 4.5.  HbA1C, FBG, and insulin levels in 12-week intervention studies.  (A) 
Percent glycated hemoglobin levels (HbA1C) and fasting plasma glucose levels were 
measured prior to anesthetic administration for NCV studies.  (B) Insulin 
concentrations were determined using an insulin ELISA for samples collected 
perimortem.  KU-32 had no impact upon metabolic control.  *, p < 0.05 versus Veh + 
Veh. 
 

To confirm this notion, we tested whether prophylactic treatment of KU-32 

could modify the rate of blood glucose clearance within wild-type C57 Bl/6 mice 

(Figure 4.6).  FBG levels were measured three days after the IP administration of 20 

mg/kg KU-32 or vehicle (t = 0 min).  A glucose bolus (2 g/kg in 200 μl sterile 1XPBS) 

was injected (IP) and plasma glucose levels were measured through the duration of 

two hours.  Although there was a slight significant deviation at ten minutes with KU-

32 treatment, the glucose concentrations of both treatments converged to normal basal 

levels simultaneously at two hours.  This reconfirmed that KU-32 doesn’t impact 

systemic metabolic control. 

A. B. 
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Figure 4.6.  Plasma glucose clearance of glucose in KU-32 pretreated mice.  C57 
Bl/6 mice were administered an intraperitoneal injection of 20 mg/kg KU-32 or 
vehicle three days prior to the metabolic study.  Baseline FBG levels were measured 
prior to glucose administration (t = 0 min).  Control and KU-32-treated mice were 
administered a glucose bolus (2 g/kg glucose in 0.2 ml sterile 1X PBS) via IP 
injection.  Plasma glucose levels were monitored through the course of 2 hours.  All 
measurements were normalized to basal measurements taken prior to glucose 
injection; *, p < 0.05 versus time-matched untreated control; n = 6 per group. 
 

These data suggested that hyperglycemia may adversely impact the 

folding/refolding capabilities of newly synthesized or mildly damaged proteins within 

peripheral neurons.  Therefore, we investigated whether the removal of heat shock 

proteins would enhance DPN progression or negate KU-32 efficacy. 

III.  KU-32 EFFICACY IN HSP70.1/HSP70.3 DOUBLE KNOCKOUT MICE  

Since Hsp90 knockouts are non-viable, we elected to test the affects of KU-32 

in Hsp70 double knockout mice.  As reviewed in section I, Hsp70 induction can afford 

several neuroprotective attributes, including Hsp90-dependent and -independent client 

protein folding/refolding, trafficking, and ubiquitination.  Therefore, we repeated the 

12-week intervention study in Hsp70 double knockout mice, in which both inducible 

isoforms, Hsp70.1 and Hsp70.3, were removed. 
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Similar to wild-type C57 Bl/6 mice, diabetic Hsp70 double knockout (Hsp70 

KO) mice developed noticeable sensorimotor deficits (Figure 4.7).  At 12 weeks, 

diabetic mechanical responses averaged 7.3 ± 0.5 g (5.6 ± 0.4 g control) and thermal 

responses were at 8.2 ± 1.2 s (5.3 ± 0.4 s control).  However, Hsp70 KO mice did not 

respond to the KU-32 treatment.  Although there were some slight fluctuations in 

mechanical and thermal sensitivity at weeks 13-15, these were primarily attributed to 

attrition within the diabetic population.  Mechanical sensitivity also decreased at 

weeks 15-17 in non-diabetic KU-32-treated mice.  However, these deviations subsided 

by the conclusion of the study.   
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Figure 4.7.  Mechanical and thermal sensation in 12-week intervention Hsp70 
KO mice.  Diabetes was induced with STZ in Hsp70.1/Hsp70.3 double knockout mice 
and sensorimotor deficits were allowed to develop for 12 weeks.  Select diabetic and 
control mice were then treated with weekly IP injections of 20 mg/kg KU-32 or 
vehicle for six weeks.  KU-32 had no affect in diabetic mice for both (A) mechanical 
and (B) thermal sensitivity. *, indicates p < 0.01 compared to Veh + Veh; ^, indicates 
p < 0.01 compared to Veh + KU-32;  n = 4-6 per group. 
 

Diabetic Hsp70 KO mice also exhibited a 15-20% decline in both MNCV and 

SNCV relative to vehicle-treated non-diabetic mice (Figure 4.8).  Weekly KU-32 

administration failed to improve MNCV and SNCV in Hsp70 KO mice.   

A. B. 



- 57 - 
 

N
C

V
 (m

/s
)

N
C

V
 (m

/s
)

 

Figure 4.8.  MNCV and SNCV in 12-week intervention Hsp70 KO studies.  Motor 
and sensory nerve conduction velocities were conducted in anesthetized mice at 12 
and 18 weeks to assess neurodegeneration prior to and after KU-32 administration in 
Hsp70.1/Hsp70.3 double knockout mice.  KU-32 did not improve deficits in either 
motor or sensory nerve conduction velocities.  *, indicates p<0.01 compared to minus 
STZ and KU-32; ξ, p < 0.01 compared to minus STZ and KU-32;  n = 4-6 per group. 
 

The deletion of inducible Hsp70 had no significant impact upon systemic 

metabolic control (Figure 4.9) in either diabetic or control mice.  Comparable to WT 

C57 Bl/6 mice, KU-32 administration did not alter vascular HbA1C or plasma glucose 

levels in Hsp70 KO mice.  
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Figure 4.9.  HbA1C and FBG in 12-week intervention Hsp70 KO mice.  HbA1C and 
FBG levels were measured prior to anesthetic administration for NCV studies.  KU-32 
had no impact upon metabolic control.  *, p < 0.05 versus Veh + Veh. 
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Collectively, these data imply that inducible Hsp70 is essential for KU-32-

mediated neuroprotective effects.  It also suggests that the elimination of functional, 

inducible Hsp70 isn’t enough to drive or enhance pathophysiological progression.    

IV.  KU-32 DOSE-VARIATION STUDIES  

Since KU-32 was effective at improving several of the negative symptoms 

associated with DPN, we decided to test the potency of KU-32 through dose-variation 

studies in more acute studies.  We conducted an 8-week intervention study in which 

we treated diabetic and non-diabetic WT C57 Bl/6 mice with either 2.0 mg/kg KU-32, 

0.2 mg/kg KU-32, or vehicle.  A separate study was also conducted that explored the 

affects of 20 mg/kg KU-32 in an identical 8-week intervention study.  Differences 

between investigators and data collection techniques prevented the comparison of 

behavioral data between the two studies.  However, NCV studies and metabolic 

parameters can be compared and will be discussed below.   

In the low-dose (0.2 mg/kg and 2.0 mg/kg KU-32) 8-week intervention study, 

we observed normal sensorimotor deficit progression in both mechanical and thermal 

sensitivity observed in the 12-week intervention study in the diabetic animals (Figure 

4.10).  Prior to drug administration at week 8, mechanical responses in diabetic 

animals were at 7.5 ± 0.2 g (5.8 ± 0.3 g control) and thermal responses were at 9.4 ± 

1.1 s (5.4 ± 0.4 s control).  Diabetic mice administered KU-32 exhibited a dose-

dependent recovery in mechanical sensitivity from 7.7 ± 0.2 g (STZ + Veh) to 7.2 ± 

0.4 g (STZ + 0.2 mg/kg KU-32) and 6.7 ± 0.6 g (STZ + 2.0 mg/kg KU-32) in 

comparison to non-diabetic mice (5.7 ± 0.2 g Veh + Veh).  In contrast, treatment with 



- 59 - 
 

0.2 mg/kg KU-32 only slightly improved thermal responsiveness at weeks 12-13 to 

9.3 ± 1.7 s (11.5 ± 0.8 s STZ + Veh; 5.6 ± 0.3s Veh + Veh); 2 mg/kg KU-32 

improvements were just outside statistical significance.  This suggests that the 

neuroprotective effects induced by KU-32 may be dose-dependent and vary according 

to cell or fiber type.  
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Figure 4.10.  Mechanical and thermal sensation in 8-week intervention dose-
variation studies.  Diabetes was induced with STZ and sensorimotor deficits were 
allowed to progress over 12 weeks.  Select diabetic and control mice were then treated 
with weekly IP doses of 0.2 mg/kg KU-32, 2.0 mg/kg KU-32, or vehicle for six 
weeks.  KU-32 displayed a dose-dependent recovery in (A) mechanical sensitivity and 
0.2 mg/kg KU-32 slightly altered (B) thermal sensitivity. *, p < 0.05 compared to the 
time matched control; ^, p < 0.05 compared to time matched STZ + Veh. 
 

Assorted KU-32 treatments in the 8-week intervention study displayed a dose-

dependent response in MNCV and substantially improved SNCV (Figure 4.11).  

Although 0.2 mg/kg and 2 mg/kg KU-32 did not affect MNCV, 20 mg/kg KU-32 

significantly improved MNCV to 54.0 ± 1.8 m/s (44.4 ± 0.2 m/s STZ + Veh; 57.2 ± 

0.5 m/s Veh + Veh).  0.2 mg/kg and 20 mg/kg KU-32 treatment improved SNCV to 

39.9 ± 1.5 m/s and 39.0 ± 1.3 m/s, respectively (35.1 ± 0.5 m/s STZ + Veh; 39.5 ± 0.3 

m/s Veh + Veh) (Figure 4.11A.).  The 2 mg/kg KU-32 treatment data depicts only two 

measurements that were able to taken due to STZ-induced mortality.  Hence, 

A. B. 
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increasing n would most likely improve SNCV within this treatment group.  As 

expected, KU-32 had no significant impact upon HbA1C and FBG levels (Figure 4.12).   
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Figure 4.11.  MNCV and SNCV in 8-week intervention dose-variation studies.  
Motor and sensory nerve conduction velocities were conducted in anesthetized mice at 
14 weeks to assess neurodegeneration after KU-32 administration in WT C57 Bl/6 
mice.  KU-32 improved (A) MNCV deficits at 20 mg/kg KU-32 and (B) SNCV 
deficits at 0.2 and 20 mg/kg (n.b. n = 2 for 2 mg/kg KU-32).  *, p < 0.001 compared to 
Veh + Veh; ^, too few values. 
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Figure 4.12.  HbA1C and FBG in 8-week intervention dose-variation studies.  
HbA1C and FBG levels were measured prior to anesthetic administration for NCV 
studies.  KU-32 had no impact upon metabolic control.  *, p < 0.001 versus Veh + Veh 
control; *, p < 0.05 versus Veh + Veh control. 
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V.  INTRAEPIDERMAL NERVE FIBER DENSITY (IENFD)  

Foot pad samples were collected from the hind paws of both WT and Hsp70 

KO 12-week intervention studies in order to analyze whether KU-32 could alter 

sensory nerve fiber density.  Immunohistochemistry was used to determine the number 

of nerve fibers that crossed the dermal/epidermal junction (expressed as a function of 

segment length) (Figure 4.13).  Surprisingly, at 18 weeks of STZ-induced diabetes, 

neither WT nor Hsp70 KO mice exhibited any significant changes in IENFD.  

Nevertheless, this data does show that KU-32 has no positive or negative impacts 

upon nerve fiber density in both healthy and diabetic mice within the first six weeks of 

treatment. 

 

Figure 4.13.  Epidermal innervation in diabetic and non-diabetic mice before and 
after treatment in 12-week intervention studies.  Foot pad samples were collected 
from the hind paws of representative mice of each treatment group WT and Hsp70 KO 
12-week intervention studies.  Foot pad samples were subsequently cut, stained, 
imaged, and analyzed for IENFD.  (A.) Representative image from a non-KU-32-
treated mouse.  Epidermal cells are stained purple and nerve fibers are stained red 
(arrow).  (B.) The number nerve fibers penetrating the epidermis were quantified and 
normalized to the length of the epidermal surface in the field of view.  Neither STZ 
nor KU-32 treatment had a significant impact on IENFD in both WT and Hsp70 KO 
mice.  n = 4 mice per treatment at 12 images each. 
 

A. B. 
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VI.  IMMUNOBLOT ANALYSES 
 

Western blot analysis was conducted to measure the affects of KU-32 on 

protein expression.  Hsp90 and Hsp70 expression levels varied significantly between 

and within treatment groups.  Figure 4.14 shows several representative immunoblots 

conducted on neuronal tissue samples (sciatic, sural, and tibial nerves) that were 

collected at the end of the WT 12-week intervention study.  Although Hsp70 was 

induced in some animals (animal set #1, Figure 4.14.A.), other animals within the 

same treatment group (animal set #2, Figure 4.14.B.) displayed no upregulation.  

Hsp90 expression levels also fluctuated near/around basal levels (Figure 4.14.C).  

Therefore, it’s possible that the effects elicited by KU-32 may be more transient in 

nature and are merely missed since we took the tissues at the completion of the 

studies.  Although KU-32 was found to significantly downregulate neuronal nitric 

oxide synthase (nNOS) (Figure 4.14.D) in diabetic mice, the majority of altered 

protein expression levels in nerve and DRG homogenates has remained modest or 

relatively inconsistent.  Current studies are being conducted to further analyze 

transient protein effects. 
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Figure 4.14.  Immunoblot analysis of nerve tissue homogenates in the WT 12-
week intervention study.  Neuronal tissue homogenates from the WT 12-week 
intervention study were analyzed via immunoblotting for (A-B) inducible Hsp70, (C) 
Hsp90, and (D) nNOS.  Two sets of animals from the same treatment group are 
displayed.   

A. B. 

C. D. 
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CHAPTER 5:  DISCUSSION AND CONCLUSION 

We have shown that KU-32 improves several standard clinical indices of 

negative symptoms associated with small and large fiber dysfunction in the absence of 

improving overall metabolic control.  The affects of KU-32 appear to be dose-

dependent and require the presence of inducible Hsp70 for efficacy.  These data also 

indicate that inducible Hsp70 is not required for the pathophysiological progression of 

diabetic peripheral neuropathy.  However, this doesn’t eliminate the potential 

involvement of other Hsp70 family members as Hsc70 displays a certain degree of 

interchangeability with inducible Hsp70.  Regardless, Hsp70 KO mice develop 

sensorimotor deficits at a similar rate and severity in comparison to WT C57 Bl/6 

mice.  It still remains to be determined whether KU-32 induces HSF-1-mediated heat 

shock response.  Recent in vitro data (not presented) suggests that induction of the 

HSR may be less pronounced in different cell types and its potency may vary 

accordingly as well.  However, the resounding question still reverberates:  “How does 

KU-32 provide neuroprotection in DPN?”  To answer this question, one must first 

examine the tentative binding site of KU-32. 

I.  HYPOTHETICAL MECHANISMS OF ACTION 

KU-32 is a descendent of A4-inspired novobiocin analogs.  A4 is the 8-

desmethyl version of KU-32 that was originally designed as an Hsp90 inhibitor 

(Figure 5.1).1  A4 binds within the C-terminal nucleotide-binding domain and induces 

Hsp70 expression at concentrations 1,000-10,000-fold lower than that needed to 

induce client protein degradation and associated cytotoxicity.1  It is currently 



 

- 65 - 
 

hypothesized that novobiocin binds to the C-terminal nucleotide-binding domain, 

disrupts co-chaperone associations (Hsc70 and p23), and extends into the Hsp90 

dimerization domain, infringing on dimerization.2-3  However, this has not been 

proven.  SAR (structure-activity relationship) studies have demonstrated that 

replacement of the benzamide sidechain with an acetamide significantly reduces 

cytotoxicity.2, 4  It’s hypothesized that the benzamide sidechain is responsible for 

disrupting dimerization.  Since A4 and KU-32 lack this moiety, it’s speculated that 

these compounds bind in a similar fashion to novobiocin but induce allosteric 

modulation versus dimer disruption.  This allosteric modulation may drive HSF-1 

dissociation and induce the heat shock response.  

 

Figure 5.1.  Structures of novobiocin and A4. 

Examination of the tentative KU-32-binding site via molecular modeling 

reveals several readily accessible hydroxyl-containing amino acids that may be subject 

to post-translational modifications (PTMs):  Y690, T540, S543, T594, S595, Y492, 

and Y493.  These potential interactions were identified using a molecular model 

created by The Center for Bioinformatics at The University of Kansas (unpublished 

data).  Briefly, the model was based upon the putative binding site as determined via 

photoaffinity labeling with novobiocin analogues subjected to LC-MS/MS (liquid 

chromatography-mass spectrometry/mass spectrometry).  The bioactive conformation 

of novobiocin was docked to the SAXS (small-angle X-ray scattering) structure of 
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HtpG (Escherichia coli Hsp90) and subjected to ligand-supported refinement and 

subsequent systematic molecular dynamics (MD) to attain a homology model.  

Examination of the potential PTMs within the putative binding domain were 

conducted in light of recently published data by Hart et al..  Hart and coworkers 

isolated Hsp90 via immunaffinity chromatography (using an O-GlcNAc-specific 

antibody) followed by LC-MS/MS and demonstrated that Hsp90 can be O-

GlcNAcylated in non-treated rat brain extracts.5  However, this study did not identify 

which specific residues were modified, nor address its impact upon Hsp90 activity.  In 

fact, no further studies have been published that analyze the effects of this PTM on 

Hsp90.  It’s possible that Hsp90 may be subject to O-GlcNAcylation under 

hyperglycemic stress.  As mentioned previously, O-GlcNAcylation tends to function 

more in deactivation versus activation associated with phosphorylation.  Hence, this 

PTM may adversely impact the ability of Hsp90 to function properly.  Additionally, 

Hsc70 and inducible Hsp70 possess lectin attributes.6-7  Their associations with Hsp90 

within the heteroprotein folding complex may be altered as well.  If KU-32 occupies 

the C-terminal nucleotide-binding site, access of OGT (O-GlcNAc Transferase) to 

these potential PTM-sites may be restricted, preventing the accumulation of 

potentially dysfunctional Hsp90. 

 As reviewed in section I, Hsp70 assimilates into a multitude of complexes that 

assist in triaging Hsp90 and Hsp70 client proteins, degrading irreparable proteins, 

molecular transport, and several specialized neuronal functions through neural J 

protein interactions.  Several of these potential involvements are currently being 
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investigated within collected samples from both in vitro and in vivo studies.  The 

relatively indiscriminate improvements in MNCV, SNCV, and large myelinated and 

small unmyelinated nerve fiber sensation suggests that the compound may regulate 

propagation and/or neurotransmitter vesicle cycling.  Indeed, Hsp70/Hsc70 

interchangeability with the neural J proteins provides multiple avenues of plausible 

neuroprotection.  

Equally important, Hsp70 may also assist in maintaining mitochondrial 

integrity during hyperglycemia-induced oxidative/nitrosative stress.  Axons require 

high concentrations of mitochondria to operate efficiently.  In addition to potential 

upregulation of antioxidant defense mechanisms, such as Mn/CuSOD (Hsp90 client 

proteins), Hsp90 and Hsp70 facilitate the delivery of preproteins to the mitochondrial 

membrane transporter TOM70.8-9  TOM70 imports these preproteins into the 

mitochondria, where mtHsp70 (mitochondrial Hsp70) shuttles them to Hsp60 for 

subsequent folding into their mature conformations.8-9  Preliminary proteomic data 

involving KU-32-treated Schwann cells and recent in vitro data collected from 

purified DRGs suggests that KU-32-treatment enhances Hsp60 expression.  The 

affects of induced Hsp60 expression are two-fold:  Not only does it facilitate 

folding/refolding of proteins within the mitochondria, but it also sequesters Bax in the 

cytosol.10-12  When Bax dissociates, it reallocates to the outer membrane of the 

mitochondria, pries open the mitochondrial channels, releases cytochrome c, and 

enables caspase-mediated apoptosis.10-12  Hence, Hsp60 expression also inhibits the 

intrinsic apoptotic pathway and, thereby, prevents stress-induced neuronal death.   
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As Hsp60 is not inducible with the heat shock response, Hsp70 and/or Hsp90 

must have additional interactions with Hsp60 or its regulatory mechanisms.  This 

regulation returns back to the post-translational affects of O-GlyNAcylation.  As 

discussed in section I, O-GlcNAcylation activates p53, inducing pro-apoptotic gene 

expression, and deactivates c-myc, reducing pro-survival transcription.12-14  As it turns 

out, c-myc regulates Hsp60 expression and p53 regulates Bax expression.12, 15  

Furthermore, hyperglycemic β-cells induce the expression of O-GlcNAc-Hsp60 two-

fold, inducing Bax release and β-cell death.16  Hence, O-GlcNAcylation may 

significantly amplify the pathophysiology of DPN.  However, p53 and c-myc are both 

Hsp90 client proteins and, therefore, can be induced via Hsp90/Hsp70 expression.4, 12, 

17-19  The lectin properties of Hsp70 may also enable it to bind O-GlcNAc-Hsp60, 

possibly preventing Hsp60 proteolytic degradation and/or stabilizing the O-GlcNAc-

Hsp60-Bax complex.5-7, 16, 20-24   

Immunoblot analyses also revealed the downregulation of nNOS (neuronal 

nitric oxide synthase) in WT 12-week intervention studies.  However, it must be noted 

that preliminary in vitro studies of purified neonatal DRGs (murine), differentiated 

neuroblastoma cells, and transient in vivo mouse studies display a prompt induction of 

nNOS.  Therefore, the observed reduction in nNOS expression at the conclusion of the 

intervention study may not adequately reflect the transient affects instilled by KU-32.  

Contrary to the afore mentioned detrimental effects of nitric oxide, controlled nitric 

oxide production by select NOS isoforms is essential for neuronal function and 

maintaining vascular tone.  NO is an essential neurotransmitter within the peripheral 
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nervous system.  Malfunctions in eNOS (endothelial NOS) and iNOS (inducible NOS) 

have been implicated in neuropathic development.25  However, the specific 

involvement of nNOS is not as well understood.  The mechanism for NO production is 

shown in Figure 5.2.   

 

Figure 5.2.  Synthesis of nitric oxide via nitric oxide synthase and L-arginine.    

NOS employs NADPH and O2 to conduct two monooxygenation reactions to 

convert L-arginine to L-citrulline and nitric oxide.  The formation of a calcium-

calmodulin (Ca2+-CaM) complex facilitates the dimerization of NOS monomers, 

which each contain one reductase and oxygenase domain.26  Hsp90 acts as an 

allosteric activator of nNOS and eNOS, enhancing calmodulin’s binding affinity for 

NOS and increasing dimerization.27-29  iNOS, implicated in diabetes, is expressed in 

virtually all tissues and exhibits a much higher binding affinity for calmodulin relative 

to nNOS and eNOS.30  Hence, Hsp90 (and Hsp70) may serve to stabilize 

nNOS:calmodulin interactions in the face of excess iNOS concentrations.  Obrosova 

and coworkers demonstrated that peripheral nerves require functional nNOS to sustain 

normal functions and regulate sensory nerve fiber innervation.25  They also showed 

that nNOS knockout mice expressed significant decreases in NCV, mechanical 
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response, and IENFD.25  Therefore, the potential increase in stabilized nNOS (via 

Hsp90) may serve to renormalize essential neuronal communication processes.  In 

addition, increasing Hsp60 and Hsp70 expression within the rostral ventrolateral 

medulla (RVLM) generate selective upregulation of the pro-survival nNOS/Protein 

Kinase G (PKG) signaling pathways (independent of Hsp90) while simultaneously 

reducing iNOS/peroxynitrite formation.31 PKG helps to regulate calcium flux into the 

neuron.  Thus, Hsp90, Hsp70, and Hsp60 induction may restore normal nNOS 

function and reduce pathological iNOS activity. 

It’s also worth noting that several of the novobiocin-based Hsp90 inhibitors 

not only disrupt the Hsp90 heteroprotein complexes, but may also alter the expression 

of other Hsp90 family members (Grp94 and Trap-1) as evidenced through preliminary 

immunoblot analyses (data not shown).  It’s proposed that upregulation of these two 

isoforms may be a compensatory mechanism when Hsp90 is rendered dysfunctional.  

Grp94 is involved with the unfolded protein response and guides initial protein folding 

within the rough endoplasmic reticulum.32  Ubiquitination of irreparable proteins by 

Hsp70 in DPN may clear damaged proteins to “make room” for newly synthesized, 

functional proteins.  The specific functions of Trap-1 within the mitochondria remain 

largely unknown.  

II.  CONCLUSION 

In summary, the potential for Hsp90 and Hsp70 involvement in KU-32-

induced neuroprotection is far-reaching and requires additional investigation to 

elucidate the compound’s specific mechanism of action.  Regardless, KU-32 displays 
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remarkable efficacy and these studies provide proof-of-principal that C-terminal 

Hsp90 modulators can ameliorate neuron degeneration in diabetic peripheral 

neuropathy.   
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