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Abstract

This thesis presents development of mathematical models for liquid-solid phase change

phenomena using Lagrangian description with continuous and differentiable smooth in-

terface (transition region) between the solid and the liquid phases in which specific heat,

thermal conductivity, and latent heat of fusion are a function of temperature. The width

of the interface region can be as small or as large as desired in specific applications. The

mathematical models presented in the thesis assume homogeneous and isotropic medium,

zero velocity field (no flow) with free boundaries i.e. stress free domain. With these as-

sumptions the mathematical model reduces to the first law of thermodynamics i.e. energy

equation. The mathematical models presented here are neither labeled as enthalpy models

or others, instead these are based on a simple statement of the first law of thermodynamics

using specific total energy and heat vector augmented by the constitutive equation for heat

vector i.e. Fourier heat conduction law and the statement of total specific energy incorpo-

rating the physics of phase change in the smooth interface region between solid and liquid

phases. This results in a time dependent non-linear convection diffusion in temperature in

which physics of interface initiation and propagation is intrinsic and thus avoids front track-

ing methods. This can also be cast as a system of first order PDEs using auxiliary variables

and auxiliary equations if so desired due to the use of specific methods of approximation

as done in the present work.

The numerical solutions of the initial value problems resulting from the mathemati-

cal models are obtained using space-time least squares finite element process based on

minimization of the residual functional. This results in space-time variationally consis-

tent integral forms that yield symmetric algebraic systems with positive definite coefficient
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matrices that ensure unconditionally stable computations during the entire evolution. The

local approximations for the space-time finite elements are considered in h,p,k framework

which permits higher degree as well as higher order local approximations in space and

time. Computations of the evolution are performed using a space-time strip or slab cor-

responding to an increment of time with time marching procedure. 1D numerical studies

are presented and the results are compared with sharp interface and phase field methods.

Numerical studies also presented for 1D and 2D model problems in which initiation as well

as propagation of the interface is demonstrated. These studies cannot be performed using

sharp interface and phase field models.

The significant aspects of the present work are: (i) the smooth interface permits de-

sired physics and avoids singular fronts that are non physical (ii) the mathematical model

resulting from the present approach is a non-linear diffusion equation, hence intrinsically

containing the ability to initiate as well as locate the front during evolution and hence no

special front tracking methods are needed. (iii) This methodology permits initiation of the

interface i.e. it permits initiation of the phase change phenomena. This is not possible in

sharp interface and phase field methods. (iv) The computational infrastructure used en-

sures stable computations and high accuracy of evolution for each time step and hence time

accurate evolutions are possible.
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Chapter 1

Introduction

Numerical simulation of phase change phenomena has been a subject of research for

over a century. There are three main sources of difficulties in the numerical simulation of

phase change phenomena. First, the mathematical models are a system of non-linear par-

tial differential equations (PDEs) in space coordinates and time, hence they are initial value

problems (IVPs) describing the evolution. Secondly, the idealized physics of phase change

phenomena creates sharp moving fronts, their precise locations and movement being of

interest. Thirdly, the first two aspects of the phase change phenomena require selection of

prudent, robust, unconditionally stable and time accurate computational methods for ob-

taining numerical solutions i.e. evolutions of the associated IVPs. Due to the insistence

on the use of finite difference methods, finite volume methods, and more recently finite

element methods based on Galerkin method with weak form (GM/WF) that lack the de-

sired features necessary to address numerical simulations of such initial value problems

in an accurate and reliable manner many issues remain unresolved. This has resulted in

computational methodologies that are less than satisfactory. In this brief introduction we
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present various approaches for deriving mathematical models based on the assumptions re-

lated to the physics of phase change phenomena that are commonly used in the published

work and discuss their merits and shortcomings. This is followed by a brief discussion of

the computational methods currently employed in conjunction with various mathematical

models. The last section contains the scope of present work and discussion of the method-

ologies employed in the development of the mathematical models and the computational

infrastructure employed for obtaining numerical solutions of the associated IVPs.

1.1 Mathematical Models

First, we consider the mathematical models that are currently used for phase change

phenomena. These essentially fall into three categories: Sharp interface models, enthalpy

models, and phase field models. The sharp interface models assume that the liquid and

solid phases are separated by a sharp interface (hypothetically, an infinitely thin curve or

surface). The latent heat of fusion is supposed to be instantaneously released or absorbed

along the interface. This of course results in a step change along the interface, hence the

name sharp interface model. In this approach, we have individual mathematical models for

liquid and solid phases. At the interface, energy balance provides conditions that determine

the movement of the interface. The sharp interface models are also called Stefan models

and were derived by J. Stefan [1] who studied the freezing of ground. The mathematical

details of the sharp interface model are presented in Chapter 2. When the mathematical

model for sharp interface is posed as a system of integral equations, proof of existence and

uniqueness of the classical solution was provided by Rubenstein in 1947 [2]. For the one

dimensional case, an analytical solution was derived in reference [3] for the temperature
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distribution (also presented in Chapter 2). We remark that sharp interface models obviously

require sharp front tracking.

The second class of mathematical models fall into the category of enthalpy methods.

In these methods the energy equation is cast in terms of enthalpy and temperature. This is

augmented by the enthalpy equation. The motivation for these methods is to avoid front

tracking and rely on computations on a fixed grid. The main merit of this method is that

it eliminates the heat flux balance at the interface. The formulation of the mathematical

models in this approach can be done in many different ways [4, 5], details of some models

presented in Chapter 2. These methods generally introduce a mushy zone (narrow) between

the liquid and solid phases, eliminating the singular nature of the front inherent in sharp

interface models. The concept of liquid fraction is introduced in the mushy zone to account

for the fact that this zone may contain a mixture of liquid and solid. There appears to be

increasing emphasis in the published work on numerical methods (rather than mathemati-

cal models) for phase change problems [6]. The commonly used methods are referred to as

source update methods, linearization method (LINH), and apparent heat capacity method

(AHC). Our view on this issue is drastically different. If we note that the space-time differ-

ential operators in phase change models are either non-self adjoint or non-linear, we must

seek a computational infrastructure that addresses numerical solution of IVPs containing

these operators in an unconditionally stable and time accurate manner. This in fact is the

methodology employed in the present work. We note that in the enthalpy models, the sharp

interface models requiring tracking of a sharp moving front is converted into a non-linear

diffusion problem, the main benefit of these models.

The third category of mathematical models for phase change phenomena are called

phase field models. These models are based on the pioneering work of Cahn and Hilliard

3



[7]. In this approach, the sharp interface is replaced by a smooth interface or smooth transi-

tion region between the liquid and solid phases. The mathematical models in the phase field

method are derived using Landau-Ginzburg [8] theory of phase transition. The method in

short can be summarized as being founded on standard mean theories of critical phenom-

ena based on a free energy functional. Hence the method obviously relies on specification

of free energy density function, which is the main driving force for phase transition. This

method has shown good agreement with the 1D Stephan problem. Details of the mathe-

matical model (for 1D case) for phase field method are also presented in Chapter 2. While

the phase field method eliminates the necessity of computations with sharp interfaces and

tracking of fronts, the main disadvantages of this approach are: (i) It requires a priori

knowledge of the free energy density function for the application under consideration. (ii)

The mathematical model in these approaches are unable to simulate the initiation of liquid-

solid interface, hence the liquid-solid or solid-liquid phases with known interface location

must be defined as initial condition. This limitation is due to the specific nature of the free

energy density function (generally a double well potential, see Chapter 2). However, if a

liquid-solid interface is specified as initial conditions, then the phase field mathematical

models are quite effective in simulating its movement during evolution. In most (if not all)

engineering applications the detection of the initial formation of the solid-liquid interface is

essential as it may not be possible to know its location a priori. These two limitations have

resulted in lack of widespread use of these models in phase change phenomena in practical

applications.
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1.2 Computational Methodology

We note that the mathematical models for the phase change phenomena are generally

non-linear PDEs in space coordinates and time and hence they result in non-linear IVPs.

With realistic physics, the mathematical models are complex enough not to permit deter-

mination of theoretical solutions, hence numerical solutions of IVPs are essential. Broadly

speaking, the computational methods for IVPs can be classified in two groups [9–12]:

space-time decoupled methods and space-time coupled methods. In the space-time de-

coupled methods, for an instant of time, the time derivatives are assumed constant and

spatial discretization is performed. This reduces the PDEs in space and time to ODEs in

time which are then integrated using explicit or implicit integration methods and other tech-

niques to obtain the evolution. Almost all of the finite difference, finite volume, and finite

element methods (GM/WF) used currently [10] for IVPs fall into the space-time decoupled

category. The assumption of constant time derivative necessitates extremely small time in-

crements during the integration of ODEs in time. The issues of stability, accuracy, and lack

of time accurate evolutions are well known. Currently used numerical methods for phase

change problems fall into this category. The non-current treatment in space and time is con-

trary to the physics in which all dependent variables exhibit simultaneous dependence on

space coordinates and time. That is, as time elapses the values of the dependent variables

at the material points in the spatial domain change. Another significant point to note is

that in a large majority of published work on phase change problems, often the distinction

between mathematical model and computational methods or approaches is not clear. As

a consequence, it is difficult to determine if the non-satisfactory numerical solutions are a

consequence of the numerical methods used or deficiencies in the mathematical models.
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The space-time coupled methods on the other hand maintain simultaneous dependence

of the dependent variables on space coordinates and time [9, 11, 12]. In these methods, the

discretizations in space and time are concurrent and hence in agreement with the physics

of evolution described by the IVPs. These methods are far more superior than the space-

time decoupled methods in terms of mathematical rigiour as well as accuracy. Whether to

choose space-time finite difference, finite volume, or finite element method depends upon

the mathematical nature of the space-time differential operator and whether the compu-

tational strategy under consideration will yield unconditionally stable computations, will

permit error assessment, and will yield time accurate evolution upon convergence (see

Chapter 3).

1.3 Scope of Work

In the present work we consider simple 1D and 2D phase change problems in which the

mathematical models are in Lagrangian description using the assumption of no flow and

absence of stress field. Thus the mathematical model only consists of the energy equation.

Secondly, for the physics of phase change to be incorporated in the mathematical model we

need a clear description of the physics of phase change we wish to consider. We assume

that the phase change phenomena is associated with a transition zone (say from liquid to

solid) in which the specific heat and thermal conductivity change from values that are as-

sociated with one phase to the values associated with the other phase in a continuous and

differentiable manner over a small temperature range. The latent heat of fusion is assumed

to behave in a similar fashion. This assumption of transition zone is reasonable and valid

even for the purest materials (observed experimentally). With the transition region defining
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the specific heat, conductivity, and the latent heat of fusion in a continuous and differen-

tiable manner, we eliminate the sharp interface and instead we have a smooth interface.

Secondly, the problem of tracking a sharp moving interface now reduces to a non-linear

diffusion equation. We remark that the choice of dependent variables, say temperature or

enthalpy as argued in literature, is irrelevant in the present work. The smoothness of the

solution of the IVP is a consequence of the smoothness of the phase change phenomenon

incorporated in the mathematical model. Thus the proposed method is not an enthalpy

method, but rather a smooth interface method. The mathematical model is derived as usual

using specific total energy and heat vector (due to the assumption of no flow and absence

of stress field). The specific total energy is expressed in terms of storage and latent heat of

fusion. By substituting the specific total energy in the energy equation, we obtain a single

PDE in temperature (assuming Fourier heat conduction law) and latent heat of fusion that

contains up to second order derivatives of temperature in the spatial coordinates but only

first order derivatives of the temperature and the latent heat with respect to time. The de-

scription of latent heat over the spatial domain as a function of temperature provides closure

to the mathematical model. The details of the mathematical model for 1D and 2D phase

change phenomena are presented in Chapter 2. This mathematical model is a non-linear

diffusion equation in temperature as opposed to enthalpy as argued in the published work

to be necessary [4–6] for the computations to function properly.

Since the mathematical models are non-linear PDEs in space and time, i.e. non-linear

IVPs, the most suitable strategy for obtaining their numerical solutions [9, 11, 12] is to

employ space-time coupled finite element methods. In this case, the space-time differen-

tial operator is non-linear, hence space-time Galerkin Method (STGM), space-time Petrov-

Galerkin Method (STPGM), space-time Weighted Redsiduals Method (STWRM), and space-
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time Galerkin Method with Weak Form (STGM/WF) are all ruled out as viable methodolo-

gies for constructing a space-time integral form as these methods yield space-time integral

forms that are space-time variationally inconsistent (STVIC) [12]. The STVIC integral

forms yield computational processes in which the computations are not always ensured to

be unconditionally stable. The space-time least squares process (STLSP) as presented in

references [11,12] yield integral forms that are space-time variationally consistent (STVC)

and hence are used in the present. The local approximations are considered in higher order

approximation spaces, i.e. h,p,k spaces or framework [12–15]. This permits desired global

differentiability approximation in space and time. The STLSP and the details specific to

the mathematical models and approximation spaces used in the present work are described

in Chapter 3.

Numerical studies for 1D and 2D phase change problems are presented in Chapter 4.

The results obtained from the proposed methodology are also compared with those obtained

using sharp interface model and phase field model (also computed using STLSP). Summary

and conclusions are presented in Chapter 5.
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Chapter 2

Mathematical Models

2.1 Introduction

In this chapter we present mathematical models based on sharp interface, enthalpy, and

phase field methodologies for phase change phenomena that are commonly used in the

published work. These are followed by the details of the mathematical models used in the

present work. All these mathematical models are based on the following assumptions:

(1) The mathematical models use Lagrangian description i.e. the position coordinates

of the material points in the reference configuration (fixed) and time are independent

variables.

(2) We assume that the velocity field is identically zero i.e. no flow assumption.

(3) The spatial domain is assumed to be free of stress field i.e. the IVPs describing phase

change are posed as free boundary problems.

(4) Based on assumptions (2) and (3), continuity and momentum equations are identi-
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cally satisfied and hence need not be considered as part of the mathematical models.

(5) Hence we only need to consider energy equation in which viscous effects are absent

due to assumption (2).

Thus, the mathematical models under these assumptions consist of energy equation

supplemented by the physics of phase change that varies depending upon the choice of

modeling approach (sharp interface, enthalpy, phase field, or smooth interface). For sim-

plicity we only present details of the published mathematical models that are commonly

used for 1D case.

2.2 Sharp Interface Models

Under the assumption stated here, the mathematical model in this approach reduces to

heat conduction in isotropic medium for each of the two phases supplemented by the heat

balance statement at the interface separating the two phases. The interface is assumed to

be infinitely thin. Furthermore, these mathematical models assume constant (and same)

specific heat cp and thermal conductivity k in both liquid and solid phases,

Solid Phase:

ρcp
∂T

∂t
−∇∇∇ · (k∇∇∇Ts) = 0 ∀ (xxx, t) ∈ Ωs

xt = Ωs
x × Ωt = Ωs

x × (0, τ) (2.1)

Liquid Phase:

ρcp
∂T

∂t
−∇∇∇ · (k∇∇∇Tl) = 0 ∀ (xxx, t) ∈ Ωl

xt = Ωl
x × Ωt = Ωl

x × (0, τ) (2.2)

At the interface:

Lfvn = [(−k∇∇∇Ts)− (−k∇∇∇Tl)] ·nnn ∀ (xxx, t) ∈ Γx,t = Γx × Ωt (2.3)

10



in which Ωs
x and Ωl

x are solid and liquid spatial domains, Γx(t) = Ωs
x

⋂
Ωl
x is the interface

between the two phases, Lf is the latent heat of fusion, nnn is the unit exterior normal from

the solid phase at the interface, and vn is the normal velocity of the interface. Subscripts s

and l signify solid and liquid phases.

When the mathematical model is posed as a system of integral equations, a complete

proof of existence and uniqueness of the classical solution in one dimension was provided

by Rubenstein in 1947 [2]. For the one dimensional case, an analytical solution was derived

in reference [3] for the temperature distribution T .

T (x, t) = C1

erf
(
β

2

)
− erf

(
x

2
√
t+ t0

)
erf
(
β

2

) ; x ≤ Γ(t) (2.4)

T (x, t) = C2

erf
(
β

2

)
− erf

(
x

2
√
t+ t0

)
1− erf

(
β

2

) ; x > Γ(t) (2.5)

where C1 = −0.085, C2 = −0.015 and the location of the interface, Γ(τ), is defined by,

Γ(t) = β
√
t+ t0 (2.6)

where t0 = 0.1246 . β = 0.396618 can be obtained by solving the following equation.

2√
π
eβ

2/4

 C2

1− erf
(
β

2

) − C1

erf
(
β

2

)
− β = 0 (2.7)

In this mathematical model the enthalpy increases or reduces by a large amount during

phase change at a constant temperature. This of course poses serious problems in the

numerical simulations of the IVPs described by these models.
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2.3 Enthalpy Models

We represent some representative mathematical models used in this approach. The first

model is due to references [4, 5]. In this model we have,

∂

∂t
(ρh)− ∂

∂x

(
k
∂T

∂x

)
= S ∀ (x, t) ∈ Ωxt = Ωx × Ωt (2.8)

h = hs + fL+ c(T − Tsat) (2.9)

f =



0 ; h < hs

h− hs
Lf

; hs ≤ h ≤ hs + L

1 ; h > hs + L

(2.10)

Substituting equation (2.9) into equation (2.8), the governing equation for the enthalpy

based model is obtained,

∂

∂t
(ρcT ) +

∂H

∂t
− ∂

∂x

(
k
∂T

∂x

)
= S ∀ (x, t) ∈ Ωxt = Ωx × Ωt (2.11)

H = ρ (hs + fL− cTsat) (2.12)

where hs is the saturated enthalpy of solid, Tsat is the saturated temperature, L is the latent

heat, c the specific heat, S is a source term and f is the liquid fraction that accounts for the

latent heat capacity present.

Another mathematical model is due to reference [16],

∂h

∂t
− ∂

∂x

(
k(u)

∂u

∂x

)
= ∀ (x, t) ∈ Ωxt = Ωx × Ωt (2.13)

u =



h

ρcs
; h < ρcsuf

uf ; ρcsuf ≤ h < ρ (csuf + L)

uf +

(
h− ρ (csuf + L)

ρcl

)
; h ≥ ρ (csuf + L)

(2.14)
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where u is the temperature, h(u) is the enthalpy, k(u) is the thermal conductivity, cs is the

specific heat in the solid phase, cl is the specific heat in the liquid phase, uf is the fusion

temperature, and L is the latent heat of fusion. k(u) is also defined by constant values ks

and kl in the solid and liquid phases.

These current enthalpy methods lack comparison to sharp interface solutions in the cur-

rently published works. Generally, these models have expanded mushy regions that do not

have qualitative agreement with phase field approximations and sharp interface solutions.

2.4 Phase Field Models

Let p be the phase field variable. For a pure material, p is assigned a value of −1 in the

solid region and +1 in the liquid region. The length of the transition zone between solid

and liquid regions is controlled by ξ (Figure 2.1).

p

x

ξ

1

-1

Figure 2.1: Phase transition proportional to ξ

The phase field method was derived using the Landau-Ginzburg theory of phase tran-
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sitions [8]. This method relies on standard mean theories of critical phenomena where the

free energy functional is defined by,

F (p, T ) =

∫ (
1

2
ξ2(∇p)2 + f(p, T )

)
dp (2.15)

where ξ is a parameter that controls the interface thickness, and f(p, T ) is the free energy

density of the system that often takes the form of a double well potential, an example of

which is shown in Figure 2.2.

-1.5 -1 -0.5  0  0.5  1  1.5

F
re

e 
en

er
g
y
 d

en
si

ty
, 
f(
p
,T
)

Phase field variable, p

 T = 0

T > 0

T < 0

Figure 2.2: Free Energy Density of a Pure Material

The phase field model for a pure material is,

ρcp
∂T

∂t
−∇ · (k∇T ) +

1

2
Lf
∂p

∂t
= 0 ∀ (x, t) ∈ Ωxt = Ωx × Ωt = (0, 1)× (0, τ)

(2.16)

αξ2∂p

∂t
− ξ2∆p+

∂f

∂p
= 0 ∀ (x, t) ∈ Ωxt = Ωx × Ωt = (0, 1)× (0, τ) (2.17)

This model relies on the free energy density, in many cases defined as a polynomial, that

is the driving force for the phase transition. For simulations where an interface has been
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defined, this model poses no problems and is able to track the moving front accurately.

However, when the domain is completely liquid or solid, the free energy density functions

currently used do not allow for initiation of a front due to the presence of two distinct

minima regardless of the temperature. For example, if a completely liquid domain is con-

sidered and heat is removed from one of the boundaries, the phase will remain in a liquid

state although the temperature will fall below the freezing temperature. This characteristic

poses problems when simulating real engineering applications.

2.5 Mathematical Models used in the Present Work

The mathematical models used in the present work are derived based on the assumption

of a smooth interface between the solid and liquid phases over a small temperature range

in which specific heat, conductivity, and the latent heat of fusion changes in a continuous

and differentiable manner. Figure 2.3 (a-c) shows variations of cp, k, and Lf in the smooth

interface zone between solid and liquid phases defined by the temperatures Ts and Tl.

The range [Ts, Tl] can be as narrow or wide as desired by the physics of phase change

in a specific application. The mathematical models presented in the following are neither

labeled as enthalpy models nor others, instead these are based on a simple statement of

the first law of thermodynamics using specific total energy and heat vector augmented by

the constitutive equation for heat vector (Fourier heat conduction law) and the statement

of specific total energy incorporating the physics of phase change in the smooth interface

zone between the solid and liquid phases. We present the mathematical models for 1D and

2D cases in the following.
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Figure 2.3: Variations of Lf , cp, and k in the smooth interface zone between the solid and

liquid phases
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2.5.1 Mathematical Models for 1D Phase Change

In Lagrangian description we have,

Energy equation:

ρ
∂e

∂t
+∇ · q∇ · q∇ · q = 0 ∀ (xxx, t) ∈ Ωxt = Ωx × Ωt = (0, 1)× (0, τ) (2.18)

Fourier heat conduction law:

qqq = −k(T )∇∇∇T ∀ (xxx, t) ∈ Ωxt = Ωx × Ωt = (0, 1)× (0, τ) (2.19)

Specific total energy e:

e =

∫ T

T0

cp(T )dT + Lf (T ) (2.20)

in which,

Lf (T ) =



0 ; T < Ts

Lf (T ) ; Ts ≤ T ≤ Tl

Lf ; T > Tl

(2.21)

k(T ) =



ks ; T < Ts

k(T ) ; Ts ≤ T ≤ Tl

kl ; T > Tl

(2.22)

cp(T ) =



cps ; T < Ts

cp(T ) ; Ts ≤ T ≤ Tl

cpl ; T > Tl

(2.23)
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Case (a): Mathematical model containing higher order derivatives of the

dependent variable T

Substituting from (2.19) and (2.20) in (2.18),

ρcp(T )
∂T

∂t
+∇·∇·∇· (−k(T )∇∇∇T ) + ρ

∂Lf
∂t

= 0 (2.24)

Lf = Lf (T ) (2.25)

in which,
∂Lf
∂t

=
∂Lf
∂T

∂T

∂t
(2.26)

If we consider a 1D case then,

∇∇∇ =
∂

∂x
(2.27)

Hence, (2.24) can be written as,

ρcp(T )
∂T

∂t
+

∂

∂x

(
−k(T )

∂T

∂x

)
+ ρ

∂Lf
∂T

∂T

∂t
= 0 (2.28)

Lf = Lf (T ) (2.29)

Once we define Lf (T ), ∂Lf

∂T
is explicitly deterministic. Thus (2.28) is a single PDE in

temperature that defines 1D phase change with smooth interface. We remark that ∂Lf

∂T
∂T
∂t

term is only to be used for Ts ≤ T ≤ Tl, otherwise it is zero. The conduction term in (2.28)

can be further expanded,

ρcp(T )
∂T

∂t
− ∂k(T )

∂x

∂T

∂x
− k(T )

∂2T

∂x2
+ ρ

∂Lf
∂T

∂T

∂t
= 0 (2.30)

Furthermore,
∂k(T )

∂x
=
∂k(T )

∂T

∂T

∂x
(2.31)
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Thus finally we have,

ρcp(T )
∂T

∂t
− ∂k(T )

∂T

(
∂T

∂x

)2

− k(T )
∂2T

∂x2
+ ρ

∂Lf
∂T

∂T

∂t
= 0 (2.32)

in which,

∂Lf
∂T

∂T

∂t


= 0 ; T < Ts ; T > Tl

6= 0 ; Ts ≤ T ≤ Tl and deterministic using Lf = Lf (T )

(2.33)

The mathematical model (2.32) contains only one dependent variable, T , the tempera-

ture and is most meritorious in terms of computational efficiency.

Case (b): Mathematical model consisting of a system of first order PDEs

The mathematical model (2.32) can be recast in terms of a system of first order PDEs

using auxiliary variables and auxiliary equations. This form of the mathematical model is

useful and is necessitated in finite element processes based on STLSP using local approxi-

mations of the class C0 in space and time. If we define,

q = −k(T )
∂T

∂x
(2.34)

and maintain the time derivative of Lf in (2.32), then we have the following system of first

order PDEs in T , q, and Lf .

ρcp(T )
∂T

∂t
+
∂q

∂x
+ ρ

∂Lf
∂t

= 0 (2.35)

q + k(T )
∂T

∂x
= 0 (2.36)

Lf − F (T ) = 0 (2.37)

in which q and Lf are auxiliary variables and (2.36) and (2.37) are auxiliary equations.

F (T ) is the specification of Lf (T ) (see chapter 4 on numerical studies).
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2.5.2 Mathematical Models for 2D Phase Change

For two dimensional spatial domain (2.18) - (2.25) hold, but∇∇∇ is defined by,

∇∇∇ =

[
∂

∂x

∂

∂y

]T
(2.38)

Hence we have the following mathematical models parallel to 1D case for homogeneous

isotropic medium.

Case (a): Mathematical model containing higher order derivatives of the

dependent variable T

Substituting for∇∇∇ from (2.38) into (2.24),

ρcp(T )
∂T

∂t
+

∂

∂x

(
−k(T )

∂T

∂x

)
+

∂

∂y

(
−k(T )

∂T

∂y

)
+ ρ

∂Lf
∂T

∂T

∂t
= 0 (2.39)

Lf − F (T ) = 0 (2.40)

T is the only dependent variable. (2.40) permits explicit expression for ∂Lf

∂T
needed in

(2.39). We remark that (2.33) must hold in this case as well.

Case (b): Mathematical model consisting of a system of first order PDEs

Following 1D case, we introduce qx and qy as auxiliary variables and maintain Lf as

a dependent variable (for convenience) in the energy equation. This yields the following

mathematical model.

ρcp(T )
∂T

∂t
+
∂qx
∂x

+
∂qy
∂y

+ ρ
∂Lf
∂t

= 0 (2.41)

qx + k(T )
∂T

∂x
= 0 (2.42)

qy + k(T )
∂T

∂y
= 0 (2.43)

Lf − F (T ) = 0 (2.44)

Here also, F (T ) is specification of Lf (T ). The conditions (2.33) apply in this case also.
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Chapter 3

Methods of Approximation for IVPs

Describing Phase Change Phenomena

3.1 Introduction

The mathematical models describing the phase change phenomena consist of a sys-

tem of non-linear PDEs in spatial coordinates and time i.e. non-linear IVPs in which the

space-time differential operator is non-linear. The computational methodology for obtain-

ing numerical solutions of the IVPs i.e. evolution must be such that accurate numerical

solutions are possible upon convergence. In the following, we list some features that are

essential in choosing a computational methodology for obtaining numerical solutions of

the non-linear IVPs describing phase change phenomena.

(1) Must be applicable to non-linear space-time differential operators regardless of the

nature of the non-linearity without any ad-hoc adjustments or treatments that are

dependent on the nature of the non-linearity (such as SUPG, DC, LS and other up-
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winding methods and linearizing methods [10]).

(2) The dependent variables must exhibit simultaneous dependence on space coordinates

and time as necessitated by the physics. Hence the computational methodology must

only entertain a space-time coupled approach.

(3) Must yield a computational infrastructure in which the computations remain uncon-

ditionally stable regardless of the choices of computational or physical parameters.

This feature essentially requires that the algebraic systems resulting from the meth-

ods of approximation must contain positive definite coefficient matrices.

(4) The approximation must be of higher degree (polynomial of order p) as well as of

higher order in space and in time. These features allow simulation of complex evolu-

tion over larger sub-domains. The higher order feature of the approximation permits

us to incorporate the desired global differentiability of approximations in space and

time.

(5) The computational infrastructure must be time marching so that the evolution can

be computed for an increment of time and then time marched to obtain the entire

evolution. This feature is essential for efficiency of computations when evolution

may be needed for a large value of time with relatively small time increments.

(6) The computational method must have means of measuring (i.e. computing) the error

or residual without the knowledge of theoretical or reference solution and must also

have mechanism to reduce them to the desired level. This feature is also essential for

adaptivity.
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Based on the material presented in Chapter 1 and the requirements (1) - (6), we rule

out finite difference and finite volume methods as viable computational methodologies.

This leaves us with space-time coupled finite element methods as possible approaches for

obtaining numerical solutions of the IVPs in phase change phenomena.

3.2 Space-Time Finite Element Method

In space-time finite element methods we construct an integral form using the GDEs in

the mathematical model over the space-time domain of the IVP. This can be done in two

ways: (i) using fundamental lemma of the calculus of variations [17–21] or (ii) based on the

minimization of the residual functional. The use of fundamental lemma results in space-

time Galerkin Method (STGM), space-time Petrov-Galerkin method (STPGM) and space-

time weighted residuals method (STWRM). The choice of the test function determines

the type of method. If we begin with STGM and perform integration by parts, we obtain

the weak form i.e. we have space-time Galerkin Method with weak form (STGM/WF).

The second category of methods based on minimization of the residual functional results

in space-time least squares processes (STLSP). When these space-time integral forms are

recast over the space-time discretization of the space time domain, we have space-time

finite element processes based on the chosen strategy of constructing the integral form. We

note that these methods only provide the space-time integral form from which numerical

solution is computed, thus we only have necessary condition. Existence and sufficient

conditions in these methods must be addressed on problem by problem basis.

Surana et. al. [11, 12, 22] have shown that:

(i) All space-time differential operators can be classified into two mathematical cate-
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gories: non-self adjoint and non-linear.

(ii) By establishing a correspondence between the integral forms and the elements of

calculus of variations and by introducing the definition of space-time variationally

consistent integral forms (STVC) and space-time variationally inconsistent integral

forms (STVIC), it is possible to determine which space-time integral forms are STVC

or STVIC for the two categories of differential operators.

(iii) The STVC integral forms yield computational processes that are unconditionally sta-

ble. The coefficient matrices in the algebraic systems are symmetric and positive

definite. In case of STVIC integral forms, unconditional stability of computations is

not always ensured, the coefficient matrices in the algebraic system are not symmet-

ric, and hence their positive definiteness is not always ensured.

(iv) The STGM, STPGM, STWRM, and STGM/WF yield space-time variationally in-

consistent integral forms. STLSP yield STVC integral forms when the space-time

differential operator is non-self adjoint. When the space-time differential operator is

non-linear, the space-time integral form in STLSP can be made variationally con-

sistent if (a) the non-linear algebraic equations are solved using Newton’s linear

method (Newton-Raphson method) and (b) if the second variation of the residuals

is neglected in the second variation of the residual functional.

Based on these works described above, only STLSP are a viable computational strat-

egy for obtaining numerical solutions of the IVPs describing the evolution for phase change

phenomena. This approach also has all of the desired features (1) - (6) listed in section 3.1.

In the following, we consider STLSP for IVPs in which the space-time differential oper-

ator is non-linear. First, we give a general presentation followed by specific details of the
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formulations using the mathematical models (presented in Chapter 2) used in the present

work for computations.

3.2.1 Space-time Finite Element Least Squares Processes

for Non-linear Space-time Differential Operators [11, 12, 22]

Let

AφAφAφ− fff = 0 ∀ (xxx, t) ∈ Ωxt = Ωx × Ωt = Ωx × (0, τ) (3.1)

be a system of ne partial differential equations defined over the space-time domain Ωxt.

AAA is a ne × ne matrix containing ne differential operators and φφφ is a (ne × 1) vector of

dependent variables. Consider an increment of time ∆t = [tn, tn+1] i.e. Ωn
t = (tn, tn+1)

and the nth space-time strip or slab Ωn
xt = Ωx×Ωn

t = Ωx× (tn, tn+1) corresponding to this

increment of time. Let (Ωn
xt)

T be a discretization of Ωn
xt, the nth space-time strip or slab

such that, (
Ω̄n
xt

)T
=

m⋃
e=1

Ωe
xt (3.2)

in which Ω̄n
xt = Ωn

xt

⋃
Γn where Γn is the closed boundary of the nth space-time strip or

slab. Ω̄e
xt = Ωe

xt

⋃
Γe is a typical space-time element ‘e’ of the discretization (Ωn

xt)
T . Γe is

the closed boundary of element ‘e’. Let φφφh be approximation of φφφ over (Ωn
xt)

T and φφφeh be

local approximation ofφφφ over an element ‘e’ with space-time domain Ω̄e
xt such that,

φφφh =
m⋃
e=1

φφφeh (3.3)

If we substituteφφφh in (3.1) then we obtain ‘ne’ residual equations i.e.

AφAφAφh − fff =EEE (3.4)

The vectorEEE consists of Ei ; i = 1, ..., ne residual equations.
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1. Existence of the residual functional I (φφφh):

I (φφφh) =
ne∑
i=1

(Ei, Ei)(Ω̄n
xt)

T =
m∑
e=1

(
ne∑
i=1

(Ee
i , E

e
i )Ω̄e

xt

)
(3.5)

in which Ee
i are components of the vectorEEEe in

AAAφφφeh − fff =EEEe (3.6)

We note I (φφφh) is always greater than zero and is equal to zero iff φφφh = φφφ, the theoretical

solution of (3.1).

2. Necessary Condition:

δI (φφφh) = 2
m∑
e=1

(
ne∑
i=1

(Ee
i , δE

e
i )Ω̄e

xt

)
= 2

m∑
e=1

{ge} = 2{g} = 0 (3.7)

We note that {ge} is a non-linear function of φφφeh and likewise {g} is a non-linear function

ofφφφh.

3. Sufficient condition or extremum principle:

δ2I (φφφh) = 2
m∑
e=1

(
ne∑
i=1

(δEe
i , δE

e
i )Ω̄e

xt

)
+ 2

m∑
e=1

(
ne∑
i=1

(
Ee
i , δ

2Ee
i

)
Ω̄e

xt

)
(3.8)

A unique extremum principle requires

δ2I



> 0 ; minimum of I

= 0 ; saddle point of I ∀ admissible φφφh

< 0 ; maximum of I

(3.9)

When the differential operator is linear (non-self adjoint), δ2Ee
i = 0, i = 1, 2, ..., ne.

Hence δ2I (φφφh) > 0 holds in (3.8). Thus, in this case, we have a unique extremum principle

and based on (3.9), hence a φφφh obtained using (3.7) minimizes I (φφφh) in (3.5). When the
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differential operator is non-linear δ2Ee
i are not zero, hence (3.7) in its present form does

not satisfy any of the three conditions in (3.9), thus we do not have an extremum principle.

This situation can be corrected by a simple modification. We note that δI (φφφh) = 0 yields(
from (3.7)

)
,

{g} = {g (φφφh)} = 0 =
m∑
e=1

(
ne∑
i=1

(Ee
i , δE

e
i )Ω̄e

xt

)
(3.10)

Consider local approximations for the dependent variables φφφ i.e. φφφeh. Each dependent

variable in φφφ has its own local approximation. Collectively they constitute φφφeh. Let all of

the degrees of freedom in the local approximationφφφeh be {δe} and let

{δ} =
m⋃
e=1

{δe} (3.11)

be the degrees of freedom for the discretization
(
Ω̄n
xt

)T , then {g} in (3.10) is a non-linear

function of {δ} i.e. we must find {δ} that satisfies,

{g ({δ})} = 0 (3.12)

iteratively. We choose Newton’s linear method (Newton-Raphson method). Let {δ0} be an

assumed solution or guess of {δ} in (3.12). Then,

{g
(
{δ0}

)
} 6= 0 (3.13)

Let {∆δ} be a change in {δ0} such that,

{g
(
{δ0}+ {∆δ}

)
} = 0 (3.14)

Expanding {g ({δ0}+ {∆δ})} in Taylor series about {δ0} and retaining only up to

linear terms in {∆δ} yields,

{g
(
{δ0}+ {∆δ}

)
} ≈ {g

(
{δ0}

)
}+

∂{g}
∂{δ}

∣∣∣∣
{δ0}
{∆δ} = 0 (3.15)
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From (3.15), we can solve for {∆δ}.

{∆δ} = −
[
∂{g}
∂{δ}

]−1

{δ0}
{g
(
{δ0}

)
} (3.16)

We note that,

∂{g}
∂{δ}

= δ{g} =
m∑
e=1

(
ne∑
i=1

(δEe
i , δE

e
i )Ω̄e

xt

)
+

m∑
e=1

(
ne∑
i=1

(
Ee
i , δ

2Ee
i

)
Ω̄e

xt

)
=

1

2
δ2I (φφφh)

(3.17)

If
[
∂{g}
∂{δ}

]
is positive definite in (3.16), then we can ensure a unique solution {∆δ} from

(3.16). Based on (3.17) this is possible if we approximate δ2I (φh) by [9, 11, 12, 22–25],

δ2I (φφφh) ≈ 2
m∑
e=1

(
ne∑
i=1

(δEe
i , δE

e
i )Ω̄e

xt

)
> 0 , a unique extremum principle. (3.18)

Rationale for the approximation in (3.18) has been discussed by Surana et. al. [9, 11,

12, 22–25]. Thus, with (3.18) STLSP is STVC.

Once we find a {∆δ} using (3.16) and (3.18), it is helpful to consider the following for

obtaining an updated solution {δ},

{δ} = {δ0}+ α{∆δ} (3.19)

in which α is a scalar generally between 0 and 2 and assumes the largest value between 0

and 2 for which I ({δ}) ≤ I ({δ0}) holds. This is referred to as line search. The entire

process of solving for {∆δ} and to update {δ0} to obtainφφφh that satisfies {g ({δ})} = 0 is

called Newton’s method with line search.

In (3.17), we note that,

[Ke] =
ne∑
i=1

(δEe
i , δE

e
i )Ω̄e

xt
(3.20)

is in fact the element coefficient matrix and,

m∑
e=1

(
ne∑
i=1

(δEe
i , δE

e
i )Ω̄e

xt

)
=

m∑
e=1

[Ke] = [K] (3.21)
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is the process of assembly of the element matrices. The same holds true for {g} and {ge}

in (3.7). We note that the computation of {ge} and [Ke] needed in (3.16) requires Ee
i ;

i = 1, 2, ..., ne and δEe
i ; i = 1, 2, ..., ne. Once we have [Ke] and {ge}, we assemble them

and solve for {∆δ} using (3.16) followed by an updated {δ} using (3.19). Using a new {δ}

we check if |{g ({δ})}| ≤ ∆ holds, in which ∆ is a preset tolerance, a threshold value of

numerically computed zero. If not, we repeat the process by taking the new {δ} as {δ0}.

3.2.2 Summary of Computational Steps and Time-Marching Proce-

dure

In the following we list important computational steps in the STLSP and the time

marching procedure for computing the complete evolution.

1. Consider PDEs in the mathematical model (either a higher order system or a sys-

tem of first order PDEs) and identify dependent variables. The mathematical model

obviously must have closure.

2. Consider the first space-time strip or slab for an increment of time and its spatial dis-

cretization into space-time finite elements, generally nine-node p-version elements

(in x, t) or 27-node p-version elements (in x, y, and t) with higher order continuity

local approximations in space and time.

3. Consider local approximations for each dependent variable. p-level and the order of

space k = (k1, k2) (in space and time) can be different for each dependent variable.

Minimally conforming choice of k is dependent on the highest orders of the deriva-

tives in space and time for each dependent variable and whether the integrals are in
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Riemann or Lebesque sense.

4. Arrange nodal degrees of freedom for each variable as a vector and then arrange them

in a single vector {δe} representing all degrees of freedom for all of the dependent

variables for an element ‘e’. Thus we have {δe} as nodal degrees of freedom for each

element and,

{δ} =
m⋃
e=1

{δe} (3.22)

where {δ} are the total degrees of freedom for the entire discretization for the first

space-time strip or slab.

5. Assume a starting solution {δ0} for {δ}.

6. Using local approximation for each dependent variable compute,

{ge} =
ne∑
i=1

(Ee
i , δE

e
i )Ω̄e

xt
; e = 1, 2, ...,m (3.23)

[Ke] =
ne∑
i=1

(δEe
i , δE

e
i )Ω̄e

xt
; e = 1, 2, ...,m (3.24)

[Ie] =
ne∑
i=1

(Ee
i , E

e
i )Ω̄e

xt
; e = 1, 2, ...,m (3.25)

7. Assemble {ge} and [Ke] to obtain {g} and [K] i.e

{g} =
m∑
e=1

{ge} (3.26)

[K] =
m∑
e=1

[Ke] (3.27)

I =
m∑
e=1

Ie (3.28)

8. Use

{∆δ} = − [K]−1 {g} (3.29)
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to calculate {∆δ} after imposing boundary conditions (BCs) and initial conditions

(ICs) on {δ}.

9. Find new updated solution using,

{δ} = {δ0}+ α{∆δ} ; 0 < α ≤ 2 such that I ({δ}) ≤ I
(
{δ0}

)
(3.30)

10. Recalculate {ge} using (3.25) and updated {δ}. Assemble {ge} to obtain {g} as in

(3.26). Check if the absolute value of each component of {g} is less than or equal to

∆, a preset threshold value for numerically computed zero (generally 10−6 or lower

suffices).

If this condition is satisfied then we have a solution of the non-linear algebraic system

defined by {g} and we say that Newton’s linear method is converged. If not, then

reset {δ0} to {δ} and repeat steps 6 through 10 until convergence of the Newton’s

linear method is achieved.

The steps described here provide a solution for the first space-time strip or slab between

t = 0 and t = ∆t. Next, consider the second space-time strip between t = ∆t and t = 2∆t.

Initial conditions for this space-time strip or slab are obtained from the solution for the first

space-time strip or slab at t = ∆t. Repeat the same procedure as used for the first space-

time strip or slab. This procedure known as ‘time marching procedure’ can be continued

until the desired time is reached.

We remark that Ee
i , Ie, and I are scalars, δEe

i are vectors and hence {ge} are also

vectors but (δEe
i , δE

e
i )Ω̄e

xt
is a matrix. Thus, care must be taken in various scalar products

encountered in the space-time least squares finite element process described in this section.
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3.3 Details of Space-Time Least Squares Finite Element

Process for the Specific Mathematical Models

In this section we consider the mathematical models presented in Chapter 2 and provide

specific details of the space-time least squares finite element processes. We consider 1D

and 2D mathematical models proposed in this work (both forms of GDEs) and 1D phase

field mathematical model.

3.3.1 1D Mathematical Models Used in the Present Work

Case (a): Mathematical model containing higher order derivatives of the

dependent variable T

In this case the mathematical model consists of (2.30) to (2.33),

ρcp(T )
∂T

∂t
− ∂k(T )

∂x

∂T

∂x
− k(T )

∂2T

∂x2
+ ρ

∂Lf
∂T

∂T

∂t
= 0 (3.31)

where,

Lf = Lf (T ) ; known function (3.32)

Let

T eh ∈ Vh ⊂ Hk,p
(
Ω̄e
xt

)
(3.33)

where k = (k1, k2), p = (p1, p2);p1 ≥ 2k1 − 1, p2 ≥ 2k2 − 1. k1 and k2 are the orders of

the space in space and time and p1, p2 are the degrees of local approximation in space and

time. k1 = 3 and k2 = 2 correspond to the minimally conforming approximation space for
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which the integrals over
(
Ω̄n
xt

)T are in Riemann sense. If we choose k1 = 2 and k2 = 1,

then the integrals over
(
Ω̄n
xt

)T will be in Lebesque sense. Let

T eh =
n∑
i=1

Ni(x, t)T
e
i = [N ] {T e} = [N ] {δe} (3.34)

be the local approximation for T over Ω̄e
xt. If we choose,

Ni ∈ Vh ⊂ Hk,p
(
Ω̄e
xt

)
; i = 1, 2, ..., n (3.35)

then (3.33) will hold. Substituting T eh from (3.34) into (3.31) we obtain the residual equa-

tion for an element ’e’.

Ee = ρcp (T eh)
∂T eh
∂t
−∂k (T eh)

∂T

(
∂T eh
∂x

)2

−k (T eh)
∂2T eh
∂x2

+ρ
Lf (T eh)

∂T

∂T eh
∂t

∀ (x, t) ∈ Ω̄e
xt

(3.36)

and,

Lf (T eh) = F (T eh) ; with the restriction (2.33) (3.37)

Next we need δEe i.e. ∂Ee

∂{δe} . Using (3.36) we can write,

δEe =

{
∂Ee

∂{δe}

}
=ρ

∂cp (T eh)

∂T
{N}∂T

e
h

∂t
+ ρcp (T eh)

{
∂N

∂t

}
− ∂2k (T eh)

∂T 2
{N}

(
∂T eh
∂x

)2

− 2
∂k (T eh)

∂T

{
∂N

∂x

}
∂T eh
∂x

− ∂k (T eh)

∂T
{N}∂

2T eh
∂x2

− k (T eh)

{
∂2N

∂x2

}
+
∂2Lf (T eh)

∂T 2
{N}∂T

e
h

∂t
+ ρ

∂Lf (T eh)

∂T

{
∂N

∂t

}
(3.38)

With Ee and δEe given by (3.36) and (3.38), then {ge} and [Ke] are defined. Except

in the phase change transition zone, k and cp are constant and hence their derivative with

respect to temperature are zero and ∂Lf (T )

∂T
is zero outside the transition region. We note

that

{ge} = (Ee, δEe)Ω̄e
xt

=

∫
Ω̄e

xt

Ee

{
∂Ee

∂{δe}

}
dΩxt (3.39a)
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and,

[Ke] = (δEe, δEe)Ω̄e
xt

=

∫
Ω̄e

xt

{
∂Ee

∂{δe}

}{
∂Ee

∂{δe}

}T
dΩxt (3.39b)

Gauss quadrature is used to compute numerical values of {ge} and [Ke]. We remark that

approximation functions in (3.34) are shown to be functions of x and t for convenience. The

elements are mapped in the natural coordinate space (ξ, η). The natural coordinate space

is used for defining Ni’s as well as all computations. Details are standard [26] and hence

omitted.

Case (b): 1D Mathematical model as a system of first order PDEs used

in the present work

Following the derivation in Chapter 2, in this case we have,

ρcp(T )
∂T

∂t
+
∂q

∂x
+ ρ

∂Lf
∂t

= 0 (3.40)

q + k(T )
∂T

∂x
= 0 (3.41)

Lf − F (T ) = 0 ; known function ∀ T ∈ [Ts, Tl] (3.42)

we treat T , q, and Lf as dependent variables.

Let T eh , qeh, and (Lf )
e
h be the local approximations for T , q, and Lf over a space-time

element Ω̄e
xt.

T eh =
[
NT
]
{T e} (3.43)

qeh = [N q] {qe} (3.44)

(Lf )
e
h =

[
NLf

]
{(Lf )e} (3.45)

Each dependent variable has its own local approximation functions and nodal degrees

of freedom. Let

{δe}T =
[
{T e}T , {qe}T , {(Lf )e}T

]
(3.46)
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be the total degrees of freedom for all three dependent variables. Since the PDEs contain

only the first order derivatives T , q, and Lf in space and time we can choose the same

approximation space for NT
i , N q

i , NLf

i i.e.

NT
i ∈ Vh ⊂ Hk,p

(
Ω̄e
xt

)
; i = 1, 2, ..., nT

N q
i ∈ Vh ⊂ Hk,p

(
Ω̄e
xt

)
; i = 1, 2, ..., nq

N
Lf

i ∈ Vh ⊂ Hk,p
(
Ω̄e
xt

)
; i = 1, 2, ..., nLf

(3.47)

in which k = (k1, k2), p = (p1, p2); p1 ≥ 2k1 − 1, p2 ≥ 2k2 − 1. k1 = 2 and k2 = 2

correspond to the minimally conforming space if the space-time integrals over
(
Ω̄n
xt

)T are

considered in Riemann sense. The choices k1 = 1 and k2 = 1 would yield integrals over(
Ω̄n
xt

)T in Lebesque sense. nT , nq, and nLf
are degrees of freedom for T eh , qeh, and (Lf )

e
h are

in Vh space. Substituting from (3.43) - (3.45) into (3.40) - (3.42) we obtain the following

residual equations.

Ee
1 = ρcp (T eh)

∂T eh
∂t

+
∂qeh
∂x

+ ρ
∂ (Lf )

e
h

∂t

Ee
2 = qeh + k (T eh)

∂T eh
∂x

Ee
3 = (Lf )

e
h − F (T eh)


∀ (x, t) ∈ Ω̄e

xt (3.48)

Next, we determine variations of Ee
i ; i = 1, 2, 3.
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δEe
1 =

{
∂Ee

1

∂{δe}

}
=



{ ∂Ee
1

∂{T e}

}
{ ∂Ee

1

∂{qe}

}
{ ∂Ee

1

∂{(Lf)
e
}

}


=


ρ
∂cp(T e

h)
∂T
{NT}∂T

e
h

∂t
+ ρcp (T eh)

{
∂NT

∂t

}
{
∂Nq

∂x

}
{
ρ∂N

Lf

∂t

}


(3.49)

δEe
2 =

{
∂Ee

2

∂{δe}

}
=



{ ∂Ee
2

∂{T e}

}
{ ∂Ee

2

∂{qe}

}
{ ∂Ee

2

∂{(Lf)
e
}

}


=



∂k(T e
h)

∂T
{NT}∂T

e
h

∂x
+ k (T eh)

{
∂NT

∂x

}
{
N q
}

{
0
}


(3.50)

δEe
3 =

{
∂Ee

3

∂{δe}

}
=



{ ∂Ee
3

∂{T e}

}
{ ∂Ee

3

∂{qe}

}
{ ∂Ee

3

∂{(Lf)
e
}

}


=


−∂F(T e

h)
∂T
{NT}{

0
}

{
NLf

}


(3.51)

Hence,

{ge} =
3∑
i=1

(Ee
i , δE

e
i )Ω̄e

xt
=

3∑
i=1

∫
Ω̄e

xt

Ee
i

{
∂Ee

i

∂{δe}

}
dΩxt (3.52)

and

[Ke] =
3∑
i=1

(δEe
i , δE

e
i )Ω̄e

xt
=

3∑
i=1

∫
Ω̄e

xt

{
∂Ee

i

∂{δe}

}{
∂Ee

i

∂{δe}

}T
dΩxt (3.53)

3.3.2 2D Mathematical Model as a System of First Order PDEs used

in the Present Work

The details of the mathematical models in higher order derivatives of the temperature

and the model as a system of first order PDEs are presented in Chapter 2 section 2.5.2. The

details of the space-time LSP are exactly parallel to the 1D case except that in this case the

space-time domain is x, y, and t i.e. a volume in x, y, t space. However for the sake of

completeness we present details of the space-time least squares finite element process for

the mathematical model that consists of a system of first order PDEs given by equations
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(2.41) - (2.44), as it is used in the numerical studies.

ρcp(T )
∂T

∂t
+
∂qx
∂x

+
∂qy
∂y

+ ρ
∂Lf
∂t

= 0 (3.54)

qx + k(T )
∂T

∂x
= 0 (3.55)

qy + k(T )
∂T

∂y
= 0 (3.56)

Lf − F (T ) = 0 (3.57)

Let T eh , (qx)
e
h, (qy)

e
h, and (Lf )

e
h, be the local approximations for the dependent variables

T , qx, qy, and Lf over Ω̄e
xt.

T eh =
[
NT
]
{T e} (3.58)

(qx)
e
h = [N qx ] {qex} (3.59)

(qy)
e
h = [N qy ] {qey} (3.60)

(Lf )
e
h =

[
NLf

]
{(Lf )e} (3.61)

Let

{δe}T =
[
{T e}T , {qex}T , {qey}T , {(Lf )

e}T
]

(3.62)

be the total degrees of freedom for an element ‘e’. As before, in this case also NT
i , N qx

i ,

N
qy
i , NLf

i are in approximation space Vh ∈ Hk,p
(
Ω̄e
xt

)
. The minimally conforming k1 and

k2 are clearly 2 and 2 for the integral over
(
Ω̄n
xt

)T to be Riemann. k1 = k2 = 1 i.e. solutions

of class C0 in space and time will obviously yield integrals over
(
Ω̄n
xt

)T in Lebesque sense.

Substituting (3.58) - (3.61) into (3.54) - (3.57), we obtain residual equations for an element

‘e’,
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Ee
1 = ρcp (T eh)

∂T eh
∂t

+
∂ (qx)

e
h

∂x
+
∂ (qy)

e
h

∂y
+ ρ

∂ (Lf )
e
h

∂t

Ee
2 = (qx)

e
h + k (T eh)

∂T eh
∂x

Ee
3 = (qy)

e
h + k (T eh)

∂T eh
∂y

Ee
4 = (Lf )

e
h − F (T eh)


∀ (x, t) ∈ Ω̄e

xt (3.63)

The variations of Ee
i ; i.e. i = 1, 2, ..., 4 are given by the following,

δEe
1 =

{
∂Ee

1

∂{δe}

}
=



{ ∂Ee
1

∂{T e}

}
{ ∂Ee

1

∂{qe
x}

}
{ ∂Ee

1

∂{qe
y}

}
{ ∂Ee

1

∂{(Lf)
e
}

}


=



ρ
∂cp(T e

h)
∂T
{NT}∂T

e
h

∂t
+ ρcp (T eh)

{
∂NT

∂t

}
{
∂Nqx

∂x

}
{
∂Nqy

∂y

}
{
ρ∂N

Lf

∂t

}


(3.64)

δEe
2 =

{
∂Ee

2

∂{δe}

}
=



{ ∂Ee
2

∂{T e}

}
{ ∂Ee

2

∂{qe
x}

}
{ ∂Ee

2

∂{qe
y}

}
{ ∂Ee

2

∂{(Lf)
e
}

}


=



∂k(T e
h)

∂T
{NT}∂T

e
h

∂x
+ k (T eh)

{
∂NT

∂x

}
{
N qx

}
{

0
}

{
0
}


(3.65)

δEe
3 =

{
∂Ee

3

∂{δe}

}
=



{ ∂Ee
3

∂{T e}

}
{ ∂Ee

3

∂{qe
x}

}
{ ∂Ee

3

∂{qe
y}

}
{ ∂Ee

3

∂{(Lf)
e
}

}


=



∂k(T e
h)

∂T
{NT}∂T

e
h

∂y
+ k (T eh)

{
∂NT

∂y

}
{

0
}

{
N qy

}
{

0
}


(3.66)

δEe
4 =

{
∂Ee

4

∂{δe}

}
=



{ ∂Ee
4

∂{T e}

}
{ ∂Ee

4

∂{qe
x}

}
{ ∂Ee

4

∂{qe
y}

}
{ ∂Ee

4

∂{(Lf)
e
}

}


=



−∂F(T e
h)

∂T
{NT}{

0
}

{
0
}

{
NLf

}


(3.67)
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Hence,

{ge} =
4∑
i=1

(Ee
i , δE

e
i )Ω̄e

xt
=

4∑
i=1

∫
Ω̄e

xt

Ee
i

{
∂Ee

i

∂{δe}

}
dΩxt (3.68)

and

[Ke] =
4∑
i=1

(δEe
i , δE

e
i )Ω̄e

xt
=

4∑
i=1

∫
Ω̄e

xt

{
∂Ee

i

∂{δe}

}{
∂Ee

i

∂{δe}

}T
dΩxt (3.69)

3.3.3 1D Phase Field Mathematical Model

In the 1D numerical studies we have also shown comparison of the results from the pro-

posed approach to phase field models for which the numerical solutions are also obtained

using space-time LSP. We present details in the following.

Considering phase change of an incompressible isotropic material with pure conduction

in one dimension. The energy and phase field equations reduce to,

ρcp
∂T

∂t
− ∂

∂x

(
k
∂T

∂x

)
+

1

2
Lf
∂p

∂t
= 0 ∀ x, t ∈ Ωx,t = Ωx × (0, τ) (3.70)

αξ2∂p

∂t
− ξ2 ∂

2p

∂x2
+
∂f

∂p
= 0 ∀ x, t ∈ Ωx,t = Ωx × (0, τ) (3.71)

The density, ρ, specific heat, cp, and thermal conductivity, k, are assumed constant

regardless of the phase. The latent heat, Lf , is prescribed a value of 0 for the solid phase and

a value of 1 for the liquid phase. The phase field variable, p, requires additional constants

α and ξ, which are defined as the relaxation time and a parameter that controls the interface

thickness, and thus the sharpness of the phase front. In the numerical studies, the free

energy density, f(p, T ), is defined as,

f(p, T ) =
1

8a
(p2 − 1)2 − ξ∆s

3σ
Tφ(p)

where a is a constant that controls the maximum of the double-well potential, ∆s is the

change in entropy between the two phases, and σ is the interface surface tension defined
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as σ = 2ξ
3
√
a
. The weight function, φ(p), has the following requirements based on the

conclusions of Almgren [27]:

• φ(p) is an odd function of p

• φ(±1) = ±1

• φ′(±1) = 0.

For numerical simulations presented, φ(p) = 1
2
p (3− p2). Taking the derivative of the

free energy density with respect to p gives,

∂f

∂p
=

p

2a

(
p2 − 1

)
− 3∆s

√
a

4
T
(
1− p2

)
(3.72)

Substituting (3.72) into (3.71), the following is obtained:

αξ2∂p

∂t
− ξ2 ∂

2p

∂x2
+

p

2a

(
p2 − 1

)
− 3∆s

√
a

4
T
(
1− p2

)
= 0

∀ x, t ∈ Ωx,t = (0, 1)× (0, τ)

(3.73)

Equations (3.70) and (3.73) complete the mathematical model for phase change using

the phase field approach in one-dimension. These can also be recast as a system of first

order PDEs using auxiliary equations.

r =
∂p

∂x
(3.74)

s = k
∂T

∂x
(3.75)

Substituting (3.74) and (3.75) into (3.70) and (3.72),

ρcp
∂T

∂t
− ∂s

∂x
+

1

2
Lf
∂p

∂t
= 0 (3.76)

αξ2∂p

∂t
− ξ2 ∂r

∂x
+

p

2a

(
p2 − 1

)
− 3∆s

√
a

4
T
(
1− p2

)
= 0 (3.77)

r − ∂p

∂x
= 0 (3.78)

s− ∂T

∂x
= 0 (3.79)
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In this model T , p, r, and s are dependent variables. Details of the space-time LSP are

exactly parallel to the 1D case with first order system of PDEs presented in section 3.3.1

case (b) and hence are omitted.
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Chapter 4

Numerical Studies

4.1 Introduction

In this chapter we consider 1D and 2D phase change model problems that are commonly

used in the published work. The purpose of these numerical studies is multi-fold. From

the material presented in Chapters 1 and 2 it is clear that the sharp interface method and

the phase field method of describing liquid-solid phase phenomena lead to mathematical

models that have their own limitations and merits (see Chapter 2). A significant shortcom-

ing of these methods is that they require a priori existence of a liquid-solid interface at the

commencement of the evolution. Secondly, a theoretical solution using the sharp interface

1D model is only possible when cp and k are constant. In the phase field approach, a priori

knowledge of the free energy density and the existence of the interface at the commence-

ment of the solution are essential. Thus the selection of this 1D model problem is done in

such a way that the computed evolution from the present approach can be compared with

sharp interface and phase field methods. Additional 1D phase change problems are chosen
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and are simulated to demonstrate the capability of the present method to initiate a smooth

front and propagate it during evolution with changing cp, k and Lf between the two phases.

2D model problems demonstrate the same features of the proposed approach as in the case

of 1D i.e.initiation of a front, variable cp, k and Lf between the two phases and accurate

propagation of the front in two dimensional domains in which the interface zone separating

the two phases can be complex.

4.2 Choice of Model Problems and Description of

Computational Procedure

The selection of the model problems and the numerical studies presented in this chapter

are summarized in this section. Details of the computational procedure are also summa-

rized. The model problems for numerical studies are described in the following.

(1) In this group we consider a 1D model problem (Model Problem 1) with constant

cp and k in which the liquid-solid interface is prescribed in the initial condition.

For this model problem, the sharp interface method using the integral form of the

mathematical model provides a theoretical solution (Chapter 2). This model problem

can also be simulated using the phase field method. The main purpose of this model

problem is to compare our computed results (smooth interface method) with the sharp

interface theoretical solution and with the phase field model simulation using space-

time LSP in h,p,k framework. Location of the front, temperature distribution, and

front propagation during evolution are compared using all three approaches.

(2) The second group of numerical simulations (Model Problem 2) use 1D model prob-
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lems also in which the capability of the smooth interface method proposed here to

simulate the initiation of the liquid-solid or solid-liquid interface and its subsequent

propagation during evolution is demonstrated. The specific heat cp, thermal conduc-

tivity k and latent heat of fusion Lf vary in a continuous and differentiable manner

from liquid to solid phases and vice-versa (as described in Chapter 2). One model

problem considers the initial phase to be liquid whereas the other model problem the

initial phase is considered to be solid to demonstrate the effectiveness of the smooth

interface approach in simulating the initiation of the front and its properties in either

freezing or melting. These model problems can not be simulated using sharp inter-

face or phase field methods due to the fact that: (a) they require capability to initiate

a front (b) and secondly due to variations in cp, k and Lf in the transition zone both

of which are lacking in these two methods.

(3) In the third group of numerical studies we consider two model problems with two

dimensional square spatial domains.

(a) The first model problem (Model Problem 3) considers the initial phase to be

liquid with constant temperature BCs on two opposing faces and parabolic heat

flux (cooling) on the remaining two opposing faces to demonstrate the initiation

of the liquid-solid front in a freezing process in a 2D spatial domain and its

propagation during the evolution.

(b) The second model problem (Model Problem 4) considers the initial phase to be

solid with uniform heat flux (heating) on all four boundaries. This model prob-

lem demonstrates initiation of a rather complex liquid-solid front that propa-

gates inward from the edges of the square during evolution.
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All numerical studies are performed using space-time least squares finite element pro-

cesses for a space-time strip (in 1D cases) or a space-time slab (in 2D cases) with time

marching. The mathematical models utilized in the computational studies are a system

of first order PDEs derived using auxiliary variables and auxiliary equations (described in

Chapter 2). In case of 1D, the space-time domain of a space-time strip for an increment of

time is discretized using nine-node p-version space-time elements. For 2D spatial domains

resulting in a space-time slab, the space-time domain is discretized using 27-node p-version

space-time elements. The local approximation in both 1D and 2D cases consist of class C0

in space as well as in time.

For an increment of time i.e. for a space-time strip or a slab, solution of the non-linear

algebraic systems is obtained using Newton’s linear method with line search. Newton’s

linear method is considered converged when the absolute value of each component of δI =

{g} is below a preset threshold ∆, numerically computed zero. ∆ < 10−6 has been used

in all numerical studies. Discretization and p-levels (considered to be uniform in space and

time) are chosen such that the least squares functional I resulting from the residuals for

the entire space-time strip or slab is always of order of O(10−6) or lower and hence good

accuracy of the evolution is always ensured.
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4.3 Model Problem 1: 1D Phase Change with

Comparisons to Sharp Interface and Phase Field

Solutions

This 1D model problem is chosen such that the numerical solution computed using the

present approach (smooth interface) can be compared with the theoretical solution from the

sharp interface method and the numerically computed solution from the phase field method.

Figure 4.1 shows a schematic of the first space-time strip for an increment of time ∆t and

boundary conditions at x = 0 and x = 1 of a spatial domain of unit length. Figure 4.1 also

shows details of the spatial discretization. The initial conditions at time t = 0 consist of

prescribed temperature distribution obtained from the sharp interface theoretical solution.

x = 0.14 marks the location of the interface. For 0 ≤ x ≤ 0.14 the domain is solid whereas

for 0.14 ≤ x ≤ 1 the domain is liquid.

mesh

Solid Liquid

Solid−Liquid Interface Location

70 element uniform
430 element uniform mesh

t

x

x = 0 x = 0.14 x = 1
t = 0

t = ∆t

T (1, t) = T (t)T (0, t) = −0.085

T = T (x, 0): IC

Figure 4.1: Schematic of the First Space-Time Strip, BCs, IC and Spatial Discretization

T (1, t) = −0.015
erf
(
β
2

)
− erf

(
1

2
√
t+t0

)
1− erf

(
β
2

)
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Figure 4.2 shows the temperature field as a function of x-coordinate prescribed as the initial

condition at t = 0. The solid phase is discretized using a 70 element uniform mesh of nine

node p-version hierarchical space-time elements. The liquid phase is discretized using a

430 element uniform mesh of the same type of space-time elements. We describe details of

the phase field numerical solution and smooth interface numerical solution in the following

sections.
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T
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u
re

, 
T

Distance, x0 1x=0.14

Solid-Liquid

Interface Location

Figure 4.2: Initial Condition at t = 0, Temperature Distribution from the Theoretical Solu-

tion Using Sharp Interface Model

Phase Field Solution:

The computations of the evolution using the phase field model are done using space-

time LSP based on a system of first order PDEs (see Chapters 2 and 3) with local ap-

proximations of class C0 in space and time. We consider the following properties and

parameters.

ρ = 1, α = 1, ∆s = 1, a = 1, and ξ = 0.008
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Evolution was computed using 1000 time steps and a p-level of 4 in space and time with

∆t = 0.001. For all space-time strips I values of the order of O(10−8) or lower were

obtained. The maximum values of the |gi|max were of the order of O(10−6) or lower. The

convergence of the Newton’s linear method with line search required iterations that range

between 5-10 for the entire range of 1000 time increments.

Smooth Interface Solution (Present Approach):

cp and k were held constant as required by the sharp interface theoretical solution. We

consider the following properties and parameters,

ρ = 1, Ts = −0.001, Tm = 0.0, Tl = 0.001

cps = cpl = 1, ks = kl = 1, Lf = 1

Thus, with these choices the width of the interface zone is 0.002 units in temperature cen-

tered at Tm = 0.0. Figure 4.3 shows a schematic of the smooth interface in the spatial

domain. The temperature distribution [Ts, 0] occurs over less than one element whereas

[0, Tl] is over 18 elements.

1 element 18 elements

x = 0.14

Ts Tl

Figure 4.3: Schematic of Initial Smooth Interface over Spatial Discretization: Model Prob-

lem 1
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Evolution is computed for 100 increments of time with ∆t = 0.01 with p-level of 3 in

both space and time. The convergence of the Newton’s method with line search requires

between 5 - 10 iterations for the entire range of 100 time increments. The maximum values

of |gi|max were of the order ofO(10−6) or lower for the entire evolution. The I values are of

the order of O(10−7) or lower during the entire evolution. The latent heat Lf is expressed

as a polynomial in temperature in the interface zone.

Lf (T ) = c0 +
n∑
i=1

ciT
i ;Ts ≤ T ≤ Tl

Generally n = 3 (a cubic polynomial in temperature) or n = 5 (a fifth order polynomial in

temperature) is found adequate. The coefficient c0 and ci are calculated using the conditions

at T = Ts and T = Tl.

For n = 3

at T = Ts : Lf (T ) = 0, dLf (T )

dT
= 0

at T = Tl : Lf (T ) = Lf , dLf (T )

dT
= 0

For n = 5

at T = Ts : Lf (T ) = 0, dLf (T )

dT
=

d2Lf (T )

dT 2 = 0

at T = Tl : Lf (T ) = Lf , dLf (T )

dT
=

d2Lf (T )

dT 2 = 0

Numerical Studies:

We present and discuss numerical solutions from smooth interface and phase field meth-

ods and their comparisons with sharp interface theoretical solution in this section. First we

consider smooth interface solutions and comparisons with sharp interface theoretical solu-

tion. Figure 4.4 shows evolutions of Lf for the first five time steps. Minor oscillations in

the evolution are due to the non-differentiable nature of the IC at x = 0.14 (location of the

front).
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Figure 4.4: Evolution of Latent Heat (Smooth Interface), first 5 time steps: Model Problem

1

As the evolution proceeds (Figure 4.5), the oscillations in the evolution of Lf over the spa-

tial domain diminish and eventually disappear. Figure 4.6 shows evolution of temperature

over the spatial domain and a comparison with the theoretical solution from the sharp in-

terface method. Location of the liquid-solid front is marked by the center of the interface

region obtained from the smooth interface solution. A comparison with the theoretical so-

lution for 0 ≤ t ≤ 1 is presented in Figure 4.7. The agreement between the two is excellent

confirming that even extremely hypothetical non-physical conditions used in obtaining the

theoretical solution are possible to simulate in the smooth interface approach.
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Figure 4.8 shows the evolution of the phase field variable p over the spatial domain.

Evolution of temperature, location of the front separating liquid-solid phases obtained us-

ing phase field method and a comparison with the smooth interface results are shown in

Figures 4.9 and 4.10. The agreement is excellent. The numerical studies demonstrate the

validity of the smooth interface method as it is able to simulate a standard benchmark 1D

problem (even though hypothetical) accurately with excellent agreement with phase field

solution and the theoretical solution obtained from the sharp interface method.
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4.4 Model Problem 2: 1D Phase Change with Interface

Initiation and Propagation; Variable cp, k, and Lf

In this 1D model problem we consider two cases. In the first case the initial phase at

commencement of the evolution is liquid whereas in the second case the initial phase at

the commencement of the evolution is solid. In both cases we consider smooth interface

method to simulate initiation of the interface and its subsequent propagation during further

evolution. In both cases cp and k have different values in solid and liquid phases with

continuous and differentiable distribution in the transition region. Latent heat of fusion Lf

is assumed to behave in the same fashion. Details of these distributions have already been
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presented in model problem 1.

Case (a): Liquid-Solid Phase Change:

Figure 4.11 shows a schematic of the first space-time strip and BCs at x = 0 and

at x = 1 for a spatial domain of one unit length. At x = 0, a constant temperature of

T (0, t) = 0.015 is maintained while at x = 1 a constant heat flux of q(1, t) = 0.1 is

maintained (heat removal) for all values of time. The initial condition at t = 0 consists

of constant temperature of T (x, 0) = 0.015 for the entire spatial domain. We consider the

following properties and parameters.

ρ = 1, Ts = −0.001, Tm = 0.0, Tl = 0.001

cps = 2.1, cpl = 4.2, ks = 2.0, kl = 1.0, Lf = 1

Liquid

100 element uniform mesh

t

x

t = ∆t

t = 0
x = 0 x = 1

q(1, t) = −k ∂T
∂x |x=1 = 0.1T (0, t) = 0.015

T (0, t) = 0.015

Figure 4.11: Schematic of First Space-Time Strip, BCs, IC and Spatial Discretization

In the interface region [Ts, Tl] we consider the following for cp, k, and Lf .

cp(T ) = c0 +
n∑
i=1

ciT
i

k(T ) = ĉ0 +
n∑
i=1

ĉiT
i

Lf (T ) = c̃0 +
n∑
i=1

c̃iT
i
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The coefficients c0, ci; ĉ0, ĉi and c̃0, c̃i are evaluated using conditions on cp(T ), k(T ), and

Lf (T ) and their derivatives at T = Ts and T = Tl (see Lf in model problem 1). In the

present studies we use n = 3. In the numerical studies we consider a p-level of 3 in both

space and time with ∆t = 0.05. The Newton’s linear method upon convergence yields

|gi|max of the order of O(10−6) or lower for the entire evolution consisting of 1000 time

increments. The number of iterations range between 5-10 during the computations for all

time steps. I values of the order of O(10−7) or lower are achieved for all space-time strips.

Since the physics of phase-change in this model problem requires initiation of the liquid-

solid interface, this model problem can not be simulated using sharp interface or phase

field methods. Figures 4.12 and 4.13 show evolution of Lf and T for the first ten time

steps. The evolution of Lf and T for 0 ≤ t ≤ 50 are shown in Figures 4.14 and 4.15. The

evolutions are oscillation free and the sharp fronts are maintained without diffusion during

the evolution.

A numerical study with increased width of the interface region is also conducted. In

the study we keep all other parameters and properties the same as described above for this

model problem, except Ts and Tl are changed to -0.002 and 0.002 which doubles the size

of the interface region. Evolutions of latent heat for these values of Ts and Tl as well as

Ts = −0.001 and Tl = 0.001 are shown in Figure 4.16. The center of the interface region

marking the front location remains unaffected by increasing the width of the interface re-

gion. Figure 4.17 shows the location of the interface for two different choices of Ts and Tl.

Excellent agreement confirms that [Ts, Tl] range does not influence the interface location.
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Case (b): Liquid-Solid Phase Change:

Figure 4.18 shows the schematic of the first space-time strip and BCs at x = 0 con-

sisting of a constant heat flux q(0, t) = 0.1 and at x = 1.0 a constant temperature of

T (1, t) = −0.015 for a spatial domain of one unit length. All parameters and properties

are the same as for case (a) with Ts = −0.001, Tm = 0.0, and Tl = 0.001 i.e. the transition

region of [−0.001 : 0.001] in temperature. The initial condition at t = 0 consists of a con-

stant temperature T (x, 0) = −0.015 i.e. initially the entire spatial domain is solid phase.

Solid

100 element uniform mesh

t

x

t = ∆t

t = 0
x = 0 x = 1

q(0, t) = −k ∂T
∂x |x=0 = 0.1

T (x, 0) = −0.015

T (1, t) = −0.015

Figure 4.18: Schematic of First Space-Time Strip, BCs, IC and Spatial Discretization

cp, k, and Lf vary in the transition region in a continuous and differentiable fashion

(described in case (a)). Evolution is computed for 1500 time steps using ∆t = 0.025 with

p-level of 3 in space and time. I values of the order of O(10−8) or lower, |gi|max values

of the order of O(10−6) or lower are achieved during the entire evolution. Newton’s linear

method with line search requires 5-10 iterations for convergence for each increment of

time. Figures 4.19 and 4.20 show evolution of Lf and T for the first 15 time increments.

Figures 4.21 and 4.22 show the same evolutions for 0.0 ≤ t ≤ 37.5. Evolutions are

oscillation free, solid-liquid interface is initiated smoothly and propagates without diffusion

during the evolution. As in case (a), this model problem can not be simulated using phase

field and sharp interface models due to the fact that it requires initiation of the front and
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variable cp, k, and Lf .
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Figure 4.19: Evolution of Latent Heat (Smooth Interface), first 15 time steps: Model Prob-

lem 2, Case (b)
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Figure 4.20: Evolution of Temperature (Smooth Interface), first 15 time steps: Model Prob-

lem 2, Case (b)
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Figure 4.21: Evolution of Latent Heat (Smooth Interface) for 0.25 ≤ t ≤ 37.5: Model

Problem 2, Case (b)
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Figure 4.22: Evolution of Temperature (Smooth Interface) for 0.25 ≤ t ≤ 37.5: Model

Problem 2, Case (b)
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4.5 Model Problem 3: 2D Liquid-Solid Phase Change

In this model problem we consider a two dimensional domain consisting of a unit

square. A schematic of the domain, boundary conditions and the spatial regions with graded

spatial discretizations is shown in Figure 4.23. Table 4.1 provides details of discretization

for regions A, B, and C. The boundaries x = 0, 0 ≤ y ≤ 1 and x = 1, 0 ≤ y ≤ 1 are

maintained at T = 0.015 for all values of time. On boundaries y = 0, 0 ≤ x ≤ 1 and

y = 1, 0 ≤ x ≤ 1 parabolic heat flux is applied (cooling). The following data are used in

the numerical studies.

ρ = 1, Ts = −0.001, Tm = 0.0, Tl = 0.001

cps = 2.1, cpl = 4.2, ks = 2.0, kl = 1.0, Lf = 1

cp, k and Lf are continuous and differentiable in T in the transition region [Ts, Tl]. A cubic

approximation is used (see one dimensional model problems). Evolution is computed for

60 time increments using ∆t = 0.05 with p-level of 2 in space as well as time with C0 local

approximations in space and time for all 1000 27-node 3D space-time elements of the dis-

cretization. I values of the order of O(10−7) or lower and |gi|max of the order of O(10−6)

are achieved for each space-time slab. Newton’s method with line search converged be-

tween 5-10 iterations for each space-time slab. Figures 4.24 and 4.25 show evolution of

latent heat Lf for 0 ≤ t ≤ 0.4 and for 0.5 ≤ t ≤ 3.0. The evolution of the temperature

for 0 ≤ t ≤ 0.25 and for 0.5 ≤ t ≤ 3.0 are shown in Figures 4.26 and 4.27. Initiation of

liquid solid front (Figure 4.24) occurs smoothly and propagates without oscillations (Fig-

ures 4.24 and 4.25). Temperature evolution is smooth and free of oscillations. The study

demonstrates the strength of the work in simulating moving 2D front without front track-

ing techniques. This model problem also can not be simulated using phase field and sharp
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interface models due to the same reasons as cited in the case of model problem 2. Quarter

symmetry of the evolution is quite obvious from the evolutions in Figures 4.24 - 4.27.

Region A

Region B

Region C

y

xy = 0
x = 1

y = 1

x = 0

qy(x, 0, t) = −k ∂T
∂y = −2

5(x2 − x)

qy(x, 1, t) = −k ∂T
∂y = 2

5(x2 − x)

y = .8

y = .2

T (1, y, t) = 0.015T (0, y, t) = 0.015

Figure 4.23: Schematic, Discretization and BCs for Model Problem 3

Table 4.1: Spatial Discretization for Model Problem 3

Number of Number of Number of
Region x elements y elements hex hey Total Elements

A 20 20 0.05 0.01 400

B 20 10 0.05 0.06 200

C 20 20 0.05 0.01 400
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(a) Initial Condition (b) t = 0.20

(c) t = 0.25 (d) t = 0.30

(e) t = 0.35 (f) t = 0.40

Figure 4.24: Evolution of Latent Heat (Smooth Interface): Model Problem 3, ∆t = 0.05,

0 ≤ t ≤ 0.40
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(a) t = 0.5 (b) t = 1.0

(c) t = 1.5 (d) t = 2.0

(e) t = 2.5 (f) t = 3.0

Figure 4.25: Evolution of Latent Heat (Smooth Interface): Model Problem 3, ∆t = 0.05,

0.5 ≤ t ≤ 3.0
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(a) Initial Condition (b) t = 0.05

(c) t = 0.10 (d) t = 0.15

(e) t = 0.20 (f) t = 0.25

Figure 4.26: Evolution of Temperature (Smooth Interface): Model Problem 3, ∆t = 0.05,

0 ≤ t ≤ 0.25
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(a) t = 0.5 (b) t = 1.0

(c) t = 1.5 (d) t = 2.0

(e) t = 2.5 (f) t = 3.0

Figure 4.27: Evolution of Temperature (Smooth Interface): Model Problem 3, ∆t = 0.05,

0.5 ≤ t ≤ 3.0
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4.6 Model Problem 4: 2D Solid-Liquid Phase Change

In this model problem we also consider a two dimensional unit square domain. A

schematic of the domain, boundary conditions and the spatial regions marked A-I with

graded discretization using 27-node hexahedron space-time elements are shown in Fig-

ure 4.28. The details of discretization for each of the regions A-I are given in Table 4.2. All

four boundaries of the domain have applied uniform normal heat flux of 0.1 (heat input).

The initial condition consists of uniform temperature of -0.015 for the entire spatial domain

of the unit square representing solid phase for the entire spatial domain. The data used in

the computations of evolution are,

ρ = 1, Ts = −0.002, Tm = 0.0, Tl = 0.002

cps = 2.1, cpl = 4.2, ks = 2.0, kl = 1.0, Lf = 1

cp, k and Lf are assumed to be a cubic function of the temperature in the transition region

[Ts, Tl]. The evolution is computed for 125 time increments with ∆t = 0.01 and p-level of

2 in space and time with C0 local approximation in space and time for each element of the

space-time slab. I values of the order of O(10−7) or lower and |gi|max values of the order

of O(10−6) or lower are achieved during the entire evolution. Newton’s method with line

search converges between 5-10 iterations for each space-time slab during time marching.

Figures 4.29 and 4.30 show evolution of the latent heat for 0 ≤ t ≤ 0.25 and for

0.35 ≤ t ≤ 1.25. The evolution of the temperature for 0 ≤ t ≤ 0.05 and for 0.35 ≤

t ≤ 1.25 are shown in Figures 4.31 and 4.32. The solid-liquid interface initiates and

propagates smoothly. The entire evolution of Lf and T is smooth and oscillation free.

Quarter symmetry of the evolution is quite obvious from Figures 4.29 - 4.32. This model

problem has a relatively complex 2D solid-liquid interface or transition region especially
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in the vicinity of the corner regions during the initial stages of the evolution. This becomes

progressively smoother as the evolution proceeds. This model problem also can not be

simulated using phase field or sharp interface methods as it requires initiation of interface

and variable cp, k and Lf .

Table 4.2: Spatial Discretization for Model Problem 4

Number of Number of Number of
Region x elements y elements hex hey Total Elements

A 12 12 0.0167 0.0167 144

B 6 12 0.1000 0.0167 72

C 12 12 0.0167 0.0167 144

D 12 6 0.0167 0.1000 72

E 6 6 0.1000 0.1000 36

F 12 6 0.0167 0.1000 72

G 12 12 0.0167 0.0167 144

H 6 12 0.1000 0.0167 72

I 12 12 0.0167 0.0167 144
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qx(1, y, t) = −k ∂T
∂x = −0.1

qy(x, 0, t) = −k ∂T
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Figure 4.28: Schematic, Discretization and BCs for Model Problem 4
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(a) Initial Condition (b) t = 0.05

(c) t = 0.10 (d) t = 0.15

(e) t = 0.20 (f) t = 0.25

Figure 4.29: Evolution of Latent Heat with Smooth Interface: Model Problem 4 (Melting),

∆t = 0.01, 0 ≤ t ≤ 0.25
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(a) t = 0.35 (b) t = 0.50

(c) t = 0.65 (d) t = 0.80

(e) t = 1.00 (f) t = 1.25

Figure 4.30: Evolution of Latent Heat (Smooth Interface): Model Problem 4, ∆t = 0.01,

0.35 ≤ t ≤ 1.25
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(a) Initial Condition (b) t = 0.01

(c) t = 0.02 (d) t = 0.03

(e) t = 0.04 (f) t = 0.05

Figure 4.31: Evolution of Temperature (Smooth Interface): Model Problem 4, ∆t = 0.01,

0 ≤ t ≤ 0.05
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(a) t = 0.35 (b) t = 0.50

(c) t = 0.65 (d) t = 0.80

(e) t = 1.00 (f) t = 1.25

Figure 4.32: Evolution of Temperature (Smooth Interface): Model Problem 4, ∆t = 0.01,

0.35 ≤ t ≤ 1.25
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Chapter 5

Summary and Conclusions

In this thesis numerical simulation of 1D and 2D liquid-solid or solid-liquid phase

change phenomena have been presented using a smooth interface approach. Summary

of this work and some conclusions drawn from this work are presented in this chapter.

The mathematical models of the phase-change physics are constructed in Lagrangian

description with the assumptions of homogeneous and isotropic medium, no flow, and free

boundaries. With these assumptions, the continuity and momentum equations are identi-

cally satisfied. Thus, only the first law of thermodynamics (energy equation), Fourier heat

conduction law and the physics of phase change form the basis for deriving the mathe-

matical model of phase change phenomena. The energy equation is expressed in terms of

specific total energy and heat conduction. Fourier heat conduction law and the specific total

energy, expressed in terms of internal energy and latent heat are substituted in the energy

equation to derive a single non-linear PDE in temperature containing up to second order

derivatives of the temperature with respect to spatial coordinates but only the first order

derivatives of the temperature and latent heat with repect to time. Specific heat cp, thermal
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conductivity k and the latent heat of fusion Lf are all assumed to be functions of temper-

ature. The physics of phase change is incorporated through a smooth interface between

the two phases. We assume that the phase change occurs over a small temperature range

[Ts, Tl] referred to as the interface or transition region. In the transition region cp, k and

Lf are assumed to be continuous and differentiable functions of temperature. Outside the

transition region, cp and k have their respective values in the solid or liquid phases. Using

Lf = Lf (T ), the time derivative of Lf in the energy equation is replaced by the derivative

of the latent heat with respect to temperature and the time derivative of temperature. This

yields the final form of the energy equation as a single non-linear diffusion equation in the

temperature. Hence the location of the interface separating the two phases, its initiation

from commencement of the evolution and the propagation of the interface location in the

spatial domain during evolution are all intrinsic in this mathematical model. When using

this mathematical model, no special methods are required for tracking the front. In sharp

interface and phase field models, specification of the interface separating the two phases is

essential as initial condition i.e. these models can not simulate initiation of the interface.

In the present mathematical model, formation of the transition region from the commence-

ment of the evolution and the two phases separated by the transition region upon further

evolution is inherent in the mathematical model. It is well known that sharp interface model

incorporating singular solutions are numerically most difficult without excessive upwind-

ing. The phase field models on the other hand require a priori knowledge of a potential

that is highly dependent on the application in addition to ICs defining the interface loca-

tion at the commencement of the evolution. None of these restrictions, limitations and

assumptions are present in the mathematical model considered in this work.

The numerical solutions of the non-linear PDE in temperature, spatial coordinates and

77



time (i.e. non-linear IVP) are obtained using space-time least squares finite element method

in h,p,k framework [9,11,12,22–25]. The PDE in temperature is recast as a system of first

order PDEs using heat flux(es) and latent heat of fusion as dependent variables. This is

done for the convenience of using C0 p-version space-time local approximations for the

space-time elements. Space-time least squares finite element processes yield uncondition-

ally stable computations during the entire evolution regardless of the choice of h and p.

The algebraic systems contain symmetric and positive definite coefficient matrices. The

least squares functional I and its proximity to zero is an absolute measure of error in the

computed evolution without the knowledge of a theoretical solution. This is an extremely

important and intrinsic feature of the computational methodology used in the present work.

The evolution described by the IVP is computed for an increment of time using a space-

time strip (1D problems) and a space-time slab (2D problems) with time marching. We

time march only when the least squares functional for the current increment of time is suf-

ficiently close to zero. Thus, within the framework of computational infrastructure used

here ‘time accurate’ evolutions are possible. The least squares functional values for all four

model problems used in the present work are ensured to be sufficiently low during the entire

evolution. This establishes good accuracy of the evolutions and their very close proximity

to ‘time-accurate’ evolutions.

Numerical solutions are presented for four model problems. The first model problem

is a 1D phase change problem with constant cp and k (and same values in both phases)

in which the initial condition at time zero defines the two phases separated by a sharp in-

terface. This is done by defining the temperature field at time zero obtained by using the

theoretical solution from the sharp interface model. This model problem is chosen primar-

ily to show comparison of the of the smooth interface solutions with the sharp interface
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theoretical solution and the numerical solutions from the phase-field model. Results pre-

sented in Section 4.3 of Chapter 4 show excellent agreement of the temperature evolution

and interface location between the three approaches confirming that the proposed math-

ematical model and the computational infrastructure incorporates the sharp interface and

phase field capabilities.

Model problem 2 is also a 1D phase-change problem in which at the commencement of

the evolution we either have a solid phase or a liquid phase. The numerical studies demon-

strate formation of the transition region, its propagation during evolution leading to two

phases separated by the transition region. The studies demonstrate that the thin transition

region does not diffuse during evolution (establishing lack of numerical dispersion in the

computational method used in this work). cp and k have their respective values in the solid

and liquid phases. In the transition region, cp, k and Lf are continuous and differentiable

and are assumed to be a polynomial of third degree in temperature. Numerical studies

are also presented to demonstrate that the width [Ts, Tl] of the transition region does not

influence the location of interface marked by the center of [Ts, Tl]. However, spatial dis-

cretization is influenced by this choice.

Model Problems 3 and 4 are two dimensional phase change problems demonstrating

the capability of the smooth interface method to initiate the formation of the transition

region and its evolution in two dimensional spatial domain without employing any special

means. We remark that model problems 2, 3 and 4 require initiation of the transition

region and hence, can not be simulated by the sharp interface and phase field models.

Different values of cp and k in liquid and solid phases present additional difficulties in

sharp interface and phase-field models that are avoided the smooth interface approach.

Even though all numerical studies only employ local approximations of class C0 in space
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and time using mathematical models that are a system of first order PDEs, the work by

Surana et.al. [9,12–15] has demonstrated the benefits of using a single PDE in temperature

employing approximations in higher order spaces. This can be done easily without any

difficulty.

In summary, the work presented in this thesis has the following important features:

(i) Derivation of the mathematical model leading to a non-linear diffusion equation. (ii)

Incorporating the phase-change physics through a transition region in which cp, k, and

Lf are continuous and differentiable, thereby avoiding singular nature of the evolution as

in case of sharp interface. (iii) The model permits initiation of the interface i.e. transi-

tion region which can not be done in the other two methods used commonly for phase

change problems. (iv) The model permits different cp and k that may even be function of

temperature in solid and liquid phases. (v) No special techniques are needed to track the

solid-liquid or liquid-solid fronts as these features are intrinsic in the mathematical models.

(vi) Computational infrastructure ensures unconditionally stable computations during the

entire evolution and provides a computed measure of the solution accuracy which enables

computations of time accurate evolutions. The extension of this work using mathematical

models in Eulerian description permitting the study of phase change phenomena in flowing

medium with constrained boundaries resulting in non-zero velocity and stress fields is cur-

rently being performed by the graduate students working in the computational mechanics

program with Professor Surana.
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