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Chapter 1

Abstract

The nonlinear interaction of climate forcings and ecosystem variables is instrumental

in creating the temporal and spatial heterogeneity of grasslands. Ecosystem processes

are a product of these interactions and vary in sensitivity to them across time. How

forcings aggregate and shape ecosystem responses is an important aspect of grass-

land states and defines how they respond to changes in environmental conditions.

Characterizing the relationship between climate drivers and ecosystem variables helps

sharpen analysis of ecosystem flux dynamics during the growing season and identifies

likely deviations from mean functioning.

To address the question of how climate forcings and ecosystem variables interact

to shape seasonal water and carbon dynamics in grasslands, this thesis is split into

two analysis chapters. The first (Chapter 3) is a characterization of water and car-

bon flux responses to variable precipitation timing and magnitude. Particular focus

is placed on temporal sensitivity to inputs, seasonality in water flux dynamics, and

the linkage between precipitation, soil moisture, evapotranspiration, and potential

evaporation. Chapter 4 extends International Panel on Climate Change (IPCC A1B)

regional climate scenario projections for the Central Plains of the United States to
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assess mesic grassland responses. The specific focus is assessing the ecosystem re-

sponse to increased precipitation variability, increased potential evaporation, and

earlier growing season onset. Effects of these forcings are shaped by simulations of

constant and seasonally-varying water-use efficiency to assess the role of vegetation

on grassland carbon assimilation, and also to explore species-specific responses at

the Konza Prairie in North Central Kansas, USA. Results from both chapters show

variation in seasonal sensitivity of fluxes to precipitation, with varying relationships

between drivers, variable conditions, and fluxes. This research provides for a bet-

ter understanding of ecosystem processes and provides assessment of the magnitude

and extent that forcing variation has on grassland function. Results from the second

chapter show increased seasonal water and carbon flux variability and increased fre-

quency of water stress conditions. Vegetation responses suggest climate change will

impact species and habitat compositions through changing environmental conditions

and partitioning of carbon assimilation periods. This illustrates potential effects to

grassland functioning and growing season dynamics.
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Chapter 2

Introduction

Mesic grasslands exhibit specific ecologic and hydrologic responses to climatic con-

ditions. Local climate and related environmental conditions (≤ 100 m2) are largely

responsible for grassland functional ecology and economic uses. Relationships between

climate, ecology, and hydrology are, in fact, interactions; grasslands are shaped by

and provide feedback to dominant combinations of forcings and local dynamics. Lo-

cal interactions, therefore, are largely-responsible for grassland ecology and economic

uses. Mesic grassland vegetation, for example, is limited by seasonal soil moisture

availability, a product of precipitation, potential evaporation, and biotic interaction

(Rosenberg et al., 1999). The ecology and economy of these grasslands is valuable;

the Central Plains of the United States are the center of grain and livestock produc-

tivity in North America and also encompass numerous grassland types and support

diverse species assemblages (Knapp et al., 1998). Grasslands are among the most-

threatened of biomes; land-use change has reduced the tallgrass prairie of North

America to a fraction of its former range (Knapp et al., 1998); this shift may alter

regional carbon balances and response to climate (Ham and Knapp, 1998). Climate

change may also affect agriculture and rangeland uses as soil moisture dynamics are
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altered (Brunsell et al., 2010; Rosenberg et al., 1999). The way climate and ecology

interact to shape grassland functioning dictates how the ecologic functioning and

economic vitality of these ecosystems are affected by changing climate.

The ecology and hydrology of grassland ecosystems are shaped by the tempo-

ral interactions of climate forcings and ecosystem variables such as precipitation,

evaporation, and photosynthesis. While the basic relation of these is understood,

it is difficult to apply their in-situ interaction at larger scales. The cause of this is

complex, nonlinear interaction between drivers and variables across space and time.

Ecosystem variables and fluxes are the product of continual evolution of driver and

variable interactions across time; understanding how these relationships exist and

change is fundamental for understanding how grasslands work.

Accurate characterization of major processes is a useful way to assess the complex

mechanics of ecosystem functioning. The value in this is accurate representation of

nonlinear driver and variable relationships independent of extensive local data and dif-

ficult scale representation. Low-dimensional modeling and statistical representation

offer frameworks for this focus (Guswa et al., 2002; Makela et al., 1996). They can be

used in accurate representation and assessment of earth system processes, including

seasonal water balance dynamics (Daly and Porporato, 2005), spatial and temporal

vegetation (Porporato et al., 2003), and shifts in vegetation optimality and carbon

assimilation (Caylor and Rodriguez-Iturbe, 2003; Vico and Porporato, 2008). Accu-

rate relationship characterization and low-dimensional application have wide theoret-

ical and applied value as well; these include thermodynamic optimality applications

(Kleidon and Schymanski, 2008), energy balance partitioning and scale representa-

tion (Brunsell et al., 2010), and hydrology (Porporato et al., 2003, 2004).

This thesis focuses on two components of nonlinear ecosystem dynamics and grass-

land functioning. The first is a low-dimensional characterization of precipitation vari-
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ability on growing season water and carbon dynamics across the Kansas River Basin

precipitation gradient. The second component extends this to focus on carbon fluxes

and likely vegetation responses to climate change. Understanding response char-

acteristics is important for evaluating how ecosystem conditions relate to seasonal

sensitivity to drivers and for predicting the effects of climate change in mesic grass-

lands. This chapter determines the major relationships and timescales involved in

ecologic and hydrologic functioning and explores likely states and deviations of fluxes

during the growing season.

To explore the question of how climate forcings and ecosystem variables interact to

shape seasonal water and carbon dynamics in grasslands, this thesis characterizes the

variable relationships governing flux seasonality and the likely ecosystem responses.

General goals, organized from Chapters 3 and 4, are to: 1) characterize precipitation

variability, through timing and magnitude deviation, as an ecological driver in the

Kansas River Basin; 2) explore the seasonal dynamics of water and carbon fluxes in

grassland ecosystems; 3) assess how vegetation and climate forcings shape growing

season vegetation carbon assimilation; and 4) identify potential responses of vege-

tation carbon assimilation in the Konza Prairie, Kansas, USA, to altered climate

forcings. These goals provide a more-complete understanding of the nonlinear, driv-

ing relationships that govern mesic grassland functioning during the growing season.

Understanding the effects of changing climate in the Kansas River Basin and Konza

Prairie is critical for effective resource management and planning, and is also appli-

cable to the ecology and hydrology of semiarid systems; many are shaped by similar

climate forcings.

10



Chapter 3

Precipitation variability and the

ecohydrology of grasslands

3.1 Introduction

Ecohydrologic interactions are of considerable importance to ecosystem functioning

and are often related to local characteristics such as vegetation type and dispersion,

soil composition, and water availability. Interplay between climate, soil moisture, and

vegetation is of particular interest since these largely determine landscape patterns

and are often used to quantify ecologic function (Rodriguez-Iturbe et al., 2001). Soil

moisture is identified as the primary linkage between climate, ecology, and atmo-

spheric responses and feedbacks (Guswa et al., 2002; Rodriguez-Iturbe et al., 2001;

Teuling et al., 2006,b).

The nonlinearities inherent to interactions within water, energy, and carbon cycles

are an important and confounding characteristic of ecosystems. The basic individ-

ual and collective functions of these mass and energy fluxes are understood, but

their spatial and temporal interactions are more complex, especially where ecosys-
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tem fluxes have varying support between spatial scales, and between instantaneous,

daily, seasonal, and annual timescales. Ecosystem function is a complex product of

biotic coevolution and feedbacks between the environment and the biosphere where

flux-dynamics are a product of continual interaction between state processes at differ-

ent spatial and temporal scales. Understanding how relationships between ecosystem

drivers, processes, and fluxes exist and change across space and time is a key compo-

nent to understanding how ecosystems work.

Significant groundwork is available for understanding feedback relationships across

water and carbon cycles (Raupach, 1995) but less is known about the interdepen-

dence and nonlinearity of these to energy and mass fluxes within specific locations

(Brunsell and Gillies, 2003; Brunsell, 2006). The elasticity of mean fluxes produces

heterogeneity in mass and energy fluxes as they are impacted by feedbacks with

other variables operating at different spatial and temporal scales (Brunsell and Gillies,

2003). Understanding how this translates to ecohydrology is important as param-

eterizations may be implemented at non-representative scales if the dynamics of

their individual and collective roles are not determined (Brunsell and Gillies, 2003).

Scale misrepresentation limits the characterization of landscape features and eco-

hydrologic relationships and can subjugate understanding to arbitrary spatial fo-

cus (Alessandri and Navarra, 2008; Brunsell, 2006; Guswa et al., 2002; Kalma et al.,

2008). Large and small-scale analysis both provide valuable insight on ecosystem

functioning but are limited as a snapshot within their spatial and temporal support.

Instead, it may be valuable to first understand the roles of forcing mechanisms as they

interact across spatial and temporal scales to create states and deviations within and

across ecosystems (Brunsell and Young, 2008).

Problems associated with understanding ecosystem nonlinearities have promoted

analysis techniques that attempt to account for a large amount of ecosystem complex-
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ity (Sridhar et al., 2002), those that conduct top-down and bottom-up parameteriza-

tions (Jacobs et al., 2003; Stephenson, 1998), and those that focus on major relation-

ships between inputs and responses (Jarvis, 1976; Koster and Suarez, 1999), among

others. Theoretical frameworks by researchers including Budyko (1974) and Eagleson

(1982) have promoted the study of regional dynamics using low-dimensional modeling

techniques. Other studies (Rodriguez-Iturbe et al., 1999; Koster and Suarez, 1999;

Fay et al., 2008) have furthered this development; the identification of significant

ecohydrologic relationships and responses such as precipitation and water fluxes al-

lows for statistical representation of ecosystem states. Low-dimensional frameworks

often are applicable where scarce data availability limits understanding of driving

processes and their varying contributions to ecosystems (Bormann and Diekkruger,

2003; Brunsell, 2006). Much is still to be uncovered, however, and the question of

small scale ( < 100m) interrelationships remains prominent.

Driving relationships provide insight on the dynamic function of water and car-

bon cycles and can be used as a means to characterize ecosystems. Porporato et al.

(2003) used this structure to analyze the precipitation gradient in southern Africa to

understand how precipitation translates to small-scale spatial and temporal moisture

and vegetation regimes. In Porporato et al. (2003), the identification of major drivers

(e.g., gradients, seasonal drought, etc.) offered a framework for analyzing scaled re-

lationships and how the forcings interact with spatial vegetation water availability

patterns. This was facilitated by prior work in low-dimensional model developments,

which allows for modeling and statistics to replace extensive local data (Guswa et al.,

2002; Makela et al., 1996; Rodriguez-Iturbe et al., 2001).

Low-dimensional model outputs and studies have depicted timing and response

characteristics of ecosystems and significant research has been conducted in semiarid

and forested regions (Laio et al., 2001a; Makela et al., 1996; Porporato et al., 2004).
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Probabilistic modeling of external forcing on ecosystem processes soil water flux and

precipitation inputs is an important development; studies by Daly and Porporato

(2006); Rodriguez-Iturbe et al. (1999); D’Odorico et al. (2000) and others have pro-

duced accurate characterizations of hydroclimatic variability from these forcings. Re-

lating water fluctuations and balance (D’Odorico et al., 2000; Daly and Porporato,

2005), carbon fluctuations (Makela et al., 1996), and vegetation productivity and

stress (Porporato et al., 2001) provides a strong basis for applying similar frame-

works to other ecosystems and other analytical techniques. Studies including those by

Brunsell et al. (2009), where energy balance partitioning at different spatiotemporal

scales was linked to grassland water and carbon fluxes, and Kleidon and Schymanski

(2008), where water budget modeling is applied to thermodynamic optimality and

Maximum Entropy Production (MEP) illustrates the robust nature of low-dimensional

techniques and possible future uses in ecological modeling.

The objective of this paper is to characterize the ecohydrologic dynamics in the

Kansas River Basin by exploring how variation in precipitation impacts evapotran-

spiration, carbon assimilation, and soil moisture. The specific goals are: (1) to define

the roles of timing and magnitude of precipitation as ecological drivers; (2) to better

characterize the impacts of changing the timing and magnitude of precipitation on

water and carbon fluxes; and (3) to explore these dynamics at the seasonal to annual

timescales. Further knowledge about these relationships is crucial for understand-

ing the hydrology and ecology of grasslands and may provide information for future

management decisions in the region.
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3.2 Site

This study simulates precipitation on an east-west transect across the Kansas River

Basin (Figure 3.1). The basin comprises a land area of 155,000 km2 and encompasses

distinct climate, soil, and vegetation gradients. Precipitation ranges from approxi-

mately 15 cm year−1 in western locations to nearly 100 cm year−1 in eastern locations

(Lokke and Kidman, 1963), and precipitation timing (λ: events d−1) and magnitude

( 1

α
: depth event−1) drive local and regional ecohydrology. Basin vegetation types re-

flect water availability; western locations of the basin tend to have shortgrass species

(C4) that are more drought-resilient while eastern locations’ tallgrass and woodland

species (C3 and C4) require sustained soil moisture (Epstein et al., 1996). The large

scale elevation trend is a decrease from west to east, approximately 1820 m to 220 m.

Variation in small-scale elevation on the order of tens of meters promotes microcli-

matic and vegetation variation, such as the extension of woody vegetation westward

along low-lying riparian zones. Soils in the Kansas basin tend to have mollic proper-

ties, with variations between sand, silt, and clay composition, along with vegetation

rooting, forming differences in active soil depth. Land cover change has been drastic

in the basin under European influence and land management continues to change

land classes. In 2001, the National Land Cover Dataset (NLCD) classified land use

in the basin as 49% cultivated, 39% grassland, 4.4% developed, and 2.4% forest.

The Kansas River basin is also likely to be impacted by climate change. Global

Climate Model (GCM) forecasts for the region indicate an increase in surface tempera-

ture and a mean decrease in precipitation from the IPCC A1B scenario (Brunsell et al.,

2010). Precipitation levels are expected to decrease slightly in every season ex-

cept winter, with the greatest decreases occurring in western locations during sum-

mer months (Brunsell et al., 2010). These changes are expected to result in in-
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creased summer evapotranspiration and may therefore increase agriculture irrigation

needs and shift grassland vegetation towards C4 and other drought-resilient species

(Brunsell et al., 2010). The spatial and temporal dynamics of climate change have

not yet been evaluated for ecohydrologic dynamics across land classes in the Kansas

basin beyond that of Brunsell et al. (2010), but it is possible that climate change will

have profound effects on agricultural practices and the viability of some vegetation

classes.
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3.3 Methods

To explore potential states of grassland ecosystems, we focus on accurate characteri-

zation of precipitation (P), soil moisture (θ), evapotranspiration (E), and carbon flux

(A) dynamics. This characterization illustrates the unique ecohydrological roles of

state variables and fluxes as they potentially exist across space and time.

3.3.1 Precipitation dynamics in the Kansas River basin

Precipitation timing and magnitude were calculated for 30 sites across the Kansas

basin transect using United States Historical Climatology Network (USHCN) daily

precipitation data (Williams Jr et al., 2006) [http : //cdiac.ornl.gov/epubs/ndp

/ushcn/usa.html]. Data records from individual stations ranged from 49 to 120 years

in length. The transect was located from -96◦ to -105◦ W Longitude and 38.5◦ to

42◦ N Latitude (Figure 3.1). Site data were used to calculate mean λ and α values

from precipitation datasets, where λ is calculated from a Poisson distribution of the

timing of days with a precipitation event and α is calculated from an exponential

distribution of the magnitude of these events.

Precipitation was modeled as a Poisson process of event timing (λ) with ran-

dom, exponentially distributed mean depth ( 1

α
), and daily values are generated as a

Monte Carlo process from interaction of λ and α (D’Odorico et al., 2000). Events are

modeled at the daily timescale and are considered instantaneous. A sample year of

stochastic P and θ response is seen in Figure 3.2.

Simulations consist of precipitation implementation within a low-dimensional mod-

eling framework to output daily θ, daily E and daily A values for a timespan of 1200

years. Daily values are shaped by potential evapotranspiration (Ep) [cm day−1], soil

type, and vegetation water use efficiency (WUE). Water use efficiency is treated as

18



Table 3.1 Model parameterizations

Parameter Value Units
ψ -.0007 MPa
b 4.9 n/a
c 12.8 n/a
Ks 80.0 cm d−1

n 0.43 n/a
β 13.8 n/a
θh 0.107 m3 m−3

θ∗ 0.40 m3 m−3

θfc 0.50 m3 m−3

nZr 17.0 m3 m−2

Ew 0.05 cm d−1

WUE 0.49 molC
cmE

Emax0 0.35 cm d−1

δet 0.50 n/a
ψet 2.618 d−1

ωet 0.0172 n/a

an upper bound to carbon assimilation and not as a major scaling factor in order

to facilitate the relation of carbon assimilation to evapotranspiration. Atmospheric,

soil, and vegetation values were held constant across the sites to remove their effects

on model outputs. These values are available in Table 4.1.

3.3.2 Water and carbon fluxes

Daily potential evapotranspiration Ep was calculated from Milly (1994) as:

Ep = (Ep0/nZr) · [1 + δet · sin(ωet · hday + φet)] (3.1)

Where Ep0 is mean annual Ep, nZr is the active soil depth [cm], δet is the amplitude

about Ep0

nZr
, ωet is the frequency of the sinusoid [d−1], hday is the hydrologic day, and φet

is the phase shift. Actual evapotranspiration [cm d−1] is calculated by implementing

a soil moisture limitation on Ep by a piecewise manner from Laio et al. (2001b):

19



if 0 < θ ≤ θh; E = 0

if θh < θ ≤ θw; E = Ew · ((θ − θh)/(θw − θh))

if θw < θ ≤ θ∗; E = Ew + (Ep − Ew) · ((θ − θh)/(θw − θh))

if θ > θ∗; E = Ep

(3.2)

Where θ is volumetric soil moisture [m3 m−3], θh is the hygroscopic point, θw is

the wilting point, Ew is evapotranspiration at wilting point [cm d−1], and θ∗ is the

reduction point.

To couple the water and carbon fluxes, we calculate maximum carbon assimilation

(Amax) [mol m−2 d−1] as:

Amax = Ep ·WUE (3.3)

Actual carbon assimilation is calculated according to Daly and Porporato (2005):

if θ ≤ θw; A = 0.0

if θw ≤ θ < θ∗; A = ( θ−θw

θ∗−θw

) · Amax

if θ ≥ θ∗; A = Amax

(3.4)

We focus on soil moisture, evapotranspiration, and carbon assimilation to characterize

the responses to variation in precipitation forcing events as parameterized by λ and

α.

3.3.3 State space and Budyko analysis

Analysis of the precipitation state space promotes the identification of relationships

between precipitation (λ and α) and surface responses (θ, A, and E). In this case,

we model θ across possible iterations of λ and α and under differing Ep regimes.

Precipitation λ and α values corresponding to averages for western, central, and
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eastern locations of the Kansas basin transect result in differing θ, E, and A conditions

due to Ep variation. Timing and magnitude values for these are mean values from

USHCN sites nearest to a corresponding longitude point (-101◦ W Longitude for

western, -98.5◦ W Longitude for central, and -96◦ W Longitude for eastern, Figure

3.1).

We assess the effects of variation in precipitation timing and magnitude on water

fluxes using Budyko (1974) dryness (φ) and evaporative (ε) metrics. These illustrate

land-atmosphere interactions and the sensitivity to precipitation forcing and potential

evapotranspiration, and evolve over time in response to variation in these variables.

The dryness metric is a relation of E and P in determining gains and losses in soil

moisture and is calculated as:

φ =
E

P
(3.5)

and ε is a relation of actual to potential evaporative fluxes calculated using:

ε =
E

Ep

(3.6)

3.4 Results

3.4.1 Soil moisture dynamics in precipitation state-space

The interaction of precipitation and evapotranspiration is important in assessing soil

moisture dynamics for different values of potential evapotranspiration and precipita-

tion timing and magnitude. The impacts of λ and α on annual θ, how E shapes θ,

and how λ, α, and E interact in terms of surface hydrology are shown in Figure 3.3.

The top frame illustrates soil moisture values across λ and α for Ep levels of 1

2
their
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expected levels (Epo = 0.17 cm d−1), the middle illustrates these for expected Ep (Epo

= 0.35 cm d−1), and the bottom illustrates the these for 2 times their expected levels

(Epo = 0.69 cm d−1). Greater range of θ across the horizontal axis suggests that

variation in precipitation timing impacts θ to a great degree. This effect seems to

diminish in lower θ conditions, illustrated by the nature of the contour lines; vertical

lines display a decreased sensitivity to event magnitude, while a horizontal shift dis-

plays increasing sensitivity to α as it increases, decreasing average event magnitude.

Actual evapotranspiration also shapes mean annual soil moisture. Variation in

Ep directly impacts annual θ states through actual evapotranspiration and promotes

deviation in θ sensitivity to λ and α (Figure 3.3); 1

2
Ep increases θ and increases

sensitivity to event magnitude, while 2 · Ep decreases θ and increases sensitivity to

event timing. These drier and wetter states experience differing sensitivity of λ and

α, resulting from variation in Ep scaling θ conditions, although specific combinations

of λ and α may show no apparent change in sensitivity for differing θ states.

The roles of precipitation timing and magnitude, and potential evapotranspiration

exhibit unique traits within the Kansas River basin, as shown in Figure 3.3. Points

(from left to right, descending) correspond to timing and magnitude values in western

(λ = 0.16; α = 1.35), central (λ = 0.20; α = 1.15), and eastern (λ = 0.24; α = 1.10)

basin locations. Precipitation variance results in differences in θ across locations

varying from approximately 0.34 in eastern locations to 0.26 in western locations for

normal Ep with a field capacity (θfc) of 0.50. In all plots, however, sensitivity to λ and

α varies little under differing θ states. This suggests that, on the annual timescale,

λ and α have similar sensitivity across the basin, although the role of event timing

is slightly greater than that of magnitude for a constant Ep, as shown by greater

distance between α contours than λ and suggesting greater change in θ to percent

changes in λ than α.
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Figure 3.3 Mean annual soil moisture across λ and α space for varying Ep

regimes. (top) Ep = 0.17; (middle) Ep = 0.35; (bottom) Ep = 0.69 values
correspond to western, central, and eastern Kansas basin locations and are
denoted by points on the plot.
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3.4.2 Budyko plots

Budyko plots presented in Figure 3.4 display mean annual dryness and evaporative

metrics across 9 combinations of 3 timing (λ = 0.125, 0.5, 1.0; rows) and magnitude

(α = 0.5, 2.0, 4.0; columns) values, the range of which is expected to encapsulate

all probable precipitation variation for the central United States. This range extends

from wet annual conditions (λ = 2.0; α = 0.5) to dry (λ = 0.125; α = 4.0). All points

are mean daily values from 1200 years of simulation; maximum ε values exist in fall

and winter and evolve towards drier conditions, reaching highest φ and lowest ε in

summer. Ep (0.5 cm d−1) shapes φ to a great degree; its seasonal increase drives E

and helps create differences in φ and ε.

Differences across the plots represent the impact of precipitation timing and mag-

nitude variation on soil moisture and water fluxes. While E and P have distinguishable

roles in producing φ and ε metrics, their nonlinear interaction produces conditions

that are not easily attributed to either variable. General trends, however, are il-

lustrated. Decreasing timing shows an increase in φ, a lower minimum ε, and a

temporally shorter period of maximum ε in the winter and a longer period in the

summer. This is expected: decreasing λ increases time between events and overall

precipitation amounts; this reduces average θ values. Increasing α decreases event

magnitude and increases φ throughout the year. The increase of α when λ = 0.5 and

0.125 is illustrative of this; drier conditions increase φ and decrease maximum and

minimum ε.

All plots have some degree of hysteresis, defined here as differing φ for the same

ε between the early and late growing season, although this is not always realized.

Hysteresis between spring and fall Budyko metrics is caused by winter soil moisture

recharge maintained into early spring, visible as ε maxima as φ values increase. The

fall season, however, follows a period of high evapotranspiration and φ, resulting in
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Figure 3.4 Budyko analysis of ecosystem dryness (φ) and evaporative (ε)
metrics on an annual scale. Metrics are plotted across λ and α space: λ =
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plot.
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lower ε values until φ decreases. Winter θ recharge ensures that all realizations expe-

rience hysteresis-causing conditions, although hysteresis is not well-defined in cases

where P variance produces θ values that are too high or low to show much variation

between spring and fall. Hysteresis may be best observed where Ep and precipitation

variability have equal effects on θ conditions. The breakdown of hysteresis is not

understood, except in plot i, where dryness is expected to dominate θ conditions.

Additionally, as α increases and λ = 1.0 in plots a, b, and c, maximum ε is not

decreased due to high λ values, even under drier winter conditions.

The individual roles of λ and α can be explored in Figure 3.4. Plot a illustrates

a reduction in ε due to a fourfold increase in α (decreased event magnitude) in plot

b and a fourfold decrease in λ (increased time between events) in plot d; increasing

α results in a greater decrease in both φ and ε compared to the decrease in λ. Plots

c, e, and g also illustrate this, but are complicated by changes to both timing and

magnitude. Plot e appears to exist as a midway point between c and g and has similar

seasonal dynamics to both. Plot c, which introduces a doubling of α and halving of λ,

results in greater φ and lower ε in the summer, as well as broader hysteresis between

spring and fall seasons. The evaporative metric maintains a winter maximum for

longer in this case. In plot g, which halves λ and α, the range of φ and ε values

are similar to plot e, but with a lowered winter ε maxima and a summer minima

similar to plot c. All of these exhibit differences in seasonal θ availability from similar

timing and magnitude impacts on annual P ; doubling α produces a 50% reduction

of P and halving λ reduces P by 40%. Variation in φ and ε, however, bear slight

resemblance to P values but are scaled by soil moisture and evapotranspiration at

the daily and seasonal timescales. This stresses the importance of the small-scale,

nonlinear interaction between λ and α in producing ecosystem conditions instead of

relying on large-scale trends and relationships.
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3.4.3 Annual water and carbon dynamics

Figure 3.5 shows the ensemble daily means and variances of soil moisture, evapotran-

spiration, and carbon assimilation for western (λ = 0.16, α = 1.35), central (λ = 0.20,

α = 1.15), and eastern (λ = 0.24, α = 1.10) locations in the Kansas basin. Annual

dynamics of θ vs. E have a counterclockwise annual cycle from greatest to least soil

moisture. Eastern locations of the basin display the highest values of θ and E, fol-

lowed by central locations, and then western locations. This hierarchy is preserved

in annual range of θ and E values as well. All locations experience the same general

trend: a spring buildup of E from high θ and increasing Ep, a summer drydown of θ

due to Ep, and an increase of θ during winter months as Ep declines.

Daily ensemble variance of soil moisture (σ2

θ) and evapotranspiration (σ2

E) is dis-

played in the upper right plot of Figure 3.5. Annual cycles of eastern and central

locations move in a clockwise manner from lowest σ2

E in winter to highest in summer,

while western locations have highest σ2

θ in winter. Eastern basin locations experience

the highest summer and lowest winter soil moisture and evapotranspiration variance.

Central locations have higher σ2

θ than eastern locations in every season but summer,

and show greater response to σ2

θ fluctuations in the spring due to their lower θ val-

ues during this time; lower θ values exist during the drier, more stable, fall season.

Eastern locations experience their highest σ2

θ later in the spring. Central locations

are less variable than eastern for σ2

E in all seasons except winter. Western locations’

σ2

θ and σ2

E values show reduced θ in the spring, summer, and fall, and decreasing σ2

θ

and increasing σ2

E in the summer. This is due to summer drydown producing low,

stable values of θ, and winter conditions making soil moisture reliant on precipitation

events. All locations have high σ 2

E
in summer due to high Ep values driving E to a

great degree, while σ 2

θ
values are more stable. As in the upper left plot, the greatest

overall σ2

θ and σ2

E range is in eastern locations, although these experience the lowest
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θ variance in spring and fall.

The lower left plot expresses daily values of mean evapotranspiration vs. mean

carbon assimilation. Eastern locations experience highest ensemble E and A values

and greatest overall range, followed by central and western locations, respectively.

The unique feature of this plot is summer drydown, which reduces A for western and

central locations of the basin with very little change in E, while eastern E and A reach

a higher summer value and decrease in a more direct manner. It is also important to

note that summer drydown is lessened by Ep but A is lagged from this due to lowered

θ conditions.

The variance of evapotranspiration and carbon assimilation have a counterclock-

wise annual cycle (Figure 3.5, bottom right). Eastern locations have the greatest

range of σ2

E and σ2

A, followed by central and western locations. Both eastern and cen-

tral locations of the basin are similar, with eastern locations having higher σ2

E and σ2

A

in all seasons except winter, where θ is expected to be stable. Summer drydown de-

creases σ2

E and σ2

A in central and western locations due to low soil moisture; this also

induces σ2

A hysteresis in western locations. These differences reflect the relation be-

tween precipitation and evapotranspiration; eastern locations experience the highest

precipitation and, therefore, highest θ recharge in winter when Ep is low and highest

evapotranspiration in the summer due to highest θ availability. This is reflected in

low winter θ variance and high summer σ2

E and σ2

A. Western portions experience the

opposite effect; low precipitation levels are most affected by winter evapotranspiration

(highest variance) and have the least impact on increasing E during summer months

(lowest variance). In this case, ecosystem stability can be a product of θ surplus or

deficit and is directly related to E and A values.
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3.5 Discussion

Precipitation variance drives soil moisture characteristics through nonlinear interac-

tions of event timing and magnitude. From Figure 3.3, the variability in mean annual

θ along the horizontal axis suggests the role of λ is greater than α in producing mean

annual conditions, but this role is diminished as α increases and the role of λ and α

begin to have similar weight, as seen by the decreasing vertical nature of contour lines

between θ ranges. This is expected because high event magnitude (low α) is reliant

on timing between events for producing annual θ conditions, and vice versa. This

dynamic may only hold where extremes in annual θ values exist. Annual θ conditions

in the Kansas basin are not indicative of differing λ and α weights, but show that λ

and α weight varies for differing θ conditions. In addition, annual P and θ do not

always correlate to λ and α values. an extreme example is the case of λ = 0.1 and

α = 0.1 vs. λ = 4.0 and α = 1.0, where annual P is 352 and 358 cm, respectively,

but annual θ varies from 0.34 to 0.49, a difference of 31%. Lesser examples also exist

across P and θ for differing λ and α, suggesting that ecosystem water flux is more

sensitive to small temporal variability and that ensemble averages, while able to illus-

trate gross differences in ecosystem states, are not able determine the roles of shorter

temporal-scale forcings.

Soil moisture seasonality is a product of the interrelation between precipitation

variance and evapotranspiration at the daily timescale. Seasonal Ep drives θ avail-

ability, with a negative relationship between Ep and θ. Ep fluctuations, however,

have no effect on the statistical properties of θ (Daly and Porporato, 2006), which

maintains the interrelation of λ and α within θ states. Therefore, θ is a product of

seasonal Ep and P, but the sensitivity of θ to percent changes in λ and α is variable

and dependent on daily θ values. This is evident in Figure 3.3, where the percent
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change from 0.04 to 0.1 and 0.4 to 1.0 for λ and α produces varied annual θ responses.

How this sensitivity translates to mean daily values is important; temporal averaging

of stochastic precipitation maintains the same average ensemble relationship between

precipitation timing and magnitude and Ep, although actual relationships are highly

variable at the daily timescale. Combinations of λ and α within similar θ state space,

such as Kansas basin locations in Figure 3.3, maintain average ensemble weight be-

tween λ and α for varying Ep regimes and differences in θ between the locations are

a product of λ and α variance (Daly and Porporato, 2006). Temporal scales of in-

teraction are important for translating the high daily variability of state processes to

ensemble averages, and suggests that important ecosystem dynamics such as water

availability and evapotranspiration have differing roles depending on the temporal

scale of analysis.

Sensitivity of soil moisture to variable timing and magnitude across the year illus-

trates variation in water fluxes and potential evapotranspiration’s effects on timing

and magnitude relationships. Figure 3.4 illustrates this for a range of λ and α com-

binations bounded by possible extremes of wet and dry ecosystem moisture regimes.

Variance in λ or α can individually increase or decrease θ, influence ε and φ metrics,

and promote annual scaling towards wet and dry conditions. Seasonality in ε and

φ across λ and α, however, suggests the manner in which λ and α create θ is more

complex. Differences across winter soil moisture recharge and summer drydown, and

spring and fall hysteresis all illustrate the dynamics of λ and α seasonality, and vari-

ation in ε and φ within these phenomena hint at varying λ and α sensitivity. For

the Kansas basin, the roles of λ and α are multi-faceted; each has a daily sensitivity

contingent on θ conditions, a seasonal sensitivity to seasonality in θ and ecosystem

function, and an ensemble sensitivity for scaling the ecosystem towards a preferred

moisture regime.
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The general trend of Figure 3.4 is a decrease in available soil moisture from upper

left to lower right, with the driving mechanisms being a decrease in event timing

from top to bottom and an increase in event magnitude from left to right creating

varying seasonal states of increased dryness. As drier conditions evolve across λ and

α, a number of trends develop. Periods of θ recharge, caused by seasonality in Ep

and resulting in high ε values and low dryness, is driven by λ given adequate α

(Rodriguez-Iturbe et al., 1999). Reduction in maximum ε occurs at a lower φ for

λ variation, while summer drydown is more affected by α, showing greater dryness

and greater reduction in ε. Evapotranspiration decreases θ conditions from spring to

summer, increasing the impact of α on ecosystem dryness and evaporative function,

and increases θ in fall and winter, increasing the effect that λ has on decreasing

dryness and increasing ε. Seasonality in dryness is illustrated by hysteresis between

spring and fall, caused by winter θ storage lessening spring φ and θ variance and

summer drydown increasing fall φ and θ variance. The roles of precipitation timing

and magnitude are important as well; decreasing λ promotes less hysteresis between

spring and fall, lower φ, and lower ε range while increasing α produces more hysteresis,

greater overall φ, and greater ε range. Seasonality of Ep scales towards wet or dry θ

states and promotes different sensitivities to λ and α which translate to variance in

daily (and therefore ensemble) θ and varied ε and φ states. In cases of intermediate

precipitation variance, ecosystems are characterized by wet and dry periods, with the

spring and fall seasons existing as transitional periods of low and high variance in

moisture and E, respectively, with deviations across λ and α scaling θ states towards

greater wetness, dryness, or seasonality between the two.

Variance in ε and φ illustrates the importance of seasonality on ecosystem water

flux dynamics and when and to what degree deviations from mean ecosystem states

are likely to occur. Figure 3.4 shows less uniformity in ε and φ for spring and fall
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as λ and α promote lower θ, related to higher seasonal σ2

θ in Figure 3.5. Winter ε

maximization suggests sufficient θ storage to reduce variance in ε and φ in the spring,

but lowered ε lessens the effect of winter θ storage on water flux in all seasons. It

also follows that fall variance in ε and φ is greater than spring for all realizations as

precipitation timing and magnitude have a greater effect on water flux in absence of

θ storage. Both wet and dry λ and α conditions produce little seasonal variation in

ε, while φ may show greater variation, as illustrated best for wet conditions in the

upper left plot.

Coupling of soil moisture to Kansas River basin seasonality produces daily varia-

tion in state variables that deviate from ensemble averages. Seasonality in soil mois-

ture and evapotranspiration variance are important for assessing how much daily

variation exists for these variables, when this variation occurs, and if this might in-

hibit ecosystem function. Both are characterized by wet and dry seasonality except for

the western location, where summer drydown decreases σ2

θ . Evapotranspiration is not

maximized during the growing season due to its coupling to P, resulting in high daily

θ variance and low summer θ range. Soil moisture variance is highest in the fall due to

increased dependence on precipitation, but lessens as evaporation decreases. Winter

and spring σ2

θ is dependent on fall and winter recharge, respectively, and variance is

lowest where λ and α produce the highest daily P . Central and eastern locations of

the Kansas basin are similar in their seasonal soil moisture structures. The eastern

location has higher water fluxes and variance corresponding to higher λ and lower α

values, while the western location is more influenced by summer drydown and exists

with much drier seasonal θ conditions and an altered tendency towards higher winter

and lower summer ε and φ variance.

Mean daily model outputs (Figure 3.5) for the Kansas basin show similarities to

variance plots and support precipitation timing and magnitude roles. Daily water
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and carbon fluxes correlate to expected λ and α roles for θ conditions and evolve

similar to Ep seasonality, with some temporal deviation in ensemble averages. West-

ern locations show minimized seasonal dynamics due to decreased θ availability and

have the lowest range of θ, E, and A values. Winter θ storage is best illustrated by

E vs. A, where winter is the maximum period for all locations. Water limitation

is evident in this plot as well; A has the greatest values in all locations for seasonal

periods of greatest θ and shows greater variance during the drier fall season than the

wetter spring. The effect of dryness is also evident where the eastern location has

greater overall carbon flux than drier locations, and where its correlation between

ensemble σ2

E and σ2

A is maintained at a lower level in the spring. Here, σ2

E and σ2

A

increases with increasing Ep, but locations with greater daily P have greater varia-

tion in water and carbon fluxes, indicating that, in the Kansas basin, water limitation

plays a primary role in ecosystem state processes, especially in the summer and fall

seasons. Precipitation variation plays the primary role in all seasons except winter,

where processes are limited by phenology and Ep. Global climate change could affect

precipitation timing and magnitude and potential evapotranspiration across seasons

in the Kansas basin (Brunsell et al., 2010), disrupting ecosystem water and carbon

cycling. The implications of this are yet unknown; the net effect of disruptions is con-

tingent on soil and vegetation properties, the nature of local changes to precipitation

and potential evapotranspiration and, in the case of agriculture, the availability of

groundwater reserves locally and where upwind soil moisture-precipitation feedbacks

may exist (Jones and Brunsell, 2009).

Sensitivity to precipitation variance is a major driver of grassland processes. Sen-

sitivity to λ and α is scaled by daily θ conditions and Ep trends, which feedback

on θ availability and the roles of λ and α in creating θ states. Temporal scaling

is important; representation of daily through annual timescales provides informa-
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tion on how ecosystem states evolve, how they may be impacted by regional climate

changes, and how spatial scaling might best represent ecosystem dynamics as they

evolve over time and under varied conditions. As a whole, precipitation variance and

potential evapotranspiration are good indicators of ecological function and may have

additional value at the daily, seasonal, and longer timescales. This is illustrated by

annual values of soil moisture being a product of interactions at different temporal

scales. Soil moisture can indicate annual impacts of event timing and magnitude

effects, the seasonality of potential evapotranspiration driving ecosystems between

periods of moisture availability and related sensitivities to precipitation, and daily

fluctuations in drivers and state processes. These suggest trends in seasonal ecologic

stability and flux. Ecosystem dynamics are closely correlated to water and carbon

fluxes through soil characteristics and the water use efficiency, and variation can be

explored in terms of flux dynamics and preferred ecosystem states.

Future analysis could benefit from incorporating seasonality of precipitation forc-

ing to the framework of process characterization and temporal analysis presented

here. Grassland ecosystems are driven by seasonal variance in λ, α, and Ep, but

their in-situ translation of these is highly dependent on heterogeneous soil and veg-

etation and the evolved relationships between these and the local moisture regime.

In addition, future changes to P and temperature from climate change may alter the

nature and roles of P and E for grassland ecosystems (Brunsell et al., 2010). The way

these changes translate across spatial and temporal scales is important; the impact of

variability has differing roles based on how and where variability occurs and in what

direction the moisture regime shifts towards. Understanding how P variance evolves

and creates annual variation in ecosystem processing is an important part of accurate

representation of current and future grassland function in the Kansas basin region

and we hope it will aid in the directed, contemplative assessment of the ecosystem as
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a dynamic resource for the present and future.
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Chapter 4

Climate Change Drives Grassland

Fluxes

Climate change may have profound impacts on the ecology and hydrology of grass-

land ecosystems. Changes in climate forcings such as precipitation (P) and potential

evaporation (Ep) may alter ecosystem flux dynamics and shift functioning away from

stable values. It is important to understand how climate forcings and resulting fluxes

exist across different levels of support, and how they scale to long-term ecosystem

states. Forcings such as precipitation and solar radiation play critical roles in creat-

ing the spatial and temporal heterogeneity of landscapes and are shaped by influences

including feedbacks and biotic processes (Claussen et al., 2001; Ivanov et al., 2008).

Understanding the way changing climate might alter this interplay is important for

assessing future ecosystem functioning.

Exploring forcing mechanisms and variable responses aids in assessing the biotic

system functioning. Examples are widespread for semiarid ecosystems and include

research in many disciplines. Of these, the relation of processes at different timescales

and sensitivities is of particular importance (D’Odorico et al., 2000; Laio et al., 2002;
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Daly and Porporato, 2006). Studies include moisture allocation during drydown pe-

riods (Teuling et al., 2006,b; Milly, 1994), plant-scale analyses of C3 and C4 photo-

synthesis (Vico and Porporato, 2008), and water flux coupling to surface processes

(Ridolfi et al., 2000a). Similar approaches have been used to assess seasonal sen-

sitivities of mass and energy fluxes to climate forcings as a way of characterizing

ecosystem processes (Daly and Porporato, 2006; Petrie and Brunsell, 2010). Repre-

sentation of feedbacks and atmospheric coupling extend this characterization further

(Brunsell and Gillies, 2003); defining the scales of ecosystem functioning aids in more-

directed application of processes and variability.

The relationships governing nonlinear surface processes may be assessed using

low-dimensional modeling techniques. The strength of low-dimensional modeling is

accurate representation of major ecosystem forcings as the framework of ecosystem

flux dynamics. Low-dimensional models have been applied to precipitation and wa-

ter flux variability (Daly and Porporato, 2005, 2006; Koster and Suarez, 1999) and

also to spatiotemporal water-limitation and flux depression (Ridolfi et al., 2000b;

Porporato et al., 2001). They have also been used to identify how relationships be-

tween vegetation and environment govern spatial vegetation patterns in the Kalahari

grassland in Southwest Africa (Caylor and Rodriguez-Iturbe, 2003; Porporato et al.,

2003) and hydrology of the Konza prairie in North Central Kansas (Porporato et al.,

2004). Recently, the authors used a similar low-dimensional technique to represent

major ecohydrologic relationships across the Kansas River Basin precipitation gra-

dient (Petrie and Brunsell, 2010). Further studies have extended low-dimensional

analysis to gas exchange models (Vico and Porporato, 2008), and similar techniques

may find use in optimality hypotheses and thermodynamics.

Mesic grasslands exhibit dynamic responses to climate. Variation and disturbance

are, in many ways, normal for grasslands and the resulting heterogeneity across levels
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of support is an important component of these ecosystems’ functioning (Knapp et al.,

1998; Collins et al., 2002). Local ecology also feeds back at these differing scales,

producing specialized function and niche development (Collins et al., 2002). The

ecologic role of vegetation, for example, is one of many parts. It is affected by forcings,

feedbacks on them, and changes in response over time. Water and carbon fluxes are

products of these processes and can be upscaled to represent large-scale ecosystem

responses (Betts et al., 1997). Photosynthesis, for example, varies in sensitivity to

precipitation at different states of water limitation and can be modeled to assess

likely periods of soil moisture limitation (Petrie and Brunsell, 2010). How overall

effects are realized is of interest both for the natural resource value of grasslands and

their susceptibility to species and habitat loss.

Variability in water-use efficiency (WUE, δA
δE

is the slope of the assimilation-

evaporation curve (mmol A mol E−1)) is a product of varying sensitivities of stom-

atal conductance to surface temperature, vapor pressure, and seasonal phenology

(Monson et al., 1986; Nippert et al., 2009). The effect of variable water-use efficiency

is differences in carbon assimilation patterns between vegetation species and C3 and

C4 classes (Epstein et al., 1996; Emmerich, 2007). Benefits from maintained pho-

tosynthesis during dry, warm summers (Monson et al., 1986; Nippert et al., 2007;

Niu et al., 2005) and mild, wet springs vary across phenologies (Vermeire et al., 2009)

and may be negated in cases of water or nutrient limitation, even under an enhanced

early growing season (Makela et al., 1996; Niu et al., 2005; Nippert et al., 2007). How

these periods affect long-term grassland species composition and interaction is less

well-defined. Stress effects vary between species and, although ecosystem composi-

tions reflect, for example, moisture dynamics, neither the C3 or C4 photosynthetic

pathway appears to define the dynamics of its vegetation subset (Nippert et al., 2007).

Water-use efficiency measurements and simulations reflect these nonlinearities inten-
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tionally and unintentionally; water-use efficiency responds more to variation in soil

moisture than photosynthetic pathway or phenology, although it encompasses all of

these. How metrics of analysis represent vegetation versus environment is a grey

area in understanding landscape-scale ecosystem dynamics. Many of these metrics,

however, do provide useful quantification of processes within the limitation of their

definition (Emmerich, 2007).

Global Climate Model (GCM) projections for the central United States were eval-

uated by Brunsell et al. (2010) for the International Panel on Climate Change (IPCC)

A1B climate change scenario. Central Plains ecosystems are projected to experience

an increase in mean surface temperature and higher precipitation variability (fewer

events, but with higher magnitude), with slightly decreased mean annual precipita-

tion (Brunsell et al., 2010). These compliment other projections for the Central Plains

(Houghton, 2001). Studies by Richardson et al. (2009) and Monson et al. (2005) have

explored earlier onset conditions for temperate Harvard and arid Colorado forests; re-

sults suggest differing ecosystem and water availability responses to earlier growing

season onset including heightened spring productivity and increased summer dry-

down. Induced seasonality between temporal periods of the growing season might

be an important diversifying selector in mesic grasslands, an intermediate between

the temperate east and arid west. Long-term effects on ecohydrologic dynamics are

expected to reflect increased short-term variability of soil moisture, and also increased

seasonality between early-season productivity and summer drydown (Angert et al.,

2005).

To explore potential states of mesic grasslands under changing climate, we fo-

cus on the effects of increased precipitation variability, earlier growing season onset,

and heightened potential evaporation on seasonal water flux dynamics, growing sea-

son length, and carbon assimilation for semiarid forb and grass species. Specific goals

40



are: (1) To characterize the individual and aggregate effects of decreased precipitation

timing and increased magnitude, heightened potential evaporation, and earlier grow-

ing season onset on carbon assimilation, soil moisture, and growing season length; (2)

to determine how seasonality in water-use efficiency shapes the vegetation response

to changing climate; and (3) to explore carbon assimilation responses of vegetation

classes and species of the Konza Prairie to changing forcings and earlier growing sea-

son onset. Understanding these ecosystem conditions furthers the characterization of

how driving mechanisms and responses govern semiarid grasslands, and provides an

assessment of possible effects on vegetation and habitat to changing climate.

4.1 Site

This study simulates the precipitation dynamics of the Konza Prairie mesic grassland

in the Central Great Plains of the United States (40◦ N, 99.5◦ W). Precipitation tim-

ing (λ: events day−1) and magnitude ( 1

α
: depth event−1), along with seasonal poten-

tial evaporation, drive the ecology and hydrology of this region (Petrie and Brunsell,

2010). Low annual rainfall (84 cm year−1 at Konza; 70 cm year−1 for the larger

region) promotes dry-mesic grasslands of C4 grasses and C3 grass and forb species

(Fay et al., 2000). Plant diversity is perhaps maintained by seasonal moisture dynam-

ics and microclimate niches (Harpole and Tilman, 2006; Nippert and Knapp, 2007).

Annual Net Primary Production (ANPP) in the Konza prairie is dominated by rela-

tively few, abundant species while spatially-small microclimates have higher species

diversity (Knapp et al., 1998). Soils in the region tend to have mollic properties that

vary with topography and composition, often with active depths of 1 m or more.

The Central Plains have experienced greater overall climate change than is ex-

pected for contemporary climate change (Woodhouse and Overpeck, 1998), but the
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rapid onset and direction of current projections may still have disruptive effects

(Brunsell et al., 2010). Variation in precipitation, for example, could disrupt veg-

etation interactions and soil stability, especially in regions with similar historical

problems (Fay et al., 2008; Rosenberg et al., 1999). More intensive irrigation require-

ments may be realized for affected regions, hastening depletion of the Ogallala Aquifer

and reducing agricultural productivity (Rosenberg et al., 1999). Land class composi-

tions may also be affected; drier conditions could limit current woody vegetation en-

croachment, which increased by 154% from 1939-1985 at Konza (Briggs et al., 2005).

Increased ambient CO2 concentration may be another driving factor, but is not in-

cluded in this analysis because, although dominant species respond to elevated CO2,

the effects are difficult to generalize and are highly species-specific (Morgan et al.,

2004). Despite these unknowns, developing analyses of climate effects on grasslands

is an important step for understanding and managing these ecosystems.

4.2 Methods

To assess the effects of climate change on mesic grasslands in the Central Plains, we

focus on identifying the individual and aggregate effects of less frequent precipitation

event timing (λ) and higher magnitude ( 1

α
), increased potential evaporation (Ep),

and earlier growing season onset on soil moisture (θ), soil evaporation (Es), and

transpiration (Tr). We also explore the effect of seasonality in water-use efficiency

on carbon assimilation (A) and higher frequency of water-stress events, applying this

framework to assess potential effects to Konza Prairie vegetation.
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4.2.1 Precipitation simulation

Precipitation was used to force the model using a Poisson process of event timing

and magnitude, with daily Monte Carlo generation of precipitation (D’Odorico et al.,

2000). Timing and magnitude values for Central Plains grasslands were calculated in

the same manner as Petrie and Brunsell (2010), using United States Historical Cli-

matology Network (USHCN) daily precipitation data averages from stations within

1.5◦ latitude and longitude from the Konza prairie (Williams Jr et al., 2006) [http :

//cdiac.ornl .gov/epubs/ndp/ushcn/usa.html]. Simulations of 500 years at the daily

timestep were implemented in the model to output values of soil evaporation, tran-

spiration, carbon assimilation, and soil moisture (Figure 4.1). Variable values for

control simulations and for common climate change scenarios are shown in Table 4.1.

Additional model parameterizations are shown in Table 4.1.

Precipitation was iterated over timing (λ) and magnitude ( 1

α
) with negligible

change to mean annual values. Calculated Konza λ = 0.225 and α = 1.05 in simu-

lation ’A’ were varied by 4.5 and 4.1% (λ = 0.215; α = 1.01) for the ’B’ simulation,

by 9 and 8.25% (λ = 0.205; α = 0.966) for the ’C’ simulation and 18 and 16% (λ =

0.185; α = 0.877) for the ’D’ simulation. These simulations produced mean annual

precipitation of 70.0 cm, 69.6 cm, 70.2 cm, and 70.2 cm, respectively, with varying

yearly totals. The relationship between λ and α accounts for their varied relation

across soil moisture values, as discussed in Petrie and Brunsell (2010).

4.2.2 Water and carbon flux simulation

Surface fraction of soil and vegetation varies across the year. Vegetation fraction

(fv) increases for 30 days at the start of the growing season, is maximized during

summer, and is depleted for 20 days up to senescence, where it falls to zero until
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Figure 4.1 One year of modeled precipitation (top) and resulting volumetric
soil moisture, water, and carbon fluxes (bottom). Water fluxes are parti-
tioned between transpiration and soil evaporation.
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Table 4.1 Model parameterizations

Name Parameter Value Units
soil matrix potential ψ -.00034 MPa

n/a b 4.05 n/a
n/a c 11.1 n/a

hydraulic conductivity Ks 175 cm d−1

soil porosity n 0.4 n/a
n/a β 12.1 n/a

hygroscopic point θh 0.12 m3 m−3

reduction point θ∗ 0.37 m3 m−3

field capacity θfc 0.42 m3 m−3

wilting point θw 0.17 m3 m−3

soil evaporation at θw Sw 0.08 cm d−1

soil active depth Zr 100 cm
n/a δet 0.75 n/a
n/a ψet 2.62 d−1

n/a ωet 0.02 n/a
Control event timing λ 0.225 events d−1

Scenario event timing λ 0.185 events d−1

Control event magnitude 1

α
0.95 cm event−1

Scenario event magnitude 1

α
1.14 cm event−1

Control mean evapotranspiration Ep0 0.280 cm d−1

Scenario mean evapotranspiration Ep0 0.308 cm d−1

Control growing season onset n/a 90 Julian Day
Scenario growing season onset n/a 75 Julian Day

Early and late peak mean WUE WUE0 0.12 Julian Day
Early and late peak curve amplitude δWUE 0.13 Julian Day

Early and late peak sinusoid frequency ωWUE 0.03 Julian Day
Early peak phase shift ψWUE 5.0 d−1

Late peak phase shift ψWUE 2.3 d−1
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the following growing season begins. Water stress, defined as soil moisture below

the theoretical wilting point (θ ≤ θw), for a parameterized resilience period, forces

senescence in vegetation for the remainder of the growing season, negating vegetation

fraction and fluxes in the model. Analysis focuses on the frequency of these events

and their average effect on growing season length. Resilience values are 10 days for all

simulations except for Konza vegetation, which is 15 days. Daily maximum carbon

assimilation (Ap) is calculated as:

Ap = Ep ·WUE (4.1)

where daily Ep (cm d−1) is calculated from Milly (1994) and water-use efficiency

is parameterized by simulation and vegetation. Maximum assimilation has induced

seasonality at the beginning and end of the growing season of 30 days from growing

season start to maturation and 20 days decline leading to senescence. Transpiration

is calculated from carbon assimilation as:

Tr = A ·
1

WUE
(4.2)

where A is carbon assimilation (µmol m−2 s−1) calculated in a piecewise manner

(Daly and Porporato, 2005). Soil evaporation is decoupled from transpiration and is

calculated in a piecewise manner from Daly and Porporato (2005) as:

if 0 < θ ≤ θh; Es = 0

if θh < θ ≤ θw; Es = Sw · ((θ − θh)/(θw − θh))

if θw < θ ≤ θ∗; Es = Sw + (Ep −Ew) · ((θ − θh)/(θw − θh))

if θ > θ∗; Es = Ep

(4.3)

where θ is volumetric soil moisture (m3 m−3), θh is the hygroscopic point, θw is the

wilting point, Sw is soil evaporation at wilting point, and θ∗ is the reduction point.
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These values are theoretical parameterizations for model simulation of fluxes. Total

evaporation (E) is the sum of Es and Tr, weighted by the fractional vegetation curve:

E = Es · (1 − fv) + Tr · fv (4.4)

where fv is the vegetation fraction.

4.2.3 Water-use efficiency

Water-use efficiency simulations explore how vegetation and environment interact

across the growing season (Figure 4.2). The first is constant (WUE = 0.12) to assess

the impacts of changing climate forcings independent of vegetation phenology. The

second simulations vary by out-of-phase sine functions, calculated as:

WUE = WUE0 · [1 + δWUE · sin(ωWUE · hday + φWUE)] (4.5)

where WUE0 is the annual mean WUE, δWUE is the amplitude about WUE0, ωWUE

is the frequency of the sinusoid [d−1], hday is the hydrologic day, and φWUE is the

phase shift. These values are shown in Table 4.1.

Water-use efficiency measurements collected on the Konza Prairie and param-

eterizations represent complex effects of leaf temperature, phenology and moisture

availability on plant photosynthesis. Daily values reflect varying nonlinear sensitivi-

ties of vegetation photosynthesis to internal and external forcings and the average of

their variation throughout the day. Between early and late-season water-use efficiency

curves (Figure 4.2), for example, values represent differing capabilities of vegetation,

aggregate effects of driving variables, and daily to seasonal moisture dynamics. We

expect water-use efficiency simulations, however, to retain relevance for carbon and

water flux dynamics when these uncertainties are addressed as a component of the
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growing season onset date is Julian day 90 and date of senescence is Julian
day 270. Panels B and C have 30 day maturation periods beginning at start
date and 20 day periods of decline leading to senescence.

daily value.

4.2.4 Konza Prairie vegetation

To assess the relationship between vegetation and environment in changing climate,

we implement a low-dimensional representation of seasonal water-use efficiency for

C3 and C4 Konza vegetation and also for one C4 grass, Andropogon gerardii, and

two C3 forbs, Salvia pitcherii and Ambrosia psilostachya. The focus is to assess

whether differences in photosynthetic pathway reflect large-scale vegetation class dy-

namics or if effects might instead be realized for individual species or habitats. This

distinction is important for understanding how climate affects landscape-scale vege-

tation dynamics and for assessing future grassland compositional responses. The way

climate is manifest across space and time will have implications for differing niches

of productivity and biodiversity in mesic grasslands.

Carbon assimilation and transpiration measurements for Konza vegetation were

taken in-situ during the 2008 growing season on days 155, 168, 182, 196, and 214. Over
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this period, 287 instantaneous measurements of photosynthesis (µmol m−2 s−1) and

transpiration (mmol m−2 s−1) were made for C3 vegetation and 180 for C4. S.pitcherii

data includes 24 measurements, 41 for A.psilostachya, and 40 for A.gerardii. Linear

regression techniques were applied with constant values in the early and late periods

of the growing season (Figure 4.2).

Water stress events have implications for species’ ability to maintain photosynthe-

sis or induce dormancy during periods of limited soil moisture. Research on increased

growing season length, seasonal water stress, and vegetation resilience is important

for assessing possible changes to composition and species function.

4.3 Results

4.3.1 Changing forcing mechanisms

The effects of increased mean potential evaporation (Ep), earlier growing season onset,

and higher precipitation variation (fewer events of greater magnitude; same annual

mean) were analyzed for their effects on water-stress event frequency, and also water

and carbon fluxes.

Simulations of climate forcings suggest water stress periods (θ ≤ θw) of more than

20 days occur in approximately 2% of years for both C3 and C4 species at Konza.

For Konza vegetation simulations, we implement a water stress resilience of 15 days,

which is expected to maintain full growing season in approximately 90-97% of years.

Individual and aggregate effects of forcings for the constant WUE simulations

are shown in Figure 4.3. Panels A and B illustrate growing season reduction from

water-stress events for state-space combinations of growing season onset, precipita-

tion simulation, and potential evaporation. Growing season reduction also reflects

the frequency of 10-day water-stress events in response to potential evaporation and
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Figure 4.3 (Panel A) Effects of changing potential evaporation and growing
season onset on mean growing season length (days); (Panel B) precipitation
timing and magnitude (denoted by event depth value) and growing season
onset on mean growing season length; (Panel C) potential evaporation and
growing season onset on evaporative fraction and total carbon assimilation
(mol m−2 y−1); (Panel D) precipitation timing and magnitude on total carbon
assimilation (mol m−2 y−1).

precipitation combinations.

Growing season onset has varied, nonlinear effect throughout the growing season,

but shows no discernible effect on water-stress events, suggesting soil moisture is

controlled by other factors in summer (Figure 4.3). Earlier onset increases water

and carbon fluxes. In panel C, the evaporative fraction E
Ep

relationships across mean

evaporation values are maintained during summer regardless of growing season start

date, with resulting annual carbon assimilation increased by mean evaporation and
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growing season. This is important for the seasonal soil moisture dynamics; variation in

growing season does not appear to affect summer water fluxes or water-stress events,

instead partitioning water fluxes between evaporation and transpiration in the early

growing season and elevating early-season carbon fluxes.

Precipitation has important, often limiting effects on soil moisture and resulting

fluxes across time (Petrie and Brunsell, 2010). The effects of varying precipitation

simulations ’A’, ’C’, and ’D’ are shown in Figure 4.3 panels B and D. Increased

precipitation variance simulations promote early-season periods of heightened water

and carbon fluxes due to increased soil moisture and sensitivity to event magnitude,

with the opposite effect of decreased fluxes and increased water and carbon flux

sensitivity to event timing during drier periods. Temporal variance of precipitation

has a net negative relationship with carbon assimilation and growing season length

on longer timescales (panel D). This is also illustrated by increased probability of

water-stress events to precipitation simulations in panel B. Effects of precipitation

variance resembles potential evaporation in decreasing soil moisture values, but have

conflicting effects on annual mean carbon fluxes (panels C and D).

4.3.2 Early and late-season water-use efficiency

Water-use efficiency defines the vegetative control of modeled carbon assimilation

and reflects the interaction of vegetation photosynthesis and limiting environmental

conditions. Here, we simplify WUE dynamics as out-of-phase sine curves with early

and late peaks (Figure 4.2) to assess how differences in seasonality affect the temporal

distribution of fluxes across the growing season, promote differing sensitivities to

external forcings, and shape mean annual carbon flux values.

Figure 4.4 illustrates the effect of climate forcing simulations on carbon assimila-

tion between early and late peak water-use efficiency simulations. Values of temporal
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variance of assimilation in panels C and D illustrate differences between simulated

WUEs and responses to varied precipitation, mean potential evaporation, and grow-

ing season onset dates. Differences between WUE simulations for temporal variance

of assimilation are most-notable for temporal periods during the growing season; early

peak simulations have less difference between maximum and minimum WUE in spring

and summer and higher temporal variance of assimilation in spring (panel C), but

late peak simulations suggest a greater potential for maximizing increased summer

mean evaporation, illustrated by high temporal variance of assimilation in panel D.

Differences between early and late peak WUE simulations produce differing an-

nual mean carbon assimilation (Figure 4.4). Early peak simulations (panels A and

E) show near-linear response to temporal variance of precipitation, potential evap-

oration, and growing season onset, which suggests WUE interacts with individual

forcings in a predictable manner and produces uniform effects across forcing magni-

tude. Late peak simulations of forcing combinations show less-uniformity in annual

mean carbon assimilation between drivers, but assimilate more carbon overall (pan-

els B and F). This illustrates seasonal environment and vegetation interaction; early

peak simulations incur less-variation in A during the spring (not soil moisture lim-

ited) and during the summer (limited by WUE), while late peaks have less-uniform

response and higher carbon assimilation due to summer correlation between potential

evaporation and WUE peak conditions. This illustrates contrasting environments of

high soil moisture versus high potential evaporation with similar correlation to carbon

assimilation. All climate forcings heighten the impacts of seasonal WUE differences.

How this seasonality is matched by forcing combinations and vegetation phenology

in carbon fluxes at daily, seasonal, and annual timescales is a varied and important

result of these interactions.
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Figure 4.4 (Panel A) Effects of changing precipitation timing and magni-
tude (denoted by event depth value) and growing season onset on carbon
assimilation (mol m−2 y−1) for early-peak water-use efficiency simulations;
(Panel B) precipitation timing and magnitude and growing season onset on
carbon assimilation for late-peak simulations; (Panel C) precipitation timing
and magnitude on the temporal variance of carbon assimilation (mol m−2 s−1)
for early-peak simulations; (Panel D) precipitation timing and magnitude on
the temporal variance of carbon assimilation for late-peak simulations; (Panel
E) precipitation timing and magnitude and mean evaporation on carbon as-
similation (mol m−2 y−1) for early-peak water-use efficiency simulations; and
(Panel F) precipitation timing and magnitude and mean evaporation on car-
bon assimilation for late-peak simulations.
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4.3.3 Konza Prairie vegetation

Exploring how environment and vegetation interactions might induce change in grass-

land communities is the third part of this study. Analysis of WUE effects between

C3 and C4 vegetation at Konza (Figure 4.5) assesses differences in total growing sea-

son carbon assimilation to increased mean evaporation (0.28 cm d−1 and 0.31 cm

d−1) and simulated precipitation in years of 50 cm, 70 cm, and 90 cm. Simulations

induce temporal variability in precipitation between years, even where total annual

precipitation is comparable. C3 and C4 assimilation is reduced comparably in these

simulations; by 3%, 8%, and 11% in the low potential evaporation simulations, and

5%, 7%, and 9% in the high potential evaporation simulations. Similarity is likely a

product of the similar WUE patterns between C3 and C4 at Konza (Figure 4.2), and

suggests that WUE maximum, minimum, and early vs. late season differences can

correlate and create important temporal periods of carbon assimilation.

These observations provide insight into the annual assimilation differences between

C3 and C4 classes at Konza (Figure 4.5). Years with lower than average precipitation

have greater impact on C4 carbon assimilation due to the magnitude of C4 WUE max-

imum and minimum, which produces a more-elastic negative response to decreased

moisture availability (panel B). It follows that C4 vegetation should have the oppo-

site response for years with higher than average precipitation, but this is not realized

(panel B); the carbon assimilation response is perhaps muted by increased precip-

itation variability. C3 vegetation has more-moderate responses (Figure 4.5, panel

A) because it has a more-uniform WUE curve (Figure 4.2). Statistical precipitation

generation complicates this relationship at short timescales and (with the additional

impact of potential evaporation) has poor correlation between annual mean precip-

itation and carbon assimilation (r2 values of 0.14 and 0.10 for control and climate

change simulations, compared to 0.28 and 0.24 for C3). Further exploration of this is
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applied at the species-level for Konza.

How carbon assimilation is affected by C3 and C4 species’ WUE patterns is an

important unknown. Changes in ecosystem functioning could result from shifts in cli-

mate or from small shifts in critical habitat and species. We address percent change

in annual carbon assimilation to assess how climate and growing season forcings have

species-specific effects. Simulations for Two C3 forb (S.pitcherii and A.psilostachya)

and one C4 grass (A.gerardii) species at Konza under control (Ep = 0.28, precipita-

tion scenario ’A’, start date = 90), climate change (Ep = 0.31, precipitation scenario

’D’, start date = 90), and early start (Ep = 0.31, precipitation scenario ’D’, start

date = 75) are assessed (Figure 4.6). Corresponding water-use efficiencies are shown

in Figure 4.2, panel C.

S.pitcherii (Figure 4.6, panels A and B) shows differing responses to each forcing

scenario. Values of annual carbon assimilation decrease by 10% for years with 50 cm

of total precipitation, 4% for years with 70 cm, and 0% for years with 90 cm (panel

A), suggesting S.pitcherii is susceptible to years of low precipitation but partitions

carbon assimilation favorably in years with higher than average amounts. Earlier

onset simulations in panel B further this observation; carbon assimilation is decreased

by 5% in years with 50 cm but is increased by an average of 2 and 7% in 70 cm and

90 cm years, respectively. Calculated r2 values for total precipitation and annual

carbon assimilation increase from 0.23 for both simulations in panel A to 0.29 for

panel B. Although total precipitation is not expected to have a strong correlation to

annual carbon assimilation, earlier growing season onset strengthens the impact of

total precipitation on carbon flux dynamics for S.pitcherii.

A.psilostachya annual carbon assimilation values decrease and increase in a sim-

ilar manner for climate change and earlier onset simulations in panels C and D.

Flux responses are moderated by WUE for A.psilostachya, which has low variance
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Figure 4.6 Annual carbon assimilation divided by average annual carbon as-
similation (mol m−2 y−1) vs. total annual precipitation (cm y−1) for (Panel
A) control and climate change simulations for S.pitcherii and with earlier
growing season onset (Panel B); (Panel C) control and climate change simu-
lations for A.psilostachya and with earlier growing season onset (Panel D);
(Panel E) control and climate change simulations for A.gerardii and with
earlier growing season onset (Panel F). Trendlines for each simulation are
shown, where P is annual precipitation and A is annual carbon assimilation.
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throughout the year. Instead, annual carbon assimilation reflects external forcings in

a similar manner to constant WUE simulations in Figure 4.3. The r2 value is reduced

from 0.33 to 0.18 in panel C, suggesting a different partitioning of sensitivity to forc-

ings with little effect on annual carbon assimilation. In comparison to S.pitcherii,

A.psilostachya is less-responsive to variable external forcings; climate change scenar-

ios present a timing issue between environmental conditions and vegetative controls

in shaping flux dynamics.

A.gerardii annual carbon assimilation values decrease across precipitation simu-

lations, increase for earlier growing season simulations, and maintain the same slope

for both climate change simulations (panels E and F). A.gerardii has the highest

variance in annual WUE (Figure 4.2) and assimilates a greater portion of its annual

carbon assimilation in the early growing season. Increased precipitation variance,

therefore, reduces the probability that periods of high WUE will be maximized. This

is illustrated in panel F; A.gerardii, like S.pitcherii, does not benefit from earlier

growing season onset in years with 50 cm of precipitation.

4.4 Discussion

This study presents a number of frameworks to explore climate change impacts. The

focus is characterizing the aggregate effects of forcing variation, assessing the role

of water-use efficiency in shaping the effects of forcings, and assessing carbon flux

responses of C3 and C4 vegetation classes and species. Underlying mechanisms, how-

ever, have equal importance. These include the temporal interaction of environmental

and vegetative controls on carbon assimilation, how increased seasonality might act

as a diversifying selector for vegetation species, and relating these to understandings

of critical habitat and phenologic periods.
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4.4.1 Climate forcing

Environmental conditions throughout the growing season are changed by increased

mean evaporation, precipitation variability, and earlier growing season onset. These

forcings induce variation in environmental conditions individually and collectively,

with varying sensitivity of responses across time. Water and carbon fluxes, for ex-

ample, are a product of daily sensitivities to forcings scaled to seasonal and annual

forcings with differing sensitivities to longer-term environmental trends.

Potential evaporation and precipitation simulations affect soil moisture and carbon

assimilation differently (Figure 4.3). Potential evaporation has a positive correlation

to water and carbon fluxes, but has a negative correlation to soil moisture. An ex-

ample is piecewise carbon assimilation determination in the model, where increased

potential evaporation increases carbon assimilation at each soil moisture level (greater

than the hygroscopic point, θ ≥ θh, for example) but decreases soil moisture in the

next time step. Precipitation variance affects carbon assimilation through its relation-

ship with daily soil moisture (Petrie and Brunsell, 2010), where limiting soil moisture

is most-ameliorated by precipitation event timing, and non-limiting conditions are

most-enhanced by event magnitude. Climate change simulations for Konza main-

tain expected daily and seasonal variable relationships, but forcing changes promote

greater daily and inter-seasonal variation.

Earlier growing season lengthens the spring growing period with no apparent effect

on summer soil moisture values, illustrated by similar evaporative fraction curves ( E
Ep

)

in Figure 4.3, panels C and D. This suggests an intermediate condition between the

temperate eastern and arid western U.S. of Richardson et al. (2009) and Monson et al.

(2005) in annual average fluxes. While water fluxes maintain similar structure in

response to earlier onset, carbon assimilation dynamics experience shifts in seasonal

partitioning and reduced long term mean values (Figure 4.3). It is important to assess
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how these temporal scales relate and are represented by average values.

Some conclusions can be made about how forcings will shape environmental con-

ditions in the Konza Prairie. Flux seasonality is expected to be more-pronounced

between the early and late-growing season as the timing of precipitation events de-

creases water fluxes and potential evaporation increases them. These forcings, in

addition to possible earlier growing season onset, will change the seasonal properties

of vegetation carbon assimilation, increasing spring carbon assimilation due to earlier

onset and reducing it in summer and fall due to the combined effects of potential

evaporation and precipitation. Konza grasslands can expect greater annual carbon

assimilation at the price of more inter-annual variability, greater seasonality in flux

dynamics between periods of limiting and non-limiting soil moisture, and greater vari-

ance in daily soil moisture, if not water fluxes, during these seasons. Forcings are not

the only factor shaping the effects of climate change, however. Vegetation response to

seasonal environment is an important unknown for ecologic functioning. How climate

change could affect the gas exchange dynamics of individual species is the subject of

the remainder of this discussion.

4.4.2 Water-use efficiency scaling

Water-use efficiency is used in this paper to represent how vegetation photosynthesis

responds to environmental conditions. Photosynthesis and related water and carbon

fluxes are shaped by three variables in the model: potential evaporation, soil moisture,

and water-use efficiency. In the model, daily carbon assimilation is maximized when

the most-limiting forcing is maximized; by phenology during maturation in the early

growing season, by potential evaporation in the spring, by soil moisture in the sum-

mer and fall, and by WUE where other variables are not limiting. Longer temporal

periods appear to be of greater importance in determining carbon assimilation dy-
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namics and may deviate in response to forcing mechanisms (D’Odorico et al., 2000).

The effects of forcing mechanisms at longer timescales are a complex aggregation of

potential evaporation, WUE, and precipitation λ and α in creating likely temporal

”blocks” of carbon assimilation. Daily carbon assimilation is likely maximized af-

ter precipitation events during summer months (high Ep and WUE), while blocks

of greatest carbon assimilation are likely during periods where neither soil moisture,

potential evaporation, and WUE are limiting, such as late-spring. Peak summer pe-

riods for potential assimilation often produce periods of high assimilation, but their

occurrence is dependent on precipitation timing; positive and negative effects are not

maintained for the same temporal periods across growing seasons.

Early and late-season water-use efficiency simulations illustrate how vegetation

and environment compete to shape the dynamics of carbon assimilation. Sensitivity

of carbon assimilation to potential evaporation, WUE, and precipitation timing and

magnitude depends on seasonal soil moisture values versus seasonal maximum as-

similation variation. This maximizes carbon assimilation in late spring under control

conditions, but could reduce A as climate change increases growing season seasonality.

Changes would disrupt interaction of vegetation versus environment across the grow-

ing season. Figure 4.4 late-peak WUE simulations (panels B and F) and linear change

for early-peak simulations (panels A and E) suggests forcings are translated differ-

ently by these simulations; late-peak simulations show less-linear response in mean

annual carbon assimilation but assimilate more carbon overall. While vegetation and

environment interactions are not expected to have extreme effects on growing sea-

son dynamics, their interaction will reshape small-scale functioning within temporal

periods and alter species carbon assimilation partitioning.
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4.4.3 Konza vegetation and climate change

Simulations of C3 and C4 vegetation illustrate responses of carbon assimilation to

forcing and water-use efficiency (Figure 4.5). Both vegetation types have similar re-

sponses to these interactions, with C4 vegetation having greater variation between

WUE maximum and minimum (Figure 4.2). How WUE variation corresponds to pe-

riods of soil moisture availability and potential evaporation is important; dry growing

seasons appear to reduce benefits from early-season WUE peak, and low WUE in

the late-season decreases the benefit of years with higher than average precipitation

(Figure 4.5). While these dynamics exist presently at Konza, their temporal interac-

tion will be changed by increased forcing variance and species sensitivities (Fay et al.,

2000; Collins et al., 2002). Increasing seasonality would benefit vegetation suited to

minimize the effects of water stress, vegetation that can maximize favorable condi-

tions or niches, vegetation with specialized phenologic cycles, or vegetation that is

less affected by environmental perturbations during the growing season. It does not

appear that climate change will favor the C3 or C4 photosynthetic pathway; vege-

tation within these classifications is heterogeneous and will respond to other factors

and trends (Collins et al., 2002).

Species-specific simulations suggest that climate change will affect species and

niche stability more than it will large-scale vegetation classes or land cover type. This

is illustrated by S.pitcherii, A.psilostachya, and A.gerardii in the climate change

scenarios. Responses suggest vegetation is affected by the combined impacts of phe-

nology and environment instead of dominant forcings; the same forcings are shaped

differently by vegetation WUE (Figure 4.6). Percent increase in carbon assimila-

tion for earlier growing season onset illustrates the differing sensitivities of vegetation

to temporal growth periods, temporal carbon partitioning, and effects for mean an-

nual carbon assimilation. A.psilostachya is resistant to negative and positive effects
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of changing climate possibly from its late-season WUE maximization and low dif-

ference between maximum and minimum values, while the seasonality of WUE for

S.pitcherii (high reliance on late-season assimilation) shows elastic response to precip-

itation amount and seasonality (Figure 4.6). Increased carbon assimilation in earlier

growing season onset simulations may offset carbon assimilation reduction from pre-

cipitation and potential evaporation (panels B, D, and F), but also change carbon

assimilation partitioning. This partitioning is species-specific and relates to habitat

and microclimate; species fitness may have important phenologic periods for growth

and reproduction that are not suited increased variability (Fay et al., 2000).

Nonlinear sensitivity of carbon assimilation to forcings creates patterns to as-

similation that reflect positive and negative responses during critical periods of the

growing season that are specific to each species and, because vegetation at Konza

exists in specialized niches, could reflect effects to critical habitat. How these niches

exhibit or inhibit the positive and negative effects of increased seasonality during the

growing season is unknown. Future impacts are not likely to be driven by a single

variable or produce a single result; nonlinearity across forcings and variables, tempo-

ral scales, and vegetation responses to environment produce dynamics that resemble

current conditions, but with increased intensity of seasonal dynamics and variation

between them. How this affects ecological functioning will be a product of forcing

combinations across time and the individualized responses of vegetation and habitats

to changing dynamics. Growing season change will be more variable than is simu-

lated for the Konza prairie (Julien and Sobrino, 2009), but will have similar effects

as climate and vegetation intensify beneficial and deleterious extremes in the growing

season.
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4.5 Conclusion

Climate change will affect mesic grassland functioning through intensification and di-

versification of the growing season. While ecosystem responses are difficult to assess,

effects to hydrology are more-determinable and depend largely on how climate forc-

ings aggregate to alter soil moisture conditions. Projections for increased potential

evaporation and more-variable precipitation are projected to reduce mean daily soil

moisture and increase water fluxes. How climate change affects the flux dynamics of

grasslands is likely to be a result of the interactions and sensitivity to climate forc-

ings by individual species and these species’ ecological interactions throughout the

growing season.
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Chapter 5

Conclusion

This thesis explores the nonlinear variable interactions and temporal flux dynamics

of grassland ecosystems to answer the question of how climate forcings and ecosystem

variables interact to shape seasonal water and carbon dynamics. Results illustrate

varied temporal sensitivity of water and carbon fluxes to climate forcings, especially

precipitation timing and magnitude and potential evaporation. These interactions

shape long-term moisture dynamics in the Kansas River basin. Species-specific sim-

ulations suggest short-timescales (days to weeks) are more illustrative of vegetation

carbon assimilation dynamics and may upscale to reflect annual values. Climate

change impacts are not likely to be uniform across space or affect classes of vegeta-

tion (such as C3 and C4), but will instead increase seasonality of water and carbon

fluxes between the early and late growing season. This increased seasonality will

diversify growing season moisture availability and carbon assimilation, which could

both promote and hinder vegetation functioning at the species-level.

The value of this research is the characterization of temporally variable relation-

ships and their connection to water and carbon fluxes in grasslands. It establishes the

ecosystem sensitivity to precipitation timing and magnitude and quantifies the effects
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in terms of mass and energy fluxes. Results illustrate unique moisture dynamics in

grasslands across the Kansas River Basin precipitation gradient, offering a focused

perspective on how precipitation and potential evaporation shape the growing season.

This framework is also applied to vegetation water-use efficiency and the interaction

of vegetation and forcings in shaping water and carbon flux dynamics. Finally, this

research projects the outcomes of regional climate change on vegetation at the Konza

Prairie, quantifying the effects future climate could have on grassland species func-

tioning. These projections are important for assessing future ecologic functioning

and economic uses of semiarid grasslands, and may be used to anticipate negative

scenarios, such as heightened soil erosion or loss of biodiversity, before they develop.

Extensions of this research into microclimates, nutrient availability, and agricul-

tural feasibility assessments would be beneficial for understanding how climate change

will shape semiarid and other water-limited regions. Topography alters the soil depth

and water availability of microclimates within grassland ecosystems, and might act to

enhance or diminish the effects of seasonal fluctuations. Seasonal nutrient availability

could represent critical phenologic periods in the model to analyze how altered soil

moisture inhibits or favors vegetation growth and reproduction strategies. Assess-

ing future agricultural moisture requirements would require a relatively easy set of

parameterizations to quantify water fluxes from crops. A good step, before all of

the above, is to first validate the model against eddy covariance data for mass and

energy fluxes to address whether or not it is robust for more-empirical applications

beyond characterization of variable nonlinearities. Validation is perhaps most impor-

tant and will dictate future model uses and perhaps resemble the overall capabilities

of low-dimensional analysis techniques.

A more-directed look at the driving relationships and feedbacks that create and

interconnect ecosystems helps to better describe the uniqueness of landscape hetero-

66



geneity, in general, and grasslands, specifically. Semiarid ecosystems are shaped by

subtle processes over long timescales, but have interesting, complex dynamics across

varied landscapes and environmental conditions. The illustrative quality of semiarid

ecosystems is how this subtlety of interactions creates the functioning landscape. As

the value of semiarid ecosystems unfolds and gains weight in the sciences, I hope that

regions including the Konza Prairie are incorporated more in the ideal of natural

places and wilderness not as a pedestal of metaphysics, but as an active, dynamic

illustration of the potential human and ecological advantage of interaction with the

natural world.
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