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ABSTRACT

In the Arabian Peninsula, the near-surface represents a major challenge
in seismic exploration. For accurate deep subsurface reservoir imaging, an
accurate near-surface velocity model is required. In this dissertation, I review
the regional geology and geomorphology and the existing methods used for
velocity modeling. A new method is developed, which depends on acquiring
high-resolution shallow seismic data. The data is processed to obtain a near-
surface velocity. The numerical modeling shows that the accuracy required
for accurate imaging can be obtained through this new method. Alternative
existing methods either lack the required accuracy or are very expensive to
use. Three real field data cases are presented. In each case a high-resolution
velocity model is obtained and used to process the conventional data. To
make the new method more practical, I recommend using the CMP mode and
a land streamer for data acquisition. I show that some artifacts in the data
acquired using a land streamer can be overcome by using optimally-designed
plate-mounded geophones. The two main factors in the design are the plate
weight and area. From the experimental data, I conclude that land-streamer
data over sand dune can be more coherent than conventional data, especially
the first-arrival events.
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Chapter 1

INTRODUCTION

1.1 Problem Definition

Since it was first used in middle of the last century, the seismic reflection

method has been the primary tool for subsurface imaging in hydrocarbon

exploration. Early seismic data were single-fold, one source and one receiver.

Multi-fold coverage was later developed to, statistically, enhance the reflected

signal and cancel noise. To obtain the required multi-fold coverage, a spread

for 2D acquisition or a swath for 3D acquisition of receiver-groups are used in

data acquisition. The degree of the clarity and reliability of the final seismic

image depends, partially, on the complexity of the subsurface geology (Yilmaz,

1987).

The technique works the best when the characteristics of shallow and

deep subsurface layers, such as velocity and structure vary slowly. Velocity

anomalies should have the dimensions of a multiple of spread length. This

makes it possible to estimate velocity using the Common-Mid-Point (CMP)

gathers. In this dissertation the term CMP will be used interchangablly with

the term CDP (Common-Depth-Point). The gathers then are normal-moveout

(NMO) corrected using the estimated velocities and stacked to produce the

final time-image. In the presence of complex deep subsurface or near-surface,

seismic wave propagation becomes more complicated. Processing the seismic
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data in such cases becomes more challenging and requires more advanced data

processing techniques, such as prestack depth migration and datuming. These

techniques were developed over years of research and development. Using

simple processing techniques might not be sufficient to produce an accurate

and interpretable final subsurface image.

Because of compaction and overburden pressure, seismic velocities of rocks

become more stable and consistent with depth. On the other hand, the surface

and the near-surface of the earth are usually more heterogeneous. On the sur-

face, different rock types and sediments with large velocity contrasts outcrop

next to each other. In addition, the near-surface is almost always heteroge-

neous vertically and laterally. The geomorphological features through which

seismic data are collected are of different scales and complexity. Moreover,

they are usually characterized by low-velocity, heterogeneous, weathered, and

unconsolidated sediments. The influence of near-surface complex geology on

seismic data, 2D and 3D, has been thoroughly investigated (e.g., Yilmaz, 1987,

Cox, 1999).

In general, near-surface anomalies, such as wadi-fills, sand dunes, or ig-

neous intrusives, degrade the quality of the final seismic image and should be

accounted for to obtain a clear and reliable subsurface image. The seismic

section in Figure 1.1 is an example from the the central part of the Arabian

Peninsula (Ley et al., 2003). It shows the importance of applying the static cor-

rections to the seismic data before stacking. The corrections lead to improved

quality in subsequent processing steps which, in turn, impact the integrity,

quality, and resolution of the final image. The effect on the seismic image

depends on the size and magnitude of the anomalies relative to the effective
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Figure 1.1. An example of a 2D seismic line through a wadi filled with low-
velocity sediments. The top profile is a near-surface velocity model constructed
from the posted discrete upholes. Three layers can be identified. The top blue
layer has a velocity range of 500 to 999 m/s. The green layer has a velocity
range of 1000 to 1999 m/s. The yellow layer has a velocity range of 2000 to
2500 m/s. The quality of the final stack is greatly degraded by this LVL, as
shown in the surface stack, section (a). The stack quality improves with the
application of statics correction, section (b), (Ley et al., 2003).
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spread-length, the data after muting refraction and direct waves. There are

two ways by which near-surface anomalies affect the final stack. First, they

cause misalignment of reflection events, and therefore degrade the resolution

of the final stack. Secondly, they create erroneous time-structures in the final

stack. Which of these will be observed in the final seismic stack depends on

the size and depth of the anomalies and depth of the reflectors.

While the coherency and the resolution of shallow reflections are degraded

by small-size velocity anomalies, large-size anomalies mostly affect deep reflec-

tions. A given near-surface wide anomaly, creates an erroneous time-structure

for a reflector beneath the anomaly. The size of this time-structure depends

on depth of both the anomaly and the reflector. The most serious artifact,

however, is the distortion in the time isochron, between two reflectors, caused

by the differences in dynamic properties, such as velocity and mute functions,

and the presence of the near-surface anomalies (GeoQuest, 1976). For all of

these reasons, compensating for the near-surface layers is an important step

in seismic imaging before any interpretation can be made.

The most commonly used method to remove the effect of near-surface

layers is utilizing surface-consistent static time shifts (Figure 1.1) calculated

from a near-surface velocity model (Marsden, 1993; Cox, 1999; Ley et al.,

2003). In regions where the assumptions behind static-correction solutions

are violated, more numerically-complicated approaches have been developed.

These solutions are refereed to in the industry as datuming approaches. Some

of these are based on Kirchhoff-integral solution (Berryhill, 1979). Others are

based on a wave-equation solution (Holberg, 1988). In the industry, however,

these techniques are used in limited cases (Hu et al., 2002) because of the high-
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accuracy requirement in the velocity model. Whatever correction method is

used in the seismic processing flow, the first step always is building an accurate

near-surface velocity model.

1.2 Existing Velocity-Model Building Methods

In his book, Cox (1999) has discussed in detail several methods which

can be employed to build a near-surface velocity model. Some of these meth-

ods are direct, such as estimating the velocity from check-shot surveys. Oth-

ers use intermediate data, such as refraction travel times, to build the model

through an inversion process. The methods can be grouped into five categories;

namely uphole-based, refraction-based, elevation-based, reflection-based, and

potential- or electrical-field-based methods. The methods in the first three

groups are the simplest and the most widely used. The reason for their popu-

larity is mostly economical. Other methods, such as those based on electrical

and potential field theory, have been used in limited research studies (Cox,

1999). This dissertation focuses on using reflection-based methods to build

the near-velocity model.

The primary technique to build the near-surface velocity model in the

Arabian Peninsula is using velocity functions derived from check-shot surveys

from upholes, Figure 1.1. The uphole is a shallow borehole, which is usually

drilled down to the first high-velocity layer. Upholes are drilled to obtain near-

surface velocity information. They are drilled in the exploration area where

seismic data are collected. The accuracy of the velocity model depends on

the accuracy of each velocity function, the distance between upholes, and the

interpolation technique used. In areas where there is a good uphole coverage,
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the velocity information from the surface to the SRD (Seismic Reference Da-

tum) using tens of thousands of upholes has been compiled and interpolated

to produce a regional velocity-map. The near-surface model for any new 2D

line or 3D can be built from this map. This frozen model is believed to be

sufficient for most parts of the Peninsula (Bridle et al.,2004). In more problem-

atic areas, more information has been incorporated to enhance the accuracy of

the interpolation, for example, using first-breaks to create a multi-layer model

(Bridle et al., 2004).

The second approach is the first-break inversion using one of the refraction-

based methods, such as the Generalized Linear Inversion, or GLI, and tomog-

raphy (Hu et al., 2002). Although, these methods provide a better spatial

coverage, they have their own issues. The most challenging problem is picking

a consistent refractor and obtaining the velocity V0 from the surface down to

the top of the refractor. This problem is minimized by using velocity infor-

mation from upholes. The industry has accepted this technique as the most

accurate model-building process (Cox, 1999).

Most of the studies mentioned above are based on the conventional ap-

proaches of applying a surface-consistent static time shift calculated from the

derived velocity model. Other, more numerically-complicated approaches have

also been used in limited cases in the Arabian Peninsula. Examples include

redatuming using either model-dependent algorithms, such as Kirchhoff-based

and wave-equation datuming, or model-independent approach, such as Com-

mon Focus Point (CFP) datuming (Hu et al., 2002). They all, however, need

a reasonably accurate velocity, even the CFP-based algorithm.

The geomorphological features found in the arid Arabian Peninsula can be
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found in other arid regions. The features here, however, have different scales

and might stack on top of each other, which make the problem more serious.

The first four methods from the above list represent the primary choice for

explorationists, mainly for an economical reason. To my knowledge, there is

no published work which explicitly uses shallow-seismic data to account for

the near-surface, except the work of Black et al., (1990). In the next section,

I discuss briefly some of the problems associated with uphole- and refraction-

based methods to establish the need for a more reliable method.

1.3 Problems Associated with Existing Methods

Medium parameters, such as density and seismic velocity, for both P-

and S-waves, and the thickness of near-surface layers vary vertically as well as

laterally.

In surface-seismic surveys, these variations are classified as having long,

medium, or short wavelength relative to the effective spread-length. This is

the longest usable offset beyond which data are usually muted. Since this

parameter is time variant, the above classification of the anomalies is also

time variant. Short-wavelength anomalies for a deep reflector are considered

to be long-wavelength for a shallower reflector.

The influence of a near-surface anomaly on reflection data depends on its

relative size and depth. Since the relative size of the anomaly is time vari-

ant, its influence is also time variant. For example, while short-wavelength

anomalies affect the continuity of shallow horizons, long-wavelength anoma-

lies affect deeper reflections. All anomalies, however, induce erroneous time-

variant time shifts. The dynamic non-hyperbolic moveout velocity caused by
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the near-surface anomaly contributes to the time-variant time shift. There-

fore, the technique to be used is the one which accounts for all near-surface

anomalies with all dimensions.

The optimal method, if there is one, should resolve all these variations

down to the datum below which the velocity is more stable. No universal

method exists today which can be used to build the near-surface velocity

model for all near-surface geological conditions. Every method used in the

industry has certain limitations. Nevertheless, each has enjoyed some success

depending on the near-surface conditions. In this section I outline some of the

major problems associated with the main methods; namely, uphole-based and

refraction-based methods.

1.3.1 Uphole-based methods

Although the procedure of measuring seismic interval velocities in an up-

hole, the check-shot survey, is straightforward and simple, picking the travel-

time accurately is not. This leads to large errors in the velocity computation.

The cost of drilling an uphole for velocity measurements only is high. The

top soil in arid regions is usually unstable, which makes drilling more difficult

and hazardous.

For economical reasons, the upholes usually do not penetrate all near-

surface anomalies. In fact, many upholes do not penetrate down to the datum.

The last sampled point is usually extrapolated to the datum.

The spacing between upholes is usually large, typically within 10 km,

which causes the model to have poor spatial resolution that can be improved

only through drilling more upholes, making it more cost-ineffective.
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Upholes are drilled in accessible locations, which are not necessarily where

they are most needed. Using the best interpolation technique then becomes

critical.

1.3.2 Refraction-based methods

These methods invert first-break time arrivals to obtain a near-surface

velocity model or the static-correction values. Most of the inversion meth-

ods are linear and are ray-theoretic, based on the geometrical interpretation

of the propagation of refracted waves; the Generalized Reciprocal Method

(GRM) and the Generalized Linear Inversion (GLI) methods are two exam-

ples (Palmer, 1980; Hampson and Russell, 1984). Non-linear methods employ

tomographic inversion (Taner et al., 1998). The problems associated with

these methods can be classified into three categories:

Inherent Problems These methods are based on simplified mathemat-

ical models, which hardly exist in nature. GRM, for example, is based on a

model of a stack of velocity-increasing flat layers, at most dipping. Turning-ray

tomography assumes a smooth increasing velocity gradient with depth. Taner

et al. (1998) realized this fact and developed his algorithm to solve for static

corrections only without the need to raytrace a velocity model.

Most of the methods can not account for pinch-outs, steeply-dipping and

hidden layers, e.g., those having a small thickness or a velocity reversal.

The data is assumed to be collected in the plane of incidence, and therefore

the apparent dip is modeled as a true dip.

The most serious problem, however, is the nonuniqueness of the inversion

process. Although, this is a problem for almost all geophysical problems (Zh-
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danov, 2002), it is more serious in the inverse refraction problem. According

to Ivanov et al. (2005), the nonuniqueness is of type D which means that there

is a continuous range of solutions which satisfies a given set of data. Such an

unfavorable type of nonuniqeness can be uniquely solved only by providing

abundant a priori information (Ivanov et al., 2005).

Acquisition Problems Picking first break from production records is

not only a time-consuming process, but becomes difficult if not impossible

in the presence of source-generated noise and wave scattering. Moreover, the

acquisition plane is not flat, which causes direct-waves to overlap with refracted

waves. The picking process becomes more inaccurate and difficult when the

source type is a Vibroseis.

What is more challenging is to associate a range of time-picks to a certain

refractor and to be consistent within the zone of investigation.

To image the near-surface correctly, we need to sample the wavefield prop-

erly, which means using the right temporal and spatial sampling frequency. For

economical reasons, first-break times are usually picked from production shot-

gathers whose acquisition parameters are too coarse for building an accurate

velocity model.

Interpretation Problems The velocity and depth to the top of the

refractor often change rapidly laterally and vertically, even within the critical

distance, making it impossible to resolve these anomalies.

First-break times are used to estimate delay-time, vertical-time, and ve-

locity and depth of the refractor. There are several methods which can be used

in this inversion, such as ABC, GLI, and tomography methods. In the special
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case of fairly smooth refractor, all methods output similar time images, which

can be used to obtain a set of static-correction values. To build a velocity

model, however, a priori velocity of the layers above the refractor is required.

Yet, the most limiting factor is the need for the a priori velocity or depth

information down to the top of the refractor. In certain cases, this information

can be obtained from direct waves. In most cases, however, direct waves sample

only the top part of the first layer.

Given a perfect, error-free, set of first-break picks and the velocities above

the refractor v0, or depth, the inversion problem is still ill-posed and no unique

model can be achieved. This was demonstrated by Zanzi (1990) for linear

methods and recently by Ivanov et al. (2005), for all methods. In practice,

uphole-velocity profiles are used to resolve long-wavelength variations in the

near-surface, larger than or equal to uphole spacing. If successful, a refraction-

based method, constrained by the uphole-based velocity information, might re-

solve the variations with smaller wavelength. In practice, reflection-based auto

residual-statics algorithms are used to resolve the variations within a spread-

length. The success of these methods depends on data quality, acquisition ge-

ometry, and density of coverage. Note also that some of the refraction-based

methods, such as GLI (Hampson and Russel, 1984), incorporate refraction

residual-statics.

Other techniques, such as gravity, and electrical methods usually have

poor spatial resolution and are implemented in limited cases. One can come

to a conclusion that a reliable, robust, and cost-effective method still needs to

be developed to build the near-surface velocity model.
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1.4 Dissertation Objectives

In this dissertation, I study and implement the high-resolution reflection-

based methods to parameterize the arid and geologically-complicated near-

surface of the Arabian Peninsula. The main technique which I will use is

Shallow Seismic Reflection (SSR). The method has, generally, adequate depth

of penetration with high temporal and spatial resolution. The depth of pene-

tration can, almost always, be controlled by the source type and power. The

velocity model is built directly from the data.

1.4.1 Dissertation Outline

In the second chapter, I review the geology and geomorphology of the

Arabian Peninsula. Understanding the local geology helps anticipate where a

new approach to near-surface modeling is needed.

In the third chapter, I study, numerically, the needed-accuracy to accu-

rately image deep targets. I then try to build the near-surface model using

high-frequency synthetic data.

I study, in two different parts of the Peninsula, the characteristics of

real SSR data; in particular, depth of penetration, frequency response, and

dominant noise components, such as ground-roll. From such analysis, I opti-

mize source and acquisition parameters to obtain the required data. The SSR

method is limited by the shallowest pickable reflector.

I also study the processing steps needed to improve data quality. Some of

the expected problems are the statics and ground-roll problems. The statics

problem, here, is the high-frequency component affecting stacking quality.

The processed gathers are the input to the velocity-model building proce-
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dure. The study of different velocity-analysis procedures and their accuracy is

one of the main research items. One of the methods is using reflection tomog-

raphy, while the other method is the conventional stacking velocity analysis.

There are two ways to use such data; namely using direct estimation

of statics from the surface-stack, or building the near-surface velocity model

to be used in further processing. Here, I use both methods to correct the

conventional low-frequency data and compare the results. From published

results, e.g., Black et al. (1990), the SSR-based velocity model can be so

accurate that it can be used for intra-array statics corrections. Moreover,

there are different ways to use the velocity model to correct the conventional

data, the simplest of which is applying surface-consistent static shift to all

traces. Here, I also use the derived model as an input to a wave-equation

datuming algorithm.

Integrating the SSR with other existing uphole-based velocity data lead

to a better inter-uphole interpolation. Also, stacking velocities are used to

constrain the refraction-based solution. Both of these approaches are studied

together with a comparison between using the SSR only or using existing

methods. I also test the accuracy of the model by applying the model to

conventional low-frequency data and check it against uphole velocity.

Many researchers and studies have been conducted on how to make the

SSR more cost-effective (Van der Veen, 1998, Steeples, et. al., 1999, Tsoflias,

et. al., 2006). Here, I explore using some of these methods to estimate near-

surface velocity. In the last chapter, I analyze theoretically and practically

the land-streamer response. In particular, I study ground-coupling of plate-

mounted geophones.
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Beside the literature review chapter, the dissertation includes numerical

modeling, field data acquisition, and analysis. Seismic data were acquired

along exploration 2D lines which have near-surface problems that are were

not fully resolved using existing methods. The second step was processing the

data to produce velocity models. The resultant models have then been used

to calculate the static-correction values. Finally, the exploration 2D lines are

corrected using the statics values before they are stacked.

.
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Chapter 2

GEOLOGY AND GEOMORPHOLOGY OF THE ARABIAN

PENINSULA

2.1 Objective

This chapter is a summary of the geology and geomorphology of the Ara-

bian Peninsula. It includes a brief history and a description of the two main

regional terrains: the Arabian Shield and the Arabian Shelf. The geology of

the Quaternary geology is emphasized here since the surface and near-surface

sediments are of Quaternary and late Tertiary age.

2.2 Structure and Geologic History of the Peninsula

The Arabian Peninsula is a huge crustal plate composed of ancient sed-

imentary and volcanic rocks, deformed and metamorphosed and injected by

plutonic intrusions. The satellite image in Figure 2.1 shows the surface geol-

ogy of the Arabian Peninsula. Up until the Tertiary period, the peninsula was

part of the African Shield. In the late Precambrian, its surface was deeply

eroded and peneplained. At the beginning of the Cambrian, a great sedimen-

tary basin, the Tethys geosyncline, had developed in the area now occupied

by Turkey, northern Iraq, and southwestern Iran. Thousands of meters of sed-

iments were accumulated in this slowly-sinking region throughout Paleozoic,

Mesozoic, and early Cenozoic. At the same time, flat-laying strata were de-
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Persian Gulf

Arabian Shield Arabian Shelf
Red Sea

Rub AlKhali

Figure 2.1. A composite satellite image of the Arabian Peninsula showing
in detail the surface geomorphology. Notice that the image is blurry in Rub
AlKhali because of the low resolution. The image was produced by Google
Earth software (courtesy of Google Earth software).
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posited in the broad epicontinental seas between the Tethys and the Arabian

Peninsula. Continental deposits were laid down inland. In response to slight

vertical movements, the transgressions and regressions of the sea gave rise to

unconformities (Powers, 1966).

In the late Cretaceous, the first stage of the Alpine orogeny heralded the

destruction of the ancient Tethys and caused the strata to fold and overthrust.

In the second stage, these deformed strata started to rise forming the Taurus,

Zagros, and Oman mountains. In the Arabian Peninsula, this uplift caused a

slight eastward tilt of the strata. During the Tertiary orogeny, which began in

the middle Tertiary, the Arabian plate split away along the Red Sea trough and

began moving northeast against the Asian plate. Throughout the Paleozoic,

Mesozoic, and Tertiary, the Arabian Plate and the covering sediments were

barely disturbed. Today, the peninsula is divided into two main structural

regions: the Arabian Shield, and the Arabian Shelf. Most of the main elements

of the tectonics in the Arabian Plate were created after the late Cretaceous

(Al-Sayari and Zotl, 1978). The Arabian Shield is part of the Precambrian

crustal plate sloping gently toward the north and northeast. It consists of

Precambrian gneiss and metamorphosed sedimentary and volcanic rocks that

were folded and faulted during the two main orogenies and then intruded

by granites. The Hijaz orogeny, which took place 660 MY ago, induced a

north-south fold-fault pattern. The younger Najd orogeny, 450 MY, resulted

in northwesterly-trending left-lateral faults (Al-Sayari and Zotl, 1978). The

Arabian Shelf occupies two thirds of the peninsula east of the shield. The

basement is part of the Precambrian plate that makes up the shield. Above

the basement is a thick sedimentary sequence, which dips away from the shield
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Figure 2.2. A regional 700-km East-West cross section from the Arabian
Shield, to the North Field, a giant gas field offshore of Qatar Peninsula (Konert
et al., 2001).

Basin

Rub AlKhali
Basin

Nafud

Widyan
Basin

Wajd
Basin

GulfEast

GulfWest
Basin

Basin

Figure 2.3. A regional depth map of the crystalline basement. The areas
where basement is deep have received more sediments to create a local basin
or sub-basin (Konert et al., 2001).
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into a number of deep basins, e.g. AdDibdibah. The largest of these basins is

Rub AlKhali basin. The regional geological cross section shown in Figure 2.2

extends from the Arabian Shield in the west down to the North Field east of

Qatar Peninsula. The thickest part of the section, directly below the Western

coast of the Persian Gulf, thins out to the west and east. The map in Figure 2.3

shows the depth of the basement in the Arabian Peninsula. It shows the local

basins, where most of the petroleum exploration activities occur today. Based

on formation dips, the shelf is divided into two major structural features:

the Interior Homocline and the Interior Platform. The following is a brief

description of these two features.

The Interior Homocline is located along the eastern margin of the shield

and extends about 400-600 km outward. The beds in this region are char-

acterized by gentle and uniform dips, less than one degree. One the surface,

this structure is covered by the geomorphology of the central and the cuesta

regions. The sharp change of the Paleozoic, Mesozoic, and Cenozoic strata

in the homocline near latitude 24 degrees is caused by a deep-seated uplift

causing a ridge extending all the way to Qatar known as the Arabian arch.

The Hail arch, at latitude 27, is a similar structure, which also causes change

in strike, see Figures 2.1 and 2.2.

The Interior Platform is a flat structural feature located just to the east of

the homocline and separated by an abrupt break in slope, Figure 2.2. Well and

seismic information indicate that the sedimentary rocks on the platform are

thick and unusually flat. However, several major north-south anticlinal axes

rise above the platform. These make up the trap of some of the major oil fields

in the Arabian Peninsula, such as Ghawar, Abqiq, and Qatif. Their origin is
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Figure 2.4. A regional surface geology map showing the formations outcrop
(Al-Sayari and Zotl, 1978).

believed to be an uplift at great depth. Adjacent to the platform are several

sub-basin that have received thick deposits of sedimentary rocks. These basins

are shown on the basement depth map in Figure 2.3. The Rub AlKhali basin,

the recipient of vast alluvial deposits of late Tertiary time, is the largest of

these basins. Deposition into this basinal area provided the substratum from

which Quaternary aeolian sands were reworked and on which Quaternary lake

beds were deposited.

2.3 Stratigraphy and Sedimentation

One third of the Arabian Peninsula is covered by the non-sedimentary

rocks in the Arabian Shield. Except for occasional epeirogenic uplifts, the

shield has been tectonically stable since the Cambrian. During this time nearly

5500 meters of sedimentary rock has accumulated on the eastern flank of the
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shield. Paleozoic, Mesozoic, and early Tertiary rocks are exposed in the form of

escarpments and cuestas bordering the shield in the central part of Arabia. To

the east, in the subsurface, these same beds dip gently and uniformly towards

the Persian Gulf and into the Rub AlKhali, covered for the most part by late

Tertiary and younger Quaternary rocks, as shown in the cross section through

the shelf in Figure 2.2.

Shallow, epeiric seas, part of the ancient Tethys Sea realm, lapped onto

the shield from the east from Cambrian time onward. The sea retreated grad-

ually and progressively building up and out to the east the thick section or

sedimentary rocks. Figure 2.5 shows a generalized stratigraphic section of the

layers deposited in the shelf (Jado and Zotl, 1984).

Lower Paleozoic rocks are chiefly medium to coarse grained sandstones of

near shore to terrestrial origin. The sandstone layer is interrupted by thin beds

of marine shale or limestone. The Permian and Triassic rocks are extensive

shallow-water limestones with non-marine clastics toward the top marking one

of the brief regressive phases.

Jurassic rocks are almost totally marine and outcrop along the great

length of Jabal Tuwaiq, forming the ’spine of Arabia’. They are shallow

shelf, very fossiliferous limestones, shales, and marls, with a brief period of

shallowing-upward marked at the closing of the sequence by evaporite (Hith

Anhydrite) deposition. These shallow carbonates, often of porous calcarenitic

(oolitic and pellety) nature, contain much of the oil of Arabia, e.g. Arab

Formation. The overlaying anhydrite forms the caprock.

Cretaceous rocks are largely shallow marine limestones, with an extensive

thick middle unit of sandstone (Biyadh and Wasia Formations) marking re-
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Figure 2.5. The regionalized stratigraphic column of the Arabian Peninsula.
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gional epeirogenic uplift and near continental conditions of deposition in the

east.

Upper Cretaceous and lower Tertiary rock sequences consist of limestone

and dolomite with some shales. They are extensively exposed at the eastern

edge of the escarpment belt, continuing northward into Iraq.

The last remnant of the Tethys Sea retreated from Arabia toward the

end of the Eocene. The extensive Pre-Neogene unconformity marks the end

of Eocene deposition. In the late Tertiary time, continental deposition, with

a brief middle Miocene shallow marine incursion, prevailed in Arabia.

Late Tertiary rocks (Miocene and Pliocene) are on the order of 200 to 600

meters thick. Lithologically, they comprise a heterogeneous mixture of marly

sandstones, sandy marls, sandy limestones and green and red claystones. They

blanket the Rub AlKhali basically leveling it off and attaining maximum thick-

ness in the central part of the region. They also cover much of the northeast

Arabia.

Quaternary deposits of great sand sheets, dune fields and gravel plains

directly overlie the Miocene-Pliocene sequence. Sands of the Rub AlKhali in

the south-central Arabia alone cover about 600000 square kilometers.

Most of the surface-seismic problems are associated with near-surface ge-

ological features of late Tertiary and/or Quaternary age. Because of the low-

velocity nature of these sediments, the problems become more serious.

2.4 Regional Geomorphology of Arabia

Al-Sayari and Zotl (1978) and Jado and Zotl (1984), provide a comprehen-

sive description of the Quaternary geology and geomorphology of the Arabian
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Peninsula especially the Central and the Eastern Saudi Arabia.

At the end of Eocene, the last remnant of the Tethys Sea retreated from

the Arabian Peninsula as a result of eastward movement of the Arabian plate

against the Asian plate. This movement resulted in a northeast tilt of the

Arabian plate and the upthrusting of the Zagros Mountains about 3 MY ago.

The formations, which were deposited as a result of these activities, were

the Hadrukh, Dam, and Hofuf, of Early Miocene, Middle-Late Miocene, and

Pliocene ages, respectively.

As a result of these activities, concurrent with the Pliocene pluvial peri-

ods, the great through-drainage wadis of the Arabian Peninsula were incised,

while the shield has been tectonically stable except for occasional epeirogenic

uplifts. Wadi AdDawasir and wadi AsSahba drained the west and the cen-

tral shield and fed to Rub AlKhali. The ArRimah wadi system drained the

north-central shield and discharged at the head of the Arabian Gulf.

The map in Figure 2.6 shows the principle geomorphological features in

the Arabian Peninsula. The main provinces are: Arabian Gulf Coastal Re-

gion, AsSumman Plateau, Eolian Sand Areas, Cuesta Region, Central Plateau

Region, Mountains of Western Arabia, Red Sea Coastal Plain, Mountains of

Southern Arabia, and Oman Mountains.

Here, I give a brief description of the first four regions and the main

morphological features dominating them. For more information, consult Al-

Sayari and Zotel, 1978. The Arabian Gulf Coastal Region is bounded between

the Gulf in the east and the AsSumman plateau in the west as shown in the

generalized geologic map in Figure 2.7. The elevation rises gradually at a rate

of 1 m/km inland to the western boundary, the escarpments of AsSumman
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Figure 2.6. Map of the Arabia Peninsula showing the principal geomorpho-
logical features in the Arabian Peninsula. Numbers indicate the locations
of following wadis: (1) Wadi AlBatin, (2) Wadi Birk, (3) Wadi Bishah, (4)
Wadi AdDwawasir, (5) Wadi Hadhramawt, (6) Wadi Nisah, (7) Wadi Ray-
nah, (8) Wadi ArRimah, (9) Wadi AsSahba, (10) Wadi AsSirhan, and (11)
Wadi Tathlith. Also, the following landforms are shown: (12) Aden Hinter-
land, (13) AlAramah Escarpment, (14) AdDahna Desert, (15) AdDibdibah
Plateau, (16) Great Nefud Desert, (17) Hadhramawt Plateau, (18) Hadhra-
mawt Valley, (19) Hijaz Plateau, (20) Hisma Plateau, (21) Jabal Shammar,
(22) AlJafurah Desert, (23) Musandam Peninsula, (24) Najd Pediplain, (25)
Oman Mountains, (26) ArRub AlKhali, (27) Sabkhat Matti, (28) AsSumman
Plateau, (29) Syrian Plateau, (30) Tihamah Mountains, (31) Tuwayq Escarp-
ment, (32) Umm AsSamim Desert, (33) AlWidyan Plateau, and (34) Yemen
Highlands (Al-Sayari and Zotl, 1978).
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plateau. The salt flats or sabkhas can clearly be seen in the satellite image

(Figure 2.1), the biggest sabkha is Sabkhat Matti near Qatar. They are most

common along the shoreline between Abqaq, in the south, and AsSafanya, in

the north. Sabkha can exist as far as 70 km from the Gulf at an elevation

of about 150 m. These flat features are composed of layers and mixtures of

sand, silt, mud, and salt to a depth of several meters. Except for operational

problems, sabkhas are usually not problematic for surface seismic surveys.

The second dominant feature is the eolian sand, which covers a large

part of the Gulf region. It is thin and hummocky north of AlJubail, with

large dunes south of Dhahran, where it merges with AlJafurah desert, west of

AlHassa oasis. In areas where there is no sand or sabkha, the surface consists

of limestone outcrops.

Two great triangular-shaped gravel plains exit in this region; one is in the

north, AdDibdibah gravel plain, and the other one is in the south, beneath

AlJafurah sand. AdDibdibah plain has its apex in wadi AlBatin, and the south

plain has its apex in wadi AsSahba. Both plains are interpreted as deltas of

old drainage systems.

AsSumman Plateau is a long, flat plateau, overlain by lithified bedrocks.

It begins at a point 300 km south of AlHofuf and extends toward the northwest

to Syria. The width of the plateau ranges from 50 km in the south to 650 km

in Syria. The elevation of the plateau in Saudi Arabia ranges from 400 m in

the west to 250 m in the east, the average eastward dip gradient is 0.7 m/km.

Figure 2.7 shows the geology of part of AsSumman Plateau located in the

Eastern Province of Saudi Arabia.

The bedrock is a permeable flat-lying fresh-water sandy limestone riddled
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Figure 2.7. Geological map of part of AsSumman Plateau (Al-Sayari and
Zotl, 1978).

with broad shallow sinkholes, solution cavities and caves, karst topography.

Carbonate enrichment developed a massive duricrust on the surface, which

is about 3 m thick today. AsSulb Plateau, the largest part of AsSumman

Plateau, occupies its central region. The other important part of AsSumman

Plateau is the Shadgum plateau, beneath which lies the giant Ghawar oil field.

The east-facing escarpments are indented by innumerable small wadis, about

1 km in width, and some larger wadis with several clearly defined tributaries,

such as Scribners Canyon.

The Cuesta Region is a ridge with an escarpment at the western end,

which sweeps around the central plateau, and dips eastward below the Ad-

Dahna desert. The width of this region is over 250 km (see the map in Fig-

ure 2.6). The largest escarpment, the Tuwayq Escarpment, is 800 km long and

rises about 240 m above the plains to the west. The ArRimah Escarpment
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Figure 2.8. Geologic map of wadi ArRimah (one of three major wadi systems
in the central part of the Arabian Peninsula). Generalized after U.S. Geol.
Survey and Arabian American Oil Company. Numbers in the legend are for
(1) metamorphic rocks, (2) granite, (3) sandstones, (4) sandstones and gypsif-
erous, (5) carbonate rocks, (6) eolian sand, (7) alluvium and related surficial
deposits, and (8) Tertiary and Quaternary basalts (Al-Sayari and Zotl, 1978).

is approximately 250 km long, and stands only 120 m above the plains. The

escarpments are truncated by a number of major wadi channels that give rise

to geomorphical features that influence surface seismic surveys. Examples of

such channels are wadi AdDawasir, wadi AlBirk, wadi AlHawtah and wadi

AlNisah, with an eastward drainage. Wadi ArRimah, shown in the Figure 2.8,

truncates ArRimah escarpment north of Riyadh, and drains in the coastal

region as Wadi AlBatin.

The Eolian Sand Areas covers one third of the Arabian Peninsula. Ge-

ologists recognize four classes of eolian sand dunes in the Arabian Peninsula.

According to their shapes, they are classified into: Transverse, Longitudinal,
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Uruq, and Mountainous sand dunes. These sand bodies are distributed re-

gionally in five terrains, as shown in Figure 2.6 and the image in Figure 2.1.

AlJafura desert lies within the coastal region. It widens rapidly to the

south, where it eventually merges with the sand of Rub AlKhali.

The Great Nefud desert in the southwestern part of the peninsula cov-

ers AlJawf-Sakakah Basin. Its reddish sand form rolling dunes with sparse

vegetation, a region without streams or oases.

The AdDahna desert is a long narrow belt of shifting sand and dunes

extending nearly 1300 km in a broad arc from the Great Nefud in the north

to Rub AlKhali in the south. It lies between AsSumman Plateau on the east

and the cuesta region on the west. The quartz sand grains, in AdDahna and

Rub AlKhali, are red-to-orange in color due to the coating by iron oxide.

Rub AlKhali is the largest continuous body of sand in the world, 0.6

million km2. Enormous groups of sabkhas interspersed among the sand dunes

exist in the eastern part of the desert. Grains size of the sediments, from the

shield and the sedimentary rocks, grade down from coarse to very fine as they

spread out to the east. The sediments reach the maximum thickness of 600

m in the central Rub AlKhali. This influx of alluvial sediment into the basin

continued to the arid era in the Pleistocene. The Quaternary sediments of Rub

AlKhali, therefore, are basically reworked Pliocene alluvial sediments. The

unconsolidated sediments grade down to subsurface consolidated sediments

of the Neogene ’undifferentiated’ such as the Hofuff formation. Beside these

large bodies of sand, there are some smaller bodies to the west of the Tuwayq

Escarpments.
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2.5 Geomorphological Classification

Features affecting surface seismic data are either on the surface or near

the subsurface. Morphological features affecting the quality of seismic data

acquired in the Arabian Peninsula can be classified into three zones:

Zone one: The surface in this zone is relatively flat or having low-relief

dunes. Although no surface-related problems are expected here, subsurface

anomalies are possible. Karsting and anhydrite dissolution are some of the

well-known problems in Eastern Saudi Arabia. Most of the coastal regions of

the Gulf and the Red Sea are of this zone. The AsSumman Plateau has a flat

surface, but has large problematic sink holes.

Zone two: This region is characterized by a uneven surface with serious

scattering. This zone occurs mainly along wadis and in the cuesta region in

the central region. The zone can be outlined using elevation mapping.

Zone three: The surface is covered by sand dunes which cause poor signal

penetration and seismic stacking coherency. The three main sand bodies are

in the AlNufud, Rub AlKhali, and AdDahna deserts.

It is also possible to get a combination of zone one with any of the other

two zones. The problem then becomes more serious with multiple features to

resolve.
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Chapter 3

NUMERICAL MODELING

3.0.1 Objective

The objective of this chapter is to numerically study the effects of a com-

plex near-surface layer on synthetic seismic data. I implement the two most

widely used correction-estimation methods: refraction-based and uphole-based

methods. To overcome the shortcomings of these conventional methods, I ap-

ply the proposed method of using high-resolution seismic reflection data to

construct the velocity model. The data modeling algorithm used here is a

finite difference (FD) modeling program from Seismic Unix (CWP, 2005).

3.0.2 Introduction

There is no optimal method to build a velocity model, but the most widely

used methods are those based on shallow uphole or refraction data. The best

solution is one which incorporates uphole information and as many different

wave types as possible (Vesnaver, 2001). This chapter examines the required

accuracy needed to image a subsurface target accurately. The accuracy of the

velocity model derived from different methods are compared to justify using

the reflection-based methods.

In the first part of the chapter, numerical modeling is used to study the

effects of a complicated near-surface layer on seismic data and how it influences
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the final time and depth images. The near-surface model is built using different

methods and the results are qualitatively assessed and compared.

3.0.3 Modeling Parameters

In this section, I use four (Model 1 to Model 4) different two-dimensional

(2D) earth models to create synthetic seismic data. The synthetic shot gathers

were processed to produce a final stack. All the numerical models used here

are 12000 m in length by 1200 m in depth and use 5-m square cells. In

addition, all models consist of four major layers plus a near-surface layer. All

the layers have a constant density, 1.6 g/cm3, but different P-wave velocities.

The velocity for each of the four major layers is constant, but increases with

depth of the layers.

The geometry and parameters of reflectors number one to four were kept

unchanged for all models (Figure 3.1). The difference between the different

models, however, is in the degree of complexity of the first low-velocity-layer,

or the LVL. The base of the LVL, or top of the bedrock, was modeled to be

complex, creating variations in the layer thickness. The three models have

increasingly more complex geometry of the base of the LVL. In the fourth

model, the velocity of the LVL was modeled to vary laterally. The anticlinal

feature shown in the fourth reflector, see the model in Figure 3.1 for example,

simulates a structural target. Also, a wadi feature was placed in the LVL

directly above the target.

Using the acoustic finite-difference Seismic Unix (SU) program fdmod2d,

two datasets were created using entirely different modeling parameters listed

in Table 3.1. The two datasets simulate conventional and high-resolution seis-
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Figure 3.1. Model 1 consists of a stack of four layers plus a Low-Velocity-Layer
(LVL). The density of all the layers is kept constant at 1.6 g/cm3. P-wave
velocities increase with depth, but are held constant in each layer. The model
is 12000 m in length and 1200 m in depth.

mic acquisition procedures. Since the exploration targets are usually deep,

conventional acquisition parameters are routinely used in the hydrocarbon-

exploration industry. An identical source wavelet was used for both datasets:

the zero-offset Ricker wavelet shown in Figure 3.2. The frequency bandwidth,

however, is much larger in the case of the high-resolution dataset. Figure 3.3

shows a sample shot gather, which was actually taken from Model 4 dataset.

The reflection from the LVL is not clear, but the reflections from the deeper

reflectors are evident.
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parameter conventional high-resolution
receiver interval 30 m 2 m
traces/shot 101 101
source interval 30 m 4 m
spread split off-end
CDP interval 15 m 1 m
maximum fold 51 25
dominant frequency 35 Hz 150 Hz
sampling interval 4 ms 0.5 ms

Table 3.1. Modeling parameters for conventional and high-resolution data.
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Figure 3.2. The source wavelet used in all the FD modeling is shown to the
right. The same wavelet is shown again to the left, but in the frequency
domain.
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Figure 3.3. A sample synthetic common-source gather taken from Model 4
dataset. Notice that reflected and refracted waves are accurately modeled,
but no surface waves.

3.0.4 Influence of the Near-Surface

The thickness of the LVL in Model 1, shown in Figure 3.1, varies slowly

to simulate a gravel-plain and a wadi-fill or alluvium. In reality, however,

this layer might have more complicated characteristics such as pinchouts or

truncations. Also, the sediments of the LVL are usually more heterogeneous

than what is assumed in this model. The influence of the LVL becomes more

pronounced with increasing complexity. To illustrate this point, two other new

models were created by introducing a sinusoidal variation in the LVL thickness

of Model 1, Figure 3.1. The spatial wavelength of the variations in the second

model, Model 2, is 500 m and 200 m in the third model, Model 3. Relative

to the 1500-m spread length, the variations in Model 3 are considered to be

high-frequency, while those in Model 2 are considered to be medium- to high-
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Figure 3.4. Surface stack of the conventional data over Model 1. Coherency
of the horizons suffer minor degradations, but the time image does not resem-
ble that shown in Figure 3.1. In particular, the structure has been totally
eliminated.

frequency at the target level. The thickness of the LVL changes more rapidly

in Model 2 and Model 3 than Model 1.

The modeled shot gathers were then processed to generate an inter-

pretable stack. The data processing sequence included sorting into CDP gath-

ers, static corrections, normal moveout (NMO) corrections, muting, and stack-

ing. To demonstrate the influence of the LVL on the time image, the data were

first stacked without applying any static corrections. The stack in Figure 3.4

shows how the target structure has almost been eliminated by the effect of the

long-wavelength variation in the LVL thickness. The short-wavelength com-

ponents caused the poor stack response, see Figure 3.4. Of course, models

dominated by small-wavelength components usually suffer more degradation

in stack quality as can be seen in the surface stack for Model 2 and Model

3, Figure 3.5 and Figure 3.6, respectively. The degree of stack-quality degra-
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dation is frequency-dependent. Because of the low-frequency content in the

input wavelet, only mild degradations are observed.

The surface stacks shown in Figures 3.5 and 3.6 are clear examples of

the fact that larger complexities in the near-surface result in more distortions

to the stack, especially for shallower reflectors. Wavefront healing reduces

the influence of the near-surface inhomogeneities in the reflections of deeper

layers. Because of earth filtering, high-frequency contents of the signal usually

decays with depth. Because of the low-frequency content, deep reflections

suffer less from the LVL. The degradation in the CDP stack response depends,

also, on the magnitude of the time shift caused be such anomalies. The effect

on a particular horizon ranges from low-frequency response due to incoherent

stacking to a total elimination in extreme cases.

3.0.5 Correcting for the Near-Surface

To eliminate these artifacts from the data and therefore from the stack,

the sources and receivers need to be redatumed below the complicated near-

surface layer. Using the simple static correction, the redatuming was calcu-

lated from an estimated velocity model. In the more complicated cases such as

Model 4, wavefield extrapolation is necessary. In the introduction chapter, I

have reviewed some of most commonly used methods to build the near-surface

velocity model: uphole-based and refraction-based methods. Both methods

were tested to demonstrate the shortcoming of these methods when dealing

with a relatively complex near-surface.

First, in order to validate the static correction approach for this model,

the data were corrected using the exact statics values, which were directly
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Figure 3.7. The initial stack over Model 1 after applying the exact static
correction values calculated from the true model. Notice that we use a flat
reference datum below the LVL.

calculated from the LV layer of the true model, Model 1 in Figure 3.1. These

values were then applied in the seismic data processing sequence. The final

stack, shown in Figure 3.7, indicates that this approach eliminated the artifacts

associated with the LVL. In particular, there was no misstacking and the final

time image represents the true model with reasonable accuracy. The small non-

flatness observed in the first horizon below the alluvium is a clear indication

that the vertical-ray assumption, the base of static correction approach, is

violated here.

To demonstrate the applicability of the refraction-based methods, one of

these methods was applied to Model 1 and Model 2 in an attempt to obtain

an accurate near-surface depth model from a set of observed first-arrival time

picks. The method used here is the Generalized Linear Inversion algorithm,

or GLI, implemented using commercial software from Hapmson-Russell Inc.

(Hampson and Russell, 1984). Refraction arrival-times were picked and input
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to the software, together with the acquisition geometry. The initial model,

which was built using discrete control points along the line, was iteratively

updated in order to fit the calculated refraction times with the observed times.

The velocity above the refractor V0 needs to be given as apriori information.

The program updates the depth and velocity of the refractor. At the end of

the process, the GLI software calculates and applies refraction residual statics.

Refraction residual statics are those static corrections which best align first-

break picks of a refractor (Laidley and Mills, 1986). The residual statics are

added to the model-based statics when reporting the final static correction

values. Notice that this inversion converges to a more accurate model when

apriori information are incorporated such us uphole information.

The output of the refraction inversion program is a smooth velocity-depth

model with the smoothness controlled by the user. Figure 3.8 shows the inver-

sion result for Model 1. When compared with the true model in Figure 3.1,

this model was able to capture the main features. The erroneous features

seen at both ends of the model are the result of poor data coverage. Static

corrections are calculated from this model, plus the automatically-calculated

refraction residual statics. The residual statics are the time shifts that flatten

the first break shown in panel (b). The seismic reference datum (SRD) was

set at a depth of 100 m. The CDP gathers for Model 1 were corrected using

these refraction statics, NMO corrected, and then stacked (Figure 3.9). The

stack quality is reasonably good; however, it might have been more severely

degraded if the data are dominated by higher frequency content; the dominant

frequency here is 35 Hz. Again, as we have noticed earlier, shallow horizons

suffer most from a bad set of statics. The artifacts in horizons 1 and 2 are
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Figure 3.8. The output model from the refraction inversion software program.
The two-layer depth model at (c) is a smooth version of the true Model1.
The velocity of the top layer, 700 m/s was provided to the inversion program.
The refractor velocity, V2, at figure (a) has a maximum error of 50 m/s, the
true velocity is 1000 m/s. The middle figure (b) shows the first break after
a applying the linear moveout for QC purpose. The different colors show
different degrees of flatness.

located below the zone where dip of the LVL base is large. This indicates the

inability of this algorithm to handle large dips, like most refraction inversion

programs.

The same procedure was repeated for Model 2, where the base of the

weathering layer now is more complicated than Model 1. A set of static values

were derived using the GLI refraction-based method. These values were later

used in the processing sequence to correct the CDP gathers and produce the
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Figure 3.9. The initial stack of Model 1 prestack dataset after applying the
refraction-based static values shown in Figure 3.8.

seismic stack given in Figure 3.10. Although the stack quality is acceptable,

similar to Model 1, the image contains erroneous structures. Horizons 1 and

2 are not flat under the alluvium as they should be. Figure 3.11 compares

the exact statics values with those derived from refraction inversion for Model

2. Although the two profiles correlate well with each other, the difference

is very large under the thick part of the LVL. The large error in the statics

created the erroneous features seen in the time stack. Although the exact

weathering velocity V0 was provided, the inverted long-wavelength statics were

not accurate.

From these examples, one could conclude that for a simple earth model,

such as Model 1 and Model 2, refraction-based methods produce an acceptable,

but not an accurate, set of static correction values. The resultant earth model

is only a smooth version of the actual model. The near-surface geology is
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Figure 3.10. The initial stack for Model 2 after applying the refraction static
values.
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Figure 3.11. A comparison between the refraction-based statics (the red curve)
and the exact statics (the blue curve). Notice that because of the acquisition
geometry, the refraction statics curve does not cover the whole range.
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usually more complicated than a simple stack of constant-velocity layers as was

the case in the previous two models. There are four types of conditions with

which any refraction-based algorithm is expected to have problems: very rapid

variations in thickness and velocity, continuous vertical velocity variations,

significant errors in refraction-time picking, and significant errors in the initial

model (Hampson and Russel, 1984). In the previous models, there were no

errors associated with refraction picking or the apriori weathering velocity

V0. Also, the layers had constant horizontal and vertical velocity distribution.

Nevertheless, mild variability in weathering thickness caused appreciable error

in the long-wavelength statics.

Uphole-based models are built by interpolating the depth and velocity at

discrete points, usually at uphole locations. For economical reasons, sparse

points are usually used to build the model, which usually results in a poor-

horizontal-resolution model. Here I show that such a method easily fails to

resolve simple anomalies in the constant-velocity LVL in Figure 3.1.

The model shown in the top of Figure 3.12 was built using few of the

seed points used in the actual interface (Figure 3.1). In practice, this model

is obtained if only a few sparse upholes are used in building the near-surface

velocity model. In this stack, horizon 4 is as highly distorted as the surface

stack (Figure 3.4). If an explorationist tries to use this section to map the

target horizon (Horizon 4), the crest of the structure will be missed by about

3 km!
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Figure 3.12. The initial stack of Model 1 using the near-surface model shown
in the top plot. This model was built from the true Model 1 by using fewer
points to define the base of the LVL. This procedure simulates drilling few
discrete upholes to build the model.

3.0.6 Error analysis:

How fine should the near-surface be sampled to be able to resolve the

anomalies? Also, given an error in the near-surface model, how does this error

propagate to an error at the reservoir level? The numeric model shown in

Figure 3.13 addresses this issue. In this model, both velocity and thickness of

the base of the LVL vary laterally. The frequency spectrum of the vertical-one-

way-time profile, Figure 3.14, shows that the minimum wavelength is about

140 m, while the maximum wavelength is about 9 km. The long wavelength

static components display the highest amplitude. Thus the problem persists

even if the short-wavelength component is determined through residual statics

analysis.
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According to sampling theory, at least two samples per wavelength are

needed to accurately represent an analytical signal. Therefore, to be able to

reproduce the true model using few upholes, an uphole needs to be drilled every

70 m. For obvious economical reasons, a larger sampling interval is usually

implemented in practice, with an uphole drilled every about 10 km. Such

a coarse sampling will introduce an error in the interpolated model. There

are two types of errors: the sampling error, or aliasing, and the interpolation

error. The former error is small and can be ignored here. The total error in the

datum statics can be quantified using the Root-Mean-Square-Error (RMSE)

of the error function, i.e, the difference between the exact profile and the same

profile sampled at a coarser interval.

The plot in Figure 3.15 is the RMSE for a number of models with different

sampling interval. The x-axis is the ratio of the sampling interval to the

minimum wavelength in the original signal, which is 140 m in this case. Beyond

the ratio of 1/2, required by the theory, the error increases rapidly. This was

observed in this model and many other models that are not shown here whose

minimum wavelength is larger or smaller than this model.

The frequency spectrum of some of these error functions are shown in

Figure 3.16. Each vertically-shifted curve is the wavelength spectrum for a

particular sampling δ, which is the sampling interval relative to half of the

minimum wavelength, 70 m in this case. The x-axis is the ratio of the wave-

length to half the minimum wavelength. One might expect that, for δ = 8,

for example, the error component would be zero for wavelength ratio greater

than 8. The figure does not show that; in fact we see non-zero components

even for relatively small sampling such as δ = 4. For a particular sampling ,
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Figure 3.13. This numerical model is used to study the errors induced by using
fewer-than-needed upholes to model the near-surface accurately. This model
is similar to Model 4, but without the top 5-m layer.

δ = 8 for example, the long-wavelength components of the profile are sampled

accurately. The smaller wavelength components, however, get aliased into the

long-wavelength components, which make them non-zero.

Since our seismic targets are usually of long wavelength, this analysis

shows the importance of resolving the relatively small near-surface anomalies

to be able to image the subsurface targets accurately.

Combining the above two methods, refraction-based and uphole-based,

a more accurate model can be built. This is obtained by using the velocity

and/or depth of the refractor at the uphole locations as apriori information to

refraction modeling (Cox, 1999).

3.1 Model 4 Analysis

From the above analysis, one can come to a conclusion that even for

relatively simple constant-velocity models, the existing methods fail to produce
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Figure 3.14. This is the travel-time shown in Figure 3.13, but in wavelength
domain. At a wavelength of about 140 m, the magnitude is almost zero. So,
the minimum wavelength in this model is about 140 m.

Figure 3.15. This is the Root-Mean-Square-Error (RMSE) of the vertical-time
down to the base of the LVL as a function of relative sampling to the minimum
wavelength of 140 m. The plot in the inner frame is a zoom around ratio of 1.
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Figure 3.16. The wavelength spectrum of some error functions, vertically-
shifted for easy comparison. The δ is the model sampling interval relative to
70 m, which is half the minimum wavelength in the exact model. In each curve,
the magnitude of the error function is plotted against the relative wavelength
range 1 − 50.

49



an accurate model with enough lateral resolution. To get the desired model, I

proposed earlier acquiring high-resolution seismic data as a mean to build the

model. The characteristics, dynamics and kinematics, of such data are used

in the inversion process to obtain a near-surface velocity model. The analysis

can utilize different modes: direct, reflection, refraction, or surface waves.

In this section, I implement this methodology using numerical modeling.

However, I consider a more realistic model than those studied above. The new

model, Model 4, is a modification of Model 2 after introducing a laterally-

varying weathering velocity. The variations are smooth and in the horizontal

direction only. Moreover, a 5-meter low-velocity layer is added to the top of

the model. The model is shown in Figure 3.17. Notice that the deep part of

Model 4 is similar to Model 1 (Figure 3.1); both have four layers. The effect

of the near-surface on the seismic stack is shown in the surface stack shown in

Figure 3.18. Horizons 1 and 2 are not flat, but dipping toward the deep part

of the wadi. The coherency of these horizons is week compared to horizon 3.

The crest of the structure is shifted from the true location by about 3 km.

3.1.1 Applying Refraction Method

Clearly, trying to reconstruct the weathering layer thickness and velocity

of this model from discrete points is almost impossible unless we drill a hole

every 70 m, which means we need to drill 172 upholes! Next, we try to compute

the static correction values using a refraction analysis method. Here we are

going to use an GLI-based refraction method. In this technique, the refracted-

wave arrival picks are first aligned using cross-correlation. This process ensures

a more accurate linear velocity estimation. Depth and velocity of the refractor
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Figure 3.17. The near-surface of Model 4. To make the model more realistic,
the velocity varies laterally with a rough base. A thin, 5-meter low-velocity,
900 m/s, layer is added to the top of the model.
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Figure 3.18. A brute surface stack of the conventional data over Model 4.
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Figure 3.19. The initial stack of the data over Model 4. The static correction
values were computed using the Hampson and Russel GLI-based refraction
method. The datum is 180 m below the surface.

are inverted for using the aligned refraction times and the apriori weathering

velocity V0. Figure 3.19 shows the stack obtained after using the refraction-

based statics. Notice that the stack response as well as the target geometry

are similar to that obtained for the constant-velocity Model 2, Figure 3.10.

The stack coherency is very good because of the refraction-residual statics

discussed above. The geometry of all three horizons, however, are erroneous.

In fact, such a stack gives the impression that this structure is only a static

anomaly.

3.1.2 Applying the New Methodology on Model 4

My proposed methodology is based on utilizing a separate high-resolution

seismic dataset. The velocity model is the outcome of an inversion process
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which uses such data. The method assumes that the resolution of the output

model is proportional to the resolution of the data. So, as a preliminary step,

we need to generate the necessary synthetic seismic data. Table 3.1 shows the

modeling parameters for the high-resolution data. The small group interval

ensures that the high spatial frequencies are not aliased. A coarser sampling

interval might be sufficient, however, depending on near-surface velocities.

The high-frequency source, however, dos not ensure the temporal-resolution

unless the near-surface lithology has a high quality factor Q. Figure 3.20 shows

a sample shot gather from the modeled high-resolution dataset. This gather

was taken from the location at 5370 m, the same location where the con-

ventional shot gather shown in Figure 3.3 was acquired. Notice that I have

simplified the model here for more accurate reflection picking and velocity

analysis. The base of the LVL was smoothed to minimize scattering. In re-

ality, we will have the complications of the very near-surface direct waves,

surface waves, and the near-field effects. Along the 12-km line, six thousand

shot gathers were generated using source and receiver intervals of 4 and 2 me-

ters, respectively. Note that because we focus on the near-surface, layers 2, 3,

and 4 are not included in this model.

Velocity Analysis: In conventional data processing, the velocity is es-

timated at discrete points along the line. The final velocity model is built by

interpolating between these points. But, for our data, we utilize each of the

24000 CDP gathers to pick a velocity function to ensure the velocity-model

accuracy. The process, however, is a time-consuming task. It can be accom-

plished more easily by using horizon-based velocity analysis (HVA). Here, a

time horizon is first picked from the stack. The stacking coherency for a range
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Figure 3.20. A sample shot gather from the high-resolution dataset. The
receiver interval is 2 m, while the source interval is 4 m. This gather was taken
from the same location as the conventional shot gather shown in Figure 3.3.
The events (a) is the VLVL reflection, (b) is the VLVL refraction, (c) is the LVL
reflection, (d) is the LVL refraction, and (e) is the base-of-model reflection.
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of velocities is computed and contoured for all the CDPs. From an HVA panel

like the one shown in Figure 3.21, we can pick the stacking velocity associated

with that horizon.

This technique works well if we have a continuous horizon along the line.

Figure 3.22 shows the velocity model developed, based on the HVA stacking

velocity, in pink, while the exact model is shown in blue. The exact velocity in

this figure is the effective average velocity calculated from the total depth and

the total vertical time to the base of the LVL. Notice that our model included

the thin 5-m layer, therefore the estimated velocity will be the rms velocity

Vrms of this layer and the LVL layer. The rms velocity is usually larger than

the average velocity at a particular depth. That is why there is a bias in the

estimated velocity profile toward a generally lower velocity. In general, the

main features of the model were resolved except where the weathering layer

thins out, and where there is no velocity contrast with the subweathering

layer. The depth profile is calculated from the time picks from the stack and

the picked velocity. Table 3.2 shows statistical error analysis for this model.

Although the relative RMS error in velocity and depth profiles are larger than

8%, the error in time is only 2.3%. If we compare this number with the plot

in Figure 3.15, we can conclude that this method is able to resolve anomalies

as small as 3 times the shortest wavelength, or about 420 m. This number is

related to the size of the Fresnel zone, which in turn is related to depth and

velocity of the weathering layer.

Besides the medium velocity, the stacking velocity also depends on the dip

of the reflector, the near-surface variations, and the mute function. The dip-

dependency can be dealt with using dip-moveout (DMO) velocity analysis.
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Figure 3.21. A horizon-based velocity analysis panel. The reflection from the
weathering layer is clear and the velocity analysis is easy due to the absence
of noise.

Figure 3.22. A velocity-depth model estimated from the horizon-based velocity
analysis (the pink profiles) plotted with the exact model (the blue profiles).
In zones where there is no strong reflected signal or the LVL outcrops to the
surface, the two curves diverge. Also, the picked velocity is the rms velocity,
while the exact velocity is the average velocity.
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Attribute Min. Error Max. Error Mean Error RMS % RMS

velocity(m/s) 0.026944 1418.492744 93.247435 119.585831 8.891571
depth(meter) 0.001119 30.134487 4.270980 4.882684 10.512790
time(ms) 0.00016 11.158 0.939 1.591274 2.307403

Table 3.2. statistical error analysis of the model obtained from conventional
velocity analysis.

Residual statics help in removing the effects of the high-frequency velocity

variations. Mute functions help produce the best stack and improve the result

of the velocity-picking process. The stacking velocities must be converted to

interval velocities using Dix equations, which were derived for usually simple

models (Dix, 1955). For all these reasons, tomography inversion is alternatively

used to estimate the velocity-depth model directly from the prestack data.

This method, however, is more time-consuming than the conventional velocity

analysis because of the need to pick the prestack refraction and/or reflection

time arrivals. Also, in certain cases, it is difficult to distinguish reflection

hyperbolic events in the prestack gathers.

Reflection Tomography: Here, I use reflection times from the base of

the weathering LVL layer as an input to a commercial horizon-based reflection-

tomography package (CAT3D). The peak of the reflected wavelet is picked for

all or part of the shot gathers. The program uses a raytracing program which

has two options: straight raytracing or the more accurate curved raytracing.

The software has several algorithms for the travel-time inversion; for example,

Simultaneous Iterative Reconstruction Tomography (SIRT) and the Algebraic

Reconstruction Tomography (ART). Figure 3.23 shows the exact model to-
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Attribute Min. Error Max. Error Mean Error RMS % RMS

velocity(m/s) 0.004909 481.157960 94.869919 129.187305 9.605469
depth(meter) 0.000772 28.915252 3.938588 5.063904 10.902970
time(ms) 0.000116 5.416901 1.014183 1.423707 2.064425

Table 3.3. Statistical error analysis of the model obtained from
reflection-tomography inversion.

gether with the tomographic inversion result. The exact velocity in this figure

is the effective average velocity calculated from the total depth and the total

vertical time to the base of the LVL. The main features of the model were

reasonably resolved in depth and velocity. Like the conventional velocity anal-

ysis, the method fails where the time picking is inaccurate; either because the

reflector is very shallow or there is no velocity contrast. Table 3.4 shows more

clearly that the accuracy obtained here is similar to that obtained from the

conventional velocity analysis.

The tomography procedure was repeated using less data points by deci-

mating the number of shot and receiver stations. Similar results were obtained

even by using every tenth shot points, or every fifth receiver station. Someone

might predict, however, that picking accurate reflection times after decima-

tion would be more difficult if not impossible. Also, to confirm stability of the

solution, the inversion was repeated using different initial models. The final

models were found to be similar, which leads to high confidence in the output

model.
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Figure 3.23. A velocity model which was obtained from reflection-tomography
inversion of the high-resolution data. The blue profiles are for the exact model,
while the black profiles are for the estimated model.

3.1.3 Applying the New Methodology on Simplified Model 4

The complications in Model 4; namely, the top 5-m layer and the relatively

short offset, 200 m, might have affected the accuracy of the output velocity

model. To investigate this more, I have created a new dataset with source and

receiver intervals of 2 and 10 m, respectively. With a simulated 50-channel

cable, the maximum attainable offset is 500 m. Figure 3.24 is one shot gather

from that dataset taken from the same location as the gather in Figure 3.20.

This dataset will be used later in testing reflection tomography.

Velocity Analysis: The main purpose of acquiring such dataset is to

use it as a means to develop a near-surface velocity model. The most conven-

tional and robust method to obtain velocity information is through stacking
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Figure 3.24. A sample shot gather from a second high-resolution dataset. The
receiver interval in this dataset is 10 m. This gather was taken from the same
location as the conventional shot gather shown in Figure 3.3.

velocity analysis. The stacking velocity, Vstk, is an estimation to the root-

mean-square velocity, or Vrms. The Vrms velocity is converted to interval ve-

locity, or Vi, through some equation such as Dix equation (Dix, 1955). The

stacking velocity analysis program is an interactive program in which the an-

alyst, usually manually, picks the velocity that produces the best stack. Of

course, this estimation is influenced be the noise in the data as well as the

field statics. For this reason, the data should be preprocessed and filtered

before the analysis. As for the field statics, within the small spread-length,

the near-surface does not drastically change. But, we also could estimate and

apply residual statics to improve on data stacking coherency. In fact, it is

not uncommon for a processing sequence to include two cycles of velocity and

residual estimation.
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Figure 3.25. A velocity-analysis panel for the gather shown in Figure 3.24. It
shows the reflection from the top of the weathering layer and the base of the
model. The velocity of the LVL is 1617 m/s, off by 17 m/s, while the velocity
of the base of the model 3030 m/s, off by 30 m/s. Note that the true velocity
below the weathering layer is 3000 m/s.

For this synthetic dataset, the preprocessing is not necessary and we will

assume that the data is ready for velocity estimation. The velocity-analysis

panel shown in Figure 3.25, shows that the stacking velocity from top of the

weathering layer can be picked with confidence. In fact the picked velocity,

about 1600 m/s, is very close to that shown in the model in Figure 3.13.

Below the weathering layer, the interval velocity is set to 3000 m/s. This is

different from the velocity of the second layer in Model 1 or Model 4 to avoid

FD modeling noise. In the panel, the interval velocity of this layer is only off

by 30 m/s.
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Attribute Min. Error Max. Error Mean Error RMS % RMS

velocity(m/s) 0.004383 220.223328 31.517699 42.531151 2.801902
depth(meter) 0.001022 12.820413 3.803467 4.575164 9.846760
time(ms) 0.000426 9.952496 2.505819 2.981861 9.582545

Table 3.4. Statistical error analysis of the model obtained from
reflection-tomography inversion shown in Figure 3.26.

Reflection Tomography: The reflection times from the gathers were

also picked and used in reflection tomography. The output model is shown in

Figure 3.26. The output model clearly is a better match to the exact model

than that shown in Figure 3.23. The errors shown in Table 3.4 confirm this.

The velocities in this model are three times more accurate than the previous

model. The vertical time, however, is unexpectedly less accurate.

Model non-uniqueness is a major problem in the reflection-tomography

technique. However, the larger redundancy in the data, a gather every 2

m, and the large aperture of 500 m helped in obtaining a better constrained

solution. The velocity invariability in depth, within a layer, is an ideal model

for reflection tomography.

3.1.4 Using the Velocity Model in Conventional Data Process-

ing

Once we obtained the model from the auxiliary high-resolution seismic

data, it was used to process the conventional seismic either through statics

correction or gathers redatuming.
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Figure 3.26. A velocity model obtained from reflection-tomography inversion
of the high-resolution data. The blue profiles are for the exact model, while
the black profiles are for the estimated model. Source and receiver intervals
for this dataset are 2 and 10 m, respectively.
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Statics Correction As we have discussed earlier, the simplest correc-

tion method is the robust statics correction. The vertical travel time from the

surface to a flat datum, usually below the weathering layer, is calculated and

applied for every source and receiver location. Using the model in Figure 3.23,

the datum is assumed to be a flat surface, 120 m below the surface. The

subweathering velocity used here is 3000 m/s.

The bottom panel in Figure 3.27 shows the stack after applying the stat-

ics corrections from the model in Figure 3.23. From the stack quality and

reflectors geometry, we can conclude that the statics have corrected most of

the erroneous artifacts introduced by the complex near-surface. The wave-

length of the remaining oscillations in the time horizons is about 500 m. The

smallest wavelength that was resolved in model 3.23 and 3.22 is about 420

m. Therefore, one possible reason for these oscillations is the accuracy of the

model. Another possible reason is the inaccuracy of the correction technique.

The weathering layer in the middle is thick with a small velocity difference

between the weathering and the subweathering layer. These conditions cause

the violations of the vertical-ray assumption, which is the basis behind the

statics correction technique. To determine the exact reason, I have calculated

and applied the exact statics values from the true model and applied it to the

data. The resultant stack is shown in the top panel of Figure 3.27. Clearly,

the horizons, still, look oscillatory in certain parts of the line; in fact, they look

more oscillatory than the tomography-based stack. This can be attributed to

the smoothness of the inversion-based statics values.

Datuming A more accurate way to correct for the near-surface is using

wavefield extrapolation or redatuming. In such techniques, the prestack data
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Figure 3.27. The initial stacks after applying the exact statics (top panel)
and those estimated from the model in Figure 3.23 (bottom panel).
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are downward continued to a ,usually, flat datum below the surface. Generally,

there are two different classes of redatuming techniques: ray-based techniques

and Wave-Equation-based (WE). The WE technique produce more focused

output gathers because it takes into account multi-pathing. For this reason,

it is more accurate than the ray-based techniques. However, they are more

sensitive to the input velocity model. Here I use an WE-based SU redatum-

ing program to redatum the data to a flat datum 120 m below the surface

(CWP, 2005). Figure 3.28 shows the stack of the data after redatuming. The

tomography-based model is used in the bottom section, while the exact model

is used in the top section. There are few differences between the two sections,

which indicate the accuracy of the tomography-based model. The differences

in the velocity model were so minor that it did not affect the redatuming result.

The horizons in both sections are coherent and have the correct geometry. The

flat horizon at 1 sec is the surface multiple from the second reflector. Notice

how flat this multiple is; unlike the sections in Figure 3.27.

3.1.5 Summary

In the first part of this chapter, three constant-velocity near-surface mod-

els were used to demonstrate the importance of an accurate near-surface ve-

locity model in conventional seismic data processing. The normal refraction

and uphole-based methods have failed for these relatively simple methods.

From the error analysis, the required accuracy dictate using a more accurate

method.

In the second part, the laterally-varying velocity Model 4 was used to im-

plement the proposed new method. This modeling shows that high-resolution
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Figure 3.28. The initial stack after Wave-Equation redatuming to a flat datum
below the complex near-surface layer. The tomography-based velocity model,
Figure 3.23, was used in the bottom panel, while the exact model was used in
the top panel.
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data can provide us with the velocity information that we need to correct

conventional seismic data.

In the velocity analysis, two techniques were used: the conventional co-

herency analysis and the reflection tomography. Although reflection-based

methods might be accurate because of the deeper depth of investigation.

Turning-ray tomography can help improve the model at shallow depth. The

joint inversion of multi-modes, such as reflection and refraction, has also been

found to enhance the accuracy of the model by other researchers (MacMachan,

1992)
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Chapter 4

FIELD DATA

4.1 Objective

In the last chapter, it was shown numerically how high-resolution seismic

data are utilized to build a near-surface velocity model. This model then is

used as an input to a conventional data processing sequence. Such a model has

a better spatial resolution and allows improved imaging of deeper layers. In

this chapter, these results are evaluated using field datasets. High-resolution

near-surface models are constructed for three 2D lines using high-resolution

seismic. Two lines, Zahar1 and Zahar2, are from the eastern Coastal Region

of Saudi Arabia. The third line, Dilam1, is from the Central Region of Saudi

Arabia.

The conventional 2D line, Zahar1, was originally acquired using small

spatial sampling and was used as an approximation to the true shallow high-

resolution data similar to that used in the previous chapter. As for the other

two lines, Zahar2 and Dilam1, two high-solution datasets were specially ac-

quired for this dissertation.

4.2 Line Zahar1

Line Zahar1 is a conventional 2D seismic line which was acquired in the

Eastern Province of Saudi Arabia. The terrain is a gravel plain covered sparsely
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Table 4.1. Line Zahar1 acquisition parameters.

source and receiver intervals 5 m
number of channels 3500
spread type symmetric
CDP interval 2.5 m
maximum fold 1500
source type sweep 10-180 Hz
sampling interval 2 ms

by low-relief sand dunes. The parameters listed in table 4.1 were used in

acquiring this dataset. The line was acquired in the year 2000 for the purpose

of testing. The conventional source and receiver intervals used in Saudi Arabia

are between 20 and 30 m. In this line a smaller spatial sampling (5 m) was

used to examine the benefits of using the same high-fidelity data to estimate

the residual statics and image deep targets at the same time.

The source type used for this dataset was not of a high-frequency type.

Yet this dataset was a good approximation to the true shallow-seismic dataset

needed to model the very near-surface.

4.2.1 Local Near-Surface Geology

The surface in this area consists of flat gravel plain covered with low-

relief sand dunes with about 10 m of relief. Sediments are transported from

the Central Region of the Arabian Peninsula through a major now-dry wadi

system and deposited in this Tertiary delta.

Partially consolidated shale, sand, and marl constitute the top 100 m of

sediment. The stratigraphic column shown in figure 4.1 is from one of the deep

upholes drilled in that area. It shows in general the near-surface stratigraphy
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in this area. The water table (WT) is at a depth of about 60 m below the

surface.

The shallowest coherent reflections commonly observed in seismic data are

from the Pre-Neogene unconformity (PNU). Above the PNU is a thick layer

of poorly consolidated rocks of marl, gravel, and sand. The second strong

reflector is the RUS anhydrite. It is usually at an average depth of 320 m as in

the lithology log in Figure 4.1. In this area, the thickness between top of PNU

and top of RUS anhydrite is small, which makes it difficult to distinguish the

reflection from one interface or the other in a seismic section. So, from here

on, the first main event below the water table will be called the RUS.

The brute stack section in Figure 4.2 shows that the major horizons are

almost continuous and interpretable. So, from the stack quality viewpoint,

there are no serious problems except at isolated zones like the area between

CDP 8000 and 9000. The main interpretational problems here are the long-

wavelength variations in the near-surface velocity and thickness, which create

erroneous time-structures. An example is the anticlinal structure at TAR-

GET1, shown between CDP 8000 and 9000. Several structural prospects were

identified by interpreters, but the structural relief is small and within the error

of the near-surface velocity model.

The overburden above and below the WT are layers of low-velocity un-

consolidated clay, gravels, and sand with an average velocity of 1500 m/s. Top

of the bedrock is the PNU below which the limestone has an average velocity

of 2200 m/s (Figure 4.1).

To estimate the depth interval of these velocity and thickness variations,

zero-offset two-way times of the WT and the RUS were picked from the section
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GRAVEL LIMESTONESHALE

Figure 4.1. Lithology-strip log for one of the several deep upholes in this area.
Depth is in feet from the surface. The key symbols are shown in the top. The
deepest layer in this log is Top of RUS Anhydrite (TRA).
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Figure 4.2. A brute surface stack of the original 5-m dataset of line Zahar1.
The top panel shows the elevation profile and the projected location of the
shallow upholes within 500 m.
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Figure 4.3. Zero-offset two-way time of the two horizons: the water table (WT)
and the RUS. Both horizons were shifted so the mean is zero. The similarities
between the two curves are strong indications that the near-surface anomalies
are mostly above the water table.

in Figure 4.2. Figure 4.3, shows these time horizons after applying a bulk time-

shift to both for ease of comparison. Velocity or thickness variations in the

overburden should influence both shallow and deeper horizons, such as RUS.

One can observe a good correlation between the high-frequency compo-

nents of both curves. This is a strong indication that the anomalies are mostly

above the WT. The lateral extent of these variations is about 700 m. Most

likely they correlate with the sand dunes. To fit the two curves, a smooth

curve must be added or subtracted from one of the two curves. This indicates

that the variations below the WT, velocity or thickness, are smooth and of

long wavelength in nature. This is expected since the velocity stabilizes with

depth especially below the water table.

These near-surface anomalies cause statics problems, which influence the

final subsurface seismic image. The solution to these problems is to virtually
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place the sources and receivers on a flat or nearly flat datum below the prob-

lematic overburden. The seismic datum (SRD) was mapped in the early 70s

for the whole kingdom. It is a smooth surface at a depth close to the water

table. The average depth of the datum in this area is about 70 m. Another

possible cause of the statics problems is the existence of structural elements,

such as folds or faults, that influence both shallow and deep horizons. In

these cases, seismic data migration is used to obtain more accurate subsurface

image.

In practice, the problem is usually addressed by applying a static cor-

rection value for each source and receiver. In the previous chapter, we dis-

cussed two classes of methods to derive the static correction: uphole-based

and refraction-based methods. These methods fail in the case of complex

overburden. In the following sections, it will be clear that although the to-

pography is not complex, the uphole-based method failed to account for all

near-surface variations. Residual-static corrections, however, solved some of

the statics that were not accounted for by the datum statics. But, this should

not be an excuse for not obtaining a good set of statics because such methods

are data-dependent. The automatic residual-static algorithms work well when

the statics values are small, smaller than half a wavelength, and the velocity

is reasonably accurate.

4.2.2 Data Acquisition and Processing

The 2D acquisition parameters in Table 4.1 result in a dense subsurface

converge with a CDP every 2.5 m. The receiver interval of 5 m enabled the

accurate sampling of air and surface waves, and subsequent filtering using
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Figure 4.4. A sample common source gather from the seismic line Zahar1. The
same gather after the local f -k filtering is shown in the right panel. Notice
how the process, effectively, removed much of the linear noise.

frequency and f -k filters. Velocity f -k filters, however, tend to degrade shallow

reflections where the fold is small. Therefore, to eradicate linear noise, local

f -k filters were used. In this algorithm, the data within each small window

in the t-x domain is filtered separately. The data is first decomposed into

bands of frequencies. The desired range of linear velocities are rejected from

each band before they are merged together again. This process is repeated

throughout the shot gather with an overlap between windows. A sample shot

gather is shown in Figure 4.4. This example shows the effectiveness of the

filter in removing linear noise and still enhancing shallow reflections, such as

the WT at 100 ms.

A normal processing sequence was used to prepare the data before stack-

ing. The sequence includes gain recovery, deconvolution, normal moveout,
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Figure 4.5. A brute surface stack of the decimated dataset.

statics application, and mute. One pass of velocity analysis and residual stat-

ics estimation was enough to improve the coherency of the stack.

Data Decimation: The small 5-m source and receiver spacing is not a

conventional 2D acquisition parameter. To simulate a conventional 2D dataset,

the data were decimated at 25-m source and receiver intervals. The same

processing sequence was used here again to generate the final time image.

For a fair comparison, the decimated dataset was restacked again without

applying any kind of statics. The result is shown in Figure 4.5. In the next

section, several techniques are used in which the datum statics are estimated

and applied to the prestack data.
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4.2.3 Near-Surface Correction

In this section, The prestack data are processed to correct for the near

surface. In the first subsection, the velocity model is built using discrete

upholes. In the second subsection, the original high-resolution seismic data are

used to build the velocity model. In each case, the statics values are calculated

and applied to the prestack decimated gathers. In the third subsection, the

high-resolution velocity model from the second subsection is used for wavefield

extrapolation.

Uphole-Based Statics Correction: The conventional way of creating

a near-surface velocity model in this part of the world is the frozen model. A

velocity-to-datum map has been compiled for the whole country using velocity

information from thousands of shallow upholes. The statics correction values

for any source or receiver location are found using the survey elevation of the

point and velocity from the velocity map. For comparison purposes, static

values derived this way were used to correct the prestack data. The top label

in the brute section in Figure 4.2 shows the upholes locations. These wells are

within 500 m of the line.

Figure 4.6 shows the stack after applying the uphole-based statics. When

compared to the surface stack, Figure 4.5, the improvements in the stack

quality are small; see, for example, the horizons below TARGET2. In some

parts of the section, there is a degradation in the stack quality.

High-Resolution-Stack-Based Statics Correction: In the previous

chapter, I suggested using the stack of the high-resolution data to help com-

pute the datum statics. One proposal is to use the stack directly to compute

78



2.00

2.25

1.75

1.50

1.25

1.00

0.75

0.50

0.25

TARGET2

ARUMA

RUS

TARGET1

7447
Ti

m
e 

(s
ec

)
64275407438733672347 8467 9487CMP#

Figure 4.6. The initial stack after applying the uphole-based statics.

the two-way vertical time to a near-surface reflector. The near-offset traces

(offset < 200 m) of the 5-m data were processed and stacked. The result is

a high-resolution stack section that images the WT clearly as in the stack in

Figure 4.2. Here the WT is treated as a local datum and the reflections from

the shallow WT are picked. The source and receiver statics are calculated from

the total vertical time, which are decomposed in a simple surface-consistent

way into source and receiver datum statics.

The advantage of this simple datuming technique is that the datum is a

physical reflector rather than a hypothetical plane defined at a specific subsur-

face depth and x-y coordinates. Of course, it is preferable that such a datum

be as flat as possible to obtain interpretable section. In this example, the WT

is a good reflector located at a depth of about 60 m below the surface, that is
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Figure 4.7. The initial stack after using the stack-based statics in the
near-surface corrections.

about 80 ms two-way time (Figure 4.2).

An intermediate floating datum was created by smoothing the surface

elevation. The total datum statics are also smoothed the same way. The high-

frequency statics are computed by subtracting datum statics from the smooth

profile. This part of the statics is applied in the prestack domain, while the

smooth part is applied poststack.

Figure 4.7 shows the stack after applying the stack-based statics. When

compared to the uphole-based stack, there are noticeable improvements in

stack quality. Notice that the same processing parameters, but slightly differ-

ent stacking velocity functions, were used for both stacks. In particular, the

horizon continuity of TARGET1 and TARGET2 are improved. The horizon

TARGET1 now is interpretable below the CDP range 8000 − 9000. Another
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important difference between the two stacks is the shape of the main horizon

TARGET1. A small window around TARGET1, which is at about 1 second,

shows more clearly the differences in their shapes (Figure 4.8). The two stacks

are from two different datums, the WT and the SRD. However, these datums

are close to each other as we will also see in the next section.

Short-wavelength statics influence not only stack quality but also any

subsequent multi-channel processes, such as conventional velocity analysis.

Figure 4.9 shows two coherency analysis panels for the same CDP gather after

applying the two different statics. The uphole-based statics were applied to

the left panel, while the stack-based statics were applied to the right panel.

Notice how the velocity coherency is more focused and well defined in the right

panel especially around 1000 ms and 2200 ms.
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Figure 4.9. Two velocity-analysis panels for the same CDP gather, but using
the two different sets of statics. The uphole-based statics were applied to the
left panel, while the stack-based statics were applied to the right panel.

Model-Based Statics Correction: Another method to calculate the

datum statics is to build a near-surface velocity model first. The statics val-

ues are calculated based on depth of the SRD. Here, the simple conventional

velocity analysis is used to build the velocity model. Horizon-based velocity

analysis (HVA) was used because the high-resolution data along the whole line

are available. The accuracy of this procedure depends on the accuracy of the

picked horizon time. If high-resolution data were acquired at discrete locations

along the line, then vertical velocity analysis only might be utilized. The near-

surface in this area consists mostly of partially consolidated sediments, which

have weak anisotropy and layering. The layers are almost flat with no abrupt

structures. For all these reasons, the stacking velocity is a good estimate of

the interval velocity.
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The WT velocity model shown in Figure 4.10 was built using conventional

seismic velocity analysis of the high-resolution dataset. Zero-offset time for

each CDP was picked from the stack in Figure 4.2. The RMS velocity at each

CDP was estimated using the HVA-based velocity analysis. In the model,

I also posted the time-depth points calculated from the check-shot surveys.

The objective is to show the accuracy of the model at the upholes locations.

Although this model was built using every CDP, every 2.5 m, an accurate

model might be built using a point every nth CDP, where n is an integer.

The model in Figure 4.10 was decimated to every 800 CDP to simulate an

uphole survey every 4 km. Statics were estimated from this model and applied

to the gathers of the decimated line. Reflection residual statics were calculated

and applied to resolve the high-frequency near-surface variations. The result

is shown in Figure 4.11, which is superior when compared to the uphole-based

stack in Figure 4.6. The major horizons, TARGET1 and TARGET2 are now

more continuous over the whole line. Moreover, the time images in both stacks

are different; for example, refer to horizon TARGET1. Although the uphole

coverage in this area is dense, most of them are not exactly on the line. Also,

some of the upholes are not deep enough to penetrate the datum.

Most of the medium to long near-surface anomalies have bee resolved in

the decimated model. To fully resolve all anomalies, the pseudo-uphole interval

needs to be made smaller. To test this idea, the whole process was repeated,

but for a decimation interval of 1 km. Figure 4.12 shows a comparison between

the 1-km and the 4-km stacks. The apparent closure in horizon TARGET1 in

the 4-km stack does not exist in the 1-km stack. Since most of the prospects

in this area have small structural relief, the high-resolution based method will
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Figure 4.10. A composite plot showing the WT seismic-based velocity model
(red curves). The picked one-way time, the estimated RMS velocity, and the
calculated depth are shown in panels (a),(b), and (c), respectively. The curves
with ”*” marks in panel (a) are the check-shot data for six upholes along the
line. The same data are shown in depth in panel (c). The ”*” marks in panel
(b) are the WT RMS velocity calculated from the same check-shot data. The
smooth curve in panel (c) is the SRD along this line.
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Figure 4.11. The stack after applying statics from the decimated (every 4
km) version of the model in Figure 4.10.

help discriminate true structures from anomalies.

High-Resolution-Model-Based Datuming: The purpose of apply-

ing statics to prestack data is to correct the kinematics of the data in such

a way the shots and receivers are downward continued to a flat datum below

the complex near-surface. A more accurate technique to accomplish this is

through wavefield extrapolation using the near-surface velocity model. Fig-

ure 4.13 shows the result of applying wave-equation-based extrapolation tech-

nique. The horizons are better imaged than the stack in Figure 4.11; see, for

example, the reflector at 1.2 sec. When compared to the uphole-based stack

in Figure 4.14, the redatuming-based stack is more continuous throughout the

line.
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The wavefield extrapolation technique works best when the wavefield is

sampled more accurately. Figure 4.15 shows the result of redatuming of the

original 5-m dataset. The stack has improved for all horizons including TAR-

GET1 and TARGET2. In fact, the horizons are more interpretable inside the

noisy zone below CDP 9000.

Summary: In this line (Zahar1), the high-resolution data used in ve-

locity modeling were not typical shallow seismic data (Miller et. al, 1989). A

heavy low-frequency vibrator and 12-Hz geophones were used data acquisition.

Nevertheless, the output velocity model was more accurate than using a grid

of costly upholes. For more cost-effective approach, discrete high-frequency

CDP gathers can be collected and processed individually and then integrated

together to build the final velocity model.
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Figure 4.14. A small window from the sections at Figure 4.11, the left
section, and Figure 4.13, the right section.
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Table 4.2. Line Zahar2 acquisition parameters.

receiver interval 10 m
traces/shot 1440
source interval 10 m
CDP interval 5 m
maximum fold 720
source type sweep 8-96 Hz
sampling interval 2 ms

When an accurate near-surface velocity model exists, wavefield extrapo-

lation is a more accurate alternative way for near-surface correction. It gives

a better result than the simple statics correction.

4.3 Line Zahar2

This line was acquired in the same area as line Zahar1 (about 20 km

away). The surface and near-surface geology are similar to that in the area of

line Zahar1. The terrain is a flat gravel plain covered by small 10-m high sand

dunes. The main near-surface reflectors are the water table (WT) at a depth

of 80 m and the RUS at a depth of about 300 m.

4.3.1 Data Acquisition and Processing

The acquisition parameters of the line, shown in Table 4.2, are not typical

2D acquisitions parameters in Saudi Arabia. The small source and receiver

intervals (10 m) are used for the testing purposes similar to line Zahar1.

Part of the brute surface stack for line Zahar2 is shown in Figure 4.16.

The stack quality of this line is good in general. Unlike Zahar1 (the original 5-
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Figure 4.16. Part of line Zahar2 surface stack. Note that the CDP interval is
5 m. The double-head arrow shows the interval covered by the high-resolution
line.

m line), the WT here is not as clear. The main problem, however, is whether

the deep low-relief structures are created by near-surface statics anomalies.

Any statics solution should distinguish between statics anomalies and true

structures. The synthetic line and line Zahar1, show how the high-resolution-

based technique provided a more accurate and reliable near-surface velocity

model.

4.3.2 High-Resolution Line

For this line (Zahar2) and the next line (Dilam1), shallow high-resolution

seismic data were acquired. A high-resolution 2D seismic line was acquired

along about 3 km of the line using the parameters in Table 4.3. The source

interval is double the receiver interval. This make the CDP interval smaller,
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Table 4.3. Acquisition parameters of the high-resolution line.

receiver interval 5 m
source interval 2.5 m
no. of channels 112
max. offset 560 m
min. offset 3 m
CDP interval 2.5 m
maximum fold 112
source type vibroseis (30-300 Hz)
sampling interval 0.5 ms
record length 1000 ms

which improves the accuracy of the image and the velocity model without

additional cost.

A sample raw shot gather is shown in Figure 4.17 after the application

of AGC for display purposes. Random noise overcomes the signal beyond an

offset of about 250 m. Loose sand covering the area probably absorbs the

input signal quickly, therefore a stronger input signal might be needed in this

area. The prominent dipping energy in the middle of the gather has a velocity

of about 210 m/s, which is slower than the speed of sound in air, about 300

m/s. These are probably surface waves, given that they are lower in frequency.

These waves tend to divide the gather into two zones; the near-offset noise cone

and the optimal window (Hunter et al., 1984). Within the optimal window,

there are clear events, which could be guided waves or near-surface reflections.

The first breaks are easy to pick for offsets less than 250 m. Three dis-

tinctive layers corresponding to three different slopes in the first breaks can

be identified. The top loose sand has velocity of about 500 m/s. The deep

layer has a velocity of about 2500 m/s. The thick middle layer has a velocity
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Figure 4.17. Two shot gathers, 70 m apart. The left gather is a raw shot
gather, while the right gather is the same gather after applying the processing
sequence below.

of about 1400 m/s as shown in the sample shot gather in Figure 4.18. These

first-arrival picks can not be distinguished and picked from production shot

gathers even when sampled every 5 m, as seen in the sample shot gather of

line Zahar1 in Figure 4.4. These picks can be fed into any refraction-based

inversion software to generate a high-resolution velocity model.

The maximum frequency in the input sweep is 300 Hz. The frequency

spectrum of the gather in Figure 4.17 is shown in Figure 4.19. Clearly, not

all the input frequencies were recovered. In fact, the maximum recovered

frequency is about 140 Hz, but frequencies above 100 Hz are probably random

noise.

Three common-offset gathers are shown in Figure 4.20. The high-frequency

first-arrival event (E1) is clear at offsets 100 m and 200 m, but invisible at an
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Figure 4.18. A sample shot gather showing the refraction arrivals and their
velocities.

Figure 4.19. Frequency spectrum of the shot gather in Figure 4.17.
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Figure 4.20. Common offsets (a) 100 m, (b) 200 m, and (c) 400 m.

offset of 400 m. The white band in the middle of the 200-m-gather (E2) marks

the edge of the noise cone zone. At certain stations, for example 1120-1330,

one can see signal up to offset 400 m.

Figure 4.21 shows the frequency spectrum of the the first 250 ms of the

100-m gather. This zone includes mostly refracted and guided waves, but some

events may be reflections. It certainly shows that the maximum recoverable

frequency is about 110 Hz. The spectrum shown in Figure 4.22 is for the 400-

m gather. Since the maximum recoverable frequency is 110 Hz, energy above

this frequency should be mostly noise. This comparison shows that at 400

m offset, noise amplitude is at about the same level as the signal amplitude.

Stacking these noisy traces still helps enhance the final stack, however.

Data Processing: To use this data in velocity estimation, the data

have to be processed carefully. After extensive testing, the processing sequence
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Figure 4.21. Frequency spectrum for the top 250 ms of the 100-m
common-offset gather.

Figure 4.22. Frequency spectrum of the common-offset gather for offset of
400 m.
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Table 4.4. High-resolution data processing sequence

Process Description

1-Preprocessing data editing and geometry assignments
2-Filtering frequency and f -k filtering
3-Statics elevation statics
4-Mute mute first arrival
5-Deconvolution gap deconvolution
6-Residual and velocity analysis three iterations or refinements
7-Normal moveout 50% stretch mute
7-Trim statics non-surface-consistent statics
8-Stacking
9-Filtering poststack frequency filtering

in Table 4.4 was used.

The f -k filter used in this sequence is a local filter applied over a movable

window in t-x domain. The right panel of Figure 4.17 shows a sample shot

gather after processing. The low-velocity surface waves are aliased which cause

erroneous flat events after f -k filtering. some of the linear data are aliased and

this f -k program unfortunately does not account for this problem. The data

were put through three iterations of velocity and residual statics estimation in

order to improve the time image and to better estimate the velocities.

Figure 4.23 is the final stack after processing the data using the sequence

in Table 4.4. The final prestack trim statics greatly helped align the events

and produce a better stack. This process was applied just before stacking to

improve the continuity of the events. The process does not improve velocity

picking because, after application of trim statics, the data would be biased to

the applied NMO velocity. The final stack shows a strong continuous reflector

at 100 ms, which corresponds to the water table (WT). Between 300 and
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Figure 4.23. The final stack of the high-resolution data. The top plot is the
elevation profile along the line.

400 ms there is a sequence of continuous reflections. The truncations and

overlapping might be a result of the steep slopes in the face side of the dunes.

Building the Velocity Model: It is difficult to track a particular

near-surface horizon through the whole line. For this reason, I believe that

conventional stacking velocity analysis is the most usable and robust method

in this case.

Refraction tomography is another applicable method in this case. How-

ever, the first arrival becomes very difficult to pick beyond an offset of 250 m.

From the rule of thumb, this means that the penetration depth is about 50 m,

one fifth of the maximum offset (Stefani, 1995).

Figure 4.24 shows the final velocity-depth model obtained using stacking

velocity. The velocities were converted to interval velocity using Dix equation
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Figure 4.24. The final velocity model obtained from stacking velocities Vstk

converted to interval velocities using Dix equation and smoothing.

and smoothing. Notice the fine details in the model shown more clearly in

the enlarged section in Figure 4.25. In particular, the model shows a top-layer

with a velocity of about 1400 m/s and a thickness of 100 m below which the

velocity is about 2500 m/s. These velocities agree with first-break velocities,

except that the top 500-m/s layer is not visible here. The top sand velocity of

about 500 m/s can not be resolved from the reflection analysis only.

4.3.3 Statics and Redatuming

In this section, the estimated near-surface velocity model from the high-

resolution line is applied to the conventional data of line Zahar2.

The velocity model was used to derive a set of datum statics for all source

and receiver stations. Statics times are calculated by vertically integrating

velocity from the surface to the seismic datum. Typically, residual reflection
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Figure 4.25. An enlarged window of the model shown in Figure 4.24.

statics are estimated and applied after applying datum statics. Figure 4.26-(a)

shows the final stack of line Zahar2 after using the high-resolution-statics. The

stacks at (b) and (c) have their datum statics derived from uphole-based and

refraction-tomography models respectively. In general, there are no obvious

differences between these three stacks. Actually, there are minor differences,

which were eliminated after applying the reflection residual statics.

One major advantage of the high-resolution-based modeling is the deep

penetration of reflected waves and , therefore, the ability to use a deeper refer-

ence datum. Conventional methods are limited either by depth of penetration,

such as the refraction-based methods, or cost of operation, such as the uphole-

based methods. Intuitively, the deeper the datum is the more near-surface

effects are canceled from the seismic data. In this dataset, three datums were

used at different depths, 100 m, 200 m, and 400 m, to demonstrate the effect

of datum elevation on the final time image. A set of datum statics were cal-
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Figure 4.26. The stack of line Zahar2 after applying datum statics derived
from the high-resolution velocity model, stack (a), uphole-based model, stack
(b), and tomography-based model, stack (c). For display purposes, stack (a)
was shifted by 100 ms, while stacks (b) and (c) were shifted by 70 ms and 40
ms, respectively.
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Figure 4.27. The stack after applying datum statics derived from the high-
resolution velocity model. The SRD datum was set at a depth of 100 m
for stack (a), 200 m for stack (b), and 400 m for stack (c). For the display
purposes, stack (a) was shifted by 100 ms, while stacks (b) and (c) were shifted
by 200 ms and 350 ms, respectively.

culated for every datum, which then were applied to the seismic data before

stacking. Figure 4.27 shows the final stack for the three datums. There are

some minor improvements in the stacks, for example the horizons at around

1.5 and 2.1 sec.

The main problem in this area, however, is the ability to distinguish

genuine low-relief structures from statics anomalies. The enlarged plots in

Figure 4.28 show that time structures change with depth of the datum. This

should give the interpreter more confidence in any mapped structure.
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Figure 4.28. An enlarged window from the stacks in Figure 4.27. Notice how
the dip of the horizons change direction as a deeper datum is used. The arrows
point to two major horizons.
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Figure 4.29. A common-receiver gather before and after redatuming. The
receivers are redatumed to the new datum first. In a subsequent step, the
data are sorted into common-receiver gathers and sources are redatumed.
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Figure 4.30. Section (a) shows the stack of line Zahar2 after applying the
statics correction to a flat datum at 0 elevation. Section (b) shows the stack
after redatuming to that datum.
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Statics is not the best method to correct for the near-surface especially

when the datum is deep or the velocity above the datum is large. In those

cases, the best method is wave-field extrapolation (redatuming). The common-

receiver gather shown in Figure 4.29 is an example of prestack data after

redatuming to a flat datum at a depth of 200 m. Reflection hyperbolas are

more continuous with less undulations due to the near-surface. Notice that

shallow reflections are not well imaged after datuming due to low coverage.

Redatumed gathers were then sorted to CDP gathers, NMO corrected,

and stacked. The final stack is shown in Figure 4.30 together with the statics-

based stack for comparison. The horizons above 500 ms are not well imaged.

The new section looks to have more continuous horizons and less multiples.

See, for example, the time window between 1.25 and 2.25 sec. Structurally, this

section is in agreement with the 200-m section shown in Figure 4.27. Below

1.5 sec, both sections show an anticlinal feature in the middle of the section.

Summary: The high-resolution near-surface velocity model was shown

to be helpful in discriminating true low-relief structure from near-surface anoma-

lies. For practical implementation, the shallow high-frequency data can be

collected in discrete locations in the CDP mode. The velocity model is built

be interpolating the velocity functions between the CDPs.

4.4 Line Dilam1

Data quality of prestack and poststack data in the previous case were

excellent, which led to a coherent time image. The problem was in the long-

period time structures, which might be near-surface related. Due to the low-
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Table 4.5. Line Dilam1 acquisition parameters.

receiver interval 30 m
traces/shot 240
source interval 30 m
CDP interval 15 m
maximum fold 120
source type sweep 10-100 Hz
sampling interval 4 ms

relief nature of the structures in this area, this ambiguity needs to be resolved

before the first well is drilled. Line Dilam1 was acquired in an area where data

quality is poor, which led to an uninterpretable stack section in some parts of

the line.

4.4.1 Data Acquisition and Processing

Figure 4.31 shows an initial stack section of line Dilam1 after advanced

processing. The processing included shot domain filtering and two passes of

residual estimation and velocity analysis. This line crosses a highly-faulted

graben in central Arabia below which the stack quality is poor. In both sides

of the graben, however, the horizons are clearly interpretable. Incoherent

stacking is caused by the complex near-surface, which causes severe statics

problems. In addition, scattering caused by large rocks and sharp faults con-

tributes to the problem. The production seismic line was acquired using the

parameters in Table 4.5.

Several techniques were tried to better image the subsurface under the

graben. These included statics-computation and wavefield extrapolation tech-

niques. The improvements, however, were not significant. For example, Fig-
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Figure 4.31. An initial stack of line Dilam1. The top panel shows the
elevation profile and the location of the high-resolution line.

ure 4.32 shows the result of applying a datuming technique to correct for the

near-surface (Alkhalifah and Bagaini, 2004). The technique worked well for

most of the line, but failed to improve the stack under the graben, which is

below point (3) in the figure. At this most challenging part of the line, I tested

using high-resolution seismic data to build a near-surface velocity model.

4.4.2 High-Resolution Line

A high-resolution 2D seismic line was acquired using the parameters in

Table 4.3. About 3.5 km of such data were acquired along the production line

across the graben zone shown in Figure 4.31. Similar to production data, it

is difficult to identify a clear and continuous reflector from the common-offset

section shown in Figure 4.33. Moreover, it is difficult to identify coherent noise,

such as surface waves. The frequency spectrum of the first-arrival window
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Figure 4.32. This figure was borrowed from Alklalifah and Bagaini (2004). It
shows the result of applying a redatuming technique, named TDO, to correct
for the near-surface. When compared to the production stack in panel (c),
the improvements are clear. The method, however, failed near our zone of
interest, under point (3).
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Figure 4.33. A common-offset gather for offset 100 m. The AGC gain was
applied for the display purposes.

Figure 4.34 (bottom plot) shows that the maximum retrievable frequency is

about 140 Hz. The frequency range of most of the data, however, is limited

between 30 and 120 Hz (top plot).

The sample shot gather shown in Figure 4.35, shows that the only iden-

tifiable coherent events are direct, guided and ground-coupled air waves. No

clear reflections can be identified although there is evidence of some at far

offsets at time window 350 - 450 ms pointed to by the arrow.

Several processing techniques were used to produce an interpretable stack.

The stacking velocities and residual were computed, in three iterations. The

final stack shown in Figure 4.36 is still difficult to interpret. One process made

a dramatic difference in stack quality; this is the trim statics. Trim statics are

non-surface-consistent residual statics computed from the CDP gathers. These

are the time residuals that produce the most coherent stack. Figure 4.37 shows
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Figure 4.34. Frequency spectrum for two time windows in Figure 4.33. The
top plot is the analysis of the whole time window, while the bottom plot is the
analysis of the time window between 50 and 200 ms.
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Figure 4.35. A sample shot gather after the 30− 150 Hz band-pass frequency
filtering. The same gather is shown to the right after the local f − k filtering.
The arrow points to possible reflection events.

the clear improvements in stack quality. Several structural features, such as

faults, can be interpreted from the section

4.4.3 Velocity Model and Statics Application

Our main objective is to estimate the near-surface velocity model. Similar

to the high-resolution line in Zahar2, it is difficult to build a velocity model

using horizon-based analysis. Therefore, the model was built using the stacking

velocity analysis and Dix equation. The model is shown in Figures 4.38 and

4.39.

The velocity model was used to calculate datum statics to a flat datum

below the surface. These values were then used to correct the production

dataset. The final stack of line Diam1 is shown in Figure 4.40. This section is
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Figure 4.36. The final stack of the high-resolution line after three iterations
of residual statics and velocity refinements.
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Figure 4.37. A final non-surface consistent statics were estimated and applied
to the data which was used to produce the stack in Figure 4.36. Clearly, a
great improvements were achieved.
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Figure 4.38. The final velocity model derived from the stacking velocity Vstk.
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Figure 4.39. The upper 100 m of the model shown in Figure 4.38
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Figure 4.40. The final stack of the production line after applying the
high-resolution statics.

superior when compared with the best available section shown in Figure 4.32.

Deep events are more continuous with several possible faults interpreted.

Summary: In areas of strong scattering like this, it becomes difficult

to acquire good high-resolution data. Nevertheless, the near-surface velocity

model helped improve the time image. Several techniques were used to correct

for the near-surface for this benchmarking line. By comparison, the high-

resolution-data-based method was able to improve the data more than the

other methods.
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Chapter 5

COST-EFFECTIVE TECHNIQUES

5.1 Objective

In the last two chapters, use of high-resolution seismic data proved to

deliver high-resolution near-surface velocity models that improved subsurface

imaging of conventional exploration seismic. In this chapter, some solutions

are discussed on how to make the model-building process more cost-effective.

In particular, the discrete mode acquisition technique is discussed in the first

section. In the second section, I discuss the use of a land streamer in data

acquisition.

5.2 Introduction

High-resolution shallow seismic data proved to help building a more reli-

able high-resolution near-surface velocity model. Such a model is very impor-

tant for conventional seismic data processing and interpretation and to obtain

a more accurate subsurface image. The high-resolution-based model has the

advantage of greater accuracy when compared to other techniques. However,

it needs to be built in a more practical and cost-effective way.

The cost of acquiring such data has decreased dramatically since it was

first introduced in the middle of the last century. But, deployment of sources

and receivers at a meter spacing remains uneconomical. Here, I am suggesting
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two ways in which the technique can be made even more cost-effective. In the

first section, ultra high-resolution data are acquired at discrete points along

the conventional exploration seismic line. The velocity functions from all these

points are then interpolated to build a complete velocity model. In the second

section, I discuss using a land-streamer to acquire high-resolution data. Some

artifacts in the land-streamer data are also discussed.

5.3 Discrete CMP-Mode Acquisition

As described in the previous chapter, three continuous high-resolution

lines were acquired and used to build the near-surface velocity model. Prac-

tically, however, there is probably no need to know the velocity every 1.25 m.

Therefore, discrete CMP gathers could be acquired using the CMP acquisition

mode every few kilometers, e.g. 2 km. A velocity function can be estimated

at every CMP location using the ultra high-resolution data. The model, then,

is built from interpolating all the velocity functions. This technique was im-

plemented earlier for line Zahar1, using near high-resolution data.

To test this technique, near-surface velocity information was obtained

from ultra high-resolution seismic data. The data were intentionally acquired

close to an uphole. The velocity function was then compared to that obtained

from the check-shot survey.

5.3.1 Field Data

The acquisition geometry and parameters were designed to image shal-

low depths of less than 500 m. The second column of Table 5.1 shows the

acquisition parameters of the high-resolution data. The first column shows
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parameter conventional high-resolution
receiver interval 30 m 1 m
traces/shot 240 112
source interval 30 m 5 m
spread type split split
CDP interval 15 m 1.25 m
maximum fold 120 22
sweep 10 − 100 Hz 30 − 300 Hz
sampling interval 4 ms 0.25 ms

Table 5.1. The acquisition parameters for line Dilam1 are compared to that
for the ultra high-resolution data.

the conventional acquisition parameters of line Dilam1 on which the uphole

was drilled. While the receivers were kept fixed, 24 shot gathers were acquired

shooting between receivers. The location of the uphole, and therefore the ultra

high-resolution line, is shown in Figure 4.31.

A raw shot gather from the high-resolution acquisition is shown in Fig-

ure 5.1. Reflections and refractions are clear in the optimal window between

the direct-arrivals (B) and surface waves (A). An example is event (C), which

is clear at far offset. Surface waves, with a velocity of about 400 m/s, have

low amplitudes with no clear guided waves present.

5.3.2 Data Processing

The goal of data processing is to optimally remove noise and enhance

reflections for an accurate velocity analysis. The estimated velocities are very

sensitive to any processing step; therefore, the data need to be processed care-

fully. The processing sequence shown in Figure 5.2 was found to be effective

in removing undesirable noise and enhancing the shallow reflections.
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Figure 5.1. One shot gather from the ultra high-resolution dataset. A 100-ms
AGC was applied for display purposes.

Unlike the conventional processing sequence, no datum statics are applied

because the area is flat. Deconvolution did not enhance the shallow data,

therefore, it was not used. Also, no residual statics were estimated because

of the coarse 5-m source interval, compared to the 1-m receiver interval. The

gathers have few traces from which to estimate the residuals.

Frequencies below 70 Hz were filtered out to help resolve different reflec-

tions. The left panels in Figures 5.3 and 5.4 show two of the processed shot

gathers with maximum offset. The hyperbolic events marked by the purple

lines are believed to be primary reflections.

5.3.3 Velocity Analysis Results

The panels in Figures 5.3 and 5.4 are typical velocity-analysis semblance

panels generated using a commercial seismic processing software. The analysis
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velocity analysis

mute first break

local fk filter

BP filter 70−240 Hz

in x: 0.12 db/m
in time: 12 db/sec

BP filter 20−240 Hz

amplitude balance

spectral balance
frequency range: 70−240 Hz
band length: 10 Hz

gain

Figure 5.2. The processing sequence which was used to prepare the gathers
for the velocity analysis.
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Figure 5.3. Velocity analysis of the first common-source gather of the
receiver line.

is for two common-source gathers located at the two ends of the receiver line.

The velocity analysis was performed on the shot domain because the offset

increment is smaller than that in the CMP domain.

The semblance panels are similar, which indicates that velocities do not

change noticeably within the receiver line. The small differences can be at-

tributed to the scattered noise in the two locations. The semblances are very

sensitive to the mute function, as was discussed by Miller (1992). So, the mute

function or the stretch mute needs to be carefully chosen. The velocities were

picked manually using the best-fit-hyperbola method on the gather. These

velocities represent the velocity function at the mid-point. The accuracy of

the picked velocities could have been improved if longer offsets were acquired.

For flat layers and small offsets, the stacking velocity, Vstk, is a good

approximation to the rms velocity, Vrms, (Yilmaz, 1987). The Dix equation
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Figure 5.4. Velocity analysis of the last common-source gather of the receiver
line.

can be used to convert the stacking velocities to interval velocities, Vint. The

average velocities, Vavg, can then be computed from Vint. The plot in Figure 5.5

shows the estimated Vrms and Vavg when compared to the exact velocities

obtained from the uphole. The Vrms curves match each other well above depth

of 110 m. The maximum error is about 170 m/s. Similar results were obtained

by Hunter et al. (1998). The picked velocity points were converted to depth

and plotted against the one-way times in Figure 5.6. For comparison, the

exact points from the check-shot survey are also posted on the same plot. The

maximum time error is about 3 ms, which is within the first-break time picking

error. From the synthetic data analysis above, the error in Vrms estimation was

about ±100 m/s. For real data, this might be slightly larger because of noise

contamination. The reflections in the first 200 ms interfere with other wave

modes such as refraction and guided waves. In addition, the small recorded
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Figure 5.5. A comparison of the estimated velocities and the exact
check-shot-based velocities.
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Figure 5.6. The picked points in Figure 5.5 are converted to depth and
plotted together with the check-shot data points.

offset range, the NMO stretch, and the lack of statics correction limit the

accuracy of the estimated velocities.

In addition to using hyperbolic moveout of reflected events to estimate

the velocities, here refraction tomography was also tested. The first breaks in

the sample shot gather shown in Figure 5.1 were fairly easy to pick. The picks

were used to estimate the near-surface velocity model. Turning-ray refraction

tomography was used in the first-break inversion. The maximum offset is 120

m; therefore, the maximum expected depth of penetration is about 30 m. The

area between the first and the last shot point was discretized using cells with

a size of 40 m in the x direction and 1 m in the z direction, this is almost

a 1-D model. The output velocity model and the corresponding ray density

plot are shown in Figure 5.7. The model shows that the velocity does not
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Figure 5.7. The output velocity model of turning-ray tomography for an
almost 1-D model. Ray count at every cell is shown the right plot.

always increase with depth. There are some minor differences between the

three columns in the figure.

To verify the accuracy of this model, the velocity function at the uphole

location was used to compute the vertical time from the surface to every 1 m

in depth. The calculated T-D pairs were then plotted in Figure 5.8, together

with the measured T-D pairs from a check-shot survey. The model is accurate

at a depth range 10 to 50 m. At greater depth, the model is not accurate

because of lack of ray penetration. Also, the method is not accurate enough

to resolve the very-near-surface velocities.

5.3.4 Stacking

The data were sorted into CMP gathers, NMO corrected, and then stacked.

The NMO correction is too small for the velocity variation to make appreciable
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Figure 5.8. The calculated T-D pairs from the velocity function at the uphole
location in Figure 5.7. The blue stars are the measured T-D pairs from the
check-shot survey.

differences in stack quality. The stack is shown in Figure 5.9 with a maximum

fold of 22 traces. When compared to the stack of the conventional data in Fig-

ure 4.31, some shallow horizons are now clear. For the acquisition parameters,

see Table 5.1.

Summary: Using the CMP-mode in high-resolution data acquisition,

accurate velocity model can be built at the location of every CMP. Besides the

conventional hyperbolic moveout analysis of reflection events, the refraction

tomography was used to estimate the model. Refraction tomography model,

however, is not as deep as the reflection model.
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Figure 5.9. The stack of the high-resolution dataset.

5.4 Land Streamer

To make the process of acquiring high-resolution data for building the

near-surface velocity model more efficient, one approach is using a land streamer.

The main purpose of using a land streamer is to make the process of collecting

high-resolution seismic data more cost-effective.

The idea of using the land streamer in land seismic surveying is to mimic

the acquisition efficiency of marine surveying techniques. In general, a land

streamer consists of a series of geophones, or hydrophones, usually mounted

on base plates, which are connected to each other and towed behind a vehicle.

Many case histories have been published about designing and using this tech-

nique in near-surface geophysics (Miller et al., 1984, Van der Veen et al., 1998,

and Tsoflias et al., 2007). The general conclusion is that no significant differ-

ences were observed between conventional data collected by planted geophones

and land streamer data.

In this section, the performance of a land streamer over sand dunes is

analyzed. The characteristics of the plate-mounted signal are compared to the
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conventionally recorded signals.

Two experiments were conducted using three types of plates. The first

experiment was conducted in a sand box in a controlled environment. The

second experiment was conducted in the field over thin sand at the KU campus.

A third experiment was conducted over large sand dunes in Riyadh (Saudi

Arabia). In this experiment seven slightly-modified designs were tested using

a short geophone spread. In the following three sections, the datasets are

displayed and analyzed.

5.4.1 Sand Box Experiment

Three types of plates were tested, all of which have the dimension of 20 cm

x 13 cm. Two of the plates had a simple rectangular shape, 2-cm thick, with a

flat bottom and made of steel and aluminum. These are the plates numbered

1 and 3 in Table 5.2. Their weights were 3 kg, and 1.5 kg, respectively. Plate

number 2 has a W shape and was fabricated out of a 2-mm steel sheet with a

total weight of 1 kg.

This experiment was conducted in an indoor 4 m x 4 m sand box at the

University of Kansas campus. Three geophones, for the three components,

were screwed to the top of each of the three plates. Another six geophones

with spikes were planted in the sand. Three of them were planted on the

surface, plate 4 in the table, and the other three were planted 5 cm below the

surface, plate 5. A single 5-kg hammer was used as a source. Every three

hammer strikes were vertically stacked and recorded as a 15-channel gather.

Table 5.2 shows the channel number and color code for every trace in this

dataset.
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plate # type motion channel color code
1 steel plate horizontal X 1 red

horizontal Y 2 red
vertical Z 3 red

2 W-shape plate horizontal X 4 yellow
horizontal Y 5 yellow
vertical Z 6 yellow

3 aluminum plate horizontal X 7 green
horizontal Y 8 green
vertical Z 9 green

4 surface spike horizontal X 10 blue
horizontal Y 11 blue
vertical Z 12 blue

5 buried spike horizontal X 13 black
horizontal Y 14 black
vertical Z 15 black

Table 5.2. Channel and color assignments of the sand-box dataset.

Figures 5.10 and 5.11 show two analysis plots for two time windows. The

top panels show the recorded traces. The frequency spectra of these traces are

shown in the bottom panels. The color codes used are shown in Table 5.2. The

left panels show the signal detected by the horizontal X geophones (SH mo-

tion). The middle panels show the horizontal Y geophones (SV motion). The

right panels show the vertical Z geophones (compressional motion). Channel

number 7 is noisy because the screw is loose. There is a good correlation

between the plate-mounted geophones. Similarly, there is a good correlation

between the two planted geophones. This is true for the three recorded mo-

tions, X, Y, and Z. The correlation between the mounted and the planted

geophones, however, varies in time. In general, the correlation improves with

time for the three motion components.
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Figure 5.10. A time window of the recorded 15 channels shown in Table 5.2.
The frequency spectrum for every trace is also shown, see the table for the
color codes.
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Figure 5.11. Similar to Figure 5.10, but for a deeper time window.

The differences in the frequency-spectrum plots in Figure 5.11 are less

than those in Figure 5.10. This indicates that most of the differences are due

to the first arrivals. In particular, the Z-components of the mounted geophones

have larger amplitude in the frequency range 150 to 250 Hz than the planted

geophones. From all the spectrum plots in the two figures, plates 1 and 2

recorded the best frequency response followed by plate 3. So, a better signal

was recorded using plate-mounted geophones. However, the response of the

plate-geophones lag by about 3 ms.

Another way of comparing traces and measure the degree of similarity is

through cross correlation. Figure 5.12 displays the cross correlation functions

of the five Z-component channels 3, 6, 9, 12, and 15. There is a good correlation

among the mounted geophones, see traces 2, 3 and 8. Traces 4, 9 and 13
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Figure 5.12. The cross correlation functions between the Z-component chan-
nels shown in Table 5.3. The correlation window is 200 ms, centered between
0.1 and 0.3 sec.

Traces correlate channel with channels
1 to 5 3 3, 6, 9, 12, and 15
7 to 10 6 6, 9, 12, and 15
12 to 14 9 9, 12, and 15
16 to 17 12 12, and 15
19 15 15

Table 5.3. Trace number assignments of the cross correlation functions
shown in Figure 5.12.
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Figure 5.13. Acquisition geometry of Experiment 1.

show that there is a good correlation between the surface geophone and the

mounted geophones. The buried geophone is not as well correlated as the

surface geophone. A similar result was observed by Tsoflias et al. (2007). The

time lag can clearly be observed in traces 9, 10, 13, and 14. Among the five

vertical geophones, the steel plate 1 (trace 5 in Figure 5.12)has the least lag

relative to the planted geophones.

5.4.2 Field Experiment 1

The objective of this experiment is to repeat the sand-box experiment,

but in a more realistic environment. Wind is an extra factor affecting the

recorded signal quality. On the other hand, there are no side walls to reflect

the waves. Here, only the vertical Z-component was recorded. The signals

recorded using plate-mounted geophones were compared with that recorded

using conventionally planted geophones.

The experiment was conducted at the University of Kansas campus in

Lawrence (Kansas). The terrain is covered by compact soil with only a 20-

cm thick dry-sand layer at the surface. Figure 5.13 shows the acquisition
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Figure 5.14. Common source gather number 30, the first 10 traces in both
gathers are from the compact-soil geophones. The last 7 traces in gather (a)
are from the dry-sand planted geophones, while those in gather (b) are from
the plate-mounted geophones as in Figure 5.13.

geometry of the experiment. Seven plate-mounted geophones were placed on

top of the flat surface at a 0.5-m spacing. Two heavy-steel plates (type 1),

three light-steel (W-shaped) plates (type 2), and two aluminum plates (type

3) were placed next to each other (Table 5.2). Next to them (10 cm away),

seven geophones were planted in the sand. The remaining 10 geophones were

planted in the compact soil to extend the spread to 17 stations. The source

type was a 22-mm caliber gun. Thirty source points were shot at a 0.5-m

spacing with an offset of 10 cm from the receiver line.

Shot number 30 in Figure 5.14 was split into two gathers, (a) and (b).

The first 10 traces are common in both gathers. They were recoded by the

compact-soil geophones. The last 7 traces in gather (a) are from the sand-
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Figure 5.15. Average frequency spectrum of last seven traces in the gathers
shown in Figure 5.14. The spectrum of the sand-planted geophones is in blue,
wile the spectrum of the plate-mounted geophones is in red.

planted geophones. The last 7 traces in gather (b) are from the plate-mounted

geophones. Direct and surface waves are clear in both gathers with a velocity

of 550 m/s and 300 m/s, respectively.

By visual comparison, the signal recorded using the two different geo-

phones are very similar. In fact, the amplitude spectra shown in Figure 5.15

show an almost identical frequency content. However, the first-arrival signal

of the plate-mounted geophones have a wider frequency bandwidth and larger

amplitude. This is not very clear in the all-trace-window amplitude spectra

shown in Figure 5.15.

Besides the first-arrival advantage of the plate-mounted geophone, an-

other one was clear after simple data processing. The shot gathers in Fig-

ure 5.14 were band-pass filtered from 150 - 300 Hz, and then NMO-corrected
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Figure 5.16. The two shot gathers in Figure 5.14 are displayed here after
frequency band-pass filtering. The top gathers are for the sand-planted geo-
phones, while the bottom gathers are for plate-mounted geophones . Gathers
(b) and (d) are after the NMO correction using a velocity of 550 m/s.

using a velocity of 550 m/s. The results are shown in Figure 5.16. After the

moveout correction, the event at about 20 ms is the direct head wave. The

event at 40 ms is probably a reflection event. This event is clearer in the

plate-mounted geophone dataset (Figure 5.16-(d)).

One of the objectives of this experiment is to compare the coupling of dif-

ferent streamer plate types with conventional geophones. The optimal design

should record the signal without any plate-related artifacts. The common-

receiver gathers in Figures 5.17, 5.18, and 5.19 are for the plate type 1, 2,

and 3, respectively. Among the three plates, the geophone mounted on the

aluminum plate introduced the least distortion to the recorded signal. The

near-source plate-mounted geophones recorded the signal without amplitude

clipping.
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The comparison between the plate-mounted and the sand-planted signals

shows a time-variant lag of the plate-mounted geophone. This can clearly be

seen in the one-trace comparisons shown in Figure 5.20. The plot shows a

comparison for shot point 1 (a), 18 (b), and 30 (c). The recorded signals from

three plate-mounted geophones (red traces) are displayed on top of their adja-

cent sand-planted geophones (blue traces). The traces are displayed without

any gain. Since the amplitude decays rapidly in time, two separate windows

are shown for every trace. The match between the blue and red traces is

excellent. The time shifts and the minor differences in amplitudes are due

to differences in the geophones response. This will be discussed theoretically

in the last section of this chapter. Another possible causes to the observed

differences are the responses to the geophones to the horizontally-propagating

waves such as surface waves.
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Figure 5.17. Two common-receiver gathers; the red traces are from a heavy-
steel-plate-mounted geophone, while the blue traces are from the geophone
planted next to the plate.
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Figure 5.18. Two common-receiver gathers; the red traces are from a light-
steel-plate-mounted geophone, while the blue traces are from the geophone
planted next to the plate.
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Figure 5.19. Two common-receiver gathers; the red traces are from an
aluminum-plate-mounted geophone, while the blue traces are from the geo-
phone planted next to the plate.
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Figure 5.20. Six traces from shot point 1 (a), 18 (b), and 30 (c). Plate-mounted
traces (in red) are displayed on top of their adjacent sand-planted traces (in
blue). Two windows of the traces are displayed without any gain.
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Figure 5.21. Acquisition geometry of field experiment 2 in Riyadh (Saudi
Arabia).

5.4.3 Field Experiment 2

The second field experiment was conducted over a 20-m-high sand dune

in Riyadh (Saudi Arabia). The objective of this experiment was to study

the response of plate-mounted geophones over dry sand. This is similar to

KANSAS field experiment 1, but in a desert environment. One common-

source gather was acquired using a 3-kg hammer in the middle of two geophone

spreads as shown in Figure 5.21. The near-source channels 1 to 24 were for the

sand-planted geophones, while the far channels 25 to 48 recorded the signal

from the plate-mounted geophones. All the plates in this experiment were of

type 2 or slightly-modified designs.

Figure 5.22 shows the data from the two spreads after t2 gain and 200-ms

AGC. The slope of the first-arrival is 380 m/s, which is similar to the speed of

sound waves in air, 340 m/s. The top soil is dry and soft sand, which explains

such a low velocity. Another clear event is the surface wave with a velocity of

250 m/s.

Similar to the data in field experiment 1, the amplitudes of the plate-
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Figure 5.22. A single shot gather after t2 gain and 100-ms AGC. Traces in
(a) are from the sand-planted geophones, while traces in (b) are from the
plate-mounted geophones.
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Figure 5.23. Frequency spectrum of trace 24 for two time windows, (a) 0-200
ms and (b) 400-600 ms. The blue graph is for the sand-planted geophone,
while the red graph is for the plate-mounted geophone.

mounted geophones, in general, are larger than the sand-planted ones. Based

on the data characteristics, three time windows can be identified in the shot

record. The first window extends from the first arrivals to about 100 ms. This

window is dominated by surface and direct waves. The frequency spectrum of

channel 24 at two time windows, shown in Figure 5.23, show that the signal

in this window has a broader band. Frequencies over 100 Hz most probably

are from the direct arrivals. In the second zone, 100-400 ms, there are no

clear reflections. The high-frequency oscillations of the near-source traces are

artifacts due to to the bandwidth limitations of the 40-Hz geophones. This

window is well within the noise cone. In the third zone, below 400 ms, there

are clear deep reflections. The maximum time move-out is small because the

maximum offset is only 5.5 m. The spectrum in Figure 5.23-(b) shows the

similarity of the recorded signal by both geophones with a bandwidth of 20-90

Hz.
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Figure 5.24. The same gathers shown in Figure 5.22 plotted over each other.
Gather (a) is plotted in blue, while gather (b) is plotted in red.
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(c)

(b)

(a)

Figure 5.25. The cross-correlation functions between the sand-planted geo-
phones and the plat-mounted geophones for the time window 0 - 100 ms (a),
100 - 300 ms (b), and 400 - 600 ms (c).

The two gathers in Figure 5.22 are plotted on top of each other in Fig-

ure 5.24. There is an excellent match between the two gathers in the first

and the third time windows. The noise, the ground-coupled air waves, and

the geophone artifacts in the second window are clearly different for the two

geophones: the mounted and the planted. Similar to the data in the sand-box

and the field experiment 1, a time-variant lag of about 1 to 5 ms is observed

between the two geophones.

These visual observations are confirmed by cross correlating the signal

from the sand-planted geophone with the signal from the adjacent plate-

mounted geophone. Figure 5.25 shows the cross-correlation functions for the

three time windows. The correlations in the first window are excellent with

almost zero time lag except for few near-source traces. The poor correlations
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Figure 5.26. The first 120 ms of the gathers in Figure 5.22. The gathers after
the gain in (a) are plotted in (b) after the 80-250-Hz band-pass filter.

of the second window are as expected. The signals in the third time window

correlate well except for a variable time lag. The lag is about 5 ms in trace 1

and 1 ms in trace 22.

In field experiment 1, the near-surface reflectors were more clearly imaged

using plate-mounted geophones. This interesting result is confirmed again in

this experiment and shown in Figure 5.26. After a 80-250-Hz band-pass filter,

a number of reflections become clear. The hyperbolas at 40 and 80 ms are

two examples where the reflections in the plate-mounted gather (b) are more

continuous than in the sand-planted gather. Since these are only two examples

and can not be generalized everywhere, it is sufficient to say that the data from

a land-streamer are at least comparable to the conventional geophone data.

Our main objective is to estimate the near-surface velocity using high-
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Figure 5.27. The velocity analysis panels for the two gathers shown in Fig-
ure 5.26. Panel (a) is for the sand-planted gather, and (b) is for the plate-
mounted gather.
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resolution data collected by a land streamer. The velocity analysis panels in

Figure 5.27 show that using plate-mounted geophones improved the coherency

panels and therefore our ability to estimate the velocity. Any analyst can

identify two distinct reflections, at 37 ms and at 72 ms. These are associated

with the base of the top dry sand and base of the sand dune. The velocity of

layer 1 is 317 m/s, which agrees reasonably well with the first-arrival velocity

of 340 m/s. The interval velocity of the second layer is 540 m/s. This two-

layer sand-dune model is consistent with our understanding to the geological

layering in this area.

5.4.4 Geophone-Ground Coupling

From the sand box and the two field experiments, is apparent that there

are time variant lags of the plate-mounted geophones relative to the sand-

planted geophones. Geophone-ground coupling is probably the cause of this

time lag. Geophone-ground coupling refers to the accuracy with which the geo-

phones measure the actual ground motion. Geophone coupling can be modeled

as a system of two damped springs (Krohn, 1984) as shown in Figure 5.28. The

output geophone voltage is proportional to the difference between the velocity

of the geophone case Vg and the velocity of the coil Vcl.

Vcl depends on the resonant frequency, fg, and the damping factor,ηg, for

the internal spring of the geophone as expressed in equation 5.1. The equation

represents the frequency response of a geophone, where fg and ηg are the two

main characteristics of every manufactured geophone (Krohn, 1984).

Hg(f) =
−(f/fg)

2

1 − (f/fg)2 + jηg(f/fg)
. (5.1)
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Figure 5.28. Mathematical model for geophone coupling; mcl: mass of coil, k
spring constant of coil, d: damping constant of coil, m mass of geophone case,
M : mass of coupling, K spring constant of coupling, D: damping constant of
coupling, Vcl: velocity of coil, Vg: velocity of geophone case, V0: velocity of
ground.
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Geophones with natural frequency of 40 Hz or 100 Hz are usually used in shal-

low seismic surveys. Total damping of 70% is acceptable compromise between

considerations of overswing, output amplitude, and phase shift.

Vg depends on the resonant frequency, fc, and the damping factor,ηc, of

the ground-geophone coupling system as expressed in equation 5.2 (Krohn,

1984).

Hc(f) =
1 + (f/fc)

2

1 − (f/fc)2 + jηc(f/fc)
. (5.2)

fc and ηc depend on soil consolidation and the weight and area of the geophone

casing. They can be approximated by (Kimura, et al., 1997)

fc =
1

π

√

ρa

(1 − σ)m
cs , (5.3)

and

ηc = 2a21

√

ρa3

(1 − σ)m
, (5.4)

where a and m are the radius and the mass of the case. ρ, σ, and cs are the

density, Poisson ratio, and the shear wave velocity of the soil. a21 is a constant,

which depends on the Poisson ratio. The resonant frequency of the coupling

system, f0, is nonlinearly controlled by the amplitude of the recorded waves,

f0 becomes smaller with larger amplitude.

Figure 5.29 shows the approximate response of two geophones using equa-

tions 5.3 and 5.4. The blue curves are the response of a 40-Hz geophone with

small rounded base, while the red curves are the response of a similar geo-

phone but mounted on a heavy and narrow base. The effect of coupling on a

recorded seismic signal can be inferred from this figure. If the total damping of

the geophone is small, the peak amplitude is high and narrow, as the case for
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Figure 5.29. The response for two ground-geophone coupling systems in loose
sand with ρ = 1.6, σ = 0.48, a21 = 0.4, and cs = 200 m/s. Both geophones
have a resonant frequency of fg = 40 Hz and a damping factor ηg = 0.4. The
mass and the radius for the case of the blue geophone are 5 g and 2 cm, and
800 g and 12 cm for the red geophone.

the red geophone. In this case, the coupling system acts as a low-pass filter.

The amplitude near the resonant frequency is greatly enhanced, and the pulse

will ring with this frequency. Above this frequency,however, the amplitude is

reduced. For high damping, the peak amplitude is low and broad, as the case

for the blue geophone. In this case, the amplitude is not drastically affected,

but there would be phase distortion over a broad bandwidth of frequencies,

which manifest itself as a time shift. Such time shift has been observed in all

the datasets acquired above. Since the phase varies over a broad band, the

magnitude of the time shift varies and depends on frequency and magnitude

of the recorded signal.

Figure 5.30 shows the geophone-coupling system for two band-limited

wavelets: 30-Hz and 100-Hz low-pass. Clearly the response of the 30-Hz

wavelet is almost identical for both geophones except for a small magnifi-
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100−Hz wavelet

30−Hz wavelet

Figure 5.30. The response of two geophone-coupling systems for two band-
limited wavelets: 30-Hz low-pass and 100-Hz low-pass. The blue curves are for
the light geophone, while the red curves are for the heavy geophone, Figure 5.29

cation by the heavy geophone. The response of the 100-Hz wavelet shows a

3-ms time-lag and a noticeable magnification by the heavy geophone.

In exploration seismic, the resonant frequency is not very important be-

cause the recorded frequencies are way below this frequency. In shallow seismic

surveys where the recorded frequencies might be as high as 300 Hz, great care

should be taken in choosing the right geophone.

Equations 5.1 - 5.4 form a basis to study the optimal plate design. Two

major variables need to be considered in the design: plate weight and area.

A third factor for an optimal plate-design is the mobility which is actually an

engineering problem.

151



Chapter 6

CONTRIBUTIONS AND FUTURE WORK

6.1 Contributions

This study illustrates the limitations of the refraction- and the uphole-

based methods for imaging the near-surface in exploration seismic. The litera-

ture review in the first chapter covered the shortcoming of the uphole- and the

refraction-based methods. These methods are considered the industry stan-

dard for estimating the near-surface velocity model. In certain cases, however,

these methods might produce reasonably accurate models. Therefore, ana-

lysts need to be aware of their limitations. The new method of using shallow

high-resolution data to build the near-surface velocity model overcomes most

of these problems.

The analyst needs to study the geomorphology and geology of the near-

surface to be able to make a judgment about which method is best for the

the near-surface in the exploration area. This knowledge is also necessary to

wisely choose the discrete points of investigation. The near-surface geology

and geomorphology of the Arabian Peninsula were discussed in the context of

the near-surface problem. Our study confirmed the need for a new method

that provide better horizontal resolution and greater depth of investigation.

The horizontal and vertical resolution of the near-surface velocity model

must be proportional to the heterogeneity of the near-surface. From the nu-

152



merical studies it is apparent that there is a need for a sufficiently spatially

sampled velocity model. The sampling interval should be at least half the

length of the smallest near-surface velocity anomaly. Undersampling the near-

surface by drilling and sampling few shallow upholes does not resolve the

long-wavelength statics as some geophysicists believe.

High-resolution seismic can provide a detailed high-resolution velocity

model. In particular high-resolution reflection is an accurate alternative to

drilling deep upholes at close distances. High-resolution shallow reflection

seismic may not be applicable in certain areas. In such cases high-resolution

refraction has provided an accurate velocity estimation. In either cases, the

output is a high-resolution (in time and space) velocity model which can be

used to compute the datum statics to the desired datum. Such a high-fidelity

model is the key to the success of the more accurate wavefield extrapolation

(redatuming).

The conventional stacking velocity analysis is the fastest and most robust

velocity estimation method. To estimate velocities from the high-resolution

seismic, I found that the velocities provided using conventional stacking ve-

locity analysis are as accurate as reflection tomography. When there are clear

continuous reflectors, this method is preferable. The velocities obtained using

the high-resolution data were compared with true velocities measured through

a check-shot survey. The velocities were in agreement within a few millisec-

onds.

Utilization of a land streamer in CMP mode is recommended to make the

process of velocity model building or statics estimation more cost-effective.

The process of acquiring data at discrete points mimics drilling an uphole at

153



every CMP location. The advantage is that the operation cost is reduced dra-

matically. A land streamer was designed and used to collect high-resolution

data over sand dunes. It was found that the land-streamer data imaged shal-

low reflectors quite accurately. A non-stationary time shift between the con-

ventional and the land-streamer data were observed. This phenomena was

explained theoretically by the response of plate-mounted geophones. The anal-

ysis predicts an undesirable response for very heavy plates.

High-resolution shallow seismic surveys were designed, acquired and pro-

cessed in the Central and the Eastern of Saudi Arabia. Over sand dunes, the

input signal decayed rapidly which required using higher-energy sources. Nev-

ertheless, shallow reflections, the shallowest at depth of 70 m, were imaged.

The near-surface velocities were estimated to depths not usually attained by

shallow upholes or by using refraction-based methods. The model can be used

in seismic data migration by splicing it to the deep velocity model.

The new method of near-surface modeling not only increases the accuracy

of the estimated velocity models, it reduce the operational cost of the explo-

ration program. It also reduce the environmental impact of upholes drilling

and the cycle time of exploration.

6.2 Future Work

The recommended and the more effective technique is base on acquiring

high-resolution data in the CMP-mode. Therefore, A natural subsequent step

should be implementing this technique in a 2D or 3D survey. These pilot

surveys might employ a land streamer, which will cut more in acquisition time

and cost.
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This technique can be integrated with one of the advanced state-of-the-art

single-sensor acquisition systems. Future work should investigate the possibil-

ities of such integration, which might be more cost-effective. Such a multiple

acquisition might requires using dual sources. Recently, digital geophones

have become more widely used in the industry. Their frequency response has

a broader bandwidth. Future work should compare these geophones with the

conventional geophones.

The high-resolution field data in this dissertation were collected using

using a mini vibroseis, a sledge hummer, or a downhole gun. For logistics

reasons, the gun was not used in Saudi Arabia. Future work should examine

using a powerful impulsive source to increase the resolution and depth of pen-

etration. The mini vibroseis used in some of the high-resolution surveys above

was a practical and fast seismic source. Future work need to optimizing the

vibroseis parameters or study alternative seismic sources which will perform

better in such sandy terrains.

The land streamer needs to be customized for use over sand dunes. The

plates are the main performance factor in a land streamer. The plates should

be designed in a way to eradicate the phase distortions. The designs should

make the streamer easier to drag over soft sand. Since dragging a long streamer

might not be practical, acquiring long offsets will require more studies. Simi-

larly, designing a 3D streamer might be a research topic in the future.

The ability to estimate velocity from high-resolution data is hampered by

the presence of non-random noise, such as guided waves. Future work should

focus on special processes to filter the data, especially those which can filter

aliased noise. Also, using a 3D CMP might help filtering noise and obtaining
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more accurate velocities.

The velocity analysis process could be a future research topic. The veloc-

ities at a particular CMP location can be estimated using either reflection or

refraction data. Future work might compare using the two modes separately

of jointly to constrain the model.
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