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Abstract

This dissertation studies the consumer demand system by focusing on
its functional form. The theoretical part investigates the regularity prop-
erty of the �exible consumer demand system characterized by its normalized
quadratic functional form. The regularity conditions of monotonicity and
curvature are two of the axioms of the consumer demand theory. While
other axioms are maintained by construction, these two conditions are only
attained in the limited price-income space. We display the regular regions
of the model using estimated parameter values from true underlying prefer-
ences. The model is estimated using di¤erent methods of imposing curva-
ture: global imposition, local imposition, and no imposition. We �nd that
the model often violates the monotonicity condition regardless of the way the
curvature is imposed. We �nd a case where local and global curvature impo-
sitions achieve a global regularity within a very large space without causing
any biases in estimating the true preference when the unconstrained model
produces a non-regular region re�ected by the violation of curvature. We
also �nd a case where the globally concave model makes substitute goods
more substitute and complement goods more complement.

In the empirical part, functional forms of the consumer demand system
which are �exible in the total expenditure are used to estimate the cost of
a child using Japanese household expenditure data. The consumer demand
system which can describe complicated shapes of Engel curves is necessary to
model household behaviors which can vary substantially in expenditure level
as well as in demographic characteristics. We estimate the equivalence scales
for types of households which di¤er in the number of children. In doing so,
we employ the identi�able expenditure-dependent equivalence scales rather
than the constant-equivalence scales usually used in the household welfare
literature. A large number of observations with zero expenditures on some
goods are addressed by using the Amemiya-Tobit type estimation method to
correct potential biases in parameter estimation. The results show that the
Japanese household equivalence scales are decreasing in total expenditure as
well as increasing in number of children. This suggests the intuitive policy
design that the child-support bene�ts, if any, should depend on household
income to preserve equality in welfare level. The results also suggest that the
new child-support program proposed by the current Japanese government
may need to be reevaluated since it does not consider limiting income level
in distributing these bene�ts.
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Chapter 1

Introduction

The �eld of consumer demand models stands out in applied economics for

its ability to usefully incorporate economic theory into empirical practice. It

is an area where empirical investigation bene�ts from theoretical insight and

where theoretical concepts are observed and substantiated by the discipline

of empirical relevance and policy design. Earlier development of neoclassical

consumer demand theory focused on the restrictions on demand functions

implied by the optimizing consumer behavior under the budget constraint.

Standard axioms of consumer preference lead to demand systems having the

properties of homogeneity, monotonicity, adding-up, symmetry, and quasi-

concavity. These restrictions give practical guidance to construct a parsi-

monious (parametric) statistical consumer demand model. Imposing theo-

retical restrictions through explicit side constraints on the parameters can

permit the testing of theories using easily implementable statistical testing

procedures. Furthermore, having chosen a parameterization one can seek to

improve the precision of one�s estimators by imposing theoretically accept-

able restrictions on the parameters.

Earlier empirical work was based on estimated behavioral models ob-

tained using aggregate data. It was limited to the extent that it imposed

the conditions required to be able to infer individual behavior from aggregate

data. Important contributions by Muellbauer (1975, 1976), by Jorgenson,

Lau and Stoker (1980) and by Jorgenson (1990), building upon the pioneer-

ing work of Gorman (1953, 1961) established exact conditions under which
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it is possible to make such inferences from aggregate data.1 These are re-

strictive and the increasing availability of accurate microdata in recent years

allows a much more general analysis of preferences and constraints, opening

up a large new set of empirically-motivated issues.2

One approach to the translation of the restrictions implied by the the-

ory into empirical application is to derive the demand equations literally by

specifying a direct utility function and solving the constrained maximiza-

tion problem. While this approach, called the primal approach, leads to

demand systems which satisfy the above axioms of consumer preference by

construction, the need to derive analytical solutions to the set of �rst order

conditions restricts its application to utility functions in the limited space of

neoclassical consumer demand functions, such as the origin-translated CES

form of the Klein-Rubin type utility function. Even though the implicit util-

ity model is found to be relatively �exible, it is not possible to obtain the

closed form solution to the constrained optimization problem and thus the

estimable demand equations. The estimation cannot be carried out without

appealing to unconventional methods.3

Another methodology is the di¤erentiable demand system approach which

has produced the models such as the Rotterdam model and the Constant

Slutsky Elasticity (CSE) model. This approach attempts to impose theoret-

ical restrictions on log-di¤erential approximations to the demand equations.

1A series of papers in Barnett and Serletis (2004) illustrates how the theory of monetary
aggregation is structured based on the micro-founded aggregation theory.

2The UK Family Expenditure Survey is often used in household demand studies. This
dissertation uses the Japanese household expenditure survey panel data which will be
examined in chapter 4.

3See chapter 2.1.1.1.
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The most popular approach is to exploit the theory of duality among

direct utility functions, indirect utility functions, the expenditure functions,

and the integrability conditions on these functions which make them equiv-

alent representations of the underlying preferences.4 Duality theory allows

systems of demand equations to be derived from these dual representations

by simple di¤erentiation according to Roy�s identity or Shephard�s lemma.

This approach was popularized by Diewert (1974, 1982), and led to the use

of �exible functional forms such as the generalized Leontief (GL) of Diewert

(1971), the translog (TL) of Christensen, Jorgenson and Lau (1975) and the

almost ideal demand system (AIDS) of Deaton and Muellbauer (1980).

Flexible functional forms are de�ned by Diewert (1971) as a class of func-

tions that have enough free parameters to provide a local second-order ap-

proximation to any twice continuously di¤erentiable function. The "up to"

second-order approximation property is su¢ cient to generate preferences or

technologies represented by any usual kind of elasticity relations at a point.

Based on this de�nition, the constant elasticity of substitution (CES) form

of utility function has a unit income elasticity and constant elasticities of

substitutions, and therefore it does not belong to this class. Diewert also

de�ned the "parsimonious" �exible functional form as having no more para-

metric freedom than needed to satisfy the above de�nition. The "parsi-

moniety" is desirable since the number of parameters to be estimated as the

number of consumption goods are added in the system increases quadrat-

ically, whereas the number of e¤ective observations increase only linearly.5

4See Hurwicz and Uzawa (1971) on the integrabiliy theory.
5The recent advancement of the personal computer lessens the problem to some extent.
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Given the large number of available models of �exible functional form, the

selection of which �exible functional forms to use for a particular empirical

application can be determined merely by the individual researcher�s taste or

by some criteria of goodness of �t after experimenting with several models.

But the pre-selection can be done by looking at the regularity properties of

the model.6

While such �exible functional forms lead to demand equations which

can attain arbitrary elasticities at a point in price-expenditure space, such

systems generally satisfy globally only homogeneity, symmetry, and adding-

up, and often violate monotonicity and, in particular, curvature restrictions,

usually referred to as regularity conditions, either within the sample or at

points close to the sample. Regularity conditions: monotonicity and con-

cavity/convexity are two of the axioms of consumer preferences, but are

often ignored in papers of characterization theorems of consumer demand

models (Gorman 1981, Lewbel 1987a).7 The regularity conditions are often

ignored because it is impossible to satisfy the local �exibility property of

6Other criteria may include Engel curve shapes, exact aggregability, price aggregability,
and rank conditions. Discussions on Engel curve and exact aggregability will be in chapter
2. See Lewbel (1986) for price aggregability.

7 In this dissertation, we refer to a full condition of theoretically legitimate consumer
demand functions as the integrability condition and refer to both monotonicity and cur-
vature conditions as the regularity condition. Lewbel (2001) distinguishes the regularity
conditions from the integrabiltiy conditions by stating that a set of demand functions is
de�ned to be "integrable" if it satis�es adding-up, homogeneity, and Slutsky symmetry
and that a set of demand functions is de�ned to be "rational" if it is integrable and also
satis�es negative semi-de�niteness of Slutsky substitution matrix. Some authors refer to
a full set of consumer demand axioms as a regularity condition. It is convenient to refer
to both conditions of monotonicity and curvature separately from a complete set of ax-
ioms of demand functions since conditions of homogeneity, symmetry, and adding-up in
empirical models are almost always satis�ed by construction. Therefore, the violation of
the integrability condition is exclusively blamed upon the violations of monotonicity and
curvature properties.
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�exible functional form and regularity conditions in the entire price-income

space simultaneously given the limited number of degrees of freedom.8 The

practical implementation of imposing the regularity conditions in the entire

price-income space is possible, provided that imposition of adding-up, ho-

mogeneity, and Slutsky symmetry are maintained by construction, but not

without sacri�cing the �exibility property. Therefore, the satisfaction of reg-

ularity conditions is partly dependent upon a speci�c empirical application.

One can hope that they will be attained by luck, at least at all data points,

and a "better" model will be the one which has a wider domain of regularity.

In this spirit, Caves and Christensen (1980) devised the procedure to

visualize the regular regions of parsimonious �exible functional forms for

the translog and the generalized Leontief (GL) models. Their method only

applies to "parsimonious" models (with a minimum number of parameters

neccesary to be locally �exible). Since their procedure requires a unique

set of parameters to be solved for, corresponding to a particular preference

setting, enough parameter restrictions are necessary to solve the system of

simultaneous equations. Their results show that particular models cover

particular regular regions in price-income space, depending on the prefer-

ence settings. Barnett, Lee and Wolfe (1985, 1987) and Barnett and Lee

(1985) extended their work to newly-developed �exible functional forms.

They found that the variants of min�ex Laurent �exible functional models

that can have extra free parameters while maintaining their parsimonious

property cover wider regular regions than any other available �exible func-

8 In this dissertation, "global" implies an entire space and "local" implies at one point,
but some authors consider that the �exible functional forms are globally regular if they
satisfy the regularity condition within a convex hull of the data points.
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tional forms.9

In chapter 3, we investigate the regularity property of a newer model: the

normalized quadratic model (NQ) developed by Diewert and Wales (1987).

This model is particularly interesting to subject to the regularity assess-

ment since there exist methods to impose a global curvature condition and

to impose a local curvature condition (Ryan and Wales, 1998b), whose char-

acteristics are not shared by other popular �exible functional models. Un-

fortunately, the global imposition of curvature destroys the �exibility, but

the severity is unknown and may be moderate. On the other hand, it is

known that the global imposition of curvature on translog reduces to Cobb-

Douglas, the consequence of which invalidates the justi�cation of using the

model. Part of our discussion is focused on the monotonicity condition

which is more often neglected than the curvature condition, as pointed out

by Barnett (2002). Our displays of the regular regions di¤erentiate the

regular regions from non-regular regions, and the non-regular regions are

further di¤erentiated into three di¤erent parts: violations of monotonicity,

violations of concavity, and violations of both of them simultaneously This

improved visualization method reveals the full regularity property of NQ

functional form. Discussions of the more detailed issues that motivated our

study are relegated to the introduction of chapter 3.

Chapter 4 serves as an illustration of how the theory of consumer demand

behavior is used to conduct welfare analysis of household units. Households

with di¤erent demographic characteristics are classi�ed by the number of

9Speci�cally, the regular region expands as the real income levels grow. This class
of �exible functional forms is de�ned as "e¤ectively regular" �exible functional forms by
Cooper and McLaren (1996).
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additional household members, in addition to the husband and wife, and

the procedure to incorporate the demographic characteristics into the indi-

vidual consumer demand systems to create the household demand systems

is introduced (Lewbel, 1985). The particular models used in this chapter

are the quadratic AIDS model (QUAIDS) of Banks, Blundell and Lewbel

(1997) and the translated QUAIDS of Lewbel (2003). These models are

characterized as being more �exible in terms of total expenditure varia-

tion. The expenditure levels of household data varies substantially, and it is

expected that the consumption behaviors of rich households (usually with

high expenditure levels) and poor households (usually with low expenditure

levels) can di¤er. Unfortunately, local �exible functional forms only can-

not capture the higher degree of total expenditure variation, and a more

appropriate model is necessary unless the analysis is only applied to a sub-

population of a group of households of similar income levels. The �exibility

property in terms of expenditure level is summarized as the shape of En-

gel curve of demand functions. The shape of Engel curve in most of the

parametric consumer demand models is described as a linear combination

of linearly independent functions of total expenditures. The space spanned

by the functions of income is de�ned as the "rank" of the demand functions

(Gorman 1981, Lewbel 1987a, 1989b, 1991). Its de�nition and implications

are presented in chapter 2 as background theory. Frankly, demand func-

tions with higher rank can account for more variation in total expenditure.

The QUAIDS is rank three, the translated QUAIDS is rank four, and the

NQ model of expenditure function is rank two. On the other hand, models

based on the Laurent series and two globally �exible functional forms: the

7



Fourier �exible functional form of Gallant (1981) and the Asymptotically

Ideal Model of Barnett and Jonas (1983) and Barnett and Yue (1988) have

complicated nonlinear Engel curves and cannot be de�ned in terms of the

rank of the demand functions.

Using these tools, chapter 4 estimates the cost of a child using Japanese

household expenditure data. The current Japanese public policies and on-

going discussions on the Japanese child-subsidy program and low fertility

rate, the issues motivating our study, are discussed in the early part of the

chapter. The concept of equivalence scales is introduced as a measure of the

welfare of di¤erent household types. We use the demographically modi�ed

consumer demand models by the expenditure-dependent equivalence scales

developed by Donaldson and Pendakur (2004) in order to capture the ef-

fect of additional family members on welfare di¤erences between rich and

poor households. The presence of a number of zero-expenditure observa-

tions on some goods called for the use of Tobit-type estimation procedure

to correct the bias in the parameter estimation. The results of parameter

estimation produced equivalence scales that are increasing (decreasing) in

total expenditure. It indicates that poor households require more compen-

sation than rich households to keep the same level of utility when more

household members are added. This welfare e¤ect on Japanese households

has straightforward implications for public policy design. The recommended

policy implementation based on the current discussion on the child-subsidy

programs is stated.

The next chapter describes most of the relevant theoretical results on

consumer demand literature to make the materials in chapters 3 and 4 more

8



comprehensible. We have tried to make it rather self-contained, but in case

we have missed certain details, we have tried to provide the references to

consult as much as possible. In writing much of the material in chapter 2,

we have referenced the recent excellent survey papers on consumer demand

systems by Barnett and Serletis (2008, 2009). Other excellent sources of

consumer demand system literature include: Deaton and Muellbauer (1980),

Blundell (1988), Lewbel (1997), Pollak and Wales (1992), Deaton (1986).

Deaton (1997) extensively illustrates practical procedures on how to conduct

household behavior analysis. The �nal chapter concludes with a summary

of our contributions and ideas for possible directions for future research.

9



Chapter 2

This chapter presents relevant theories of consumer demand models to fa-

cilitate understanding of the subsequent materials. The �rst part illustrates

the basic theory of consumer optimization behavior subject to the budget

constraint and the properties of the resulting demand functions and dis-

cusses the duality theory. The second part describes the various consumer

demand models and characterizes them in terms of the "rank" of consumer

demand systems. In fact, this chapter spells out all of the consumer demand

systems used in chapters 3 and 4.

We try to keep our notational convention consistent throughout this dis-

sertation. The scalar variables are written in lower-case and un-emphasized

letters. The vectors and matrices are written in boldface. Speci�cally, the

vectors are written in bold symbolic and the matrices are in block-looking

boldface. Any deviation from this convention should be obvious in its con-

text; when it comes to a con�ict with our notational convention, we follow

the traditional notation in the literature.

2.1 Neoclassical Demand Theory

Neoclassical demand theory can begin with assuming the existence of a

utility function of individual, U(q) where q is a n� 1 nonnegative vector of

consuming goods (sometimes called items or commodities). The individual�s

consumption decision reduces to the standard utility maximization problem:

maxU(q) subject to p0q = x, (1)

10



where p is a n � 1 nonnegative vector of prices corresponding to q, and x

is the total expenditure on these goods (sometimes called outlay or nominal

income).

This opimization problem is solved by the following steps:

1) constructing the Lagrangian

2) deriving the �rst order conditions with respect to choice variables q

3) solving for q in terms of exogneous variables p and x.

2.1.1 Marshallian Demands

The empirical analysis requires observable variables. The Marshallian or-

dinary functions describe demands as functions of prices and expenditures,

and these are all observable as data. It takes the form of

q = q(p; x), (2)

which is derived as the solution to the �rst-order conditions of the utility

maximization.

Demand systems are often expressed in budget share form, w, where

wi = piqi(p; x)=x is the expenditure share of good i, and w = (w1; :::; wn)
0.

As a textbook example, consider the Cobb-Douglas utility function

U(q) =

nY
k=1

q�kk = q�11 q�22 q�33 � � � q�nn , (3)

with �k > 0 and
Pn
k=1 �k = 1. Setting up the Lagrangian for this optimiza-

11



tion problem

L = U(q) + �

 
x�

nX
k=1

pkqk

!
(4)

=
nY
k=1

q�kk + �

 
x�

nX
k=1

pkqk

!
;

and by taking �rst derivatives for each qi, we get the following set of �rst

order conditions:

�i
qi

nQ
k=1

q�kk � �pi = 0, i = 1; :::; n; (5)

x�
nX
k=1

pkqk = 0,

which, after solving the system of simultaneous equations for n values of q,

yields the Marshallian demand functions

qi = �i
x

pi
, i = 1; :::; n, (6)

after using the fact that
Pn
k=1 �k = 1.

Marshallian demands satisfy the following properties: positivity, adding-

up (p0q(p; x) = x), homogeneity of degree zero in (p; x) (the absence of

money illusion), and the matrix of Slutsky substitution e¤ects

�
S = @q(p; x)=@p0 + (@q(p; x)=@x) q(p; x)0

�
(7)

is symmetric and negative semide�nite implying that the substitution e¤ect

of each good with respect to its own price is always nonpositive.

12



These properties of the demand functions are referred to as the "integra-

bility conditions" since the full�llment of all of these properties permits the

reconstruction of the preference ordering from the demand functions (see,

Hurwicz and Uzawa, 1971). If the properties are tested empirically and can-

not be rejected, then we can infer that there exists a utility function that

generates the demand functions.

The Lagrange multipier � in (4) is sometimes interpreted as marginal

utility of income. Di¤erentiating the Lagrangian (4) with respect to total

expenditure gives
@L
@x

= �:

Hence, the optimal Lagrange multiplier � tells how much utility increases if

an extra unit of income is available.

2.1.2 Indirect utility

The maximum level of utility at given prices and income is obtained by

substituting the Marshallian demand functions in equation (2) to the utility

function U(q), denoted by V (p; x) = U [q(p; x)] which is called the indirect

utility function. Hence, it traces the maximum level of utility achievable

given particular prices and income. Using the example of the Cobb-Douglas

preferences, the indirect utility function is obtained by substituting the de-

mand system in equation (6) into the direct utility function in equation (3)

13



to get

V (p; x) =
nY
k=1

q�kk

=
nY
k=1

 
�kPn
j=1 �j

x

pk

!�k

= x
nY
k=1

�
�k
pk

��k
, (8)

again using
Pn
k=1 �k = 1.

The direct utility function and the indirect utility function are equivalent

representations of the underlying preference pre-ordering. In fact, there is

a duality relationship between the direct utility function and the indirect

utility function, in the sense that maximization of U(q) with respect to q

given (p; x) �xed, and the minimization of V (p; x) with respect to (p; x),

given q �xed, leads to the same demand functions.

Being able to represent preferences by the indirect utility function has

its advantages. As a statistical convenience, the indirect utility function has

prices as exogenous in explaining consumer behavior.10 Moreover, using V ,

we can easily derive the demand system by straightforward di¤erentiation,

without having to solve a system of simultaneous equations, as would be the

case with the direct utility function�s �rst-order conditions. In particular,

Roy�s identity,

q(p; x) = �@V (p; x)=@p
@V (p; x)=@x

, (9)

allows us to derive the demand system, provided that there is an interior

10 Inverse demand systems assume that the prices are endogenous and depend on demand
goods as exogenous variables.
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solution and that p > 0 and x > 0. Alternatively, the logarithmic form of

Roy�s identity,

w(p; x) =
�@ lnV (p; x)=@ lnp
@ lnV (p; x)=@ lnx

, (10)

or Diewert�s (1974, p.126) modi�ed version of Roy�s identity,

wi(�) =
�irV (�)
� 0rV (�) (11)

or

wi(p; x) = �
@V (p; x) =@ ln pi
@V (p; x) =@ lnx

;

can be used to derive the budget share equations, where � = [�1; :::; �n]0 is a

vector of expenditure normalized prices, with ith element being �i = pi=x,

and rV (�) = @V (�)=@�. The indirect utility function is continuous in

(p; x) and has the following properties: homogeneity of degree zero in (p; x),

decreasing in p and increasing in x, strictly quasiconvex in p, and it satis�es

Roy�s identity in equation (9). The equation (11) tells that the budget shares

(or quantities demanded) will never become negative if V is merely non-

decreasing in � while they could be still positive, for example, if @V=@�i < 0

for all i = 1; :::; n. Therefore, positivity of the quantity variables does not

imply the monotonicity of indirect utility function.

In the terminology of Caves and Christensen (1980), indirect utility func-

tion is regular at a given (p; x), at which it satis�es quasiconcavity and

monotonicity, provided that other axioms of consumer demand functions

are satis�ed. Similarly, the "regular region" is the set of prices and income

at which an indirect utility function satis�es the regularity conditions.
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2.1.3 Hicksian demands

The utility maximization problem is dual to the problem of minimizing the

cost or expenditure necessary to attain a �xed level of utility u, given market

prices p:11

E(u;p) = min
q
p0q subject to U(q) � u. (12)

Given Cobb-Douglas preferences, the Lagrangian for this minimization

problem is

L =
nX
k=1

pkqk + �

 
u�

nY
k=1

q�kk

!
,

with the following set of �rst order conditions:

pi � �
�i
qi

nY
k=1

q�kk = 0, i = 1; :::; n;

u�
nY
k=1

q�kk = 0,

which, solving the system of n+1 simultaneous equations for q and �, yields

the expenditure minimizing demands

qci (u;p) = u
�i
pi

nY
k=1

�
pk
�k

��k
, i = 1; :::; n. (13)

The expenditure minimizing demands are also known as Hicksian or com-

pensated demands. They tell us how q is a¤ected by prices with u held

11We use the term "expenditure" function for consumer demand context and "cost"
function for producer input demand context and use notations E and C respectively to
maintain the consistent use of terminology.
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constant. Finally, substituting the Hicksian demands into the expenditure

function in (12) yields

E(u;p) =

nX
k=1

pkq
c
k

=

nX
j=1

pj

"
u
�j
pj

nY
k=1

�
pk
�k

��k#

= u

nY
k=1

�
pk
�k

��k
; (14)

using
Pn
k=1 �k = 1.

In general, assuming that the expenditure function is di¤erentiable with

respect to p, Shephard�s (1953) lemma,

qc(u;p) =
@E(u;p)

@p
, (15)

can be applied to obtain the expenditure minimizing demands qc(u;p). Al-

ternatively, the logarithmic form of Shephard�s lemma obtains the budget

share equations,

wc(u;p) =
@ lnE(u;p)

@ lnp
. (16)

For example, applying Shephard�s lemma (15) to the expenditure function

in equation (14), it is easy to see that Hicksian demands in equation (13)

are obtained.

Hicksian demands are positive valued and have the following properties:

homogeneity of degree zero in p, and the Slutsky matrix, [@qc(u;p)=@p0], is

symmetric and negative semide�nite.

17



Finally, the expenditure function, E(u;p) = p0qc(u;p), has the following

properties: continuous in (u;p), homogeneous of degree one in p, increasing

in p and u, concave in p, and satis�es Shephard�s lemma in equation (15).

2.1.4 Elasticity Relations

A demand system provides a complete characterization of consumer pref-

erences and can be used to estimate the income elasticities, the own-and

cross-price elasticities, as well as the elasticities of substitution. These elas-

ticities are particularly useful in judging the validity of the parameter es-

timates which are sometimes di¢ cult to interpret due to the complexity of

the demand system speci�cations, unlike regressions of linear speci�cations

where each coe¢ cient (parameter) often has a particular interpretation.

The elasticity measures can be calculated from the Marshallian demand

functions, q = q(p; x). In particular, the income elasticity of demand for

i = 1; ::; n, is calculated as

�ix(p; x) =
@qi(p; x)

@x

x

qi(p; x)
=
@ ln qi(p; x)

@ lnx
. (17)

If �ix(p; x) > 0, the ith good is classi�ed as normal at (p; x), and if �ix(p; x) <

0, it is classi�ed as inferior. Another dividing line in classifying goods ac-

cording to their income elasticities is the number one. If �ix(p; x) > 1; the

ith good is classi�ed as a necessity. For example, with Cobb-Douglas prefer-

ences represented by direct utility function of (3) and with constant elasticity

of substitution (CES) preferences also used in chapter 3, �ix(p; x) = 1 (for

all i) since Marshallian demands in this case are linear in income. One of
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the properties of income elasticity is derived by di¤erentiating the budget

constraint with respect to x :

nX
k=1

wk�kx = 1.

For i; j = 1; :::; n, the uncompensated (Cournot) price elasticities, �ij(p; x),

can be calculated as

�ij(p; x) =
@qi(p; x)

@pj

pj
qi(p; x)

=
@ ln qi(p; x)

@ ln pj
. (18)

If �ij(p; x) > 0, the goods are gross substitutes meaning that when qj be-

comes more expensive, the consumer increases consumption of good qi and

decreases consumption of good qj .12 If �ij(p; x) < 0, they are gross comple-

ments meaning that when qj becomes more expensive, the consumer reduces

the consumption of qj and also of qi. If �ij(p; x) = 0, they are independent.

Di¤erentiating the budget constraint with respect to pi yields one of the

identity properties relating the uncompensated price elasticities and budget

shares of all goods,

wi +
nX
k=1

wk�ki = 0:

With Cobb-Douglas preferences represented by the direct utility function of

(3), using the Marshallian demands in equation (6), the own-price elasticities

are �ii = ��i (x=piqi), and the cross-price elasticities are �ij = 0, since the

demands for the ith good depends only on the ith price.

12Two goods are said to be net substitutes if the notion is applied to compensated
(Hicksian) demands.
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The de�nitions given above are in gross terms, because they ignore the

income e¤ect, that is, the change in demand of good qi due to the change

in purchasing power resulting from the change in the price of good qj . The

Slutsky equation, however, decomposes the total e¤ect of a price change

on demand into a substitution e¤ect and an income e¤ect. In particular,

di¤erentiating the second identity in

qi(p; x) = qi (p; E(u;p)) = qci (u;p);

with respect to pj using the chain rule, noting that x = E, and rearranging,

we acquire the Slutsky equation,

@qi(p; x)

@pj
=
@qci (u;p)

@pj
� qj(p; x)

@qi(p; x)

@x
; (19)

for all (p; x), u = V (p; x), and i; j = 1; :::; n.13 The derivative @qi(p; x)=@pj

is the total e¤ect of a price change on demand, while the �rst term, @qci (u;p)=@pj

is the substitution e¤ect of a compensated price change on demand, and

�qj(p; x)@qi(p; x)=@x in the second term is the income e¤ect, resulting

from a change in price. Hicks (1936) suggested using the sign of the cross-

substitution e¤ect to classify goods as substitutes, whenever @qci (u;p)=@pj

is positive. In fact, according to Hicks (1936), @qci (u;p)=@pj > 0 indi-

cates substitutability, @qci (u;p)=@pj < 0 indicates complementarity, and

@qci (u;p)=@pj = 0 indicates independence.

One important property of the Slutsky equation is that the cross-substitution

e¤ects are symmetric expressed as @qci (u;p)=@pj = @qcj(u;p)=@pi. This sym-

13This derivation of Slutsky decomposition was due to Cook (1972).
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metry restriction may also be written in elasticity terms.14 It is easy to verify

that the Slutsky substitution matrix can be rewritten in terms of elasticities

as

wi�ij + wiwj�ix = wj�ji + wiwj�jx;

and therefore the symmetry restriction may be written as

�ix +
�ij
wj

= �jx +
�ji
wi
. (20)

The notion of elasticity of substitution was developed mainly in the pro-

ducer context to study the evolution of relative factor shares in a growing

economy. A logarithmic derivative of a quantity ratio with respect to a mar-

ginal rate of technical substitution is an intuitive measure of curvature of an

isoquant and provides information about the comparative statics of factor

shares. Out of two generalizations for more than two inputs suggested by

Allen and Hicks (1934), only one is currently used. That notion became

known as the Allen-Uzawa elasticity of substitution after Uzawa (1962) pro-

vided a more general formulation in the dual in terms of derivatives of the

cost function. He expressed the elasticity of substitution between goods i

and j as

�AUij =
EEij
EiEj

,

14Other useful results include:

@wi
@ ln pj

= wi�ij + wi�ij ;

@wi
@ lnx

= wi�ix � wi;

where �ij = 1 when i = j, or �ij = 0 otherwise.
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where Eij = @2E=@pi@pj , Ei = @E=@pi, and Ej = @E=@pj . It is symme-

try by construction. It also can be written in terms of Hicksian demand

elasticities as

�AUij =
ln qci (u;p)=@ ln pj

wj
= �AUji ;

where @ ln qci (u;p)=@ ln pj is the Hicksian elasticity of demand. Hence, the

Allen-Uzawa elasticity of substitution is the Hicksian demand elasticity di-

vided by the budget share. For this reason, reporting both the Hicksian

demand elasticity and the Allen-Uzawa elasticity of substitution is redun-

dant. Alternatively, since the Hicksian demand elasticity is related to the

Marshallian demand elasticity through the elasticity form of the Slutsky

equation in (19), the Allen-Uzawa elasticities of substitution can be written

in terms of Marshallian demand elasticities as

�AUij = �ix(p; x) +
�ij(p; x)

wj
= �jx(p; x) +

�ji(p; x)

wi
= �AUji .

If �AUij > 0, goods i and j are said to be Allen substitutes, in the sense that an

increase in the price of good j causes an increased consumption of good i. If,

however, �AUij < 0, then the goods are said to be Allen complements, in the

sense that an increase in the price of good j causes a decreased consumption

of good i.

As another textbook example, consider a constant elasticity of substitu-

tion (CES) utility function,

U(q) =
nX
k=1

(akq
r
k)
1=r , (21)
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where 0 < �k < 1, �1 < r < 1, but r 6= 0. The limiting case r =

1 corresponds to the Cobb-Douglas form and the limiting case r = �1

corresponds to the Leontief utility functional form,

U(q) = minf�1q1; �2q2; :::; �nqng.

Following the procedure described in section 2.1.1 for the case of the

Cobb-Douglas utility function, we obtain the Marshallian demand functions,

qi(p; x) =
��i p

��
iPn

k=1 �
�
kp
1��
k

x, i = 1; ::; n; (22)

where � = 1=(1 � r). The limiting case of r = �1 (Leontief) of the

Marshallian demands are

qi(p; x) =
�iPn

k=1 �kpk
x i = 1; :::; n. (23)

Using Roy�s identity, the indirect utility function is obtained as

V (p; x) = x
�Pn

k=1 �
�
kp
1��
k

�1=(��1)
,

and the Leontief case as

V (p; x) =
xPn

k=1 �kpk
. (24)
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As mentioned, �ix = 1, and using (18), we obtain

�ij =
�(1� �)��j p1��jPn

k=1 �
�
kp
1��
k

; i; j = 1; :::; n. (25)

Constructing wj = pjqj=x using the equation (22) and substituting the wj

and the equation (25) into (20), we get

�AUij = �ix(p; x) +
�ij(p; x)

wj

= 1 +
�(1� �)��j p1��j =

Pn
k=1 �

�
kp
1��
k

��i p
1��
i =

Pn
k=1 �

�
kp
1��
k

= 1� (1� �)

= �,

just as we expect.

Therefore, this functional form relaxes the unitary elasticity of substitu-

tion restrictions imposed by the Cobb-Douglas, but imposes the restriction

that the Allen-Uzawa elasticity of substitution (and the Hicksian elasticity

of substitution) between any pair of goods is always constant, 1=(1� r).

Thousands of Allen-Uzawa elasticities have been estimated to analyze

substitutability and complementarity relationships among inputs and among

consumption goods and to measure structural instability in a variety of con-

texts. There are, however, other elasticities that can be used to assess the

substitutability and complementarity relationships between goods. Blacko-

rby and Russell (1981, 1989) show that the Allen-Uzawa elasticity of sub-

stitution preserves none of the salient properties of the original Hicksian

notion and proposed an alternative elasticity, �rst formulated by Morishima
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(1967). The Morishima elasticity of substitution is shown to be the natural

generalization of the original notion of Hicks when there are more than two

inputs (goods). They suggest that the Morishima elasticity of substitution is

the natural generalization of the original Hicksian concept. The Morishima

elasticity of substitution is gradually making its way into the empirical stud-

ies on substitutability and complementarity. Davis and Gauger (1996) show

how three di¤erent elasticity measures reach di¤erent conclusions on substi-

tutability/complementarity relationships in monetary assets.

Morishima net elasticity of substitution can be used to measure the per-

centage change in relative demands (quantity ratios) with respect to a per-

centage change in one price. In particular, under the assumption that a

change in pj=pi is due solely to a change in pj , the Morishima elasticity of

substitution for qi=qj is given by

�Mij =
@ ln

�
qci (u;p)=q

c
j(u;p)

�
@ ln (pj=pi)

=
piEij
Ej

� piEii
Ei

=
@ ln qci (u;p)

@ ln pj
�
@ ln qcj(u;p)

@ ln pj

= wj
�
�AUij � �AUjj

�
,

and measures the net change in the compensated demand for good i, when

the price of good j changes. A change in pj , holding pi constant, has two

e¤ects on the quantity ratio qi=qj : one on qi captured by @ ln qci (u;p)=@ ln pj

and one on qj captured by @ ln qcj(u;p)=@ ln pj . Two goods will be Morishima

substitutes (complements), if an increase in the price of j causes qi=qj to
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decrease (increase). Comparing the Allen-Uzawa and Morishima elastici-

ties of substitution, we see that if two goods are Allen-Uzawa substitutes,

�AUij > 0, they must also be Morishima substitutes, �Mij > 0. However, two

goods may be Allen-Uzawa complements, �AUij < 0, but Morishima sub-

stitutes if
����AUjj ��� > ����AUij ���. It suggestes that the Allen-Uzawa elasticity of

substitution matrix is symmetric, �AUij = �AUji , but the Morishima elastic-

ity of substitution matrix is not. The Morishima elasticity of substitution

matrix is symmetric only when the aggregator function is a member of the

constant elasticity of substitution family.

The Morishima elasticity of substitution is a "two-good one-price" elas-

ticity of substitution, unlike the Allen-Uzawa elasticity of substitution, which

is a "one-good one-price" elasticity of substitution. They di¤er in that the

former measures elasticities of ratios of variables rather than those of vari-

ables themselves. Another "two-good one-price" elasticity of substitution

that can be used to assess the substitutability/complementarity relationship

between goods is the Mundlak elasticity of substitution (Mundlak, 1968),

�MU
ij =

@ ln (qi(p; x)=qj(p; x))

@ ln (pi=pj)

= �ij(p; x)� �jj(p; x)

= �Mij + wj
�
�jx(p; x) + �ix(p; x)

�
.

The Mundlak elasticity of substitution, like the Marshallian demand elas-

ticity, is a measure of gross substitution (with income held constant). Two

goods will be Mundlak substitutes (complements) if an increase in the price

of j causes qi=qj to decrease (increase).

26



Another kind of elasticity of substitution which is "two-good two-price"

elasticity of substitution is Shadow elasticity of substitution (McFadden,

1963). It is de�ned as the negative of the elasticity of the demand ratio

qi(p; x)=qj(p; x) with respect to a change in the price ratio pi=pj holding

utility level, all other prices, and total expenditure constant. It takes the

form,

�Sij = �@ ln (qi (p; x) =qj (p; x))
@ ln (pi=pj)

�����
u;E and pk;k 6=i;j, constant

=
�Eii=E2i + 2 (Eij=EiEj)� Ejj=E2j

1=piEi + 1=pjEj
; (26)

=
wj�

M
ij + wj�

M
ji

wi + wj
; (27)

for i; j = 1; :::; n: The Shadow elasticity of substitution measures the curva-

ture of a level surface of the expenditure function in a particular direction

� such that �iqi + �jqj = 0, and �k = 0 for k 6= i; j in two-dimensional

subspace of the price space spanned by the ith and jth basis vectors. It

follows that �Sij = 0 for all i; j = 1; :::; n; i 6= j directly from the concavity of

the expenditure function.

The further generalization of Shadow elasticity of substitution was for-

mulated by Frenger (1978, 1985a, 1985b), who de�ned the directional shadow

elasticity of substitution. This elasticity measures the curvature of the level

surface of the expenditure function at a point p for an arbitrary price change

� which leaves total expenditure and utility constant. One de�nition based
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on this idea is given by

�Dij (�) = �
Pn
i=1

Pn
j=1Eij�i�jPn

i=1 qi�i (�i=pi)
; � 2 T (p) ; � 6= 0.

For each p this elasticity is a function de�ned on the tangent plane T (p) =n
�j�0q = 0

o
to the level surface of the expenditure function at p. The

domain of �Dij (�) is all of T (p) except for the point � = 0, and �Dij (�) is

a homogeneous function of degree zero in �. It is shown that �Dij (�) = 0

for every � 2 T (p), and that it reduces to �Sij when �iqi + �jqj = 0 and

�k 6= 0; k 6= i; j:

2.1.5 Curvature

Often time, we would like to check if the functional form of demand models

has a correct curvature property. The condition can be translated to the

de�niteness of the Slutsky substitution matrix or the Allen-Uzawa elasticity

of substitution matrix. Since the de�nition of the de�niteness of matrix

is not applicable in practice, the popular method to check the de�niteness

is to apply the Cholesky factorization and check the signs of the resulting

Cholesky values. For example, the Hermitian (symmetric with real entries)

matrix is negative semi-de�nite if the all Cholesky values are nonpositive.

Lau (1978b, p. 427) shows that every positive semi-de�nite matrix A

has the following representation (Cholesky factorization):

A = LDL0; (28)
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where L is a unit lower triangular matrix with all diagonal entries unity and

D is a diagonal matrix with all the main diagonal entries nonnegative. The

diagonal entries in D are called Cholesky values.

Because rank of the Slutsky matrix and the Allen-Uzawa elasticity ma-

trix is n�1 due to the homogeneity condition, the condition is applied to the

(n� 1) by (n� 1) matrix resulting from removing jth row and jth column

from the original substitution matrix.15 Noting that the matrix D can be

always written as D1=2D1=2 because of the non-negative diagonal entries,

the equation (28) can be written as,

A = LDL0 = LD1=2D1=2L
0
=
�
LD1=2

��
LD1=2

�0
= BB0; (29)

where B is some lower triangular matrix (See also Theorem 9 in Diewert

and Wales, 1987).

Alternatively, the eigenvalues of Slutsky matrix can be used to check its

negative semi-de�niteness: the eigenvalues of negative semi-de�nite matrix

are all nonpositive. The representation in (29) is more convenient than (28)

if one wants to impose the semi-de�niteness on the matrix A. It simply

requires the speci�cation of lower triangular matrix B, which is easier than

specifying L and D in (28).

In the case of three goods, given the Allen-Uzawa substitution matrix

�AU , after deleting any one row and the corresponding column, say third,

15See Moschini�s (1997) Lemma that S is negative semi-de�nite matrix if and only if eS
whose jth row and jth column are removed from S is negative semi-de�nite matrix.
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Cholesky factorization yields

e�AU =
264 �11 �12

�12 �22

375 =
264 1 0

�12=�11 1

375
264 �11 0

0 �22 � �12=�11

375
264 1 �12=�11

0 1

375 ,
where e�AU is a matrix after the third row and column are removed from

�AU . Arranging the statement for the negative semi-de�nite matrix, the

required conditions are

�11 � 0 and �22 � �12=�11 � 0.

This condition was used to evaluate the negative semi-de�niteness in Caves

and Christen (1980) and Barnett and Seck (2007).

It is also possible to check the quasiconcavity of the function by the

inspection of bordered Hessian. Let f(x) be a real-valued function de�ned

on Rn+, and the bordered Hessian is formed as

H� =

266666664

f11 � � � f1n f1
...

. . .
...

...

fn1 � � � fnn fn

f1 � � � f1n 0

377777775
. (30)

In (30), the matrix of second-order partial derivatives is bordered by the

�rst-order partials and a zero to complete the square matrix. The principal
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minors of this matrix are the determinants

D1 =

�������
f11 f1

f1 0

������� , D2 =
����������
f11 f12 f1

f21 f22 f2

f1 f2 0

����������
, � � � , Dn = jH�j .

Arrow and Enthoven (1961) use the sign pattern of these principal minors

to establish the following useful results, which are used to evaluate the qua-

siconcavity of the Normalized Quadratic reciprocal indirect utility function

in chapter 3:

1 If f(x) is quasiconcave, these principal minors take an alternating sign

as follows: D1 � 0, D2 � 0, ....

2 If for all x� 0, these principal minors alternate in sign beginning with

strictly negative: D1 < 0, D2 > 0,..., then f is strictly quasiconcave

on the positive orthant.

Galland and Golub (1984), following Diewert, Avriel and Zang (1977),

argue that a necessary and su¢ cient condition for quasiconvexity of V (�) is

g(�) = min
Z

�
z0r2V (�) z : z0rV (�) = 0;z0z = 1

	
(31)

where r2V = @2V=@�@� 0 and rV = @V=@�, and g is nonnegative when

quasiconvexty (curvature) constraint is satis�ed and negative when it is vi-

olated. They devised the numerical procedure to impose quasiconvexity

during estimation on demand functions based on the idea in (31), and Ser-

letis and Shahmoradi (2008) succeessfully applied it to the estimation of
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demands for monetary assets with globally �exible demand systems.

When characterizing a concave function, for example, expenditure func-

tion, Lewbel (1985) used the theorem (Hardy, Littlewood and Polya, 1952)

that the function E(u;p) is concave in the vector p if at t = 0, @2E(u;p+

�t)=@t2 � 0 for all n-vectors �.

For example, given the expenditure function for Cobb-Douglas preference

given in equation (14),

E(u;p) = u
nY
j=1

�
pj
�j

��j
,

where
Pn
k=1 �k = 1, the straightforward di¤erentiation of equation (14) with

respect to t shows that

@2E(u;p+ �t)

@t2

�����
t=0

= u
nX
j=1

 
�2j � �j
p2j

!�
pj
�j

��j
j

�2j � 0.

This inequality requires that �2j � �j � 0 or 0 � �j � 1 for all j = 1; :::; n,

which is essentially the condition that is known to have the globally regular

Cobb-Douglas functional form.

2.2 Demand System Speci�cation

This part of the chapter illustrates the parametric approach of demand sys-

tems. Although the di¤erentiable approach of demand models is not con-

sidered since it is not used in this dissertation, one important model that

has been frequently used to test the consumer demand theory and to esti-

mate many kinds of elasticity values is the Rotterdam model, introduced by
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Theil (1965) and Barten (1966). The Rotterdam model is a member of the

class of the di¤erential approach of demand systems. Those who are inter-

ested in this class of model can refer to Barnett and Serletis (2008, 2009a,

2000b). Barnett and Seck (2007) recently compared the performance of the

Rotterdam model to AIDS model of Deaton and Muellbauer (1980).

2.2.1 Models with separable preferences

In this section, we discuss demand systems generated by separable pref-

erences. Types of separability assumptions such as strong separability or

weak separability restrict preferences by precluding certain types of spe-

ci�c interactions among goods. A utility function is weakly separable if

and only if the goods can be partitioned into subsets in such a way that

every marginal rate of substitution involving two goods from the same sub-

set depends only on the goods in that subset. A utility function is strongly

separable if and only if the goods can be partitioned into subsets in such

a way that every marginal rate of substitution involving goods from dif-

ferent subsets depends only on the goods in those two subsets. Additive

separability is a form of strong separability. As expected, a utility function

that is strongly separable with m subsets is also weakly separable with m

subsets. We illustrate the consumer demand systems based on separable

preferences here since those models have been developed under the premise

that the models are relatively �exible (thus not satisfying the local �ex-

ibility de�nition) and globally integrable, and therefore are convenient to

generate arti�cial data that is consistent with the optimizing consumer be-
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haviors.16 Since this dissertation is not concerned with any of the issues

on separability, we give only a brief note on the literature before illustrat-

ing the several models with separable preference. Leontief (1947a, 1947b)

investigated the underlying mathematical structure of separability in the

producer context and Sono (1945) in the consumer context. Debreu (1960)

provided an important characterization of additivity. The notions of weak

and strong separability were developed in Strotz (1957, 1959) and Gorman

(1959). Goldman and Uzawa (1964) developed a characterization of separa-

bility in terms of the partial derivatives of the demand functions. Gorman

(1968) provides a de�nitive discussion of separability concepts. One may

enjoy reading the subsequent exchange between Vind (1971a, 1971b) and

Gorman (1971a, 1971b). Blackorby, Primont and Russel (1978) provide a

thorough discussion and rigorous analysis of separability. There is a large

amount of literature on the empirical examination of separable preference

structures. Most of the nonparametric tests that have been developed are

based on Varian (1982, 1983, 1985). Works on tests for weak separability in

the producer model include Berndt and Christensen (1973, 1974), Berndt

and Wood (1975), Denny and Fuss (1977), Woodland (1987), Blackorby,

Schworm and Fisher (1986), Diewert and Wales (1995). In the consumer

context, works on tests of separability include Jorgenson and Lau (1975).

Large numbers of studies are interested in the separability of the monetary

aggregates from other aggregate variables.17 Monte Carlo studies that assess

16Blackorby, Primont and Russell (1977, 1978) showed that if we start with any �exible
functional form, then under the hypothesis of weak separability, the resulting function
would be necessarily in�exible.
17See Fisher and Fleissig (1997), Fleissig and Swo¤ord (1996), Fleissig and Whitney

(2003), Jones and Stracca (2006), Swo¤ord and Whitney (1987, 1988, 1994).
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the performance of the various available tests of separability include Barnett

and Choi (1983), Elger, Jones and Binner (2006). O (2008) investigates the

performances of several non-parametric tests including the newly developed

de Peretti�s (2005) test.

2.2.1.1 Explicit and Implicit Additivity utility models

We say that a preference ordering is directly additive if it can be represented

by a direct utility function of the form

U(q) = F

"
nX
k=1

uk(qk)

#
, (32)

where F (�) > 0. Additive separability is a member of strong separable

preference.

The direct utility function is implicitly additive if it may be de�ned as

the identity of the form
nX
k=1

F k(qk; u) � 1;

where F k�s are n functions of two variables. Under appropriate conditions

on the function F k, a unique solution u = U(q) to the above equation exists

for u as a function of q such that the resulting function U is monotoni-

cally increasing and strictly quasiconcave. But those conditions (although

su¢ cient for the existence of a regular neoclassical utility function) are not

themselves su¢ cient for the existence of a closed form explicit representation

of U .

The explicit and implicit indirect additive utility functions are similarly
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de�ned as

V (p; x) = G

"
nX
k=1

vk(pk=x)

#

and
nX
k=1

Gk((pk=x); v) � 1;

where G(�) > 0 and Gk�s are n functions of two variables.

Hanoch (1975) showed that implicit additive utility functions are less re-

stricted than their explicit counterparts. The restrictive nature of additivity

implies that the ratios of the Allen-Uzawa elasticities of substitution for im-

plicit additive direct utility function for ith and jth goods are functions of

qi; qj and (p=x) only, and are independent of any k(6= i; j)th variables. But,

for the explicit additive case, the ratio of a pair of Allen-Uzawa elasticities of

substitution with respect to some third variable is equal to the ratio of the

income elasticities. For implicit additive indirect utility function, the di¤er-

ence of any pair of Allen-Uzawa elasticities of substitution with respect to

some third variable depends only on their own variables. But in the explicit

case, the di¤erences are equal to income elasticity di¤erences.

We illustrate the implication of implicit utility models by using the spe-

ci�c implicit indirect utility function. One type of Hanoch�s model is con-

stant di¤erences of elasticities of substitution function denoted by the CDE

model. The CDE indirect utility function is implicitly de�ned as

nX
k=1

Gk((pk=x); v) =

nX
k=1

Bkv
ekbk(pk=x)

bk � 1: (33)

The parameter restrictions required for (33) to be a globally integrable
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model are: Bk, ek > 0, bk < 1, and either,

bk � 0 for all k; (34)

or

0 � bk � 1 for all k. (35)

Applying Roy�s identity, we obtain the Marshallian demands,

qi(p=x) =
Bibiv

eibi(pi=x)
bi�1Pn

k=1Bkbkv
ekbk(pk=x)bk

: (36)

It is easy to see that the appropriate restrictions on (36) reduce to the Mar-

shallian demands for CES form given in (23). The Allen-Uzawa elasticities

of substitution is written as

�AUij = �i((pi=x); v) + �j((pj=x); v)

�
Pn
k=1wk�k((pk=x); v)� �ij

�i((pi=x); v)

wi
; (37)

where

�i((pi=x); v) = �
�pi
x

� @2Gi

@(pi=x)2

@Gi

@(pi=x)

= 1� bi,

where �ij is the Kronecker delta and is equal to 1 when i = j and 0 otherwise.

The CDE model allows cases of complements since the Allen-Uzawa

elasticities of substitution in (37) can be negative with appropriate val-

ues for bi and bj . As the name CDE implies, the di¤erence between the

two elasticities of substitution with respect to some third good is constant,

�ik��jk = �bi+ bj , regardless of the price argument. Because of its ability

37



to be globally regular and to represent complementary relationship of goods,

the linear homogeneous CDE when ei = e for all i, is used to generate the

arti�cial demand data that is consistent with rational consumer behavior in

Jensen (1997) and Barnett and Usui (2007) as well as in chapter 3.

Despite the fact that greater theoretical �exibility per free parameter is

sometimes possible by specifying and restricting implicit utility functions

rather than explicit utility functions, the attempt to use the model in prac-

tice faces an immediate obstacle. After observing that the construction of

a unique and estimable structural model from an underlying implicit util-

ity function is troublesome since it does not have an explicit closed form

solution for the implied reduced form of the demand system, one notices

that the conventional maximum likelihood estimation with additive error

structure cannot be used. Barnett, Kopecky and Sato (1981) managed to

estimate the direct implicit addilog model (DIA). See Barnett (1981, chapter

9) for detailed discussion of their highly promising, but not yet successfully

implemented approach.

2.2.1.2 WS-Branch Utility Demand System

The Barnett�s (1977) nonhomothetic WS-branch utility tree is the general-

ization to blockwise strong separability of the S-branch utility tree (Brown

and Heien, 1972). In view of (32), the block utility function uk�s are of the

generalized CES form and the aggregator utility function F is CES. The

WS-branch model is the only blockwise weakly separable utility function

and can be shown to be a �exible form when there are no more than two

goods in each block and a total of no more than two blocks. It is homo-
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thetic in supernumerary quantities, but not homothetic in the elementary

quantities. Hence, a homothetic utility function can be converted into a

nonhomothetic utility function by translating the quantities into supernu-

merary quantities. In this model, the individual aggregator (or category)

functions within the tree are in the form of the generalized quadratic mean

of order �, as in the macro-utility function de�ned over those aggregates.

Therefore, this functional form can represent a wide range of preferences

when the number of goods in the system is no more than four. Barnett and

Choi (1989), Barnett and Seck (2007) and O (2008) used the WS-branch

tree to generate the arti�cial data for their Monte Carlo studies.

The generalized quadratic mean of order � is of the form

U(u1; ::; um) = A

 
mX
k=1

mX
l=1

Bklu
�
ku
�
l

!1=2�
, (38)

where � < 1=2, Bkl > 0 for all k and l,
P
k

P
lBkl = 1, Bkl = Blk for k 6= l,

and A > 0. These inequalities ensure the monotonicity and quasiconcavity

of the function. To introduce a weakly separable structure, each ur is itself

treated as an aggregator rather than as an elementary good so that (38)

becomes the macro-function de�ned over the aggregates. The aggregator

functions producing the aggregates are of the form ur = ur(qr � ar), where

qr is a sub-vector of q, and ar is a conformable "committed quantities"

vector. Assuming these aggregator functions also take the same form as

(38), the resulting nested two stage structure of means of order � produces

the WS-branch utility tree.
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2.2.2 Locally Flexible Functional Forms

A locally �exible functional form is a second-order approximation to an

arbitrary function. In the demand system literature there are two di¤er-

ent de�nitions of second-order approximations, one by Diewert (1971) and

another by Lau (1974). Barnett (1983b) has identi�ed the relationship of

each of those de�nitions to existing de�nitions in the mathematics of lo-

cal approximation orders and has shown that a second-order Taylor series

approximation is su¢ cient but not necessary for both Diewert�s and Lau�s

de�nitions of second-order approximation.

Consider a n-argument, twice continuously di¤erentiable aggregator func-

tion, V (�). According to Diewert (1971), V (�) is a �exible functional form

if it contains enough parameters so that it can approximate an arbitrary

twice continuously di¤erentiable function V � to the second order at an arbi-

trary point �� in the domain of de�nition of V and V �. Thus, V must have

enough free parameters to satisfy the following set of 1 + n+ n2 equations:

V (��) = V �(��), (39)

rV (��) = rV �(��), (40)

r2V (��) = r2V �(��), (41)

where rV (�) = @V (�)=@� and r2V (�) = @2V (�)=@�i�j denotes the

n � n symmetric matrix of second-order partial derivatives of V (�) eval-

uated at �. The symmetry property follows from the assumption that V (�)

is twice continuously di¤erentiable. Under this assumption, the function
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does not have to satisfy all n2 equations in (41) independently since the

symmetry of second derivatives (sometimes known as Young�s theorem)

implies that @2V (��)=@�i@�j = @2V (��)=@�j@�i and @2V (�)=@�i@�j =

@2V (�)=@�j@�i for all i and j. Thus the matrices of second order par-

tial derivatives r2V (��) = r2V �(��) are both symmetric matrices. Hence,

there are only n(n + 1)=2 independent equations to be satis�ed in the re-

strictions (41), so that a general locally �exible functional form must have

at least 1 + n+ n(n+ 1)=2 free parameters.

To illustrate Diewert�s �exibility concept, let us consider the basic translog

indirect utility function, introduced by Christensen, Jorgenson and Lau

(1975),

lnV (�) = �0 +
nX
k=1

�k ln �k +
1

2

nX
k=1

nX
l=1

�kl ln �k ln �l; (42)

where �k = pk=x, �0 is a scalar, �0 = [�1; :::; �n] is a vector of parameters,

and B = [�kl] is a n � n symmetric matrix of parameters for a total of

1+n+(n+1)=2 parameters. To show that (42) is a �exible functional form,

we need to show that �0, �0 and B in (42) satisfy conditions (39)-(41) at

an arbitrary point ��.18 Without loss of generality, we choose the arbitrary

point �� = 1. This choice is harmless at least in practice since the prices and

income data can always be normalized to unities at which the second-order

approximation is sought. Evaluated at �� = 1, the level, �rst, and second

18 It is convenient to remember the following mathematical fact: if �kl = �lk, then

@

@ log pi

�
1

2

nP
k=1

nP
l=1

�kl ln pk ln pl

�
=

nP
l=1

�il ln pl:
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derivatives of (42) are

lnV (�)
���
��=1

= �0;

r lnV (�)
���
��=1

= �;

r2 lnV (�)
���
��=1

= B.

Hence, the level and all of the �rst and second derivative terms of any twice-

di¤erentiable functions are freely chosen by the unrestricted parameters �0,

�, and B of the translog model.

Another locally �exible functional form is the generalized Leontief (GL),

introduced by Diewert (1973) in the context of cost and pro�t functions.

Diewert (1974) also introduced the GL reciprocal indirect utility function,

V (�) = �0 +

nX
k=1

�k�
1=2
k +

1

2

nX
k=1

nX
l=1

�kl�
1=2
k �

1=2
l , (43)

where B = [�kl] is an n�n symmetric matrix of parameters and �0 and �k�s

are other parameters for a total of (n2+3n+2)=2 parameters. The reciprocal

indirect utility function is simply an inverse of the indirect utility function

and possesses properties identical to the indirect utility function except that

it is quasiconcave instead of quasiconvex. This model can be viewed as the

generalization of the Leontief preferences since with �0 = �k = 0 and �kl = 0

for k 6= l, the model reduces to the indirect utility function corresponding

to the Leontief preferences in (24) after it is inverted.

Applying Diewert�s modi�ed version of Roy�s identity (11) to (43), for
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i = 1; :::; n, the following budget share equations result:

wi =

�i�
1=2
i +

nX
k=1

�ik�
1=2
k

nX
k=1

�k�
1=2
k +

nX
k=1

nX
l=1

�kl�
1=2
k �

1=2
l

. (44)

Since the budget share equations are homogeneous of degree zero in the

parameters, the model requires a parameter normalization. Barnett and

Lee (1985) use the following normalization:

2
nX
k=1

�k +
nX
k=1

nX
l=1

�kl = 1.

Caves and Christensen (1980) have shown that the GL form has satis-

factory local properties when preferences are nearly homothetic and sub-

stitution is low. The result is intuitive since the Leontief preferences as its

special case are characterized with zero elasticities of substitution. However,

when preferences are not homothetic or substitution is high, the generalized

Leontief has a small regular region.

Deaton and Muellbauer (1980) introduced another locally �exible de-

mand system, the Almost Ideal Demand System (AIDS). The demand func-

tions are written as

wi = �i +

nX
k=1


ik ln pk +
1

2
�i ln(x=P ), (45)
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for i = 1; :::; n; where the price de�ator of the logarithm of income is

lnP = �0 +
nX
k=1

�k ln pk +
1

2

nX
k=1

nX
l=1


kl ln pk ln pl.

For more details regarding the AIDS, see Deaton and Muellbauer (1980),

Barnett and Serletis (2008), and Barnett and Seck (2008).

2.2.3 Engel Curves and the Rank of Demand Systems

Applied demand analysis uses two types of data: time series and cross sec-

tional data. Time series data o¤er substantial variation in relative prices

and less variation in income, whereas cross-sectional data o¤er limited vari-

ation in relative prices and substantial variation in income levels. In time

series data, prices and income vary simultaneously, whereas, in household

budget data prices are almost constant. Household budget data give rise to

the Engel curves (income expansion paths), which are functions describing

how a consumer�s purchase of goods vary as the consumer�s income varies.

Engel curves are Marshallian demand functions, with prices of all goods

held constant. Like Marshallian demand functions, Engel curves may also

depend on demographic or other non-income consumer characteristics (such

as, for example, age and household composition), which we have chosen to

ignore in this section.

Engel curves can be used to calculate the income elasticity of a good and

hence whether a good is an inferior, normal, or luxury good, depending on

whether income elasticity is less than zero, between zero and one, or greater

than one, respectively. They are also used for equivalence scale calculations
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(welfare comparisons across households) and for determining properties of

demand systems, such as aggregability and rank. For many commodities,

standard empirical demand systems do not provide an accurate picture of

observed behavior across income groups.

The frequently used Engel curve speci�cation includes Working�s (1943)

linear budget share speci�cation,

wi = ai + bi lnx, (46)

which is known as the Working-Leser model, since Leser (1963) found that

this functional form �t better than some alternatives. However, Leser ob-

tained still better �ts with what would now be called a rank three model

(with "three" terms of function of prices: 1, lnx, and 1=x), speci�cally:

wi = ai + bi lnx+ cix
�1,

and in a similar, earlier comparative statistical analysis, Prais and Houthakker

(1955) found that

qi = ai + bi lnx

�ts best.

The Prais-Houthankker methodology is simply empirical, choosing func-

tional forms on the ground of �t, with an attempt to classify particular

forms as typically suitable for particular types of goods.19 Much of this

work is not very edifying by modern standards. The functional forms were

19See also Tornqvist (1941), Aitchison and Brown (1954-5), and the survey by Brown
and Deaton (1972) for similar attempt.
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rarely chosen with any theoretical model in mind. Indeed, all but one of

Prais and Houthakker�s Engel curves are incapable of satisfying the adding-

up requirement, while on the econometric side, satisfactory methods for

comparing di¤erent (non-nested) functional forms were not well-developed.

Even the apparently straightforward comparison between a double-log and

a linear speci�cation led to considerable di¢ culties; see the simple statis-

tic proposed by Sargan (1964) and the theoretically more satisfactory (but

extremely complicated) solution in Aneuryn-Evans and Deaton (1980).

However, these empirical results give a motivation to construct a plau-

sible functional form of demand functions that also satis�es the axioms of

consumer demand behavior. Using (16) in which the budget shares are the

logarithmic derivatives of the expenditure function, the Engel curve of the

form in equation (46) corresponds to the di¤erential equations of the form

@ lnE(u;p)

@ ln pi
= �i(p) + �i(p) lnE(u;p), (47)

which gives a solution of the general form

lnE(u;p) = u ln b(p) + (1� u) ln a(p), (48)

where �i(p) = (ai ln b�bi ln a)=(ln b�ln a) and �i(p) = bi=(ln b�ln a) for ai =

@ ln a=@ ln pi and bi = @ ln b=@ ln pi. The form in (48) gives the expenditure

function as a utility-weighted geometric mean of the linear homogeneous

functions a(p) and b(p) representing the expenditure functions of the very

poor (u = 0) and the very rich (u = 1), respectively. Such preferences have
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been called the PIGLOG (price independent generalized logarithmic) class

by Muellbauer (1975), (1976a), (1976b). A full system of demand equations

within the class of Working-Leser form can be generated by a suitable choice

of the functions a(p) and b(p). Functional forms of the log translog (See

Pollak and Wales, 1992) and the AIDS model in (45) are members of the

PIGLOG class with particular choices of the two homogeneous functions.

For example, if

ln a(p) = a0 +
nX
k=1

�k ln pk +
1

2

nX
k=1

nX
l=1


kl ln pk ln pl,

and

ln b(p) = ln a(p) + �0

nY
k=1

p
�k
k ,

we obtain the AIDS model of Deaton and Muellbauer (1980) in (45).

The log translog (log TL) indirect utility function is given by

V (p; x) = �
nX
k=1

�k ln (pk=x)�
1

2

nX
k=1

nX
l=1

�kl ln (pk=x) ln (pl=x) , (49)

for all k; l = 1; :::; n, where

�kl = �lk,
nX
k=1

nX
l=1

�kl = 0,
nX
k=1

�k = 1,
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The corresponding share equations are given by

wi(p; x) =

�i +

nX
k=1

�ik ln pk � lnx
nX
k=1

�ik

1 +

nX
k=1

nX
l=1

�kl ln pk ln pl

(50)

for i = 1; :::; n. Since the log TL share equations in (50) are linear in the

logarithm of expenditure, the log TL belongs to the PIGLOG class.

2.2.4 Exact Aggregation

We begin our discussion of the rank of demand systems with the de�nition

of exactly aggregable demand systems. A demand system is "exactly ag-

gregable" if demands can be summed across consumers to yield closed form

expressions for aggregate demand. Exactly aggregable demand systems are

demand systems that are linear in functions of income, as follows:

wi(p; x) =
RX
r=1

cir(p)'r(x); (51)

where cir(p)�s are the coe¢ cients on 'r(x), which is a scalar valued function

independent of p, and R is a positive integer. Gorman (1981), extending

earlier results by Muellbauer (1975, 1976a), proved in the context of exactly

aggregable demand systems that integrability forces the matrix of Engel

curve coe¢ cients to have rank three or less. The rank of a matrix is de�ned

as the maximum number of linearly independent columns. Other related

exact aggregation theorems can be found in Banks, Blundell and Lewbel

(1997).
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2.2.5 The Rank of Demand Systems

Lewbel (1991) extended Gorman�s rank idea to all demand systems, not

just exactly aggregable demand systems by de�ning the rank of a demand

system to be the dimension of the space spanned by its Engel curves, holding

demographic or other non-income consumer characteristics �xed. He showed

that demands that are not exactly aggregable can have rank higher than

three and still be consistent with utility maximization.

Formally, the rank of any given demand system is the smallest value of

R such that each wi can be written as

wi(p; x) =
RX
r=1

�ir(p)fr(p; x); (52)

for some R � n, where for each r = 1; :::; R, �ir is a function of prices and

fr is a scalar valued function of prices and income. That is, the rank of the

system is the number of linearly independent vectors of price functions. All

demand systems have rank R � n, where n is the number of goods. Clearly,

demands that are not exactly aggregable can have rank greater than three

(i.e., R > 3). Equation (52) is a generalization of the concept of rank. That

generalization, de�ned by Gorman (1981), only applies to exactly aggregable

demands. Notice that 'r in equation (51) is not a function of p.

Hence, any demand system has rank R, if there exist R goods such that

the Engel curve of any good equals a weighted average of the Engel curves

of those R goods. The rank of an integrable demand system determines

the number of price functions on which the indirect utility function and the

cost or expenditure function depend. Lewbel calls the form in (52) Gorman

49



Engel curves.

We can see the implication that higher order terms in theoretically plau-

sible polynomial demand systems must satisfy severe restrictions by consid-

ering the implications of the Slutsky symmetry conditions for third degree

polynomial demand systems:

wi = ci0 (p) + ci1(p) lnx+ ci2(p) ln
2 x+ ci3 (p) ln

3 x.

It is straightforward to calculate the Slutsky terms corresponding to this

demand system as
@wi
@ ln pj

+ wj
@wi
@ lnx

,

in share term for i; j = 1; :::; n.20 These Slutsky terms are polynomials

of degree �ve in lnx and, because symmetry holds as an identity in the

price-income space, symmetry must hold for the coe¢ cients of like powers

of lnx. To illustrate our point, it su¢ ces to calculate only that portion of

the Slutsky term of degree four in lnx. Note that the �fth polynomial term

in lnx is given by 3ci3cj3, so symmetry of this term imposes no restrictions

on the coe¢ cients of the demand system. The term of degree of four is given

by

2ci2cj3 + 3ci3cj2;

or equivalently,

(2ci2cj3 + 2ci3cj2) + ci3cj2.

20 @qi
@pj

+ qj
@qi
@x

= (x=pipj)
�

@wi
@ ln pj

+ wj
@wi
@ ln x

+ wiwj � �ijwi
�
where �ij = 1 when i = j

and 0 otherwise.

50



Because the term in brackets is symmetric, symmetry of this equation im-

plies
ci3
ci2

=
cj3
cj2
.

Hence, the ratio of the coe¢ cient of the cubic terms to the coe¢ cients of

the quadratic terms will be constant across equations since this condition is

applied to any pair of equations. Hausman, Newly and Powell (1995) test

whether or not a rank four speci�cation gives any additional information by

estimating,

wi = �0 + �1 lnx+ �2 ln
2 x+ �3 ln

3 x+ "i.

If the demand system is rank three, the ratio �2=�3 (Gorman statistics)

should be constant for any equations. They in fact �nd this ratio is almost

perfectly constant despite considerable variation in the estimates of �2�s and

the �3�s.

2.2.5.1 Demand Systems Proportional to Expenditure

Homothetic demand systems, with Engel curves being rays from the origin,

have rank one. Rank one demand systems, such as the Cobb-Douglas, CES,

and homothetic translog, exhibit expenditure proportionality (so that the

budget share of every good is independent of total expenditure). This con-

tradicts Engel�s law, according to which the budget share of food is smaller

for rich than for poor households.

Rank one demand systems can be written as

qi(p; x) = bi(p)x
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and are homothetic. For example, the demand system of the Cobb-Douglas

utility function (3) is given by (6), that of the CES utility function (21) is

qi(p; x) =
p
1=(
�1)
iPn

k=1 p

=(
�1)
k

x,

and that of the homothetic translog can be reduced from log TL in equation

(50) after imposing the additional restriction
Pn
k=1 �ik = 0 for all i.

Clearly, expenditure proportionality implies marginal budget shares that

are constant and in fact equal to the average budget shares. Because of

this, the assumption of expenditure proportionality has little relevance in

empirical demand analysis.

2.2.5.2 Demand Systems Linear in Expenditure

A demand system that is linear in expenditure is of the form

qi(p; x) = ci(p) + bi(p)x.

If ci(p) = 0 (for all i) then demands are homothetic. Gorman (1961) showed

that any demand system is consistent with utility maximization and linear

in expenditure must be of the form

qi(p; x) = fi(p)�
gi(p)

g(p)
f(p) +

gi(p)

g(p)
x

= fi(p) +
gi(p)

g(p)
[x� f(p)] , (53)
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where g(p) and f(p) are functions homogeneous of degree one, and gi(p)

and fi(p) denote the partial derivative of g(p) and f(p) with respect to the

ith price. Such demand systems are generated by an indirect utility function

of the "Gorman polar form,"

V (p; x) =
x� f(p)
g(p)

. (54)

To see this, apply Roy�s identity (9) to (54) to get (53).

An example of a demand system linear in expenditure is the "linear

expenditure system,"

qi(p; x) = bi �
ai
pi

nX
k=1

pkbk +
ai
pi
x,

generated by the (Stone-Geary) utility function,

U(q) =
nX
k=1

ak ln(qk � bk), ai > 0, qi � bi > 0,
nX
k=1

ak = 1

which is homothetic relative to the point b = [b1;:::; bn] as origin, or equiv-

alently by an indirect utility function of the Gorman polar form, (54) with

f(p) =
Pn
k=1 pkbk and g(p) =

Qn
k=1 p

ak
k , with

Pn
k=1 ak = 1, so that fi(p) =

bi and gi(p)=g(p) = ai=pi.

Demand systems linear in expenditure are rank two and have linear En-

gel curves, but not necessarily through the origin. Linearity in expenditure

implies marginal budget shares that are independent of the level of expen-

diture, suggesting that poor and rich households spend the same fraction of

an extra dollar on each good. This hypothesis, as well as the hypothesis of

53



expenditure proportionality, are too restrictive for the analysis of household

budget data.

2.2.5.3 Demand Systems Linear in the Logarithm of Expenditure

Muellbauer (1975) has studied "two-term" demand systems of the general

form

qi(p; x) = ci(p)x+ bi(p)f(x), (55)

for any function f(x). Homothetic demand is obtained, if f(x) = 0. He

shows that if f(x) 6= 0, then f(x) must be either equal to xk with k 6= 1

(the price independent generalized linearity (PIGL) class) or equal to x lnx

(the price independent generalized logarithmic (PIGLOG) class).

Hence, the PIGLOG class of demand systems is linear in the logarithm

of total expenditure and has the form

qi(p; x) = ci(p)x+ bi(p)x lnx,

with expenditure entering linearly and as a logarithmic function of x. Muell-

bauer (1975b) has shown that theoretically plausible demand systems of the

PIGLOG form must be written as

qi(p; x) =
gi(p)

g(p)
x� Gi(p)

G(p)
[lnx� ln g(p)]x, (56)

where G(p) is homogeneous of degree zero, G(p) = G(�p), and g(�p) is

homogeneous of degree one, g(�p) = �g(p). The indirect utility function
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associated with (56) is

V (p; x) = G(p) [lnx� ln g(p)] . (57)

To see this, apply Roy�s identity (9) to (57) to get (56).

Examples of PIGLOG demand systems are the log-translog (log TL), a

special case of the basic translog, and the AIDS model. It is to be noted,

however, that PIGLOG speci�cations have a rank two, and thus have limited

�exibility in modeling the curvature of Engel curves.

2.2.5.4 Demand Systems Quadratic in Expenditure

Lewbel (1987a) has studied "three-term" demand systems of the following

form:

qi(p; x) = ci(p) + bi(p)x+ ai(p)f(x). (58)

Equation (58) is a special case of Gorman�s (1981) equation (51), with r

ranging from 1 to 3 and '1(x) = 1, '2(x) = x, and '3(x) = f(x). Gor-

man�s (1981) main result, that the matrix of Engel curve coe¢ cients can-

not have rank higher than three, is true in this case, since that matrix,

[c(p) b(p) a(p)], only has three columns. Lewbel (1987a) showed that in

equation (58), f(x) must be either 0, xk, x lnx, or lnx, and that the only

f(x) that yields full rank-three demand systems is x2. Hence, one way to

relax the assumption that demand systems are linear in expenditure is to

specify demand systems that are quadratic in expenditure, as follows:

qi(p; x) = ci(p) + bi(p)x+ ai(p)x
2. (59)
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Ryan and Wales (1999), following Howe, Pollak and Wales (1979) and

van Daal and Merkies (1989), argue that for a quadratic demand system to

be theoretically plausible, the demand functions must be of the form

qi(p; x) =
1

g(p)2

�
ri(p)�

gi(p)

g(p)r(p)

�
[x� f(p)]2

+
gi(p)

g(p)
[x� f(p)] + fi(p)

+�

�
r(p)

g(p)

��
ri(p)�

gi(p)

g(p)
r(p)

�
, (60)

where there are no restrictions on the function � (�), functions f(p), g(p),

and r(p) are restricted to be homogeneous of degree one in prices, and fi(p),

gi(p), and ri(p) are the �rst partial derivatives of f(p), g(p), and r(p) with

respect to pi. The demand function (60) can be simpli�ed by assuming

� (�) = 0 and de�ning r(p) to be the product of g(p) and a function h(p),

that is homogeneous of degree zero in prices, so that the coe¢ cient of the

quadratic term in (60) becomes hi(p)=g(p). In that case (60) reduces to

qi(p; x) =
hi(p)

g(p)
[x� f(p)]2 + gi(p)

g(p)
[x� f(p)] + fi(p), (61)

and its corresponding indirect utility function is

V (p; x) = � g(p)

x� f(p) � h(p). (62)

To see this, apply Roy�s identity (9) to (62) to get (61).

Equation (62) is the general form of the indirect utility function that

can generate quadratic Engel curves (that is, rank-three demand systems).
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The di¤erence between the Gorman polar form indirect utility function (54)

and the more general indirect utility function (62) is that the latter adds

a term, h(p), that is homogeneous of degree zero in prices, to the Gorman

polar form indirect utility function (54).

The �rst functional form proposed along these lines is the quadratic

AIDS of Bank, Blundell and Lewbel (1997) (known as QUAIDS), which we

will use for the empirical study in chapter 4. The QUAIDS is an extension of

simple AIDS, having expenditure shares linear in log income and in another

smooth function of income. See Banks, Blundell and Lewbel (1997) for more

details.

Following Banks, Blundell and Lewbel (1997), Ryan and Wales (1999)

modi�ed the translog, GL, and NQ demand systems and introduced three

new demand systems called the translog-quadratic expenditure system, the

GL-quadratic expenditure system, and the NQ-quadratic expenditure sys-

tem.

To demonstrate, we consider the NQ expenditure function (NQEF), in-

troduced by Diewert and Wales (1988b, 1993):

E(u;p) = a0p+

�
b0p+

1

2

p0Bp

�0p

�
u, (63)

where the parameters of the model consist of a0 = [a1; :::; an], b0 = [b1; :::; bn],

and the elements of the n�n symmetric B = [Bkl] matrix. The nonnegative

vector of predetermined parameters �0 = [�1; :::; �n] is assumed to satisfy

�0p� = 1, �i � 0 for i = 1; :::; n, (64)
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where p�i is the ith element of the reference vector. Moreover, the following

restrictions are also imposed:

nX
k=1

akp
�
k = 0 (65)

nX
k=1

Bikp
�
k = 0, i = 1; :::; n. (66)

Hence, there are n(n + 5)=2 parameters in (63), but the imposition of the

above restrictions reduces the number of parameters to (n2 + 3n � 2)=2.

The NQ expenditure function de�ned by (63)-(66) is a Gorman polar form,

and the preferences that are dual to it are quasihomothetic. The quasi-

homotheticity of the underlying preferences entails linear Engel curves which

are not necessarily through the origin, but have restrictive implication in

preferences. The income elasticity of goods with inelastic demand is forced

to rise as the income level increases.

The indirect utility function corresponding to (63)-(65) is

V (p; x) =
x� a0p

b0p+ (1=2)p0Bp=a0p
; (67)

and the consumer�s system of Marshallian demand functions is obtained by

applying the modi�ed Roy�s identity to (67):

wi =
piai
x
+
1

x
� (x�

P
k akpk)

�
 
bipi +

pi
P
k BikpkP
k �kpk

� pi�i
2

P
k

P
lBklpkpl

(
P
k �kpk)

2

!

�
�P

k bkpk +
1

2

P
k

P
lBklpkplP
k �kpk

�
(68)

58



for i = 1; :::; n.

Since the share equations in (68) are homogeneous of degree zero in the

parameters, Diewert andWales (1988b) impose the normalization
Pn
k=1 bk =

1. Also, regarding the curvature properties of the NQ expenditure function,

it is locally �exible in the class of expenditure function local money-metric

scaling, and it retains this �exibility when concavity needs to be imposed.

See Diewert and Wales (1988b, 1993) for more details.

On the other hand, following Diewert and Wales (1988b), the NQ recip-

rocal indirect utility function (NQRIUF) is de�ned as

V (�) = b0 + b
0� +

1

2

� 0B�

�0�
+ a0 ln�, (69)

where b0, b = [b1; :::; bn]
0, a = [a1; :::; an]

0, and the elements of the n � n

symmetricB = [Bkl]matrix are the unknown parameters to be estimated. It

is important to note that the quadratic term in equation (69) is normalized

by dividing through by a linear function, �0�, and that the nonnegative

vector of parameters � = [�1; :::; �n]
0 is assumed to be predetermined and

can be seen as weights on �. Weighting can be based upon the index number

theory. In principal, � is estimable, but normally viewed as best selected

in advance. Diewert and Wales (1988b) pick a reference (or base period)

vector of expenditure normalized prices, �� = 1, and assume � satis�es

�0�� = 1

where each of the elements of � is nonnegative. Moreover, they assume that
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B satis�es the following n restrictions:

nX
k=1

Bik�
�
k = 0, i = 1; :::; n. (70)

Using the modi�ed version of Roy�s identity in equation (11), the NQ de-

mand system for i = 1; :::; n is derived as

wi =
�ibi + (�

0�)�1 (
Pn
k=1Bik�k)� 1

2�i(�
0�)�2� 0B�+ai

b0� + 1
2(�

0�)�1� 0B�+
Pn
k=1 ak

, (71)

or

wi =
pibi + pi

P
k Bikpk=

P
k �kpk � (pi�i=2)

P
k

P
lBklpkpl= (

P
k �kpk)

2 + aixP
k bkpk + 1=2

P
k

P
lBklpkpl=

P
k �kpk +

P
k ak

(72)

Finally, as the share equations are homogeneous of degree zero in the

parameters, Diewert and Wales (1988b) suggest that we impose the normal-

ization, Pn
k=1 bk = 1: (73)

Hence, there are n(n + 5)=2 parameters in equation (71) or (72), but the

imposition of the (n � 1) restrictions in (70) and (73) reduces the number

of parameters to be estimated to (n2 + 3n� 2)=2.

In developing the NQ-QES, Ryan and Wales (1999) choose the f(p),
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g(p), and h(p) functions in (62) as follows:

f(p) = d0p (74)

g(p) = b0p+
1

2

�
p0Bp

�0p

�
(75)

h(p) = a0 lnp, �0a = 0. (76)

Substituting (74)-(76) in (62) and applying Roy�s identity (9) to (62) yields

the demand system for i = 1; :::; n:

qi(p; x) =
ai

pig(p)
(x�

Pn
k=1 pkdk)

2

+

�
1

g(p)

� 
bi +

Pn
k=1BikpkPn

k=1 �kpk
� 1
2

�i
Pn
k=1

Pn
l=1Bklpkpl

(
Pn
l=1 �kpk)

2

!
� (x�

Pn
k=1 pkdk) + di,

where ak, bk, dk, and Bkl are unknown parameters, and the �k > 0 are

predetermined parameters, k; l = 1; :::; n. TheB = [Bkl]matrix also satis�es

the following two restrictions, as in the common NQ model:

Bkl = Blk for all k; l,

Bp� = 0 for some p� > 0.

The NQEF is nested in this model, and is obtained when all of ai�s

are zero, which implies that h (p) = �0 lnp = 0 for all prices. This gives

demands that are linear in total expenditure, and this proposition may be

tested empirically in the usual procedure. A slightly restricted version of

the NQRIUF is also nested in this model by noting that (71) and (72) can
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be rewritten using (74) to (76) as

qi (p; x) =
hi
g
x2 +

gi
g
x.

Equation (61) becomes this form when f(p) = 0.

The development of the GL-QES and TL-QES follows a similar pattern.

See Ryan and Wales (1999) for more details.

The QUAIDS, translog-quadratic expenditure system, GL-quadratic ex-

penditure system, and NQ-quadratic expenditure system are locally �exible

in the Diewert sense and also are rank-three demand systems, thereby allow-

ing more �exibility in modeling income distribution than the AIDS, translog,

GL, and NQ models.

2.2.5.5 Demand Systems Quadratic in the Logarithm of Expendi-

ture

The indirect utility function of the models that are quadratic in the loga-

rithm of expenditure is

lnV (p; x) =

"�
lnx� ln a(p)

b(p)

��1
+ c(p)

#�1
(77)

where a; b are homogeneous of degree zero in p, and c is homogeneous of

degree one. This class of demand systems is predominantly known by the

quadratic AIDS of Bank, Blundell and Lewbel (1997) with speci�cations of

a, b, and c:

c (p) =

nX
k=1

ck ln pk where
nX
k=1

ck = 0
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ln a(p) = �0 +
nX
k=1

�k ln pk +
1

2

nX
k=1

nX
l=1


kl ln pk ln pl

ln b(p) =
nX
k=1

�k ln pk.

By Roy�s identity, the budget shares of the QUAIDS for i = 1; :::; n are given

by

wi = �i +
nX
k=1


ik ln pk + �i ln [x=a(p)] +
ci
b(p)

(ln [x=a(p)])2 . (78)

The QUAIDS model has the income �exibility with rank three. The AIDS

model is nested within it as a special case when c(p) = 0.

2.2.5.6 Demand System Linear in Trigonometric Functions of Ex-

penditure

Gorman (1981) �rst conjectured that utility-derived trigonometric demand

systems would exist, without giving any examples of them. Lewbel (1988)

proved the existence of the trigonometric class of demand systems, and char-

acterized its general form alone with the underlying indirect utility function.

This class of models has the maximum rank of an exactly aggregable demand

system and o¤ers the attractive features mentioned in the previous section.

It is important to note that the Fourier �exible demand systems do not

belong to the trigonometric class in terms of forms of Engel curves.

The trigonometric demand systems are derived from the indirect utility
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function of the form:

V (p; x) = b(p) +
c(p) cos f� log [a(p)=x]g
1 + sin f� log [a(p)=x]g � 6= 0,

where a(p) is homogeneous of degree one, b(p) and c(p) are homogeneous

of degree zero in p, and � is a non-zero parameter whose size should be

reasonable enough to prevent many oscillations over the range of the data.

For i = 1; :::; n the straightforward application of Roy�s identity yields

qi =

�
ai
a
� bi
�c

�
x+

�
bi
�c
cos(� ln a)� ci

�c
sin (� ln a)

�
x sin (� lnx)

�
�
bi
�c
sin(� ln a) +

ci
�c
cos (� ln a)

�
x cos (� lnx) ;

and in share form,

wi =
piai
a
� pi
�c
fbi + bi sin (� ln [a=x]) + ci cos (� ln [a=x])g . (79)

To derive the estimable trigonometric demand functions, Matsuda (2006)

provides the speci�cation of these price functions such that:

a(p) =

nY
k=1

p�kk ; (80)

b(p) =

nX
k=1

�k ln pk; (81)

c(p) =
nX
k=1

�k +
nX
k=1

nX
l=1


kl ln pk ln pl, (82)

with
Pn
k=1 �k = 1,

Pn
k=1 �k = 1,

Pn
k=1 
kl = 0 for k = 1; :::; n to ful�l
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adding-up and homogeneity. Slutsky symmetry is guaranteed by 
kl = 
lk

for k; l = 1; :::; n.

The share equations in (79) is rewritten using (80) to (82) as21

wi = �i �
�i + fi(p) sin (� log x) + gi(p) cos(� lnx)

�c(p)
; (83)

where fi(p) and gi(p) are functions speci�ed as

fi(p) = 2

 
nX
l=1


il ln pk

!
sin [� ln a(p)]� �i cos [� ln a(p)] , i = 1; :::n;

gi(p) = 2

 
nX
l=1


il ln pk

!
cos [� ln a(p)] + �i sin [� ln a(p)] , i = 1; :::n.

Matsuda (2006) called the new model represented by (83) the TDS,

which stands for the trigonometric demand system. Linearity in trigonomet-

ric functions of share equations (83) allows for the aggregation of consumers

without involving linear Engel curves. Rank of the TDS is three, whereas

that of the AIDS is two. Although a �exible rank-three demand system, the

TDS has n� 1 fewer free parameters than known rank-three models such as

the QUAIDS.

2.2.5.7 Fractional demand systems

Lewbel (1987b) has studied demand systems of the "fractional" form

21The following results from the angel di¤erence fourmulas were used to derive the
equation (83):

sin f� log [a(p)=x]g = sin f� log [a(p)=x]g sin f� log [a(p)=x]g�sin f� log [a(p)=x]g sin f� log [a(p)=x]g ;

cos f� log [a(p)=x]g = cos f� log [a(p)=x]g cos f� log [a(p)=x]g+cos f� log [a(p)=x]g cos f� log [a(p)=x]g :
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qi(p; x) =
ci(p)f(x) + bi(p)g(x)

c(p)F (x) + b(p)G(x)
, (84)

where f(x), g(x), F (x), and G(x) are di¤erentiable functions of expenditure

and ci(p), bi(p), c(p), and b(p) are di¤erentiable functions of prices only.

He shows that the budget shares of fractional demand systems can always

be written as

wi(p; x) =
ci(p) + bi(p)f(x)

1 + b(p)f(x)
, (85)

where f(x) must be either 0, lnx, yk, or tan(k lnx) for k 6= 0. As can be

seen, fractional demands are proportional to two-term demands. Moreover,

if f(x) = 0 in equation (85), homothetic demands obtain and if b(x) = 0,

Gorman polar form demands obtain, either PIGL demands or PIGLOG

demands, corresponding to f(x) = xk or f(x) = lnx, respectively. For

f(x) = x2; equation (85) reduces to what Lewbel (1987b) refers to as "EXP"

demands; the min�ex Laurent demand system is a member of the EXP class

of demand systems.

As Lewbel (1987b) argues, fractional demand systems provide a parsi-

monious way of increasing the range of income response patterns. In fact, an

advantage of fractional demands (84) over three-term demands (59) is that

they require the estimation of only one more function of prices, b(p), than

two-term demands (55), whereas three-term demands require the estimation

of one more function of income, f(x), and n � 1 functions of prices, ai(p),

than two-term demands.

For analysis involving substantial variation in income levels across in-

dividuals, increased �exibility in global Engel curve shapes is required and
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fractional demand systems in the form of equation (85) are likely to be supe-

rior to two-term demand systems (such as homothetic, PIGL, and PIGLOG

systems) and three-term demand systems (such as the quadratic AIDS, GL-

QES, TL-QES, and NQ-QES). Moreover, as already noted, fractional de-

mand systems, like the min�ex Laurent, have larger regular regions than

two- and three-term demand systems.

2.2.5.8 De�ated Income Demand Systems

Let a(p) be some homogeneous of degree one function of prices, and de�ne

x=a (p) to be "de�ated" income. A natural generalization of Gorman Engel

curve systems in (52) is

wi =
X
s2S

cis(p)F s [x=a(p)] ; i = 1; :::n; (86)

for some function cis(p) of prices. Equation (86) describes all demands

that are linear in de�ated, instead of nominal, income. Lewbel (1989, 1990)

argues that the de�ated income demand systems have two advantages over

Gorman Engel curve systems in (52). First, they can achieve higher rank,

and second, they permit at least one of the income functions to be completely

unrestricted (except for smoothness).

Lewbel (1989) proposed this class of models to relax the constraints

on Engel curves that are imposed by homogeneity in exactly aggregable

models, and he showed that any Gorman Engel curve systems in (52) have

representation as de�ated income demand system. He gives a proof that the

maximum possible rank of a rational de�ated income demand system is not
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three, but four.

Lewbel (2003) considered a nearly log polynomial rational rank four

demand system,

V (p; x) =

"�
ln [x� d(p)]� a(p)

b(p)

��1
+ c(p)

#�1
; (87)

where a, b, c and d are functions of prices. Homogeneity requires that c and

d be homogenous of degree zero and that b and a be homogeneous of degree

one in p. Application of Roy�s identity to this indirect utility function yields

demands of the form

w =
A4(p)

x
+

�
1� d(p)

x

� 3X
r=1

Ar(p) (ln [x� d(p)])r�1 ; (88)

where

A1(p) =
@a(p)

@ lnp
� @b(p)

@ lnp

a(p)

b(p)
+
@c(p)

@ lnp

a(p)2

b(p)
;

A2(p) =
@b(p)

@ lnp

1

b(p)
� 2@c(p)

@ lnp

a(p)

b(p)
;

A3(p) =
@c(p)

@ lnp

1

b(p)
;

A4(p) =
@d(p)

@ lnp
.

This is a de�ated income demand system and its rank is four, provided that

no one of the functions a, b, c, or d can be written as a function of the other

three.

If d(p) = 0 for all p, then A4(p) also equals zero, and equation (88)

reduces to the quadratic logarithmic model, which is equation (78). More-
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over, applying results in Banks, Blundell, and Lewbel (1997), all rank three

quadratic logarithmic demands have utility functions given by equation (77)

with d(p) = 0, so (87) nests all possible rank three quadratic logarithmic

demand systems.

To provide an explicit example of a utility derived rank four system,

consider the following speci�cation of a, b, c, and d:

ln d(p) = �0 lnp

a(p) = �0 +�
0 lnp+ lnp0� lnp

ln b(p) = �0 lnp

c(p) = �0 lnp

where �01 = 1, �01 = 0, �1 = 0, �01 = 0, and �01 = 0. This model has

budget shares given by equation (88) with

A1(p) = �+ � lnp�a(p)

b(p)
� +

a(p)2

b(p)
�;

A2(p) =
1

b(p)
� � 2a(p)

b(p)
�;

A3(p) =
1

b(p)
�;

A4(p) = �,
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or

w =
d(p)

x
� +

�
x� d(p)

x

�
�
 
�+ � lnp+

ln (x� d(p))� a(p)
b(p)

� +
(ln (x� d(p))� a(p))2

b(p)
�

!
:

In empirical applications with heterogeneous households, one might let the

� or � parameters vary by demographic characteristics of the household.

The rank three QUAIDS model equals the special case of this model in

which a(p) = 0, and the rank two AIDS equals the special case of a(p) = 0

and d(p) = 0.
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Chapter 3

The Theoretical Regularity Properties of the Normalized Quadratic

Consumer Demand Model

3.1 Introduction

Uzawa (1962) proved that the constant elasticity of substitution (CES)

model cannot attain arbitrary elasticities with more than two goods. As

a result, the development of locally �exible functional forms evolved as a

new approach to modeling speci�cations of tastes and technology. Flexible

functional forms were de�ned by Diewert (1971) to be the class of functions

that have enough free parameters to provide a local second-order approxima-

tion to any twice continuously di¤erentiable function. If a �exible functional

form has no more parametric freedom than needed to satisfy that de�nition,

then the �exible functional form is called "parsimonious." Barnett (1983)

proved that a functional form satis�es Diewert�s de�nition if and only if it

can attain any arbitrary elasticities at any one predetermined point in price-

income space. Most of the available �exible functional forms are based on

quadratic forms derived from second-order series expansions. The translog

model of Christensen, Jorgenson and Lau (1971) and the AIDS model of

Deaton and Muellbauer (1980) use Taylor series expansions in logarithms;

the generalized Leontief model of Diewert (1971) uses a Taylor series ex-

pansion in square roots; and the Laurent models of Barnett (1983) use the

Laurent series expansion.

As these �exible functional form models became available, applied re-
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searchers tended to overlook the maintained regularity conditions required

by the theory. Regularity requires satisfaction of both curvature and monotonic-

ity conditions. Simultaneous imposition of both of these conditions on a

parsimonious �exible functional form destroys the model�s local �exibility

property. For instance, Lau (1978) showed that imposition of global regu-

larity reduces the translog model to Cobb-Douglas, which is not a �exible

functional form anymore and has no estimable elasticities. When regularity

is not imposed, most of the estimated �exible functional forms in empirical

applications exhibit frequent violations of regularity conditions at many data

points.22 Since that fact became evident, information about violations of

regularity conditions in empirical applications have become hard to �nd.23

An exception to the common neglect of regularity conditions was Diewert

and Wales�(1987, 1988b) work on the Normalized Quadratic model. That

model permits imposition of curvature globally, while remaining �exible.

Since violations of curvature have more often been reported than violations

of monotonicity, the imposition of curvature alone seems to merit consider-

ation. In subsequent papers of Diewert and Wales (1993, 1995) and others,

imposition of curvature globally, without imposition of monotonicity, has be-

come a common practice with the Normalized Quadratic functional form.24

But once curvature is imposed without the imposition of monotonicity,

the earlier observation may no longer apply. When global curvature is im-

22See, e.g., Manser (1974) and Humphrey and Moroney (1975).
23A noteworthy exception is Moroney and Trapani (1981), who con�rmed the earlier

�ndings of frequent violations of maintained regularity conditions.
24Quah (2000) studies the monotonicity of individual and market demand with the aid

of the indirect utility function and identi�es su¢ cient conditions on an agent�s indirect
utility function to guarantee that the demand function is monotonic.
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posed, the loss of model-�t may induce spurious improvements in �t through

violations of monotonicity. This problem could be especially common with

quadratic models, which can have bliss points. It is possible that violations

of monotonicity could be induced by imposition of curvature.

With this model, it has become common not to check for monotonic-

ity after imposing global curvature. Diewert and Wales (1995) and Ryan

and Wales (1998) have expected that monotonicity will be satis�ed as a re-

sult of the non-negativity of the dependent variables. But non-negativity of

observed dependent variables does not assure non-negativity of �tted depen-

dent variables. In Kohli (1993) and Diewert and Fox (1999), the curvature

condition is treated as the sole regularity condition. But without satis-

faction of both curvature and monotonicity, the second-order condition for

optimizing behavior fails, duality theory fails, and inferences resulting from

derived estimating equations become invalid.25 Hence the common practice

of equating regularity solely with curvature is not justi�ed.

Barnett (2002) and Barnett and Pasupathy (2003) con�rmed the poten-

tial problem and found further troublesome consequences when they checked

regularity violations in their own previously published estimation of tech-

nology in the �nancial sector in Barnett, Kirova and Pasupathy (1995). Ini-

tially, they imposed curvature globally, but monotonicity only at a central

data point with the Normalized Quadratic production model. In addition

to violations of monotonicity, they encountered induced curvature reversals

of composite functions, along with nonunique isoquants and complex valued

25The damage done to the inference has been pointed out by Basmann, Molina and
Slottje (1983); Basmann, Diamond, Frentrup and White (1985); Basmann, Fawson and
Shumway (1990); and Basmann, Hayes and Slottje (1994).

73



solutions. Even if curvature is imposed on both inner (category) production

functions and weakly separable outer functions, the composite technology

still can violate curvature if monotonicity is violated. The evidence sug-

gested the need for a thorough investigation of the global regularity property

of the Normalized Quadratic model. We undertake that task in this chapter.

A well-established approach to exploring regularity properties of a neo-

classical function is to set the parameters of the model to produce vari-

ous plausible elasticities and then plot the regular regions within which the

model satis�es monotonicity and curvature. We do so by setting the para-

meters at various levels to produce elasticities that span the plausible range

and then plot the regular region of the model when curvature is imposed

while monotonicity is not imposed. The intent is to explore the common

practice with the Normalized Quadratic model. Such experiments have

been conducted with the translog and the generalized Leontief by Caves

and Christensen (1980) and with newer models by Barnett, Lee and Wolfe

(1985, 1987) and Barnett and Lee (1985).26

In our experiment, we obtain the parameter values of the Normalized

Quadratic model by estimation of those parameters with data produced by

another model at various settings of the elasticities. Jensen (1997) devised

the experimental design, which closely follows that of Caves and Christensen,

but Jensen applied the approach to estimate the coe¢ cients of the Asymp-

totically Ideal Model (AIM) of Barnett and Jonas (1983).27 We adopt a

26Other relevant papers include Wales (1977); Blackorby, Primont and Russell (1977);
Guilkey and Lovell (1980); White (1980a); Guilkey, Lovell and Sickles (1983); Barnett and
Choi (1989).
27The AIM is a seminonparametric model produced from a class of globally �exible

series expansions. See also Barnett, Geweke and Wolfe (1991a, 1991b). Gallant�s Fourier
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similar experimental design in which (1) arti�cial data is generated, (2) the

Normalized Quadratic model then is estimated with that data, and (3) its

regular regions are displayed.

The �exible functional form that we investigate is the Normalized Quadratic

reciprocal indirect utility function (Diewert and Wales, 1988b; Ryan and

Wales, 1998). Globally correct curvature can be imposed on the model by

imposing negative semi-de�niteness on a particular coe¢ cient matrix and

non-negativity on a particular coe¢ cient vector, but at the cost of losing

�exibility. It has been argued that global curvature imposition forces the

Slutsky matrix to be "too negative semi-de�nite." In that sense, the method

imposes too much concavity, and thereby damages the �exibility. Since con-

cavity is required by economic theory, the model�s inability to impose full

concavity without loss of �exibility is a serious defect of the model. If, in-

stead of the indirect utility function, the Normalized Quadratic functional

form is used to model the expenditure function, global concavity can be

imposed without loss of �exibility. But the underlying preferences then are

quasihomothetic and therefore produce linear Engel curves. Because of that

serious restriction on tastes, we exclude that model from our experiment.

Ryan and Wales (1998) suggested a procedure for imposing negative

semi-de�niteness on the Slutsky matrix, as is necessary and su¢ cient for

the curvature requirement of economic theory. But to avoid the loss of

�exibility, Ryan and Wales apply the condition only at a single point of

approximation.28 With their data, they successfully found a data point

�exible functional form (1981) is also globally �exible.
28Moschini (1996) independently developed the identical procedure to impose local cur-

vature on the semi�exible AIDS model. See Diewert and Wales (1988a) for the de�nition
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such that imposition of curvature at that point results in full regularity

(both curvature and monotonicity) at every sample point. They also applied

the procedure to the linear translog and the AIDS demand systems.29 By

imposing correct curvature at a point, the intent with this procedure is to

attain, without imposition, the curvature and monotonicity conditions at all

data points. We explore the regular regions of the models with these two

methods of curvature imposition. The objective is to determine the extent

to which imposition of global, local, or no curvature results in regularity

violations. Imposing curvature locally may induce violations of curvature

at other points as well as violations of monotonicity at the point or other

points.

We �nd monotonicity violations to be common. With these models, the

violations exist widely within the region of the data, even when neither global

curvature nor local curvature is imposed. We believe that this problem is

common with many non-globally-regular �exible functional forms, and is not

a problem speci�c to the Normalized Quadratic model. For example, one of

the graphs for the AIM cost function in Jensen (1997), without regularity

imposition, looks similar to the one of the graphs we produced.

Imposing curvature globally corrected the monotonicity violations glob-

ally in a case with one pair of complementary goods. But that imposition

produced some overestimation of cross elasticities of substitutions in ab-

solute values. A pair of complementary goods became more complementary

of the semi�exibility.
29Moreover, Ryan and Wales (2000) showed the e¤ectiveness of the procedure when

estimating the translog and the generalized Leontief cost functions with the data utilized
by Berndt and Khaled (1979).
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and a pair of substitute goods became stronger substitutes. Diewert and

Wales (1993) similarly found that some method of imposing regularity can

produce upper bounds on certain elasticities for the AIM and translog mod-

els.30

This chapter is organized as follows: Section 3.2 presents the models

using the two methods of curvature imposition. Section 3.3 illustrates our

experimental design, by which the arti�cial data is simulated, the model

is estimated, and the regular region is displayed. Section 3.4 provides our

results and discussion. Section 3.5 presents our conclusions.

3.2 The Model Description

Central to the imposition of curvature is a quadratic term of the form � 0B�,

where � is a vector of the variables, and B is a symmetric matrix containing

unknown parameters. With the Normalized Quadratic model, the quadratic

term is normalized by a linear function of the form �0�, where � is a non-

negative predetermined vector, and replaced with the normalized quadratic

term � 0B�=�0�. According to Diewert and Wales (1987), the normalized

quadratic term is globally concave if the matrix B is negative semi-de�nite.

In addition, the appropriate parameter restriction on �0� makes the term

homogeneous of degree zero. Imposition of the constraint ensures concavity

of the normalized quadratic term. As a result, imposition of global curvature

starts with imposition of negative semi-de�niteness on the matrix B. We

30See also Terrell (1995). But it should be observed that more sophisticated methods
of imposing regularity on AIM do not create that problem. In fact, it is provable that
imposition of global regularity on seminonparametric models, such as AIM, cannot reduce
the span, if imposition is by the most general methods.
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reparameterize the matrixB by replacing it by the inverse of the product of a

lower triangular matrix,K, multiplied by its transpose, yieldingB = �KK0.

Diewert and Wales (1987, 1988a, 1988b) have frequently used this technique

developed by Wiley, Schmidt, and Bramble (1973) and generalized by Lau

(1978) in producing models with correct curvature.

The Normalized Quadratic reciprocal indirect utility function of Diewert

and Wales (1988b) and Ryan and Wales (1998) is de�ned as

V (�) = b0� +
1

2

�
� 0B�

�0�

�
+ a0 ln (�) , (89)

where b is a vector containing unknown parameters, and � is a vector of

prices, p, normalized by a scalar of total expenditure x, so that � � p=x.31

A �xed reference point �� is chosen, such that the matrix B satis�es

B�� = 0, (90)

and the predetermined vector � satis�es

�0�� = 1. (91)

Using Diewert�s (1974) modi�cation of Roy�s Identity, the system of share

equations is derived as

w(�) =

bVb+ bV B�
�0� �

1
2
bV h �0B�

(�0v)2

i
�+ a

� 0b+ 1
2

�
�0B�
�0�

�
+ �0a

; (92)

31Diewert and Wales (1988b) include a level parameter b0 additively in (89). But it is
nonidenti�able and not estimable since it vanishes during the derivation of the estimating
equations.
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where w = w(�) is a vector of budget shares, � is a unit vector with one in

each entry, and bV is a n� n diagonal matrix with normalized prices on the

main diagonal and zeros on the o¤-diagonal. Homogeneity of degree zero

in all parameters of the share equations (92) requires use of an identifying

normalization. The normalization usually used is

b0�� = 1. (93)

The functional form (89) subject to restrictions (90), (91), and (93) will be

globally concave over the positive orthant if the matrix B is negative semi-

de�nite and all elements of the parameter vector a are non-negative. Global

concavity can be imposed during the estimation by setting B = �KK0 with

K lower triangular, while setting ai = c2i for each i, where c is a vector of the

same dimension as a.32 We then estimate the elements of K and c instead

of those of B and a. As mentioned above, this procedure for imposing global

concavity damages �exibility.

Imposition of curvature locally is at the point of approximation. Without

loss of generality, we choose v� = 1 to be that point. For ease of estimation

we impose the following additional restriction:

a0�� = 0. (94)

With the additional restriction given in (94), the Slutsky matrix at the point

32The nonnegativity of ai�s can be also imposed by setting ai = exp (ci).
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�� = 1 can be written as

S = B �bA+ab0 +ba0 + 2aa0; (95)

where bA =diag(a), a diagonal matrix whose diagonal entries consist of a.

Imposing curvature locally is attained by setting S = �KK0 with K lower

triangular, and solving for B as

B = �
�
KK0�+ bA� ab0 � ba0 � 2aa0. (96)

Ryan and Wales (1998) showed that the demand system described above

is �exible. Also note that if Caves and Christensen�s method is used, the reg-

ular regions of this model and the unconstrained model with equation (94)

imposed will be exactly identical. Therefore, we cannot tell the e¤ective-

ness of this local curvature imposition if we use the Caves and Christensen

method to investigate the regular region.

During estimation, the matrix B is replaced by the right-hand side of

(96) to guarantee that the Slutsky matrix is negative semi-de�nite at the

point of approximation. To see why imposing curvature globally damages

the �exibility while imposing curvature locally does not, recall that the

Slutsky matrix S is symmetric and satis�es Sp = 0 or equivalently S� =

0. As a result, the rank of S is reduced by one, so that the number of

the independent elements of S becomes equal to that of B. Therefore S

in equation (95) can be arbitrarily determined by B, independently of a

and b. But the Hessian matrix of the indirect utility function is usually
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full rank unless linear homogeneity is imposed or attained empirically. In

Diewert andWales�(1988b) approach to prove the local �exibility, the second

partial derivatives at the point of approximation depend on both B and

a. However, imposition of non-negativity on a to attain global curvature

reduces the number of independent parameters and limits the span of B

and a. As a result, imposing curvature globally on this model damages

�exibility. Regarding local curvature imposition, the condition that the

Slutsky matrix be negative semi-de�nite is both necessary and su¢ cient for

correct curvature at the point of approximation.

3.3 Experimental Design

Our Monte Carlo experiment is conducted with a model of three demand

goods to permit di¤erent pairwise complementarities and substitutabilities.

The design of the experiment is described below.

3.3.1 Data Generation

The data set employed in the actual estimation process includes data for nor-

malized prices and budget shares, de�ned as � � p=x and w � bVq where q
is a vector of demand quantities and bV is as de�ned previously. The data for

demand quantities are produced from the demand functions induced by two

globally regular utility functions: the CES functional form and the linearly-

homogeneous Constant-Di¤erences of Elasticities-of-Substitution (CDE) func-

tional form.33

33See Hanoch (1975), Jensen (1997), or section 2.2.1.1 for details of this model.
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The CES indirect utility function with three goods is

V (p; x) = x

�
3P
k=1

prk

��1=r
; (97)

where r = �(��1). By applying Roy�s identity to (97), Marshallian demand

functions are derived as

qi(p; x) = xpr�1i =
P3
k=1 p

r
k; (98)

for i = 1, 2, and 3. The CES utility function is globally regular if � � 1. The

values of � are chosen so that the elasticity of substitution � = 1=(1 � �)

covers a su¢ ciently wide range. Fleissig, Kastens and Terrell (2000) also

used this data generation model in comparing the performance of the Fourier

�exible form, the AIM form, and a neural network in estimating technologies.

The CDE indirect reciprocal utility function 1=u = g(p; x) is de�ned

implicitly by an identity of the form:

G(p; x; u) =
3X
k=1

Gk (pk; x; u) � 1, (99)

with Gk = �ku
�k (pk=x)

�k . Parametric restrictions required for the implicit

utility function (99) to be globally regular are �k > 0 and �k < 1 for all k,

and either �k � 1 for all k or 0 < �k < 1 for all k. In all cases, the �k�s equal

the corresponding budget shares at (p�; x�) = (1;1). Applying the Roy�s
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Identity to (99), we derive the demand functions,

qi(p; x) =
�i�iu

�i (pi=x)
�i�1P3

k=1 �k�ku
�k (pk=x)

�k
(100)

for i = 1,2, and 3. The utility level u is set to unity without loss of generality

when arti�cial data is generated.

Our test bed consists of eight cases. Cases 1 to 4 use data simulated

from demand functions of CES form in (98), and cases 5 to 8 use data from

demand functions of CDE form in (100). Table 1 describes each case in terms

of the elasticity of substitution and budget share settings at the reference

point.34 It is convenient to construct the data such that the mean of the

normalized price of each good is one. We draw from a continuous uniform

distribution over the interval [0:5; 1:5] for price data and [0:8; 1:2] for total

expenditure data. The sample size is 100, as would be a typical sample size

with annual data.35

The stochastic data, adding noise to the model�s solved series, are con-

structed in the following manner: The noise vector " is generated from a mul-

tivariate normal distribution of mean zero and covariance matrix �cov(p),

where � is a constant and �cov(p) is the covariance matrix of a generated

price series given a draw of p. We arbitrarily set � 2 [0:0; 1:0] to adjust

the in�uence of noise on the estimation. We construct the price series in-

34The values of those elasticities are computed as Allen-Uzawa elasticities of substitu-
tion. The Allen-Uzawa elasticity of substitution is the commonly used elasticity of sub-
stitution measure. More complicated substitutability can be captured by the Morishima
elasticity of substitution. See Blackorby and Russell (1989) or section 2.1.4.
35Unlike our experimental design, Jensen�s (1997) design used price series of length 1000

with a factorial design at discrete points in the interval [0:5; 2:0]. Terrell (1995) used a
grid of equally spaced data in evaluating the performance of the AIM production model.
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corporating noise as ep = p + " while making sure that the resulting prices
are strictly positive with each setting of �. We then use equations (98) and

(100), together with the ep and a draw of total expenditure x, to generate
the data for quantities demanded, eq(ep; x). Using the noise-added data, we
compute total expenditure ex = eq0ep, normalized prices e� = ep=ex, and budget
shares ew =diag(e�)eq. We then have the data for the dependent variable
ew and the noise-free independent variable � = p=x. It is easier to ensure

strictly positive noise-added data by this procedure, than by adding directly

to the estimating budget share functions.36

3.3.2 Estimation

Using our simulated data, we estimate the system of budget share equations

(92) with a vector of added disturbances e. We assume that the e�s are inde-

pendently multivariate normally distributed with E(e) = 0 and E(ee0) = 
,

where 
 is constant across observations. Since the budget constraint causes


 to be singular, we drop one equation, impose all restrictions by substitu-

tion, and compute the maximum likelihood estimates of the reparameterized

model. Barten (1969) proved that consistent estimates can be obtained in

this manner, with the estimates being invariant to the equation omitted.

The unconstrained optimization is computed by MATLAB�s Quasi-Newton

algorithm. A complete set of parameters is recovered using the associated

restrictions.

A priori, there is no known optimal method for choosing the vector

36Gallant and Golub (1984) used the same procedure for stochastic data generation with
a production model.
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�, so we choose all elements of the vector to be equal. Some authors have

experimented with alternative settings, such as setting� as weights to form a

Laspeyres-like price index, but with no clear gain over our choice. Hence, all

elements of the vector � are set at 1=3 as a result of equation (91) with �� =

1.37 The number of Monte Carlo repetitions is 1000 for each case. We use

boxplots to summarize the distribution of the estimated elasticities across

the 1000 replicates. We follow the standard procedure for drawing boxplots.

The box has lines at the lower quartile, median, and upper quartile values.

The "whisker" is a line going through each end of the box, above and below

the box. The length of the whisker above and below the box equals 1:5�

(the upper quartile value � the lower quartile value). Estimates above or

below the whisker are considered outliers. Since we �nd these distributions

of estimates to be asymmetric, standard errors alone cannot capture what

is displayed in the boxplots. The average values of each parameter across

replications are used to produce the regular regions of the models.

To begin our iterations, we start as follows: We compute the gradient

vector and the Hessian matrix of the data-generating function at the point

(p�; x�) = (1;1). We set that vector and that Hessian of the Normalized

Quadratic model to be the same as those of the data generating model

at that point. We then solve for corresponding parameter values of the

Normalized Quadratic model and use the solution as the starting values for

the optimization procedure. Those starting parameter values produce a local

second order approximation of the Normalized Quadratic to the generating

function. Our starting values facilitate convergence to the global maximum

37See Kohli (1993) and Diewert and Wales (1992).
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of the likelihood function, since the global maximum is likely to be near the

starting point.

3.3.3 Regular Region

Following Jensen (1997), we plot two-dimensional sections of the regular re-

gion in the Cartesian plane. The x-axis represents the natural logarithm of

(p2=p1), and the y-axis the natural logarithm of (p3=p1). Each axis ranges

between ln(0:2=5:0) � �3:2189 and ln(5:0=0:2) � 3:2189. The sample range

is de�ned as the convex hull of possible prices within the above intervals of

relative values and is displayed in our �gures as a rectangle in the center of

the graph. Accordingly, each of the four sides of the rectangle range from

ln(0:5=1:5) � �1:0986 to ln(1:5=0:5) � 1:0986 since our data is generated

from the interval of [0:5; 1:5]. The entire section is divided into 150 � 150

grid points at which the monotonicity and curvature conditions are evalu-

ated. Each plot can be viewed as a display of a two-dimensional hyperplane

through the three-dimensional space having dimensions ln(p2=p1), ln(p3=p1),

and ln(x). We section the regular region perpendicular to the ln(x) axis at

the reference point of x = 1:0. It is desirable to plot several hyperplanes

at di¤erent settings of x, as done by Barnett, Lee and Wolfe (1985, 1987)

to investigate the full three-dimensional properties of the model�s regular

region. But, since regularity is usually satis�ed at the reference point and

violations increase as data points move away from the reference point, the

emergence of regularity violations on the single hyperplane with x �xed at

the reference setting is su¢ cient to illustrate de�ciencies of the Normalized

Quadratic Model.
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The monotonicity condition is evaluated using the gradient vector of the

estimated equation in (89), rV (�). The model is required by theory to

be strictly increasing in �. For each grid point at which the gradient is

evaluated, the monotonicity condition is satis�ed, if rV > 0.

Our approach to evaluation of the curvature condition di¤ers from that

used in most studies. In those other studies, the curvature condition is

judged to be satis�ed if the Allen elasticity of substitution matrix or the

Slutsky substitution matrix is negative semi-de�nite.38 The problem is that

satisfaction of the monotonicity condition is required for those matrix con-

ditions to be necessary and su¢ cient for satisfaction of the curvature condi-

tion. Hence, we do not use substitution matrices to evaluate the curvature

condition. We directly evaluate the quasiconcavity of the equation (89) us-

ing the method proposed by Arrow and Enthoven (1961). Quasiconcavity

is checked by con�rming alternating signs of the principal minors of the

bordered Hessian matrix, which contains the second partial derivatives bor-

dered by �rst derivatives.39 This approach is general, regardless of whether

there are any monotonicity violations.

Each grid is �lled with di¤erent gradations of black and white, designat-

ing the evaluation results for the regularity conditions. The completely black

grid designates violations of both curvature and monotonicity; the very dark

grey grid designates violation of only curvature; and the very light grey grid

speci�es violation of only monotonicity. The completely white regions are

38For example, Serletis and Shahmoradi (2005) computed the Cholesky values of the
Slutsky substitution matrix to evaluate its negative semi-de�niteness. A matrix is negative
semi-de�nite, if its Cholesky factors are non-positive (Lau, 1978).
39The procedure is described in detail in section 2.1.5.
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fully regular. There are 8 cases with 3 models each, resulting in 24 plots of

regular regions.

3.4 Results and Discussion

We con�rm convergence to a global maximum of the likelihood function by

comparing the estimated elasticity values with the true ones. If the discrep-

ancy is large, we discard that run and rerun the program. We do not seek to

explain the cases of large discrepancies, other than to conclude that under

such circumstances, an unresolved problem exists. Based on this criterion,

we encounter substantial di¢ culty in the estimation of the model with local

curvature imposed. When data are generated with elasticities of substitu-

tion greater than unity (cases 3, 4 and 5), the estimates converge to values

far from the true ones. But when we try the somewhat lower elasticities

of �12 = �13 = �23 = 1:10 or 1:20, convergence to reasonable estimates

is more successful although some replications still often yield unreasonable

estimates.

The boxplots of case 4 in �gure 1 describe the distributions of 1000 esti-

mates of the elasticities of substitution by the models with no curvature im-

posed (left), local curvature imposed (middle), and global curvature imposed

(right).40 The estimates of the elasticities from the local curvature imposed

model not only have larger variations (described as longer whiskers) than

those from the no curvature imposed and global curvature imposed models,

but also include a number of severe outliers especially in the positive direc-

40All data used for boxplots are generated with � = 0:20 for the noise adjustment
constant.
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tion. Even when estimates of cross elasticities are reasonable, estimates of

the own elasticities were often found to be far from the true values. In fact,

the unconstrained and global-curvature-imposed models both require very

high values of a (around 400; 000�s to 600; 000�s for all elements) to attain

maximization of the likelihood function. We suspect that constraint (94)

is too restrictive. For the local-curvature-imposed model to approximate

a symmetric function, as in cases 3 and 4, the optimal values of a should

all be zeros while satisfying the restriction (94). However, any statistical

tests would reject the hypothesis that the restriction is valid. Moreover, as

Diewert and Wales (1988b) observed, equation (94) often renders global con-

cavity to be impossible. The only way to achieve globally correct curvature

with (94) is to set a = 0, since global concavity requires non-negativity of

all elements of a. In addition, since B is a function of a as well as of b and

K, any poor estimate of a will produce poor estimation of B which contains

a set of parameters that explain the model�s curvature property. With all

such problems and nonlinearity embedded in the likelihood function, the

optimization algorithm can search for wrong local maxima. We tried a few

global optimization techniques, but without success.41 When the point esti-

mates of elasticities are themselves poor, we view regularity violations to be

a "higher order problem" of lesser concern. For reference purposes, we plot

in �gure 2 the regular region of the local curvature imposed model (top)

along with that of the global curvature imposed model (bottom). However,

41The genetic algorithm and the pattern search method were tried. But the lack of
convergence of the former and the very slow convergence of the latter is a substantial
computational burden for any study that requires a large number of repeated simulations.
Dorsey and Mayer (1995) provide an empirical evaluation in econometric applications of
the performance of genetic algorithms versus other global optimization techniques.
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the validity of conclusions drawn from that �gure is questionable.

A display of the regular region of the model with global curvature im-

posed (bottom) in �gure 2, the regularity violations occupy a large part of

the area. Within the very light grey areas of the plots, the regularity vio-

lations are attributed entirely to monotonicity violations. Severe regularity

violations resulted from using data produced with high elasticities of sub-

stitution, and therefore, the most severe violations occurred in case 4. The

plot of case 3 displays similar shape of regularity violation regions to case

4, but with a somewhat wider regular region. In case 4, we obtained an

almost identical �gure with the unconstrained model. Regularity violations

indued by the monotonicity violations may indeed be common with many

nonglobally regular �exible functional forms and should not be viewed as

exclusive to the Normalized Quadratic model.

In case 4, the model substantially underestimates true elasticities. The

boxplot (right) in �gure 1 shows that the median of the 1000 sample es-

timates is near 3:0, while the true elasticity is 4:0. This �nding is similar

to those of Guilkey, Lovell and Sickles (1983) and Barnett and Lee (1985),

which showed that the generalized Leontief model performs poorly when

approximating the function with high elasticities of substitution. We �nd

that the Normalized Quadratic model performs poorly both in estimating

elasticities and in maintaining regularity conditions when the data used was

produced with high elasticities of substitution.

For cases 1, 2, and 6, all models perform very well with no regularity

violations. The Normalized Quadratic model performs well when the data is

characterized by low elasticities of substitution (below unity) and pairwise
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elasticities are relatively close to each other. The plot with case 5 is omitted

since the result is similar to case 4.42

With case 7, the plot on the top in �gure 3 displays a very dark grey

cloud on the top-right part of the plot, designating curvature violations for

the unconstrained model. In this case, imposing curvature locally as well as

globally eliminates all of the curvature violations within the region of the

data, as shown by the entirely white region in the bottom plot. Figure 4

describes the distributions of estimates in case 7. For all three models, the

median estimates are satisfactorily close to true elasticities. With global

curvature imposed, elasticity estimates are severely downward-biased when

the true elasticities are high, and upward-biased when the true elasticities

are low as outliers. This suggests that all pairwise elasticities become close

to each other. As should be expected by the outliers, the cause is not easy to

determine, and we do not impute much importance to results with outliers.

These problems do not arise when we impose curvature locally in case 7 in

which the local curvature imposition succeeds in producing global regularity

within the region of our data.

Figure 5 displays plots for case 8 of the regular regions for the uncon-

strained model (top) and the local-curvature constrained model (bottom).

The top of the upper plot has a wide, thick cloud of curvature violations.

That region intersects a small monotonicity-violation area on the right side.

42With case 5 there are regularity violations inside the sample range as in case 4, but
to a milder extent, as in case 3, since both case 3 and 5 use data with lower elasticities of
substitutions than case 4. The plot of case 5 is slightly shifted from the center as a result
of the fact that the simulated budget shares at the center point are slightly asymmetric.
The plot is very similar to the case I of Jensen (1997). Our case 5 and his case I use the
same data-generating setting.

92



The resulting small intersection region designates the set within which both

violations occur. Imposing local curvature does not shrink those regions,

but rather expands them. On the bottom plot, the region of curvature vio-

lations now covers much of the two-dimensional section, with the exception

of the white convex regular region and a wide thick pillar of monotonicity

violations on the left side. In the intersection of the two non-regular regions,

both violations occur. Notice that regularity is satis�ed at the center point,

at which correct curvature is imposed. This pattern of expansion and change

of regularity violation regions is hard to explain.

Another disadvantage of the model is its failure to represent comple-

mentarity among goods. A middle boxplot in �gure 6 shows that the lower

whisker for �12 is strictly above zero. A typical estimate of a for the uncon-

strained model was a0 = (0:014; 0:014; 0:262).43 Although all elements are

strictly positive, they are not substantially di¤erent from a = 0, in contrast

to case 4. Hence, we do not believe that the inability to characterize com-

plementarity was caused by the restrictiveness of equation (94). In case 8,

a plot for the model with global curvature imposed is identical to the bot-

tom plot in �gure 3, achieving the global regularity within the range of plot.

However, imposing global regularity may decrease the ability to produce the

accurate approximation of the underlying preferences (Diewert and Wales

1987, Terrell 1996). Comparing the �gure 6 boxplot of the unconstrained

model�s elasticity estimates (left) with those of the global-curvature imposed

model (right), relative to the true elasticity values, we see that global cur-

43The estimate was obtained using noise-free data with a sample size of 500 instead of
100.
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vature imposed model overestimates the elasticity of substitution, �12, for

complementarity and the elasticities of substitution, �13 and �23 for substi-

tutes. A possible cause is the imposition of negative semi-de�niteness on

the Hessian matrix. As in �gure 4 the outlier estimates cause the pairwise

elasticities of substitution estimates to become closer to each other.

3.5 Conclusion

We conducted a Monte Carlo study of the global regularity properties of

the Normalized Quadratic model. We particularly investigated monotonic-

ity violations as well as the performance of methods of locally and globally

imposing curvature. We found that monotonicity violations are especially

likely to occur when elasticities of substitution are greater than unity. We

also found that imposing curvature locally produces di¢ culty in the estima-

tion, smaller regular regions, and the poor elasticity estimates in many of

the cases considered in this chapter.

When imposing curvature globally, our results were better. Although

violations of monotonicity remain common in some of our cases, those viola-

tions do not appear to be induced solely by the global curvature imposition,

but rather by the nature of the Normalized Quadratic model itself. However,

imposition of global curvature does induce a problem with complementary

goods by biasing the estimates towards over complementarity and substitute

goods towards over substitutability.

With the Normalized Quadratic model, we �nd that both curvature and

monotonicity must be checked with the estimated model, as has previously

been shown to be the case with many other �exible functional forms. Im-
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position of curvature alone does not assure regularity, and imposing local

curvature alone can have very adverse consequences.
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Figure 2: Section through regular regions of the model at x = 1:0 with local
curvature imposed (top) and with global curvature imposed (bottom) for
case 4.
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Figure 3: Section through regular regions of the model at x = 1:0 with
no curvature imposed (top) and with local and global curvature imposed
(bottom) for case 7.
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Figure 5: Section through regular regions of the model at x = 1:0 with no
curvature imposed (top) and with local curvature imposed (bottom) for case
8.
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Chapter 4

Estimation of Expenditure-Dependent Equivalence Scales and the

Cost of a Child Using Japanese Household Expenditure Data

4.1 Introduction

This empirical section demonstrates the use of rank three and rank four

consumer demand models which can characterize more complicated Engel

curve shapes, and it investigates household consumption behaviors using

household expenditure survey data, especially for attempts to estimate the

cost of a child using Japanese household expenditure data. An Engel curve

is the function describing how consumer�s expenditures on some goods or

services relate to her total expenditure while keeping prices �xed. The rank

of a demand system can be de�ned as the dimension of the space spanned

by its Engel curves. A famous result by Gorman (1981) tells that exactly

aggregable demand systems have at most rank three or less. Lewbel (1991)

extended Gorman�s result and de�nes the rank M of any demand system

to be the maximum dimension of the function space spanned by the Engel

curves of the demand system.

We employ a rank three demand system of QUAIDS (Bank, Blundell

and Lewbel, 1997) and a rank four demand system of translated QUAIDS

(Lewbel 2003; Donaldson and Pendakur 2006) in this chapter for empirical

parametric speci�cations of demand models. Given the large set of house-

hold expenditure data within which observations of total expenditure vary

substantially, higher rank demand systems are necessary tools to account for
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the observed expenditure patterns at di¤erent income levels than the lower

rank, say, rank two demand systems such as models of the PIGLOG type

which are linear in logarithm of total expenditure.44 For analyses involving

only a modest range of income levels, such richness in global Engel curve

shapes may be unnecessary, just as local �exibility (in Diewert�s sense) may

adequately capture a full range of price e¤ects when prices do not change

much over a sample. However, income levels usually vary widely across

households, and analysis of welfare or cost-of-living involves comparisons

of demands between these income levels. So, in studies involving cross-

sectional data, cost-of-living analyses, or welfare comparisons, richness in

Engel curve shapes across a wide range of income level is required. The re-

sults of nonparametric kernel regressions of Engel curves for UK households

(Bank, Blundell and Lewbel, 1997) showed that the linear relationship is

not su¢ cient to characterize the shape of the Engel curves on some goods

which exhibit nonlinear shapes of Engel curves. The nonparametric rank

test (Gill and Lewbel 1992; Gragg and Donald, 1997) also suggested that a

rank three relationship is required, as would be the case in the second-order

polynomial. Blundell, Chen and Kristensen (2007) found that some goods

have Engel curves that are close to linear or quadratic, while others are more

S-shaped.

There are a number of studies which concern the rank of demand sys-

tems, and a number of tests of rank have been conducted either paramet-

rically, semiparametrically or nonparametrically (Grodal and Hildenbrand

44The AIDS model, which has rank two, performed poorly in the Monte Carlo study of
Barnett and Seck (2007) using several linear approximation methods.
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1992; Hildenbrand 1994; Kneip 1994; Lewbel 1991; Donald 1997; Hausman,

Newey and Powell 1995; and Lyssiotou, Pashardes and Stengos 1999). Nicol

(2001) �nds that conditional demands for some demographic groups are

rank three, which implies that unconditional demands for those groups are

likely to be rank four. Lyssiotou, Pashardes and Stengos (2008) suggest the

possibility of higher rank than three.45

Therefore, contemporary studies on household demand behaviors are

expected to adopt at least rank three demand systems if no (nonparametric)

rank test is carried out or no knowledge about the shape of its Engel curves

is available a priori. The rank three parametric demand system used almost

exclusively is the quadratic AIDS model. It nests a classic AIDS model,

and hence, provides a simple way to test against the speci�cation of the

additional quadratic term. The linearization method for QUAIDS, as for

AIDS, is also made available by Matsuda (2006) to help ease the complicated

nonlinear estimation.

Lewbel (1991) showed that a class of de�ated income demand systems

which has Engel functions as being a function of "de�ated" income which is

the total expenditure divided by some homogeneous of degree one function

of prices, can have rank up to four. In fact, the classic AIDS and QUAIDS

are members of this class, as can be seen by their form.46 Lewbel (2003)

and Donaldson and Pendakur (2006) speci�ed the four price functions of

a rank four de�ated income demand system and estimated the household

demands using the UK Family expenditure survey and the Canadian Family

45See Lewbel (2002).
46See section 2.2.5.8.
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Expenditure Surveys, respectively. The model replaces x in QUAIDS with

x�d(p), where d(p) is a "translation" function and is homogeneous of degree

one in prices to maintain the homogeneity of the original QUAIDS. This

method of introducing translation or overhead term into demand systems

is well known (see Samuelson, 1948; and Gorman, 1976), and typically has

the e¤ect of increasing the rank of the demand system. The system is called

"translated" QUAIDS by Donaldson and Pendakur (2006). The rank four

model allows one to test for the speci�cation of rank three.

Having speci�ed the model of demand functions, one needs to consider

how to incorporate the demographic characteristics into the individual con-

sumer demand model to represent di¤erent types of households. Lewbel

(1985) provided a general approach to do this by modifying the expenditure

function through two modifying functions. This method leads to the rep-

resentation that the welfare level (or utility) of the households with some

characteristics is equal to the utility level of a reference household with in-

come and prices adjusted through these modifying functions. We show that

the particular speci�cations of the demographic modi�cation give rise to

the equivalent-expenditure functions which are used to conduct the welfare

analysis. The equivalent-expenditure function depends on prices and house-

hold characteristics, and is that expenditure which, if enjoyed by a reference

household facing the same prices, would result in a utility level equal to

that of each household member. The equivalence scales are the ratio of

expenditure to equivalent expenditure (relative) or the di¤erence between

expenditure and equivalent expenditure (absolute).

We limit our attention to the identi�able equivalent-expenditure func-
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tions (and equivalence scales) by demand data alone. Equivalent-expenditure

functions and equivalence scales are identi�able by demand data if there is

a one-to-one correspondence between the preference ordering and the ob-

served demands which it generates.47 This identi�cation requires either

strong, untestable assumptions regarding preferences or unusual types of

data. Our identi�cation focuses on imposing as little restriction as possible

on the household preference structure.

Lewbel (1989) and Blackorby and Donaldson (1993) consider the case

where the equivalence scale function is independent of utility, which they call

"independence of base" (IB) and "equivalence-scale exactness (ESE), respec-

tively.48 The ESE property assumes that household expenditure functions

across families with di¤erent demographic compositions are proportional

with respect to reference expenditure, hence equivalence scales are, a priori,

independent of reference income. Blackorby and Donaldson (1993) showed

that the exact equivalence scales are identi�ed by observed demand data

if the preference of the reference household is not PIGLOG (not log-linear

in utility). This is an unfortunate result because PIGLOG speci�cation

includes the popular AIDS model of Deaton and Muellbauer and exactly

aggregable translog of Jorgenson, Lau and Stoker (1982). Despite the identi-

�ability and convenience of econometric approaches, exact equivalence scales

may not hold in practice, due to the restrictive form of household prefer-

ences that they impose, as can be found in the later section. Tests of the

47For a detailed explanation of the identi�ablility of equivalence scales, see Pollak and
Wales (1979), Blundell and Lewbel (1991), Lewbel and Pendakur (2006). A more technical
presentation is given by Blackorby and Donaldson (1991, 1993), Lewbel (1989d).
48We use the term of Blackorby and Donaldson in this dissertation.
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exactness of equivalence scales have produced mixed results.49

Exact equivalence scales have a critical disadvantage for policy purposes

as well as for economic interpretation. Conni¤e (1992) argues that equiva-

lence scales are not constant as regards income and that the current prac-

tice of assuming the exactness of equivalence scales should be reconsidered.

Koulovatianos, Schröder and Schmidt (2005) �nds strong evidence from re-

search surveys conducted in Germany and France that equivalence scales are

signi�cantly decreasing in reference income, and strongly encourage the use

of parametric or semi-parametric demand systems that can produce equiv-

alence scales which are decreasing in reference income. Yet scales used in

comparative and policy-related welfare studies have almost always used the

exactness property of equivalence scales. The exact equivalence scales sug-

gest that a rich household with a child has higher equivalent expenditures

than a poor household with a child since exact equivalent expenditures are

proportional to the reference income of that particular household without a

child. No researcher or policy-maker seriously suggests that within a par-

ticular society higher income groups should be deliberately granted greater

monetary compensation for having children (through child allowances, or

whatever) than lower income groups. In the formulation of policy in the

areas of welfare bene�ts and tax allowances, the assumption of exact equiv-

alence scales could have serious and unacceptable implications.

49See Blundell and Lewbel, 1991, Dickens, Fry and Pashardes 1993, Pashardes 1995,
Blundell, Duncan and Pendakur 1998, Gozalo 1997, Pendakur 1999, Koulovatianos,
Schroder and Schmidt 2005. Semi- or non-parametric speci�cation of demand systems
tends to satisfy the equivalence-scale exactness, suggesting that the validity of the ESE
condition may be attributed to the parametric speci�cations of the demand system. Also
note that it is possible to statistically reject ESE, but if the the demand restrictions implied
by ESE are not rejected, it remains impossible to infer that ESE actually holds.
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An approach to relax the exact equivalence scales is suggested by Don-

aldson and Pendakur (2004). In particular, they introduce a property named

"Generalized Relative Equivalence Scale Exactness "(GRESE) which implies

a linear relationship between the log of equivalence scales and the log of ref-

erence incomes. Therefore, if the slope of this linear relationship is negative

with a positive intercept term, then the equivalence scales are consistent

with the recommendation of Koulovatianos, Schröder and Schmidt (2005).

They show that if GRESE is a maintained hypothesis and the reference

expenditure function is not PIGLOG, the equivalent-expenditure function

can be identi�ed from demand behavior. Since GRESE nests ESE, the es-

timation of demand systems allows for an easy speci�cation test for a more

appropriate equivalence scale structure.

Donaldson and Pendakur (2006) also relax the exact "absolute" scales

and name the property "Generalized Absolute Equivalence Scale Exactness

(GAESE) which implies a linear relationship between the equivalence scales

and the reference incomes. GAESE allows for formulation of the equivalent-

expenditure functions with a �xed component and a variable component

that is proportional to the reference income.

We use the Japanese Panel Survey on Consumers (JPSC) conducted and

administered by the Institute for the Research on Household Economics for

household expenditures and characteristics data. Estimation of child cost in

Japan itself is an interesting subject in the context of the super-low fertility

rate of Japan. In addition, discussion of a child subsidy program became one

of the biggest political hooking points during the recent general elections,

which took place in the summer of 2009. Despite the evidence documented
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by Koulovatianos, Schröder and Schmidt (2005), it may not be evident that

the equivalence scales are decreasing in the income given seemingly gener-

ous existing child-suppot welfare programs because the universally available

medical insurance in Japan may lesson the out-of-pocket cost of additional

children compared to the U.S., where a large number of households do not

have any medical insurance (Phipps and Garner, 1994). The discussion on

the low fertility trend in Japan and the ongoing discussion of child-support

programs is placed in the next section.

We have encountered the existence of a mass of zero-expenditure ob-

servations for some of the goods in our data set. With the presence of a

large pile of budge share observations at zero, the usual estimation proce-

dure of appending a normal error vector to the demand system to solve the

nonlinear simultaneous system of equations becomes di¢ cult to apply. It

makes the distribution of error terms hardly look normal, and the resulting

parameter estimates become biased. There are several methods to deal with

the zero expenditure issue, depending on what kind of underlying causes

are expected to be generating zero expenditures. We assume that the un-

derlying cause is the infrequent purchase of goods (IFP). 50 Although the

commodities are actually consumed, purchases may not be recorded because

the purchase interval is longer than the survey period. We believe that this

is an appropriate assumption in wealthy countries like Japan, as opposed to

developing countries where many households do not purchase certain goods

because they are too expensive. We adopted the Amemiya-Tobit approach,

speci�cally, a variant of Heckman�s (1979) sample selection model in which

50See Deaton and Irish (1982).

109



the consumer decides to purchase a good based on some exogenous vari-

ables other than prices and income, and then allocates her budget to decide

how much to purchase. We estimated the model using a two-step proce-

dure proposed by Shonkwiler and Yen (1999) that consists of the �rst step

of the Probit estimations of each equation, which determines the purchase

decision, and the second step of estimating the augmented demand system,

based on the parameter estimates obtained from the �rst step.

We �nd that the GRESE speci�cation with the QUAIDS preferences

of the households is statistically preferred to any of the more restricted

speci�cations and that the equivalence scales are negatively correlated with

the total expenditure levels. The results are appealing since the equivalence

scales are identi�ed by rejecting AIDS speci�cation which is PIGLOG, and

hence, there is no ambiguity with the result in that sense. Moreover, the

implication is that the equivalence scales increase (decrease) as the total

expenditures decrease (increase), which is consistent with the �ndings of

Koulovatianos, Schröder and Schmidt (2005) and Conni¤e (1992). It gives

the straightforward policy design implication that poor households should be

more compensated than rich households when they have additional children

if a child-support policy is pursued by the Japanese government at all.

This chapter is organized as follows: Section 2 presents the current dis-

cussion on the low birthrate trend in Japan and the public policies that

are designed to tackle this issue. Section 3 shows how to construct the de-

mographically modi�ed expenditure function using Lewbel�s (1985) proce-

dure. Section 4 shows the de�nition of equivalence scales and ESE property,

and it presents two types of characterizations of Donaldson and Pendakur�s
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equivalent-expenditure function. Section 5 describes our empirical paramet-

ric model speci�cation including the construction of our datasets. Section

6 describes the estimation procedure with emphasis on how to deal with a

piled-up of expenditure observations at zero in the data. Section 7 presents

the results, and the conclusion follows.

4.2 Discussion on Low Fertility Rate, Relevant Public Policies, and
Empirical Equivalent Scales in Japan

Japan has been recording very low fertility rates over the years, 1.27 as of

2009.51 Although South Korea now has the lowest fertility rate, 1.22, the

low fertility rate is more problematic for Japan in view of the fact that Japan

is the "oldest"country meaning that the median age of the whole population

is the highest among all countries (44.4 years old). The dependency ratio,

an age-population ratio of those typically not in the labor force (the depen-

dent part) and those typically in the labor force (the productive part) has

increased to 22.7 in 2009 whereas it was 4.9 in 1950. Therefore, this pro-

longed low birthrate level creates an unbalanced demographic composition

between productive and dependent populations. This trend may result in

a greater burden per person regarding social security and have a negative

e¤ect on Japan�s long-term economic performance.

There are several government programs that have existed and have been

expanded in response to the declining trend of birthrate. The child subsidy

program (Jidouteate) is de�nitely one of the most important of the policies

designed to help families with child-rearing expense. Japanese households

51See Date and Shimizutani (2007) for the up-to-date survey paper on the cause of the
declining fertility rate of Japan written in English.
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currently (as of 2009) receive 5,000 or 10,000 yen per child with the cuto¤

amount dependent upon household income level and the age of the children.

Beginning in 1993, the amount of allowance which applied to children under

three years of age was 5,000 yen each for a �rst and second child, and 10,000

yen for each additional child. In 2000, the age cuto¤ increased to 6 years

of age (or before attending elementary school age), and the amount for all

children under 3 years of age increased to 10,000 yen in 2007, even for a �rst

or second child. After April 2006, the cuto¤ income level for national health

insurance holders, for instance, starts at 4,600,000 yen and increases by

380,000 yen each as the number of dependent household members increases.

In October 2006, to o¤set medical expenses incurred from childbirth, the

one-time government allowance paid to families with newborn children was

increased from 300,000 yen to 350,000 yen, and to 420,000 yen in October

2009. Tanaka and Kouno (2009) found that an increase of 100,000 yen in the

one-time government childbirth allowance raises the fertility rate by 0.017.

A tax credit for dependent family members also helps decrease the cost of

raising children. An income tax credit of 380,000 and a residential tax credit

of 330,000 yen per dependant are given as of 2009. The dramatic increase

in the amount of child support allowance proposed as a new child subsidy

program by DPJ (Minshuto) was one of the biggest issues debated during the

general election campaign in Japan prior to the the election held on August

30, 2009. The party currently holding the cabinet o¢ ce is advocating the

allowance amount of 26,000 yen per child younger than 15 year of age (or

junior highschoolers) without an income threshold. The issue of no income

threshold has been controversial in the current policy debate.
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Despite the seemingly generous monetary compensation o¤ered by the

government welfare program to compensate for child-birth and child-rearing

expenses, when couples are asked the reason why their planned number of

children is lower than their preferred number of children, the majority re-

ports that cost is the major issue. According to the latest Thirteenth Basic

Survey on Birth Trend, 65.9% of couples report that "child-rearing and edu-

cation costs are too high."52 Therefore, it is of particular interest to see how

the obtained equivalence scales are compared to scales found in other studies

using di¤erent data sets and to see if the result of the Basic Survey on Birth

Trend is consistent with the scales obtained from the estimation results.

The papers that actually calculated the equivalence scales include Nagase

(2001), Suruga (1993, 1995), and Suruga and Nishimoto (2001). They all

used Engel or Rothbarth methods which impose very restricted assumptions

on preferences and equivalence scales.53 Oyama (2006) used psychometric

data in the form of an Income Evaluation Question to estimate the equiva-

lence scales.54 She found that the cost of a child aged 0-18 years is between

1:386 and 1:475; between 1:280 and 1:454 for a child aged 0-6; between 1:277

to 1:407 for the age range 7-13 years; and between 2:090 to 4:329 for the

age range 14-18. Recently, Hasegawa, Ueda and Mori (2008) undertook es-

timation of equivalence scales with the system of Working-Lesser equations

52The source for this information is the National Institute of Population and Social
Security Research, Dai 12 kai shussei doukou kihon chousa [Thirteen Basic Survey on
Birth Trends] (www.ipss.go.jp).
53The Rothbarth method using the consumption pattern of adult goods requires sep-

arability assumption between the parents�and the children�s consumption. See Gronau
(1988) and Nelson (1992).
54See Van Praag and Warnaar (2003) Van Praag and Kapteyn (1973), and Van Praag

and Van der Sar, (1989).
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using the same data source as ours. They produced an equivalence scale of

1:3695.

Other studies related to this topic include Matsuura (2007), who �nds

that the marginal utility of having children is higher for males in the con-

text of the hypothesis that education cost is a major cause of reluctance to

have more children. Aoki and Konishi (2009a, 2009b) show that improved

quality of consumption has a negative impact on the birthrate in relation to

female labor supply. Abe (2005) studied the e¤ects of child-related bene�ts

and found that these bene�ts contribute little to the reduction of poverty

in households with children. Yamaguchi (2005a, 2005b, 2006) provides a

sociological view of how the society overall can help raise the fertility rate.

4.3 Demographically Modi�ed Demand System

Lewbel (1985) proposed a uni�ed approach to incorporate demographic ef-

fects into any demand systems. His method generalizes the existing ap-

proaches of demographic translating, demographic scaling (Barten scale),

and the modi�ed Prais-Houthakker procedure (Pollak andWales 1981, 1992).

It o¤ers a large class of possible modi�cations that have both the universal

applicability of demographic scaling and translating, and the �exibility to

allow demographic variables to interact with price and expenditure terms in

the demand system in an almost unlimited variety of ways.

Lewbel�s procedure modi�es the expenditure function by �rst replacing

each price by a function that depends on all prices and demographic variables

and then subjecting the resulting expenditure function to a further trans-

formation that depends on all price and demographic variables. He gives
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theorems to guarantee the integrability of the modi�ed system, regardless of

to what initial system these two transformations are applied. Using his the-

orems, we can derive characteristics of the GRESE equivalent-expenditure

function identical to the ones derived by construction in Donaldson and

Pendakur (2004).

We show how the modi�ed demand system may be written directly as

a function of the original system, so the e¤ect of modifying functions on

the demand equations may be directly assessed, without consideration of

the cost or utility functions involved. Donaldson and Pendakur (2004) show

how the demand function for the child good is restricted under ESE prop-

erty by writing the modi�ed demand function as a function of the reference

household demand function.

Let E� be a legitimate expenditure function, p be an n-vector of prices,

and z be any vector of demographic variables. Lewbel (1985) considers a

new expenditure function by the general transformation given by

E(u;p;z) = f [E� (u;h [p;z]) ;p;z] . (101)

The properties of two modifying functions f , and h determine the types of

transformation.

Considering the case where p = h, and f is a positive log-a¢ ne trans-

formation, the new expenditure function (101) is written as

lnE(u;p;z) = K(p;z) lnE�(u;p) + lnG(p;z), (102)
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where K(p;z) > 0 and G(p;z) > 0.

The integrability of the new expenditure function in (102) requires E to

be homogeneous of degree one and concave. Symmetry and monotonicity

are already satis�ed by construction.

Assuming that E is di¤erentiable in p, we get by di¤erentiation of (102)

with respect to pj ,

@ lnE(u;p;z)

@pj
=

@K(p;z)

@pj
lnE�(u;p)

+K(p;z)
@ lnE�(u;p)

@pj
+
@ lnG(p;z)

@pj
. (103)

Multiplying both sides of (103) by pj and summing over j to n gives

nX
j=1

@ lnE

@pj
pj = lnE

�
nX
j=1

@K(p;z)

@pj
pj+K(p;z)

nX
j=1

@ lnE�

@pj
pj+

nX
j=1

@ lnG(p;z)

@pj
pj ,

and then

1 = lnE�
nX
j=1

@K(p;z)

@pj
pj +K(p;z) +

nX
j=1

@ lnG(p;z)

@pj
pj , (104)

after applying Euler�s theorem to the linear homogeneous expenditure func-

tion E�.55

55 If a function g is homogeneous of degree �,P
j

@g(!)

@!j
!j = �g(!);

which implies

P
j

@g(!)

@!j

!j
g(!)

=
P

j

@ ln g(!)

@ ln!j
!j = �.
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The left-hand side of equation (104) is constant while the right-hand

side is unbounded above in u through E�(u;p) which is assumed to be

an increasing function of u. It implies that
P
j pj@K(p;z)=@pj = 0, and

therefore K is homogeneous of degree zero, and

K(p;z) = 1�
nX
j=1

@ lnG(p;z)

@pj
pj = 1�

nX
j=1

@ lnG(p;z)

@ ln pj
. (105)

This means that K is functionally dependent on G: there is unique K for

every G. The functional relationship between K and G in equation (105)

is also derived in Donaldson and Pendakur (2004), and one can prove that

this condition is su¢ cient for E to be homogeneous of degree one in p.

Let xe = E�(u;p), x = E(u;p;z), and V �(p; xe) be the correspond-

ing indirect utility function of total expenditure xe and prices p; and let

V (p; x;z) be the corresponding indirect utility function of total expenditure

x and prices p. Lewbel�s (1985) theorem 4 says

V (p; x;z) = V �(p; xe). (106)

This representation implies that the utility level of a household with char-

acteristics z is equal to that of the reference household with adjusted total

expenditure xe, and it gives a basis for the construction of the estimable de-

mand functions by specifying the demand functions of the type of reference
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households. The representation in (106) can be further written as

V (p; lnx; z) = V �
�
p;
lnx� lnG(p;z)

K(p;z)

�
= V �

�
p; lnx� (K � 1) lnx� lnG

K

�
.

Therefore, expf[(K � 1) lnx� lnG] =Kg can be viewed as scaling down the

expenditure of the original indirect utility function to preserve the equality

of utility V and V �, and in fact, expf[(K � 1) lnx� lnG] =Kg is taken as

an expenditure-dependent equivalence scale in a later section. It increases

(decreases) in lnx if K > 1 (K < 1) .

We give a sketch of proof to derive the representation (106) . The indirect

utility function V is the inverse of E, so x = E [V (p; x;z);p;z]. Using

equation (101) as the de�nition of E, after specifying h = p, the equation

for x becomes

x = f [E�(V [p; x;z];p);p;z] . (107)

De�ning the function X as the inverse of f on its �rst argument such that:

xe = X(x;p;z);

which is well-de�ned since f is monotonic in its �rst argument as being a

positive log-a¢ ne transformation, then

V �(p; xe) = V � [p; X(x;p;z)] :

118



Substituting equation (107) into this equation yields

V �(p; xe) = V � [p; X(x;p;z)]

= V � [p; X(f [E�(V [p; x;z];p);p;z] ;p;z)]

= V � [p; E�(V [p; x;z];p);z)] after cancelling out f of X

= V [p; x;z]. after canceling out E� of V �

Lewbel used the theorem described in section 2.1.5 to derive the conditions

under which the new expenditure function is concave in p given a legitimate

expenditure function E�. According to theorem 3 of Lewbel (1985), the new

expenditure function in (102) is concave in p if the following conditions are

satis�ed:

K(K � 1)GE�(K�2)�2j � 0, (108)

for j = 1; :::; n; and
1

n

�
@f(E�;p;z)

@pi@pj
�i�j

�
� 0, (109)

for arbitrary n-vector �.56 While the condition in (109) turns out to be

untractable after calculating the second derivative, the condition in (108)

implies K � 1. Therefore, global concavity of the modi�ed expenditure

function implicitly assumes that the corresponding equivalence scales are de-

creasing functions of total expenditure. Although the household expenditure

function does not technically have to be concave, the characteristics result-

ing from this particular transformation (which is actually GRESE) implies

the still restrictive nature of GRESE imposed on the household preferences.

56See the complete theorem in Lewbel (1985) for the details.
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A similar exercise can be done with the transformation associated with

GAESE with:

E(u;p;z) = R(p;z)E�(u;p) +A(p;z).

The next section presents the technical de�nition of equivalence scales

and shows that GRESE and GAESE are generalizations of ESE from the

viewpoint that they are equivalence scales.

4.4 Equivalence scales

To de�ne equivalent-expenditure functions and equivalence scales, a refer-

ence household type is needed and, although other choices are possible, we

use a childless married couple as the reference and denote its characteristics

as zr. An relative equivalence scale SR is de�ned by

v = V (p; x;z) = V (p; x=sR;z
r) = V r(p; x=sR), (110)

where V r = V (�; �;zr) and sR is a value of the scale. Remembering the

representation in (106), equivalence-expenditure xe can be written as the

ratio of household expenditure to the scale, x=sR. Let xe = X(p; x;z) (=

Er (V r(p; xe);zr)), where Er(u;p) = E(u;p;zr) and V r(p; x) = V (p; x;zr).

Consequently, an equivalence scale is the ratio of household expenditure to

equivalence expenditure and we can write

sR = SR(p; x;z) =
x

X(p; x;z)
.
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Because X is homogeneous of degree one in (p; x), SR is homogeneous of

degree of zero in (p; x). In addition, SR(p; x;zr) = 1 for all (p; x), which

is intuitively consistent. The equation (110) can be solved for sR using the

expenditure function to obtain

sR =
E(u;p;z)

Er(u;p)
.

In general, equivalence scales depend on expenditure, but those that do

not depend on expenditure are called exact. A scale is exact such that:

SR(p; x;z) = SR(p;z);

if and only if the expenditure function is multiplicatively decomposable

(Blackorby and Donaldson, 1991, 1993; Lewbel, 1991), with the condition

E(u;p;z) = SR(p;z)E
r(u;p); (111)

which we call equivalence-scale exactness (ESE).

Absolute equivalence scales measure the amount of income over reference-

household income needed by a particular type of household to preserve equal

utility. It is implicitly de�ned by

v = V (p; x;z) = V r(p; x� sA), (112)

and is written

sA = SA(p; x;z) = x�X(p; x;z);

121



where sA is a value of the scale, and SA(p; x;zr) = 0 for all (p; x). Because

X is homogeneous of degree one in (p; x), SA is homogeneous of degree one

as well. Equation (112) implies that

sA = E(u;p;z)� Er(u;p). (113)

The absolute equivalence scale SA is income dependent or, in the formulation

of (113), utility dependent. The scale is independent of these variables such

that:

SA(p; x;z) = SA(p;z);

and, therefore, exact if and only if the expenditure function is additively

decomposable (Blackorby and Donaldson, 1994) such that:

E(u;p;z) = Er(u;p) + SA(p;z). (114)

We call this condition on E, Absolute Equivalence-Scale Exactness (AESE).

The absolute scale SA(p;z) can be interpreted as the �xed costs of charac-

teristics faced by di¤erent types of households.

Without additional assumptions, neither equivalent-expenditure func-

tions nor equivalence scales can be identi�ed by household demand behavior

alone. Blackorby and Donaldson (1993, 1994) investigated theoretical iden-

ti�cation when ESE or AESE is accepted as a maintained hypothesis. They

found that, given ESE and AESE with a technical condition, estimation

from demand behavior is possible if and only if the reference expenditure

function is not log-a¢ ne for ESE and a¢ ne for AESE, that is, if it does not
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satisfy

lnEr(u;p) = C(p)g(u) + lnD(p) (115)

and

Er(u;p) = eC(p)eg(u) + eD(p) (116)

where C, g, D,fC, eg, and eD are some functions with appropriate properties

to make equations (115) and (116) legitimate expenditure functions. The

equation in (115) takes a form of PIGLOG given in (48) after some algebraic

arrangement, and the equation in (115) takes a Gorman Polar Form in (58).

In any case, demand systems with lower rank should not be applied when

using those equivalence scale exactness properties.

4.4.1 Generalized Relative Equivalence-Scale Exactness

If equivalence-scale exactness (ESE) is satis�ed, given equation (111), one

can write
dxe

xe
=
dx

x
,

which implies that an equal percentage increase in income preserves utility

equality across household types. ESE is equivalent to a condition on the way

that interpersonal comparisons are related to expenditures called income-

ratio comparability (IRC), (Blackorby and Donaldson, 1991, 1993). If a

household with arbitrary characteristics and a reference household facing the

same prices have expenditures such that their utilities are equal, common

scaling of their expenditures (which leaves the expenditure ratio unchanged)

preserves utility equality. Thus, an increase in a household�s expenditure of
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one per cent matched by an increase in the reference household�s expenditure

of one per cent preserves equality of well-being.

Suppose that, instead of requiring an equal percentage increase in the ref-

erence household�s income to preserve utility equality, we require the match-

ing percentage increase to be independent of income only. This requires the

existence of a function such that:

dxe

xe
= �(p;z)

dx

x
; (117)

where � > 0 for all (p; x;z). A one percent increase in household income re-

quires an increase of � percent to preserve equality of well-being. Integrating

both sides of (117) gives

lnxe = lnEr(p; x) = �(p;z) lnx+ ln 
(p;z), (118)

where 
 is some function independent of x. Consequently,

xe = X(p; x;z) = 
(p;z)x�(p;z).

Because � > 0 and X is increasing in x, 
 > 0 for all (p; x). In addition,

because X(p; x;zr) = x for all (p; x), 
(p;zr) = �(p;zr) = 1 for all p.

De�ning K(p;z) = 1=�(p;z) and G(p;z) = 1=
(p;z)1=�(p;z), the equa-

tion (118) can be written as

lnxe = lnX(p; x;z) =
lnx� lnG(p;z)

K(p;z)
.
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Because V (p; x;z) = V r(p; xe), it follows that

V (p; x;z) = V r
�
p; exp

�
lnx� lnG(p;z)

K(p;z)

��
,

and the expenditure function E is given by

lnE(u;p;z) = K(p;z) lnEr(u;p) + lnG(p;z). (119)

Given GRESE, the equivalence scale SR satis�es

lnSR(p; x;z) =
(K(p;z)� 1) lnx� lnG(p;z)

K(p;z)
. (120)

SR is increasing (decreasing) in x if K > 1 (K < 1):

If V (�; �;z) is di¤erentiable for all z with @V (p; x;z)=@x > 0 for all

(p; x;z), by Roy�s identity, given GRESE, the share equations wi for i =

1; :::; n; satisfy

wi(p; lnx;z) = K(p;z)wri

�
p;
lnx� lnG(p;z)

K(p;z)

�
+
@K(p;z)

@ ln pi

�
lnx� lnG(p;z)

K(p;z)

�
(121)

+
@ lnG(p;z)

@ ln pi
, (122)

where wri = wi(�; �;zr) is the reference household�s share equations. Given

ESE, K(p;z) = 1 (because � = 1) and the second term of (121) vanishes.

Thus the restrictions on budget share equations implied by GRESE are a

generalization of those implied by ESE.
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Donaldson and Pendakur (2004) investigate the relationship of behavior

and equivalent-expenditure functions when GRESE is satis�ed and show

that estimation of the scale from demand behavior is possible if and only

if the reference expenditure function is not PIGLOG. Equivalence scales

depend on utility, which cannot be directly observed, and therefore, they

must be inferred from consumer demand data, that is, from the quantities

that consumers buy in varying price regimes and at various income levels.

Here below, we show why the identi�cation of equivalence scales requires

strong assumptions regarding preferences.

Two indirect utility functions, bV and eV , represent the same preferences
for each household type if and only if there exists a function  , increasing

in its �rst argument, such that

bV (p; x;z) =  (eV (p; x;z);z) (123)

for all (p; x;z). One can check that Roy�s identity gives the same demand

functions from bV and eV . De�ne ' to be the inverse of  in its �rst argu-
ment. Let bE and eE be the expenditure function associated with bV and eV
respectively. Applying ' to both sides of (123) gives

'
�bV ;z� = eV (p; x;z). (124)

Then, inverting (124) by eE gives

eE �eV ;p;z� = eE �'�bV ;z� ;p;z� = x. (125)
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On the other hand, inverting (123) by bE , we get

bE �bV ;p;z� = x. (126)

Combining (125) and (126) yields

bE �bV ;p;z� = eE �'�bV ;z� ;p;z� . (127)

The representation (127) implies generally that bE (v;p;z) 6= eE(v;p;z) while
attaining a utility level v = bV . By revealed preference theory, demand data
identi�es the shape and ranking of a consumer�s indi¤erence curves over

bundles of goods, but not the actual utility level associated with each in-

di¤erence curve. Changing ' (v;z) just changes the utility level associated

with each indi¤erence curve. Therefore, one could get two di¤erent equiva-

lence scales through di¤erent expenditure functions bE and eE from the same

demand data.

If GRESE is satis�ed, Theorems 2 and 3 of Donaldson and Pendakur

(2004) together imply that: (1) if the reference expenditure function is

PIGLOG, there are in�nitely many log-a¢ ne equivalent-expenditure func-

tions that are consistent with behavior; and (2) if the reference expenditure

function is not PIGLOG, there are in�nitely many equivalent-expenditure

functions that are consistent with behavior but only one of them is log-

a¢ ne. It follows that, in order to identify equivalent-expenditure functions

and equivalence scales from behavior alone, the reference expenditure func-

tion must not be PIGLOG. If this condition is met, the functions K and G
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are unique and can be estimated from behavior.

4.4.2 Generalized Absolute Equivalence-Scale Exactness

If Absolute Equivalence-Scale Exactness (AESE) is satis�ed, equal absolute

increases of income preserve utility equality across household types. Given

(114), one can write

dxe = dx;

which implies an increase in a household�s income of one dollar matched

by an increase of one dollar in the reference household�s income preserves

equality of well-being. AESE is equivalent to a condition on the way that

interpersonal comparisons are related to incomes, called Income-Di¤erence

Comparability (Blackorby and Donaldson, 1994). If a household with arbi-

trary characteristics and a reference household facing the same prices have

incomes such that their utilities are equal, common absolute increases in

their incomes (which leave the income di¤erence unchanged) preserve util-

ity equality.

Instead, suppose that we require the weaker condition that the change

in the reference household�s income that preserves utility equality is inde-

pendent of income. This requires the existence of a function � such that

dxe = �(p;z)dx. (128)

A one dollar increase in household income requires an increase of �(p;z)

dollars to preserve equality of well-being. Integrating both sides of (128)
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gives

xe = X(p; x;z) = �(p;z)x+ �(p;z); (129)

for some function � that is independent of total expenditure. Because X is

increasing in x and homogeneous of degree one in (p; x), �(p;z) > 0 for all

(p; z), � is homogeneous of degree zero, and � is homogeneous of degree one

in p. In addition, because X(p; x;zr) = x for all (p; x), �(p;zr) = 1 and

�(p;zr) = 0 for all p.

De�ning R(p;z) = 1=�(p;z) and A(p;z) = ��(p;z)=�(p;z), the equa-

tion in (129) can be rewritten as

xe = X(p; x;z) =
x�A(p;z)
R(p;z)

. (130)

Because V (p; x;z) = V r(p; xe), the indirect utility function can be written

as

V (p; x;z) = V r
�
p;
x�A(p;z)
R(p;z)

�
, (131)

and the expenditure function E is given by

E(u;p;z) = R(p;z)Er(u;p) +A(p;z). (132)

Because �(p;zr) = 1 and �(p;zr) = 0, R(p;zr) = 1 and A(p;zr) = 0.

We call the condition expressed in (129) to (132), Generalized Absolute

Equivalence-Scale Exactness (GAESE). A and R are the absolute and rela-

tive components for the equivalent-expenditure function.

For GAESE (and AESE), the cost of characteristics can be considered
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as the cost of maintaining a household with characteristics z at a particular

utility level less the cost of maintaining a reference household at the same

utility level, given by E(u;p;z)� Er(u;p). Given GAESE, this becomes

E(u;p;z)� Er (u;p) = (R (p;z)� 1)Er(u;p) +A (p;z) : (133)

The term A (p;z) is a �xed cost that is the same at all utility levels. There-

fore, the equation in (133) has the convenient interpretation that the ex-

penditure function consists of a �xed component that is independent of

household expenditure and a component that is proportional to household

expenditure.

Given GAESE, the absolute equivalence scale SA is a¢ ne in income and

is given by

SA =
(R(p;z)� 1)x+A(p;z)

R(p;z)
. (134)

It is increasing (decreasing) in x ifR > 1 (R < 1). Because limx!0 SA(p; x;z) =

A(p;z)=R(p;z), AESE is approximately satis�ed for small x.

If V (�; �;z) is di¤erentiable for all z with @V (p; x;z)=@x > 0 for all

(p; x;z), by Roy�s identity, given GAESE, the demand equations qi for i =

1; :::; n, satisfy

qi(p; x;z) = R(p;z)qri

�
p;
x�A(p;z)
R(p;z)

�
+
@R(p;z)

@pi

�
x�A(p;z)
R(p;z)

�
+
@A(p;z)

@pi
, (135)

where qri = qi(�; �;zr) is the reference household�s budget share equations.
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4.5 Empirical Procedure

Parametric estimation of equivalent-expenditure functions requires speci-

�cation of the demand system and parametric expressions of the restric-

tions embodying GRESE/GAESE. The econometric strategy we employ

exploits the following convenient characteristic of GRESE/GAESE: given

GRESE/GAESE, if any household type has demand functions that are

quadratic in the natural logarithm of income, then all household types have

commodity demands that are quadratic in the natural logarithm of income

and if any household type has demand functions that are of the form of

the translated QUAIDS, then all household types have commodity demands

that are of the form of the translated QUAIDS. Therefore, the reference

expenditure function can be maintained to be not PIGLOG or a¤�ne. The

QUAIDS and the translated QUAIDS satisfy this requirement. The spe-

ci�c parameterization of each price function and household characteristic

variables are illustrated in later subsections.

In order to obtain consistent parameter estimates, we use an Amemiya-

Tobit type estimation method to take care of a large portion of zero ex-

penditure observations on some goods. Among several estimation methods

available, we employ the two-step estimation procedure of Shonkwiler and

Yen (1999). The next subsection describes the construction of our data from

three data sources.
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4.5.1 Data

Our data sets are constructed from three sources: the Japanese Panel Survey

on Consumers (JPSC) conducted and administered by the Institute for the

Research on Household Economics, and the Consumer Price Index Survey

and Family Expenditure Survey Index administered by the Statistics Bu-

reau and the Director-General for Policy Planning (Statistical Standards)

of Japan.

JPSC is panel data that tracks the personal lives of young women in

Japan over a number of years. The survey consists of a number of question-

naires, topics ranged from family members and social activities to opinions

on current issues and their personalities. The �rst survey was conducted

in 1993 when a group of 1,500 women between the ages of 24 and 34 years

was surveyed. On top of that group of women, labeled as cohort A, another

500 women between the ages of 24 and 27 were added in 1997 (cohort B).

Another 836 women with ages between 24 and 29 were added in 2003 (co-

hort C). As of 2010, the survey is still continuing. It takes place in October

of each year, and most of the information about household expenditures is

collected for expenditures made in September. It was not until 1998 that

the survey began collecting information on expenditures of subaggregated

categories of goods. The following six categories are selected in the analy-

sis: Food; Fuel, light and water charges; Furniture and household utensils;

Clothes and footwear; Transportation; Communication.57

57All expenditure categories are Food; Housing; Fuel, light and water charges; Furniture
and household utensils; Clothes and footwear; Medical care; Transportation; Communica-
tion; Education; Reading and recreation; Social activity; Allowance for family members;
and Miscellaneous.
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Housing expenditure may be an important expenditure category, but

we decided not to include it in our analysis. Because Japanese housing ac-

commodations usually are characterized as far less spacious and far more

expensive than their U.S. counterparts, a shift of expenditures toward hous-

ing resulting from the need of growing children for more space, may have

a big impact on the household�s budgeting decisions. For renters, expendi-

ture on housing is simply de�ned as expenditure on rent. For homeowners,

the rent equivalent value of the �ow of the service from an owner-occupied

dwelling must be calculated. We could impute the rental-equivalent of hous-

ing for homeowners by following the procedure of Phipps (1998) because

JPSC contains enough details about housing characteristics for homeowners.

But, JPSC contains no information on the characteristics of rental housing

other than building type, �oor size, and number of rooms. Phipps obtained

rental-equivalent housing expenditures by regressing the rental charge on

several characteristics of the accommodation: age of the building, type of

house (single, semidetached, row house or duplex), number of rooms and

bathrooms, regional location, time period). They then produced the rental-

equivalent expenditures as predicted values from the estimated model using

variables of house of homeowners. The limited amount of information on

characteristics of rental housing units in JPSC makes it di¢ cult to trust the

reliability of estimates obtained by this method. Another method of im-

puting rent for owner-occupied dwellings includes user cost approach. The

user cost approach may be the ideal way to impute rental-equivalent cost,

but it requires more details on family �nancial matters such as the costs of

property taxes on house and land, and the costs of the monthly mortgage.
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We tried to make use of a variety of information on housing and real estate

for the years 1998 and 2000 complied in the Housing and Land Survey. But,

we could not extract any useful information from this source. Despite our

e¤orts to extract useful housing expenditure data for each household, the

lack of information on the characteristics of rented dwellings in JPSC hin-

ders the use of available methods to produce satisfactorily accurate values

for imputed rental-equivalence.

We de�ne each good as follows: Food includes expenditures on eating-out

and children�s school lunches as well as food in general. Utility includes ex-

penditures for electricity, gas, water, and sewer charges. Furniture includes

expenditures on durable goods such as electronic appliances and household

utensils as well as bedding. Clothing includes expenditures on clothing and

footwear. Transportation includes vehicle purchase expense, gasoline ex-

pense, and public transportation fees. Communication consists of postage

fees, and charges for telephone and Internet usage. Survey respondents are

made aware of these de�nitions.

We created variables for the number of children in the household classi-

�ed by their age group: Youji represents children under mandatory school-

age, usually less than 7 years old. Children who attend kindergarten are

included in this variable. Shou represents children who attend elementary

school, usually those between 7 and 12 years old. Chu represents children

who attend junior high school, usually those between 13 and 15 years old.

Kou represents children who attend high school, usually those between 16

and 18 years old. Since there are not enough observations of households

with high schoolers, we combine Chu and Kou to create a variable Shonen

134



for the analysis.

We estimate the child cost for typical married couples who are �nancially

independent of their parents, supportng both themselves and their children.

Based on this criteria, single women were eliminated from the sample be-

cause single-parent families headed by unmarried mothers are uncommon in

Japan. We further eliminated samples with children older than high school

age. We also eliminated those households in which all members are not

cohabitating, or with other adult members (such as grandparents).

Households that consist of several generations of family members are

able to have family members other than parents to take care of the children.

It is considered as a traditional fom of family composition. Unfortunately,

the sample selection criteria prevents us from estimating the e¤ect of hav-

ing other co-dwelling adult family members in the household. Having other

members of the family live in the household, for example, those who are

retired from market production is helpful to cover the opportunity cost as-

sociated with child-rearing. This is especially true in the case of infants

because they require constant care from parents who would be likely to be

more productive in the labor market than engaging in household production.

It may be the case that households which include the children�s grandparents

tend to have more children on that basis. This discussion is undoubtedly

related to the topic of female labor supply and fertility, another important

�eld in economics by itself. The arguments, however, regarding child cost

as one of the major reasons for the low birth-rate trend are usually centered

on the aforementioned nuclear family households which, in 2005, comprised
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57:9 percent of the total number of Japanese household units.58 A public

policy to encourage married couples to live with their parents does not seem

appropriate as a political stance because of the extent to which it would

involve the government in private family matters. Yamaguchi (2006) recom-

mends making child-care institutions more readily available in the workplace

itself to o¤set the opportunity cost associated with child rearing.

We have prepared two sets of price data. One is the yearly average price

index, strati�ed by the level of household income for the given year, ob-

tained from the Consumer Price Index. The income level is classi�ed into

�ve quintiles. Price data for income class is presented in Table 2 along with

the value of the threshold of the quintiles. We had to construct price data

for Transportation since the original data gives public transportation and

private transportation price data separately. We aggregated the two series

as the weighted average by the expenditure share of the average Japanese

household. The data on expenditures made by average Japanese households

on a variety of goods are available in the Family Expenditure Survey. Look-

ing at Table 2, the overall de�ationary trend in prices can be seen during

the data period. It is especially noticeable in Clothing and Communication.

It probably re�ects the recent major global shift of textile manufacturing

to China for cheaper production costs and the on-going rapid development

in the Internet and associated information technology. The other dataset

is the price index for the month of September from the same source. Since

more price variation is preferred, we used the price data mentioned earlier.

We selected a number of demographic variables which is used in the �rst

58One-person households made up a 29.5 percent of the population.
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stage estimation of the Probit model. After considering the appropriateness

of exogenous variables and the parsimoniousness of the model speci�cations

to explain the e¤ect on the occurrence of zero expenditures, we chose the fol-

lowing variables: age of the husband, the number of computer and vehicles

held in the household, total income, and dummy variables indicating urban-

ization of residence (13 big cities), credit card usage (occasional use), survey

years, wife�s employment status (employed), homeownership (public rental

housing), and education achievement levels of wife and husband. Other

than the variables selected, the household characteristics we have consid-

ered include: price index for private residential rent; price index for public

residential rent; price index for cost of repair and maintenance (from the

Consumer Price Index); typical daily time allocation of wife and husband

such as how many hours are spent on commuting etc.; units of dishwasher;

units of clothes dryers; units of air conditioners; units of TV sets; and units

of cell phones; household family �nancial management style, which has 18

di¤erent patterns.

It required some thought to construct the homeowership dummy. It is

not an unusual practice in the Japanese real estate business for a house

building itself to be owned by the resident while the land beneath it may be

rented or shared with neighbors. We have tried cases where homeownership

means that the building and land are both owned and cases where only the

building is owned. After checking the statistical signi�cance of the variables,

we found that a dummy indicating the public rental housing works better

than a dummy indicating homeownership. This indicator may be important

since living in public funded housing in Japan is a popular housing choice
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Food Clothing Trans- Utility Furni- Commu-
portation ture nication

1998
<405 104.2 107.2 96.3 99.8 121.4 120.4
405-568 104.1 107.8 96.5 99.7 120.8 120.8
568-746 104.0 107.5 96.6 99.9 124.2 121.0
746-1004 104.0 107.4 96.5 99.9 123.5 120.7
>1004 104.1 107.5 97.1 100.3 122.9 121.1
1999
<391 103.7 107.2 96.2 98.4 120.0 120.0
391-552 103.6 107.7 96.3 98.3 119.3 120.5
552-732 103.6 107.3 96.6 98.4 122.7 120.6
732-993 103.6 107.3 96.4 98.3 122.2 120.3
>993 103.6 107.2 96.8 98.8 121.4 120.8
2000
<382 101.7 106.2 97.3 99.9 116.4 116.4
382-533 101.7 106.5 97.3 99.8 116.1 117.0
533-711 101.6 106.2 97.3 100.0 119.0 117.1
711-964 101.6 106.0 97.4 99.9 118.1 116.8
>964 101.6 105.9 97.9 100.4 117.6 117.4
2001
<375 101.0 103.8 98.1 100.7 112.5 109.5
375-524 101.0 104.2 97.9 100.6 112.3 109.9
524-692� 100.9 103.8 98.1 100.7 114.4 110.0
692-936 100.9 103.7 98.1 100.7 113.7 109.9
>936 100.9 103.6 98.5 101.0 113.3 110.3
2002
<366 100.3 101.6 97.6 99.5 108.5 108.0
366-507 100.3 101.7 97.5 99.4 108.5 108.3
507-675 100.2 101.5 97.7 99.5 109.9 108.2
675-920 100.2 101.4 97.8 99.4 109.3 108.2
>920 100.2 101.3 98.2 99.8 109.2 108.6
2003
<364 100.1 99.8 97.6 99.1 105.7 107.9
364-500 100.1 99.8 97.5 99.0 105.6 108.1
500-657 100.0 99.7 97.7 99.1 106.4 108.0
657-890 100.0 99.6 97.8 99.0 106.0 108.1
>890 100.0 99.5 98.2 99.3 105.9 108.5

Table 2: Price data.
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for many young couples in suburban areas. The idea of public housing is

viewed more positively in Japanese society than in the U.S.

Yearly dummy variables do not appear to be good predictors of zero

expenditure occurrence. Nevertheless, a dummy for year 2001 was found to

be statistically signi�cant for some goods. We may interpret this as "911

terrorist attack" e¤ect. If the year 2002 dummy turned out to be signi�cant,

then we may interpreted it as the "World Cup" e¤ect since it was co-hosted

by Japan and Korea in July of 2002. The husband income and wife income

data on JPSC are marked by a number of missing records and this incident

is often encountered in microdata. We have avoided having to discard some

of the observations by assigning an income of zero for wives who appear

to be unemployed, housewives or students. The total income is the sum of

incomes from both husband and wife.

We have observed that there exit a few observations with unit budget

share. Of course, this can occur in only one good since, in that case, budget

shares of all other goods will be zero. This is perfectly legitimate since a

household can spend on goods outside of the six categories of goods which

we analyze. A household can also have zero expenditure on certain goods

even while consuming them: ones does not go naked during a time when

no clothing purchases have been made. Nevertheless, these outliers are not

favored by statistical analysis and are likely to contaminate the precision

of the parameters we would like to estimate. We found one sample of unit

value of budget share in Food, two samples in Utility, none in Furniture,

Clothing and Transportation, and one in communication. After inspecting

the histograms of the budget share data shown in Figure 7, we concluded
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Figure 7: Histograms of the budget share for six consumption items.
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that the observation with unit budget share in Communication is an outlier.

We eliminated that observation for the reason that the second highest value

is only 0:67. For Food and Utility, seveal observations can be seen lying

at the right tail of the histograms including those at one. This implies

that there is a negligible, but positive probability that the budget shares

of Food and Utility take very high values. So, we decided to keep the

observations. Decisions on keeping or eliminating these observations with

unit budget share may a¤ect the estimates of parameters and its precision

greatly since discarding these observations also eliminates the occurrence of

zero expenditures on all other goods. The e¤ect is unclear and we will not

consider this aspect further.

Accounting for all these sample selection procedures and missing records,

we have a total of 3,914 observations used in our main econometric analysis.

4.5.2 Parametric Demand System Speci�cations

The demographically modi�ed indirect utility function of QUAIDS of Bank,

Blundell and Lewbel (1997) is written as

V (p; x;z) =

"�
lnx� ln a(p;z)

b(p;z)

��1
� c (p;z)

#�1
; (136)

where a is homogeneous of degree one in p and b and c are homogeneous

of degree zero in p, and a(p;z) > 0 is required to maintain that V is

increasing in x for all (p; x). Denoting ar(p) = a(p;zr), br(p) = b(p;zr) and

cr(p) = c(p;zr), and assuming that the reference indirect utility function is
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QUAIDS, GRESE implies that

V (p; x;z) = V r(p; xe) = V r
�
p; exp

�
lnx� lnG(p;z)

K(p;z)

��

=

240@ lnx�lnG(p;z)
K(p;z) � ln ar(p)

br(p)

1A�1 � cr(p)
35�1

=

264
�
lnx�lnG(p;z)�K(p;z) ln ar(p)

K(p;z)br(p)

��1
�cr(p)

375
�1

.

Thus, if reference preferences satisfy QUAIDS then, under GRESE, all

households have QUAIDS preferences. In this case, GRESE implies that

ln a(p;z) = lnG(p;z) +K(p;z) ln ar(p);

b(p;z) = K(p;z)br(p),

and

c(p;z) = cr(p).

Thus, we can estimate equivalent-expenditure functions given GRESE by

requiring c(p;z) = cr(p) and calculating

K(p;z) =
b(p;z)

br(p)
,

and

lnG(p;z) = ln a(p;z)�K(p;z) ln ar(p).
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In addition to estimating equivalent-expenditure functions, use of the QUAIDS

demand system allows a simple parametric test of the behavioral restric-

tions of GRESE against an unrestricted QUAIDS alternative. In particular,

if preferences do not satisfy c(p;z) = cr(p), then GRESE cannot hold.

It is also possible to test down from GRESE in this framework. We can

test ESE against GRESE by asking whether K(p;z) = 1 or, equivalently,

b(p;z) = br(p).

The demographically modi�ed indirect utility function of translated QUAIDS

of Lewbel (2003) is written as

V (p; x;z) =

"�
ln [x� d(p;z)]� ln a(p;z)

b(p;z)

��1
� c (p;z)

#�1
; (137)

where d and a are homogeneous of degree one in p, b and c are homogeneous

of degree zero in p, and a(p;z) > 0 is required to maintain that V is

increasing in x for all (p; x).

The translated QUAIDS is a rank four demand system that is almost

polynomial in log-expenditure. As expenditure grows large relative to d,

the translated QUAIDS has expenditure share equations that approach a

function that is quadratic in the natural logarithm of expenditure. However,

as expenditure becomes small relative to d, expenditure share equations

asymptote to plus or minus in�nity, and the equations are unde�ned for

expenditures less than d.

Denoting ar(p) = a(p;zr), br(p) = b(p;zr), cr(p) = c(p;zr), as be-

fore, and dr(p) = d (p;zr), and assuming that the reference indirect utility
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function is translated QUAIDS, GAESE implies that

V (p; x;z) = V r(p; xe) = V r
�
p;
x�A(p;z)
R(p;z)

�

=

264
0@ ln

h
x�A(p;z)
R(p;z) � dr(p)

i
� ln ar(p)

br(p)

1A�1 � cr(p)
375
�1

=

264
�
ln[x�A(p;z)�dr(p)R(p;z)]�lnR(p;z)�ln ar(p)

br(p)

��1
�cr (p)

375
�1

.(138)

Assuming that the reference indirect utility function is translated QUAIDS,

GAESE implies that all households have translated QUAIDS preferences,

and

d(p;z) = R(p;z)dr(p) +A(p;z);

ln a(p;z) = lnR(p;z) + ln ar(p);

b(p;z) = br(p);

and

c(p;z) = cr(p).

Thus, we can estimate equivalent-expenditure functions given GAESE by

restricting b(p;z) = br(p) and c(p;z) = cr(p) and calculating

R(p;z) =
a(p;z)

ar(p)
;
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and

A(p;z) = d(p;z)�R(p;z)dr(p). (139)

With these speci�cations for d, a, b, and c, A can be either positive or

negative, but R is positive.

In addition to estimating equivalent-expenditure functions under GAESE,

using the translated QUAIDS allows a simple parametric test of GAESE

against an unrestricted translated QUAIDS alternative. In particular, if

preferences do not satisfy c(p;z) = cr(p) and b(p;z) = br(p), then GAESE

cannot hold. It is also possible to test down from GAESE in this framework.

We can test AESE against GAESE by asking whether R(p;z) = 1 or, equiv-

alently, a(p;z) = ar(p). Furthermore, we can test ESE against GAESE by

asking whether A(p;z) = 0, which is true only if d(p;z) = 0.

To estimate QUAIDS demand system, we specify the functions, a, b, and

c as

ln a(p;z) = a0(z) +
nX
k=1

ak(z) ln pk +
1

2

nX
k=1

nX
k=1

akl ln pk ln pl; (140)

where
Pn
k=1 ak(z) = 1,

Pn
l=1 akl(z) = 0 for all k, and akl = alk for all k and

l,

b(p;z) =
1

1� b0(z)
exp

(
nX
k=1

bk(z) ln pk

)
, (141)

where
Pn
k=1 bk(z) = 0, and

c(p;z) =

nX
k=1

ck(z) ln pk, (142)
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where
Pn
k=1 ck(z) = 0.

The functions ak, bk, and ck depend on z, and we assume the linear

speci�cation such that:

ak(z) = ark + a
Youji
k Youji+ aShouk Shou+ aShonenk Shonen; (143)

bk(z) = brk + b
Youji
k Youji+ bShouk Shou+ bShonenk Shonen, (144)

for k = 0; :::; n, and

ck(z) = crk + c
Youji
k Youji+ cShouk Shou+ cShonenk Shonen, (145)

for k = 1; :::; n. Youji is the natural logarithm of the number of children

younger than 7 plus one, Shou indicates the natural logarithm of the number

of children between the ages of 7 and 12 plus one, and Shoen is the natural

logarithm of the number of children between the ages of 13 and 18 plus

one.59 Other household characteristics can be incorporated into the equa-

tions (143), (144) , and (145) such as geographical location, housing tenure,

and education level of husband and wife, etc. Since those demographic char-

acteristics are used for the Probit estimation of sample selection equations,

we do not include them in the demand system.

Two parameters are set rather than estimated. We set ar0 so that ln a(p;z
r)

is equal to the average expenditure of the reference household (a household

without any children) in 2001 (the middle year of data).60 We set br0 = 0

59 Including the number of children in di¤erent age bands may induces discontinuities
that are certainly spurious. Browning (1992) suggests using as a variable the average age
of the children in the household.
60The average total expenditure for the 2001 panel is 1:303 (in unit of 100,000 yen).
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for identi�cation purpose.

The restrictions in (140) to (142) are carried over to the restrictions

imposed on (143) to (145) such that:

nX
k=1

ark = 1, (146)

nX
k=1

aYoujik =
nX
k=1

aShouk =
nX
k=1

aShonenk = 0, (147)

nX
k=1

brk =
nX
k=1

bYoujik =
nX
k=1

bShouk =
nX
k=1

bShonenk = 0, (148)

nX
k=1

crk =
nX
k=1

cYoujik =
nX
k=1

cShouk =
nX
k=1

cShonenk = 0: (149)

Applying the logarithm form of Roy�s identity produces the log-quadratic

expenditure budget share equations

wi(p; x;z) =
@ ln a(p;z)

@ ln pi
+
@ ln b(p;z)

@ ln pi
(lnx� ln a(p;z))

+
@q(p;z)

@ ln pi

(lnx� ln a(p;z))2
b(p;z)

, (150)

for i = 1; :::; n. Substituting equations (140) - (142) into (150), we get

wi(p; x;z) =

 
ai(z) +

nX
k=1

arik ln pk

!
+ bi(z)(lnx� ln a(p;z))

+ci(z)(1� b0(z))
(lnx� ln a(p;z))2

exp

(
nX
k=1

bk(z) ln pk

) , (151)

for i = 1; :::; n.
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GRESE requires ck(z) = crk for all k = 1; :::; n. Thus, given QUAIDS

demands, GRESE restricts preferences in such a way that the coe¢ cients on

(lnx)2 are proportional across household types. To test up from GRESE,

we estimate a model in which GRESE is not maintained so that these pro-

portionality restrictions are relaxed. In that case, the share equations are

homogeneous in (b0(z); c1(z); :::; cn(z)), so that these functions are not sep-

arately identi�able. Doubling b0 (z) halves all ck (z)�s. To identify ck(z) in

the unrestricted QUAIDS, we impose the restriction b0(z) = 0. However,

under GRESE, this restriction is not necessary because ck(z) = crk, and we

use the weaker restriction that b0(zr) = br0 = 0.

GRESE can be also tested down. One can test whether or not K(p;z) =

1 which gives ESE by testing the additional restriction that b0(z) = br0 = 0

in a GRESE-restricted model.

Given GRESE, equivalent-expenditure functions are uniquely identi�-

able if and only if GRESE is maintained a priori and the reference expendi-

ture function is not PIGLOG. The QUAIDS model is PIGLOG if and only

if c(p;z) = 0. Thus, we may test identi�cation restrictions of GRESE of

testing crk = 0 for all k, in a GRESE-restricted model.

With the GRESE-restricted QUAIDS model, the GRESE functions K

and G take on relatively simple forms in terms of the parameters if evaluated

at an n-vector of equal prices p� = 1, with

K(p�;z) =
1

1� b0(z)
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and

lnG (p�;z) = a0(z)�
ar0

1� b0(z)
.

Substituting these expressions into equation (120) and manipulating, we get

a simple expression for the log-equivalence scale evaluated at a vector of unit

prices:

lnSR(p
�; x;z) = b0(z) (lnx� a0(z)) + (a0(z)� ar0). (152)

The �rst term is zero if lnx = a0(z), which by construction is true for house-

holds whose equivalent expenditure is equal to the average expenditure of

the reference households in the base year 2001. Thus, lnS (p�; a(p�;z);z) =

a0(z)�ar0. If ESE is true, then b0(z) = 0, so that the equivalence scale takes

this form at all levels of expenditure.

To estimate the translated QUAIDS demand systems, we specify the

functions d, a, b, and c as

d(p;z) =
nX
k=1

dk(z)pk;

a(p;z) = a0(z) +

nX
k=1

ak(z) ln pk +
1

2

nX
k=1

nX
l=1

akl ln pk ln pl, (153)

where
Pn
k=1 ak(z) = 1,

Pn
l=1 akl(z) = 0 for all k and akl = alk for all k and

l,

ln b(p;z) =
nX
k=1

bk(z) ln pk, (154)
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where
Pn
k=1 bk(z) = 0, and

c(p;z) =
nX
k=1

ck(z) ln pk, (155)

where
Pn
k=1 ck(z) = 0.

It is convenient to denote

d0(z) =
nX
k=1

dk(z). (156)

The functions dk, ak, bk, and ck depend on z, and we assume that

dk(z) = drk + a
Youji
k Youji+ aShouk Shou+ aShonenk Shonen, (157)

ak(z) = ark + a
Youji
k Youji+ aShouk Shou+ aShonenk Shonen; (158)

bk(z) = brk + b
Youji
k Youji+ bShouk Shou+ bShonenk Shonen, (159)

ck(z) = crk + c
Youji
k Youji+ cShouk Shou+ cShonenk Shonen, (160)

for k = 1; :::; n. Youji is the natural logarithm of the number of children

younger than 6 plus one, Shou indicates the natural logarithm of the num-

ber of children between the ages of 7 and 12 plus one, and Shonen is the

natural logarithm of the number of children between the ages of 13 and

18 plus one. Other household characteristics can be incorporated into the

equations in (157), (158), (159), and (160) such as geographical location,

housing tenure, and education level of husband and wife, etc. Since those

demographic characteristics are used �rst in the Probit estimation for the

two-step estimation procedure, we do not include them in the demand sys-
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tem.

The restrictions in (153) to (155) are carried over to the restrictions

imposed on (157) to (160) such that:

nX
k=1

ark = 1, (161)

nX
k=1

aYoujik =
nX
k=1

aShouk =
nX
k=1

aShonenk = 0, (162)

nX
k=1

brk =
nX
k=1

bYoujik =
nX
k=1

bShouk =
nX
k=1

bShonenk = 0, (163)

nX
k=1

crk =
nX
k=1

cYoujik =
nX
k=1

cShouk =
nX
k=1

cShonenk = 0. (164)

There are no restrictions on dk�s.

We note that, with the translated QUAIDS speci�cation, the GAESE

functions A and R take on relatively simple forms in terms of the parameters

if evaluated at an n-vector of unit prices p� = 1 with

R(p�;z) = exp(a0(z)� a0 (zr))

and

A(p�;z) = (d0(z)� exp(a0(z)� a0(zr))d0(zr)).

The GAESE in (134) becomes

SA =
(exp(a0(z)� ar0)� 1)x+ (d0(z)� exp(a0(z)� ar0)dr0)

exp(a0(z)� ar0)
. (165)

Applying Roy�s theorem in its logarithmic form to (138) generates the
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expenditure share equations

wi =
pidi(z)

x
+

�
1� d(p;z)

x

�
�0B@ ai(z) +

Pn
k=1 aik ln pk + bi(z)

�
ln x�d(p;z)a(p;z)

�
+ ci(z)
b(p;z)

�
ln x�d(p;z)a(p;z)

�2
1CA ; (166)

for i = 1; ::; n. Equation (166) does not necessarily satisfy GAESE, which

requires that bk(z) = brk and ck(z) = crk. The translated QUAIDS demand

system corresponds to an a¢ ne expenditure function if and only if b(p;z)

and c(p;z) are both 0, and corresponds to a log-a¢ ne expenditure function

if and only if d(p;z) and c (p;z) are both 0. Because equivalent-expenditure

functions given GAESE are uniquely identi�able if the expenditure function

is neither a¢ ne nor log-a¢ ne, identi�cation is possible given GAESE if c is

nonzero or if both d and b are nonzero.

4.5.3 Estimation

The usual procedure to estimate the demand systems is to append an error

term " to the right-hand side of the share equations and then estimate the

model by ML or iterative SUR, assuming the joint normal distribution of the

errors term. As mentioned, this usual estimation procedure is not applicable

for our data due to the presence of a large pile of zero expenditures in some

of the goods.

In microeconomics data on consumer expenditure, it is frequently the

case that some units do not purchase some of the commodities, alcohol and
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tobacco being the standard examples.61 Microeconomics theory predicts it

as the case of a corner solution of the optimization problem as opposed to the

interior solution. When the relative price of goods is too high, the consumer

may choose not to consumer the good at all as the optimal consumption

allocation. Although the zero expenditure on some goods is entirely consis-

tent with the theory of consumer behavior, the estimation faces a serious

problem in dealing with it. In the presence of a mass of zero expenditure

observations, a joint normal distribution of error structure does not allow

for a signi�cant proportion of realization at zero expenditure.62 Standard

estimation methods for this model such as SUR or maximum likelihood es-

timator do not take special account of zero expenditures, and consequently

yield inconsistent estimates of the parameters. Even if observations contain-

ing zero expenditures on one or more goods were eliminated for purposes

of estimation, these standard estimators would be biased and inconsistent.

Moreover, excluding these observations might signi�cantly reduce the sam-

ple size. Regardless of whether or not the complete sample is used, the bias

and inconsistency occur because the random disturbances have expectations

which are not zero and which depend upon the exogenous variables. The

easiest way to deal with zero expenditure is to form a broader aggregate

commodity category. Hoderlein (2008) grouped his housing goods category

61Fry and Pashardes (1994) studied the tobacco expenditures, Su and Yen (2000) studied
the demands for alcohol and tobacco products with a number of zero-expenditure samples
in their data, and Unayama (2006) examined the rank of demand function for alcohol.
62Woodland (1979) proposed that the error terms be modelled as Dirichlet or log-normal

distribution for the purpose of restricting the deterministic part and disturbance part of
budget share to the closed unit interval [0; 1]. His method does not solve zero expenditure
issue since Dirichlet (and log-normal) distribution cannot model a sharp increase of the
probability of expenditure at zero.
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as a combination of rent or mortgage payment, furniture, and household

goods and services which reduces the occurrence of zero expenditures on

each of these subcategories.

Assuming that the zero expenditure occurs as a result of the corner solu-

tion, the econometric methods based on the Kuhn-Tucker conditions (Wales

and Woodland, 1983) and on the virtual prices, which is dual to the Kuhn-

Tucker conditions (Lee and Pitt, 1986, 1987), have been developed.63 How-

ever, because any of the methods usually requires the evaluation of multiple

integration to calculate the value of likelihood function in each iteration, the

application is limited to very restrictive forms of the demand model. The

simulation and Bayesian methods have been proposed to circumvent the

curse of dimensionality (Kao, Lee and Pitt, 2001, Millimet and Tchernis,

2008, Pitt and Millimet, 1999).64

Households may appear to have bought none of some particular goods

not because they are too expensive, but because the enumeriation period

was too short. Storable or durable goods such as canned foods and clothing

are frequently not purchased during the survey period even if they are used

during that time. Zero purchases of clothing during the particular weeks or

month of a survey period does not mean that people go naked during that

period.65 This problem had been noticed for a while, and Deaton and Irish

(1982) �nally attempted to estimate a econometric model of the household

63An earlier attempt to take a possible corner solution into account in demand analysis
includes Barnett (1979).
64The estimation of demand systems by Bayesian methods are studied by Barnett,

Geweke and Wolfe (1991a, 1991b), Terrell (1996).
65JPSC collects expenditures made during the entire month of September. We do not

know whether a one-month enumeration period is long enough or is too short.
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demand behavior with zero expenditure samples which are assumed to be

generated by the infrequent purchase. Deaton and Irish (1984) present a p-

tobit model that extends the tobit speci�cation to model zero expenditures.

Recorded data for expenditure on commodities are 1=p times consumption

during the survey period, where p denotes the ratio of the survey period to

the purchase period. This is applicable when goods are consumed during

the survey period; however, expenditures are only observed with a proba-

bility p because of infrequent purchasing (Deaton and Irish, 1984). Kay,

Keen and Morris (1984) extend the model proposed by Deaton and Irish

(1984) by providing a stochastic relationship between expenditure and con-

sumption in a sophisticated manner. Keen (1986) estimates a system of

linear Engel functions that satisfy the adding-up condition and derives a

consistent estimator based on the instrumental variables method. While

the purchasing probabilities are constant parameters in Deaton and Irish

(1984), Kay, Keen and Morris (1984) and Keen (1986), Blundell and Meghir

(1987) propose a model with probit-type purchasing probabilities. Gri¢ ths

and Valenzuela (1998), Hasegawa, Ueda and Mori (2008) estimate a system

of linear Engel functions and equivalence scales using a Bayesian method,

and Pudney (1989, 1990) reviews several theoretical aspects associated with

zero expenditures.

Another alternative approache is the Amemiya-Tobin approach which

explicitly takes into account the censored nature of the negative quantities

demanded. It has been applied where estimation is via full information

maximum likelihood (Wales and Woodland, 1983; Yen and Lin, 2004), quasi-

maximum likelihood (Yen, Lin and Smallwood, 2003), or various two-step
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estimators (Heien and Wessell, 1993; Perali and Chavas, 1998; Shonkwiler

and Yen, 1999; Meyerhoefer, Ranney and Sahn, 2003).

In this empirical section, we employ a variant of the bivariate sample

selection model of Heckman (1974). The model can be viewed as a sample

selection generalization of Amemiya�s Tobit system. The estimation is done

in two steps instead of doing a full maximum likelihood estimation at all

once.66 The two-step procedure guarantees the consistency of the estimates

as long as parameters of each step are consistent, but it results in the loss of

e¢ cient estimation. The next section illustrates the two-step estimation pro-

cedure in Shonkwiler and Yen (1999) which has corrected the inconsistency

issue found in Heien and Wessell (1993).

The usual way to deal with the endogeniety likely to exist in demand

systems is to use income or some functions of income as instruments and

estimate the system by GMM. As long as we use this two-step estimation

procedure, we cannot use GMM in the second step. We may literally replace

the total expenditure with the projection of the total expenditure, but the

theoretical validity of doing this is questionable.

4.5.4 The Two-Step Estimation Procedure

The idea of this procedure is that one equation describes the household�s

decision to participate in the market in the similar way to the original frame-

work for female labor supply study of Heckman (1974), and a set of equations

describes the consumption behavior provided that a decision has been made

to participate in the market. A formal structure is considered in which

66The full ML estimation procedure is provided in Yen and Lin (2004)
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censoring of each commodity i is governed by a separate stochastic process

y0it� i + & it such that:

w�it = wit(p; x;z;�) + "it if y0it� i + & it > 0

= 0 if y0it� i + & it � 0
; (167)

where w�it is the observed expenditure share, yit is a vector of exogenous

variables, � i is a conformable parameter vector, and "it and & it are ran-

dom errors. Assuming the 2n � 1 vector of disturbances ut = ["0t; &
0
t] =

["01t; :::; "
0
nt; &

0
1t; :::; &

0
nt]
0 is multivariate normal with

E(ut;us) =

264 �"" �"&

�"& In

375 if t = s

= 0; otherwise, (168)

where

�"" = E
�
"t"

0
t

�
= [�ij ] ;

and

�"& = E
�
"t&

0
t

�
= diag [�1; �2; :::; �n] .

Note that although the binary censoring mechanism y0it� i+& it is independent

of y0jt� j+& it and the level equation wit(p; x;z;�)+"it for i 6= j, correlations

are allowed between y0it� i + & it and wit(p; x;z;�) + "it for each commodity

and, more importantly, among wit(p; x;z;�) + "it and wjt(p; x;z;�) + "jt

through �ij 6= 0 for all i; j. Cross-equation restrictions and correlations

among demand equations are the focus of existing censored system estima-
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tors. Using equation (167) and the bivariate normality of ["i; & i]
0, the mean

of w�it conditional on a positive observation is

E
�
w�itj& it > �y0it� i

�
= wit (pt; xt;�) + �i�

�
y0it� i

�
=�
�
y0it� i

�
; (169)

where � (�) and � (�) are the standard normal probability density and dis-

tribution functions, respectively. Since Pr [& it > �y0it� i] = � (y0it� i) and

E [w�itj& it < �y0it� i], the unconditional mean of w�it is

E [w�it] = �
�
y0it� i

�
wit (pt; xt;�) + �i�

�
y0it� i

�
: (170)

Based on this equation, the system of share equations can be written as

wit = �
�
y0it� i

�
wit (pt; xt;�) + �i�

�
y0it� i

�
+ �it, i = 1; :::; n (171)

where �it = wit � E [w�it]. It is easily seen that E [�it] = 0 and that �it

is heteroscedastic. Drawing on Shonkwiler and Yen (1999), the system in

(171) can be estimated with a two-step procedure: (1) obtain maximum-

likelihood (ML) probit estimates b� i of � i using the binary outcomes w�it = 0
and w�it > 0; (2) calculate � (y0it� i) and � (y

0
it� i) for all i and estimate �,

�1; ::; �n in the augmented system

wit = �
�
y0itb� i�wit (pt; xt;�) + �i� �y0itb� i�+ �it (172)

by ML or SUR procedure.

Because the ML probit estimators b� i are consistent, applying ML or SUR
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estimation to equation (172) produces consistent estimates in the second

step.67 However, because error terms �it are heteroskedastic, the second-

step ML or SUR estimator obtained by the usual procedure is ine¢ cient.

E¢ ciency could be achieved by using a weighted system estimator to account

for the speci�c type of heteroskedasticity. We used the heteroscedasticity-

consistent covariance matrix estimator proposed by White (1980b). Another

problem caused by the use of the estimated b� i in equation (172) is that the
covariance matrix of the second-step estimator is incorrect. This covariance

matrix can be adjusted by the procedure of Murphy and Topel (1985).

Denote the log-likelihoods of the �rst-step probit models as L11 (� 1) ; :::;

L1n (�n) and the log-likelihood of the second-step system as L2 (b� 1; ::; b�n;�).
Then, the covariance matrix of b� is

� = R�12 +R�12
�
R03R

�1
1 R3 �R04R�11 R3 �R03R�11 R4

�
R�12

where by extending the results of Murphy and Topel (1985),

R1 = diag [R11 (� 1) ; :::; R1n(�n)]

R3 =
�
R031 (� 1;�) j � � � jR03n (�n;�)

�0
R4 =

�
R041 (� 1;�) j � � � jR04n (�n;�)

�0
67Estimation of the separate probit models implies that the restriction E(�it�jt) = 0 for

i 6= j in covariance matrix of (168), without which the multivariate probit model would
have to be estimated. With some loss in e¢ ciency (relative to multivariate probit) these
separate probit estimates are nevertheless consistent.
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and for i = 1; :::; n,

R1i(� i) = E
@L1i
@� i

�
@L1i
@� i

�0
= �E @2L1i

@� i@� 0i

R3i (� i; �) = E
@L2
@� i

�
@L2
@�

�0
= �E @2L1i

@� i@�
0

R4i (� i; �) = E
@L1i
@� i

�
@L2
@�

�0
,

and R2 is the information matrix of the second-step estimation:

R2 = E
@L2
@�

�
@L2
@�

�0
= �E @2L2

@�@�0
:

4.6 Results

For the �rst-step Probit estimation, because of only a small number of obser-

vations of zero expenditure on Food and Utility, we could not obtain precise

parameter estimates for these items. Therefore, in the second-step estima-

tion, we did not use share equations of the form (172) for Food and Utility.

We failed to estimate the translated QUAIDS, possibly because of the term

x�d(p;z) in (166), which is unde�ned if d(p;z) exceeds the minimum value

of x. It is di¢ cult to prevent this from happening "during" the estimation.

Since d is a function of p and z with associated parameters, the function

evaluation during the optimization routine may produce x � d(p;z) < 0.

It may be easier to obtain succesful estimation with a smaller system, but

the system of smaller than four goods ruins the advantage of using the rank

"four" demand system.68 Therefore, we could not evaluate the household

68See section 2.2.5 for the disscusion on the rank of demand system again.
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preferences for GAESE and the possibility that there exists a �xed cost as-

sociated only with di¤erent number of children regardless the level of utility

or income.69

We also found the singularity of covariance matrix when the full set of

n equations is estimated in GRESE case. The two-step procedure allows

for the estimation of the full system unlike usual demand system estimation

procedure. Since the augmented system does not require the adding-up to

unity, the covariance matrix is not singular by construction. We follow the

plausible and simple approach, suggested by Pudney (1989), of treating the

nth good as a residual category with no speci�c demand of its own and es-

timated the rest of n� 1 equations; our nth item is transportation. Table 3

presents some parameter estimates associated with the calculation of equiv-

alence scale, and the log-likelihood values with their number of parameters

to calculate likelihood ratio test statistics. All speci�cation tests are based

on the likelihood ratio test.70

We look at the model statistics for four models: (1) unrestricted QUAIDS;

(2) GRESE-restricted QUAIDS; (3) ESE-restricted QUAIDS; and (4) un-

restricted AIDS as shown. For the case (4), the equivalence scale is not

identi�ed, but we can test it against the alternative that the model contains

the quadratic term as QUAIDS. If AIDS model is accepted, then the equiv-

alence scale obtained is not unique either under GRESE or ESE, and it is

di¢ cult to draw any conclusion from the resulting estimates of equivalence

scales. Given the maintained assumption of GRESE restricted QUAIDS,

69The GAESE speci�cation of household preferences can be implemented with QES.
We will discuss this in the conclusion section of this dissertation.
70The likelihood test is known to have a tendency to over-reject the hypothesis.
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ESE instead requires that b(p;z) = b(p). The likelihood ratio test statistics

for this hypothesis is 48:22 and is distributed as a �216 which has a one-

sided one percent critical value of 32. Therefore, the test prefers GRESE

speci�cation of QUAIDS model. Given an unrestricted QUAIDS model,

GRESE requires that c(p;z) = c (p)and that b(p;z) = b(p). The likelihood

ratio statistics is 76:78 and is distributed as a �212 which has a one-sided

one percent critical value of 26. Thus, the observable restrictions imposed

by GRESE on the QUAIDS model are rejected. Demographic e¤ects may

a¤ect the household demand behaviors in a more complicated way than

those permitted by GRESE. The likelihood ratio statistics for the hypothe-

sis that GRESE is true and the reference expenditure function is PIGLOG

(AIDS in this case) against a GRESE-restricted QUAIDS alternative is im-

portant to reject. Without the maintained assumption that GRESE is true

and that the reference expenditure function is not PIGLOG, the GRESE

equivalent-expenditure functions are not identi�ed. Our result shows that

the unrestricted AIDS is strongly rejected; the log-likelihood value is smaller

than the ESE-QUAIDS model with fewer parameters. It implies that the

quadratic term is important to describe the Japanese households�consump-

tion behaviors and suggests that the importance of using the rank three

demand system to account for the more �exible Engel curves (Pashardes,

1995).

The positive parameter values of a0�s indicate that more children gener-

ate larger equivalence scales, and our estimates of a0�s are all positive and

mostly signi�cant in all models, which help validate the model speci�cation.

As can be seen in equation (152), the negative value of b0(z) is necessary

163



to produce the expenditure-dependent equivalence scales decreasing in the

total expenditure. The important parameters for this are br0�s in the column

of GRESE restricted QUAIDS in Table 3. We managed to obtain negative

coe¢ cients for all of br0�s, but only one of them is signi�cant.

Based on this result of the GRESE restricted QUAIDS and on that of the

ESE restricted QUAIDS, �gure 8 shows the expenditure-dependent equiva-

lence scales with the price level normalized to unit prices in the base year.

We consider six household composition scenarios; (i) 1 Youji (ii), 1 Youji

and 1 Shou, (iii) 1 Shou and 1 Shonen, (iv) 2 Shou�s, (v) 1 Shonen, (vi) 1

shou, and (vii) 1 shou based on the estimates of ESE restricted QUAIDS.

We focus on (i), (v), (vi) and (vii) for one child cases. The equivalence scales

for households with one child in any of the age groups take the moderate

size in the mean expenditure level at 1:303 depicted by the dotted vertical

line with equivalence scales of between 1:2 and 1:6, which is a reasonable

range, and all of the equivalence scales decline as total expenditure rises, as

indicated by the GRESE parameter estimates. Next, we focus on (vi) and

(vii). The lower constant equivalence scale (1:338) based on the estimation

of the ESE restricted QUAIDS than the expenditure-dependent counterpart

based on the estimation of the GRESE restricted QUAIDS on the dotted

vertical line implies that the demand model may underestimate the equiva-

lence scales if it is restricted by the ESE speci�cation.71 The underestimated

equivalence scales may undermine the perceived cost related to childbirth

and child-rearing and may distort any policy decisions.

71Remember that a study by Hasegawa, Ueda and Mori (2008) obtained the scale of
1.3695 which is very close to our number (1.338) using the same data source. This indicates
that our estimation result is as robust as their study.
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However, the degree of decline of the scale for (vi) is still not enough to

be free from the criticism cast upon the constant equivalence scales for the

purpose of policy implementation. Looking at the scale for (vi), the values

of the scale at total expenditure 1:0 is 1:75 and at 2:0 is 1:40, approximately.

The corresponding equivalent expenditures are 0:75 and 0:80, and therefore,

the higher income households are going to need to receive a bigger compen-

sation to maintain the same utility level as before having a child. It is hardly

justi�able in any society to implement a policy in which the higher income

classes receive bigger welfare bene�ts.

4.7 Conclusion

This chapter demonstrated the use of an application of the �exible functional

form with higher rank to study the Japanese household demand behaviors

for the purpose of estimating the cost of a child. In doing so, we have used

conditions that can unambiguously identify the equivalence scales which

can vary in the total expenditure level. We also overcome the issue of the

presence of a mass of zero-expenditure observations to correct the bias in

the parameter estimates.

Our results show that the speci�cation of demand systems with expenditure-

dependent equivalence scales is statistically preferred to any of the more

restricted models, and that the equivalence scales decrease in total expendi-

ture. Moreover, the result implies that the implementation of the constant

equivalence scale may underestimate it, which may result in undermining

the cost associated with child-birth and child-rearing.

Based on our results, any public policies that bene�t families with chil-
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Figure 8: Plots of expenditure-dependent equivalence scales for households
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Unit is 100,000 yen.
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dren should consider the progressivity in the compensation. Poor households

with children should be given bigger compensations than rich households

with children to maintain the welfare equality. However, the lack of stronger

degrees of decline in the equivalence scales as income rises and their statisti-

cal signi�cance weaken the above assertion since our estimated equivalence

scales still produce higher equivalent expenditures for higher-income class

households.
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5. Conclusion

In this dissertation, after reviewing relevant theoretical results on the con-

sumer demand theory in chapter 2, chapter 3 investigates the regularity

property of the normalized quadratic demand system of Diewert and Wales

(1988b). The regularity conditions of monotonicity and concavity are two

of the axioms which guarantee the existence of the utility maximizing con-

sumers, and the ful�llment of all axioms makes direct utility, indirect util-

ity, and expenditure functions equivalent representations of the underlying

preferences. Without satisfaction of both curvature and monotonicity, the

second-order condition for optimizating behavior fails, duality theory fails,

and inferences resulting from derived estimating equations become invalid.

Barnett (2002) commented that imposition of the monotonicity condition is

especially overlooked when global curvature is imposed on the NQ model.

To futher examine his observation, we displayed regular regions, di¤eren-

tiating regular and non-regualr regions by the types of violations to fully

reveal the regularity property of the NQ model. We tried three methods of

imposing curvature on the NQ model: global, local, and no curvature im-

position, to see how the di¤erent methods a¤ect the regular regions of the

model. We found that monotonicity violations are especially likely to occur

when elasticities of substitution are greater than one. We also found that

imposing curvature locally produces di¢ culties in estimation, smaller regu-

lar regions, and poor elasticity estimates in many cases considered. When

imposing curvature globally, our results were better. Although violations of

monotonicity remained common in some of our cases, those violations do not
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appear to have been induced solely by the curvature imposition, but rather

by the nature of the Normalized Quadratic model itself. However, impo-

sition of global curvature makes complement goods more complement and

substitute goods more substitute. With the Normalized Quadratic model,

we �nd that both curvature and monotonicity must be checked with the

estimated model, as has previously been shown to be the case with many

other �exible functional forms. Imposition of curvature alone does not as-

sure regularity, and imposing local curvature alone can have very adverse

consequences.

One straightforward future research direction is to expand the analysis

to other, even newer demand systems such as QUAIDS, which has been

increasingly used as a better alternative to the classic AIDS model, and

such as the translated QUAIDS, which has the unusually high rank of four.

Lewbel (1988) suggested that a rank-three trigonometric demand system is

able to produce an unusually large regular region, but its implementation is

only found in Matsuda (2006) as far as we know.

Another direction is to try di¤erent methods of imposing correct curva-

ture on demand functions. Diewert and Lawrence (2002) proposed imposing

curvature at two points to ensure globally correct curvature without sacri-

�cing the �exibility property of the normalized quadratic pro�t function.

Diewert and Wales (1988a) proposed the concept of a semi�exible func-

tional form in which the rank of the Slutsky matrix is reduced, but in a

manner that does not restrict the price derivatives in any a priori undesir-

able way. This allows the researcher to systematically limit the parameter

space while maintaining full income �exibility and partial price �exibility,
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an objective that may prove useful in large demand systems. The model is

designed to estimate large demand systems by sacri�cing the �exibility to

attain globally correct curvature (Ryan and Wales, 1998). Moschini (1998)

studied the semi�exible AIDS on which only the local curvature is imposed.

Thus, it may be interesting to see whether this additional restrictiveness

induces further monotonicity violations as the rank of the Slutsky matrix is

reduced.

In chapter 4, we studied the expenditure-dependent equivalence scales to

estimate the cost of a child in Japan. We found that the Japanese household

equivalence scales are decreasing in the total expenditure as well as increas-

ing in the number of children. We introduced the property called "Gener-

alized Relative/Absolute Expenditure-Scale Exactness" (GRESE/GAESE)

which can identify the estimated equivalence scales by observed demand data

alone if the speci�cation of the reference household expenditure function is

neither a¢ ne nor log-a¢ ne (PIGLOG). Hence, we employ the functional

forms of the demand model that are neither a¢ ne nor log-a¢ ne and that

have a higher rank which can explain the more complicated shapes of the

Engel curves. We paid special attention to correcting a possible bias in the

parameter estimation induced by a pile of observations of zero expenditure

on some goods. Our results suggest an intuitively straightfoward policy

design for the child-support welfare program: the compensation should de-

pend on their income level as well as on the number of children. Depending

on what type of health insurance a household holds, Japan�s current child-

subsidy program sets income threshold levels for receiving child-support in

the form of monetary compensation. But the new recently proposed pro-
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gram does not set an income level cuto¤. Our results suggest that in terms

of the welfare equality there is a need for a mechanism to decrease bene�ts

as household income goes up and for a reasonable limit to be set on the

income level for households to receive this entitlement.

Future research should focus on obtaining more robust estimation results

in order to draw persuasive conclusions for the purpose of devising policy.

Taking the case (iv) for the equivalence scale of a household with one child

between the ages of 7 and 12 years old, we contrived to obtain one that

declines relatively sharply in the total expenditure. However, this equiva-

lence scale still produces higher equivalent expenditures for households with

higher income. Hence, the criticism for the constant-equivalence scales still

remains. In order to draw a strong conclusion, we need to have larger neg-

ative values of statistically signi�cant parameter estimates for br0�s.

One direction to follow to modify our method is to try out other func-

tional forms of demand systems that are neither log-a¢ ne nor a¢ ne and

that possess ranks higher than two while we continue to search for a way to

get the translated QUAIDS to work.

Donaldson and Pendakur (1999) used the Quadratic Expenditure System

(QES) proposed by Howe, Pollak and Wales (1979).72 The demographically

modi�ed indirect utility function of QES is written as

V (p; x;z) =

��
x� a(p;z)
b(p;z)

�
� c (p;z)

��1
, (173)

where a and b are homogeneous of degree one in p and c is homogeneous of

72See section 2.2.5.4.
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degree zero in p. Denoting ar(p) = a (p;z), br(p) = b (p;z), and cr(p) =

c (p;z) and assuming that the reference indirect utility function is QES,

GAESE of (130) implies that

V (p; x;z) = V r(p; xe) = V r
�
p;
x�A(p;z)
R(p;z)

�

=

240@ x�A(p;z)
R(p;z) � ar(p)

br(p)

1A� cr(p)
35�1

=

��
x�A(p;z)�R(p;z)ar(p)

R(p;z)br(p)

�
� cr(p)

��1
. (174)

If reference preferences satisfy QES, then, given GAESE, all households have

QES preferences. In this case, GAESE implies that

a(p;z) = R(p;z)ar(p) +A(p;z);

b(p;z) = R(p;z)br(p),

and

q(p;z) = qr(p).

Thus, given GAESE, we can estimate equivalent-expenditures by requiring

c(p;z) = cr(p) and calculating

R(p;z) =
b(p;z)

br(p)

and

A(p;z) = a(p;z)�R(p;z)ar(p).
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One can check that GRESE cannot apply to the translated QUAIDS and

QES since it is not possible to obtain a representation such as (174) corre-

sponding to (173) or a representation such as (137) corresponding to (138).

Similarly, GAESE cannot apply to the QUAIDS speci�cation of demand

system. We do not know of any other demand systems that allow for the

implementation of GRESE.

For example, the exactly aggregable trigonometric Engel curve demand

system (Lewbel, 1988) is rank three, but imposition of GRESE or GAESE is

not feasible although the imposition of ESE is possible. The demographically

modi�ed indirect utility function of the trigonometric demand system is

written as73

V (p; x;z) = b(p;z) +
c(p;z) cos f� ln a(p;z)� � lnxg
1 + sin f� ln a(p;z)� � lnxg , � 6= 0, (175)

where a(p; z) is homogeneous of degree one, and b(p; z) and c(p; z) are

homogeneous of degree zero in p. Denoting ar(p) = a (p;zr), br(p) =

b (p;zr), and cr(p) = c (p;zr) and assuming that the reference indirect

utility function is the trigonometric demand system, ESE on (175) implies

that

V (p; x; z) = V r(p; xe) = V r
�
p;

x

G(p; x)

�
= br(p)

+
cr(p) cos f� (ln ar(p) + lnG(p;z))� � lnxg
1 + sin f� (ln ar(p) + lnG(p;z))� � lnxg :

73See section 2.2.5.6.
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If reference preferences satisfy TDS, then, given ESE, all households have

TDS preferences. In this case, ESE implies that

b(p;z) = br(p);

c(p;z) = cr(p);

and

ln a(p;z) = ln ar(p) + lnG(p;z).

Thus, given ESE we can estimate equivalent-expenditures by requiring b(p;z) =

br(p) and c(p;z) = cr(p) and calculating

G(p;z) =
a(p;z)

ar(p)
.

ESE can be tested with an unconstrained form and a constrained form of

TDS using the Likelihood test.

We also may be able to use a very new demand system, the Exact A¢ ne

Stone Index (EASI) implicit Marshallian demand system (Lewbel and Pen-

dakur, 2009). EASI demand systems allow for the incorporation of both

unobserved preference heterogeneity and complex Engel curves into demand

functions. With the STATA computer code, Pendakur (2009) gives a less

technical introduction to implicit Marshallian demands and to the EASI de-

mand system in particular. Lewbel and Pendakur (2009) explains how to

impose ESE on EASI demand systems, but we do not know how GRESE

and GAESE are applicable to EASI demand systems.
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Another direction to improve our procedure is to try out di¤erent meth-

ods to address the presence of a pile of zero-expenditure observations on

some goods. Hasegawa, Ueda and Mori (2008) explicitly assume the mecha-

nism of a number of the zero expenditure occurrence as infrequency of pur-

chase (IFP), and they estimate a system of Engel functions using Markov

chain Monte Carlo method to obtain the estimates of unobservable para-

meters. Golan, Perlo¤ and Shen (2001) demonstrate a new approach to

e¢ ciently estimate a system of AIDS demand functions for Mexican meat

demand with binding nonnegativity constraints. This approach, called gen-

eralized maximum entropy (GME) building on the entropy-information mea-

sure of Shannon (1948), the classical maximum entropy (ME) principle of

Jaynes (1957a, 1957b) which was developed to recover information from un-

derdetermined systems, and generalized maximum entropy theory of Golan,

Judge and Miller (1996), is more practical and e¢ cient than traditional

maximum likelihood methods. The methods have been applied in Golan,

Judge and Miller (2003); Golan, Judge and Karp (1996); and Arndt (1999).

The implementation of these innovative procedures is technically di¢ cult

and computationally intensive. In any case, the ideal method will be the

one that can utilize the household characteristic e¤ects most e¤ectively. The

procedure in chapter 4 conveniently assumes that the explanatory variables

of sample selection equations are any possible demographic characteristics

variables other than prices, total expenditures, and the number of age types

of the children. It is possible that some of the demographic characteristics

variables may better explain the household behavior if included in the de-

mand system. Another improvement will be to use the multivariate Probit
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model instead of the Probit estimation of each share equation to increase

the e¢ ciency of the �rst-step estimation procedure.

We may even be able to exploit the nature of our data set as panel data

to avoid using any of the restrictive GRESE or GAESE to construct the

expenditure-dependent equivalence scales. It is possible to incorporate un-

observable individual heterogeneity into demand systems as random e¤ects

(Pollak and Wales, 1992, ch.5) or to use the EASI demand system which al-

ready has embeded the feature.74 But we are not aware of any studies which

successfully take advantage of panel data as "additional data" to identify

the expenditure-dependent equivalence scales and which address the zero

expenditure issue at the same time.

74Biørn and Jansen (1983) estimated a system of demand functions with individual
e¤ects using incomplete cross-section/time-series data.
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