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Abstract 

Through the use of the stimulus-to-response task, the present study tested for 

the presence of endogenous attention in infants at 4 and 9 months of age.  The 

stimulus-to-response task requires infants to make an internally-driven response, 

based on the content of a central cue stimulus.  Infants were administered a task 

composed of a learning phase and a test phase.   In the learning phase, they were 

familiarized with a contingency between the content of a central cue stimulus and the 

location of a subsequent peripheral target.  If infants had the ability to guide eye 

movements internally, then the learned association between the stimulus cue and 

peripheral target location could be used to anticipate the location of the subsequent 

peripheral target.  During the learning phase, every trial was consistent with the 

stimulus cue contingency.  During the test phase, trials similar to those in the learning 

phase were conducted, but “invalid” trials that violated the contingency between the 

cue stimulus and the peripheral target established during the learning phase were also 

included.  The dependent measures across both phases were latency to the peripheral 

target and direction of response. 

We expected that if infants were using the contingent relationship to anticipate 

the subsequent peripheral target, latencies of anticipatory responses would decrease 

across the learning phase.  In fact, infants produced shorter latencies across both 

learning and test phases, but this decrease applied to both correct and incorrect 

anticipatory responses.  This suggests that the increase in anticipations of the 

peripheral target were not based on the contingent relationship with the stimulus cue.  



 

 iv

A similar pattern was observed for the response variable across both variables.  

Finally, if infants were using the content relationship to anticipate the location of the 

peripheral target, the introduction of invalid trials during the test phase should have 

disrupted infants’ performance.  However, infants at neither age were disrupted by the 

introduction of the invalid trials.  Furthermore, responses on the invalid trials were 

not consistent with the stimulus-cue contingency.    

 A secondary issue concerned the salience of the central stimulus within the 

stimulus-to-response task.  When the task has been administered to infants, the 

salience of the central cue stimulus has consistently been enhanced in order to 

promote infants’ attention to, and retention in the task.   The effect of enhancing 

salience in this task is unknown.  In addition to the objectives outlined above, the 

current study examined this issue through manipulation of cue stimulus salience.  It 

was found that more salient cue stimuli elicited more responses in younger infants.  

While 9-month-olds’ behavior did not vary as a function of cue salience, 4-month-

olds’ latencies and responses varied, depending on the salience of the cue stimulus.  

These findings suggest that the enhancement of cue-stimulus salience in this task may 

differentially affect infants’ performance at different ages.   

 Overall, lack of facilitation of eye movements within this task, based on the 

contingent relationship, paired with the role of the high salience indicates that infants 

at neither age showed evidence of endogenous attention.  Instead, the evidence from 

this study shows significant exogenous influence on infants’ behavior at both ages 

tested. 



 

 v

Table of Contents 

Abstract……………………………………….……………..……………......iii 

Table of Contents………………………………………….….….…………....v 

List of Tables…………………………………………………….….………viii 

List of Figures………………………………………………………..……….ix 

Acknowledgments……………………………………………………..………x 

Dedication…………………………………………………………………….xi 

Introduction…………………………………………………………………....1 

Endogenous Attention…………………………………………………3 

The Development of Endogenous Attention in Infancy………………5 

A-not-B/Delayed Response Tasks as Measures of Endogenous 

Attention………………………………………………………5 

Distractibility as a Measure of Endogenous Attention………..7 

Early Attentional Control……………………………………………...8 

The Stimulus-to-Response Task as a Measure of Attentional 

Control………………………………………………………..9 

Expectation Paradigm as a Measure of Attentional Control...12 

Anti-saccade Task as a Measure of Attentional Control……13 

Methodological Considerations…………………………………….15 

Implications of the Gaze Shifting Literature……………….16 

The Role of the Central Cue Stimulus Salience……………18 



 

 vi

Rationale for the Current Study……………………………………...19 

Method…………………………………………………………………….....21 

Participants…………………………………………………………..21 

Stimuli……………………………………………………………….22 

Apparatus…………………………………………………………….26 

Design ……………………………………………………………….28 

Procedure…………………………………………………………….29 

Data Reduction……………………………………………………….31 

Coding and Calculation of Latencies and Responses. ………31 

Results…………………………………………………………………………..35 

Analysis Plan and Predictions………………………………………………..35 

Performance Across the Phases. …………………………………………….37 

Proportion of Responses……………………………………………..37 

Latencies……………………………………………………………. 41  

Summary……………………………………………………..43 

Performance During Invalid Trials…………………………………..46 

Summary……………………………………………………..46   

Discussion……………………………………………………………………46 

Are 4- and 9-month-old infants able to use the content of a cue 

stimulus to guide eye movements?……………..……………………46 

Correct Anticipations vs. Opposite Anticipations…………...47 

Developmental Trends……..………………………………...48   



 

 vii

Does the salience of the cue stimulus affect infants’ performance  

in the stimulus-to-response task?…………………………………….49  

Summary and Concluding Remarks…………………………………51 

References……………………………………………………………………54 

Appendix A: Consent Form………………………………………………….66 

Appendix B: Health and Background Questionnaire………………………...69 



 

 viii  

List of Tables 

Table 1. Demographic Characteristics for 4-month-olds …………………………....23 

Table 2. Demographic Characteristics for 9-month-olds ……………………………24 



 

 ix

List of Figures 

Figure 1. Presentation of Learning and Test Phase…………………………………..25 

Figure 2. Stimulus-to-Response Set Up Compared to Other Studies.……………….27 

Figure 3. Temporal Breakdown of Response …………………..………..………….32 

Figure 4. Proportion of Anticipation by Age and Phase……….…………………….39 

Figure 5. Proportion of Anticipation by Direction, Salience and Age…………...…..40 

Figure 6. Anticipation Latencies by Salience, Phase and Age……………….……...42 

Figure 7. Anticipation Latencies by Salience, Phase and Direction……….………...44 



 

 x

Acknowledgments 

I am grateful to the parents and infants of Johnson County, Kansas for their 

voluntary participation in this study.  I would also like to thank the staff of the 

University of Kansas Regent’s Center for allowing us to use the facility as our 

research site.  I owe many thanks to Allison Mulholland, Christina Staab, and Jamie 

Engelstad for their assistance with data and reliability coding.  Special thanks should 

also go to the Participant Recruitment and Management Core (PARC) staff, 

especially Jill Shaddy, for her help recruiting participants for the current study.  In 

addition, thanks to Christa Anderson, Dr. Kim Vu, Sarann Wood and Dr. Anthony 

Romero for their support and encouragement.  I would also like to thank Dr. Paul 

Atchley, Dr. Andrea Follmer Greenhoot, Dr. Todd D. Little, and Dr. Joan A. Sereno 

for serving on my dissertation committee.  Lastly, a special thank you to my advisor, 

Dr. John Colombo, for his guidance and support throughout the conceptualization and 

completion of this project. 

 



 

 xi

Dedication 

 

To my parents 

Vreau sa va multumesc pentru dragostea si ajutorul care mi l-ati dat.   

Fara ajutorul si curajul care mi l-ati oferit, n-as fi putut continua   

mai departe cu terminarea doctoratului. 

 

 

To my husband 

I probably would have finished a while ago if I had not met you, but the doctorate 

would not have meant as much and the journey would not have been as enjoyable.  

Thank you for your friendship, patience, encouragement, and support.  



 

 1

THE EXAMINATION OF ENDOGENOUS ATTENTION: 

STIMULUS-CUE LEARNING IN 4- AND 9-MONTH OLDS 

The term endogenous attention has recently been proposed (Colombo & 

Cheatham, 2006) to refer to the interface between attention and other lower-order 

cognitive processes that presumably give rise to higher-order cognitive functions.  Such 

higher-order cognitive functions have been associated with flexibility, intent, and the 

ability to generalize to new situations.  These functions have been hypothesized to 

emerge through the ability to select a desired stimuli/response in the presence of robust 

competing stimuli/response.  Thus, endogenous attention reflects the internal control of 

behavior through the integration of systems, where the desired response/system can be 

selected while an unwanted response/system is inhibited.   

An understanding of the development of endogenous attention provides insight 

into how functioning systems are integrated within the infants’ world and lends 

awareness to mechanisms that underlie infant behavior.  The developmental onset of 

endogenous attention has been posited to occur in the latter half of the first year of life 

(Bell, 1998; Colombo & Cheatham, 2006; Diamond, 1990a,b,c, 1991a,b; Ruff & 

Rothbart, 1996; Ruff & Capozzoli, 2003), and presumably attains adult typology around 

7 years of age (Diamond, 2002; Rothbart & Rueda, 2005).  Several lines of literature 

have converged to generate this consensus.  Diamond (1990a,b,c, 1991a,b) has shown 

that the ability to retain information and inhibit a prepotent response starts to develop 

around 7 months of age; furthermore, she hypothesizes that this behavior is supported by 

the dorsolateral prefrontal cortex.  A similar developmental trend is observed in the 
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measurement of ocular latencies (Colombo & Cheatham, 2006).  Ocular latencies notably 

decrease between 3 to 6 months of age (Blaga & Colombo, 2006; Casey & Richards, 

1988; Hood & Atkinson, 1993; Ruff & Capozzoli, 2003), but increase between 7 to 26 

months of age (Oakes & Tellinghuisen, 1994; Ruff & Capozzoli, 2003; Ruff, Capozzoli, 

& Saltarelli, 1996; Ruff & Lawson, 1990).  It is hypothesized that the U-shape function 

provided by ocular latencies represents the end of the development of disengagement and 

the onset of the development of endogenous attention.  Furthermore, this change in the 

measurement of ocular latencies marks the shift from externally driven visual behavior to 

internally driven visual behavior.  According to this theory of the development of 

endogenous attention, infants’ behavior prior to 6 months of age should not be expressed 

as internally driven action.   

In contrast, some research has suggested that infants’ behavior before 6 months of 

age may be interpreted as being endogenously driven.  For example, it has been claimed 

that 4-month-old infants have the ability to inhibit dominant responses (Johnson, 1995b; 

Johnson, Posner, & Rothbart, 1994) and use learned associations to guide eye movements 

in a purposeful manner (Johnson, Posner, & Rothbart, 1991).  If infant behavior prior to 6 

months of age is internally driven, then the prevalent theory of the development of 

endogenous attention must be recast to incorporate an earlier onset.   

  In the early study of infant attention (i.e., birth to 6 months) infants’ behavior is 

thought to reflect external mechanisms and, as such, endogenous attention is often 

discounted.  However, if infants’ behavior is internally driven then, endogenous attention 
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must be considered when studying infants’ cognitive development.  Therefore, the onset 

of internally driven behavior is highly relevant in understanding infant behavior.   

The purpose of this study is to critically examine the possibility that some forms 

of endogenous attention are present as early as 4 months of age.  A brief background of 

endogenous attention and its development will be discussed, followed by a critical 

examination of research studies, which indicate internally driven behavior in infants as 

young as 4 months of age.  Finally, the current study will be presented with a thorough 

examination of its findings and its relevancy for future research. 

ENDOGENOUS ATTENTION 

 The operational definition of endogenous attention remains elusive even in the 

face of abundant theorizing about the construct (e.g., Desimone & Duncan, 1995; 

Funahashi, 2001; Miller & Cohen, 2001; Norman & Schallice, 1986; Posner, 1992, 1995; 

Rabbit, 1997; Smith & Jonides, 1999; West, 1996).  For the sake of brevity, each of these 

theories will not be reviewed; rather, I will note that all of these theories share a few 

common characteristics.   

 First, all of these theories propose that endogenous attention is composed of the 

integration of several lower-order subsystems.  Furthermore, endogenous attention is 

marked by the ability to control the operations of these subsystems volitionally, as well as 

inhibiting prepotent responses.  Thus, endogenous attention is characterized by the 

control of a set of subsystems and the ability to select a desired action. 

The integrative element of endogenous attention has been attributed to the 

prefrontal cortex, and the dorsolateral prefrontal cortex has been specifically identified in 
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some work (Miller & Cohen, 2001).  For example, damage to the prefrontal cortex is 

related to delay issues and/or deficits in working memory (Funahashi, Bruce, Goldman-

Rakic, 1993; Funahashi, Bruce, Goldman-Rakic, 1991; Funahashi, Bruce, Goldman-

Rakic, 1989; Quintana & Fuster, 1992; Takeda & Funahashi, 2002; for a review see 

Funashasi & Kubota, 1994), increased distractibility (Aron, Sahakian, & Robbins, 2003; 

Birnbaum et al., 2004; Chao & Kinght, 1995; Drewe, 1975; Woods & Knight, 1986), and 

inhibition problems (Aron, Sahakian, & Robbins, 2003; Blasi et al, 2006; Duncan, 2001; 

Gaymard, François, Ploner, Condy, & Rivaud-Pechoux, 2003; Gemba & Sasaki, 1990; 

Pierrot-Deseilligny, Rivaud, Gaymard, & Agid, 1991; Ploner, Gaymard, Rivaud-

Pechoux, & Pierrot-Deseilligny, 2005; Sasaki, Gemba, Nambu, & Matsuzaki, 1993; 

Tsujimoto et al., 1997).  Working memory, distractibility, and inhibition are thought to be 

supported by the prefrontal cortex, and are the same systems that have been attributed to 

the control and inhibition of action. 

 Given that endogenous attention is supported by the prefrontal cortex, it follows 

then that the developmental course of the maturation of the prefrontal cortex should map 

on the developmental onset of the above-mentioned systems.  The prevalent theory of the 

development of endogenous attention has been established through the measurement of 

behavior similar to those mentioned above.  In line with the prevalent theory of 

endogenous attention, the onset of metabolic activity in the frontal lobe occurs between 

6-8 months of age (Chugani, Phelps, & Mazziotta, 1987) and electroencephalographic 

activity of the frontal lobe increases between 6-12 months of age (Bell & Fox, 1992, 
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1994).  I will now turn the discussion to the development of endogenous attention 

through the use of measures related to working memory, inhibition, and distractibility. 

The Development of Endogenous Attention 

A-not-B/Delayed Response Tasks as Measures of Endogenous Attention 

The A-not-B task has been established as a marker for the developmental onset of 

endogenous attention and has been posited to reflect the integrated output of working 

memory and inhibition (Diamond, 1990a, b).  The task is analogous to the delayed 

response task from the animal literature, but was developed and popularized for children 

by Piaget (1954) as a measure of cognitive development.  Based on findings and data 

collected from the animal literature, the case has been made for using the task with 

infants as a measure of dorsolateral prefrontal cortex maturation or function.  In the A-

not-B task, the infant watches a toy being hidden at location A.  In full sight of the infant, 

the toy is removed from location A and then hidden at location B.  The infant is then 

allowed to retrieve the toy.  Between 8 to 11 months of age, infants attempt to retrieve the 

toy from location A (not B), even though they saw it being hidden at location B.  This 

type of error is commonly referred to as the A-not-B error.   

Diamond (1985) has shown that there is a developmental progression in terms of 

the infants’ ability to perform the A-not-B task over delays.  Before 7½ months of age, 

infants are unable to perform the task even when there is no delay.  By the time infants 

reach 7½ months they can perform the task with a delay up to 2 s. After 7½ months an 

infant’s tolerance increases to a rate of 2 s per month.  For infants to successfully perform 

the A-not-B task they must meet two requirements: (1) they must be able to inhibit the 
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prepotent response to reach for location A, and (2) they must remember the location of 

the toy over the delay.  Both of these behaviors are supported by the dorsolateral 

prefrontal cortex (e.g., Drewe, 1975; Funahashi et al., 1993; Tsujimoto et al., 1997).  

Thus, the developmental change in the A-not-B task has been attributed to the 

development of the dorsolateral prefrontal cortex.  Lesions to the dorsolateral prefrontal 

cortex produces AB errors at delays of 2, 5, and 10 s in adult monkeys, which are similar 

to the errors found with human infants (Diamond & Goldman-Rakic, 1989), further 

strengthening the connection between performance on the A-not-B task and the function 

of the dorsolateral prefrontal cortex.  

These results have been replicated with the delayed response task.  As mentioned 

earlier, there is an unequivocal relationship between dorsolateral prefrontal function and 

the delayed response task (Funahashi, Bruce et al., 1993; Funahashi et al., 1991; 

Funahashi, Bruce, & Goldman-Rakic, 1990; Funahashi et al., 1989; Funahashi, Chafee, & 

Goldman-Rakic, 1993; Takeda & Funahashi, 2002).  Although the delayed response task 

was developed and used primarily with monkeys, its use with infants should further 

strengthen the developmental time course of the dorsolateral prefrontal cortex.  If both 

the delayed response task and the A-not-B task reflect dorsolateral prefrontal function, it 

follows then that the delayed response task should show a developmental pattern similar 

to the A-not-B task.  According to Diamond and Doar (1989), the developmental time 

course of the delayed response task is identical to the developmental time course of the 

A-not-B task. 
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In summary, both the A-not-B and delayed response tasks show the same 

developmental progression and similar deficits as a result of lesions to the dorsolateral 

prefrontal cortex.  These findings further solidifying the concept that developmental onset 

of endogenous attention is thought to emerge in concert with the dorsolateral prefrontal 

cortex at around 7½ months of age.  Additional support for the prevalent theory of the 

development of endogenous attention can also be obtained through the examination of the 

distractibility literature. 

Distractibility as a Measure of Endogenous Attention 

The developmental time course of endogenous attention has also been replicated 

with the measurement of distractibility, which as mentioned previously, is also related to 

the function of the prefrontal cortex (e.g., Woods & Knight, 1986).  More specifically, 

individuals with damage to the prefrontal cortex are more susceptible to distraction.  

Since overt behavior in both the A-not-B/delayed response tasks and distractibility tasks 

are supported by the function of the prefrontal cortex, it follows that developmental 

changes in distractibility should map onto developmental changes in the A-not-B/delayed 

response tasks.  

Distraction is generally measured using a paradigm where an infant is presented 

an interesting stimulus or toy in the central visual field.  Once the infant is judged to be 

engaged with the central stimulus, an attractive stimulus is presented in the peripheral 

visual field.  The ocular latency between the onset of the peripheral stimulus and the eye 

movement to the peripheral stimulus is the dependent variable.  Ocular latencies toward a 

central stimulus increase between 7 to 26 months of age (Oakes & Tellinghuisen, 1994; 
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Ruff & Capozzoli, 2003; Ruff, Capozzoli, & Saltarelli, 1996; Ruff & Lawson, 1990), 

indicating that infants become progressively less distractible.   

The observed changes in ocular latencies have been posited to be sustained by the 

emergence of endogenous attention (for a review, see Colombo & Cheatham, 2006).  As 

expected, the developmental time course of distractibility maps onto the developmental 

time course of endogenous attention as measured by A-not-B/delayed response tasks.  

Furthermore, the quality of attention directed toward the central stimulus shows a similar 

developmental trend.  For example, 6-month-old infants are unaffected by novelty and 

familiarity of a central stimulus, while 10-month-olds are more easily distracted from 

familiar ones (Oakes, Kannass, & Shaddy, 2002).  Distractibility thus appears to be 

mediated by task demands at the later age; further indicating the emergence of 

endogenous function.  In summary, the distractibility literature lends additional support 

for the developmental onset of endogenous attention and prefrontal function around 7 

months of age.   

Early Attentional Control 

Given that endogenous attention develops after 6 months of age, what can be said 

of infants’ behavior prior to this point in development?  According to the predominant 

theory of the development of endogenous attention (Bell, 1998; Colombo & Cheatham, 

2006; Diamond, 1990a,b,c, 1991a,b; Ruff & Rothbart, 1996; Ruff & Capozzoli, 2003), 

behavior during the first half of the first year is driven exogenously, and predominantly 

lacks volition on the part of the infant.  However, according to Johnson’s maturation 

hypothesis (Johnson, 1990a,b, 1994a,b, 1995a, 1998), which accounts for the changes in 
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infants’ visual behavior in the first months of life by examining the development of 

cortical function, infants have endogenously-driven behavior as early as 4 months of age.  

Johnson (1994b, 1995a) hypothesizes that, around 4 months of age, infants show the first 

indication of endogenous attention via the ability to volitionally select a response and 

inhibit an unwanted response (Johnson et al., 1991; Johnson et al., 1994).  If 4-month-

olds exhibit internally driven behavior, then endogenous attention occurs earlier than 

previously thought and a re-evaluation of the prevalent theory of the development of 

endogenous attention is required.   

The Stimulus-to-Response Task as a Measure of Attentional Control 

As indicated earlier, the purpose of this study is to examine the possibility that 

endogenous attention is present in infants at 4 months of age.  Thus, the development of 

endogenous attention will be critically evaluated through the replication and extension of 

the stimulus-to-response task (Johnson et al., 1991) with 4 and 9-month-olds.  The use of 

the stimulus-to-response task is of particular relevance as a measure of endogenous 

attention, because of its relation to the function of the dorsolateral prefrontal cortex 

(Quintana & Fuster, 1992; White & Wise, 1999).  In essence, the stimulus-to-response 

task requires the participant to make a response that is contingent on the content of a 

central cue stimulus.  Research indicates that neurons in the dorsolateral prefrontal cortex 

are responsible for the ability to perform this task.   

Johnson et al. (1991) has reported that 4-month-olds were able to perform a 

stimulus-to-response task that required them to orient to a particular location in response 

based on a learned association between the content of a cue stimulus and the peripheral 
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target location.  In this study, infants were presented 18 training trials with two varying 

dynamic multicolored stimuli each with an accompanying beeping sound.  Each cue 

stimulus was associated with a peripheral target that appeared to the left or right of the 

cue stimulus.  The location of the peripheral target (i.e., left or right) was contingent on 

the content of the cue stimulus.  Four-month-old infants had a significant decrease in 

response time during the training trials relative to the learning trials, suggesting that they 

were able to use the content of the cue stimulus to facilitate saccades toward the 

upcoming peripheral target.  Furthermore, during test trials, a bilateral presentation of the 

peripheral target was employed to assess learning.  Four-month-olds had a significant 

mean preference for the contingent side during the test trials, further indicating that they 

were able to use the content of the cue stimulus to facilitate eye movements to a 

particular spatial location.   

Infants’ ability to use the content of the cue stimulus to facilitate eye movements 

implies the presence of internally-driven behavior.  In other words, once infants have 

learned the association between the stimulus cue and the contingent location of the 

peripheral target, they are then able to use that association to direct eye movements 

toward the contingent side; thus, eye movements might be considered to be volitional.  

However, there are some indications that infants’ early (i.e., 3-4 months of age) visual 

behavior is not necessarily dependent on content, but rather dependent on spatial 

characteristics.   

Clohessy, Posner, and Rothbart (2001) showed that 4-month-olds were able to 

learn a contingent association, but were unable to learn the association when it was 
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context dependent.   Furthermore, Colombo, Mitchell, Coldren, and Atwater (1990) 

found that although infants ages 3, 6, and 9 months could use both position (i.e., spatial 

cues) and stimulus (i.e., content cues) cues to learn an association, positional cues were 

dominant in situations where stimulus content and location were conflated; for older 

infants, stimulus cues were dominant.   In addition, the learning of content cues was 

particularly transient and fragile in 3-month-olds; learning based on content cues 

dissipated after a 5-minute delay in these young infants when learning based on position 

cues was retained or persisted after the same delay (Colombo et al., 1990).  Jonides 

(1981) has shown that spatial cues trigger automatic responses in adults, whereas content 

cues are associated with endogenous responses.  If infants are responding to spatial cues 

it is likely they are producing an automatic response rather than internally driven 

behavior.   

It is also worth noting that in Johnson et al.’s (1991) study, 4-month-olds showed 

a 60% mean preference for the contingent side.  Although this result was significant, the 

authors admit that “the contingency learning found in 4-month-old age group is rather 

weak” (p.342).  In addition, Clohessy (1993) did not find a significant mean preference 

for the contingent side using the stimulus-to-response task.  Before the prevalent theory 

of endogenous attention needs to be reevaluated the stimulus-to-response task must be 

critically examined.  According to Johnson (Johnson, 1990a,b, 1994b, 1995a) the results 

obtained from the stimulus-to-response task in concert with results obtained from several 

other experiments support the presence of endogenous attention relatively early in the life 
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span.  I will briefly review these experiments and how they relate to the study of 

endogenous attention. 

Expectation Paradigm as a Measure of Attentional Control 

A study by Haith and colleagues (Haith, Hazan, & Goodman, 1988) has been 

cited (Johnson, 1990a, Clohessy, Posner, & Rothbart, 2001) as further support of an early 

measure of attentional control.  Haith et al. presented 3.5 months-old infants with a series 

of pictures at alternating right/left locations.  The results showed that, over the course of 

trials, infants’ response time to the alternating sequence was facilitated.  Indeed, in some 

cases, eye movement occurred prior to the onset of the impeding stimulus; such eye 

movements were characterized as anticipations.  The authors suggested that the infants 

were forming expectations based on the regularity of the situation and were using these 

expectations to anticipate the upcoming stimulus.  Anticipation implies that infants can 

guide their visual behavior based on their expectations of what is going to occur; thus, 

they have the ability to anticipate upcoming behavior.  This research provides support for 

endogenous attention.   

Other studies have shown that infants are able to process the content of alternating 

stimuli (Adler & Haith, 2003; Wentworth & Haith, 1992; Wentworth, Haith, & Hood, 

2002), can learn sequences when temporal characteristics are removed (Canfield & 

Smith, 1996), and that over time infants adjust their strategies (Wentworth & Haith, 

1998).  The aforementioned studies indicate that infants can incorporate multiple items in 

the formation of expectations.   
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An alternative interpretation of these data, however, is that infants may not be 

anticipating based on their expectations for upcoming events, but rather have developed a 

motor-level pattern of responding to predictable spatio-temporal characteristics of the 

sequence (Reznick, Chawarska, & Betts, 2000; Rose, Feldman, Jankowski, & Caro, 

2002).  Infants as young as 6 weeks of age were shown to be able to anticipate the 

upcoming stimuli using an alternating left/right sequence (Robinson, McCarty, & Haith, 

1988), an age at which volitional attentional mechanisms seem highly unlikely  (Johnson, 

1990a).  Therefore, the ability to “anticipate” in the visual expectation paradigm may not 

necessarily involve all of what is implied by Haith and colleagues’ (Haith, 1993; Haith et 

al., 1988; Canfield & Haith, 1991; Johnson, 1990a) definition of “expectations.”  

Although the visual expectation literature provides some indication of endogenous 

attention, this literature (like that of stimulus-to-response task) does not provide definitive 

support for the early development of endogenous attention. 

Anti-saccade Task as a Measure of Attentional Control 

According to Johnson (1994a; 1995b) further support of volitional control comes 

from infants’ abilities to inhibit a prepotent response, which has been observed with a 

modified anti-saccade task.   

In the anti-saccade task, subjects are cued to a particular spatial location and are 

instructed to make a saccade away from a cued location.  It has been shown that a spatial 

cue tends to result in an automatic saccade to the cued location (Fischer & Breitmeyer, 

1987); thus, to make a saccade in the opposite direction, subjects are required to (1) 

inhibit an automatic saccade towards the cued location, and (2) to trigger a saccade to the 
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location opposite of the cue.  Anti-saccade latencies are longer than regular saccades 

irrespective of training (Hallett, 1978); most likely, this is due to the time it takes to 

execute the two requirements of the anti-saccade.  

Given that infants cannot be instructed to make a saccade away from a cued 

location, Johnson et al. (1994) developed a modified anti-saccade task.  In this task, 

infants were trained to look to a location opposite of the cue location.  This was done by 

presenting a spatial cue followed by the presentation of a peripheral target located in the 

opposite direction relative to the cue location.  Latencies during the training phase were 

significantly longer than in the control condition; and similar to the adult literature, the 

longer latencies were attributed to the time necessary to redirect attention from the cued 

location to the peripheral target location.  Johnson et al. (1994) concluded that infants’ 

ability to perform an anti-saccade task is indicative of the transition from an automatic 

responding to volitional control.  

Although 4-month-old infants appeared to be able to perform the modified anti-

saccade task, it is worth noting that, in this form of the anti-saccade task, the appearance 

of the peripheral target might be influencing latencies; since the latencies involved did 

not need to be anticipatory in nature, infants might be simply responding to the 

presentation of the cue stimulus.  The longer latencies might be attributed to mechanisms 

related to the ocular system rather than to the existence of endogenous attention.  Thus, 

performance in the modified anti-saccade task alone is not enough to conclude that 

volitional control is present at 4 months of age.  However, in concert with the stimulus-

to-response task and the visual expectation paradigm, the results obtained from the 
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modified anti-saccade task indicates further the need to examine the presence of 

endogenous attention around 4 months of age.   

If, in fact, 4-month-old infants possess attentional control, the prevalent theory of 

endogenous attention needs to be recast with the new developmental onset.  In addition, 

endogenous attention must be taken into consideration when studying early infant 

attention.  However, before a reevaluation of the predominant theory of endogenous 

attention is warranted, it is imperative that the stimulus-to-response task be replicated 

with 4-month-olds.  Furthermore, when studying the development of attentional control, 

there is a methodological matter that needs to be taken into account. 

Methodological Considerations 

In the adult literature, endogenous and exogenous shifts of attention are 

distinguished operationally through the use of spatial and content cues.  The two cues 

vary primarily in the location of their presentation.  More specifically, spatial cues appear 

at the location of the peripheral target, while content cues are centrally located and 

visually indicate the location of the peripheral target (e.g., arrows).  Spatial cues have 

been shown to trigger automatic or exogenous responses, whereas content cues are 

associated with endogenous responses (Jonides, 1981).  It follows that, within the realm 

of infant attention, the same distinction between exogenous and endogenous responses 

can be made through the use of spatial and content cues.   

The use of spatial cues requires no change in protocol; however, this is not the 

case with the use of content cues.  The stimulus-to-response task was developed for use 

with subjects who are incapable of being directed to use the content of the cue to 
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facilitate attention to the upcoming target.  Rather, through repeated exposure, infants 

would be expected to learn an association between the content cue and the location of the 

peripheral target, and then use that association to purposefully guide eye movements to 

the upcoming target location.  In order to draw attention to a central cue and ensure the 

learning of the association between the cue and contingent peripheral target location, the 

central cue stimulus is usually manipulated to be attractive.  Typically, the stimuli are 

made to be highly salient (e.g., high contrast, colors, motion and auditory components 

have all been used to enhance cue salience).  An issue that has not previously been 

addressed is the degree to which the salience of the central stimulus influences the 

infant’s performance on the stimulus-to-response task; a reasonable hypothesis might be 

that endogenous mechanisms in young infants might need to be scaffolded by inducing 

attention through the use of such salient targets.   

Implications of the Gaze Shifting Literature 

Of relevance to this issue are studies on gaze shifting in infants, which is rarely 

considered in the context of endogenous attention.  In line with the stimulus-to-response 

task, gaze-shifting studies provide some evidence that infants as young as 4 months of 

age can use the content of the central stimulus to facilitate saccades to a particular 

location (Hood, Willen, & Driver, 1998; Farroni, Johnson, Brockbank, & Simon, 2000; 

Farroni, Mansfield, Lai, & Johnson, 2003; Farroni, Massaccesi, Pividori, & Johnson, 

2004; Mansfield, Farroni, & Johnson, 2003).  

The gaze-shifting methodology is similar to the stimulus-to-response task.  For 

example, Hood et al. (1998) presented infants with a picture of a face in the center visual 
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field for 1000 ms where the eyes appeared to be blinking.  After the 1000 ms, the eyes 

shifted either toward the left or right indicating the location of the upcoming probe or 

target.  Then the face was removed and the target was presented either to the left or right 

of the center stimulus.  Within this paradigm two conditions are presented: congruent and 

incongruent.  In the “congruent” condition, the gaze shift is directed at the location of the 

impeding target location.  In the “incongruent” condition, the gaze shift is in the opposite 

location of the upcoming target location.  The results indicate that infants 2½ to 7 months 

of age are faster at orienting to the congruent condition versus the incongruent condition, 

thus demonstrating that infants are able to reallocate their attention based on stimulus 

gaze.  It is thought that infants use the content of the central stimulus to direct their 

attention to the location of the upcoming target.  In the incongruent condition the longer 

response latencies are thought to reflect the need to redirect attention from the cued 

location to the actual target location. 

The ability of infants as young as 2½ to 7 months of age to use the content of the 

central stimulus is highly relevant to an early account of endogenous attention.  One 

could argue that if infants are able to use gaze to orient attention, then they should also be 

able to produce the same result with a variety of central stimuli (i.e., dynamic, multi-

colored and auditory), thus replicating Johnson et al. (1991).  However, several studies 

examining the effect of the stimulus content have not observed such results (Farroni et 

al., 2000; Farroni et al., 2004; Hood et al., 1998).  For example, Farroni et al. (2003) 

found infants’ facilitation of eye movements based on stimulus gaze occurs under the 
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condition of three specific stimulus conditions: the use of a motion cue, the use of face 

stimuli, and the use of direct gaze to attract infants’ attention.   

The gaze shifting literature brings up two relevant points.  First, the implications 

of these results are as follows: if infants cannot facilitate attention in absence of a face 

stimulus, it is likely that this ability is not a generalizable phenomenon, but is limited to a 

specific/modular type of stimulus entrainment or elicitation.   Such logic can also be 

applied to the use of a motion and direct gaze cues.  Second, the manipulation a central 

cue’s content can obscure results on the stimulus-to-response task.  More specifically, the 

salience of the central cue stimulus may play a significant role in infants’ ability to 

perform the stimulus-to-response task independent of endogenous attention.   In addition 

to examining infants’ ability to perform the stimulus-to-response task, the current study 

attempts to examine the role, if any, played by the salience of the cue stimulus. 

The Role of the Central Cue Stimulus Salience 

 It is an implied assumption that the location (i.e., spatial vs. central cue) and 

content of the central cue affects responding, but the salience of the central cue stimulus 

is often discounted or ignored.  With adult subjects, the cue stimulus is typically simple.  

For example, the cue could be an arrow pointing in the direction of the upcoming 

peripheral target location.  In this case, the aforementioned assumption holds.  However, 

the practice of making the cue highly salient to attract infants’ attention may void this 

assumption.  Although it is presumed that the salience of the cue does not affect 

performance on the stimulus-to-response task, it is possible that the salience of the central 

cue might influence responding.      
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Courage, Reynolds, and Richards (2006) showed that infants respond 

differentially to dynamic vs. static versions of the same stimuli; more specifically, 

dynamic stimuli proved to be more engaging than the static stimuli (see also Shaddy & 

Colombo, 2004).  The addition of motion increases the stimulus salience; thus, it is not 

surprising that infants find these stimuli more interesting than their static counterparts.  In 

accordance, the manipulations performed on the cue stimulus in the stimulus-to-response 

task could be triggered by exogenous attention, and as such, should be examined.  In 

other words, if infants’ performance on this task is a result of the attention getting 

properties of the central cue stimulus, then their performance on this task would be 

exogenous driven rather than endogenously driven.   If this is the case, operationally 

defining exogenous and endogenous responses for infants through the use of spatial and 

content cues may be erroneous.  To address the issue of whether the salience of the 

central cue stimulus influences performance, cue salience will be manipulated in the 

present study.   

Rationale for the Current Study 

The purpose of the current study is to try and address two questions.   

1.  Are 4- and 9-month-old infants able to use the content of a cue stimulus to 

guide eye movements?  Some research indicates that infants as young as 4 months of age 

are able to use the content of the cue stimulus to facilitate eye movements (Clohessy, 

1993; Hood et al., 1998; Johnson et al., 1991).  While other research indicates that the 

facilitation of eye movement can be attributed to spatial and temporal characteristics of 

the experiment, rather than infants’ ability to use the content of the cue stimulus to 
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facilitate eye movements (Colombo et al., 1990; Reznick et al., 2000).  The resolution of 

these differences has direct implications for the study of the developmental onset of 

endogenous attention.  Thus, the current study attempts to resolve this discrepancy 

through the replication and extension of the stimulus-to-response task with 4- and 9-

month-olds.   The choice of these two ages is based on theories that posits that volitional 

attention should be present in both (Johnson, 1991), or only the older (Colombo & 

Cheatham, 2006) of the age groups. 

Infants were presented with a learning phase and a test phase.  During the learning 

phase, infants were introduced to the contingent relationship between the central cue 

stimulus and the location of the upcoming peripheral target, in accordance with Johnson 

et al.’s (1991) study.  The test phase was identical to the learning phase on 75% of the 

trials, the other 25% of the trials were “invalid,” in that peripheral target appeared at the 

opposite location as it did during the learning phase.  In Johnson et al.’s (1991) study, 

contingent learning was tested through the use of bi-lateral presentation of the peripheral 

target.  However, Johnson’s et al. (1991) “weak effect” of contingency learning, coupled 

with Clohessy’s (1993) lack of contingent side preference, prompted the use of invalid 

trials as a measure of contingent learning.  

2.  Does the salience of the cue stimulus play a role in the ability to facilitate eye 

movements?  The salience of the central cue stimulus was manipulated to explore the 

possibility that, at either age, the exogenous recruitment of attention might in some what 

scaffold or induce improved performance on the stimulus-to-response task.   That is, 

might endogenous processes be influenced or triggered by exogenous manipulations?  
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Findings suggesting this outcome would provide some support for the notion that 

endogenous processes build on exogenous ones, and that the distinction between the two 

in development might, in fact, be more blurred than previously suggested in the extant 

literature.   

Dependent Measures.  Latencies and the direction of responses (i.e., correctly 

looking to the peripheral target or looking to the location opposite of where the peripheral 

target appeared) were used as dependent measures.  Comparisons of latencies and 

direction of response across trials (as in Johnson et al., 1991) were performed.  If infants 

are able to learn the contingent relationship between the cue and target, and use this 

information to guide eye movements, one would expect to see facilitation or an increase 

in anticipatory looks to the peripheral target location.  Furthermore, performance during 

invalid trials was also examined.  If infants are using the contingent relationship to 

facilitate eye movements, responses in the invalid condition should be contingent based 

and not target based.  In other words, infants should look in the direction opposite to the 

appearance of the peripheral target. 

Method 

Participants 

One hundred twenty five (62 male and 63 female) healthy, full-term infants were 

recruited by mail and telephone from the Kansas City metropolitan area.  This population 

is predominantly upper-middle class socioeconomic status and the sample had the 

following ethnic composition: Caucasian (83%), Asian (6%), Hispanic (5%), American 

Indian (2%), African American (2%), and other (2%) participants.  Participants were 
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tested at either 4 months (M = 127.1 days, SD = 7.6) or 9 months (M = 273.8 days, SD = 

10.1) of age.  Of these 125 infants, 45 infants were excluded for the following reasons: 

prematurity (i.e., infants born before 37 weeks gestation, n = 8), fussiness or sleepiness (n 

= 22), parental interference (n = 3), equipment failure (n = 2) or other various reasons 

(e.g., inadequate number of good trials completed, persistent inattention, playing with the 

booster seat, or pacifier use; n = 10).   

The 80 remaining infants contributed to subsequent analyses.  Demographic 

characteristics for the remaining sample, split by the respective age groups, are presented 

in Tables 1 and 2.  There were no significant differences on the demographic 

characteristic between the 4 and 9-month-old infants. 

Stimuli 

During the procedure, infants were presented with a stimulus at midline, which  served as 

a cue for the upcoming peripheral target location.  The cue stimulus subtended 

approximately 5º of visual angle.  There were a total of four possible cue stimuli, two per 

salience condition.   

For the low salience condition, the cue stimuli were high contrast multi-chromatic 

and static.  To ensure infants’ ability to discriminate between these two stimuli, the shape 

and color scheme was varied (e.g., square pattern containing a red, black, and white color 

scheme vs. a circular pattern containing a yellow, blue, and green color scheme; see 

Figure 1).   

For the high salience condition, the cue stimuli consisted of the same two high 

contrast multi-chromatic stimuli as in the low salience condition.  To assure the 
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Table 1 

Demographic Characteristics for 4-month-olds  

 
 4-month-olds 
Infant Characteristics  
 M SD Min Max 
Age at Testing (days) 127.5 6.7 112.0 141.0 
Conceptual Age (days) 123.9 8.3 107.0 140.0 
Birth weight (grams) 124.0 12.9 101.0 153.0 
     
Family Characteristics     
 M SD Min Max 
Maternal Age (years) 30.0 4.7 22.0 41.0 
Maternal Education (years) 16.3 1.8 12.0 20.0 
Paternal Age (years) 32.1 5.4 24.0 46.0 
Paternal Education (years) 16.3 1.9 12.0 20.0 
Number of Siblings 0.5 0.8 0.0 3.0 
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Table 2 

Demographic Characteristics for 9-month-olds  

 
 9-month-olds 
Infant Characteristics  
 M SD Min Max 
Age at Testing (days) 274.7 9.8 247.0 307.0 
Conceptual Age (days) 270.9 11.5 242.0 300.0 
Birth weight (grams) 125.39 16.2 64.0 152.0 
     
Family Characteristics     
 M SD Min Max 
Maternal Age (years) 31.9 4.6 22.0 43.0 
Maternal Education (years) 16.6 1.4 14.0 20.0 
Paternal Age (years) 33.3 4.8 24.0 43.0 
Paternal Education (years) 16.2 1.7 12.0 20.0 
Number of Siblings 0.8 1.1 0.0 4.0 
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Figure 1. Presentation of Learning and Test Phase 
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prominence of the high salience cue stimuli a motion and an auditory component was 

included.  The type of motion and sound varied among the center stimuli (e.g., a square 

pattern that rotated with an accompanying regular beep vs. a circular pattern which 

expanded and contracted with an accompanying irregular beep).  A pilot study was 

conducted determine if infants could discriminate between the cue stimulus pairs.  Thirty-

seven infants ages 4 and 9 months (M = 123.8 days, SD = 8.1; M = 276.6 days, SD = 10.6 

respectively) were assigned to either a high or low salience condition.  Infants’ were then 

habituated to one of the cue stimulus pair using an infant-control sequence, with a 

criterion of two consecutive looks at a 50% decrement from the previous longest look.  

Following habituation, infants were tested for novelty preference using the length of 

looking to the stimuli as the dependent variable.  Length of looking was then entered into 

an Age (2) x Salience (2) x Familiarity (2) three factor mixed design Analysis of 

Variance (ANOVA).  All main effects and interactions were significant (p < .05), 

indicating that both 4- and 9-month-olds were able to distinguish between the high and 

low salience cue stimulus pairs.     

The peripheral target stimulus comprised of a flashing pink diamond above a 

green rectangle, analogous to the peripheral target employed in Johnson et al. (1991).  

The peripheral target was identical at both locations and was sized at 3º visual angle and 

was located at 34º to the left or right of cue stimulus (see Figure 2).   

Apparatus  

All infants were tested in a 2 m × 2 m room with black walls and ceiling.  Infants 

were placed in an adjustable booster seat approximately 1 m away from a flat-screen Dell  
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Figure 2. Stimulus-to-Response Set Up Compared to Other Studies  
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W3000 LCD television monitor.  Stimuli were presented on the .18 m × .538 m monitor 

via a computer.   

A JVC digital video camcorder was centered above the screen, and an observer 

located in the adjacent room monitored the infant on closed-circuit television.  The 

observer coded looking behavior on-line using a key press connected to a computer that 

kept track of the length of looking and direction of infant gaze, as well as controlled the 

stimuli presentation. 

Design  

The experiment was a mixed-factorial design including between-subject factors of 

Age (2: 4- vs. 9-month–olds) and Salience (2: low vs. high) and within-subject factors of 

Phase (2: test phase vs. learning phase) and Trials (20).  In the low salience condition, the 

cue stimulus presented at midline was either a static square or static circular pattern with 

no auditory component.  In the high salience condition, the cue stimulus presented at 

midline was either a dynamic square or dynamic circular pattern with an auditory 

component. 

The presentation of the cue stimulus was paired with the peripheral target at a 

specific spatial location.  For example, the presentation of the square pattern was paired 

with a peripheral target location that always occurs to the left of the cue stimulus, while 

the circular pattern was paired with a peripheral target location that always occurred to 

the right of the cue stimulus (see Figure 1).   

The trials were administered in two sections of 20 trials each.  The first 20 trials 

served as the learning phase.  The learning phase allowed the infants to learn the 
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contingent relationship between the cue stimulus and the upcoming peripheral target 

location.  During the learning phase, all trials were valid; that is, on all trials, the square 

pattern was always paired with a left peripheral target location and the circular pattern 

was always paired with a right peripheral target location.  The second section served as 

the test phase, where only 75% of the trials were valid (i.e., with the target appearance 

location consistent with the pairing used during the learning phase).  The other 25% of 

the trials were invalid, where the presentation of the cue stimulus and contingent 

peripheral target location were reversed (i.e., peripheral target appeared at the opposite 

location as it did during the learning phase, see Figure 1).  The presentation of the cue 

stimulus and peripheral target location was counter-balanced across and between phases.  

During the test phase, the presentation of the valid and invalid trials were randomized and 

were presented in a blind fashion (i.e., the experimenter was unaware of the trial 

validity). 

Procedure 

Upon arrival, caregivers were informed of the experiment’s purpose and informed 

consent was administered (see Appendix A).  The participant was then placed in an 

adjustable booster seat in the testing room.  The seat was adjusted to accommodate for 

individual differences in height among the infants.  A person (usually the caregiver) 

remained in the room with the infant at all times.  Once the infant was in front of the 

presentation screen, and was in a content state, the lights were dimmed to off and the 

experiment began.  
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At the beginning of the experiment, infants were exposed to the learning phase 

followed by the test phase.  In the learning phase, infants were presented with a cue 

stimulus.  Once the infant had accumulated 2 s of looking at the cue stimulus, the cue was 

removed.  The presentation of the peripheral target occurred 750 ms after the removal of 

the cue stimulus.  When the infant looked to the peripheral target, the experimenter 

pressed a button indicating that a gaze/ocular shift had occurred.  The infant was allowed 

to look to the peripheral target until he/she looked away, or until 5 s had passed.  Then 

the peripheral target was removed and the next trial presentation occurred.  If the infant 

did not look to the peripheral target within 5 s of the removal the cue stimulus the trial 

was deemed unusable; however, the trial was continued until the infant looked to the 

peripheral target.  The trial was continued to ensure that infant had been exposed the 

contingent relationship; to learn the contingent relationship infants had to be exposed to 

both left and right target presentations.  Terminating the trial after 5 s, however, could 

result in infants’ looking only one of the two peripheral locations or never seeing either 

of the peripheral targets.  Thus, infants were given sufficient time to look to the 

peripheral target.  If an infant did not look to the target within 5 s of the removal of the 

cue stimulus the latency for that trial was removed from the analyses.  Twenty trials were 

presented during the learning phase. 

The test phase used the same stimuli pairs as those used in the learning phase.  

The only variation came in terms of the degree to which the cue was  

“valid,” or predictive, of the location of the subsequent peripheral target.   In the learning 

phase, the cue was 100% valid; in the test phase, validity was dropped to 75% (i.e., 25% 
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of the trials were invalid).  After infants completed 20 trials, the test phase session was 

concluded.   

If the infant cried or refused to look at the stimuli during a particular trial, that 

trial was terminated and not used in the analysis.  The session was continued if the infant 

returned to a calm state, and subsequent non-fussy trials were kept for analysis.  If 

fussiness continued and the infant did not return to a content state, the session was 

terminated.  Upon conclusion of the session, parents were asked to complete a health 

questionnaire (see Appendix B).  Finally, the experimenter offered to answer any 

additional questions the parent might have. 

Data Reduction 

Coding and Calculation of Latencies and Responses.  Infants’ performance on any 

given trial was examined in terms latency and the direction of response provide.  For all 

trials, latencies were calculated on a frame-by-frame (33 ms resolution) basis using 

motion pro software that allows for frame-by-frame control of the video recording, and 

which provides the frame count.  The calculation of latency started with the presentation 

of the peripheral target and continued until the infant made an eye movement or gaze 

toward a peripheral target location.  It should be noted that, in instances where the infant 

look to the peripheral target location prior to its presentation (i.e., anticipation), latencies 

were recorded as negative (see Figure 3).   

In addition to the measurement of latency, a response variable was created to 

indicate the direction of infant gaze.  Initially, the response variable was classified into 

one of four categories: correct, incorrect, null, and missing.  The correct category  
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Figure 3.  Temporal Breakdown of Response  
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consisted of trials where the infants looked to the peripheral target.  The incorrect 

category consisted of trials where the infants looked to the opposite location of the 

presentation of the target.  Trials where the infant did not look to either of the target 

locations or eventually looked to a target location after looking to other locations (e.g., to 

mom, camera, etc.) were categorized as null responses.  Trials that were not presented or 

were timed out were labeled missing.   

During the test phase, responses for valid and invalid trials were analyzed 

collectively.  By definition, a correct response should indicate contingent based 

responses.  During valid trials, a contingent-based response would correspond to a look 

to the peripheral target signaled by the content of the central cue.  Violation of the 

contingent relationship during invalid trials would result in a look to the peripheral target 

that we termed target-based responding.  Thus, an adjustment in the classification of 

responses during invalid trials is necessary to ensure that a correct response corresponds 

to a contingent based response.  If infants were making contingent-based responses 

during invalid trials they should look to the location to where the target should have 

appeared (i.e., the contingent location) rather than looking to the location where the target 

was actually presented.  Accordingly, during invalid trials a look to the opposite location 

of the peripheral target (i.e., to where the target should have appeared) was classified as a 

correct response, while a look to the peripheral target was classified as an incorrect 

response.   

All correct and incorrect responses yielded usable information, and thus were used to 

examine infants’ abilities to learn and use a contingent relationship.  It is worth noting 



 

 34

that, although null responses were not expressly examined, these responses were used in 

the denominator to create a proportion of response.  The sessions were later coded for 

reliability, and the reliability of coding latencies from the video clips was highly 

consistent, with interobserver records correlating at r =  +.99.   

For the purpose of the current experiment, we were particularly interested in infants’ 

ability to anticipate the peripheral target, thus, the remaining usable responses were 

further decomposed in terms of anticipatory responses and non-anticipatory responses.  

On trials where infants made a response prior to the presentation of the peripheral target 

(i.e., latencies that greater than -2050 ms and less than 200 ms; see Figure 3), response 

were categorized as anticipatory.  This anticipation window was created by taking the 

temporal range from the presentation of the central stimulus (-2750 ms) to the 

presentation of the peripheral target (0 ms), and shifting it by 200 ms.   The value of 200 

ms represents response time, and is the suggested cutoff for anticipations by Haith et al. 

(1998) and Clohessy et al. (2001).  Lastly, an additional 500 ms was subtracted from the 

onset of the temporal window to ensure that infants observed the central stimulus before 

looking to the target location.  Trials where the infants gazed the peripheral target after its 

presentation responses were labeled non-anticipatory, specifically latencies that are 

greater than 200 ms and less than 5,000 ms.  Thus, usable latencies were classified into 

the following categories: correct anticipation, incorrect anticipation, correct non-

anticipation and incorrect non-anticipation, however, for the purpose of the current study 

only anticipatory responses will be discussed.  Non-anticipatory responses were excluded 

from the current study to avoid the possibility that infants making non-anticipatory 
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responses are responding to the appearance of the peripheral target (i.e., exogenous 

driven eye movements). 

Furthermore, these categories are mutually exclusive and consequently a correct 

anticipation on a given trial will result in a missing data point for incorrect anticipation 

and non-anticipation categories on that trial.  To adjust for this missing data and to 

maximize data used, two procedures were employed.  First, mixed models were used with 

this data set to allow for the use of all the data points.  Second, latencies for each infant 

were averaged from the 20 trials within the learning and test phases to create 5 blocks of 

4 consecutive trials (i.e., an average latency was obtained for trials 1-4, 5-8, 9-12, 13-16, 

and 17-20).   

Results 

Analysis Plan and Predictions 

Latencies and direction of responses were examined to determine if infants were 

able to use a contingent relationship between the content of the cue stimulus and the 

peripheral target location to facilitate eye movement to the location of the impending 

peripheral target.  Of most interest was the correct anticipation category; if infants were 

able to use the contingent relationship between the content of the cue stimulus and the 

location of the peripheral target, then we would expect that, as learning progressed,  

(a) correct anticipatory responses would increase across the learning phase, and 

(b) latencies for correct anticipations would decrease across the learning phase 

We further expected that, if infants were learning the contingency, the 

introduction of invalid trials during the test phase would disrupt this pattern.  The test 
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phase featured the introduction of the invalid trials, which were intended to serve as 

“catch trials” to determine whether infants had learned the original contingency.  

However, the inclusion of invalid trials violates the contingent relationship between the 

cue stimulus and the peripheral target.  If infants recognized the violation of the 

contingent relationship, then performance during the testing phase should be interrupted.   

One problem with examining only correct anticipations when infants are 

producing other types of responses is that this measure per se provides no appropriate 

controls or comparison against which performance might be measured.  Therefore, we 

included incorrect anticipations (i.e., anticipatory responses to the “wrong” location, as 

signified by the central cue) as a means of providing that control.  As the most 

straightforward indicant of learning, we would expect simply that  

(a) anticipations to the correct side would be more frequent than anticipations to 

the opposite or incorrect side, and  

(b) the analysis of incorrect anticipations would produce inverse results from the 

results obtained with correct anticipations (i.e., decrease across the learning phase as 

infants learn the contingent relationship), although it was unclear as to whether specific 

changes in latencies might be seen for such incorrect responses. 

Finally, the type of response occurring during invalid trials was also examined.  If 

infants were using the contingent relationship to guide eye movements, then responses 

during invalid trials should be contingent-based.  In other words, during invalid trials 

infants are expected to look to the location to where the target should have appeared 

rather than looking to the location where the target was actually presented. 
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Performance Across the Phases. 

Proportion of Responses.  To examine the direction of responses produced, a 

proportion was calculated.  For example, the proportion of correct anticipatory responses 

was computed by taking the total number of correct anticipation responses in a given 

block and dividing the total number of all responses (i.e., correct, incorrect, and null) 

provided in that block.   It is important to note that, because of the incorporation of null 

responses into the denominator of the proportions, comparisons of correct and incorrect 

these proportions were not inversely isomorphic; that is, the proportions of correct and 

incorrect anticipations did not sum to 1.00.  As such, they were not strictly collinear and 

could be included as a within-subject factor. 

A hierarchical linear model (HLM) was run on the proportion of all anticipations 

using the predictors of Age (2) × Salience (2) × Direction (2) ×  Phase (2) × Block (5).  

The HLM produced a significant main effect of Age, F(1, 1421.36) = 16.32, p < .001, 

such that 4-month-old infants (M = .171) produced significantly more anticipatory 

responses (i.e., both correct and incorrect) relative to 9-month-old infants (M = .130).  

There was also a significant main effect of Salience, F(1, 1421.36) = 8.37, p < .01, 

indicating that infants in the high salience condition (M = .165) produced significantly 

more anticipations overall (again, both correct and incorrect responses) relative to infants 

in the low salience condition (M = .136).   

These results were qualified by a significant Age × Phase interaction, F(1, 1421.36) 

= 4.67, p < .05: 4-month old infants showed a decrease in anticipatory responses from the 

learning phase to the test phase, while the 9-month-old infants responses showed an 
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increased pattern of anticipatory responses (see Figure 4).  Because this interaction 

collapses across correct and incorrect anticipations, little can be said about learning.   

These results were further qualified to some degree by a marginal Age × Salience × 

Direction interaction, F(1, 1421.36) = 3.73, p = .054.   For the high salience condition, 4-

month-old infants produced significantly (p<.05) more correct anticipations than 

incorrect anticipations, while 9-month-old infants produced only slightly more correct 

anticipations than incorrect anticipations (ns).   When examining the low salience 

condition, no significant differences were obtained between correct and incorrect 

anticipations for either age (see figure 5).  The significant increase in correct anticipations 

in the high salience condition might be taken to indicate that 4-month-olds learned the 

contingency; however, this does not appear to be the case.  If infants were able to use the 

learning contingent relationship to guide eye movement we would expect to see an 

increase in the number of correct responses across the learning phase, which would 

indicate that after learning the contingent relationship infants were then able to use the 

relationship to facilitate eye movements to the peripheral target.  Furthermore, the 

introduction of invalid trials should disrupt performance resulting in a decrease in correct 

anticipations demonstrating that infants recognized the violation of the contingent 

relationship.  Yet, there was no change in the production of correct anticipations within or 

across the phases.   
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Figure 4.  Proportion of Anticipation by Age and Phase  
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Figure 5. Proportion of Anticipation by Direction, Salience and Age 
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 The marginal effect of 4-month-olds in the high salience condition producing 

more correct anticipation than incorrect anticipation alone does not provide conclusive 

support of infants’ use of the contingent relationship.  Thus, the current analysis provides 

no definitive evidence that either group was capable of learning the contingency.  Of 

some importance was the finding that cue stimulus salience affected infants’ responses, 

such that, infants produced more responses overall to the high salience condition than low 

salience condition.     

Latencies.  A mixed-model analysis was run on the mean latencies for all 

anticipations, using the predictors of Age × Salience × Direction × Phase × Block.  There 

was a significant main effect of Phase F(1, 502.66) = 13.055, p < .001, indicating that 

infants produced significantly shorter latencies during the test phase (M = -287.199) than 

learning phase (M = -198.196).  There was also a significant main effect of Block, F(1, 

199.32) = 2.96, p < .05, indicating that infants latencies decreased across the 5 blocks.  

Finally, there was a significant main effect of Direction, F(1, 502.66) = 10.754, p < .01 

indicating that latencies were significantly shorter when infants produced incorrect 

anticipations (M = -283.087) than when they produced correct anticipations (M = -

202.308).  

 These results were further qualified to some degree by two interactions.  First, a 

marginal Age × Salience × Phase interaction, F(1, 502.66) = 3.745, p = .054 emerged.  

Nine-month-olds showed shorter latencies in the test phase than the learning phase in 

both salience conditions; 4-month-olds showed this pattern for the high salience 

condition, but not for the low salience condition (see Figure 6).  Again, this does not  
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Figure 6. Anticipation Latencies by Salience, Phase and Age 
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specifically reflect learning as these results are collapsed across correct and incorrect 

anticipations.  However, it is interesting that once again 9-month-old infants provided 

similar performance for the low and high salience conditions, while 4-month-old infants’ 

performance between the low and high salience conditions differed.  

 Second, there was a significant Salience × Direction × Phase interaction, F(1, 

502.66) = 4.157, p < .05.  Latencies were shorter in the test phase than in the learning 

phase, except for incorrect anticipations in the low-salience condition; there was no 

change in across phases in that condition (see Figure 7).  If infants were responding based 

on the contingent relationship, it follows that we would expect latencies to decrease 

across the learning and test phases for correct anticipations; however, latencies 

significantly decreased for incorrect responses in the high salience condition.  The fact 

that infants in the high salience condition produce a similar decrease in latencies across 

the phases for both correct and incorrect responses implies that infants in the high 

salience condition are not facilitating eye movements based on the content of the central 

stimulus.  Rather, infants in high salience condition are responding faster overall.  

Summary.  Several interesting findings emerged from these analyses.  Four-month-

olds generated more anticipatory responses overall than 9-month-olds.  Infants in the high 

salience condition also produced more anticipatory responses than infants in the low 

salience condition.  When producing incorrect responses latencies were significantly 

shorter.  Finally, latencies tended to decrease across and within the learning and test 

phases.  This decrease was observed for 9-month-olds in both the low and high salience 

conditions as well as for 4-month-olds in the high salience condition.  
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Figure 7. Anticipation Latencies by Salience, Phase and Direction 
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One critical finding, however, failed to emerge.  Performance did not fundamentally 

vary as a function of the correct or incorrect nature of infants’ responses.  In other words, 

the changes observed in responses and latencies occurred for both correct and incorrect 

anticipation responses.  If infants were responding based on the contingent relationship, 

correct and incorrect response should show differential patterns of change across session.  

However, responding increased across phases for both correct and incorrect anticipatory 

responses.  Given this pattern of results, it is cannot be concluded that infants were 

responding based on the contingent relationship.    

A particularly interesting finding that emerged was that salience affects performance 

in the stimulus-to-response task.  More specifically, the high salience condition was 

associated with increased responses and a decrease in latencies across the learning and 

test phases.  These results are further differentiated by age; 4-month-olds’ performance 

was affected by the salience of the cue stimulus, while 9-month-olds’ was not.  For 4-

month-olds the manipulations of salience affects both dependent variables (i.e., the 

direction of responses and latencies).  Interestingly, data from the high salience condition 

give the impression that 4-month-olds were successful in the stimulus-to-response task.  

We reiterate, however, that (based on the correct-incorrect comparisons) we find it 

unlikely that 4-month-olds are using the contingent relationship to facilitate eye 

movements.  For young infants, the high salience condition appears to obscure the data.  

What is mostly like happening is that attention getting properties of the high salience cues 

is prompting 4-month-olds to engage, but they are responding in a random or haphazardly 

fashion.  
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Performance During Invalid Trials 

Invalid trials were included to serve as an additional measure of infants’ ability to 

perform the stimulus-to-response task.  Performance during invalid trials was examined 

to determine if behavior during these trials provide any support for contingent based 

behavior.  A mixed-model analysis run on the responses provided during invalid trials 

using the predictors of Age (2) × Salience (2) × Direction (2) yielded no significant 

effects, indicating that during invalid trials infants were not basing their responses based 

on any prior predictive contingent association. 

Summary.  The analysis of invalid trials provides additional support for the 

conclusion that infants were not responding based on the contingent relationship.  If 

infants had learned the relationship between the central cue and peripheral target and 

were using the relationship to facilitate eye movements, then infants should be making 

contingency-based responses.  However, during invalid trials infants’ anticipatory 

responses were not attributable to the learned association. 

Discussion 

The purpose of the current study was to examine the possibility that young infants 

possess internally-driven behavior, as measured by the stimulus-to-response task.  To 

achieve this goal, two questions were addressed.   

Are 4- and 9-month-old infants able to use the content of a cue stimulus to guide eye 

movements?   

In line with Johnson et al.’s (1991) study, both 4- and 9-month-old infants showed 

a decrease in latencies across the learning and test phase, but even though we were able 
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to replicate the decrease in latencies across the learning and test phase obtained by 

Johnson et al. (1991), we were unable to attribute these changes to processes related to 

endogenous attention at 4 months of age.  Two supplementary findings indicated that 

infants were not able to use the content of the cue stimulus to guide eye movements.  

These two findings are discussed in detail below. 

Correct Anticipations vs. Incorrect Anticipations.  Initial analyses revealed that 

infants produced correct anticipations 16.4% of the time, but that the probability of 

incorrect anticipations was approximately the same (14.7%).  The small percentage of 

correct anticipation coupled with an almost equal number of incorrect anticipations led to 

a critical examination of infants’ behavior when they were not anticipating the correct 

target location.   

The analyses of incorrect and correct anticipations indicated that the results for 

incorrect and correct anticipations are analogous.  If infants had learned the contingent 

relationship and were making eye movements based on this relationship, the results 

obtained from the incorrect responses should be reverse of those obtained from correct 

anticipatory responses.  This was not the case.  Instead, infants provided correct and 

incorrect anticipation responses under similar circumstances, thus implying that infants 

are not responding based on the contingent relationship.   

As an additional measure of learning, invalid trials were incorporated to determine if 

infants detected violation of the presumably-acquired contingent relationship.  The 

analysis of invalid trials indicated that infants respond based on the appearance of the 

target and the contingent relationship equally.  Again, if infants were using the contingent 
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relationship to facilitate saccades, then they should be exhibiting contingent based 

responding.   Furthermore, during the test phase, the introduction of the invalid trials 

should disrupt the progress made during the learning phase.  However, there was no 

indication that infants noticed violations of the contingent relationship when making 

anticipatory responses during the test phase.  Rather, it appeared that infants were 

responding in a random manner.  Thus, the inclusion of incorrect anticipation in the 

analyses provided additional evidence to bolster the contention that infants were not 

using the content of the cue stimulus to guide eye movements. 

Developmental Trends.   Further indication that the stimulus-to-response task does 

not provide a measurement of internally driven behavior comes from the changes 

observed in developmental differences on this task, or more specifically lack there of.  

The stimulus-to-response task has been closely tied to prefrontal function (Quintana & 

Fuster, 1992; White & Wise, 1999), and as such can be used as a marker task for 

endogenous attention.  In addition, other marker tasks of endogenous attention have 

shown a marked progression; thus, some kind of developmental progression on this task 

would be expected.  If endogenous attention develops prior to 9 months of age, one 

would expect younger infants to be able to perform the task at some sort of baseline level 

followed by improvement with age.  The current analysis, however, indicates that 

younger infants are more accurate and efficient at this task than older infants.  Given 

these results, it is not surprising that Clohessy (1993) did not find an improvement in 

performance on stimulus-to-response task.  Furthermore, Clohessy (1993) found that 

infants were producing a significant amount of correct anticipations across the learning 
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and test phases, but these values did not change with age.  The lack of developmental 

progression on the stimulus-to-response task brings into question whether the stimulus-

to-response task is measuring internally driven behavior when used with infants.  This 

result coupled with results obtained from the anticipation analyses leads to the conclusion 

that the current study stimulus-to-response task is not measuring internally driven 

behavior.     

Does the salience of the cue stimulus affect infants’ performance in the stimulus-to-

response task?   

  The measurement of endogenous shifts of attention, within the adult literature, is 

done through the use of content cues.  Traditionally, these cues are simple and do not 

trigger automatic or exogenous responses.  Our second question asked if the practice of 

manipulating cue stimulus to attract infants’ attention affects the performance on the 

stimulus-to-response task.  The results indicate that the salience of the cue stimulus does 

influence infants’ performance to the stimulus-to-response task.  More specifically, the 

high salience condition is associated with more responding overall.  Thus, it appears that 

the high salience cue stimuli are more engaging than the low salience cue stimuli thereby 

resulting in an increase in responding.   

The salience effect can be further broken down by age, such that salience did not 

affect the direction of response provided by 9-month-olds, but it did affect 4-month-old 

responses.  Four-month-olds in the high salience condition produced significantly more 

correct responses than in the low salience condition.  Furthermore, latencies significantly 

decreased across the learning and test phase for 9-month-olds irrespective of salience 
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condition.  The observed decrease in latencies could reflect some sort of activation of 

attention, and may be due to infants forming an expectation of the appearance of a 

peripheral target.  Although, infants are not anticipating the correct peripheral target 

location, they may be anticipating the appearance of the peripheral target.  Although, this 

anticipation could reflect endogenous attention, further research is necessary to explore 

this possibility. 

Regardless, it appears that manipulating salience can affect the outcome of the 

stimulus-to-response task for younger infants.  One could argue that this effect of salience 

is necessary to keep infants engaged in the task and that it does not negate the results.  In 

other words, once infants’ attention is directed to the cue they can then process the cue 

and use the information to guide eye movements.  However, the significant decrease in 

latencies observed for 4-month-olds in the high salience condition was obtained for both 

correct and incorrect anticipatory responding, and the lack of change in the production of 

correct anticipation in the high salience condition for 4-month-olds indicates that infants 

are responding based on a learned association.  Thus, the high salience condition triggers 

4-month-olds to respond in the stimulus-to-response task, but not based on the contingent 

relationship; rather they are more engaged and responding to the peripheral target 

locations, irrespective of the content of the central cue stimulus.   Although this finding is 

unexpected, it is consistent with the notion that 4-month-olds are more exogenously-

driven than 9-month-olds. 

Critically, the finding also suggests that the practice of making the cue highly 

salient to attract infants’ attention in the stimulus-to-response task may differentially 
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affect young infants’ performance in the task, resulting in an increase in the number of 

responses irrespective of contingent relationship.  It seems that the overall elevation in 

responding is driven by the engaging properties of the central cue stimulus and not the 

contingent relationship.  Thus, young infants’ performance in the high salience condition 

appears to be exogenously driven rather than endogenously driven.  Such a phenomenon 

would functionally provide a different base rate of responding in such paradigms, and 

might lead to the erroneous impression (if uncontrolled analyses were conducted) that 4-

month-olds were capable of endogenous or volitional attention.   

Summary and Concluding Remarks 

The current study reproduced the results obtained by Johnson et al. (1991), but 

supplementary analyses showed that such data did not allow a tenable conclusion of 

endogenously driven behavior in either 4- or 9-month-olds.  Although the initial results 

indicated that infants were able to perform the stimulus-to-response task, more controlled 

examination of the data indicated that infants were not responding based on the 

contingent relationship.  Rather, it appears that infants, particularly young infants, are 

simply responding in a non-discriminatory fashion, and that increasing the salience of the 

central cue target resulted in an increase in such nondiscriminatory behavior in the 

younger infants.  Given the current results, we cannot conclude that 4-month-old infant’s 

exhibit internally driven behavior.  While the prevalent theory of the development 

endogenous attention does not need to be recast to incorporate an earlier onset, it is the 

case that even older infants were not shown to be strictly capable of endogenous 
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responding.  There may be further constraints on the processing capacities at older ages; 

this is a topic worthy of future research. 

The current study, however, does bring up two methodological points that are 

highly relevant to the study of infant attention.  The purpose of the current study was to 

examine changes in latencies and responses when infants are making saccades toward the 

peripheral target (i.e., correct anticipations).  However, early analysis indicated that 

infants are producing a small amount of correct anticipations and making a similar 

number of incorrect anticipations.  In the current study the incorporation of incorrect 

responses in the analysis provided additional insight and prevented erroneous 

conclusions.  One major supplementary finding is the importance of analyzing all 

measured responses.  This point is especially relevant within the infant literature when 

subjects do not always behave as expected. 

The second point worth noting has to do with the methodological changes made 

to the stimulus-to-response task.  The custom of making the central stimulus highly 

salient to attract infants’ attention affects performance on the stimulus-to-response task, 

and seems to also affect the underlying assumption of the stimulus-to-response task.   In 

other words, in the process of changing the cue stimuli from a simple arrow to dynamic 

stimuli negates the operational definition of endogenous responses as measured by the 

stimulus-to-response task.  Infants appeared to be responding to the attention getting 

properties of the central cue stimulus, and as such performance on this task is exogenous 

driven rather than endogenously driven.  The methodological changes performed to 

ensure infants involvement can result in a change in what is being measured.  It should 
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always be noted that when procedures are modified they may no longer represent the 

same construct.   

In conclusion, the data from the current experiment indicates that neither age 

group exhibited the ability to use the content of the central cue stimulus to facilitate eye 

movement to the upcoming peripheral target.  We were unable to find evidence of 

endogenous attention using the stimulus-to-response task.   



 

 54

References 

Adler, S.A., & Haith, M.M. (2003). The nature of infants’ visual expectations for event 

content. Infancy, 4(3), 389-421. 

Aron, A.R., Sahakian, B.J., & Robbins, T.W. (2003).  Distractibility during selection-for-

action: differential deficits in Huntington’s disease and following frontal lobe 

damage.  Neuropsychologia, 41, 1137-1147.  

Bell, M.A. (1998).  Frontal lobe function during infancy: implications for the 

development of cognition and attention. In J.E. Richards (Ed.), Cognitive 

Neuroscience of Attention (pp. 287-316). Mahwah, NJ: Lawrence Erlbaum 

Associates.    

Bell, M.A., & Fox, N.A. (1992).  The relation between frontal brain electrical activity and 

cognitive development during infancy.  Child Development, 63, 1142-1163.  

Bell, M.A., & Fox, N.A. (1994).  Brain development over the first year of life: Relations 

between electroencephalographic frequency & coherence and cognitive & 

affective behaviors.  In G. Dawson & K.W. Fischer (Eds.), Human behavior and 

the developing brain (pp. 314-345).  New York, NY: Guilford.  

Birnbaum, S.G., Yuan, P.X., Wang, M., Vijayraghavan, S., Bloom, A.K., Davis, D.J., 

Gobeske, K.T., Sweatt, J.D., Manji, H.K., & Arnsten, A.F. (2004).  Protein 

Kinase C overactivity impairs prefrontal cortical regulation of working memory.  

Science, 306, 882-884. 

Blaga, O.M., & Colombo, J. (2006). Visual processing and infant ocular latencies in the 

overlap paradigm. Developmental Psychology, 42(6), 1069-1076. 



 

 55

Blasi, G., Goldberg, T.E., Weickert, T., Das, S., Kohn, P., Zoltick, B., Bertolino, A., 

Callicott, J.H., Weinberger, D.R., & Mattay, V.S. (2006).  Brain regions 

underlying response inhibition and interference monitoring and suppression. 

European Journal of Neuroscience, 23, 1658-1664. 

Canfield, R.L., & Haith, M.M. (1991). Young infants’ visual expectations for symmetric 

and asymmetric stimulus sequences. Developmental Psychology, 27(2), 198-208. 

Canfield, R.L., & Smith, E.G. (1996). Number-based expectations and sequential 

enumeration by 5-month-old infants. Developmental Psychology, 32(2), 269-279. 

Casey, B.J., & Richards, J.E. (1988). Sustained visual attention in young infants 

measured with an adapted version of the visual preference paradigm. Child 

Development, 59, 1514-1521. 

Chao, L.L., & Kinght, R.T. (1995).  Human prefrontal lesions increase distractibility to 

irrelevant sensory inputs. Neuro Report, 6, 1605-1610. 

Chugani, H.T., Phelps, M.E., & Mazziotta, J.C. (1987). Positron emission tomography 

study of human brain functional development.  Annuals of Neurology, 22(4), 487-

497. 

Clohessy, A.B. (1993). Anticipatory eye movement learning in infants and adults: using 

visual cues to predict event locations.  Unpublished doctoral dissertation, 

University of Oregon, Eugene.  

Clohessy, A.B., Posner, M.I., & Rothbart, M.K. (2001).  Development of the functional 

visual field.  Acta Psychologica, 106, 51-68. 



 

 56

Colombo, J., & Cheatham, C.L. (2006). The emergence and basis of endogenous 

attention in infancy and early childhood. In R. Kail (Ed.), Advances in Child 

Development and Behavior (pp. 283-322). New York, NY: Elsevier. 

Colombo, J., Mitchell, D.W., Coldren, J.T., & Atwater, J.D. (1990).  Discrimination 

learning during the first year: stimulus and positional cues.  Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 16(1), 98-108. 

Courage, M.L., Reynolds, G.D., & Richards J.E. (2006). Infant’s attention to patterned 

stimuli: developmental change from 3 to 12 months of age. Child Development, 

77(3), 680-695.  

Desimone, R., & Duncan, J. (1995).  Neural mechanisms of selective visual attention.  

Annual Review of Neuroscience, 18, 193-222.   

Diamond, A. (1985).  Development of the ability to use recall to guide action, as 

indicated by infants’ performance on AB.  Child Development, 56, 868-883. 

Diamond, A. (2002).  Normal development of prefrontal cortex from birth to young 

adulthood: cognitive functions, anatomy, and biochemistry.  In D.T. Stuss (Ed.), 

Principles of frontal lobe function (pp. 466-503).  New York, NY: Oxford 

University Press. 

Diamond, A. (1991a). Frontal lobe involvement in cognitive changes in the first year of 

life. In A.C. Petersen, & K.R. Gibson (Eds.), Brain maturation and cognitive 

development: Comparative and cross-cultural perspectives (pp. 127-180).  

Hawthorne, NY: Aldine de Gruyer.    



 

 57

Diamond, A. (1991b).  Insight into the meaning of object concept development.  In S. 

Carey, & R. Gelman (Eds.), The Epigenesis of Mind: Essays on Biology and 

Cognition (pp. 67-110).  Hillsdale, NJ: Lawrence Erlbaum Associates.    

Diamond, A. (1990a).  The development and neural bases of memory functions as 

indexed by the AB and delayed response task in human infants and infant 

monkeys.  In A. Diamond (Ed.), The development and neural bases of higher 

cognitive functions.  New York: Annals of the New York Academy of Sciences, 

608, 267-317.    

Diamond, A. (1990b).  Developmental time course in human infants and infant monkeys, 

and the neural bases of, inhibitory control and reaching.  In A. Diamond (Ed.), 

The development and neural bases of higher cognitive functions.  New York: 

Annals of the New York Academy of Sciences, 608, 637-676.    

Diamond, A. (1990c).  Rate of maturation of the hippocampus and the developmental 

progression of children’s performance on the delayed non-matching to sample and 

visual comparison tasks.  In A. Diamond (Ed.), The development and neural bases 

of higher cognitive functions.  New York: Annals of the New York Academy of 

Sciences, 608, 394-427.    

Diamond, A., & Doar, B. (1989).  The performance of human infants on a measure of 

frontal cortex function, the delayed response task.  Developmental Psychobiology, 

22(3), 271-294.  



 

 58

Diamond, A., & Goldman-Rakic, P.S. (1989).  Comparison of human infants and rehesus 

monkeys on the Piaget’s AB task: evidence for dependence on dorsolateral 

prefrontal cortex.  Experimental Brain Research, 74, 24-40. 

Drewe, E.A. (1975). Go No-Go learning after frontal lobes lesions in humans.  Cortex, 

11, 8-16. 

Duncan, J (2001).  Frontal lobe function and the control of visual attention.  In B. Jochen, 

K. Christof , & D.L. Joel (Eds.), Visual attention and cortical circuits. (pp. 69-

88). Cambridge, MA, US: The MIT Press 

Farroni, T., Johnson, M.H., Brockbank, M., & Simon, F. (2000). Infants’ use of gaze 

direction to cue attention: the importance of perceived motion. Visual cognition, 

7(6), 705-718. 

Farroni, T., Mansfield, E.M., Lai, C., & Johnson, M.H. (2003). Infants perceiving and 

acting on the eyes: tests of an evolutionary hypothesis. Journal of Experimental 

Child Psychology, 85, 199-212. 

Farroni, T., Massaccesi, S., Pividori, D., & Johnson, M.H. (2004). Gaze following in 

Newborns. Infancy, 5(1), 39-60. 

Fisher, B., & Breitmeyer B. (1987). Mechanisms of visual attention revealed by saccadic 

eye movements. Neuropsychologia, 25(1A), 73-83. 

Funahashi, S. (2001).  Neuronal mechanisms of executive control by the prefrontal 

cortex.  Neuroscience Research, 39, 147-165. 



 

 59

Funahashi, S., Bruce, C.J., & Goldman-Rakic, P.S. (1993).  Dorsolateral prefrontal 

lesions and oculomotor delayed-response performance: evidence for mnemonic 

“scotomas”.  The Journal of Neuroscience, 13(4), 1479-1497.    

Funahashi, S., Bruce, C.J., & Goldman-Rakic, P.S. (1990).  Visuospatial coding in 

primate prefrontal neurons revealed by oculomotor paradigms.  Journal of 

Neurophysiology, 63(4), 814- 831.   

Funahashi, S., Bruce, C.J., & Goldman-Rakic, P.S. (1991). Neuronal activity related to 

saccadic eye movements in the monkey’s dorsolateral prefrontal cortex.  Journal 

of Neurophysiology, 65(6), 1464-1483.   

Funahashi, S., Bruce, C.J., & Goldman-Rakic, P.S. (1989).  Mnemonic coding of visual 

space in the monkey’s dorsolateral prefrontal cortex.  Journal of 

Neurophysiology, 61(2), 331-349.  

Funashasi, S., Chafee, M.V., & Goldman-Rakic, P.S. (1993).  Prefrontal neuronal activity 

in rhesus monkeys performing a delayed anti-saccade task. Nature, 365, 753-756.   

Funashasi, S., & Kubota, K. (1994).  Working memory and the prefrontal cortex.  

Neuroscience Research, 21, 1-11.  

Gaymard, B., François, C., Ploner, C.J., Condy, C., & Rivaud-Pechoux, S. (2003).  A 

direct prefrontotectal tract against distractibility in the human brain.  Annals of 

Neurology, 53(4), 542- 545.  

Gemba, H., & Sasaki, K. (1990).  Potential related to no-go reaction in go/no-go hand 

movement with discrimination between tone stimuli of different frequencies in the 

monkey.  Brain Research, 537, 340-344.  



 

 60

Haith, M.M. (1993).  Future-oriented processes in infancy: the case of visual 

expectations. In C. Granrud (Ed.), Visual Perception and Cognition in Infancy 

(pp. 235-264).  Mahwah, NJ: Lawrence Erlbaum Associates.    

Haith, M.M., Hazan, C., & Goodman, G.S. (1988). Expectations and anticipation of 

dynamic visual events by 3.5-month-old babies. Child Development, 59, 467-479. 

Hallett, P.E. (1978).  Primary and secondary saccades to goals defined by instructions.  

Vision Research, 18, 1279-1296. 

Hood, B.M., & Atkinson, J. (1993). Disengaging visual attention in the infant and adult. 

Infant Behavior and Development, 16, 405-422. 

Hood, B.M., Willen, J.D., & Driver, J. (1998).  Adult’s eyes trigger shifts of visual 

attention in human infants.  Psychological Science, 9(2), 131- 134.  

Johnson, M. (1990a). Cortical maturation and the development of visual attention in early 

infancy. Journal of Cognitive Neuroscience, 2, 81-95. 

Johnson, M. (1990b). Cortical Maturation and perceptual development. In H. Bloch, & 

B.K. Bertenthal (Eds.), Sensory motor organization and development in infancy 

and early childhood (pp. 145-162). Dordecht, Netherlands: Academic.    

Johnson, M.H. (1994a). Cortical mechanisms of cognitive development.  In J.A. Hogan, 

& J.J. Bolhuis (Eds.), Causal mechanisms of behavioural development (pp. 267- 

289). New York, NY: Cambridge University Press. 

Johnson, M.H. (1994b). Dissociating components of visual attention: a 

neurodevelopmental approach. In M.J. Farah, & G. Ratcliff (Eds.), The 



 

 61

Neuropsychology of High-Level Vision (pp. 241- 268). Hillsdale, NY: Lawrence 

Erlbaum Associates. 

Johnson, M.H. (1995a). The development of visual attention: A cognitive neuroscience 

perspective. In M.S. Gazzaniga (Ed.), The Cognitive Neurosciences (pp. 735-

747). Cambridge, MA: The MIT Press. 

Johnson, M.H. (1995b). The inhibition of automatic saccades in early infancy. 

Developmental Psychobiology, 28(5), 281-291. 

Johnson, M. (1998). Developing the attentive brain. In R. Parasuraman (Ed.), The 

attentive brain (pp. 19-34). Cambridge, MA: MIT Press. 

Johnson, M.H., Posner, M.I., & Rothbart, M.K. (1991). Components of visual orienting 

in early infancy: contingency learning, anticipatory, looking, and disengaging. 

Journal of Cognitive Neuroscience, 3(4), 335-344. 

Johnson, M.H., Posner, M.I., & Rothbart, M.K. (1994). Facilitation of saccades toward a 

covertly attended location in early infancy. Psychological Science, 5(20), 90-93. 

Jonides, J. (1981).  Voluntary versus automatic control over the mind’s eye’s movement.  

In J.B. Long & A.D. Baddeley (Eds.), Attention and performance IX (pp. 187-

203).  Hillsdale, NJ: Erlbaum. 

Mansfield, E.M., Farroni, T., & Johnson, M.H. (2003).  Does gaze perception facilitate 

overt orienting?  Visual cognition, 10(1), 7-14. 

Miller, E.K., & Cohen, J.D. (2001). An integrative theory of perfrontal cortex function. 

Annual Review of Neuroscience, 24, 167-202. 



 

 62

Norman, D., & Schallice, T. (1986).  Attention to action: willed and automatic control of 

behavior.  In R.J. Davidson, G.E. Schwartz, & D. Shapiro (Eds.), Conscious and 

Self-Regulation (pp.). New York: University of California  

Oakes, L.M. Kannass, K.N., & Shaddy, D.J. (2002).  Developmental changes in 

endogenous control of endogenous attention: The role of target familiarity on 

infants’ distraction latency.  Child Development, 73(6), 1644-1655. 

Oaks, L.M., & Tellinghuisen, D.J. (1994).  Examining in infancy: Does it reflect active 

processing?  Developmental Psychology, 30(5), 748-756.  

Piaget, J. (1971).  The construction of Reality in the Child (Margaret Cook, Trans.). New 

York: Ballantine Books Inc. (Original work published 1954) 

Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., & Agid, Y. (1991).  Cortical control of 

reflexive visually-guided saccades.  Brain, 114, 1473-1485.  

Ploner, C.J., Gaymard, B.M., Rivaud-Pechoux, S., & Pierrot-Deseilligny, C. (2005).  The 

prefrontal substrate of reflexive saccade inhibition in humans.  Biological 

Psychiatry, 57, 1159-1165.  

Posner, M.I. (1992).  Attention as a cognitive and neural system.  Current Directions in 

Psychological Science, 1(1), 11-14. 

Posner, M.I. (1995). Attention in cognitive neuroscience: An overview.  In M.S. 

Gazzaniga (Ed), The cognitive neurosciences (pp. 615-624). Cambridge, MA, US: 

The MIT Press. 

Quintana, J., Fuster, J.M. (1992). Mnemonic and predictive functions of cortical neurons 

in a memory task. Neuro Report, 3, 721-724. 



 

 63

Rabbit, P. (1997).  Introduction: methodologies and models in the study of executive 

function.  In P. Rabbit (Ed.), Methodology of Frontal and Executive Function (pp. 

1-38).  East Sussex, UK: Psychology Press. 

Reznick, J.S., Chawarska, K., & Betts, S. (2000).  The development of visual 

expectations in the first year.  Child Development, 71(5), 1191-1204.  

Robinson, N.S., McCarty, M.E., & Haith, M.M. (1988, April). Visual Expectations in 

early infancy.  Paper presented at the International Conference on Infant Studies, 

Washington, DC. 

Rose, S.A., Feldman, J.F., Jankowski, J.J., & Caro, D.M. (2002).  A longitudinal study of 

visual expectation and reaction time in the first year of life.  Child Development, 

73(1), 47-61.  

Rothbart, M.K, & Rueda, M.R. (2005).  The development of effortful control.   In U. 

Mayr, E. Awh, & S.W. Keele (Eds.), Developing Individuality in the Human 

Brain (pp 167-188).  Washington, DC: American Psychological Association. 

Ruff, H.A., & Capozzoli, M.C. (2003).  Development of attention and distractibility in 

the first 4 years of life.  Developmental Psychology, 39(5), 877-890.   

Ruff, H.A., Capozzoli, M., & Saltarelli, L.M. (1996).  Focused visual attention and 

distractibility in 10-month-old infants.  Infant behavior and development, 19, 281-

293.  

Ruff, H.A., & Lawson, K.R. (1990).  Development of sustained, focused attention in 

young children during free play.  Developmental Psychology, 26(1), 85-93. 



 

 64

Ruff, H.A., & Rothbart, M.K. (1996). Attention in early development: Themes and 

variations. New York, NY, US: Oxford University Press. 

Shaddy, D.J., & Colombo, J. (2004). Developmental changes in infant attention to 

dynamic and static stimuli. Infancy, 5(3), 355-365. 

Smith, E.E., & Jonides, J. (1999).  Storage and executive processes in the frontal lobes.  

Science, 283, 1657- 1661.  

Sasaki, K., Gemba, H., Nambu, A., & Matsuzaki, R. (1993).  No-go activity in the frontal 

association cortex of human subjects.  Neuroscience Research, 18, 249-252. 

Takeda, K., & Funahashi, S. (2002).  Prefrontal task-related activity representing visual 

cue location or saccade direction in spatial working memory tasks.  Journal of 

Neurophysiology, 87, 567-588.  

Tsujimoto, T., Ogawa, M., Nishikawa, S., Tsukada, H., Kakiuchi, T., & Sasaki, K., 

(1997). Activation of the prefrontal, occipital, and parietal cortices during go/no-

go discrimination tasks in the monkeys as revealed by positron emission 

tomography. Neuroscience Letters, 224, 111-114. 

Wentworth, N., & Haith, M.M. (1992). Event-specific expectations of 2- and 3-month-

old infants.  Developmental Psychology, 28(5), 842-850.  

Wentworth, N., & Haith, M.M. (1998). Infants’ acquisition of spatiotemporal 

expectations. Developmental Psychology, 34(2), 247-257. 

Wentworth, N., Haith, M.M., & Hood, R. (2002).  Spatiotemporal regularity and 

interevent contingencies as information for infants’ visual expectations.  Infancy, 

3(3), 303-321. 



 

 65

West, R.L. (1996).  An application of Prefrontal Cortex Function Theory to Cognitive 

Aging.  Psychological Bulletin, 120 (2), 272-292. 

White, I.M., & Wise, S.P. (1999).  Rule-dependent neuronal activity in the prefrontal 

cortex.  Experimental Brain Research, 126, 315-335. 

Woods, D.L., & Knight, R.T. (1986).  Electrophysiological evidence of increased 

distractibility after dorsolateral prefrontal lesions.  Neurology, 36, 212-216.  



 

 66

Appendix A 

 
 

The University of Kansas 
Infant Cognition Research Program 

KU Edwards Campus/Regents Center Room 16 
Overland Park, Kansas 66213 ● (913) 897-8590 ●  (785) 312-5345 

 
INFORMED CONSENT STATEMENT 

Time Perception and Processing in Human Infants 

INTRODUCTION 

The Department of Psychology at the University of Kansas supports the practice of 
protection for human subjects participating in research.  The following information is 
provided for you to decide whether you wish for you child to participate in the present 
study.  You may refuse to sign this form and not participate in this study.  You should be 
aware that even if you agree to participate, you are free to withdraw your child at any 
time.  If you do withdraw from this study, it will not affect you or your child’s 
relationship with this unit, the services it may provide you or your child, or the University 
Kansas. 
 
PURPOSE OF THE STUDY 

The purpose of our research is to gather information on the development of attention 
during the first year of life.  Specifically, in this study, we are interested in examining 
difference between 4 and 9 month-old infants’ abilities to control eye movements.  We 
would like to know if there are differences in infants’ abilities to use the content of a 
picture to move their eyes to varying locations. 

PROCEDURES 

Your child will be placed in a car seat while we present him/her with a series of pictures.  
While the pictures are being presented we will monitor your child’s heart rate as well as 
their eye movements.  At the end of the session, we will be able give you a brief 
description of your child's performance, and ask that you fill out a questionnaire that 
pertains to your child's health, background, and environment.  The entire visit should take 
no more than 30 minutes, although the actual testing of your child usually takes no more 
than 15 minutes in length.  Upon completion of the entire project, we will send you a 
general report of our results. 

Approved by the Human Subjects Committee University of Approved by the Human Subjects Committee University of Approved by the Human Subjects Committee University of Approved by the Human Subjects Committee University of 
Kansas, Lawrence Campus (HSCL).  Approval expires one year Kansas, Lawrence Campus (HSCL).  Approval expires one year Kansas, Lawrence Campus (HSCL).  Approval expires one year Kansas, Lawrence Campus (HSCL).  Approval expires one year 

from 10/3/06.from 10/3/06.from 10/3/06.from 10/3/06.    



 

 67

RISKS 

Please be assured that none of our procedures or measurements present any risk to your 
child. 
BENEFITS 

Although it is unlikely that this study will provide any direct benefit to you or your child, 
your participation will make an important contribution toward our understanding of child 
development. 

INFORMATION TO BE COLLECTED 

To perform this study, researchers will collect information about you and your child.  
This information will be obtained from a health and background questionnaire 
administered prior to the beginning of the session.  Also, information will be collected 
from the study activities that are listed in the Procedures section of this consent form. 
 
It is our policy to protect the confidentiality of all our participants.  Your infant's name 
will be coded by a confidential number and will not appear in any test forms, 
computerized records, analyses, or publications involved with this study. 
 
All video recordings will be stored under a confidential number on a DVD.  Upon 
completion of the study the DVDs will be coded and stored at our research facility in 
Lawrence. 
 
The information collected about you and your child (including video recordings) will be 
used by Dr. John Colombo and the laboratory and staff members of the Infant Cognition 
Study Center. In addition, Dr. John Colombo may share the information gathered in this 
study with investigators at the University of Kansas involved in the Center for Behavioral 
Neuroscience in Communicative Disorders. The researchers will not share information 
about you or your child with anyone not specified above unless required by law or unless 
you give written permission. 
 
Permission granted on this date to use and disclose your information remains in effect 
indefinitely.  By signing this form you give permission for the use and disclosure of your 
information for purposes of this study at any time in the future. 
 
One of the members of the KU Infant Study Center staff will be happy to answer any 
questions you might have about the purpose, procedures of the study, or your rights.  Do 
not hesitate to call the principal investigators, Dr. John Colombo (Kansas City telephone: 
913-897-8590, Lawrence telephone 785-864-9841), should any questions arise after you 
have left the laboratory.   
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REFUSAL TO SIGN CONSENT AND AUTHORIZATION 

You are not required to sign this Consent and Authorization form and you may refuse to 
do so without affecting your or your child’s rights to any services you or your child are 
receiving or may receive from the University of Kansas or to participate in any programs 
or events of the University of Kansas.  However, if you refuse to sign, you and your child 
cannot participate in this study. 

CANCELLING THIS CONSENT AND AUTHORIZATION 

You may withdraw your consent to have your child participate in this study at any time.  
You also have the right to cancel your permission to use and disclose information 
collected about you and your child, in writing, at any time, by sending your written 
request to:  John Colombo, PhD, University of Kansas, Department of Psychology, 426 
Fraser Hall, 1415 Jayhawk Blvd., Lawrence, KS  66045.  If you cancel your permission 
to use your and your child’s information, the researchers will stop collecting additional 
information about you and your child.  However, the research team may use and disclose 
information that was gathered before they received your cancellation, as described above. 
 
PARTICIPANT CERTIFICATION: 
 
I have read this Consent and Authorization form.  I have had the opportunity to ask, and I 
have received answers to, any questions I had regarding the study and the use and 
disclosure of information about my child and me for the study.  I understand that if I have 
any additional questions about my child’s and my rights as a research participant, I may 
call (785) 864-7429 or write to the Human Subjects Committee Lawrence Campus 
(HSCL), University of Kansas, 2385 Irving Hill Road, Lawrence, KS 66045-7563, email 
dhann@ku.edu. 
 
I agree to allow my child, ___________________________, to take part in this study as a 
research participant.  I further agree to the uses and disclosures of my child’s and my 
information as described above.  By my signature I affirm that I am at least 18 years old 
and that I have received a copy of this Consent and Authorization form. 
 
______________________________         ______________________     _____________ 
Print Parent/Guardian of Participant          Relationship to child           Date 
 
________________________________         ________________________________ 
      Parent/Guardian Signature      Research Staff Signature 
 
               I agree to allow the recording of this procedure to be used for professional or educational 
purposes.  For example, parts of the session may be shown at seminars and scientific conferences.  If any 
part of the session is used total anonymity will be kept. 
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Appendix B 

University of Kansas 
Infant Cognition Research Program 

 
Health and Background Questionnaire 

 
Baby’s Dates and Weights 

Birthdate: ____/____/____ 
Due Date: ____/____/____ 
Birth Weight: ____lbs____oz 
Current Weight: ____lbs____oz   

 
Birth Information 
 _____ Normal/Vaginal 
 _____ C-Section 
  If it was a C-section, was it  _____emergency or _____elective 
  Reason for emergency C-section: ________________________________________ 
 
Medical Information 
 Difficulties during Pregnancy? 
     _____ For Mother Explain:  ___________________________________________ 
     _____ For Infant Explain:  ___________________________________________ 
 Difficulties during Labor? 
     _____ For Mother Explain:  ___________________________________________ 
     _____ For Infant Explain:  ___________________________________________ 
 
 Length of Hospital Stay after Birth  ______  days  or   hours (Circle one) 
 
Baby’s Current Health (Mark any that apply) 
 _____ Has a cold 
 _____ Running a temperature 
 _____ Has and ear infection 
 _____ Is on medication.   Please specify:  ______________________________________ 
 _____ Has had shots within one week of appointment 
 _____ Has been rehospitalized since birth 
             If so, for what condition?   _____________________________________________ 
              For how long?             _____________________________________________ 
 _____ Has chronic condition  Please specify:  _______________________________ 
 
 Baby has had _____ ear infections since birth. 
 
Today’s most recent nap ended at __________. 
Today’s most recent feed ended at __________. 
 
Baby is currently fed (check all that apply): 
   _____ Formula    _____ Breastmilk    _____ Solid Food 
 If you are not currently breastfeeding your baby… 
  Was your baby ever breastfed?   Yes _____  No _____ 
  If yes, for how long? ___________________________ 

Lab Use Only 
Postnatal age                           _____days 
Postconceptional age              _____days 
Birthweight Conversion          _____days 
Current Weight Conversion    _____days 

Lab Use Only 
Has been awake for _____min 
Has not been fed for _____min 

 



 

 70

KU Infant Cognition Health Questionnaire 
 
Caregiving Arrangements 
 Infant is in daycare for _____ hours per week.  (If not in daycare, enter zero) 
  If in daycare, what type: 
  _____ Daycare center 
  _____ Home-based care 
   _____ Your home (i.e., you run a daycare for other children 
   _____ A relative’s home (e.g., grandparent, aunt, etc.) 
   _____ Someone else’s home 
  _____ Private caretaker/nanny/au pair in your home 
 
Home Environment 
 How many siblings living at home full-time? _____ (include half-siblings) 
 Ages of these siblings ___________________________________________________________ 
 
 How many siblings visit or live at home part-time? _____ 
 Ages of these siblings ___________________________________________________________ 
 Approximate frequency and length of visit/stay:  ______________________________________ 
 
 _____ Individuals other than the baby’s mother, father, siblings living at home full-time 
  _____grandmother _____grandfather 
  _____aunt  _____uncle 
  _____friend  _____other (_______________________) 
 
Race/Ethnicity  

What is the race/ethnicity of your baby?  (Please Check all that apply) 
______Hispanic or Latino  
______American Indian or Alaska Native 
______Asian 
______Black or African American 
______Native Hawaiian or Other Pacific Islander 
______White 
______ Check here if you do not wish to provide this information 

 
Gender/Sex 
 What is the sex/gender of your baby? 
 ______Male 
 ______Female 
 
 
 

 
 
 
 
 
 
 

Please indicate highest level of education completed. 

High 
School 

Jr. 
Coll. 

College 
or 

Grad Degree 
(MA, PhD, MD, JD, 

1  2  3  1  2 1  2  3  4  
1  2  3  1  2 1  2  3  4  

 
 

Age 

Mother 

Father 

Occupation 

 
 

Lab Use Only 
Infant’s Code:___________     Arrived at lab asleep:  _____________ 
Today’s Date:___/___/____     Fed prior to session:_______________  
Appointment Time:_____:_____   Changed prior to session:___________ 
 
HQ filled out by       Mom  Dad  Rel  Care  Other 
Session coded by             _____ 
_____DVD DVD#_____ Counter__________ 
_____HR               _____ Fix      _____ Rel _____ET 
 


