
 
CHARACTERIZATION OF THE ROLES OF THE NCK INTERACTING KINASE 

MIG-15 AND THE RAC GTPASES IN NEURONAL MIGRATION IN 
CAENORHABDITIS ELEGANS. 

 
BY 

 
Copyright 2010 

Jamie Olivia Dyer 
 
 
 
 
 

Submitted to the graduate degree program in Molecular Biosciences 
and the Graduate Faculty of University of Kansas 

in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy. 

 
 
 
 
 
 

 
________________________________ 
Chairperson – Erik Lundquist 

 
 

Committee members  ________________________________ 
Brian Ackley 

 
________________________________ 

      Robert Cohen 
 

________________________________ 
      John Kelly 

 
________________________________ 

      Kristi Neufeld 
 

________________________________ 
      Lisa Timmons 

 
 

Date defended:____April 23, 2010______ 



 ii 

 
 
 
 

The Dissertation Committee for Jamie Olivia Dyer certifies 
that this is the approved version of the following dissertation: 

 
 
 
 
 

CHARACTERIZATION OF THE ROLES OF THE NCK INTERACTING KINASE 
MIG-15 AND THE RAC GTPASES IN NEURONAL MIGRATION IN 

CAENORHABDITIS ELEGANS. 
 
 
 
 

 
 
 

Committee: 
 
 
________________________________ 
Chairperson – Erik Lundquist 

 
 

________________________________ 
Brian Ackley 

 
________________________________ 

      Robert Cohen 
 

________________________________ 
      John Kelly 

 
________________________________ 

      Kristi Neufeld 
 

________________________________ 
      Lisa Timmons 

 
 

Date approved:____April 26, 2010______ 



 iii 

Abstract 
 

 

Neuronal migration is essential to the formation of the central nervous 

system in vertebrates.  In Caenorhabditis elegans, a screen was performed 

previously to identify mutations that affected the migration of the Q neuroblast 

descendants.  One of the mutants isolated from this screen was mig-15.  MIG-15, 

a Nck Interacting Kinase (NIK), is homologous to proteins found in a wide variety 

of organisms, including Drosophila, mice, and humans, in which NIK kinases 

have been implicated in cell migration.  Interestingly, multiple components of the 

canonical Wnt signaling pathway had already been found to control the Q cell 

descendant migrations.  Additionally, the MIG-15 homolog in Drosophila, 

Misshapen had also been found to work with Wnt signaling components in the 

non-canonical planar cell polarity pathway. 

To determine how MIG-15 was working to control the migrations of the Q 

cell descendants, a characterization of the Q neuroblast migration defects was 

performed.  mig-15 mutants were found to affect the Q neuroblasts, along with 

their descendants as previously described.  I carried this work further and found 

that MIG-15 is required for extension of lamellipodial protrusions, maintenance of 

the initial polarization directing these initial protrusions, and migration of the Q 

neuroblasts.  Since the Wnt signaling pathway had been implicated in Q cell 

descendant migration as well, several Wnt signaling mutants were also examined 

in the Q neuroblasts.  This analysis determined that for the Wnt signaling 

mutants that were observed, there was no effect on early Q neuroblast protrusion 
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extension or migration.  Therefore, MIG-15 does not appear to be acting with the 

Wnt signaling pathway to control Q neuroblast migration.  Subsequently, the Q 

cell descendant migrations of the AQR and PQR neurons were also examined for 

both mig-15 and Wnt signaling mutants.  Double mutants of mig-15 with Wnt 

signaling mutants resembled mig-15 mutants alone, further suggesting that MIG-

15 is not working with the Wnt signaling pathway to control the Q neuroblast 

lineage migrations. 

In attempt to elucidate how MIG-15 is controlling the migrations of the Q 

neuroblasts and descendants, a candidate gene approach was taken to 

determine other possible proteins that are required for Q neuroblast migration.  

The C-terminal region of MIG-15 had previously been found to bind to PAT-3, the 

β-integrin homolog in C. elegans.  Since available mutants in pat-3 are not viable, 

INA-1/α-integrin was examined for defects in Q neuroblast migration.  This 

analysis found that, like MIG-15, INA-1 is required for the extension of polarized 

protrusions and migration of the Q neuroblasts.  Though, INA-1 was not involved 

in maintenance of polarization as was MIG-15.  Another molecule that was 

examined was ERM-1, the C. elegans homolog of the ezrin, radixin, and moesin 

(ERM) family of proteins.  Previous studies have found that ERM proteins bind to 

and are phosphorylated by Nck interacting kinases in cell culture.  These studies 

found that removal of ERM-1 from mig-15 mutants suppressed the migration 

defects seen for the QL neuroblasts in the mig-15 mutants alone.  Together, 

these results suggest that MIG-15 could be acting with the integrins for proper 
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polarization and with both ERM-1 and the integrins to direct migration of the Q 

neuroblasts and descendants. 

Previous studies had suggested that MIG-15 works upstream of the Rac 

GTPases MIG-2 and CED-10 in axon pathfinding.  Additionally, these molecules 

had been found to act in parallel to control axon pathfinding.  In order to 

determine if these Rac GTPases are also required for migration of the Q 

neuroblasts, single and double mutants of the Rac GTPases and several other 

molecules that are known to work with these molecules in other systems, 

including CDC-42 and UNC-73, were examined for their effects on the Q 

neuroblasts and their migrations.  Singly, mutants of mig-2, ced-10, and cdc-42 

did not cause strong defects in the ability to extend protrusions or the migrations 

of the Q neuroblasts.  When double mutants were analyzed, strong defects in the 

polarization and migration of the Q neuroblasts were observed for the mig-2;ced-

10 double mutants.  Previous data has suggested that UNC-73 acts as a guanine 

nucleotide exchange factor (GEF) for MIG-2 and CED-10.  unc-73 mutants 

displayed polarization and migration defects like the mig-2; ced-10 double 

mutant, but the defects were less severe in the unc-73 mutants, suggesting that 

there is another GEF that facilitates GTP exchange for MIG-2 and CED-10.  

Observations of a second GEF, PIX-1, suggest that PIX-1 is involved in the 

protrusion extension and migration of the Q neuroblasts, suggesting that PIX-1 

might act as the other GEF for MIG-2 and CED-10.  Further studies found that 

PIX-1 might be functioning in a linear pathway with CED-10 and in parallel to the 

UNC-73/MIG-2 signaling pathway. 
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In summary, my work reveals the roles of the Rac GTPases and MIG-

15/NIK kinase in the migrations of the Q neuroblasts in Caenorhabditis elegans, 

which provides insight into the mechanisms that drive neuronal migration during 

nervous system development. 
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Neuronal migration is essential for the development of the central nervous 

system.  Neurons are often born in one location and have to migrate over long 

distances in order to form various portions of the central nervous system and to 

make synapses with the proper targets.  In order for neurons to migrate, these 

cells must be able to modulate their actin cytoskeletons to allow for the steps of 

migration.  Migration can be broken down into several simplified steps; cells must 

be able to receive a signal that tells the cell in which direction to migrate, interpret 

that cue, send out protrusions in the direction of migration, and finally, exert the 

pulling force that moves the cell in the proper direction (Lauffenburger DA, 1996; 

Ridley et al., 2003). 

One of the key components in sending out the protrusive structures that 

then allow for the physical movement of the cell is modulation of the actin 

cytoskeleton (Pollard and Borisy, 2003).  These protrusive structures, 

lamellipodia and filopodia, are formed by reorganization of the actin cytoskeleton 

(Welch and Mullins, 2002).  Elongation of the actin cytoskeleton under the 

plasma membrane allows for the lamellipodia and filopodia to extend in the 

direction of migration.  Without these protrusive structures, the migration of the 

cell could not occur. 

Numerous molecules have been determined to be involved extension of 

lamellipodia and filopodia, and therefore, the modulation of the actin 

cytoskeleton.  Though many molecules have been identified, it is not yet 

understood how these molecules work together in a variety of pathways to form 

the protrusive structures necessary to allow for migration.  In order to further 
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elucidate how several of the molecules known to be involved in neuronal 

migration work together to drive migration, in vivo genetic studies were 

performed to determine the roles of each of these molecules in migrating 

neurons in the model organism Caenorhabditis elegans. 

Using the nematode C. elegans provides many advantages to the other 

approaches used to study neuronal migration (Brenner, 1974).  C. elegans has a 

relatively simple nervous system, with only 302 neurons present in the adult 

hermaphrodite (White et al., 1986).  Additionally, the cell lineage map has been 

determined for these animals, detailing the location and time of birth of each 

neuroblast, which cells will come from those neuroblasts, and where the resulting 

neurons should migrate (Sulston, 1988).  An additional important feature that 

facilitates neurological studies in C. elegans is that they are transparent, allowing 

for the observation of migrating neurons in vivo.  With all of these features and 

full genomic sequencing, C. elegans allows for in vivo studies that would not be 

available in many other organisms. 

 In C. elegans, the Q neuroblasts and their descendants provide a useful, 

yet simple system in which to study migrations of neurons.  The Q neuroblasts 

are born bilaterally in the posterior of the animal (Chalfie and Sulston, 1981; 

White et al., 1986).  The QL neuroblast originates from the division of a precursor 

cell, ABplapapaa, which gives rise to both QL and the V5L seam cell on the left 

side of the animal.  Likewise, the QR neuroblast originates from the division of a 

precursor cell, ABprapapaa, which gives rise to both QR and the V5R seam cell 

on the right side of the animal.  Both QL and QR undergo identical division 
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patterns to each produce 3 neurons (Fig. 1.1).  The QL neuroblast undergoes 

three rounds of postembryonic division and two apoptotic events to produce the 

PQR, SDQL, and PVM neurons.  Of the three QL descendants, PQR migrates 

the farthest, migrating posteriorly into the phasmid ganglion in the tail of the 

animal.  The QR neuroblast also undergoes three rounds of postembryonic 

division and two apoptotic events to produce AQR, SDQR, and AVM.  Of these 

three QR descendants, AQR migrates the farthest, migrating anteriorly into the 

anterior deirid ganglion in the head of the animal. 

At hatching, the unpolarized QL and QR neuroblasts are located between 

the V4 and V5 seam cells on their respective sides of the animal (Sulston and 

Horvitz, 1977).  The QL neuroblast receives a signal to polarize posteriorly, 

causing QL to send protrusions posteriorly over the V5L seam cell.  The QR 

neuroblast receives a signal to polarize anteriorly, causing the QR neuroblast to 

send protrusions anteriorly over the V4R seam cell.  The Q cells then follow 

these protrusions, migrating over their respective seam cells, QL over V5L and 

QR over V4R.  The QL and QR neuroblasts then divide, giving rise to daughter 

cells that continue to migrate in the same direction as the precursor. 

In a screen to identify molecules involved in neuronal migration, 

Hedgecock and Guo isolated a mutant, named mig-15, in which there were 

migration defects in the descendants of the Q neuroblast lineages.  Cloning of 

the mig-15 locus determined that MIG-15 is homologous to other proteins 

belonging to the group of Nck interacting kinases (NIK) (Poinat et al., 2002; Su et 

al., 1997; Su et al., 2000; Su et al., 1998).  Therefore, MIG-15 is a member of the 
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Ste20 kinase family of proteins and is classified as part of the Group I type of 

Germinal Center Kinases.  This group of proteins contains an N-terminal kinase 

domain and a C-terminal regulatory domain. 

NIK kinases were originally identified in a yeast two-hybrid screen for 

molecules that interact with the SH3 domains found in the small adaptor 

molecule Nck (Su et al., 1997).  Nck is a signaling molecule containing 1 SH2 

domain and 3 SH3 domains (Lehmann et al., 1990).  Though Nck does not 

contain any catalytic activity on its own, Nck molecules are thought to perpetuate 

signals through their ability to bind phosphotyrosine through their SH2 domain 

and proline-rich domains through their SH3 domains, allowing for the localization 

of effector proteins upon activation of growth factor receptor activation.  Nck 

molecules have been found to bind the Wiskott-Aldrich syndrome protein 

(WASP), a molecule that modulates the actin cytoskeleton through its 

interactions with the Rac GTPases and CDC-42 (Aspenstrom et al., 1996).  

Additionally, the Drosophila homolog of Nck, Dreadlocks (Dock), was determined 

to play a role in axon guidance, suggesting that Nck molecules might have a role 

in modulation of the actin cytoskeleton through its interactions with effector 

molecules (Garrity PA, 1996). 

Amino acid sequence comparisons of the mammalian NIK with other NIK 

homologs found that the C. elegans MIG-15 shared the most homology with NIK 

(Su et al., 1997).  Alignments of the entire coding regions of NIK and MIG-15 

found that these genes are 52% identical and 68% similar.  The N-terminal S/T 

kinase domain and the C-terminal CNH domain of these proteins were more 
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highly conserved, with 72% identical and 86% similarity between these domains 

of MIG-15 and NIK.  The strong conservation seen for NIK kinases between 

divergent species suggests that NIK kinases play an important role in these 

organisms.  Additionally, the degree of conservation would also suggest that C. 

elegans MIG-15 and mammalian NIK are likely to perform the same functions.  

Thus, examination of the role of MIG-15 in neuronal migration in C. elegans will 

likely have implications that can explain the functions of NIK kinases in human 

cell migrations. 

Studies focused on the mechanisms of action of NIK kinases have 

determined a variety of functions for these proteins.  Numerous studies have 

determined that NIK kinases are acting in the mitogen-activated protein kinase 

(MAPK) signaling pathway that leads to activation of the c-Jun N-terminal kinase 

(JNK), including studies in mammalian cell culture and for the Drosophila 

Misshapen (Msn) (Fu et al., 1999; Liu et al., 1999; Su et al., 2000; Su et al., 

1998; Wright et al., 2003).  Additionally, experiments in yeast determined that the 

serine/threonine kinase STE20 also activates the MAPK signaling pathway 

(Herskowitz, 1995).  As such, NIK kinases have also been named MAP4K4.  In 

addition to the role of NIK kinases upstream of JNK activation, the Drosophila 

NIK homolog Msn has been found interact with Bicaudal-D and dynein in nuclear 

translocation during cell migration of photoreceptor cells of the developing eye 

(Houalla et al., 2005).  Other studies found contrasting functions for NIK kinases 

in their role of regulating integrin function, with studies done in mouse cell lines 

finding that NIK acts downstream of Eph receptors to activate integrin adhesion 
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whereas examination of the human NIK kinase HGK (hepatocyte progenitor 

kinase-like/GCK-like kinase) found that a kinase-inactive form of HGK caused 

increased cell spreading and cell adhesion that could be blocked by anti-integrin 

antibodies, suggesting that wild type HGK acts to decrease cell spreading and 

adhesion via integrins (Becker et al., 2000; Wright et al., 2003).  NIK kinases 

were also shown to directly interact with the cytoplasmic tail of β-integrin, for both 

murine NIK and C. elegans MIG-15 (Poinat et al., 2002).  Additional cell culture 

experiments have found that NIK binds to moesin, a member of the ERM family 

of proteins (for ezrin, radixin, and moesin), and also phosphorylates these three 

ERM-1 proteins in vitro (Baumgartner et al., 2006). 

As illustrated by the several examples stated above, it appears that NIK 

kinases work in multiple pathways to control various developmental events.  

Additionally, it seems that NIK kinases can function in a cell specific manner.  In 

Drosophila, Msn appears to be working in multiple pathways in the developing 

compound eye, with Msn working downstream of the Frizzled receptor and 

Dishevelled through the JNK protein to control planar cell polarity in the eye 

whereas proper targeting of the axonal projections of the photoreceptors appears 

to require Msn function, though Msn was found to be working with Dreadlocks 

(Dock) and not through JNK signaling to control these pathfinding events (Paricio 

et al., 1999; Su et al., 2000).  Further studies also found cell specific roles for NIK 

in the development of mouse embryos.  NIK knockout mice had defects in the 

migrations of the mesodermal cells away from the primitive streak, resulting in a 

failure of somites to form, though it appears that this defect in migration is due to 
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a nonautonomous affect of NIK (Xue et al., 2001).  Additionally, it appears that 

NIK is required autonomously for the differentiation of mesoderm into 

dermamyotome (Xue et al., 2001).  As mesodermal and somite formation are not 

dependent on JNK signaling, the NIK knockout studies suggest a role for NIK 

independent of JNK.  Taken together, these results suggest the NIK kinases act 

in multiple tissues and in multiple pathways to control migration and 

differentiation of cells during development. 

Another class of molecules that have been implicated in cell migration, 

including the migration of the Q neuroblast descendants, is the Rac GTPases 

(Hall, 1998; Raftopoulou and Hall, 2004; Ridley et al., 2003; Shakir et al., 2006).  

The Rac GTPases belong to the Rho family of small GTPases, a group of 

proteins that have been implicated in a variety of cellular processes, including 

cell proliferation, gene expression, and actin cytoskeleton dynamics (Hall, 1998; 

Mackay and Hall, 1998).  These small GTPases cycle between an active state 

when bound to GTP and an inactive state when bound to GDP, allowing these 

molecules to act as molecular switches.  The exchange of GDP for GTP to 

activate these small GTPases is facilitated by guanine nucleotide exchange 

factors (GEFs), whereas the inactivation of Rho GTPases is expedited by the 

activity of GTPase-activating proteins (GAPs).  Since Rho GTPases have a role 

in modulation of the actin cytoskeleton, these small GTPases play an essential 

role in the ability for cells to undergo morphological changes, like the extension of 

lamellipodia and filopodia, and for migration (Hall, 1998, 2005; Heasman and 

Ridley, 2008; Raftopoulou and Hall, 2004; Ridley, 1992). 
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There are three classes of Rho GTPases, Rac, Rho, and CDC42 (Mackay 

and Hall, 1998).  Of these three, CDC42 has been found to play a role in the 

establishment of cellular polarity through regulation of the actin cytoskeleton 

(Heasman and Ridley, 2008).  This role of CDC42 in cell polarity also has 

implications in cell migration, as CDC42 had been shown to be required for 

directional migration.  In addition to its role in polarity, CDC42 has also been 

shown to be involved in the formation of filopodia (Nobes and Hall, 1995).  

Lamellipodial formation was found to be regulated by another member of the Rho 

GTPase family, Rac (Heasman and Ridley, 2008; Ridley, 1992).  Rac GTPases 

are thought to regulate the extension of lamellipodia through their interactions 

with effector proteins that modulate the actin cytoskeleton, such as the ARP2/3 

complex, WAVE complex (WASP-family verprolin homologous proteins), cofilin 

and gelsolin (Heasman and Ridley, 2008).  Through the activities of these 

effectors, the actin cytoskeleton can form an extending meshwork beneath the 

plasma membrane that allows for lamellipodial protrusions.  Though much has 

been done to determine the individual roles of these Rho GTPases in the 

process of cell migration, most of these studies have been performed in cell 

culture using dominant-negative and constitutively active forms of these Rho 

GTPases (Heasman and Ridley, 2008).  Additionally, these experiments have 

produced confounding results, though these differences could be due to varying 

cell specific roles of these molecules. 

To further elucidate the roles of the NIK kinases and Rho GTPases in the 

migration of neurons, in vivo studies were performed in Caenorhabditis elegans 
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to study the functions of the MIG-15/NIK kinase, CDC-42, CED-10/Rac, and 

MIG-2/RhoG.  Characterization of mig-15 mutants in the Q neuroblasts found 

that MIG-15 is required for the extension of protrusions, maintenance of the initial 

protrusions, and migration of the Q neuroblasts.  Further studies to determine 

how MIG-15 might be functioning in the Q neuroblasts found that MIG-15 

appears to interact genetically with INA-1/α-integrin and ERM-1/ERM to drive the 

migrations of these neuroblasts.  Examination of the Rho GTPases found that 

MIG-2/RhoG and CDC-42 are required for the ability of the Q neuroblasts to 

migrate.  Conversely, it appears that CED-10/Rac is normally involved in the 

inhibition of the Q neuroblasts from migrating past their normal stopping point.  

Studies examining the potential Rac GEFs found that UNC-73/Trio, which has 

previously been shown to act as a GEF for MIG-2 and CED-10, does not act 

alone as the GEF for MIG-2 and CED-10, but rather PIX-1, PAK (p21-activated 

kinase) Interacting Exchange Factor, also functions as a GEF for CED-10.  

Investigations into the relationship of MIG-15 with the Rho GTPases found that 

MIG-15 appears to be interacting with both MIG-2/RhoG and CDC-42 to give the 

Q neuroblasts the ability to migrate. 

Overall, the experiments presented here provide insight into how 

molecules that are required for cell migration interact to allow for directed 

neuronal migration.  The Rho GTPases have previously been shown to modulate 

the actin cytoskeleton to extend protrusions necessary for cell migration (Ridley 

et al., 2003).  Studies shown here suggest that MIG-15 is also allowing for cell 

migration through the modulation of the actin cytoskeleton, as both INA-1 and 
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ERM-1 which were found to interact with MIG-15 have also been implicated in 

actin cytoskeleton regulation.  Both the Rho GTPases and NIK kinases have 

been shown to be involved in cell migrations, but these molecules have 

additionally been implicated in determining the invasiveness of tumor cells 

(Collins et al., 2006; Sanz-Moreno et al., 2008).  Thus, these studies provide 

insight not only into how neuronal migration occurs during development, but they 

also examine molecules and mechanisms that control metastasis of cancer cells. 
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Figure 1.1 
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Figure. 1.1. Schematic diagram of the Q neuroblast and descendant 

migrations.  (A) The migration and division pattern of the QL lineage.  Black 

circles represent the final locations of the PVM, SDQL, and PQR neurons. (B) 

The migration and division pattern of the QR lineage.  Black circles represent the 

final locations of the AQR, SDQR, and AVM neurons.
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Chapter II 

The MIG-15 NIK kinase acts cell-autonomously in neuroblast 

polarization and migration in C. elegans 
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2.1. Abstract 

Cell migration is a fundamental process in animal development, including 

development of the nervous system.  In C. elegans, the bilateral QR and QL 

neuroblasts undergo initial anterior and posterior polarizations and migrations 

before they divide to produce neurons.  A subsequent Wnt signal from the 

posterior instructs QL descendants to continue their posterior migration.  Nck-

interacting kinases (NIK kinases) have been implicated in cell and nuclear 

migration as well as lamellipodia formation.  Studies here show that the C. 

elegans MIG-15 NIK kinase controls multiple aspects of initial Q cell polarization, 

including the ability of the cells to polarize, to maintain polarity, and to migrate.  

These data suggest that MIG-15 acts independently of the Wnt signal that 

controls QL descendant posterior migration.  Furthermore, MIG-15 affects the 

later migrations of neurons generated from Q cell division.  Finally, a mosaic 

analysis indicates that MIG-15 acts cell autonomously in Q descendant 

migration.
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2.2. Introduction 

 Cell migration is a key morphogenetic process in animal development.  

Migration of neurons and their precursors are important in forming distinct cortical 

layers and functional nuclei of neurons in the developing vertebrate central 

nervous system.  In C. elegans, the bilateral Q neuroblasts, born in the posterior-

lateral region of the animal, and their neuronal descendants execute long-range 

anterior and posterior migrations in the first larval stage (Chalfie and Sulston, 

1981; Sulston and Horvitz, 1977).  After hatching, QL and QR undergo initial, 

short-distance posterior and anterior migrations, respectively, after which they 

divide.  QL and descendants encounter a Wnt signal in the posterior which, via 

canonical Wnt signaling, drives expression of the mab-5 Hox gene in QL 

descendants (Chalfie et al., 1983; Eisenmann and Kim, 2000; Harris et al., 1996; 

Herman, 2001; Kenyon, 1986a; Korswagen et al., 2000; Salser and Kenyon, 

1992; Whangbo and Kenyon, 1999).  mab-5 expression in QL descendants 

causes them to continue posterior migration.  QL generates three neurons:  

SDQL and PVM reside near the site of Q cell birth in the left postdeirid ganglion, 

and PQR migrates posteriorly into the phasmid ganglion in the tail (Sulston and 

Horvitz, 1977; White et al., 1986).  In mutants affecting Wnt signaling and in mab-

5 mutants, QL descendants reverse their direction of migration and migrate 

anteriorly instead of posteriorly (Chalfie et al., 1983; Eisenmann, 2005; Kenyon, 

1986a; Salser and Kenyon, 1992).  QR, which migrates a short distance 

anteriorly and divides, does not respond to the posterior Wnt signal and does not 

express mab-5.  Consequently, the three neurons generated by QR (SDQR, 
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AVM, and AQR) migrate anteriorly.  AQR migrates the longest distance into the 

head of the animal in the anterior deirid ganglion. 

 Mutations in unc-40, which encodes the netrin receptor (Keino-Masu, 

1996), and dpy-19, which encodes a novel, conserved transmembrane protein 

(Honigberg and Kenyon, 2000), randomize initial Q cell polarization, and 

mutations in unc-73, which encodes the Rac GEF Trio (Steven et al., 1998), 

affect the ability of Q cells to polarize and migrate (Honigberg and Kenyon, 

2000).  The transmembrane molecule MIG-13 might be involved in establishing 

an anterior-posterior guidance system that is required for anterior migration of 

QR descendants (Sym et al., 1999).  These studies have identified potential 

guidance ligands, guidance receptors, and cellular effectors that mediate Q cell 

migration.  While much has been learned about Q cell migration, many of the 

mechanisms that control Q cell polarity and Q cell migration remain to be 

elucidated. 

 Previous studies have implicated the Nck-interacting kinases, NIK 

kinases, as regulators of a variety of morphogenetic events involving cytoskeletal 

regulation and cell shape.  In Drosophila, the NIK molecule Misshapen is 

involved in cell and nuclear migration, interacts with a JNK/MAPK kinase 

pathway, and controls axon pathfinding (Houalla et al., 2005; Su et al., 2000; Su 

et al., 1998).  Vertebrate studies have also implicated NIK kinases in cell 

migration and as acting with JNK signaling and integrins (Becker et al., 2000; 

Xue et al., 2001).  In cultured cells, treatment with EGF and PDGF leads NIK 
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kinase-dependent phosphorylation of ERM proteins responsible for actin 

organization and lamellipodium formation (Baumgartner et al., 2006). 

mig-15 encodes a C. elegans Nck-interacting kinase (NIK) (Poinat et al., 

2002; Su et al., 1997). MIG-15 contains an N-terminal pak/ste20-type 

serine/threonine kinase domain followed by a proline-rich region.  The C-

terminus of MIG-15 contains a citron-NIK homology domain (CNH), a conserved 

domain thought to interact with Rac GTPases and β1 integrin (Figure 2.1).  

Mutations in mig-15 cause defects in axon pathfinding as well as Q descendant 

migration (Poinat et al., 2002; Shakir et al., 2006).  mig-15 acts upstream of mab-

5, as the constitutively-active mab-5(e1751) allele, which causes constitutive 

mab-5 expression in both QL and QR descendants, rescues the anterior QL 

descendant migration defects in mig-15 mutants (i.e. in mig-15; mab-5(e1751) 

doubles, QL descendants always migrate to the posterior) (Shakir et al., 2006). 

 Previous work showed that MIG-15 was required for initial Q cell migration 

(Williams, 2002), but it is not clear if mig-15 also affects Q cell polarization or if 

mig-15 might also affect later Wnt-related events.  Furthermore, it is not clear if 

MIG-15 acts in the Q cells and descendants or in another tissue such as a 

substrate for Q descendant migration.  Described here are studies showing that 

MIG-15 controls initial Q cell polarization and maintenance of polarity in addition 

to affecting Q cell and Q descendant migration.  Furthermore, analysis of mig-15 

genetic mosaics was consistent with a cell-autonomous role of MIG-15 in AQR 

and PQR migration. 
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2.3. Materials and Methods 

Genetic Methods 

All experiments were performed at 20°C using standard techniques (Brenner, 

1974; Sulston and Hodgkin, 1988).  The following mutations and transgenic 

constructs were used: X: bar-1(ga80), qid-7(mu327), qid-8(mu342), mig-15(rh148 

and rh80); I: lin-17(e1456), lqIs40[Pgcy-32::gfp]; II: muIs16[mab-5::gfp]; III: 

gmIs5[ina-1::gfp], mab-5(e1239 and e1751); IV:  lqIs3[osm-6::gfp].  The 

chromosomal locations of lqIs80[scm promoter::gfp::caax] and lqIs58[Pgcy-

32::cfp] were not determined.  Pmig-15::gfp, Pgcy-32::yfp, and mig-15(+) were 

extrachromosomal arrays.  Extrachromosomal arrays were generated by germ 

line microinjection and integrated into the genome by standard techniques (Mello 

and Fire, 1995). 

 

Synchronization of L1 larvae to visualize Q cell polarization.  Methods 

described previously to synchronize larval development were used (Honigberg 

and Kenyon, 2000).  Adults and larvae were washed from a plate with M9 buffer.  

Eggs adhered to the agarose and were not removed.  Newly-hatched L1 larvae 

were washed from the plate at 30 minute intervals, placed on a fresh NGM plate 

with a bacterial lawn, and allowed to develop for given times:  imaged 

immediately (0-0.5h), 1-2.5h, 3-3.5h, 4-4.5h, and 5.5-6h (for mig-15(rh80)).  In 

the case of egg-laying-defective genotypes, eggs were isolated from gravid 

adults by bleach treatment (Sulston and Hodgkin, 1988). 
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Epifluorescence microscopy and visualization of Q cell polarization and 

migration.  Animals were analyzed by epifluorescence microscopy for GFP, 

YFP, or CFP using a Leica DMR compound microscope.  Images were captured 

using Openlab software and a Qimaging Retiga EXi camera.  For Q cell imaging, 

a z-series of images of the Q cells was captured, and images were subjected to 

nearest-neighbor deconvolution (Openlab). 

 

Scoring and analysis of AQR and PQR migration defects.  The final positions 

of AQR and PQR were scored in L4 larvae and young adult worms.  The position 

of each neuron was given a value of 1-5, depending on the anterior-posterior 

position of the neuron:  a value of 1 was the normal position of AQR in the 

anterior deirid ganglion; 2 was posterior to the anterior deirid to approximately 

half the distance to the vulva; 3 was around the vulva (half the distance from the 

vulva to the anterior deirid and from the vulva to the post-deirid); 4 was the post-

deirid to the anus; and 5 was posterior to the anus, the normal position of PQR in 

the phasmid ganglion.  A position of 4, around the post-deirid, is the position of Q 

cell birth.  Thus, some cells with a score of 4 had not migrated from the Q cell 

birthplaces.  PQR neurons with scores of 1 to 3 had reversed direction and 

migrated anteriorly instead of posteriorly.  AQR neurons with a score of 5 had 

reversed direction of migration and migrated posteriorly instead of anteriorly.  

These coordinates correspond to the following landmarks in the L1 larva:  1 = 

anterior to the V1.a/p cells; 2 = near the V1.a/p and V2.a/p cells; 3 = near the 
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V3.a/p and V4.a/p cells; 4 = near the V4.a/p, V5.a/p, and V6.a/p cells (Q cells are 

born between V4 and V5); and 5 = posterior to the anus. 

 

mig-15, gcy-32, and scm::gfp::caax transgenes.  The sequences of all 

plasmids used in this work are available upon request.  All coding regions 

amplified by polymerase chain reaction (PCR) were sequenced to ensure that no 

mutations had been introduced by PCR.  All regions were amplified from N2 

genomic DNA unless otherwise noted. The entire mig-15(+) gene included the 

entire mig-15 coding region plus 4-kb of upstream promoter sequence and was 

amplified using primers: 5’-CTCCAATAGTTTGCTCCCGG and 5’-

CCAATTTGTCAACCCTGGCTT.  The mig-15 promoter included 4-kb of DNA 

upstream of the mig-15 coding region and was amplified using primers: 5’-

CTCCAATAGTTTGCTCCCGGT and 5’-GGTTTTGGGTGCTGTGAGCG.  The 

mig-15 promoter fragment was then placed upstream of the gfp coding region in 

vector pPD95.77 (kindly provided by A. Fire).  The scm::gfp::caax transgene was 

constructed using the seam cell marker (scm) plasmid pRT1 (Terns et al., 1997).  

The lacZ coding region of pRT1 was replaced by gfp coding region with the C-

terminal CAAX prenylation domain coding region from ced-10 Rac at the 3’ end 

(Reddien and Horvitz, 2000).  scm::gfp::caax drove expression of membrane-

associated, prenylated GFP in the lateral seam cells and in the Q neuroblasts.  A 

similar construct was used previously to image Q cell development (Williams, 

2002).  The gcy::32::gfp transgene adEx1295 (Yu et al., 1997) was integrated 

into the genome to generate lqIs40.  For the Pgcy-32::yfp and Pgcy-32::cfp 
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constructs, the gcy-32 promoter was generated by PCR using primers: 5’-

TGTATAGTGGGAAATACTGAAAT AND 5’-TATATTTTCCTTTCCGCTTTCG.  

This gcy-32 promoter fragment was then placed upstream of the yfp and cfp 

coding regions (courtesy of A. Fire). 

 

qid-7 and qid-8 complementation tests and sequencing. mig-15(rh148) and 

mig-15(rh80) males harboring the rescuing mig-15(+) transgene were mated to 

qid-7 and qid-8 hermaphrodites, and some trans-heterozygous cross progeny 

displayed the Unc Dpy phenotype indicating failure to complement.  The mig-15 

coding regions from qid-7(mu327) and qid-8(mu342) animals were amplified by 

PCR and sequenced.  Nucleotide lesions were found associated with both as 

described in Figure 2.1 and were confirmed with second-strand sequencing. 

 

Mosaic Analysis.  An extrachromosomal array containing the wild-type mig-

15(+) coding region rescued the gross morphological phenotype (Unc Dpy) as 

well as AQR and PQR migration defects of mig-15(rh80) (Figures 2.11C and D).  

Included in this extrachromosomal array was a gcy-32::yfp transgene, which 

drove the expression of yellow fluorescent protein (YFP) in AQR, PQR, and the 

two bilateral URX neurons.  This extrachromosomal array was spontaneously 

lost during mitotic divisions, resulting in mosaic animals in which some cells 

harbored the mig-15(+) transgene and other did not.  AQR, PQR, and URX 

neurons with the transgene expressed YFP whereas those that lost the 

transgene did not.  In these studies, approximately 10% of animals harboring this 
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extrachromosomal array displayed mosaicism in AQR, PQR and the URX 

neurons, and animals with multiple losses were observed and analyzed. 

 A strain was constructed including mig-15(rh80), the rescuing mig-15(+) 

gcy-32::yfp extrachromosomal array, and a stable, integrated gcy-32::cfp 

transgene, which drove expression of cyan fluorescent protein (CFP) in AQR, 

PQR, and the two URX neurons and which was used to report AQR and PQR 

position (see Figure 2.11B). 

 To identify mosaics with losses in AQR and PQR, animals with a wild-type 

gross morphological phenotype (non-Dpy non-Unc) were screened for those that 

lacked YFP expression in AQR and/or PQR.  These animals retained mig-15(+) 

function in tissues underlying the Dpy and Unc defects of mig-15 mutants, and 

many of these mosaics also maintained mig-15(+) in AQR, PQR, or the URX L/R 

neurons as judged by YFP fluorescence (Table 2.2). 

 To identify mosaics that retained mig-15(+) in AQR or PQR, animals with 

the mig-15 gross morphological phenotype (Unc and Dpy) were screened for 

those with YFP expression in AQR and/or PQR.  These animals had lost mig-

15(+) in tissues underlying the Dpy Unc phenotype but retained mig-15(+) in 

AQR and PQR.  In 44/70 of these animals, no loss could be detected in the AQR, 

PQR and URX L/R neurons, suggesting that the cellular focus of the Dpy Unc 

phenotype of mig-15 was in the P lineage and not the AB lineage.  Many of these 

also retained mig-15(+) in AQR or PQR and the URX neurons (Table 2.3). 
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2.4. Results 

The MIG-15 NIK kinase.  Previous studies showed that mutations in the mig-15 

gene, which encodes a molecule similar to vertebrate Nck-interacting kinase 

(NIK) (Poinat et al., 2002) (Figure 2.1), perturbed the migrations of Q cell 

descendants (Shakir et al., 2006).  As shown in Figure 2.1, the qid-7(mu327) and 

qid-8(mu342) mutations previously found to perturb Q descendant migration 

(Ch'ng et al., 2003) were new alleles of mig-15 (see Materials and Methods).  

The hypomorphic rh148 mutation is a missense mutation in the ATP-binding-

pocket of the kinase domain, and the stronger allele rh80 is a premature stop 

codon after the kinase domain (Figure 2.1) (Shakir et al., 2006).  While rh80 

causes a premature stop, it might have residual mig-15 activity and might not 

represent a null.  However, rh80 causes a more severe phenotype than rh148 

and represents a strong loss-of-function of the mig-15 gene. 

 

Imaging initial QL and QR migrations.  Initial Q cell migrations were visualized 

in wild-type and mig-15 mutants.  In the wild-type L1 larva, QL and QR undergo 

initial posterior and anterior migrations, respectively, followed by cell division 

(Sulston and Horvitz, 1977).  QL descendants then receive a Wnt signal from 

posterior cells that directs further posterior migrations of the QL descendants by 

activating the mab-5 Hox gene (Maloof et al., 1999; Salser and Kenyon, 1992; 

Whangbo and Kenyon, 1999).  QR descendants do not respond to this Wnt 

signal, do not express mab-5, and migrate anteriorly (Salser and Kenyon, 1992). 
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 The initial, Wnt-independent migrations of the Q neuroblasts were imaged 

using an scm promoter::gfp::caax transgene.  L1 larvae were synchronized by 

hatching (see Materials and methods), and Q neuroblasts were observed at 

different timepoints after hatching.  Results presented here were consistent with 

other observations of initial Q cell migration (Honigberg and Kenyon, 2000). 

 At hatching, the Q cells were unpolarized and were located between the 

V4 and V5 seam cells (Figures 2.2A and B).  At 1-2.5h after hatching, QL sent a 

process posteriorly over the left V5 seam cell (V5L) and QR sent a process 

anteriorly over the right V4 seam cell (V4R) (Figures 2.2C and D).  In most 

cases, the processes extended greater than half the distance over the respective 

V cells.  The Q cell processes resembled the leading edges of migrating cells in 

other systems and displayed lamellipodia-like protrusions with filopodia-like 

extensions (Figures 2.2C and D).  These anterior and posterior protrusions 

persisted, and at 3-3.5h, the cell bodies of QL and QR followed the protrusions 

and migrated over their respective seam cells such that QL was located over V5L 

and QR was located over V4R (Figures 2.2E and F).  At 4-4.5h after hatching, 

QL and QR underwent mitosis, producing anterior and posterior daughters 

(QL.a/QL.p and QR.a/QR.p) located above V5L and V4R, respectively (Figures 

2.2G and H).  A schematic diagram of wild-type initial Q cell migration is shown in 

Figure 2.3.  To summarize, the Q cells underwent an initial polarization (QL 

posteriorly and QR anteriorly); the cell bodies of QL and QR migrated posteriorly 

and anteriorly over V5L and V4R, following the initial protrusions; and QL and QR 

underwent mitosis above V5L and V4R. 
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MIG-15 is required for Q cell polarization and maintenance of Q cell 

polarity.  mig-15(rh80) causes a premature stop codon and is a strong loss-of-

function allele, and mig-15(rh148) is a missense mutation affecting the ATP-

binding pocket of the kinase domain (Figure 2.1) (Shakir et al., 2006).  Shown 

here and in Shakir et al., 2006, Q descendant migration defects of mig-15(rh148) 

are generally less severe than mig-15(rh80).  The Unc Pvl Dpy phenotype of mig-

15(rh148) was also less severe than mig-15(rh80) (data not shown), suggesting 

that mig-15(rh148) might cause weaker loss of mig-15 function than mig-

15(rh80). 

 Q cell polarization was assayed in mig-15(rh148) and mig-15(rh80).  At 

hatching, Q cell position and morphology in both mutants resembled wild-type (n 

= 35 for each) (data not shown).  Initial QL and QR polarization in the 

hypomorphic mig-15(rh148) mutant occurred apparently normally at 1.5-2.5h 

after hatching (Figures 2.4A and B).  The posterior and anterior protrusions 

extended distances over V5L and V4R similar to wild-type.  Often, mig-15(rh148) 

protrusions displayed more filopodia-like extensions than did wild-type (Figures 

2.4A and B). 

In mig-15(rh80) mutants, the time required for polarization and division 

was increased compared to the scm::gfp::caax strain alone.  This was likely due 

to a general developmental delay in mig-15(rh80), as the time to complete larval 

development was increased in these mutants (data not shown).  At 2-2.5h after 

hatching, the equivalent of 1-2.5h in wild-type, the QL and QR cells always 
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appeared to polarize in the correct direction.  However, the polarizations were 

abnormal in that the protrusions did not extend as far toward the posterior or 

anterior over the V5L and V4R seam cells, usually less than half the length of the 

V cells (compare Figures 2.5A and B with Figures 2.2C and D).  All mig-15(rh80) 

animals displayed reduced protrusion, and QL and QR were equally affected.  

While mig-15(rh80) Q cells failed to fully polarize, the direction of initial Q cell 

polarization was not affected. 

When observed later at 3-3.5h after hatching, at a time when wild-type Q 

cells began their migrations over the V cells, some mig-15 mutant Q cells had 

failed to remain properly polarized (Figure 2.4 and Table 2.1).  Some cells 

remained polarized in the correct direction but sent branches in the other 

direction (Figure 2.4C and D and 2.5C), some were polarized to both the anterior 

and posterior (Figure 2.4E), and some were not polarized strongly in either the 

anterior or posterior direction (Figure 2.4F-H and 2.5D). 

 

MIG-15 is required for Q cell migration.  In wild-type, the QL and QR cell 

bodies follow the posterior and anterior protrusions and migrate over V5L and 

V4R.  In mig-15 mutants, Q cells often failed to fully migrate over the respective 

seam cells before division (4-4.5h after hatching).  Some Q cells did not migrate 

at all and divided between V4 and V5  (Figure 2.4I and Figure 2.5E and F).  

Some Q cells had migrated partially and divided on the edges of the V cells 

(Figure 2.4J).  The percentages of Q cells that failed to migrate properly are 

shown in Figure 2.4K and Figure 2.5G.  While the proportions of QL and QR that 
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failed to migrate properly in mig-15(rh148) were similar, QRs always migrated 

some distance over V4R as shown in Figure 2.4J whereas QLs often failed to 

migrate any distance before division as shown in Figure 2.4I.  QL and QR were 

equally affected in mig-15(rh80). 

 Interestingly, some QL cells (5%) in mig-15(rh148) were observed that, 

instead of having migrated posteriorly over V5L, migrated anteriorly and divided 

over V4L (Figure 2.4K), suggesting that a failure to maintain polarity could result 

in a repolarization and migration in the opposite direction.  This is consistent with 

the earlier observation that some QL cells were apparently polarized in both the 

anterior and posterior directions (Figure 2.4E).  Anterior QL division was not 

observed in mig-15(rh80), possibly because of the more severe general defects 

in polarization and migration in this mutant.  MIG-15 was previously shown to 

affect Q migration (Williams, 2002).  Data reported here indicate that mig-15 is 

required for the ability of Q cells to polarize and to maintain polarity, in addition to 

being required for Q cell migration.  Initial direction of Q cell polarization was not 

affected by mig-15(rh148)or mig-15(rh80).  While mig-15(rh80) causes a 

premature stop, it might not represent a complete loss of function.  Therefore, it 

is possible that complete loss of mig-15 function might also affect direction of Q 

cell polarization. 

 

Canonical Wnt signaling does not affect initial Q cell migration. Mutations in 

canonical Wnt signaling cause reversal of QL descendant migration (Eisenmann, 

2005).  Canonical Wnt signaling is thought to act after QL cell polarization and 
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migration.  To confirm that canonical Wnt signaling did not affect early Q cell 

polarization and migration, these cells were analyzed in canonical Wnt signaling 

mutants.  The initial polarizations and migrations of QL and QR in lin-

17(e1456)/Frizzled (Sawa et al., 1996) and bar-1(ga80)/β-catenin (Eisenmann et 

al., 1998) were similar to wild-type (data not shown).  Furthermore, QL and QR 

divided atop V5L and V4R in these mutants, indicating that initial QL and QR 

migrations were not affected by lin-17(e1456) and bar-1(ga80) (Figure 2.6).  bar-

1(ga80) is thought to be a strong loss-of-function allele, and bar-1 encodes the 

only β-catenin involved in canonical Wnt signaling in mab-5 activation (Herman, 

2003; Korswagen et al., 2000; Maloof et al., 1999; Natarajan et al., 2001).  These 

data confirm that complete loss of canonical Wnt signaling does not affect initial 

Q cell polarization and migration and that mig-15 acts in a canonical Wnt-

independent manner in Q cell polarization and migration. 

 

mab-5 expression in QL is reduced in mig-15 mutants.  A full-length mab-5 

coding region fused to gfp (mab-5::gfp), shown previously to report MAB-5 

expression (Cowing and Kenyon, 1996; Forrester et al., 2004), was used to 

visualize MAB-5 protein expression in wild-type and mig-15(rh148).  In wild-type, 

MAB-5::GFP expression was observed in QL descendants in 37/51 animals 

(67%), whereas 33/75 mig-15(rh148) animals (44%) showed visible MAB-5::GFP 

in the QL descendants (p = 0.01).  This approximately 35% reduction in MAB-5 

expression in mig-15(rh148) is in line with the previously-reported percentage of 

PQR direction of migration defects.  Furthermore, qid-7(mu327) and qid-
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8(mu342), alleles of mig-15 as described above, caused reduced MAB-5::GFP 

expression in QL descendants (Ch'ng et al., 2003). 

 

The Q descendants AQR and PQR reverse direction of migration in mig-15 

mutants in a mab-5-dependent manner.  The migrations of Q cell descendants 

AQR (QR.ap) and PQR (QL.ap) were analyzed in mig-15 mutants.  Previous 

studies utilized an osm-6::gfp transgene, expressed in all ciliated sensory 

neurons including AQR and PQR, to score AQR and PQR position (Shakir et al., 

2006).  In work described here, a transgene consisting of the gcy-32 promoter 

driving gfp expression (gcy-32::gfp) was used to score AQR and PQR.  gcy-

32::gfp was expressed in AQR and PQR after completion of their anterior and 

posterior migrations (Figure 2.7A and D) (Yu et al., 1997).  gcy-32::gfp was also 

expressed in the non-Q cell-derived URX neurons in the head, one on the left 

and one on the right (Figure 2.7A).  The posterior migration of PQR was 

dependent upon Wnt signaling, as mutations in the canonical Wnt pathway (egl-

20(mu39)/Wnt, lin-17(e1456)/Frizzled, and bar-1(ga80)/β-catenin) caused PQR 

to migrate anteriorly instead of posteriorly and had no effect on AQR migration 

(Figure 2.8).  Previous studies indicated that in egl-20 mutants, the QR 

descendants AVM and SDQR stopped short of their normal anterior positions 

(Harris et al., 1996; Zinovyeva et al., 2008).  We saw no effect on AQR position 

in egl-20(mu39).  Wnt activity in the control of AVM/SDQR placement is complex, 

as multiple Wnts are required for AVM/SDQR migration and they can have 

opposing activities, as lin-44 partially suppresses AVM/SDQR defects of egl-20 
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(Zinovyeva et al., 2008).  AQR migrates further to the anterior than AVM/SDQR, 

and possibly AQR migration does not rely on these Wnt interactions in the same 

manner as AVM/SDQR for its final position. 

 In both mig-15(rh148) and mig-15(rh80), PQR reversed direction of 

migration to migrate anteriorly (39% and 47%, respectively) (Figure 2.7E and F).  

A small but significant proportion of AQR neurons migrated posteriorly into the 

phasmid ganglion in mig-15(rh80) (6%) (Figure 2.7F and Figures 2.9A and B), a 

defect never observed in wild-type or in mig-15(rh148).  Thus, mig-15 loss of 

function caused reversal of both AQR and PQR direction of migration.  Reversal 

of AQR direction of migration was also not observed in Wnt signaling mutants 

egl-20(mu39), lin-17(e1456), or bar-1(ga80) (Figure 2.8). 

 Anterior migration of PQR in mig-15 mutants was likely due to failure of 

mab-5 expression in QL descendants as shown above.  That AQR migrated 

posteriorly in some mig-15(rh80) animals suggested that mab-5 might 

occasionally be expressed in QR descendants in mig-15(rh80).  Indeed, posterior 

migration of AQR was dependent upon functional MAB-5, as the mig-15(rh80); 

mab-5(e1239) loss-of-function double mutant displayed no posteriorly-directed 

AQR neurons seen in mig-15(rh80) alone (Figures 2.9C and D).  As expected, 

PQR was directed to the anterior in mab-5(e1239) alone.  These data suggest 

that MAB-5 function was required for the posterior migration of some AQR 

neurons in mig-15(rh80) and that mab-5 might be active in some QR 

descendants in mig-15(rh80). 
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AQR and PQR fail in migration in mig-15 mutants in a mab-5-independent 

manner.  In addition to directional migration defects, AQR and PQR in mig-15 

mutants failed to migrate to their normal positions in the anterior and posterior 

(Figure 2.7).  In mig-15 mutants, posteriorly-directed PQRs often failed to reach 

the phasmid ganglion, and anteriorly-misdirected PQRs often failed to reach the 

left anterior deirid ganglion (the contralateral position of normal AQR migration), 

but stopped along the anterior migration route (Figures 2.7B, E and F).  

Furthermore, AQR neurons of mig-15 mutants often failed in their migrations and 

stopped before reaching the right-side anterior deirid ganglion (Figures 2.7C, E, 

and F).  AQR and PQR migration defects described above for mig-15 were not 

observed in bar-1(ga80)/β-catenin, the presumptive null state of canonical Wnt 

signaling in Q cell migration (Figure 2.8).  egl-20(mu39)/Wnt and lin-

17(e1456)/Frizzled displayed no AQR migration defects, but misdirected PQRs 

often failed to migrate completely (Figure 2.8).  The nature of this defect in egl-20 

and lin-17 is unclear, but bar-1(ga80) did not display PQR migration defects. 

 The failure of migration of AQR and PQR in mig-15 mutants was not 

dependent upon mab-5 activity, as mig-15 doubles with mab-5(e1239) loss of 

function still showed AQR and misdirected PQR migration defects (Figure 2.9D).  

The constitutively-active mab-5(e1751) allele causes constitutive expression of 

mab-5 in both QL and QR descendants (Salser and Kenyon, 1992).  As 

expected, constitutively-active mab-5(e1751) caused both AQR and PQR to be 

directed to the posterior (Figure 2.9E) (Salser and Kenyon, 1992).  In mig-

15(rh80); mab-5(e1751) doubles, both AQR and PQR were posteriorly directed 
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but they often stopped along their posterior migration routes before reaching the 

phasmid ganglion, a defect rarely observed in mab-5(e1751) alone (Figure 2.9F).  

These results indicate that MIG-15 has a MAB-5-independent role in AQR and 

PQR migration. 

  

mig-15 is expressed in the Q neuroblasts.  To determine the expression 

pattern of mig-15, a transgene consisting of a 4-kb upstream promoter fragment 

of mig-15 driving gfp was constructed (mig-15::gfp).  This transcriptional mig-

15::gfp transgene was expressed in hypodermis, muscle, pharynx, and neurons 

as previously described (data not shown) (Poinat et al., 2002).  Additionally, mig-

15 promoter::gfp expression was observed in both Q neuroblasts as well as in 

the lateral seam cells and P cells neighboring the Q cells (Figure 2.10).   

 

mig-15 acts cell-autonomously in AQR and PQR migration.  Mosaic analysis 

was used to determine if mig-15 acts cell-autonomously (Herman, 1984; Yochem 

and Herman, 2005) (see Materials and Methods for details of the experimental 

design).  Figure 2.11A shows the lineage relationships between marker cells 

used in this mosaic analysis (Sulston et al., 1983), and Tables 2.2 and 2.3 show 

the loss profiles of each mosaic analyzed. 

 Mosaics that had lost mig-15(+) in AQR and/or PQR but retained mig-

15(+) in other tissues were analyzed (Table 2.2).  Forty seven mosaics had 

losses in the PQR lineage and displayed PQR direction and migration defects 

similar to mig-15(rh80) alone (Figure 2.11B and D).  Twenty-five PQR(-) mosaics 
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had detectable losses only in PQR as shown in Figure 2.11B, and 20/25 

displayed PQR migration defects.  Thirty three mosaics were identified that had 

lost mig-15(+) in AQR and displayed AQR migration defects similar to mig-

15(rh80) alone (Figure 2.11C).  Of mosaics that retained mig-15(+) in AQR or 

PQR, all but one had normal AQR or PQR migration (Table 2.2). 

 Next, mosaics that retained mig-15(+) in AQR and/or PQR but that had 

lost mig-15(+) in other tissues were analyzed (Table 2.3). Of 64 mosaics that 

retained mig-15(+) in PQR, 62 displayed normal PQR migration (Figure 2.11F).  

Of 61 mosaics that retained mig-15(+) in AQR, 60 showed normal AQR migration 

(Figure 2.11E).   

 In sum, this mosaic analysis is consistent with a cell autonomous role of 

mig-15 in AQR and PQR migration.  A caveat of this analysis is that V5L is a 

potential substrate cell of QL and is also the sister of QL.  Non-autonomous 

function of mig-15 in V5L could not be excluded by this mosaic analysis.  

However, QR and V4R, a potential substrate of QR migration, are derived from 

distant lineages (V4R is from AB.a whereas QR is from AB.p).  Functions in 

these lineages were resolved by this mosaic analysis:  12 mosaics with losses in 

URXR, an AB.a derivative, but not AQR had normal AQR migration; and 22 

mosaics with losses in AQR but not in URXR had defective AQR migration. 
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2.5. Discussion 

 
Mutations in mig-15 reduced the size of the initial Q cell protrusions during 

polarization but did not affect the direction of initial polarization.  mig-15 

mutations also disrupted the later maintenance of Q cell polarity and migration of 

the cells in the anterior (QR) and posterior (QL) directions.  Later, after the Q 

cells have divided, mig-15 affected the ability of the Q descendants AQR and 

PQR to migrate along their routes.  Thus, MIG-15 might be required for robust Q 

cell polarization, maintenance of Q cell polarity, Q cell migration, and migration of 

the Q cell descendant neurons. 

 

MIG-15 affects Q cell polarization, maintenance of polarity, and migration.  

Strong loss-of-function of mig-15 resulted in shortened and less-robust Q cell 

protrusions, with QL and QR equally affected.  Interestingly, the hypomorphic 

mig-15(rh148) did not strongly affect initial polarization.  Possibly, robust 

protrusion requires less mig-15 activity than does maintenance of polarity and 

migration, and the hypomorphic mig-15(rh148) might provide enough activity for 

proper polarization.   mig-15(rh148) is a missense mutation in a conserved 

residue of the ATP-binding pocket of the kinase domain (Shakir et al., 2006).  An 

alternate explanation is that the kinase activity of MIG-15, which might be 

specifically disrupted in mig-15(rh148), is not required for initial Q cell 

polarization. 

 Both mig-15(rh80) and mig-15(rh148) affected maintenance of Q cell 

polarity and Q cell migration.  These might be distinct processes, as mig-
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15(rh148) had little effect on initial Q cell polarization but had a later effect on 

maintenance of Q cell polarity and migration. 

 

Failure of QL migration in mig-15 might perturb mab-5 expression.  In mig-

15(rh148) mutants, mab-5 often failed to be expressed in QL descendants, an 

effect also seen with the qid-7/qid-8 alleles of mig-15 (Ch'ng et al., 2003).  

Furthermore, the QL descendant PQR often migrated anteriorly instead of 

posteriorly in mig-15 mutants, an expected effect of failure to express mab-5 in 

these cells.  The penetrance of failure of mab-5 expression in mig-15(rh148) 

(35%; see Results) is in line with PQR direction of migration defects in mig-

15(rh148) (39%; Figure 2.7E).  It is possible that MIG-15 acts in this Wnt 

signaling pathway in addition to affecting early Q cell polarization and migration.  

Alternatively, the failure of QL to migrate posteriorly might result in a failure of 

some QL descendants to receive this Wnt signal.  The observations that some 

AQR (QR descendants) migrated posteriorly in mig-15(rh80) and that this 

posterior migration was dependent upon functional MAB-5 supports the latter 

model.  If MIG-15 acts in Wnt signaling and MAB-5 expression, MAB-5-

dependent posterior migration of AQR would not be expected.  Possibly, due to a 

failure in initial anterior migration of QR in mig-15(rh80), QR responds to the 

posterior Wnt signal and activates MAB-5.  The lower penetrance of posterior 

migration of AQR (6%; Figure 2.7F) compared to QR migration defects (45%; 

Figure 2.5G) could be explained by the previous observation that QR is 
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inherently less responsive than QL to the Wnt signal that controls mab-5 

expression (Whangbo and Kenyon, 1999). 

 

MIG-15 is required for Q descendant migration.  In mig-15 mutants, AQR and 

PQR often failed to migrate to their normal final positions.  Q descendant 

migration defects were independent of MAB-5, as migration defects were 

observed in mab-5 loss-of-function and gain-of-function doubles with mig-15.  

MIG-15 might be required for the ability of AQR and PQR neurons to migrate 

along their normal routes.  MIG-15 might control the speed of AQR and PQR 

migration or might control migration decisions at specific choicepoints along their 

migration routes.  Further studies of MIG-15 in AQR and PQR migration will 

address these hypotheses. 

 

mig-15 acts cell-autonomously in Q descendant migration.  Loss of mig-15 in 

the PQR lineage resulted in both PQR direction and migration defects and loss in 

the AQR lineage results in AQR migration defects, despite retention of mig-15(+) 

in other tissues.   Conversely, retention of mig-15 activity in AQR or PQR 

lineages resulted in normal migration of these neurons despite loss in other 

tissues.  The EGL-20 Wnt signal that controls mab-5 expression emanates from 

the K, F, U, and B blast cells as well as from the anal muscle muAnal and the 

P9/P10 ectoblasts (Whangbo and Kenyon, 1999).  QL, derived from AB.pla, is 

separated in lineage from these cells, derived from AB.pr and AB.plp.  While 

EGL-20-secreting cells were not specifically assayed in this mosaic analysis, the 
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consistency of the data suggesting cell autonomy, the numbers of mosaics 

analyzed, and the wide lineage separation of QL and EGL-20-secreting cells 

suggests that MIG-15 is not required in these cells.  A non-autonomous role of 

MIG-15 in V5L for QL migration could not be distinguished due to the fact that 

they are sister cells, but a non-autonomous role of V4R in QR migration could be 

excluded by this analysis (QR is an AB.p derivative and V4R is an AB.a 

derivative).  While AQR and PQR migration was assayed in this mosaic analysis, 

it is likely that MIG-15 acts autonomously in initial Q cell polarization and 

migration, as anterior misdirection of PQR was cell-autonomous and likely 

dependent upon initial QL polarization and migration.  In sum, this mosaic 

analysis is consistent with a cell-autonomous role of mig-15 in initial Q cell 

polarization and migration and Q descendant migration. 

 

MIG-15 and cell polarization and migration.  These results indicate that MIG-

15 is required for robust Q cell polarization, maintenance of Q cell polarity, and Q 

cell migration.  The cellular mechanisms underlying these events could be the 

same, although mig-15(rh148) affects maintenance and migration without 

affecting polarity, suggesting the mechanisms might be distinct.  In cultured cells, 

NIK kinase activity drives lamellipodial extension dependent upon the ERM class 

of actin modulatory molecules (Baumgartner et al., 2006), consistent with failure 

of mig-15 mutants to extend robust lamellipodial protrusions during polarization.  

NIK kinases also physically and functionally interact with β1 integrin (Becker et 

al., 2000; Poinat et al., 2002).  Possibly, failure to maintain Q cell polarity in mig-
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15 mutants is due to defects in adhesion mediated by integrin.  NIK kinases are 

also involved in nuclear migration (Houalla et al., 2005), which could explain the 

failure of the Q cell bodies to migrate over the V cells, although this could also be 

due to a failure in initial polarization or maintenance of polarity.  Further studies 

of MIG-15 in polarization and migration will be guided by these hypotheses. 
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Figure 2.1 
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Figure 2.1. The MIG-15 NIK kinase. MIG-15 contains a  STE20 class 

serine/threonine kinase domain, a proline rich domain (PRD), and a citron/NIK 

homology (CNH) domain.  The effects of the mu327, rh148, mu342, rh326, and 

rh80 mutations are shown.  qid-7(mu327) was a G to A missense mutation at 

position 89 in the mig-15 open reading frame, resulting in glycine 30 to glutamic 

acid change.  qid-8(mu342) was a G to A missense mutation at position 667, 

resulting in glutamic acid 223 to lysine change. 
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Figure 2.2 
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Figure 2.2. Q neuroblast polarization and migration.   (A-H) are panels of 

epifluorescent micrographs of Q neuroblasts of L1 larvae at given timepoints 

after hatching expressing the scm::gfp::caax marker in the Q cells and the lateral 

seam cells (V cells). Tracings of the boundaries of the Q neuroblasts in each 

micrograph are located below each panel.  For each time point, the QL 

neuroblast is found on the left (A,C,E,G) and the QR neuroblast is found on the 

right (B,D,F,H). The scale bar in (A) represents 5µm for (A-H). (A-B) Unpolarized 

Q neuroblasts visualized 0-0.5 h after hatching. Asterisks mark the position of the 

Q neuroblasts.  (C-D) Polarization of the Q neuroblasts visualized 1-2.5 h after 

hatching.  QL sent a process posteriorly over the V5L seam cell.  QR sent a 

process anteriorly over the V4R seam cell.  Arrows indicate the direction of 

polarization of the Q neuroblasts.  (E-F) Migration of the Q neuroblasts visualized 

3-3.5 h after hatching.  QL migrated posteriorly over the V5L seam cell.  QR 

migrated anteriorly over the V4R seam cell.  (G-H) Division of the Q neuroblasts 

visualized 4-4.5 h after hatching.  QL divided over the V5L seam cell to produce 

QL.a and QL.p.  QR divided over the V4R seam cell to produce QR.a and QR.p.  

Asterisks mark the position of the Q neuroblast daughters. 
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Figure 2.3 
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Figure 2.3. Schematic diagram of Q neuroblast polarization and migration. 

A schematic diagram demonstrating the polarization, migration, and division 

patterns of the Q neuroblasts.  For each stage, the time after hatching is listed to 

the left of the figures for that stage. 
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Figure 2.4 
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Figure 2.4. mig-15 NIK kinase hypomorphic mutation affects the 

polarizations and migrations of the Q neuroblasts. (A-J) are panels of 

epifluorescent micrographs of Q neuroblasts of L1 larvae in mig-15(rh148) 

mutants with scm::gfp::caax expression.  Asterisks mark the position of the Q 

neuroblast at 3-3.5 h after hatching (A-H) or Q neuroblast descendants at 4-4.5 h 

after hatching (I-J).  Tracings of the Q neuroblasts found in each micrograph are 

located below each panel.  The scale bar in (A) represents 5µm for (A-J).  (A) A 

QL neuroblast polarized normally over the V5L seam cell.  (B) A QR neuroblast 

polarized normally over the V4R seam cell.  (C) A QL neuroblast failed to 

maintain proper posterior polarization, and sent a protrusion to the anterior.  (D) 

A QR neuroblast failed to maintain proper anterior polarization, and sent a 

protrusion to the posterior.  (E) A QL neuroblast sent protrusions to both the 

anterior and posterior.  (F) A QR neuroblast was not strongly polarized in either 

direction and sent a small, anteriorly-directed protrusion from the posterior of the 

cell.  (G) A QL neuroblast was not strongly polarized in either the anterior or 

posterior direction, although maintained slight posterior polarization.  (H) A QR 

neuroblast was not strongly polarized in either the anterior or posterior direction 

and sent a small protrusion posteriorly.  (I) A QL neuroblast divided between the 

V4L and V5L seam cells.  (J) A QR neuroblast divided over the V4R seam but 

was not atop the V4R seam cell.  (K) Quantitation of the position of the QL and 

QR neuroblasts upon division (4-4.5 h after hatching) in mig-15(rh148) mutants.  

Position with respect to the V4 and V5 seam cells is the X axis, and the 

percentage of Q neuroblast daughters found at those positions is the Y axis.  For 
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QL divisions, 37 animals were scored.  For QR divisions, 26 animals were 

scored.
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Figure 2.5 
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Figure 2.5. mig-15 NIK kinase strong loss-of-function mutation affects the 

polarizations and migrations of the Q neuroblasts. (A-F) are panels of 

epifluorescent micrographs of Q neuroblasts of L1 larvae in mig-15(rh80) 

mutants with scm::gfp::caax expression.  Asterisks mark the position of the Q 

neuroblast at 2-2.5 h after hatching (A-B) and 3-3.5 h after hatching (C-D) or Q 

neuroblast descendants at 5.5-6 h after hatching (E-F).  Tracings of the Q 

neuroblasts found in each micrograph are located below each panel.  The scale 

bar in (A) represents 5µm for (A-F).  (A) A QL neuroblast polarized posteriorly 

over the V5L seam cell, but did not extend its protrusion nearly as far as in wild 

type.  (B) A QR neuroblast polarized anteriorly over the V4R seam cell, but did 

not extend its protrusion nearly as far as in wild type.  (C) A QL neuroblast sent 

protrusions in both anterior and posterior directions.  (D) A QR neuroblast did not 

polarize strongly in either direction, although it sent a small protrusion anteriorly.  

(E) A QL neuroblast divided between the V4L and V5L seam cells.  (F) A QR 

neuroblast divided between the V4R and V5R seam cells.  (G) Quantitation of the 

position of the QL and QR neuroblasts upon division (5.5-6 h after hatching) in 

mig-15(rh80) mutants. The graph is organized as described in Figure 2.4K.  For 

QL divisions, 41 animals were scored.  For QR divisions, 38 animals were 

scored. 
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Figure 2.6 
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Figure 2.6. Canonical Wnt signaling does not affect the migrations of the Q 

neuroblasts.  The graphs are organized as described in Figure 2.4K.  (A) 

Quantitation of the position of the QL and QR neuroblasts upon division (4-4.5 h 

after hatching) in lin-17(e1456) mutants. For QL divisions, 28 animals were 

scored.  For QR divisions, 16 animals were scored.  (B) Quantitation of the 

position of the QL and QR neuroblasts upon division (4-4.5 h after hatching) in 

bar-1(ga80) mutants.  For QL divisions, 37 animals were scored.  For QR 

divisions, 17 animals were scored. 
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Figure 2.7 
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Figure 2.7. The Q neuroblast descendants AQR and PQR have direction of 

migration defects and fail to migrate in mig-15 NIK kinase hypomorphic 

mutants.  (A-C) are panels of epifluorescent micrographs of AQR and PQR 

neurons of L4 larvae with gcy-32::gfp expression.  The scale bar in (A) 

represents 50µm for (A-C).  (A) A wild-type animal with AQR located near the 

anterior deirid ganglion and PQR near the phasmid ganglion.  (B) A mig-

15(rh148) hypomorphic mutant with AQR located in its normal position.  PQR 

migrated anteriorly, but failed to migrate to the same anterior-posterior position 

as AQR.  (C) A mig-15(rh148) mutant with PQR located in its normal position.  

AQR migrated anteriorly, but failed to migrate completely to reside near the 

anterior deirid ganglion.  (D-F) Quantitation of the final migratory positions of 

AQR and PQR.  Anterior-posterior position of AQR and PQR is the X axis (see 

Materials and Methods section for description of the classifications of the 

anterior-posterior positions), and the percentage of AQR and PQR found at those 

positions in the Y axis.  In each case, 100 animals were scored. 
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Figure 2.8 

AQR PQR 



 56 

Figure 2.8. The PQR neuron has direction of migration defects and fails to 

migrate in canonical Wnt signaling mutants.  Quantitation of the final 

migratory positions of AQR and PQR.  The graphs are organized as described in 

Figure 2.7D-F.  For egl-20(mu39) and lin-17(e1456), 100 animals were scored.  

For bar-1(ga80), 200 animals were scored. 
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Figure 2.9 
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Figure 2.9. The AQR/PQR direction of migration defects seen in mig-15 NIK 

kinase hypomorphic mutants are dependent on MAB-5, whereas the failure 

to migrate defects are independent of MAB-5.  (A-B) are panels of 

epifluorescent micrographs of AQR and PQR neurons of a young adult in a mig-

15(rh80) mutant with gcy-32::gfp expression.  An AQR neuron (A) reversed the 

direction of migration and migrated to the tail of the animal near the PQR neuron 

(B).  The scale bar in (A) represents 10µm for (A-B).  (C-F) Quantitation of the 

final migratory positions of AQR and PQR. The graphs are organized as 

described in Figure 2.7D-F.  mab-5(e1239)[lf] is a loss-of-function mutation, and 

mab-5(e1751)[gf] is a gain-of-function mutation.  For each genotype, 100 animals 

were scored. 
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Figure 2.10 
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Figure 2.10. mig-15 is expressed in the Q neuroblasts.  Shown are 

epifluorescent micrographs of newly-hatched L1 larvae expressing the mig-

15::gfp transcriptional promoter fusion. Tracings of the Q cells and the 

surrounding cells are shown above each micrograph. Arrows mark the positions 

of Q cells.  (A) A left ventral-lateral view of an animal with mig-15::gfp expression 

in QL.  The lateral seam cells (V cells) and P cells also express mig-15::gfp.  (B) 

A right dorsal-lateral view of an animal with mig-15::gfp expression in QR.  In this 

animal, the V5 seam cell lost mig-15::gfp and showed no fluorescence.  The 

scale bar in (A) represents 5µm for (A-B). 
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Figure 2.11 
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Figure 2.11. MIG-15 NIK kinase acts cell autonomously in AQR and PQR 

migration.  (A) The cell lineage map for the gcy-32-expressing cells.  Not all 

divisions or cells are shown.  (B) A mosaic animal that had lost the mig-15(+) 

transgene in the PQR neuron.  The top micrograph is a Nomarski image.  The 

middle micrograph shows that this animal has lost the mig-15(+) transgene in the 

PQR neuron as indicated by the lack of YFP expression in PQR.  The bottom 

micrograph shows the position of AQR and PQR using an integrated gcy-32::cfp 

reporter. PQR reversed direction of migration.  The scale bar in the top 

micrograph represents 50µm for all 3 micrographs in (B).  (C-F) Quantitation of 

the final migratory positions of PQR and AQR in mig-15(rh80) and in mosaics. 
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Table 2.1 mig-15 polarity maintenance defects (~3-3.5 hours after hatching). 

QL 
 
 
 
Genotype 

Normal 
polarization 
 
 

Anterior 
extensions 
 
 
 

Anterior/posterior 
polarization 

No strong 
polarization 

mig-15(rh80) (63) 44 9 3 7 
 

mig-15(rh148) (45) 28 7 6 4 
 

 
 
QR 
 
 
 
Genotype 

Normal 
polarization 

 
 
 

Posterior 
extensions 

Anterior/posterior 
polarization 

No strong 
polarization 

mig-15(rh80) (55) 36 6 6 7 
 

mig-15(rh148) (48) 41 4 0 3 
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Table 2.1. mig-15 polarity maintenance and migration defects (~3-3.5 hours 

after hatching).  The number of animals scored is listed after each genotype for 

both QL and QR.  The values in each category are the number of animals scored 

with that listed phenotype. 
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Table 2.2 The locations of AQR and PQR with the loss of the mig-15(+) 

transgene in AQR and PQR, but maintained in other tissues. 

 1 2 3 4 5 URXL URXR  1 2 3 4 5 URXL URXR 
1 A   P  + + 41  A   P + + 
2 A P    + - 42  A P   + + 
3 A   P  + + 43    A P + - 
4 A   P  + - 44  A   P + + 
5 A P    + + 45 A P    + - 
6 A P    + + 46 A    P + + 
7 A   P  - + 47 A    P + + 
8 A P    - + 48 A   P  + + 
9 A    P + + 49 A   P  + + 
10 A    P + + 50 A    P + + 
11 A   P  - - 51  A   P + + 
12 A P    - + 52  A   P + + 
13    A P - + 53 A P    - + 
14 A    P - - 54 A P    + + 
15 A    P + + 55 A   P  - + 
16  A   P + + 56 A P    - + 
17  A   P + + 57  A   P + + 
18 A  P   + + 58  A   P + + 
19 A  P   - + 59  A   P + + 
20  A   P + + 60 A  P   + + 
21  A   P + + 61 A P    - + 
22 A   P  + + 62 A P    - + 
23 A   P  + + 63 A    P + + 
24  A   P + + 64 A  P   + + 
25  A   P + + 65 A  P   - + 
26  A   P + + 66 A    P + + 
27  A   P + - 67 A P    + + 
28 A    P + - 68 A    P + + 
29 A P    - + 69 A P    + + 
30 A    P + + 70 A  P   - + 
31 A P    + + 71 A P    - - 
32 A   P  - + 72  A   P + + 
33  A  P  + + 73 A   P  + + 
34  A   P + + 74  A  P  + + 
35    A P + + 75  A   P - - 
36  A   P + +         
37 A P    + +         
38 A   P  + +         
39 A   P  + +         
40 A   P  + +         
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Table 2.2. The locations of AQR and PQR with the loss of the mig-15(+) 

transgene in AQR and PQR, but maintained in other tissues.  The final 

migratory positions of the AQR and PQR neurons along the anterior-posterior 

axis of the animal are indicated for AQR and PQR neurons that have lost the 

expression of the mig-15(+) transgene.  An A or P indicates the final migratory 

position of the AQR and PQR neurons, respectively.  The columns 1-5 indicate 

the position along the anterior-posterior axis (see Materials and Methods section 

for description of the classifications of the anterior-posterior positions).  The AQR 

and PQR designations of A and P are color coded, with green indicating the 

presence of the mig-15(+) transgene in that neuron and blue indicating a loss of 

the mig-15(+) transgene in that neuron.  The URXL and URXR columns indicate 

whether the mig-15(+) transgene was present in the left and right URX neurons, 

with a (+) indicating the presence of the mig-15(+) transgene and a (-) indicating 

the loss of the mig-15(+) transgene. 
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Table 2.3 The locations of AQR and PQR with the loss of the mig-15(+) 

transgene in other tissues, but maintained in AQR and PQR. 

 1 2 3 4 5 URXL URXR  1 2 3 4 5 URXL URXR 
1 A    P + - 36 A    P + + 
2 A    P + - 37 A    P + + 
3 A    P + - 38 A    P + + 
4 A    P + + 39 A    P + + 
5 A    P + - 40 A    P + - 
6 A    P + + 41 A    P + + 
7 A    P + + 42 A   P  - + 
8 A    P + - 43 A    P + + 
9 A    P + - 44 A    P + + 
10  A   P + + 45 A    P + + 
11 A    P + + 46 A    P + + 
12 A    P + + 47 A   P  + + 
13 A    P + - 48 A    P + + 
14  A   P + + 49 A    P + - 
15  A   P + + 50 A    P + - 
16 A    P + + 51 A    P + + 
17 A    P + + 52 A    P + + 
18 A    P + + 53 A    P + + 
19 A    P + + 54  A P   - + 
20 A    P + + 55 A    P + + 
21 A    P - + 56 A P    + + 
22 A    P + - 57  A   P + + 
23 A    P + + 58 A    P + + 
24 A    P + + 59 A    P + + 
25  A   P - - 60 A    P + + 
26 A    P + + 61 A    P + + 
27  A   P + + 62 A    P + + 
28 A    P + + 63 A    P + + 
29 A    P + + 64 A    P + + 
30  A   P + + 65 A    P + + 
31 A   P  + + 66 A P    + + 
32 A    P + + 67 A    P + + 
33 A    P - - 68  AP    - + 
34 A    P + + 69 A    P + + 
35 A    P + + 70 A    P + + 
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Table 2.3. The locations of AQR and PQR with the loss of the mig-15(+) 

transgene in other tissues, but maintained in AQR and PQR.  The final 

migratory positions of the AQR and PQR neurons along the anterior-posterior 

axis of the animal are indicated for AQR and PQR neurons that have maintained 

the expression of the mig-15(+) transgene.  The table is organized as described 

in Table 2.2. 
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Chapter III 

The mechanism of action of MIG-15 NIK kinase in neuroblast 

protrusion extension and migration in C. elegans 
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3.1. Abstract 

 Determining how molecules interact to give neurons the ability to migrate 

is essential to understanding the development of the nervous system.  Nck 

Interacting Kinases (NIK) have been shown to be involved in numerous 

processes, including regulation of cell morphology, axon pathfinding, and cell 

migration.  In C. elegans, the NIK kinase homolog, MIG-15, is required for the 

proper migrations of the Q neuroblast lineage neurons.  How MIG-15 directs 

these migrations has yet to be determined.  Many molecules, including Wnt 

signaling components, UNC-40/DCC, DPY-19, INA-1/α-integrin, and the Rac 

GTPases, have been shown to be required for the proper migrations of the Q 

neuroblasts or their descendants.  In other organisms, NIK kinases were found to 

function in several signaling pathways, including those controlling planar cell 

polarity, cell adhesion via integrins, Jun N-terminal Kinase activation, and ERM 

phosphorylation.  The studies shown here examine the interactions of MIG-15 

with the molecules known to play a role in the migrations of the Q neuroblast 

lineage and molecules that have been shown to interact with other NIK kinases 

to determine how MIG-15 is directing the migrations of the Q neuroblasts and 

descendants.  The results described here suggest that MIG-15 interacts 

genetically with both INA-1/α-integrin and ERM-1/ERM to direct the migrations of 

the Q neuroblast lineage.  Additionally, interactions of CDC-42 and the Rac 

GTPase MIG-2 with MIG-15 suggest these molecules might be working together 

to regulate Q descendant migration. 
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3.2. Introduction 

 The process of cell migration is essential during the development of 

multicellular organisms.  The developing nervous system requires massive 

amounts of migrations of neurons to form the various components of the central 

nervous system.  Precise control of these migrations is vital.  Neurons must be 

able to receive cues telling these cells when and where to migrate and then, 

redirect the migratory machinery to allow for these migrations to occur properly.  

Studying the individual molecules involved in migration and arranging these 

components into the genetic pathways controlling migration is essential to our 

understanding of how the nervous system develops.  A relatively simple system 

in which to study neuronal migrations is the Q neuroblast lineage found in the 

model organism Caenorhabditis elegans.  The Q neuroblasts are bilateral 

neuroblasts that undergo anterior-posterior migrations in opposite directions, with 

QR on the right migrating anteriorly and QL on the left undergoing migrations 

posteriorly (Chalfie and Sulston, 1981; Sulston and Horvitz, 1977; White et al., 

1986).  These neuroblasts then divide to ultimately produce three neurons each, 

with QR giving rise to AQR, AVM, and SDQR and QL giving rise to PQR, PVM, 

and SDQL.  Of these Q neuroblast descendants, AQR and PQR migrate the 

farthest, with AQR migrating anteriorly to the head of the animal into the anterior 

deirid ganglion and PQR migrating to the tail of the animal into the phasmid 

ganglion.  Thus, the Q neuroblast lineage provides a system in which to study 

both directional choices of migration and components that affect the ability of 

these neurons to complete their long-range migrations. 
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 Previous studies have implicated the MIG-15 Nck Interacting Kinase (NIK) 

in the migrations of the Q neuroblasts and their descendants (Chapman et al., 

2008; Poinat et al., 2002; Shakir et al., 2006; Su et al., 1997).  Examination of the 

Q neuroblasts in mig-15 mutants showed that MIG-15 is required for the proper 

extension of protrusions, maintenance of those initial protrusions, and migrations 

of the Q neuroblasts (Chapman et al., 2008).  Additionally, MIG-15 is required 

cell autonomously in the Q neuroblast descendants AQR and PQR for these 

neurons to migrate in the proper direction and for these neurons to be able to 

fully migrate along their proper migratory pathways.  Loss of function mutations in 

mig-15 cause the Q neuroblasts to fail to maintain proper polarization during a 

time at which these cells should be migrating and cause these neuroblasts to fail 

to migrate from their birthplaces before dividing.  This failure to migrate before 

dividing causes subsequent directional defects in the Q cell descendant 

migrations.  The pathways and mechanisms that regulate the function of MIG-15 

in neuronal migration have yet to be elucidated.  Therefore, to determine how 

MIG-15 is functioning to control the migrations of the Q neuroblasts and their 

descendants, a candidate gene approach was taken, examining molecules that 

have previously been identified to be required for proper migrations of the Q 

lineage and molecules that had been identified in other systems to interact with 

NIK homologs.  

 Previously, numerous factors have been identified that affect the 

migrations of the Q neuroblasts and descendants.  One signaling pathway found 

to be required for proper migrations of the Q cell descendants is the canonical 
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Wnt signaling pathway (Chalfie et al., 1983; Eisenmann and Kim, 2000; Harris et 

al., 1996; Korswagen et al., 2000; Whangbo and Kenyon, 1999).  Wnt signaling 

is required for the proper posterior migrations of the QL descendants, as 

mutations in Wnt components like egl-20 Wnt, lin-17 Frizzled, and bar-1 β-

catenin cause PQR to migrate anteriorly as does AQR (Chapman et al., 2008; 

Eisenmann, 2005; Eisenmann et al., 1998; Sawa et al., 1996).  These Wnt 

signaling molecules were found to be necessary for the expression of mab-5, an 

Antenneapedia-like Hox gene (Eisenmann, 2005; Kenyon, 1986a; Salser and 

Kenyon, 1992).  MAB-5 has been shown to be expressed in QL and 

descendants, but not in QR or its descendants (Kenyon, 1986a; Salser and 

Kenyon, 1992).  Additionally, MAB-5 was determined as the factor that directs 

posterior migration in the QL descendants.  The absence of MAB-5 in the QR 

descendants allows for these neurons to migrate anteriorly (Salser and Kenyon, 

1992).  Previous studies have shown that MIG-15 does not appear to be acting in 

the canonical Wnt signaling pathway, as mig-15 mutants cause defects in the 

extension of protrusions and migrations of the Q neuroblasts, defects that were 

not observed for the Wnt signaling pathway mutants (Chapman et al., 2008).  

Additionally, constitutive expression of MAB-5 could not rescue the mig-15 

mutant failure to fully migrate defects seen in AQR and PQR (Chapman et al., 

2008). 

 Another group of factors found to be required for the proper migrations of 

the Q neuroblasts are the transmembrane proteins DPY-19 and UNC-40 

(Honigberg and Kenyon, 2000).  UNC-40/DCC encodes a cell surface receptor 
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that acts as a receptor for netrin in dorsal-ventral cell migrations and has been 

shown to act independently of netrin in non-dorsal-ventral migrations (Hedgecock 

et al., 1990; Keino-Masu, 1996).  DPY-19 is a novel transmembrane protein that 

has been shown to have a homolog expressed in the human brain (Honigberg 

and Kenyon, 2000).  Both of these molecules were shown to be required for the 

proper polarizations of the Q neuroblasts.  Mutations in dpy-19 and unc-40 cause 

a randomization of anterior-posterior polarization of the Q cells, resulting in the Q 

neuroblasts polarizing in the opposite directions as compared to wild type in 

some of the animals.  The directions of the Q neuroblast polarizations were also 

found to change with time, meaning that a single Q neuroblast was observed 

extending protrusions in one direction and then later sending out protrusions in 

the opposite direction.  Though DPY-19 and UNC-40 have been identified as 

proteins involved in receiving the signal that directs the proper direction of 

polarization for the Q neuroblasts, the ligand that interacts with these 

transmembrane proteins has yet to be identified. 

 In addition to the canonical Wnt signaling pathway and the DPY-19 and 

UNC-40 receptors, integrins have also been shown to be required for the proper 

migrations of the Q neuroblast descendants (Baum and Garriga, 1997).  Previous 

studies have shown that the QR descendants AVM and SDQR have shortened 

migrations in hypomorphic alleles of ina-1 α-integrin.  INA-1 is one of two α-

integrins found in C. elegans and is thought to interact with PAT-3, the only β-

integrin homolog found in C. elegans.  PAT-3 and INA-1 are hypothesized to 

form a heterodimer that binds to laminin, one of the major proteins comprising 
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the basal lamina on which cells can adhere and migrate (Baum and Garriga, 

1997).  Therefore, impairing the function of INA-1 could cause defects in the 

ability of the integrin complex to bind the basal lamina, resulting in the Q 

neuroblast descendants to fail to complete their full migrations. 

 Rac GTPases have been shown to be involved in the cell morphology 

changes and cell migration mediated by the modulation of the actin cytoskeleton 

(Hall, 1998).  Additionally, the Rac GTPases have also previously been 

implicated in the migrations of the Q neuroblast descendants (Shakir et al., 

2006).  In C. elegans, 3 Rac GTPases have been identified, MIG-2, CED-10, and 

RAC-2.  Mutations in the Rac GTPases mig-2 RhoG and ced-10 Rac were 

shown to have slight defects in the migrations of AQR and PQR alone.  RNAi of 

rac-2 did not display AQR or PQR migration defects alone, but double mutant 

combinations of mig-2 mutants, ced-10 mutants, and rac-2 RNAi showed 

synergistic increases in AQR and PQR migration defects, suggesting redundant 

functions of these molecules in the migrations of the Q descendants (Shakir et 

al., 2006).  Additionally, analysis of double mutants of mig-15 with the Rac 

GTPases found that MIG-15 appears to be interacting with MIG-2 to control the 

migrations of the AQR and PQR neurons, but no interactions were observed for 

MIG-15 with CED-10 or RAC-2 (Shakir et al., 2006).  Much like the Rac 

GTPases, another member of the Rho subfamily of small GTPases, CDC-42, has 

been implicated in the modulation of the actin cytoskeleton to control cell polarity 

(Hall, 2005).  The role of CDC-42 in the Q neuroblasts has yet to be determined, 

nor has any interactions between MIG-15 and CDC-42 been explored. 
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 In other systems, NIK kinases have also been shown to play roles in 

multiple pathways that vary between tissues.  In Drosophila melanogaster, the 

NIK homolog Misshapen (Msn) has been shown to work upstream of Jun N-

terminal Kinase (JNK) to regulate dorsal closure (Su et al., 1998).  This 

interaction of NIK kinases working upstream of JNK was also found for the 

mammalian NIK molecule in cell culture studies (Su et al., 1997).  Additionally, 

Msn was shown to work downstream of the Frizzled receptor and Dishevelled 

and upstream of Jun N-terminal Kinase (JNK) in the planar cell polarity pathway 

to control ommatidial patterning in the developing eye (Paricio et al., 1999).  

Further studies in Drosophila found that Msn interacts with the homolog of the 

small adaptor protein Nck, called Dreadlocks (Dock), in a JNK independent 

pathway to control photoreceptor axon targeting (Su et al., 2000).  In the rat 

mammary cell line MTLn3, the mammalian homolog of MIG-15, NIK, was 

determined to directly bind to moesin and was also shown to phosphorylate 

ezrin, radixin, and moesin (Baumgartner et al., 2006).  These ERM proteins can 

regulate cell morphology by serving as cross-linkers between membrane-bound 

proteins and the actin cytoskeleton (Tsukita and Yonemura, 1997).  Additionally, 

the ability of the ERM proteins to localize to lamellipodial protrusions upon 

induction by epidermal growth factor (EGF) was shown to be dependent on 

phosphorylation by NIK (Baumgartner et al., 2006).  Mammalian cell culture 

experiments also found that cells expressing kinase-inactive forms of NIK 

homologs caused cell spreading and NIK homologs affect the surface levels of 

integrins (Baumgartner et al., 2006; Wright et al., 2003).  Though other NIK 
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homologs have been shown to work in pathways that control planar cell polarity, 

JNK activation, and ERM phosphorylation, these interactions have not yet been 

examined for MIG-15 in C. elegans. 

 Although many molecules have been implicated in Q neuroblast migration, 

possible interactions of these molecules with MIG-15 have not been examined.  

Additionally, the protein interactions of NIK homologs that have been found in 

other systems have not yet been tested for MIG-15.  Thus, the studies described 

here attempt to determine the mechanisms of action of MIG-15 in directing the Q 

neuroblast and descendant migrations.  Analysis of mutants that have previously 

been described to affect Q neuroblast migration and examination of molecules 

shown to interact with NIK kinases in other systems reveal that MIG-15 interacts 

genetically with both the α-integrin INA-1 and the ERM protein ERM-1 in directing 

Q neuroblast and descendant migration.  Additionally, MIG-15 might be working 

with the RhoG homolog MIG-2 and CDC-42 to control the migrations of the Q 

neuroblast descendants. 
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3.3. Materials and Methods 

Genetic methods.  All experiments were performed at 20°C using standard 

techniques (Brenner, 1974; Sulston and Hodgkin, 1988).  The following 

mutations and transgenic constructs were used: X: lqIs48[Pgcy-32::gfp], mig-

2(mu28), mig-15(rh148 and rh80), nck-1(ok383 and ok694); I: erm-1(tm677), 

lqIs40[Pgcy-32::gfp], unc-40(e271); II: cdc-42(gk388), mig-5(ok280, rh94, and 

rh147), mIn1[mIs14 dpy-10(e128)]; III: dpy-19(e1259), ina-1(gm86 and gm144); 

IV: ced-10(n1993), gmIs5[ina-1::gfp],  jnk-1(gk7), lqIs80[scm 

promoter::gfp::caax], lqIs167[scm promoter::phosphomimetic erm-1::cfp], tag-

224(ok1036).  The chromosomal locations of lqIs107[Pmig-15::mig-15-CNH 

domain], lqIs138[Pmig-15::mig-15-S/T kinase domain], lqIs163[scm 

promoter::erm-1::cfp], and lqIs169[scm promoter::non-phosphorlatable erm-

1::cfp] were not determined.  Extrachromosomal arrays were generated by germ 

line microinjection and integrated into the genome by standard techniques (Mello 

and Fire, 1995). 

 

Synchronization of L1 larvae to visualize Q neuroblast protrusions and 

migration.  As previously described (Chapman et al., 2008; Honigberg and 

Kenyon, 2000), L1 larvae were synchronized by washing adults and larvae off of 

plates containing eggs using M9 buffer.  The eggs adhere to the plates during 

washes, allowing for plates that only contain eggs to be obtained.  These eggs 

were allowed to hatch at 30 min intervals and then were washed off the plates 

using M9 and collected.  These larva were plated on NGM plates seeded with a 
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bacterial lawn to allow for further development until the specified times to 

examine the Q neuroblasts at the various stages.  For genotypes that have egg-

laying defects, gravid adults were collected and subjected to bleach treatment to 

obtain the eggs (Sulston and Hodgkin, 1988), which were then plated on NGM 

plates that contained a bacterial lawn. 

 

Scoring and analysis of the Q neuroblast protrusions and migrations.  

Animals were analyzed by epifluorescence and confocal microscopy for GFP 

using a Leica DMR compound microscope with a BD CARV II wide-field light 

source. Images were captured using IPlab software and a QImaging Rolera mGi 

camera.  The extend of protrusion of the Q neuroblasts were classified into 3 

different extents, with strong protrusion indicating that the protrusions extended 

greater than half of the distance over the respective seam cell, weak protrusions 

indicating that the protrusions did not extend greater than half the distance over 

the respective seam cell, and unpolarized indicating that no protrusions were 

extended in either the anterior or posterior directions.  Statistical significance was 

determined using a student T-test comparing migrations that had occurred 

properly as in wild-type animals. 

 

Scoring and analysis of the AQR and PQR migration defects.  Animals were 

analyzed by epifluorescence microscopy for GFP using a Leica DMR compound 

microscope.  Images were captured using Openlab software and a Qimaging 

Retiga EXi camera.  The location of the AQR and PQR neurons were visualized 
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in L4 larvae to young adults using the transgene lqIs40[Pgcy-32::gfp] or 

lqIs48[Pgcy-32::gfp].  The locations of the neurons after completion of migration 

were classified into 5 different anterior-posterior positions of the worm, with 

position 1 = head of the animal to just posterior to the second pharyngeal bulb, 2 

= just posterior of the second pharyngeal bulb to slightly anterior of the vulva, 3 = 

the anterior and posterior regions surrounding the vulva, 4 = slightly posterior to 

the vulva to just anterior to the anus, 5 = posterior to the anus to the tail of the 

animal.  Statistical significance was determined using a student T-test comparing 

migrations that had occurred properly as in wild-type animals. 

 

mig-15 RNAi.  The X-5G21 Ahringer RNAi clone was used to knock down mig-

15 function.  Polymerase chain reaction (PCR) was used to amplify the mig-15 

RNAi coding segment using T7 primers.  dsRNA was synthesized from this 

dsDNA using the Promega Riboprobe® System-T7.  The synthesized dsRNA 

was microinjected in hermaphrodites.  The progeny of the injected 

hermaphrodites were scored for AQR and PQR migration defects. 

 

gcy-32, erm-1, mig-15 transgenes.  The sequences of all plasmids used in this 

work are available upon request.  All coding regions amplified by polymerase 

chain reaction (PCR) were sequenced to ensure that no mutations had been 

introduced by PCR.  All regions were amplified from N2 genomic DNA unless 

otherwise noted.  The gcy-32::gfp transgene adEX1295 (Yu et al., 1997) was 

integrated into the genome to generate lqIs40 and lqIs48.  The coding region of 
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erm-1 was amplified using  the following primers: 5’-

ATGTCGAAAAAAGCGGTAAGTT and 5’-CCCATATTTTCGTATTGATCGATTC.  

This fragment was cloned downstream of the scm promoter and upstream of the 

cfp coding region to create plasmid pEL635.  To create non-phosphorylatable 

and phosphomimetic mutations in erm-1, site directed mutagenesis of plasmid 

pEL635 was performed using the following primers: 5’- 

GGACGCGACAAGTACAAGGCTCTCCGTCAAATCCGTGG and 5’- 

CCACGGATTTGACGGAGAGCCTTGTACTTGTCGCGTCC for the non-

phosphorylatable mutation and 5’- 

GGACGCGACAAGTACAAGGATCTCCGTCAAATCCGTGG and 5’- 

CCACGGATTTGACGGAGATCCTTGTACTTGTCGCGTCC for the 

phosphomimetic mutation.  For the structure function analysis of MIG-15, the 

entire mig-15 gene including the mig-15 coding region plus 4-kb of upstream 

promoter sequence was amplified and cloned to create pEL445 using primers: 5’-

CTCCAATAGTTTGCTCCCGG and 5’-CCAATTTGTCAACCCTGGCTT.  To 

remove the serine/threonine kinase domain, inverse PCR was performed on 

pEL445 using the following primers: 5’-GATTCCAGCCGGGTCCTGAA and 5’-

AAAGAACAACCACATGAGCAAAC.  To remove the citron/NIK homology 

domain, inverse PCR was performed on pEL445 using the following primers: 5’-

CTTCCTGATTTCTGGAGCATC and 5’-GGTGGAGGGTCTTGCCAGAT.  The 

scm::yfp::mig-15 transgene was constructed by amplifying the mig-15 coding 

region using the following primers: 5’-ATGTCGTCATCAGGACTCGAC and 5’-

TTACCAATTTGTCAACCCTGG.  This fragment was cloned downstream of the 
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scm promoter and the yfp coding region without a stop codon, with the mig-15 

coding region in frame with the yfp coding region. 
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3.4. Results 

NCK-1/Nck is not required for proper Q neuroblast descendant migration.  

Previous studies in mammalian cell culture and Drosophila have found that NIK 

kinases interact with the small adaptor molecule Nck (Su et al., 1997; Su et al., 

2000).  In Drosophila, the Nck homolog Dock was shown to interact with Msn to 

control photoreceptor axon targeting (Su et al., 2000).  In C. elegans, the 

relationship between MIG-15 and the Nck homolog NCK-1 had yet to be 

investigated. 

Previous findings through the use of anti-NCK antibodies indicated that 

two isoforms of NCK-1 exist in C. elegans (Mohamed et al., 2007).  Two mutant 

alleles of nck-1 were examined for defects in the migrations of AQR and PQR.  

The first of these alleles was nck-1(ok383), which contains a 899 base pair 

deletion in the second intron of one isoform of nck-1 and removes a portion of the 

5’ UTR of the second isoform of nck-1.  The other allele used was nck-1(ok694), 

a 1814 base pair deletion that removes a portion of the coding region that 

includes exons that are common to both isoforms of nck-1 along with a larger 

portion of the intron and 5’ UTR that were removed with the ok383 allele, 

resulting in excretory canal defects consistent with known NCK-1 function 

(Schmidt et al., 2009).  Examination of the AQR and PQR migrations in both of 

these mutant alleles of nck-1 showed no defects in the migrations of either 

neuron (Figs. 3.1A and B).  Therefore, the lack of defects in AQR and PQR 

migration for the nck-1 mutants suggest that NCK-1 is not required for the proper 

migrations of the Q neuroblast lineage. 
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 DPY-19 and UNC-40/DCC control Q neuroblast polarization in a pathway 

independent of MIG-15/NIK.  The opposite anterior-posterior polarizations of the 

Q neuroblasts can first be observed morphologically at the stage when these 

cells extend protrusions in opposite directions, with QR sending protrusions 

anteriorly and QL sending protrusions posteriorly.  Previous studies have 

identified two transmembrane proteins, DPY-19 and UNC-40/DCC, that are 

involved in these anterior-posterior polarizations (Honigberg and Kenyon, 2000).  

Mutants in either of these molecules cause reversals in polarizations, as 

observed by the Q neuroblasts extending protrusions in the wrong directions.  

Additionally, Honigberg and Kenyon, 2000, observed that the protrusions of the 

Q cells can reverse directions between anteriorly and posteriorly directed 

lamellipodia.  Though MIG-15 does not appear to be involved in the initial 

polarizations of the Q neuroblasts, as the initial protrusions appear to always be 

extended in the proper anterior-posterior directions, mig-15 mutants fail to 

maintain these polarizations, as demonstrated by the protrusions extending in 

multiple directions during the time at which these neurons should be migrating 

(Chapman et al., 2008).  Like mig-15 mutants, the dpy-19 and unc-40 mutants 

were observed to repolarize or fail to maintain proper polarization, though these 

mutants displayed the Q neuroblast polarization defects at an earlier timepoint.  

The similarities between these phenotypes raise the question of whether MIG-15 

could be acting downstream of DPY-19 and UNC-40 to maintain proper 

polarization of the Q neuroblasts. 
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Therefore, the AQR and PQR migration patterns were observed for both 

the dpy-19(e1259) and unc-40(e271) single mutants  (Figs. 3.2A and B).  

Consistent with the previously found results that dpy-19 and unc-40 are required 

for the proper direction of polarization (Honigberg and Kenyon, 2000), both dpy-

19(e1259) and unc-40(e271) single mutants displayed AQR and PQR neurons 

that had reversed directions of migration, with AQR being found in the tail and 

PQR being found in the head of the animal.  The dpy-19(e1259) mutants were 

observed to have a stronger effect on both AQR and PQR migrations as 

compared to unc-40(e271) mutant defects (Figs. 3.2A and B). 

 To determine if MIG-15 is acting downstream of these transmembrane 

proteins, double mutants of mig-15(rh148) with dpy-19(e1259) and unc-40(e271) 

were constructed.  For both mig-15(rh148);dpy-19(e1259) and mig-

15(rh148);unc-40(e271) double mutants, there was an increase in defects as 

compared to any of the single mutants alone (Fig. 3.2).  The increase in AQR 

migration defects in the mig-15;unc-40 double mutants appeared to be slightly 

stronger than an additive effect.  For both AQR and PQR in mig-15;dpy-19 

double mutants and for PQR in mig-15;unc-40 double mutants, the increase in 

migration defects appears to be additive and not synergistic, suggesting that 

MIG-15 is working in either the same pathway as DPY-19 and UNC-40 or that 

MIG-15 is working in a pathway that is independent of both DPY-19 and UNC-40 

in directing the migrations of the AQR or PQR neurons. Defects in the initial 

direction of protrusions of the Q neuroblasts were not observed for mig-15 

mutants as in dpy-19 and unc-40 mutants, and therefore, it is more likely that 
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MIG-15 is acting in a pathway independent of DPY-19 and UNC-40 to control the 

migrations of the Q neuroblasts and descendants. 

 

MIG-15 does not function in the planar cell polarity pathway to control Q 

neuroblast descendant migrations.  The Drosophila NIK kinase Msn has been 

previously shown to act downstream of the Frizzled receptor and Dishevelled and 

upstream of the Jun N-terminal Kinase (JNK) in the planar cell polarity pathway 

to control ommatidial patterning (Su et al., 1998).  Though the roles of MIG-15 in 

protrusion extension and migration of the Q neuroblasts have been shown to be 

independent of canonical Wnt signaling (Chapman et al., 2008), the possibility of 

MIG-15 acting in the noncanonical planar cell polarity pathway had not been 

tested.  Therefore, multiple components of the planar cell polarity pathway were 

examined for involvement in Q cell descendant migrations, including MIG-

5/Dishevelled, JNK-1/c-Jun N-terminal Kinase, and TAG-224/Dishevelled 

associated activator of morphogenesis 1(Daam1).  Of these three molecules, 

MIG-5/Dishevelled can participate in both canonical Wnt signaling and the planar 

cell polarity pathway.  AQR and PQR migrations were observed for 3 different 

alleles of mig-5, ok280, rh94, and rh147.  Both rh94 and rh147 result in 

premature stop codons, with rh147 thought to be a putative null mutation for mig-

5 (Walston et al., 2006).  The ok280 allele removes the 5’ UTR for mig-5, along 

with a portion of the coding region for the adjacent gene cct-1, with this ok280 

allele thought to cause a weak hypomorphic mutation of mig-5.  For the mig-

5(ok280) mutant, slight PQR migration defects were observed, with PQR 
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migrating anteriorly and failing to fully migrate to the tail (Fig. 3.3A), similar to the 

defects observed in other weak loss of function mutant alleles of components of 

the canonical Wnt signaling pathway (Chapman et al., 2008).  With the other 2 

alleles, much stronger defects were observed, with the majority of the PQR 

neurons located in the head of the animal near the wild type position of AQR 

(Figs. 3.3B and C), similar to what was observed for the null bar-1(ga80) allele 

(Chapman et al., 2008).  BAR-1 is the only β-catenin thought to work in canonical 

Wnt signaling in C. elegans and therefore would represent complete knock down 

of the canonical Wnt signaling pathway, resulting in the PQR neurons migrating 

anteriorly due to the absence of MAB-5.   As for AQR migrations in these mig-5 

mutants, the mig-5(ok280) mutant allele showed very weak defects in the ability 

of AQR to fully migrate to the head of the animal, stopping short in the anterior 

region of the animal (Figs. 3.3A).  Upon examination of the other mutants of the 

planar cell polarity genes, no migration defects were found for AQR or PQR in 

the jnk-1(gk7) and tag-224(ok1036) mutant alleles (Figs. 3.3D and E).  These 

results suggest that the defects seen in the mig-5 mutant alleles were due to the 

involvement of MIG-5 in canonical Wnt signaling and not in the planar cell 

polarity pathway.  Taken together, these results also suggest that unlike 

Misshapen in Drosophila, MIG-15 is not functioning in the planar cell polarity 

pathway to control the migrations of the Q cell descendants AQR and PQR. 

 

INA-1/α-integrin is required for Q cell protrusion extension and migration 

and for Q descendant migration.  Mouse NIK and C. elegans MIG-15 interact 
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physically with β1-integrin/PAT-3, and NIK has been shown to colocalize with β1-

integrin at the tips of cellular protrusions (Poinat et al., 2002).  Genetic studies in 

C. elegans indicate that the α-integrin INA-1, which is thought to act in a dimer 

with PAT-3/β1-integrin, acts in the same pathway as MIG-15 in axon guidance 

(Poinat et al., 2002).  Furthermore, the QR.pa daughters failed to fully migrate in 

ina-1 mutants (Baum and Garriga, 1997).   

ina-1(gm86) is a nonsense mutation in the long chain coding region of 

INA-1 and is predicted to be a null mutation (Baum and Garriga, 1997).  Early Q 

cell migration was assayed in ina-1(gm86M+).  Initial QL and QR protrusions 

were extended in the correct directions at 1.5-2h after hatching.  However, the 

protrusions were abnormal in that they did not extend as far as in wild-type, 

usually less than half the length of the adjacent seam cells (Fig. 3.4A and B).  

This defect is similar to that observed for mig-15(rh80).  At 3-3.5h after hatching, 

when wild-type Q cells have migrated, 54% of QLs and 52% QRs had not 

migrated, but remained polarized in the proper directions over the V5L and V4R 

seam cells (Table 3.1).  Of the cells that migrated, migrations were much shorter 

than observed in wild-type:  QL migrated to the anterior edge of the V5L seam 

cell in 38% of animals and QR migrated to the posterior edge of the V4R seam 

cell in 48% (no QRs migrated normally) (Table 3.1 and Figs. 3.4C and D).  At 5-

5.5h after hatching, when wild-type QL and QR have divided atop the V5L and 

V4R seam cells, QL divided between V4L and V5L or at the anterior edge of V5L 

in 86% of the animals scored (Figs. 3.4E and G).  QR divided between V4R and 
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V5R or at the posterior edge of V4R in 81% of animals scored (Figs. 3.4F and 

G). 

The hypomorphic ina-1(gm144) also had weak defects in Q cell migration.  

Initial Q protrusions were normal in ina-1(gm144).  However, 5% of QLs (n = 42) 

and 6% QRs (n = 36) failed to migrate over their respective seam cells and 

divided between the V4 and V5 seam cells (Fig. 3.4H).  The protrusion extension 

defects in ina-1(gm86M+) and failure to migrate in both ina-1(gm86M+) and ina-

1(gm144) were reminiscent of defects in mig-15(rh80).  However, the failure to 

maintain polarity and to polarize in multiple directions during the time point at 

which the Q cells should be migrating seen in mig-15 mutants was not observed 

in either allele of ina-1 analyzed. 

 To determine if these initial defects in migration of the Q cells also had an 

effect on the migration of the Q cell descendants, AQR and PQR migrations were 

analyzed in ina-1(gm144) and ina-1(gm86M+) mutants.  Shortened migrations of 

the QR.pa daughters had already been observed in ina-1(gm144) (Baum and 

Garriga, 1997), but no migration defects have been reported for QL descendants 

and no reversal of migration defects have been reported for either QL or QR 

descendant migration.  For both ina-1 alleles, the PQR neuron often failed to fully 

migrate to the phasmid ganglion as in wild-type (Figs. 3.5A and B).  In the null 

ina-1(gm86M+) allele, PQR reversed direction of migration and migrated 

anteriorly in 3% of animals (Fig. 3.5A).  Both ina-1 alleles showed migration and 

direction of migration defects for AQR, with 1% and 3% of AQRs in ina-1(gm144) 

and ina-1(gm86M+), respectively, reversing direction of migration and migrating 
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posteriorly (Figs. 3.5A and B).  As described for mig-15 mutants, posterior 

migration of AQR is likely due to migration failure of QR and subsequent MAB-5 

activation in QR descendants, and anterior migration of PQR is likely due to QL 

migration failure and subsequent failure to activate MAB-5 in QL (Chapman et 

al., 2008).  The misregulation of MAB-5 in the Q cells is likely the cause of the 

reversal of the direction of migration of the AQR and PQR neurons in the ina-1 

mutants as well.  Also similar to MIG-15, INA-1 controls the ability of the Q 

descendants to fully migrate to their proper final positions, with AQR and PQR 

often failing to fully migrate to the head or tail of the animal. 

 

MIsregulation of ina-1 α-integrin causes an increase in AQR and PQR 

defects in mig-15 mutants.  The similar defects observed in Q neuroblast 

protrusion and migration for both ina-1 and mig-15 mutants raised the question of 

whether these molecules act together to control the ability of the Q neuroblasts 

and descendants to migrate.  To address this question, double mutants of mig-

15(rh148) with ina-1(gm86M+) were constructed and migrations of AQR and 

PQR were observed.  These double mutants showed an increase in migration 

defects as compared to either single mutant alone (Compare Figs. 3.5A and C to 

3.5D).  Although there was not an increase in PQR neurons failing to reach their 

wild type position in the tail behind the anus, a larger percentage of these 

neurons failed to migrate at all, resulting in a large percentage of PQR neurons 

residing in the posterior region of the animal near their birthplace (Fig. 3.5D).  

Though an increase in migration defects was observed, these results could not 
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distinguish between an additive effect or the possibility that removing INA-1 was 

increasing the defects seen in the mig-15(rh148) mutants closer to the null state 

of mig-15, with the strong loss of function allele mig-15(rh80) exhibiting more 

severe defects than the mig-15(rh148);ina-1(gm86M+) double mutant (Compare 

Fig. 3.5D to 3.5E).  As both mig-15(rh80) and ina-1(gm86M+) are extremely sick, 

double mutants of these two alleles could not be constructed and therefore, 

examination of whether removing INA-1 in a strong MIG-15 loss of function 

background increases AQR and PQR migration defects as compared to the mig-

15(rh80) mutant alone could not be performed.  

 In order to further examine the relationship between MIG-15 and INA-1, 

overexpression of INA-1 was observed using the transgene gmIs5 [Pina-1::ina-

1::gfp].  The overexpression of INA-1::GFP in the wild type background had no 

effect on AQR and PQR migration (Fig. 3.5F).  When INA-1::GFP was 

overexpressed in the mig-15(rh148) mutant background, a strong increase in 

migration defects was seen for both AQR and PQR as compared to the mig-

15(rh148) mutant alone (Compare Fig. 3.5G to 3.5C).  Taken together, these 

results could suggest that MIG-15 is required to regulate the adhesion of INA-1 

and PAT-3, with MIG-15 being needed to release these integrin adhesions as the 

removal of wild type MIG-15 function causes shortened migrations of both AQR 

and PQR. 

 

Members of the Rho subfamily of small GTPases, MIG-2/RhoG and CDC-42 

might act with MIG-15/NIK to control Q descendant migrations.  Studies 
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examining the relationships of the Rac GTPases MIG-2/RhoG and CED-10/Rac 

with MIG-15 had previously been reported (Shakir et al., 2006).  In these studies, 

MIG-2 was hypothesized to work with MIG-15, as mutation in mig-2 enhanced 

the AQR and PQR migration defects of the weak loss of function mig-15 mutant 

to that of the strong loss of function mig-15 allele.  Additionally, CED-10 did not 

appear to have a role in the migrations of the Q descendants.  But, only the 

anterior-posterior directional choice of AQR and PQR were assayed in these 

experiments and not the extent of the migrations.  Therefore, a more detailed 

approach to these experiments was taken, evaluating the locations of the final 

positions of the AQR and PQR neurons in mutants of mig-2 and ced-10, along 

with the mutants of cdc-42, another member of the Rho subfamily of small 

GTPases.  Additionally, double mutants of each of these GTPases with mig-

15(rh148) were constructed to determine if any possible interactions exist 

between MIG-15 and these three GTPases. 

 Examinations of the cdc-42(gk388M+), mig-2(mu28), and ced-10(n1993) 

single mutants found only slight migration defects for AQR for all of these 

mutants and defects in PQR migration for mig-2(mu28) and cdc-42(gk388M+) 

(Figs. 3.6A-C), similar to what was found previously for mig-2 and ced-10 (Shakir 

et al., 2006).   When double mutants of mig-15(rh148) with mig-2(mu28) and cdc-

42(gk388M+) were constructed, defects in AQR and PQR migration strongly 

increased (Figs. 3.6E and F).  For mig-15(rh148);cdc-42(gk388M+), a significant 

enhancement in defects was seen for both AQR and PQR as compared to the 

single mutants alone, with only 53% of AQR neurons and 17% of PQR neurons 
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reaching their wild type positions in the head and tail, respectively (Fig. 3.6E, p ≤ 

0.002 for both cases).  The mig-15(rh148) mig-2(mu28) double mutant displayed 

a similar, yet weaker increase in the defective PQR migrations, though this 

increase was not significantly different from the defects presented in the two 

single mutants combined (Fig. 3.6F, p ≤ 0.098 for PQR).  These results suggest 

that both CDC-42 and MIG-2 play a role in the migrations of the Q descendants, 

much like MIG-15.  Like mig-15 mutants, mig-2 mutants cause a reversal in 

direction of migration for the PQR neuron, and both mig-2 and cdc-42 cause a 

failure in the extent of migrations of both AQR and PQR, with both cells failing to 

fully migrate to their wild type positions (Figs. 3.6A and B).  Oppositely, the 

double mutant of mig-15(rh148);ced-10(n1993) displayed a significant 

suppression of PQR migration defects as compared to the defects observed in 

the two single mutants combined (37% vs. 53% defective; Fig. 3.6G, p ≤ 0.01).  

Taken together, these results suggest that MIG-2 and CDC-42 might normally 

promote migration, whereas CED-10 might normally inhibit migration.  Because 

null mutations of mig-15 are lethal in combination with mig-2, ced-10, and cdc-42 

mutants, these studies cannot determine exact relationships of MIG-15 with MIG-

2, CED-10, or CDC-42.  Since the mig-2 and cdc-42 mutants cause an increase 

in Q descendant migration defects in the mig-15(rh148) background that is 

similar to the strong loss of function mig-15(rh80), these molecules could be 

working with MIG-15 or in parallel to MIG-15 to control Q descendant migration.  

Mutations in ced-10 appear to suppress the mig-15(rh148) migration defects, 
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which could be due to the over-migration phenotype seen for the Q neuroblasts 

in ced-10(n1993) mutants (See Chapter IV). 

 

Removal of ERM-1/ERM suppresses the QL neuroblast migration defects 

observed in mig-15 mutants.  Previous studies in a rat mammary cell line had 

found that mammalian NIK binds to and phosphorylates ERM proteins 

(Baumgartner et al., 2006).  Additionally, the localization of phosphorylated ERM 

proteins to lamellipodial protrusions upon induction by EGF is dependent on the 

kinase activity of NIK.  Interestingly, kinase-inactive forms of the NIK protein were 

shown to cause cell spreading in multiple mammalian cell culture lines 

(Baumgartner et al., 2006; Wright et al., 2003), similar to the failure to maintain 

polarization that was observed for the mig-15 mutants in the Q neuroblasts 

(Chapman et al., 2008).  Therefore, the C. elegans homolog of the ERM family of 

proteins, ERM-1, was examined to determine if ERM-1 plays a role in the 

extension of lamellipodial protrusions and migration in the Q neuroblasts. 

 The erm-1(tm677) allele used is a 972 base pair deletion and a 2 base 

pair insertion that occurs in exons 6 and 7 of the coding sequence, causing a 

frame shift that causes a premature stop (Gobel et al., 2004).  This mutation 

most likely abolishes ERM-1 activity, is lethal to the animals, and thus, requires 

the mutation to be balanced by a wild type copy of erm-1.  Previous studies have 

indicated that the maternal contribution of erm-1 transcripts does have a role in 

the development of the erm-1(tm677M+) homozygous animals which survive to 

adulthood, as RNAi of erm-1 causes arrest of larvae at the L1 stage (Gobel et al., 
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2004).  Examination of the Q neuroblasts in erm-1(tm677M+) mutants found no 

defects in the ability of the Q neuroblasts to fully migrate before dividing (Fig. 

3.7C) and only a slight defect in the ability of AQR to extend protrusions at 1-1.5h 

after hatching (Fig. 3.7A; 4% had not extended protrusions).  It is possible that 

the maternal contribution of erm-1 transcripts is rescuing any possible defects 

that could occur in these Q neuroblasts in erm-1(tm677M+) animals, though this 

was not examined here. 

 To determine if MIG-15 is interacting genetically with ERM-1 in Q 

neuroblast migration, double mutants of mig-15(rh148) with erm-1(tm677M+) 

were constructed.  Examination of Q neuroblast divisions found that erm-

1(tm677M+) appears to suppress the QL migration defects seen in mig-15(rh148) 

mutants at 3-3.5h after hatching (Compare the QL divisions over V5 in Fig. 3.8A 

to 3.8B; p = 0.015), though the erm-1(tm677M+) mutation did not suppress the 

repolarization defects seen in the mig-15 mutants alone.  Additionally, this 

suppression of migration defects seen for the QL neuroblast was also observed 

for the PQR neuron as well, with PQR migrating to the wild type position in the 

tail in 61% of the animals scored as compared to 47% in the mig-15(rh148) 

mutants alone (Compare Fig. 3.9C to 3.9B; p ≤ 0.01).  Based on the results 

presented here and that NIK has been shown to phosphorylate ERM proteins 

(Baumgartner et al., 2006), these results might suggest a role for ERM-1 

downstream of MIG-15.  Possibly, the activity of ERM-1 might be upregulated in 

MIG-15 mutants when phosphorylation of ERM-1 does not occur, causing the Q 
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neuroblasts and descendants to lose proper polarization, which could then lead 

to a failure of these cells to complete their proper migrations. 

The localization of phosphorylated ERM proteins was found to be 

dependent on the kinase activity of NIK (Baumgartner et al., 2006). To test the 

possibility that MIG-15 is functioning similarly as to what was shown for NIK, the 

localizations of ERM-1 were examined in wild type and mig-15(rh148) mutants.  

The mig-15(rh148) lesion is thought to inactivate the S/T kinase domain of MIG-

15 due to a missense mutation in a conserved residue in the ATP binding pocket 

(Shakir et al., 2006).  Therefore, if MIG-15 is functioning similarly to NIK, it would 

be expected that the ERM-1::CFP expression in the wild type background should 

display an enrichment in lamellipodial protrusions as compared to the ERM-

1::CFP expression seen in the mig-15 mutant background, since mig-15(rh148) 

mutants should not be able to phosphorylate ERM-1.  A transgene consisting of 

the scm promoter driving erm-1::cfp was introduced to drive the expression of 

ERM-1::CFP in the Q neuroblasts along with the seam cells.  Expression of 

ERM-1::CFP was observed outside of the cells that normally express constructs 

driven by the scm promoter, with expression displayed in both the intestine and 

the excretory canal of the animal (Figs. 3.10C and G).  It is possible that these 

abnormal expression patterns could be the result of an intestine and excretory 

canal specific enhancer that might be located with an intron in the genomic DNA 

encoding the erm-1 locus, though this possibility was not formally examined.  A 

comparison of ERM-1::CFP in the Q neuroblasts in wild type versus mig-

15(rh148) animals found no obvious difference between the localization patterns.  
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One possibility is that this scm::erm-1::gfp transgene might not produce a 

functional protein, though this is unlikely due to the similar localization patterns 

found in other ERM studies, including the apical localization of ERM-1 in the 

intestine and studies showing that ERM proteins localize to cleavage furrows, as 

seen with this scm::erm-1::cfp construct (Figs. 3.10C and G) (Sato et al., 1991; 

Van Furden et al., 2004).  Testing for ability of this construct to rescue mutant 

defects was not performed, as no migration defects were observed for the Q 

neuroblasts in the erm-1(tm677M+) single mutant and this construct was driven 

only in the Q neuroblasts and the seam cells by the scm promoter.  These results 

suggest that the kinase activity of MIG-15 is not required for the proper 

localizations of ERM-1, though it cannot be excluded that localization of 

phosphorylated ERM-1 might differ between wild type and mig-15 mutants. 

To determine if the failure of MIG-15 to phosphorylate ERM-1 in mig-15 

mutants is causing the failure of the Q neuroblasts to maintain their initial 

polarizations, a non-phosphorylatable form of ERM-1 driven by the scm promoter 

was constructed.  Neither the non-phosphorylatable ERM-1 protein in a wild type 

background nor the presence of the non-phosphorylatable ERM-1 protein in the 

erm-1(tm677M+) mutant cause AQR or PQR migration defects (Figs. 3.11A and 

B), though the fact that no migration defects were observed for the non-

phosphorylatable ERM-1 protein in the erm-1(tm677M+) mutant background 

could be due to the low n-value scored for this phenotype (n = 18).  This 

suggests that the lack of phosphorylation of ERM-1 is not causing the polarity 

maintenance defects seen in the mig-15 mutants.  Though ERM-1 seems to have 
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a role in directing QL and PQR migration as shown by the suppression of these 

defects when ERM-1 is removed in a mig-15(rh148) background, no evidence 

was obtained in these studies suggesting that MIG-15 affects the 

phosphorylation of ERM-1 as was published for NIK and ERM in the mammalian 

cell culture system.  However, a phosphomimetic version of the ERM-1 protein 

driven by the scm promoter was constructed, which caused a very low level of 

AQR and PQR neuron migration defects (Fig. 3.11C).  Therefore, it seems that 

proper phosphorylation of ERM-1 might be required for the migration of the Q 

neuroblast descendants, though further studies need to be performed to confirm 

whether phosphorylation of ERM-1 is necessary in the Q neuroblasts to direct 

their migrations.  

 

A structure function analysis of MIG-15.  The MIG-15 protein contains 3 

conserved domains, a N-terminal serine/threonine kinase domain, a central 

proline-rich domain, and a C-terminal citron/NIK homology (CNH) domain (Fig. 

3.12A).  MIG-15 has been shown to directly bind PAT-3/β-integrin through its 

CNH domain and has been predicted to interact with the Rac GTPases through 

this same domain (Poinat et al., 2002; Shakir et al., 2006).  To further examine 

the possible functions of MIG-15, a structure function analysis was performed in 

which the S/T kinase domain and the CNH domain were each individually 

removed from the mig-15 coding region.  Transgenic animals were made 

expressing each of these constructs under the endogenous mig-15 promoter, 

with transgenic line lqIs107 containing a MIG-15 protein with the CNH domain 
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removed and transgenic line lqIs138 containing a MIG-15 protein with the S/T 

kinase domain removed (Fig. 3.12). 

 Removal of the CNH domain caused weak defects in the migrations of 

PQR in a wild type background (Fig. 3.13A).  When this form of MIG-15 without 

the CNH domain was introduced into the mig-15(rh148) mutant background, a 

statistically significant increase in defects in the migration of the PQR neuron 

were observed as compared to mig-15(rh148) alone (Compare Fig. 3.13D to 

3.13B; p ≤ 0.001).  This raises the question of whether lqIs107 is functioning as a 

dominant negative.  To address this issue, lqIs107 was also introduced into the 

ina-1(gm86M+) background to observe if an increase in defects in AQR and PQR 

migration is present.  Since ina-1(gm86M+) was shown to have defects in AQR 

and PQR migration, placing lqIs107 with the ina-1 mutant should determine if this 

increase in defects is due to lqIs107 inhibiting migration of the AQR and PQR 

neurons in general or in a MIG-15 dependent manner.  Since no significant 

increase in AQR or PQR migration defects was found for ina-1(gm86M+);lqIs107, 

it appears that the removal of the CNH domain from MIG-15 causes an increase 

in defects in mig-15(rh148) mutants specific to the function of MIG-15 (Fig. 3.13C 

and E). 

 Animals containing a form of MIG-15 with the S/T kinase domain removed 

(lqIs138) had weak defects in the migrations of both AQR and PQR in a wild type 

background (Fig. 3.13F).  This transgene was integrated into the X chromosome, 

the same chromosomal location as the mig-15 locus.  Due to complications with 

the transgene or integration, lqIs138 could not be made homozygous in the mig-
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15(rh148) mutant background.  Therefore, determination of the AQR and PQR 

migration defects for lqIs138 could not be determined for animals with their 

endogenous mig-15 mutated. 
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3.5. Discussion 

NCK-1/Nck and the planar cell polarity pathway do not appear to be 

required for proper Q cell descendant migration.  NIK kinases have been 

shown to interact with the small adaptor molecule Nck through their proline-rich 

domains (Su et al., 1997; Su et al., 2000).  To date, MIG-15 has not been shown 

to directly interact with the C. elegans homolog of Nck, NCK-1.  Animals with 

mutations in nck-1 did not exhibit any defects in the migrations of the AQR or 

PQR neurons.  These results indicate that NCK-1 does not play a role in directing 

the migrations of the AQR or PQR neurons, which could also suggest that NCK-1 

is not required for the earlier Q neuroblast migrations either. 

 The role of MIG-15 in directing Q neuroblast protrusion and migration was 

previously found to be independent of canonical Wnt signaling (Chapman et al., 

2008), but noncanonical Wnt signaling pathways were not tested.  In Drosophila, 

Misshapen has been shown to work downstream of the Frizzled receptor and 

Dishevelled and upstream of the Jnk pathway in the planar cell polarity pathway 

(Paricio et al., 1999).  Therefore, the roles of members of the planar cell polarity 

in Q neuroblast descendant migrations were investigated.  Mutations in MIG-

5/Dishevelled showed defects in AQR and PQR migration, though these defects 

are hypothesized to be due to role of MIG-5/Dishevelled in canonical Wnt 

signaling and not planar cell polarity, as JNK-1/JNK and TAG-224/Daam1, 

members of the planar cell polarity pathway, do not exhibit AQR or PQR 

migration defects. 
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MIG-15 does not appear to be working genetically with DPY-19 and UNC-

40/DCC.  Examination of the AQR and PQR neuron migrations in dpy-19 and 

unc-40 mutants suggests that MIG-15 is likely working in a pathway independent 

of DPY-19 and UNC-40.  The reversals in the directions of migration of AQR and 

PQR found for both dpy-19 and unc-40 mutants were consistent with the 

previous findings that dpy-19 and unc-40 cause reversals in Q neuroblast 

polarizations (Honigberg and Kenyon, 2000).  When dpy-19 and unc-40 

mutations were each introduced individually into a mig-15(rh148) background, an 

increase in AQR and PQR migrations defects was observed as compared to any 

of the single mutants alone.  This increase in defects does appear to be only an 

additive effect and since mig-15 mutants display Q neuroblast defects that are 

different than the defects observed for the Q cells in unc-40 and dpy-19 mutants, 

these results suggest that MIG-15 is not acting downstream of UNC-40 or DPY-

19 to control Q neuroblast and descendant migration.  Interestingly, the mig-

15(rh148);dpy-19(e1259) double mutants displayed a greater proportion of 

increased defects in PQR migration as compared to the mig-15(rh148);unc-

40(e271) double mutants, though this might be due to a larger percentage of 

PQR migration defects in the dpy-19(e1259) single mutants as compared to the 

unc-40(e271) mutants. 

 

MIG-15 might be regulating adhesion of integrins to control the migrations 

of the Q neuroblasts and descendants.  Integrins have been showed 

repeatedly to be required for cell migrations.  Thus, it is not surprising to find that 
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a mutation that abolished the function of INA-1/α-integrin would result in defects 

in migration of the Q neuroblasts.  The Q neuroblasts in ina-1 mutants display 

defects in the ability to extend protrusions and defects in migration, similar to 

what was observed for the mig-15(rh80) mutants.  But unlike the strong loss of 

function mutant of mig-15, ina-1(gm86M+) did not cause the Q neuroblasts to fail 

to maintain their initial polarizations.  These results would require that MIG-15 

must be working with some molecule other than INA-1 to maintain the initial 

polarity of the Q neuroblasts. 

 Looking at the migrations of the AQR and PQR neurons, double mutants 

of mig-15(rh148) with ina-1(gm86M+) cause an increase in defects in the 

migrations of both AQR and PQR as compared to the single mutants alone, 

though the increase in the defects might be an additive effect.  One interesting 

point of data was that overexpression of INA-1::GFP caused an increase in AQR 

and PQR migration defects in the mig-15(rh148) mutant background.  Since no 

defects were observed for the overexpression of INA-1::GFP in a wild type 

background, these results suggest that MIG-15 might be regulating the adhesion 

of the integrins in Q neuroblast descendant migration.  Since adhesions of 

integrins are regulated by phosphorylation of their cytoplasmic tails, MIG-15 

could be regulating cell adhesion by phosphorylation of integrins through its N-

terminal serine/threonine kinase domain.  Previously, MIG-15 has also been 

shown to directly bind to PAT-3/β-integrin through the C-terminal citron/NIK 

homology domain of MIG-15, which could allow for the S/T kinase domain of 

MIG-15 to interact with the cytoplasmic tail of INA-1 or possibly PAT-3 (Poinat et 
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al., 2002).  Another possibility is that the interaction of MIG-15 with PAT-3 could 

require the activity of the kinase domain in MIG-15, which is thought to be 

inactivated in the rh148 mutation.  Without this kinase activity, MIG-15 might not 

be able to interact with PAT-3 and regulate integrin adhesion.  Though it is out of 

the scope of this project, it would be interesting to determine if MIG-15 is 

responsible for the phosphorylation of either INA-1 or PAT-3 in vivo. 

 

MIG-2/RhoG and CDC-42 might be functioning with MIG-15 to control Q 

descendant migrations.  Mutations in mig-2, ced-10, and cdc-42 each caused 

weak defects in the migrations of AQR and/or PQR.  When double mutants of 

these 3 GTPases with mutations in mig-15 were constructed, an increase in AQR 

and PQR migration defects were seen in the mig-15;cdc-42 and mig-15 mig-2 

double mutants.  Mutations in mig-2, cdc-42, and mig-15 each cause defects in 

the extent of migrations of the Q descendants, suggesting a role for each of 

these molecules in the ability of the Q neuroblasts to fully migrate.  Due to the 

restriction of using only a weak loss of function allele for mig-15 and since the 

increases in AQR/PQR migration defects in these mig-15 mig-2 and mig-15;cdc-

42 double mutants are similar to the Q descendant migration defects seen in the 

mig-15 strong loss of function mutation, a linear relationship could not be ruled 

out.  Therefore, these results are consistent with MIG-15 interacting with MIG-2 

and CDC-42 into either a linear or parallel pathways. 

 Double mutants of mig-15 with ced-10 displayed a suppression of PQR 

migration defects as compared to the mig-15 mutants alone.  This suppression 
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could be due to the over-migration defects observed for the ced-10 mutants in 

the Q neuroblasts.  Loss of function ced-10 mutations cause an over-migration of 

the Q neuroblasts before dividing, resulting the QR neuroblasts dividing more 

anteriorly and the QL neuroblasts dividing more posteriorly as compared to the 

wild type division positions (See Chapter IV).  Since CED-10 normally inhibits 

migration and MIG-15 promotes migration of the Q neuroblasts, loss of function 

mutations in each of these could partially cancel out these defects.  This could 

allow the QL neuroblast to migrate posteriorly enough to receive a sufficient 

amount of the EGL-20/Wnt signal to turn on MAB-5/Hox, which then directs the 

posterior migrations of the QL descendants.  This proper directing of the 

migrations of the QL descendants posteriorly could then be the reason fewer 

PQR neurons are found anteriorly in the mig-15;ced-10 double mutants.  

Additionally, the role of CED-10 in the Q lineage migrations appears to be 

strongest in the Q neuroblasts, as the proportions of Q descendants that failed to 

fully migrate appear similar between the mig-15;ced-10 double mutant and the 

mig-15 single mutant.  This explanation of CED-10 playing a role in the 

migrations of the Q neuroblasts is also consistent with the lack of suppression of 

the AQR migration defects seen for the mig-15;ced-10 double mutant, as a 

failure of the QR neuroblast to migrate in mig-15 mutants rarely results in 

directional migration defects of the QR descendants due to the QR neuroblast 

being inherently less sensitive to the Wnt signal needed to turn on MAB-5/Hox 

than the QL neuroblast (Whangbo and Kenyon, 1999). 
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ERM-1/ERM might act downstream of MIG-15 in Q neuroblast migration.  

Mutation in erm-1 did not result in the cell spreading phenotype as was observed 

for the mig-15 mutants.  Only slight defects were observed for erm-1 mutants 

during the protrusion extension and migration stages in the Q neuroblasts.  As 

stated previously, there is a possibility that the reason for a lack of defects in 

these erm-1(tm677M+) mutants could be due to maternal rescue.  Interestingly, 

loss of ERM-1 function in the mig-15 mutant background suppressed the QL and 

PQR migration defects.  Although a decrease in PQR migration defects were 

seen in the mig-15;erm-1 double mutant, this finding could be a result of the 

suppression of the QL migration defects, as the decrease in anteriorly directed 

PQR neurons in the double mutant roughly correlates to the 31.8% of QL 

neuroblasts that no longer fail to migrate in these double mutants as compared to 

the mig-15 mutant alone.  These results could suggest that ERM-1 is acting 

downstream of MIG-15, consistent with the findings that NIK binds to and 

phosphorylates ERM proteins (Baumgartner et al., 2006).  Though, it cannot be 

ruled out by these experiments that ERM-1 could be acting upstream of MIG-15 

to inhibit MIG-15 function and that removing ERM-1 could allow for the residual 

activity of the protein produced from the mig-15(rh148) weak loss of function 

allele to facilitate the Q cell descendants in migrating towards their proper 

locations. 

 Localization of ERM-1 was found to be independent of the kinase activity 

of MIG-15.  These experiments vary from those performed in the cell culture 

experiments, as they had assayed phosphorylated ERM proteins (Baumgartner 
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et al., 2006).  Phosphorylation of ERM-1 did not seem to be required in the Q 

descendant migrations either, as AQR and PQR neurons expressing a non-

phosphorylatable form of ERM-1 did not display migration defects.  Thus, the 

interaction of MIG-15 with ERM-1 that causes suppression of QL and PQR 

migration defects remains to be determined. 

 

The structure function analysis.  Removal of the S/T kinase domain and CNH 

domain of MIG-15 individually caused migration defects in AQR and/or PQR, 

even in the presence of a wild type MIG-15 protein.  When the CNH domain was 

removed in the mig-15(rh148) mutant background, an increase in AQR/PQR 

migration defects were observed as compared to the mig-15 mutant alone.  This 

is interesting, as the mig-15(rh148) mutant allele contains a wild type version of 

the CNH homology, but has a missense mutation in the S/T kinase domain in a 

conserved residue in the ATP binding pocket, thought to remove the kinase 

function (Shakir et al., 2006).  When trying to construct a fluorescently tagged 

version of MIG-15, it was found that C-terminal fusions of MIG-15 with GFP or 

mCherry were lethal to wild type animals (results not shown).  Though, a N-

terminal fusion of CFP to MIG-15 was viable (results not shown).  Taken 

together, it seems that blocking the function of the CNH domain is deleterious to 

the animals.  Removal of the CNH domain could allow for the N-terminal portion 

of MIG-15 to interact with the normal binding partners of MIG-15.  These 

interactions could block the residual activity of the protein produced by the mig-

15(rh148) locus, causing an increase in Q descendant migration defects.  
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Production of a MIG-15 protein with the S/T kinase domain removed could not be 

done in the absence of wild type MIG-15, though it is expected that this construct 

would work similarly to the mig-15(rh148) allele, as this mutation is thought to 

inactivate the kinase domain of MIG-15. 

 

Taken all together, these results indicate that MIG-15 might be acting with 

numerous molecules to control the migrations of the Q neuroblasts and their 

descendants.  MIG-15 displays interactions with molecules involved in cell 

adhesion and actin cytoskeleton modulation.  The nature of the interactions of 

MIG-15 with INA-1, ERM-1, MIG-2, and CDC-42 have yet to be determined.  

Experiments aimed at identifying which proteins directly bind to MIG-15 and 

which proteins are phosphorylation targets of MIG-15 would provide insight into 

how MIG-15 is functioning with these molecules and possibly others that have 

yet to be determined as interacting partners of MIG-15.  As human orthologs of 

NIK kinases have been found to be upregulated in tumor cell lines, determination 

of how NIK kinases control migration will provide insight into not only how the 

nervous system develops, but will also increase our understanding of tumor cell 

invasion.
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Figure 3.1 
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Figure 3.1. NCK-1/Nck is not required for the migrations of the Q neuroblast 

descendants AQR and PQR.  (A-B) Quantitation of the final migratory positions 

of the AQR and PQR neurons.  The x-axis represents the anterior-posterior 

position of the AQR and PQR neurons after completion of migration (see 

Materials and Methods section for description of the classifications of the 

anterior-posterior positions).  The y-axis represents the percentages of the AQR 

and PQR neurons that were observed at each anterior-posterior position.  For all 

cases, n ≥ 100. 
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Figure 3.2 
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Figure 3.2. Mutations in dpy-19 and unc-40 increase the AQR and PQR 

migration defects seen in mig-15(rh148) mutants.  (A-E) Quantitation of the 

final migratory positions of the AQR and PQR neurons.  The graphs are 

organized as described in Figs. 3.1A-D.  For all cases except mig-15(rh148), n = 

100.  For mig-15(rh148), n = 200. 
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Figure 3.3 

 



 114 

Figure 3.3. The planar cell polarity pathway does not control the migrations 

of AQR and PQR.  (A-E) Quantitation of the final migratory positions of the AQR 

and PQR neurons.  The graphs are organized as described in Figs. 3.1A-D.  For 

all cases, n ≥ 100. 
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Figure 3.4 
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Figure 3.4. ina-1 α-integrin null mutations affect the extension of 

protrusions and migrations of the Q neuroblasts.  (A-F) Confocal 

micrographs of Q neuroblasts of ina-1(gm86M+) L1 larvae with scm::gfp::caax 

expression.  Asterisks mark the locations of the Q neuroblasts and the Q 

neuroblast descendants.  Tracings of the Q neuroblasts located in each panel 

have been provided below each panel.  The scale bar in (A) represents 5µm for 

panels (A-F).  (A) A QL neuroblast polarizes and sends protrusions posteriorly, 

though this protrusion was reduced in size as compared to wild type.  (B) A QR 

neuroblast polarizes and sends protrusions posteriorly, though this protrusion 

was reduced in size as compared to wild type.  (C) A QL neuroblast migrates 

posteriorly to the anterior edge of the V5L seam cell.  (D) A QR neuroblast 

migrates anteriorly to the posterior edge of the V4R seam cell.  (E) A QL 

neuroblast divides at the anterior edge of the V5L seam cell.  (F) A QR 

neuroblast divides without migrating from its birth place between the V4R and 

V5R seam cells.  (G-H) Quantitation of the positions of the Q neuroblasts upon 

dividing.  The x-axis represents the anterior-posterior positions of the dividing Q 

cells with respect to the V4 and V5 seam cells.  The y-axis represents the 

percentage of animals with Q neuroblasts dividing at each anterior-posterior 

position.  For all cases, n ≥ 21. 
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Figure 3.5 
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Figure 3.5. Loss of function of INA-1 and overexpression of INA-1::GFP 

increase the AQR and PQR migration defects in a mig-15(rh148) mutant 

background.  (A-G) Quantitation of the final migratory positions of the AQR and 

PQR neurons.  The graphs are organized as described in Figs. 3.1A-D.  For A, B, 

E, F, and G, n = 100.  For mig-15(rh148), n = 200.  For mig-15(rh148);ina-

1(gm86M+), n = 50. 
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Figure 3.6 
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Figure 3.6. Mutations in the Rac GTPases MIG-2 and CED-10 and in CDC-42 

cause in increase in migration defects in a mig-15(rh148) mutant 

background.  (A-G) Quantitation of the final migratory positions of the AQR and 

PQR neurons.  The graphs are organized as described in Figs. 3.1A-D.  For all 

cases except mig-15(rh148), 100 animals were scored.  For mig-15(rh148), n = 

200. 
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Figure 3.7 
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Figure 3.7. The erm-1(tm677M+) mutation does not cause strong defects in 

Q neuroblast extension of protrusions or migrations.  (A) Quantitation of the 

direction and extent of protrusions during the polarization stage of the Q 

neuroblasts at 1-1.5h after hatching.  The x-axis represents the direction and 

extent of polarization of the Q neuroblasts.  The y-axis represents the percentage 

of Q neuroblasts polarized in each of the categories along the x-axis.  For both 

QL and QR, n = 25.  (B) Quantitation of the positions of the Q neuroblasts at 2.5-

3.5h after hatching.  The x-axis represents the direction and extent of migration 

of the Q neuroblasts.  The y-axis represents the percentage of Q neuroblasts that 

had migrated to each of the categories along the x-axis.  For both QL and QR, n 

≥ 25.  (C) Quantitation of the positions of the Q neuroblasts upon dividing.  The x-

axis represents the anterior-posterior positions of the dividing Q cells with respect 

to the V4 and V5 seam cells.  The y-axis represents the percentage of animals 

with Q neuroblasts dividing at each anterior-posterior position.  For both QL and 

QR, n ≥ 25. 
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Figure 3.8 

 

QR QL 

* 

* 

A 

B 



 124 

Figure 3.8. Loss of function erm-1 mutation suppresses the QL migration 

defects observed in mig-15 mutants.  (A,B) Quantitation of the positions of the 

Q neuroblasts upon dividing.  The graphs are organized as described for 

Fig.3.7C.  For mig-15(rh148), n ≥ 20 for both QL and QR.  For mig-

15(rh148);erm-1(tm677M+), n ≥ 8 for both QL and QR.  The asterisks indicate a 

significant difference between the two indicated values (p = 0.015). 
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Figure 3.9 
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Figure 3.9. erm-1 ERM mutant suppresses the PQR migration defects 

observed in mig-15(rh148) mutants.  (A-C) Quantitation of the final migratory 

positions of the AQR and PQR neurons.  The graphs are organized as described 

in Figs. 3.1A-D.  For all cases except mig-15(rh148), n = 100.  For mig-15(rh148), 

n = 200. 
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Figure 3.10 
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Figure 3.10. Localization of ERM-1 in the Q neuroblasts is not disrupted in 

mig-15(rh148) mutants.  (A-G) Fluorescent confocal micrographs of L1 larvae 

expressing the scm::erm-1::cfp translational fusion.  Tracings of the Q 

neuroblasts located in each panel have been provided below each panel for (A-

F).  The scale bar in (A) represents 5µm for panels (A-G).  (A,B) Expression of 

the scm::erm-1::cfp translational fusion visualized at 2-2.5h after hatching in a 

wild type background.  (C) Expression of the scm::erm-1::cfp translational fusion 

visualized at 4-4.5h after hatching in a wild type background.  The arrow 

indicates strong ERM-1::CFP expression at the cleavage furrow.  The arrowhead 

indicates expression of ERM-1::CFP in the excretory canal.  (D-F) Expression of 

the scm::erm-1::cfp translational fusion visualized at 2-2.5h after hatching in a 

mig-15(rh148) mutant background.  The arrow in (F) indicates that normal levels 

of ERM-1::CFP expression are seen in misdirected protrusions in the mig-

15(rh148) mutant background.  (G) Expression of ERM-1::CFP observed in the 

intestine of animals expressing the scm::erm-1::cfp construct in a wild type 

background.  The arrowhead indicates strong expression of ERM-1::CFP in the 

lumen of the intestine. 
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Figure 3.11 
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Figure 3.11. Lack of phosphorylation of ERM-1/ERM does not cause AQR 

and PQR neuron migration defects.  (A-C) Quantitation of the final migratory 

positions of the AQR and PQR neurons.  The graphs are organized as described 

in Figs. 3.1A-D.  For lqIs169 and lqIs167, n = 100.  For erm-1(tm677M+);lqIs169, 

n = 18. 
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Figure 3.12 
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Figure 3.12. Schematic diagram of the MIG-15 structure function 

constructs.  (A) Diagrams of the domain structure for the wild type MIG-15 

protein.  (B) Diagram of the plasmid construct of the MIG-15 protein with the 

CNH domain removed used to generate the lqIs107 transgenic line.  (C) Diagram 

of the plasmid construct of the MIG-15 protein with the S/T kinase domain 

removed used to generate the lqIs138 transgenic line.
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Figure 3.13 
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Figure 3.13. Removal of the citron/NIK homology domain from the mig-15 

coding region causes PQR migration defects in wild type animals and 

increases the PQR migration defects observed in mig-15(rh148) mutants.  

(A-F) Quantitation of the final migratory positions of the AQR and PQR neurons.  

The graphs are organized as described in Figs. 3.1A-D.  For all cases except 

mig-15(rh148), n = 100.  For mig-15(rh148), n = 200. 
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Table 3.1 ina-1 Q cell migration defects (~3-3.5 hours after hatching). 

QL 
 
 
 
Genotype (n) 

Normal 
migration 

 

Shortened 
migration 

 

No migration 
 

 
wild-type (42) 100% 0% 0% 
ina-1(gm86M+) (24) 8% 38% 54% 

 
QR 
 
 
 
Genotype 

Normal 
migration 

 

Shortened 
migration 

 

No migration 
 

 
wild-type (28) 100% 0% 0% 
ina-1(gm86M+) (21) 0% 48% 52% 
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Table 3.1. ina-1 Q cell migration defects (~3-3.5 hours after hatching).  The 

number of animals scored is listed after each genotype for both QL and QR.  The 

values in each category are the percentages of neurons scored that had normal 

migrations, shortened migrations, or did not migrate. 
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Chapter IV 

Rac GTPases and the UNC-73/Trio and PIX-1/βPIX Rac GTP 

exchange factors mediate neuroblast protrusion and migration 

in C. elegans 
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4.1. Abstract 

Nervous system development is highly dependent on cell migration.  In 

Caenorhabditis elegans, numerous neuroblasts must undergo migration in order 

to form a properly functioning nervous system.  In order for these migrations to 

occur properly, actin cytoskeleton reorganization must take place.  The Rac 

GTPases and CDC-42 have been implicated in the pathways that drive actin 

cytoskeleton reorganization.  Studies shown here examine the roles of the Rac 

GTPases MIG-2 and CED-10 and CDC-42 in the migration of the QL and QR 

neuroblasts.  MIG-2 and CED-10 were found to act in parallel to control the ability 

of the Q neuroblasts to extend protrusions and migrate.  Surprisingly, CDC-42 

was not found to affect the migrations of the Q neuroblasts.  UNC-73, the 

putative GEF for MIG-2 and CED-10, also displayed defects in Q neuroblast 

protrusion and migration, but the defects were less severe than the mig-2;ced-10 

double mutant, suggesting another possible GEF for these proteins.  PIX-1 was 

found to also be required for proper Q neuroblast protrusion and migration.  

Double mutants of pix-1 with mig-2 caused a synergistic increase in protrusion 

and migration defects, whereas pix-1;ced-10 double mutants did not display a 

large increase in defects, suggesting that PIX-1 could be serving as another 

possible GEF for CED-10 in Q neuroblast protrusion and migration. 
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4.2. Introduction 

 The development of the vertebrate nervous system requires extensive 

amounts of neuronal migration.  These neurons must migrate away from their 

birthplaces to form the various portions of the central nervous system.  In order 

for these migrations to occur, numerous pathways must be activated in order for 

cells to be able to determine the proper pathway of migration, provide the motile 

force, and identify the precise stopping point of these migrations.  The motile 

force necessary for these migrations is in part supplied through the 

reorganization of the actin cytoskeleton (Insall and Machesky, 2009).  One family 

of proteins that have been repeatedly implicated in modulation of the 

cytoskeleton is the Rho subfamily of GTPases, including Rho, Rac, and Cdc42 

(Hall, 1998; Raftopoulou and Hall, 2004; Ridley et al., 2003). 

 Small GTPases can act as molecular switches, cycling between active 

and inactive states.  These GTPases are in an active state when bound to GTP 

and inactive when bound to GDP.  Several molecules work with the small 

GTPases to modulate their activity.  Guanine nucleotide exchange factors 

(GEFs) interact with the small GTPases to facilitate the exchange of GDP for 

GTP, which in turn activates the GTPases.  GTPase-activating proteins (GAPs) 

act in an opposite manner, inactivating the GTPases by activating the GTPase 

activity of these small GTPases leading to the hydrolysis of GTP to GDP.  As 

small GTPases have been found to interact with a wide variety of effector 

proteins, GEFs and GAPs are able to control the activation of an extensive 
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number of signaling pathways through their interactions with these small 

GTPases. 

 Extensive studies have been performed examining the roles of the Rac 

GTPases and Cdc42 in cell motility (Hall, 1998; Raftopoulou and Hall, 2004; 

Ridley et al., 2003).  Rac GTPases and Cdc42 have been found to interact with 

effector proteins that then modulate the actin cytoskeleton, allowing for directed 

migration.  The effectors that transduce these signals to alter the cytoskeleton 

vary between the specific Rac GTPases and Cdc42.  Cdc42 has been shown to 

directly bind to members of the Wiskcott-Aldrich Syndrome Protein (WASP) 

family, leading to the activation of the Arp2/3 complex that initiates the addition of 

branched actin filaments at the leading edge of the cell (Aspenstrom et al., 1996; 

Higgs and Pollard, 2000; Kolluri et al., 1996; Machesky and Insall, 1998; Welch, 

1999).  Additionally, Cdc42 has been found to be required for filopodia extension 

and cell polarity necessary for directed cell movement (Heasman and Ridley, 

2008; Nobes and Hall, 1995).  Likewise, numerous reports have found that the 

Rac GTPases lead to the generation of membrane ruffling necessary for the 

advancement of migrating cells (Heasman and Ridley, 2008). 

 Though an extensive number of studies have been reported describing the 

roles of these small GTPases in cell migration, most of these studies have been 

performed in cell culture with constitutively active and dominant negative forms of 

the Rac GTPases and Cdc42 (Heasman and Ridley, 2008).  These studies have 

provided an immense amount of information about how these GTPases function 

in directing migration, but alteration of the activities of the GTPases have brought 
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about confounding results.  As such, here we present in vivo studies examining 

the endogenous functions of the Rac GTPases CED-10/Rac and MIG-2/RhoG 

along with CDC-42 in neuroblast migration in the nematode Caenorhabditis 

elegans. 

 Understanding the functions of the Rac GTPases and Cdc42 in neuronal 

migration also requires examining the molecules that regulate these GTPases, 

including guanine nucleotide exchange factors specific to these molecules.  

Numerous GEFs have been found to be involved in the regulation of Cdc42 and 

the Rac GTPases during cell migration.  Particularly of interest is the UNC-

73/Trio Rac GTPase GEF, which has been shown to be involved in both 

migration of neurons and the extension of neurites in C. elegans (Kubiseski et al., 

2003; Lundquist et al., 2001; Steven et al., 1998; Wu et al., 2002).  UNC-73/Trio 

consists of numerous domains, including two GEF domains, with the first of 

which thought to interact solely with Rac proteins (Steven et al., 1998).  As such, 

UNC-73 has been shown to work upstream of the Rac GTPases CED-10/Rac 

and MIG-2/RhoG in axon pathfinding and neuronal migration (Lundquist et al., 

2001; Steven et al., 1998).  Additionally, studies examining UNC-73 in the Q 

neuroblasts have found that UNC-73 is required for lamellipodial extension 

(Honigberg and Kenyon, 2000).   

 In order to examine the in vivo roles of the Rac GTPases and CDC-42 in 

the migrations of the nervous system, the effects of mutations in the Rac 

GTPases ced-10 and mig-2 and cdc-42 were studied for the migrations of the Q 

neuroblasts and their descendants in the nematode C. elegans.  Observations of 
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mutants in these Rho subfamily GTPases found opposing roles for these 

molecules in the migrations of the Q neuroblasts.  CED-10/Rac appears to be 

required for limiting the protrusions and migrations of the Q neuroblasts, whereas 

MIG-2/RhoG and CDC-42 are required for the ability of the Q neuroblasts to 

migrate.  Examination of mutants in unc-73 found that UNC-73/Trio, a GEF for 

both CED-10 and MIG-2, is required for lamellipodial protrusions, as shown 

previously (Honigberg and Kenyon, 2000).  In addition, examination of the other 

DH containing GEFs found that PIX-1/βPIX also plays a role in the migration of 

the Q neuroblasts and descendants.  Double mutant analysis of pix-1 with ced-10 

and mig-2 found that PIX-1 might be working upstream of CED-10, but in parallel 

to MIG-2 in directing the migrations of the Q neuroblast lineage.  PIX-1 has 

previously been found to act in parallel to CED-10 and MIG-2 in gonad 

morphogenesis (Lucanic and Cheng, 2008), suggesting that Rac GEFs can 

interact with different Rac GTPases in a cell specific manner. 

 In sum, our results indicate that the endogenous functions of the Rac 

GTPases in directing neuronal migration vary between Rac molecules and that 

the Rac GEFs UNC-73/Trio and PIX-1/βPIX act in parallel signaling pathways to 

control neuroblast migrations of the developing nervous system in vivo. 
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4.3. Materials and Methods 

Genetic Methods 

All experiments were performed at 20°C using standard techniques (Brenner, 

1974; Sulston and Hodgkin, 1988).  The following mutations and transgenic 

constructs were used: X: mig-2(mu28), pix-1(ok982); I: lqIs40[Pgcy-32::gfp], unc-

73(rh40); II: cdc-42(gk388)/mIn1[mIs14 dpy-10(e128)]; IV: ced-10(n1993), 

lqIs80[scm promoter::gfp::caax].  Extrachromosomal arrays were generated by 

germ line microinjection and integrated into the genome by standard techniques 

(Mello and Fire, 1995). 

 

Synchronization of L1 larvae to visualize Q cell polarization and migration.  

Methods used for synchronization of L1 larvae were previously described in 

Honigberg and Kenyon, 2000 and Chapman, et al., 2008.  Synchronized L1 

larvae were obtained by washing NGM plates containing eggs with M9 buffer at 

30-minute intervals.  The collected larvae were placed on NGM plates with a 

bacterial lawn to allow for continued development until the specified time of 

imaging.  Eggs were isolated from egg-laying-defective worms by bleach 

treatment of gravid adults (Sulston and Hodgkin, 1988). 

 

Epifluorescence microscopy and visualization of Q cell protrusion and 

migration.  The protrusions and migrations of the Q neuroblasts were visualized 

in L1 larvae using the transgene lqIs80[scm promoter::gfp::caax].  Animals were 

analyzed using a Leica DMR compound microscope with a BD CARV II wide-
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field light source.  Images were captured using IPlab software and a QImaging 

Rolera mGi camera.  The extend of protrusion of the Q neuroblasts were 

classified into 3 different extents, with strong protrusion indicating that the 

protrusions extended greater than half of the distance over the respective seam 

cell, weak protrusions indicating that the protrusions did not extend greater than 

half the distance over the respective seam cell, and unpolarized indicating that 

no protrusions were extended in either the anterior or posterior directions.  

Statistical significance was determined using a student T-test comparing 

protrusions and migrations that had occurred properly as in wild-type animals. 

 

Scoring and analysis of AQR and PQR migration defects.  The location of the 

AQR and PQR neurons were visualized in L4 larvae to young adults using the 

transgene lqIs40[Pgcy-32::gfp].  The locations of the neurons after completion of 

migration were classified into 5 different anterior-posterior positions of the worm, 

with position 1 = head of the animal to just posterior to the second pharyngeal 

bulb, 2 = just posterior of the second pharyngeal bulb to slightly anterior of the 

vulva, 3 = the anterior and posterior regions surrounding the vulva, 4 = slightly 

posterior to the vulva to just anterior to the anus, 5 = posterior to the anus to the 

tail of the animal.  Statistical significance was determined using a student T-test 

comparing migrations that had occurred properly as in wild-type animals. 

 

Cell specific RNAi of cdc-42.  The sequences of the primers and plasmids used 

for these experiments are available upon request.  The coding region for cdc-42 
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was amplified from N2 genomic DNA by polymerase chain reaction (PCR) and 

sequenced to ensure that no mutations were introduced by PCR.  The coding 

region was placed downstream of the seam cell promoter from the seam cell 

marker (scm) plasmid pRT1 in both orientations (Terns et al., 1997).  Both 

plasmids were digested with blunt end restriction enzymes and allowed to self-

ligate, removing the N-terminal portion of the coding regions in each case.  

These two plasmids were injected together, along with two additional plasmids 

containing scm promoter::gfp::caax and Pgcy-32::cfp.  The resulting 

extrachromosomal array was integrated into the genome to generate lqIs171.  

This transgenic line lqIs171 did not cause defects similar to cdc-42 mutants, 

suggesting that this construct is not effectively knocking down cdc-42 transcript 

levels. 
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4.4. Results 

Q neuroblasts extend protrusions and migrate in opposite directions.  The 

Q neuroblasts make an ideal system in which to study neuroblast polarization, 

extension of lamellipodial and filopodial protrusions, and migration (Chapman et 

al., 2008).  The bilateral Q neuroblasts are born between the V4 and V5 seam 

cells and are the sister cells of the V5 seam cell (Chalfie and Sulston, 1981; 

Sulston and Horvitz, 1977).  At hatching, the Q neuroblasts are round, 

unpolarized cells.  Between 1-2.5h after hatching, the Q neuroblasts polarize in 

opposite directions by extending robust protrusions in the direction of 

polarization, with the QR neuroblast sending out protrusions anteriorly over the 

V4R seam cell and the QL neuroblast sending out protrusions posteriorly over 

the V5L seam cell (Fig. 4.1A and B).  Between 3-3.5h, the Q neuroblasts cell 

bodies then follow these protrusions and migrate over the adjacent seam cells.  

Between 4-4.5h after hatching, the Q cells have completed their migrations and 

divide, with the QR and QL neuroblasts dividing atop the V4R and V5L seam 

cells, respectively (Fig. 4.1C and D).  These polarizations, protrusion extensions, 

and migrations are highly characteristic in wild type animals, with very little 

variation from animal to animal (Figs. 4.1E and F). 

 After the initial divisions of the Q neuroblasts, the daughter cells continue 

migrating and undergo additional rounds of division and programmed cell death 

to ultimately produce three neurons each, with QL producing SDQL, PVM, and 

PQR, and QR producing SDQR, AVM, and AQR (Sulston and Horvitz, 1977; 

White et al., 1986).  Of these neurons, AQR and PQR are the descendants that 
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migrate the farthest, with AQR migrating into the anterior deirid ganglion in the 

head and PQR migrating into the phasmid ganglion in the tail (Sulston and 

Horvitz, 1977; White et al., 1986; Chapman et al., 2008) (Fig. 4.1G).  

Observations of wild-type AQR and PQR migrations again showed that the 

migrations of the Q cell lineage do not display much deviation in the final 

locations of these neurons after migration, with the AQR always migrating to the 

head region of the animal near the second pharyngeal bulb and the PQR always 

migrating to the tail of the animal behind the anus (Fig. 4.1H). 

 

CED-10/Rac limits Q neuroblast protrusion whereas MIG-2/RhoG is 

required for robust Q neuroblast protrusion.  To determine if the Rac 

GTPases and CDC-42 are involved in Q neuroblast polarization, protrusion or 

migration, the protrusions of the Q cells were examined in each of ced-

10(n1993), mig-2(mu28), and cdc-42(gk388M+) single mutants.  ced-10(n1993) 

did not strongly affect direction of polarization or protrusion, as all of the 

observed Q neuroblasts at 1-1.5h had extended robust protrusions in their 

respective directions in the ced-10(n1993) mutants (Fig. 4.2A).  In 5% of ced-

10(n1993) mutants, the QL protrusion actually extended completely over V5 and 

touched V6, a phenotype never observed in wild-type (Fig. 4.3A). 

MIG-2/RhoG has previously been shown to affect Q descendant 

migration, but its role in Q neuroblast polarization and migration has not been 

determined (Ou and Vale, 2009; Shakir et al., 2006).  The mig-2(mu28) did not 

affect direction of polarization but did cause weak defects in protrusion, with a 
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small but significant proportion of both QL and QR failing to extend protrusions in 

any direction at 1-1.5h after hatching (Figs. 4.2B and see example in 4.3C).  

Wild-type Q cells never failed to extend protrusions in this manner. 

 All of the Q cells in the cdc-42(gk388M+) mutants extended protrusions in 

the correct direction, though in a small percentage the protrusions were shorter 

and less robust than those of wild-type and did not extend greater than half of the 

distance over the respective seam cell (weakly polarized versus strongly 

polarized; Figs. 4.2C and 4.3B).  These data indicate that CED-10/Rac, MIG-

2/RhoG, and CDC-42 are not involved in the direction of protrusion of the Q 

neuroblasts.  While the effects were weak, these data also indicate that MIG-

2/RhoG and to a lesser extent CDC-42 are required for robust Q neuroblast 

protrusion.  That some ced-10(n1993) QL protrusions extended further than wild-

type suggests that CED-10/Rac might have a role in limiting protrusion. 

 

CED-10/Rac limits Q neuroblast migration whereas MIG-2/RhoG and CDC-

42 are required for migration.  Next, migration of the Q neuroblasts was 

observed by examining the location of the division of the Q cells at 4-4.5h with 

respect to the surrounding seam cells.  In ced-10(n1993), a small but significant 

percentage of the QR and QL neuroblasts divided at a location farther from their 

normal division points atop V4 and V5:  15% of QR cells divided between the 

V3R and V4R seam cells; and 11% of QL  divided between the V5L and V6L 

seam cells (Fig. 4.4A).  This suggests that in ced-10(n1993) mutants, the Q cells 

migrated too far before division.  This is consistent with the observation reported 
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above that some QL protrusions at 1-1.5h extended too far in ced-10(n1993) 

mutants, although in the case of division position, the effect was also observed in 

QR.  These results suggest that CED-10/Rac might normally be required to limit 

Q neuroblast protrusion and migration. 

 In contrast to ced-10(n1993), a reduction in the distance of migration prior 

to division was observed for both the cdc-42(gk388M+) and the mig-2(mu28) 

single mutants, with the Q neuroblasts dividing between the V4 and V5 seam 

cells.  In most cases, the cells migrated a short distance to either the posterior 

edge of V4R for QR or the anterior edge of V5L for QL (Figs. 4.4B and C, and 

4.5A), though these defects in migration for QL were not significantly different 

than wild type.  Rarely, the cells apparently did not migrate at all and divided 

directly between V4 and V5 (Fig. 4.5B).  Only QL was affected in mig-2(mu28), 

whereas both QL and QR were affected in cdc-42(gk388M+). 

Taken together, these results suggest that each of these single mutants 

have only a small effect on Q cell polarizations or migrations individually.  Both 

MIG-2/RhoG and CDC-42 appear to be required for the protrusion and migration 

of the Q neuroblasts.  Conversely, CED-10/Rac appears to be involved in limiting 

Q neuroblast protrusion and migration, as the Q cells in the ced-10(n1993) were 

observed to migrate past their normal stopping points before dividing. 

 

Single mutations in ced-10/Rac, mig-2/RhoG, and cdc-42 have weak effects 

on Q cell descendant migrations, AQR and PQR.  The neuronal descendants 

of the Q neuroblasts AQR (from QR) and PQR (from QL) undergo long-range 
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migrations to the anterior and posterior (Fig. 4.1G and H) (Chalfie and Sulston, 

1981; Sulston and Horvitz, 1977).  To determine if these GTPases are involved in 

AQR and PQR long-range migration, the final positions of the AQR and PQR 

neurons once they had completed their migrations were observed in ced-

10(n1993), mig-2(mu28), and cdc-42(gk388M+) single mutants. 

 Two distinct aspects of AQR and PQR migration were scored:  the 

direction of migration and the extent of migration to their normal destinations.  

Directional migration defects seen for AQR and PQR have been shown to be 

dependent on the expression of MAB-5/Hox (Chalfie and Sulston, 1981; Kenyon, 

1986b; Salser and Kenyon, 1992).  MAB-5 is a Hox transcription factor that is 

induced in QL and QL descendants and directs the further posterior migration of 

the QL descendants.  In the absence of MAB-5/Hox, the QL descendants migrate 

anteriorly despite an initial posterior QL migration.  The expression of MAB-5 is 

controlled by canonical Wnt signaling, with an EGL-20/Wnt signal being secreted 

from the posterior of the animal (Chalfie et al., 1983; Eisenmann and Kim, 2000; 

Harris et al., 1996; Herman, 2001; Kenyon, 1986b; Korswagen et al., 2000; 

Salser and Kenyon, 1992; Whangbo and Kenyon, 1999).  Previous results 

suggest that the initial migrations of the Q neuroblasts affect their responses to 

the posterior EGL-20/Wnt signal (Chapman et al., 2008).  By migrating 

posteriorly, the QL neuroblast encounters the EGL-20/Wnt signal and turns on 

the expression of MAB-5.  By migrating anteriorly, the QR neuroblast might avoid 

the posterior EGL-20/Wnt signal.  Failure of QL to migrate posteriorly over V5L 

could result in QL not receiving a robust EGL-20/Wnt signal and not expressing 
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MAB-5/Hox, causing the QL descendants (e.g. PQR) to migrate anteriorly.  

Additionally, if QR fails to migrate anteriorly, it might be exposed to a stronger 

EGL-20/Wnt signal that activates MAB-5/Hox in QR and descendants, resulting 

in posterior migration of the QR descendants (e.g. AQR).  QR appears to be 

inherently less sensitive to the EGL-20/Wnt signal (Whangbo and Kenyon, 1999), 

possibly explaining the weaker defects in AQR direction defects compared to 

PQR (see below). 

 ced-10(n1993) and cdc-42(gk388) had very little effect on AQR and PQR 

migration (Figs. 4.6A and C).  mig-2(mu28) had the strongest effect on AQR and 

PQR migration, with 4% of the AQR neurons failing to fully migrate to the wild 

type location in the head of the animal and 7% of PQR neurons failing to migrate 

properly to the wild type location in the tail (Fig. 4.6B).  One point of interest is 

that 1% of the PQR neurons in mig-2(mu28) had reversed direction of migration 

and migrated anteriorly to the area surrounding the vulva, a defect never 

observed in wild type.  mig-2(mu28) displayed a low percentage of QL cells that 

failed to migrate posteriorly (Fig. 4.4B).  Possibly, these QL cells failed to receive 

the EGL-20/Wnt signal and thus PQR migrated anteriorly.  Thus, the slightly 

stronger Q migration defects in mig-2 mutants might result in stronger AQR and 

PQR migration defects, including reversal of PQR direction.  No AQR or PQR 

directional defects were observed in ced-10(n1993) or cdc-42(gk388M+), 

consistent with their weaker effects on Q migration compared to mig-2(mu28).  

These mig-2(mu28) defects are consistent with previous reports of Q descendant 

migration defects in mig-2 mutants (Ou and Vale, 2009; Shakir et al., 2006).  



 152 

 

CED-10/Rac and MIG-2/Rac act synergistically to control protrusion and 

migration of the Q neuroblasts.  Previous studies have shown that CED-

10/Rac and MIG-2/RhoG act in parallel pathways to control axon pathfinding 

(Lundquist et al., 2001; Shakir et al., 2006).  Neither single mutation alone had 

strong axon pathfinding defects.  Additionally, shown here and in Shakir et al., 

2006, CED-10/Rac and MIG-2/RhoG also act in parallel pathways in directing 

AQR and PQR migration.  Since only weak defects in polarization and migration 

were observed for the Q neuroblasts in single mutants, mig-2(mu28); ced-

10(n1993M+) were analyzed to determine if they act redundantly in Q migration. 

 At 1-1.5h after hatching when in wild type animals the Q neuroblasts 

would be polarized and extending protrusions in opposite directions, most of the 

Q cells in the mig-2(mu28);ced-10(n1993M+) double mutants did not extend 

obvious protrusions in either anterior or posterior directions (Fig. 4.2D) (60% of 

QR and 80% of QL).  Of the Q cells that did send out protrusions, the QL 

protrusions were always directed posteriorly and the QR protrusions were always 

directed anteriorly, as in wild type. 

 Looking later after migration had occurred, the divisions of the Q cells 

were observed at 4-4.5h after hatching.  A strong failure to migrate atop the 

neighboring seam cells before division was observed in the mig-2(mu28);ced-

10(n1993M+) double mutants (Fig. 4.4D; 56% of QR and 100% of QL).  mig-

2(mu28) alone had significantly fewer defects in QL migration and neither ced-

10(n1993) nor mig-2(mu28) had defects in QR migration.  Most of the mig-



 153 

2(mu28); ced-10(n1993M+) Q cells did not migrate at all before dividing and 

divided directly between V4 and V5.  No defects in direction of QL or QR 

migration were apparent.  These results suggest that CED-10/Rac and MIG-

2/RhoG are required redundantly in parallel pathways for Q cell protrusion and 

migration, but are not required for direction of polarization. 

 

CED-10/Rac and MIG-2/Rac act synergistically in AQR and PQR neuronal 

migration.  Previous studies indicated that CED-10/Rac and MIG-2/RhoG act 

redundantly in the migration of the Q descendants AQR and PQR (Shakir et al., 

2006).  These studies relied on an osm-6::gfp transgene that was expressed in 

AQR and PQR but also in other neurons in the head and tail, making it difficult to 

unambiguously determine the positions of AQR and PQR.  To confirm these 

results and to refine the defects in AQR and PQR migration in mig-2(mu28); ced-

10(n1993)M+) double mutants, we used the gcy-32::gfp transgene.  gcy-32::gfp 

is expressed in AQR, PQR and the two URX neurons and allows unambiguous 

identification of AQR and PQR (Chapman et al., 2008). 

 As shown above, mig-2(mu28);ced-10(n1993M+) double mutants 

exhibited a large number of Q neuroblasts that had failed to migrate before 

dividing (Fig. 4.4D).  Indeed, many (37%) of the PQR neurons migrated anteriorly 

rather than posteriorly in mig-2(mu28);ced-10(n1993M+), consistent with the 

initial failure of QL migration (Fig. 4.6D).  No AQR directional defects were 

observed, consistent with the idea that QR is inherently less sensitive to the 

EGL-20/Wnt signal than is QL (Whangbo and Kenyon, 1999). 
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 Additionally, defects in the extent of AQR and PQR migration were 

observed in mig-2(mu28);ced-10(n1993M+) (Fig. 4.6D).  For example, the 

majority of PQR neurons remained in the posterior of the animal near their 

birthplace (Fig. 4.6D).  Many AQR migrations also stopped short of their wild type 

position (Fig. 4.6D). Together, these data indicate that CED-10/Rac and MIG-

2/RhoG redundantly affect Q descendant neuronal migrations.  The directional 

defects might be due to initial defects in Q cell migration, and the defects in 

extent of migration might indicate a requirement of these CED-10/Rac and MIG-

2/RhoG in neuronal migration. 

 

Mutations in cdc-42 enhance the Q neuroblast protrusion defects observed 

in ced-10 mutants.  CDC-42 has been shown to be involved in establishing cell 

polarity and to be involved in directional migration in cell culture (Heasman and 

Ridley, 2008; Mackay and Hall, 1998).  Since only weak defects in migration 

were observed for the Q cell descendants for the cdc-42 single mutants, double 

mutants were constructed of ced-10(n1993) and mig-2(mu28) with cdc-

42(gk388M+) to determine if a stronger role for CDC-42 could be observed in this 

sensitized background.  As Cdc42 is involved in many aspects of cell 

polarization, protrusion and migration in other systems, it was a surprise to find 

that CDC-42 had only weak effects on Q cell protrusion and migration even in 

double mutant combinations, as described below (Heasman and Ridley, 2008; 

Mackay and Hall, 1998). 
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 In cdc-42(gk388M+);ced-10(n1993) animals, 2% of both QL and QR failed 

to extend obvious protrusions at 1-1.5h (Fig. 4.2E), a defect not observed in 

either single mutant alone (compare to Figs. 4.2A and C).  The proportion of all 

defects was not significantly increased, however.  Protrusions were always in the 

correct direction.  At 4-4.5h, cdc-42(gk388M+);ced-10(n1993) did not have 

significantly different defects in migration and division position compared to either 

single alone (Fig. 4.4E).  No defects in direction migration were observed.  These 

data suggest that CDC-42 might act weakly in parallel to CED-10 in Q protrusion 

but not migration, or that CDC-42 and CED-10 might act in the same pathway to 

control Q neuroblast protrusion and migration.  As was observed with the ced-

10(n1993) single mutant, a small percentage of the Q cells had migrated past the 

wild type positions before dividing in the cdc-42(gk388M+);ced-10(n1993) double 

mutant, again suggesting that CED-10/Rac also inhibits over-migration of the Q 

neuroblasts. 

 In mig-2(mu28);cdc-42(gk388M+) at 1-1.5h, Q protrusion defects were not 

significantly different than the additive effects of either mutant alone (Fig. 4.2F).  

At 4-4.5h after hatching, examination of the divisions of the Q cells showed a 

slight increase in migration defects in mig-2(mu28);cdc-42(gk388M+) double 

mutants compared to mig-2(mu28) and cdc-42(gk388M+) alone, but these 

differences were not statistically significant (Fig. 4.4F).  No defects in direction of 

protrusion or migration were observed. 

 In sum, none of the effects of CDC-42 on Q protrusion and migration were 

as strong as those observed in the mig-2(mu28);ced-10(n1993M+) double 
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mutant.  While the effects were weak, these data could indicate that CDC-42 

might act in parallel to CED-10/Rac in Q cell protrusion and MIG-2/RhoG in Q 

neuroblast migration.  However, a linear relationship between CDC-42 and CED-

10 and between CDC-42 and MIG-2 could not be ruled out by the results 

presented here.  Interestingly, no defects in direction of Q polarization were 

observed, which might have been expected based on the previous studies 

suggesting that CDC-42 is involved in polarization and directional migration 

(Heasman and Ridley, 2008; Mackay and Hall, 1998). 

   

CDC-42 acts with CED-10/Rac and MIG-2/RhoG in Q descendant migration.  

cdc-42(gk388M+) strongly and significantly enhanced the AQR and PQR extent 

of migration defects of mig-2(mu28) (Fig. 4.6F).  Neither AQR nor PQR direction 

defects were observed, possibly reflecting the weak effects of Q protrusion and 

migration in these double mutants.  For the cdc-42(gk388M+);ced-10(n1993) 

double mutants, a significant synergistic increase in defects was also observed, 

though not to the same extent as in the mig-2(mu28);cdc-42(gk388M+) double 

mutants (Fig. 4.6E).  This effect was most pronounced in PQR.  As in the mig-

2(mu28);cdc-42(gk388M+) double mutants, the cdc-42(gk388M+);ced-10(n1993) 

double mutants did not display AQR/PQR directional migration defects, possibly 

reflecting the weak Q protrusion and migration defects in the double mutant. 

 When summarizing all of these data with CED-10/Rac, MIG-2/RhoG, and 

CDC-42, it is clear that CED-10/Rac and MIG-2/RhoG are central players in Q 

protrusion and migration, whereas CDC-42 has only weak effects:  CDC-42 acts 
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in parallel to CED-10/Rac in protrusion and in parallel to MIG-2/RhoG in 

migration.  All three of these GTPases also act redundantly to control migration 

of the neuronal descendants of the Q neuroblasts, with CED-10/Rac and MIG-

2/RhoG again having the greatest effect and CDC-42 having a lesser effect. The 

weak effects of CDC-42 are surprising.  A caveat with all experiments with CDC-

42 is that the cdc-42(gk388) allele is lethal and must be balanced over a wild-

type copy.  Therefore, activity from the wild-type maternal copy of the gene might 

be enough to mediate most effects on Q cell protrusion and migration. 

 

The UNC-73/Trio GEF is required for robust Q cell protrusion.  UNC-73/Trio 

has two Dbl-homology guanine nucleotide exchange factor domains (DH-GEF 

domains) (Steven et al., 1998).  DH1 acts as a GEF for both CED-10/Rac and 

MIG-2/RhoG, but not CDC-42 (Debant et al., 1996; Steven et al., 1998).  The 

DH2 GEF domain of UNC-73 is specific for Rho.  The Rac GEF activity of UNC-

73 is required for axon pathfinding and interacts with CED-10/Rac and MIG-

2/RhoG (Lundquist et al., 2001; Shakir et al., 2006).  An allele of unc-73 that is 

thought to perturb both Rac and Rho GEF activities of the protein has been 

shown to have defects in Q neuroblast protrusion and migration (Honigberg and 

Kenyon, 2000).  The unc-73(rh40) allele is a missense mutation in the DH1 Rac 

GEF domain that biochemically attenuates the Rac GEF activity of the protein 

specifically (Steven et al., 1998).  Given that ced-10(n1993) and mig-2(mu28) 

affect Q protrusion and migration, we tested the effect of the unc-73(rh40) 

mutation on Q cell protrusion and migration. 
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 At 1-1.5h after hatching, unc-73(rh40) mutants displayed protrusion 

defects for both QL and QR, with a small percentage of both QL and QR 

neuroblasts failing to extend any protrusions (Fig. 4.7C).  No defects in direction 

of protrusion were observed in unc-73(rh40).  Comparing these data to that of the 

mig-2(mu28);ced-10(n1993M+) double mutants (Fig. 4.2D), the unc-73(rh40) 

mutants were weaker.  Intriguingly, the protrusions observed for unc-73(rh40) 

mutants look very thin compared to wild-type, resembling finger-like filopodial 

protrusions rather than the robust lamellipodia-like protrusions in wild-type (Figs. 

4.7A and B).  These thin, finger-like protrusions were rarely if ever observed in 

mig-2, ced-10, cdc-42, or any double mutant combination of the three.  These 

results suggest that Rac GEF function of UNC-73 is required to extend 

protrusions and is required for robust lamellipodial protrusion when they do form 

in unc-73(rh40) mutants. 

 Though the protrusions that the Q neuroblasts normally follow during 

migration were much less robust in the unc-73(rh40) mutants, the Q cells were 

still able to migrate correctly in most of the unc-73(rh40) animals observed.  

Examining the location of division at 4-4.5h after hatching, most of the QL and 

QR neuroblasts had fully migrated before dividing over V5L and V4R, 

respectively, with the remaining neuroblasts migrating to the edges of the seam 

cells adjacent to their birthplaces before dividing (Fig. 4.7D). 

 These results suggest that the UNC-73/Trio Rac GEF is playing a role in 

robust Q cell protrusion.  Some Q cells failed to extend any protrusion in unc-

73(rh40), similar to but weaker than mig-2;ced-10 double mutants.  The thin, 
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finger-like protrusions in unc-73(rh40) were not observed in mig-2;ced-10 

doubles.  This might represent a distinct, non-Rac-mediated role of UNC-73 in 

protrusion.  More likely, given that the Rac GEF activity is specifically affected in 

unc-73(rh40), is that the thin protrusions are due to reduced but not eliminated 

CED-10/Rac and MIG-2/RhoG activity in unc-73(rh40) mutants.   

 unc-73(rh40) also affected AQR and PQR migration (Fig. 4.7E).  The 

reversal defects of PQR were weak, and the extent of migration defects were 

stronger, but not as strong as the mig-2;ced-10 double mutants.  These results 

suggest that UNC-73/Trio is not the only Rac GEF that controls the activity of 

both CED-10 and MIG-2 in protrusion and migration of the Q neuroblasts. 

 

PIX-1/β-PIX is required for QL neuroblast protrusion and migration.  The C. 

elegans genome encodes 19 DH GEF domain containing proteins, including 

UNC-73/Trio.  Mutations and/or RNAi of each of the 19 were analyzed for AQR 

and PQR migration defects.  In addition to the already determined role of UNC-

73 in Q descendant migration, only one of the other 19 DH GEF domain 

containing genes was found to cause migration defects when mutated singly in 

the Q descendants, the guanine nucleotide exchange factor gene pix-1.  The pix-

1(ok982) deletion allele was found to have weak defects in PQR migration (6%; 

Fig. 4.8C).  PIX-1 is similar to the PAK (p21-activated kinase) Interacting 

Exchange Factor, and has been shown previously to act in a Rac-independent 

pathway with GIT and PAK in C. elegans gonadal distal tip cell migration 

(Lucanic and Cheng, 2008).  As described below, pix-1(ok982) alone caused 
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weak defects in protrusion and migration of the QL and QR neuroblasts, and QL 

migration defects.   

 At 1-1.5h after hatching, pix-1(ok982) mutants displayed weak defects in 

protrusion for QL and QR (Fig. 4.8A), with all neuroblasts polarized in the correct 

directions.  The most common defect was weak protrusion that did not extend as 

far as wild-type.  pix-1(ok982) animals did not display the thin-finger-like 

protrusions as did unc-73(rh40). 

 At 4-4.h, migration defects were observed for only the QL neuroblast, and 

not the QR neuroblast (Fig. 4.8B):  30% of QL failed to fully migrate posteriorly 

over V5L before dividing, and 1/44 did not migrate at all (i.e. divided at its 

birthplace). 

 As described above, pix-1(ok982) caused 6% of PQR neurons to not 

complete their migrations (Fig. 4.8C).  Migration of AQR was mostly wild type 

(Fig. 4.8C), but 1 out of 100 animal scored had a reversal in the direction of 

migration for AQR, with the final location of migration just anterior to the anus 

near the location of the PQR neuron (Fig. 4.8C).  In sum, these results suggest 

the possibility that the PIX-1 GEF acts with the UNC-73/Trio GEF in Q protrusion 

and migration. 

 

PIX-1/βPIX and UNC-73/Trio act synergistically in controlling protrusion 

and migration of the Q neuroblasts.  To determine if UNC-73/Trio and PIX-

1/βPIX have redundant roles in Q neuroblast migration, a double mutant of pix-

1(ok982) and unc-73(rh40) was constructed.  The Rac double mig-2(mu28);ced-
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10(n1993) was maternal-effect lethal, whereas the pix-1(ok982);unc-73(rh40) 

double mutant was viable and fertile. 

 Examination of the protrusions of the Q neuroblasts at 1-1.5h indicated 

that PIX-1 and UNC-73 act in parallel pathways to control protrusion of these 

cells.  The defects in protrusion of both QR and QL were much stronger than 

either single mutant alone (Compare Fig. 4.9A with 4.8A and 4.7C).  At 1-1.5h 

after hatching, many of the Q cells in unc-73(rh40);pix-1(ok982) had no visible 

protrusions.  No defects in direction of protrusion were observed.  In unc-

73(rh40);pix-1(ok982), 37% of QL neuroblasts and 44% of QR neuroblasts had 

long protrusions similar to wild-type.  This is still much less severe than the mig-

2(mu28);ced-10(n1993M+) double mutant, with a mere 4% of QL and 8% of QR 

neuroblasts extending robust protrusions. Many of the unc-73(rh40);pix-1(ok982) 

mutants displayed thin and finger-like protrusions in a proportion similar to that of 

unc-73(rh40) alone. 

 At 4-4.5h after hatching, a synergistic increase in Q neuroblast migration 

defects was seen in the pix-1(ok982);unc-73(rh40) double mutants as compared 

to the single mutants alone (Fig. 4.9B).  As seen for the pix-1(ok982) single 

mutants, the QL neuroblast was affected much more strongly than QR, with QL 

migration defects observed more than twice as often as in the QR neuroblast 

(Fig. 4.9B). That unc-73(rh40);pix-1(ok982) animals display a synergistic 

increase in Q protrusion and migration defects indicates that UNC-73/Trio and 

PIX-1/βPIX might act in parallel to control Q protrusion and migration. 
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PIX-1/βPIX acts with CED-10/Rac, but in parallel to MIG-2/RhoG to control 

protrusion and migration of the Q neuroblasts.  The finding that PIX-1 and 

UNC-73 act in parallel to control Q protrusion and migration raises question of 

whether PIX-1 is acting with or in parallel to CED-10 and MIG-2 in the Q 

neuroblasts, as UNC-73 has been shown to act as a GEF for both CED-10 and 

MIG-2 (Lundquist et al., 2001; Steven et al., 1998).  To determine the genetic 

relationships between PIX-1 and the Rac GTPases CED-10 and MIG-2, double 

mutants were constructed and the Q neuroblasts were examined. 

 Double mutants of pix-1(ok982) with mig-2(mu28) display synergistic 

increases in defects in both protrusion and migration of the Q neuroblasts as 

compared to the defects observed for the single mutants combined (Fig. 4.10A 

and B).  Examination of the Q neuroblast protrusions found that 43% of QL and 

35% of QR neuroblasts either failed to extend protrusions or only extended small 

protrusions in the mig-2 pix-1 double mutant, a substantial increase in defects as 

compared to a combined percentages of defects (15.5% for QL and 2.5% for QR) 

seen for the single mutants alone (compare Fig. 4.10A to 4.2B and 4.8A). But as 

observed for the single mutants alone, the protrusions that were present in the 

mig-2 pix-1 double mutants were always in the proper directions.  Defects in the 

location of divisions of the Q neuroblasts in the mig-2 pix-1 double mutant again 

showed a large increase in defects as compared to the combination of defects 

seen in both of the single mutants, with 56% of QL and 20% of QR neuroblasts 

failing to fully migrate to their proper locations before dividing in the double 

mutant as compared to the combined defects observed for 35% of QL 
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neuroblasts scored and no defects seen for QR migration in either single mutant 

(compare Fig. 4.10B to 4.4B and 4.8B).  This increase in migration defects was 

also observed for the migrations of AQR and PQR, with the mig-2 pix-1 double 

mutant again showing an increase in defects as compared to the combination of 

defects observed for the single mutants (compare Fig. 4.10C to 4.6B and 4.8C).  

These results suggest that PIX-1 and MIG-2 are working in parallel pathways to 

control the migrations of the Q neuroblasts and their descendants. 

 Examination of the pix-1(ok982);ced-10(n1993) double mutants found that 

PIX-1 and CED-10 do not display a large increase in defects in the migrations of 

the Q neuroblasts or the Q descendants as compared to the single mutants 

(compare Fig. 4.10 with Figs. 4.4A, 4.6A, and 4.8).  Examination of the 

protrusions in the pix-1;ced-10 double mutant found an increase in neurons that 

had not polarized or had only weakly polarized at 1-1.5h after hatching.  The pix-

1;ced-10 double mutants were developmentally delayed as compared to wild 

type animals, with the divisions of the Q neuroblasts occurring approximately 30 

minutes later at 4.5-5h after hatching.  Based on this finding, the extension of 

strong protrusions might occur at a later time point as well.  Observations of the 

locations of Q neuroblast divisions found that both QL and QR migrations were 

not significantly different than the combination of the defects seen for the single 

mutants, with the double mutants only displaying 27% QL and 7% QR migration 

defects (Figure 4.10E).  Likewise, there was no synergistic increase in migration 

defects observed for the AQR and PQR neurons in the pix-1;ced-10 double 

mutants (Figure 4.10F).  The migration defects for the AQR neuron were not 
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significantly different than the combination of the defects observed for both of the 

single mutants (p = 0.3).  As for the PQR neuron, the migration defects in the pix-

1;ced-10 double mutant were slightly increased as compared to the combination 

of defects observed for the pix-1 and ced-10 single mutants (p = 0.03).  Though 

there was an increase in protrusion extension defects that might be due to the 

time point at which these neurons were scored, the lack of a synergistic increase 

in the later migration events of the Q neuroblasts and the Q neuroblast 

decendants suggest that PIX-1 and CED-10 might be acting in the same pathway 

to control the migrations of the Q neuroblasts and their descendants.  Taken the 

results shown here and the previous findings that UNC-73 serves as a GEF for 

CED-10 and MIG-2 together (Lundquist et al., 2001; Steven et al., 1998), it 

appears that CED-10 is acting downstream of both UNC-73 and PIX-1, whereas 

MIG-2 is acting downstream of UNC-73 in parallel to the PIX-1/CED-10 pathway 

to control the migrations of the Q neuroblast descendants.  
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4.5. Discussion 

The Rac GTPases CED-10/Rac and MIG-2/RhoG have opposite effects on 

the protrusion extension and migration of the Q neuroblasts.  Loss of 

function mutations in the Rac GTPases ced-10 and mig-2 do not cause defects in 

the direction of polarization of the Q neuroblasts.  Of the Q neuroblasts that do 

extend protrusions, these processes are always oriented in the proper direction 

of polarization, with QR extending protrusions anteriorly and QL extending 

protrusions posteriorly.  These mutants do however affect the size of the 

protrusions that are extended, with ced-10(n1993) mutants observed to extend 

protrusions that are increased in size as compared with wild type Q cell 

protrusions.  As shown in Figure 4.3A, the Q neuroblast protrusions extended 

past the adjacent seam cell where they normally terminate in wild type animals, 

continuing to extend these protrusions onto the next seam cell, with the QL 

protrusion touching the V6L seam cell in 5% of animals scored.  Opposite defects 

were observed for mig-2(mu28), with a small percentage of the Q neuroblasts 

failing to extend any protrusions at 1-1.5h after hatching.  Thus, it seems that 

CED-10 might normally limit the extension of protrusions, whereas MIG-2 might 

promote protrusion extension in the Q neuroblasts. 

 Similar to what was seen during the polarization stage of the Q 

neuroblasts, ced-10 and mig-2 mutants also displayed opposite effects on the 

migrations of the Q neuroblasts.  For ced-10(n1993), the Q neuroblasts often 

migrated past the stopping point where wild type Q cells divide, but continued 

migrating to between the V3R and V4R seam cells for QR and between the V5L 
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and V6L seam cells for QL before dividing.  For mig-2(mu28), failure of the Q 

neuroblasts to fully migrate before dividing was observed, with 5% of the QL 

neuroblasts dividing at the anterior edge of V5L instead of on top of the V5L 

seam cell as in wild type.  Taken together, these data suggest that CED-10 

normally plays an inhibitory role in the protrusions and migrations of the Q 

neuroblasts with CED-10 limiting the length of protrusions and migrations of the 

Q cells.  MIG-2 appears to be required for full extension of protrusions and for 

complete migrations of the Q neuroblasts. 

 

CED-10/Rac and MIG-2/RhoG also have redundant roles in directing the Q 

neuroblast protrusion and migration.  Though CED-10 and MIG-2 appear to 

have opposite roles in directing protrusion extension and migration in the Q 

neuroblasts, these molecules also seem to have redundant roles in both of these 

processes as well.  Double mutants of ced-10 with mig-2 show a synergistic 

increase in protrusion and migration defects.  During the 1-1.5h after hatching 

timepoint, the majority of both QL and QR neuroblasts had failed to extend any 

protrusions at all, suggesting that CED-10 might be functioning redundantly with 

MIG-2 to promote the initiation of Q neuroblast protrusion in addition to the role of 

CED-10 in limiting the length of protrusion extension.  CED-10 and MIG-2 also 

appear to be working redundantly in directing the migrations of the Q 

neuroblasts, with 100% of the QL and 56% of the QR neuroblasts failing to 

migrate over their respective seam cells before dividing.  Thus, it appears as 

though CED-10 and MIG-2 are acting in parallel pathways to control both 



 167 

protrusion extension and migration of the Q neuroblasts.  In addition, functional 

redundancy of CED-10 and MIG-2 has previously been observed for the roles of 

these two Rac GTPase molecules in axon pathfinding (Lundquist et al., 2001; 

Shakir et al., 2006).  Though these two molecules appear to be acting in parallel 

in three different morphological processes, these three processes of protrusion 

extension, neuronal migration, and axon pathfinding might all be controlled by the 

same signaling pathway in which the Rac GTPases CED-10/Rac and MIG-

2/RhoG function.  As the Rac GTPases are required for lamellipodial protrusion, 

defects in migration and axon pathfinding seen in these mutants could be a 

consequence of the lack of lamellipodial protrusions.  

 

CDC-42 acts with CED-10/Rac and MIG-2/RhoG to control the migrations of 

the Q neuroblast descendants.  Loss of function cdc-42 mutants displayed 

weak defects in the protrusions and migrations of the Q neuroblasts, similar to 

the defects observed for mig-2 mutants, suggesting that CDC-42 is required for 

promoting protrusion extension and migration in the Q cells.  Double mutants of 

cdc-42 with mig-2 did not display a significant increase in defects in protrusion 

and migration of the Q cells as compared to the defects of the two single mutants 

combined, suggesting that CDC-42 might be working in the same pathway as 

MIG-2 or in independent pathways to control Q neuroblast protrusion and 

migration.  Another possibility, since a small increase in defects was observed for 

the migrations of the Q neuroblasts in the mig-2;cdc-42 double mutants, is that 

MIG-2 and CDC-42 could be working in parallel pathways.  The defects observed 
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for the migrations of the Q cell descendants would suggest the latter, as a 

synergistic increase in migration defects was observed for both the AQR and 

PQR neurons in the mig-2;cdc-42 double mutants. 

 Double mutants of ced-10 with cdc-42 also displayed a weak increase in 

defects in protrusion extension of the Q neuroblasts as compared to the two 

single mutants alone.  No increase in defects was observed for this double 

mutant in the migrations of the Q neuroblasts.  Again, like for the mig-2;cdc-42 

double mutants, a synergistic increase in migration defects was observed for the 

PQR neuron in the cdc-42;ced-10 double mutant.  These results might suggest 

that CDC-42 and CED-10 are working in parallel pathways to control the 

migrations of the Q neuroblast descendants.  As for in the Q neuroblasts, CDC-

42 and CED-10 might also be working in parallel pathways to control protrusion 

extension, but a linear relationship could not be ruled out by these experiments. 

 One caveat of these experiments is that the cdc-42 mutant used here has 

to be maintained over a wild type copy of cdc-42.  Therefore, maternal 

contributions of cdc-42 RNA could be rescuing any defects that might be present 

in the Q neuroblasts.  The cdc-42 mutants did not display much difference in the 

amount of defects in the early Q neuroblast migrations versus those observed for 

the later Q descendant migrations, though defects in either migration was rare, 

as seen for the ced-10 and mig-2 single mutants.  However, when mutation in 

cdc-42 was introduced into the ced-10 and mig-2 mutant backgrounds, the 

proportion of increased defects seen for the later migration events of AQR and 

PQR was much larger than the increase in defects seen for the Q neuroblast 
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migrations.  This could be a result of the limitation of the maternal contribution of 

cdc-42 RNA, with the amount of CDC-42 present during the later migration 

events substantially reduced as compared to the earlier migration events, leading 

to an increase in migration defects.  Another possibility is that an increased 

requirement for CDC-42 function is necessary for the proper migrations of the Q 

neuroblast descendants, resulting in many more defects in the migration of the 

AQR and PQR neurons as compared to the Q neuroblasts when knocking down 

CED-10 or MIG-2, molecules that are acting redundantly to direct the migrations 

of the Q neuroblast descendants. 

 

UNC-73/Trio does not act alone as the GEF for the Rac GTPases in Q 

neuroblast migration.  Previous studies have determined UNC-73 to act as a 

guanine nucleotide exchange factor (GEF) for the CED-10 and MIG-2 Rac 

GTPases (Lundquist et al., 2001; Steven et al., 1998).  Thus, the unc-73(rh40) 

allele, a mutation thought to inactivate the GEF activity for Rac GTPases, was 

examined for Q neuroblast protrusion and migration defects (Steven et al., 1998).  

Examination of the Q neuroblast protrusions found that these structures were 

much reduced in size as compared to wild type.  These protrusions in the unc-73 

mutants were highly branched and more filopodial-like than lamellipodial-like, 

suggesting that UNC-73 is required for lamellipodial extensions.  The presence of 

filopodial-like, thin Q neuroblast protrusions were not observed in the mig-2;ced-

10 double mutants, though the lack of these structures could be due to the Rac 

GTPase double mutant causing much more severe defects in protrusion 
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extension, with the majority of the Q neuroblasts not sending out any protrusions 

at 1-1.5h after hatching.  In addition to the unc-73 protrusion defects being less 

severe than those seen for the mig-2;ced-10 double mutants, a similar 

relationship was observed for the Q neuroblast and Q neuroblast descendant 

migration defects, in which the unc-73 mutants displayed migration defects that 

were much weaker than observed for the mig-2;ced-10 double mutant.  Thus, 

these results suggest that UNC-73 is not acting as the only GEF for CED-10 and 

MIG-2 in the Q neuroblasts. 

 

PIX-1/βPIX functions as a GEF for CED-10/Rac in Q neuroblast protrusion 

and migration.  Examination of another Rac GTPase GEF found that PIX-1/ 

βPIX has a role in the protrusion extension and migration of the Q neuroblasts 

and in the migration of the Q descendants.  Additionally, double mutants of unc-

73 with pix-1 displayed a synergistic increase in protrusion and migration defects 

in the Q neuroblasts.  These results suggest that PIX-1 and UNC-73 are acting in 

parallel pathways to control the protrusion and migration of the Q neuroblasts.   

One point of interest was that of the Q neuroblasts observed during the 

division stage in the pix-1;unc-73 double mutants, 2/28 of the observed QL 

neuroblasts had divided on the posterior edge of V4L, a phenotype that was not 

observed for any of the single mutants examined here.  Though this would 

indicate an anterior migration of the QL neuroblasts before division, another 

possible explanation could be that it appears as though the V4 seam cells extend 

posteriorly to make contact with the V5 seam cells after the initiation of migration 
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of the Q neuroblasts.  This could cause neuroblasts that had failed to migrate to 

appear to have migrated anteriorly, even if these cells had not migrated at all.  

This could also partially explain the differences between the QL and QR 

migration defects seen in many of the mutants observed here, as the defects in 

protrusion extension are mostly similar between the QL and QR neuroblasts for 

all mutants, whereas the defects in migration were typically stronger for the QL 

neuroblasts in the same mutants. 

As UNC-73 has been shown to function as a GEF for MIG-2 and CED-10 

and UNC-73 and PIX-1 are shown here to act in parallel to control Q neuroblast 

protrusion and migration, PIX-1 could be acting in parallel to the UNC-73/CED-

10/MIG-2 pathway or PIX-1 could be acting as a GEF for CED-10 and/or MIG-2 

as does UNC-73 (Lundquist et al., 2001; Steven et al., 1998).  To differentiate 

between these possibilities, double mutants of pix-1 with ced-10 and mig-2 were 

built.  Interestingly, only mig-2 pix-1 double mutants displayed a synergistic 

increase in Q neuroblast defects, whereas the pix-1;ced-10 double mutants were 

observed to have only a small increase in defects compared to either of the 

single mutants alone.  Taken together, these results suggest that PIX-1 might be 

working upstream of CED-10 in a linear pathway and that PIX-1 and CED-10 are 

working in a parallel pathway to MIG-2 to control Q neuroblast protrusion and 

migration.  Interestingly, previous studies have found that PIX-1 functions in a 

pathway that is parallel to the Rac GTPases CED-10 and MIG-2 in gonad 

morphogenesis (Lucanic and Cheng, 2008).  The results shown here suggest 
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that PIX-1 can also function in a linear pathway with the Rac GTPase CED-10 

indicating that the relationship of PIX-1 with the Rac GTPases is tissue specific. 
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Figure 4.1 
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Figure 4.1. Protrusions and migrations of the Q neuroblasts and migrations of 

the AQR and PQR neurons in wild type animals.  (A-D) Confocal fluorescent 

micrographs of Q neuroblasts in wild type L1 larvae visualized with 

scm::gfp::caax expression.  Asterisks mark the position of the Q neuroblasts and 

the Q neuroblast descendants.  Tracings of the Q neuroblasts and the Q 

neuroblast descendants are located beneath each micrograph.  The scale bar in 

(A) represents 5µm for (A-D).  (A) A QR neuroblast polarizes, sending out 

protrusions anteriorly over the V4R seam cell at 1-1.5h after hatching.  (B) A QL 

neuroblast polarizes, sending out protrusions posteriorly over the V5L seam cell 

at 1-1.5h after hatching.  (C) A QR neuroblast divides over the V4R seam cell 

after migrating anteriorly at 4-4.5h after hatching.  (D) A QL neuroblast divides 

over the V5L seam cell after migrating posteriorly at 4-4.5h after hatching.  (E) 

Quantitation of the direction and extent of protrusions during the polarization 

stage of the Q neuroblasts at 1-1.5h after hatching in wild type animals.  The x-

axis represents the direction and extent of polarization of the Q neuroblasts.  See 

Materials and Methods for classifications of extent of protrusion.  The y-axis 

represents the percentage of Q neuroblasts polarized in each of the categories 

along the x-axis.  For both QR and QL polarizations, n = 55.  (F) Quantitation of 

the location of the Q neuroblasts at division with respect to the adjacent seam 

cells in wild type animals.  The x-axis represents the location of the Q 

neuroblasts at division with respect to the adjacent seam cells.  The y-axis 

represents the percentage of Q neuroblasts located at those positions.  For both 

QR and QL polarizations, n ≥ 29.  (G) Epifluorescent micrograph of the AQR and 
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PQR neurons in a wild type L4 larvae visualized with Pgcy-32::gfp.  The scale 

bar in (G) represents 50µm.  (H) Quantitation of the final migratory positions of 

the AQR and PQR neurons in wild type animals.  The x-axis represents the final 

position of the AQR and PQR neurons along the anterior-posterior axis of the 

animal as described in the Materials and Methods section.  The y-axis represents 

the percentage of AQR and PQR neurons located at those positions along the 

anterior-posterior axis.  For both cases, n = 100. 
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Figure 4.2 
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Figure 4.2. Polarizations of the Q neuroblasts at 1-1.5h after hatching.  (A-F) 

Quantitation of the direction and extent of protrusions during the polarization 

stage of the Q neuroblasts at 1-1.5h after hatching.  The graphs are organized as 

described in Fig. 4.1E.  The asterisks in (D) represent statistically significant 

differences as compared to the ced-10(n1993) and mig-2(mu28) single mutants 

alone.  For all cases, n ≥ 25. 
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Figure 4.3 
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Figure 4.3. Failure of the Q neuroblasts to extend wild type protrusions.  (A-C) 

Confocal fluorescent micrographs of Q neuroblasts in L1 larvae visualized with 

scm::gfp::caax expression at 1-1.5h after hatching.  Asterisks mark the position 

of the Q neuroblasts.  Tracings of the Q neuroblasts are located beneath each 

micrograph.  The scale bar in (A) represents 5µm for (A-C).  (A) A QL neuroblast 

in a ced-10(n1993) mutant extends protrusions posteriorly that are longer in size 

than in wild type, with the protrusion extending well onto the V6L seam cell.  (B) 

A QL neuroblast in a cdc-42(gk388M+) mutant fails to send out robust 

protrusions posteriorly, though small protrusions extending in the proper posterior 

direction can be observed.  (C) A QL neuroblast in a mig-2(mu28);ced-

10(n1993M+) mutant fails to extend protrusions in either direction. 
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Figure 4.4 
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Figure 4.4. Migrations of the Q neuroblasts.  (A-F) Quantitation of the location of 

the Q neuroblasts at division.  The graphs are organized as described in Fig. 

4.1F.  The asterisk in (D) represents a statistically significant difference as 

compared to the ced-10(n1993) and mig-2(mu28) single mutants alone.  (F) The 

p values for the Q neuroblasts that were located between the V4 and V5 seam 

cells upon division are indicated for both QR and QL.  For all cases, n ≥ 25. 
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Figure 4.5 
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Figure 4.5. Failure of the Q neuroblasts to migrate before dividing.  (A-C) 

Confocal fluorescent micrographs of Q neuroblasts upon division in L1 larvae 

visualized with scm::gfp::caax expression.  Asterisks mark the positions of the Q 

neuroblast descendants.  Tracings of the Q neuroblast descendants are located 

beneath each micrograph.  The scale bar in (A) represents 5µm for (A-C).  (A) A 

QR neuroblast migrates past the normal stopping point over the V4R seam cell 

and divides between the V3R and V4R seam cells in ced-10(n1993) mutants.  

(B) A QL neuroblast fails to fully migrate before dividing, with the division 

occurring on the anterior edge of the V5L seam cell in mig-2(mu28);ced-

10(n1993M+) mutants.  (C) A QR neuroblast fails to migrate at all and divides at 

its birthplace between the V4R and V5R seam cells in mig-2(mu28);ced-

10(n1993M+) mutants. 
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Figure 4.6 
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Figure 4.6. Final migratory positions of the Q neuroblast descendants, AQR and 

PQR.  (A-F) Quantitation of the final migratory positions of the AQR and PQR 

neurons.  The graphs are organized as described in Fig. 4.1H.  The asterisks in 

(D-F) represent statistically significant differences for the double mutants as 

compared to the combination of the defects observed in the two single mutants 

than comprise the double mutant.  For all cases, n = 100. 
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Figure 4.7 
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Figure 4.7. UNC-73/Trio is required for the proper polarizations and migrations of 

the Q neuroblasts and migrations of the Q cell descendants.  (A,B) Confocal 

fluorescent micrographs of Q neuroblasts in unc-73(rh40) mutants in L1 larvae 

visualized with scm::gfp::caax expression at 1-1.5h after hatching.  Asterisks 

mark the position of the Q neuroblasts.  Tracings of the Q neuroblasts are 

located beneath each micrograph.  The scale bar in (A) represents 5µm for (A,B).  

(A) A QL neuroblast polarizes in the correct posterior direction, but the size of the 

protrusions is reduced in size, resembling filopodia rather than lamellipodia.  (B) 

A QR neuroblast polarizes in the correct anterior direction, but the size of the 

protrusions is reduced in size, resembling filopodia rather than lamellipodia.  (C) 

Quantitation of the direction and extent of protrusions during the polarization 

stage of the Q neuroblasts at 1-1.5h after hatching in unc-73(rh40) mutants.  The 

graphs are organized as described in Fig. 4.1E.  For Q neuroblast polarizations, 

n = 38.  (D) Quantitation of the location of the Q neuroblasts at division with 

respect to the adjacent seam cells in unc-73(rh40) mutants.  The graphs are 

organized as described in Fig. 4.1F.  For Q neuroblast migrations, n ≥ 31.  (E) 

Quantitation of the final migratory positions of the AQR and PQR neurons in unc-

73(rh40) mutants.  The graphs are organized as described in Fig. 4.1H.  For 

AQR and PQR migrations, n = 100. 
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Figure 4.8 
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Figure 4.8. PIX-1/βPIX is required for the proper migrations of the QL neuroblast 

and the Q neuroblast descendants.  (A) Quantitation of the direction and extent 

of protrusions during the polarization stage of the Q neuroblasts at 1-1.5h after 

hatching in pix-1(ok982) mutants.  The graphs are organized as described in Fig. 

4.1E.  For Q neuroblast polarizations, n = 25.  (B) Quantitation of the location of 

the Q neuroblasts at division with respect to the adjacent seam cells in pix-

1(ok982) mutants.  The graphs are organized as described in Fig. 4.1F.  For Q 

neuroblast migrations, n ≥ 25.  (C) Quantitation of the final migratory positions of 

the AQR and PQR neurons in pix-1(ok982) mutants.  The graphs are organized 

as described in Fig. 4.1H.  For AQR and PQR migrations, n = 100. 
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Figure 4.9 
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Figure 4.9. Double mutants of pix-1 and unc-73 display a synergistic increase in 

defects in the polarization and migration of the Q neuroblasts and the migrations 

of the Q neuroblast descendants.  (A) Quantitation of the direction and extent of 

protrusions during the polarization stage of the Q neuroblasts at 1-1.5h after 

hatching in pix-1(ok982);unc-73(rh40) mutants.  The graphs are organized as 

described in Fig. 4.1E.  For Q neuroblast polarizations, n ≥ 34.  (B) Quantitation 

of the location of the Q neuroblasts at division with respect to the adjacent seam 

cells in pix-1(ok982);unc-73(rh40) mutants.  The graphs are organized as 

described in Fig. 4.1F.  For Q neuroblast migrations, n ≥ 28.  (C) Quantitation of 

the final migratory positions of the AQR and PQR neurons in pxi-1(ok982);unc-

73(rh40) mutants.  The graphs are organized as described in Fig. 4.1H.  For 

AQR and PQR migrations, n = 100. 
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Figure 4.10 
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Figure 4.10. Double mutants of pix-1 with mig-2 exhibit a synergistic increase in 

defects in Q neuroblast protrusion extension and migration and Q neuroblast 

descendant migration, whereas pix-1;ced-10 double mutants do not display a 

large increase in defects in the protrusions or migrations of the Q neuroblasts or 

the Q neuroblast descendants.  (A and D) Quantitation of the direction and extent 

of protrusions during the polarization stage of the Q neuroblasts at 1-1.5h after 

hatching.  The graphs are organized as described in Fig. 1E.  For Q neuroblast 

polarizations, n ≥ 25.  (B and E) Quantitation of the location of the Q neuroblasts 

at division with respect to the adjacent seam cells.  The graphs are organized as 

described in Fig. 1F.  For Q neuroblast migrations, n ≥ 26.  (C and F) 

Quantitation of the final migratory positions of the AQR and PQR neurons.  The 

graphs are organized as described in Fig. 1H.  For AQR and PQR migrations, n = 

100. 
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