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Chapter 1. Introduction 

 

Form Selection in Small Molecule Drug Development 

Small molecule drug development relies on the ability to achieve efficacious 

exposure levels of the drug with a desired dosage form.  Many active pharmaceutical 

ingredients (APIs) have poor solubility in an aqueous environment rendering them 

susceptible to solubility limited absorption.  Pharmaceutical strategies for overcoming 

absorption limited by solubility have been restricted to salt formation or formulation 

techniques such as amorphous dispersions and nanosizing or a combination thereof.1  In 

recent years cocrystallization of an API with a cocrystal former has been shown to be a 

complimentary pharmaceutical strategy to change the physical properties of the API 

including dissolution rate and solubility.2,3   

Form selection of an API in discovery research classically requires the 

comparison of two or more forms (i.e. polymorphs, salts, solvates) of the API in vivo to 

illustrate acceptable preclinical pharmacokinetics for further development of the drug.4-6  

At the outset, physical property filters such as stability, hygroscopicity and crystallinity 

of the forms are used to narrow down the field.  Predictive methods such as solubility and 

dissolution are also incorporated into the form selection decision tree to eliminate forms 

that are likely to perform poorly in vivo.7-9  The directly proportional relationship of 

dissolution rate to exposure of a poorly soluble API and its different salts, polymorphs or 

formulations has been well established and therefore remains engrained in the form 

selection process.10-14  Crystal surface properties and crystal morphology either measured 

or calculated may also be used to predict or confirm the results.15,16   
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Pharmaceutical cocrystals are molecular complexes of an API and one or more 

cocrystal formers, which are solids at room temperature, interacting through hydrogen 

bonding, π-stacking or van der Waals forces.17  Under this definition pure salts, solvates 

and hydrates are excluded although have been shown to co-exist within the same 

complex.18  In recent years interest in cocrystallization has gained momentum as noted by 

the increased frequency of occurrence of organic molecular complexes in the Cambridge 

Structural Database19.  A cursory search of the literature in 2009 alone found reports of 

novel cocrystals of APIs20-22, cocrystal screening methods23,24, cocrystal phase 

diagrams25,26, prediction of cocrystal formation27 and physicochemical properties of 

corystals3,28.  Inclusion of cocrystals in the form selection process of an API is destined to 

become, if it has not already, common practice in pharmaceutical reasearch, not only due 

to the possibility of improving physical properties of an API, but also to protect its 

intellectual property29. 

 

Introduction to AMG 517 

AMG 517, a potent and selective transient receptor potential vanilliod 1 (TRPV1) 

antagonist for the treatment of chronic pain, is an anhydrous free base form A (FBA) 

with poor aqueous solubility which is not amenable to stable salt formation due to its low 

pKa of -0.52 (ACD/pKa DB v12.0, Advanced Chemistry Development, Inc).  A second 

anhydrous form, form B (FBB), and a monohydrate (FBC) also have poor solubility in 

aqueous media which rendered them undesirable for development.30  This API has many 

known cocrystal forms, 22 of which have been published with powder dissolution data in 

FaSIF.  Almost all of the cocrystals (15/22) have shown improvements over the free form 
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based on solution concentration maximum during the dissolution experiments.31,32  One 

of these cocrystals, the sorbic acid cocrystal (SRA), has also shown improvement in the 

exposure of AMG 517 where a 30 mg/kg dose of the cocrystal was comparable to a 500 

mg/kg dose of FBA in rats when dosed as a suspension in 10% Pluronic® F108 in 

OraPlus®.30   

Further research was conducted here with sixteen cocrystals of AMG 517 to 

investigate correlations in dissolution with pharmacokinetics of cocrystal forms of a 

poorly soluble API.  The main intention of the research is to show that cocrystals with a 

higher dissolution rate than the free form will also provide higher exposure in rat 

pharmacokinetic studies.  This would allow the pharmaceutical scientist to use 

dissolution rate as a filter for selecting not only salts or polymorphs of an API, but also 

cocrystal forms for further study in vivo.  The relatively large selection was chosen to 

include SRA as a positive control, two pairs of cocrystals (carboxylic acid with 

corresponding amide) and eleven other carboxylic acid cocrystals elected to represent a 

range of dissolution rates.  With an additional hydrogen bond donor in comparison to the 

acids the amides are likely to form a unique hydrogen bonding network resulting in 

changes to the crystal packing and in turn the physicochemical properties of the 

compound.  The crystal structures of one pair of these cocrystals are analyzed in 

comparison with FBA to elucidate the possible factors responsible for changes in 

dissolution.  Single crystal structure analysis may be another useful filter in selecting API 

forms for further study. 
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Chapter 2. Cocrystal Background 

 

History of Cocrystals 

 Cocrystals have been discussed in the literature since 1844 when Wöhler first 

described quinhydrone (molecular complex of quinone and hydroquinone) and Ling 

further investigated halogen derivatives of quinhydrone in 1893.1  Cocrystals of 

antipyrine, an analgesic, were described in Modern Materia Medica published in 1895.2,3 

Some of these antipyrine cocrystals among many other cocrystals were published in 

Pfeifer’s book Organische Molekulver-bindungen (Organic Molecular Compounds) in 

1922.3,4  Around that time Kofler began publishing extensively on forming cocrystals 

through thermal microscopy techniques.3 Then, in the 1940’s McIntosh et al described a 

sulfathiazole and 3,6-diaminacridine complex which was used as an antibacterial and 

theophylline complexes with glycine or phenobarbital were described by Higgins and 

Krantz respectively.5-8  Extensive reviews on these cocrystals and many others have been 

published in the last few years by Zaworotko et al9, Schultheiss and Newman10, 

Meanwell7 and Stahly.3 

Terminology used to describe cocrystals has been diverse including phrases such 

as “molecular complexes”, “addition compounds” or “solid-state complexes” to name a 

few.9  The definition of cocrystals given in Chapter 1 is one of many proposed in the 

literature which requires the components of the crystal to be solids at ambient 

temperatures.  Other definitions are more encompassing such as the one proposed by 

Stahly “unique crystalline solids containing multiple components” where a component is 

described as “an atom, ionic compound or molecule”.3,11  This definition would also 
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incorporate hydrates, clathrates and solvates under the same umbrella.  As noted by 

Stahly, the term used to define a solid selected for development of an API is of little 

concern as long as the components are pharmaceutically acceptable from a safety 

standpoint,11 however the classification may prove to be valuable to protect the 

intellectual property of the API forms and simply removing the ambiguity that exists 

today. 

Utility of Cocrystals 

The recent popularity of cocrystals in the literature is centered on pharmaceutical 

cocrystals, but there are many other areas where cocrystals (in the broader sense) have 

been identified which were covered in detail in the 2009 perspective by Staley3 including 

the adenine:thymine and guanine:cytosine base pairs in DNA, nucleotides and 

aminocarboxylic acids cocrystallized in sun screens, hair dyes containing polyhydric 

phenols and aromatic diamines and urea: sugar cocrystals for finishing of fabric in the 

textile industry.  Purification with cocrystals was also described by Stahly3 where chiral 

or enantiomeric selectivity of the cocrystal was exploited.   

The spotlight in current years has been on pharmaceutical cocrystals and the 

ability to address many familiar tribulations encountered in drug development such as 

polymorph control, stability, crystallinity, dissolution rate, solubility and bioavailability.  

Two examples of polymorph control in the literature are cocrystals of the 

pharmaceuticals caffeine and piracetam.  Selective crystallization of two polymorphs of a 

caffeine and glutaric acid cocrystal were conducted through grinding techniques.12  

Grinding of caffeine and glutaric acid in a grinding jar with four drops of a non-polar 

solvent or no solvent resulted primarily in cocrystal form I. When polar solvents were 
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added in place of the non-polar solvents cocrystal form II was the prevalent form.  In a 

similar study the polymorphic drug piracetam was cocrystallized with two polymorphic 

cocrystal formers, gentisic acid or p-hydroxybenzoic acid by slow evaporation from 

acetonitrile.13  These cocrystals were then produced via solvent drop grinding with 23 

different solvents or by slurry in water.  Neither piracetam cocrystal exhibited 

polymorphism in these studies.   

Theophylline and caffeine are two structurally similar pharmaceutical compounds 

which are susceptible to conversion between anhydrate and hydrate as a function of 

relative humidity (RH).  Investigations were conducted by Trask, Motherwell and Jones 

to form cocrystals of these compounds with the intent of stabilizing the drugs to humidity 

changes.14,15  In both cases multiple anhydrous cocrystals were formed and one (oxalic 

acid cocrystal in both cases) was found to be stable from 0-98% RH throughout the time 

frame tested of 7 weeks. 

Co-crystalization of an API with a cocrystal former has been demonstrated to be a 

successful method for altering the dissolution rate of an API as covered in recent 

reviews.7,9,10  Improvements to the dissolution of the API of interest were found for the 

drugs indomethacin, fluoxetine and itraconazole.  The indomethacin cocrystal with 

saccharin was found to dissolve instantaneously in 60 or 200 mM phosphate buffer at pH 

7.4 reaching solution concentrations of ~3.0-3.7 mg/mL as compared to the γ-form of 

indomethacin which required 250 min to reach a lower maximum solution concentration 

of 0.72 – 1.3 mg/mL in the two buffers respectively.16  Fluoxetine hydrochloride 

cocrystallized with benzoic acid, succinic acid or fumaric acid presented variable 

behavior in intrinsic dissolution studies where two of the cocrystals dissolved more 
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slowly than the API alone while the third cocrystal (succinic acid) displayed a faster 

dissolution rate than the API in water.17  Itraconazole, an insoluble antifungal drug, is 

marketed as in the amorphous form to attain oral bioavailability.  Three cocrystals of 

itraconazole were compared to crystalline and amorphous forms of the free API in a 

dissolution study in 0.1N HCl.18  All three cocrystals were superior to the crystalline 

itraconazole and the malic acid cocrystal was found to behave similarly to the marketed 

form. 

Few examples exist in the literature where dissolution of the cocrystal is 

correlated with exposure.  Theophylline tablets from different manufacturers were 

suspected to perform differently in the clinic partially due to complexation of the 

theophylline with phenobarbital during tablet processing.19    Dissolution studies of 

theophylline and the theophylline-phenobarbital complex were conducted in water, 

0.02% polysorbate 80 and simulated gastric fluid.  In all media the complex slowed the 

dissolution of theophylline.  This correlated well to the pharmacokinetics in humans 

where seven of nine subjects produced high serum levels of theophylline quicker when 

dosed with theophylline alone than when dosed with the complex.  One subject was also 

dosed with a physical mixture of theophylline and phenobarbital which performed 

similarly to theophylline alone indicating that any pharmacodynamic properties of 

phenobarbital were not responsible for the decrease.19  A sodium channel blocker with 

low solubility when co-crystallized with glutaric acid was shown to have an intrinsic 

dissolution rate in water 18 times that of the free base. When dosed as neat solids in a 

gelatin capsule at 5 and 50 mg/kg to dogs a 3 fold improvement of AUC was achieved at 

both dose levels with the cocrystal.20  The poorly soluble anti-epileptic agent 



 11

carbamazepine co-crystallized with  saccharin was shown to be a feasible option, in terms 

of exposure in dogs, to the marketed Tegretol® tablets which contain an anhydrous 

polymorph of carbamazepine.21  The cocrystal, dosed as a blend with lactose in an HPMC 

capsule at 200 mg (carbamazepine equivalents), maintained consistently higher exposure 

levels than the Tegretol® tablet however the pharmacokinetic parameters were not found 

to be statistically different.  In a separate study L-883555, a phosphodiesterase IV 

inhibitor with poor bioavailability, was cocrystallized with L-tartaric acid.  The cocrystal 

improved the aqueous solubility of the free base from 7.5 to 23.7 μg/mL which 

corresponded to improved plasma concentrations from a 3 mg/kg dose in rhesus monkey 

achieving an AUC (μg/mL*h) 0.24 for the free base and 5.5 for the cocrystal.22  In a 

recent investigation into the dissolution and bioavailability of lamotrigine crystal forms a 

10 mg/kg dose in rats formulated as a suspension in 5% polyethylene glycol 400 and 95% 

methyl cellulose aqueous solution resulted in lower exposures for two lamotrigine 

nicotinamide cocrystals (anhydrous and monohydrate forms) compared to the pure drug 

(AUC0-24h 37, 26 and 60 μg/mL respectively).23  The drug concentrations over time in 

water or at pH 1 do not appear to correlate with the AUC.  In water the anhydrous 

cocrystal achieves a higher solubility than the pure drug while at pH 1 both cocrystals 

maintain a higher concentration than the pure drug. 

 

Conclusions 

 Regardless of terminology or definition, cocrystals have been investigated since 

the 1840’s for various functionalities across industries.  The interest has been amplified 

over recent years in the pharmaceutical industry as more literature is produced 
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exemplifying the ability to overcome physical property liabilities in an API.  Cocrystal 

screening will likely become (if it is not already) as inherent a pharmaceutical technique 

as salt screening in the search for developable forms of a novel API. 
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Chapter 3. Preparation and Characterization of AMG 517 Cocrystals 
 
Introduction 

Cocrystals have been produced through a variety of different methods including 

grinding of dry components alone or with a drop of solvent in a mortar and pestle or 

ballmill, crystallization from the melt of the components, moisture generated cocrystals 

as well as the more traditional crystallization techniques such as solution or slurry 

crystallizations.1-7  All of these techniques have their benefits and drawbacks such as 

small material requirements for cocrystal screening, scalability of the process for 

manufacture of drug substance, polymorph control and “green” chemistry reducing 

solvent usage.1,6  Although there are a variety of cocrystallization methods available to 

the pharmaceutical scientist all processes may not be successful at producing a particular 

cocrystal of interest, therefore it is useful when screening for new crystal forms to utilize 

multiple techniques. 

Characterization of cocrystals has been similar to that of a salt or solvate of an 

active pharmaceutical ingredient (API).  Initially, the crystal form was determined to be 

distinctive from that of the starting crystal form (and not simply a mixture of the two 

starting materials) by a variety of available methods such as X-ray powder diffraction 

(XRPD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) or 

Raman spectroscopy.  Once the uniqueness of the crystal form was confirmed analytical 

methods such as nuclear magnetic resonance (NMR) or high pressure liquid 

chromatography coupled with ultraviolet (HPLC-UV) or mass spectroscopy (LC-MS) 

should be utilized to determine that the API and cocrystal former are both present in the 

new material and that neither has degraded into a new molecule.  Distinguishing a 



 15

complex as a salt or a cocrystal has been defined by calculating differences in pKa values 

(ΔpKa) between the acid and base in the complex.  In the case of a basic drug the pKa of 

the drug minus the pKa of the acid cocrystal former resulting in a ΔpKa < 0 is said to 

result in a cocrystal and ΔpKa > 3 in a salt.8  The area between ΔpKa of 0 and 3 however 

requires a secondary technique to determine if proton transfer has occurred.  Single 

crystal structure determination and solid state NMR are two techniques that have been 

used in this capacity.9,10 

Single crystal structure analysis has been applied broadly within the 

pharmaceutical industry.  Crystal structures of APIs are frequently determined in 

pharmaceutical research to confirm the molecular structure of a single molecule.  

Complexes, such as hydrates, solvates and salts or combinations thereof may also be 

confirmed by solving the single crystal structure.  Determining the location of the guest 

molecule within the crystal lattice of a complex, i.e. in a channel or occupying a specific 

site within the crystal, and how they bind to the API can elucidate issues with physical 

and chemical stability and possibly provide insight on how to improve the form.  When it 

comes to cocrystals, crystal engineering has utilized crystal structure analysis to identify 

common hydrogen bonding synthons that can be exploited to design new crystal forms of 

an API.11-13  Single crystal structures have also been used to distinguishing between a salt 

and cocrystal.  When carboxylic acids are involved, the distances of the C-O bonds in the 

carboxylic acid in the single crystal structure have been measured.  A neutral carboxyl 

group will have two distinctively different distances (ΔDC-O >0.08) where the carboxyl 

anion will have two similar distances (ΔDC-O < 0.03).8  
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Cocrystals of AMG 517 were prepared here through tradition solution or slurry 

crystallizations to produce the bulk powders.  These powders were than characterized by 

XRPD, TGA, DSC, HPLC-UV, laser diffraction, microscopy and 1H NMR to confirm 

their identity, purity, potency, crystallinity and particle size.  Single crystals were also 

grown from solution crystallization methods including vapor diffusion, evaporation and 

slow cooling procedures.  Crystal structures were determined and analyzed to confirm 

that the complexes were cocrystals rather than salts and to explore the hydrogen bonding 

heterosynthons.  The structures of AMG 517 and the cocrystal formers selected for 

investigation are shown in figure 3.1 along with a letter designation which will be used to 

identify each compound, after its first mention here, for clarity throughout this 

manuscript.   

F F
F

N

N O

N
NH

O
S

OH O

O

OOH
OH

OH

OH O

O

OH
OH

OH

O

O

OHO

OH O

OH

OH O

O

OH

OH

OH O OH O

O

OH

OH

OH O OH O

OH

OH O

OH O

OH

OH O OH OONH2 ONH2

SRA

ADA

HBA GUA GYA HXA HCA

LCA MEA MIA

BZA BZD CNA

FBA

MOA SCA

CND

 
Figure 3.1. Chemical structures of FBA) AMG 517 free base, ADA) adipic acid, BZA) 
benzoic acid, BZD) benzamide, CNA) trans-cinnamic acid, CND) cinnamamide, HBA) 
2,5-dihydroxybenzoic, GUA) glutaric acid, GYA) glycolic acid, HXA) trans-2-hexanoic 
acid, HCA) 2-hydroxycaproic acid, LCA) L(+)-lactic acid, MEA) maleic acid, MIA) L-
malic acid, MOA) malonic acid, SRA) sorbic acid and SCA) succinic acid. 
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Experimental 
 

X-Ray Powder Diffractometry 

X-ray diffraction (XRPD) patterns were obtained on a PANalytical X’Pert PRO 

X-ray diffraction system (Almelo, the Netherlands).  Samples were scanned in 

continuous mode from 5-45 º (2θ) with step size of 0.0334 º on a spinning stage at 45 kV 

and 40 mA with CuKα radiation (1.54 Å).  The incident beam path was equipped with a 

0.02 rad soller slit, 15mm mask, 4 º fixed anti-scatter slit and a programmable divergence 

slit.  The diffracted beam was equipped with a 0.02 rad soller slit, programmable anti-

scatter slit and a 0.02 mm nickel filter.  Detection was accomplished with an RTMS 

detector (X’Celerator).  Data analysis was conducted with PANalytical X’Pert Data 

Viewer software. 

Thermal Analysis 

Differential scanning calorimetry was performed on a TA Instruments Q100 

calorimeter (New Castle, DE) at 10 ºC/min from 30 to 300 ºC in an open, aluminum pan.  

Thermal gravimetric analysis was performed on a TA Instruments Q500 analyzer at 10 

ºC/min from 30 to 300 ºC in a platinum pan.  Data analysis was accomplished with TA 

Instruments Universal Analysis 2000 software v4.4A. 

Proton Nuclear Magnetic Resonance 

1H Nuclear Magnetic Resonance analysis was performed on a Bruker 400 MHz 

NMR (Germany) in DMSO-d6 at 25 ºC.  Data analysis conducted with 

ACD/SpecManager software v12.01 (Toronto, Canada). 

High Pressure Liquid Chromatography 
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HPLC-UV was performed on an Agilent 1100 series HPLC (Palo Alto, CA) 

equipped with a binary pump (G1312A), DAD detector (G1315B), auto sampler 

(G1329A) and a 4.5 x 150 mm, 8 nm pore size, 5μm particle size, Eclipse XDB C18 

column.  Elution was achieved by a gradient method from 10 to 95% of solvent B (98% 

acetonitrile, 2% water, 0.1% triflouroacetic acid) in solvent A (98% water, 2% 

acetonitrile, 0.1% triflouracetic acid) at 1 mL/min for 8.0 min, isocratic 8.0 to 10.0 min 

then equilibrate at 10% solvent B 10.5 – 15.0 min.  AMG 517 standards were prepared in 

methanol at 0.05 mg/mL and injected at 0.5, 1, 5, 10 and 15 μL (R2 1.000).  Detection 

was accomplished at 280 nm.  Data analysis was conducted with Dionex Corporation 

Chromeleon Client v6.8 (Sunnyvale, CA) software.   

Particle Size Analysis 

Particle size of dry powders was determined by laser diffraction on the Sympatec 

HELOS/BF with a RODOS/M disperser equipped with the ASPIROS powder feeder 

(Clausthal-Zellerfeld).    The powder (10-50mg) was delivered at 50 mm/s with a primary 

pressure of 1 bar and analyzed for 2 s on the R1 or R3 lens in triplicate. 

Microscopy 

Polarized light microscopy photomicrographs were acquired on a Nikon Eclipse 

E600 POL microscope (Melville, NY) at 200x magnification with a Nikon Digital Sight 

DS-5M camera and Media Cybernetics Image Pro Plus v5.1 (Bethesda, MD) software. 

Bulk Powder: Crystallization Methods 

Drug substances, AMG 517 free base form A (FBA) and the AMG 517 sorbic 

acid cocrsytal (SRA) were synthesized by Amgen, Inc.14,15  The AMG 517 adipic acid 

(ADA), AMG 517 benzoic acid (BZA), AMG 517 benzamide (BZD), AMG 517 trans-
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cinnamic acid (CNA), AMG 517 cinnamamide (CND), AMG 517 2,5-dihydroxybenzoic 

acid (HBA), AMG 517 glutaric acid (GUA), AMG 517 glycolic acid (GYA), AMG 517 

trans-2-hexanoic acid (HXA), AMG 517 2-hydroxycaproic acid (HCA), AMG 517 L(+)-

lactic acid (LCA), AMG 517 maleic acid (MEA), AMG 517 L-malic acid (MIA), AMG 

517 malonic acid (MOA) and AMG 517 succinic acid (SCA) cocrystals were prepared 

by slurry or solution crystallization.  FBA (1.0 g - 3.2 g) and the cocrystal former (0.2 g - 

2.0 g) were weighed into a 50 mL glass vial in a 1:1 or 2:1 molar ratio (FBA to former).  

Ethyl acetate (15-46 mL) was then added and stirred at 50 – 55 ºC for 1hr.  Solutions 

were allowed to cool to room temperature.  Slurries or precipitate from cooled solutions 

were isolated by filtration through a 0.22μm nylon membrane filter and air dried for 24hr.   

Single Crystal: Crystallization Methods 

 ADA: FBA was dissolved at 10.0 mg/mL in ethyl acetate at room temperature.  A 

10.0 mg/mL suspension of adipic acid in ethyl acetate was prepared at room temperature.   

The FBA solution and the adipic acid suspension were filtered through 0.22 μm nylon 

syringe filters into separate clean glass vials.  The two filtrates were mixed 1:1 into a new 

clean glass vial, capped and left at room temperature. 

  BZA: FBA was dissolved at 10.0 mg/mL in ethyl acetate at room temperature.  

Benzoic acid was dissolved at 8.6 mg/mL in ethyl acetate at room temperature.   The 

FBA and benzoic acid solutions were filtered through 0.22 μm nylon syringe filters into 

separate clean glass vials.  The two filtrates were mixed 1:1 into a plastic eppendorf tube, 

capped stored at 50 ºC. 

 CND: A solution of cocrystal CND (21.8 mg in 2 mL) in ethyl acetate was 

prepared.  The solution was filtered through a 0.22 μm nylon syringe filter into a clean 
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glass vial.  An aliquot (0.5 mL) of this solution was added to a 1 mL glass tube which 

was placed inside an 8.0 mL glass vial containing 1mL hexane.  The 8.0 mL vial was 

capped and left at room temperature. 

GUA: A solution of cocrystal GUA (22.6 mg in 2 mL) in ethyl acetate was 

prepared.  The solution was filtered through a 0.22 μm nylon syringe filter into a clean 

glass vial.  An aliquot (0.5 mL) of this solution was added to a 1 mL glass tube which 

was placed inside an 8 mL glass vial containing 1mL hexane.  The 8 mL vial was capped 

and left at room temperature. 

GYA:  A solution of cocrystal GYA (6.2 mg in 1.0 mL) was prepared in butyl 

acetate saturated with polyvinylpyrrolidone (PVP) K25 in a glass vial.  The vial was 

capped and stored at 50 ºC for 3 days.  The sample was then slow cooled at 2 ºC/hr to 

room temperature, then left at room temperature. 

HCA: FBA was dissolved at 10.0 mg/mL in ethyl acetate at room temperature.  2-

Hydroxycaproic acid was dissolved at 9.0 mg/mL in ethyl acetate at room temperature.   

The FBA and 2-hydroxycaproic acid solutions were filtered through 0.22 μm nylon 

syringe filters into separate clean glass vials.  The two filtrates were mixed 1:1 into a 

clean glass vial, capped and stored at 50 ºC for 38 days at which time 1 drop of benzene 

was added, a pin hole was poked through the cap and the sample was left at room 

temperature.   

LCA: FBA was dissolved at 10.0 mg/mL in ethyl acetate at room temperature.  

L(+)-Lactic acid was dissolved at 6.2 mg/mL in ethyl acetate at room temperature.   The 

FBA and L(+)-lactic acid solutions were filtered through 0.22 μm nylon syringe filters 
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into separate clean glass vials.  The two filtrates were mixed 1:1 into a clean glass vial, 

capped and stored at room temperature.  

MEA:  A solution of cocrystal MEA (4.6 mg in 1.0 mL) was prepared in ethyl 

acetate saturated with PVP K25 in a glass vial.  The vial was capped and stored at 50 ºC 

for 3 days.  The sample was then slow cooled at 2 ºC/hr to room temperature, then left at 

room temperature. 

Single Crystal: X-Ray Structure Determination Method 

Single crystal structures for FBA, SRA, CNA and HXA were reported 

previously.15,16  Single crystal structures for all other co-crystals with suitable single 

crystals were determined by Dr. Richard J. Staples of Michigan State University and 

Crystallographic Resources Inc. (Dewitt, MI).  Data were collected using a Bruker CCD 

(charge coupled device) based diffractometer equipped with an Oxford Cryostream low-

temperature apparatus operating at 173 K. Data were measured using omega and phi 

scans of 0.5° per frame for 30 s. The total number of images was based on results from 

the program COSMO1 where redundancy was expected to be 4.0 and completeness to 

100% out to 0.83 Å. Cell parameters were retrieved using APEX II software and refined 

using SAINT on all observed reflections. Data reduction was performed using the SAINT 

software which corrects for Lp. Scaling and absorption corrections were applied using 

SADABS multi-scan technique, supplied by George Sheldrick. The structures are solved 

by the direct method using the SHELXS-97 program and refined by least squares method 

on F2, SHELXL- 97, which are incorporated in SHELXTL-PC V 6.1017. 
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Results and Discussion 

 

Preparation and Solid State Characterization 

Fifteen cocrystals were successfully prepared through solution or slurry 

crystallization techniques.  A total of 29 crystallizations of approximately 1-2.5 g scale 

were conducted to produce 1-2 g per cocrystal (table 3.1).  Crystallization conditions 

were not optimized and therefore low yields were encountered in some cases requiring 2-

3 batches to be combined to reach the target amount.  The desired powders were then 

hand ground in a mortar and pestle to reduce particle size and blend multiple 

crystallizations into one homogeneous batch.  Particle size reduction was conducted in 

order to harmonize the mean particle size of the cocrystals with the FBA and SRA 

material available in house which had already been micronized.  Mortar and pestle hand 

grinding technique was chosen over other available methods such as ball milling and jet 

milling because it produces less mechanical stress.  Mechanical stress can introduce 

defects to the crystal faces, produce amorphous content or other changes to the solid form 

which may influence the dissolution of the powder18,19.   
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Table 3.1. Summary of crystallization conditions to produce each cocrystal 
 

Cocrystal 
AMG 517  

(mg) 
Former 
(mg) 

EtOAc 
(mL) Sol/Slurry Evaporation 

Recovery 
(mg) 

ADA 1024 350 15 Slurry NO 1004 
ADA 1293 224 18 Slurry NO 1074 
BZD 2579 730 26 Slurry NO 1594 
BZA 1003 283 40 Slurry NO 926 
BZA 1424 403 46 Slurry NO 1172 
CND 2548 860 26 Slurry NO 2152 
CNA 1035 362 40 Slurry NO 1012 
CNA 1251 441 40 Slurry NO 1299 
HBA 1021 360 40 Slurry NO 871 
HBA 1452 512 40 Slurry NO 613 
HBA 1040 376 20 Slurry NO ~940 
GUA 1004 300 20 Solution YES 104 
GUA 2074 621 35 Solution NO 578 
GUA 1766 537 22 Solution NO ~780 
GYA 2126 775 21 Solution NO ~1720 
HXA 1253 346 20 Solution NO <1g 
HXA 2085 556 26 Solution NO 986 
HCA 3134 1988 43 Solution YES >2g 
LCA 2232 977 21 Solution NO 1590 
LCA 1393 640 16 Solution NO 739 
MEA 1036 327 15 Slurry NO 712 
MEA 1816 276 16 Slurry NO 791 
MEA 1044 174 16 Slurry NO ~681 
MIA 1037 282 15 Slurry NO 930 
MIA 1661 230 18 Slurry NO 1006 
MOA 1019 247 15 Slurry NO 816 
MOA 1675 397 16 Slurry NO 1341 
SCA 1045 294 15 Slurry NO 754 
SCA 2485 338 32 Slurry NO 1361 

 

Particle sizes of all powders measured by laser diffraction are listed in table 3.2.  

Mean particle sizes range from 1.73-6.24 μm (d50).  The full particle size distributions are 

located in the appendix.  All powders were analyzed by X-ray powder diffraction 

(XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), 

proton nuclear magnetic resonance (1H NMR), near-infrared spectroscopy (NIR) and 

high pressure liquid chromatography (HPLC).  All XRPD patterns (figure 3.2) and 

DSC/TGA thermograms indicate crystalline material matching the powder patterns and 

thermograms of historical data indicating that the desired form was produced.  Melting 
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onsets determined by DSC and weight loss % on TGA are listed in table 3.2 while 

complete spectral data and thermograms are compiled in the appendix.   
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Figure 3.2. Original X-ray powder diffraction patterns for FBA and the sixteen 
cocrystals. 
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Table 3.2.  Summary of characterization of FBA and sixteen cocrystals. 
 

molar 
ratioa 

melting 
onsetb 

weight 
lossc 

target 
potencyd particle size (μm)e 

compound 
base:acid (ºC) % % d10  d50  d90 

FBA NA 228 0.7 NA 0.44 1.73 4.58 

ADA 2:1 205 14.9 102.0% 0.64 2.46 7.45 

BZA 1:1 174 21.9 101.9% 0.53 1.85 6.89 

BZD 1:1 177 22.3 101.8% 0.57 2.15 7.8 

CNA 1:1 214 25.8 102.2% 0.83 4.59 22.02 

CND 1:1 184 26.0 102.2% 0.75 2.92 8.79 

HBA 2:1 226 19.0 100.0% 0.89 4.35 47.33 

GUA 1:1 149 23.8 100.0% 0.91 4.06 22.19 

GYA 1:1 137 14.1 101.5% 0.62 3.52 16.09 

HXA 1:1 128 21.0 104.0% 0.87 4.00 20.80 

HCA 1:1 133 20.5 104.2% 1.02 6.24 33.28 

LCA 1:1 118 18.1 102.3% 0.73 3.31 17.89 

MEA 2:1 192 12.3 104.0% 0.59 3.05 12.46 

MIA 2:1 218 15.8 100.3% 0.60 2.49 7.15 

MOA 1:1 186 20.0 102.4% 0.53 2.04 5.44 

SRA 1:1 159 20.8 101.3% 0.53 1.91 5.00 

SCA 2:1 206 13.3 101.2% 0.89 4.45 14.96 

(a) molar ratio of base to acid determined by 1H NMR (b) melting onset temperature 
determined by DSC (c) weight loss % due to heating determined by TGA (d) target 
potency determined by HPLC (e) particle size of original powder determined by laser 
diffraction (f) dehydration onset temperature. NA = not applicable 

 

1H NMR and HPLC were used to confirm the purity and content of the materials.  

Molar ratios of AMG 517 to cocrystal former determined by integration of the 1H NMR 

(table 3.2) were used to calculate the AMG 517 content (potency) within each cocrystal.  

Experimental potencies determined by HPLC ranged from 100 – 104% of the calculated 

value (table 3.2).  Purity of each compound, also quantified by HPLC, was greater than 

98%. 
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Single Crystal Structures 

Crystal structures for FBA and cocrystals CNA, HXA and SRA have been 

previously reported.15,16  Crystallographic data for these and eight new crystal structures 

solved for single crystals produced during this work, ADA, BZA, CND, GUA, GYA, 

HCA, LCA and MEA are reported in table 3.3.   

 
Table 3.3. Crystallographic data of FBA and eleven cocrystals 
 

  FBA15 ADA BZA CNA16 
formula C20H13F3N4O2S C46H36F6N8O8S2 C27H19F3N4O4S C29H21F3N4O4S 
stoichiometry 1 2:1 1:1 1:1 
formula weight 430.40 1006.95 552.52 578.56 
crystal system triclinic triclinic triclinic triclinic 
space group Pī Pī Pī Pī 
a (Å) 12.861(2) 5.113(5) 4.784(3) 9.536(17) 
b (Å) 14.956(2) 15.131(5) 10.819(6) 11.326(2) 
c (Å) 11.612(3) 15.413(5) 24.403(14) 13.502(2) 
α (deg) 100.76(1) 108.414(5) 77.435(4) 65.312(3) 
β (deg) 106.00(1) 94.125(5) 88.542(4) 88.844(3) 
γ (deg) 111.387(8) 96.846(5) 82.950(4) 87.819(3) 
volume (Å3) 1893.5(5) 1115.7(12) 1223.5(12) 1324.1(4) 
calc density (g cm-3) 1.51 1.50 1.50 1.45 
Z 4 1 2 2 
T (K) 293(2) 173(2) 173(2) 193(2) 
R1 0.0540 0.1998 0.1307 0.0773 
wR2 0.0620 0.3390 0.2332 0.1170 
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  CND GUA GYA HXA16 

formula C29H22F3N5O3S C25H21F3N4O6S C22H17F3N4O5S C26H23F3N4O4S 
stoichiometry 1:1 1:1 1:1 1:1 
formula weight 577.58 562.52 506.46 544.54 
crystal system monoclinic triclinic monoclinic monoclinic 

space group C2/c Pī P 21 C2/c 
a (Å) 44.876(5) 4.629(10) 10.050(2) 62.498(18) 
b (Å) 5.102(10) 11.297(3) 5.688(2) 8.116(2) 
c (Å) 26.401(3) 24.152(7) 19.356(4) 19.870(6) 
α (deg) 90.000 89.900(2) 90.000 90.000 
β (deg) 120.012(10) 86.295(10) 97.058(2) 94.141(9) 
γ (deg) 90.000 81.042(2) 90.000 90.000 
volume (Å3) 5234.0(13) 1245.1(6) 1098.2(5) 10052(5) 
calc density (g cm-3) 1.47 1.50 1.53 1.44 
Z 8 2 2 16 
T (K) 173(2) 173(2) 173(2) 193(2) 
R1 0.0717 0.0853 0.0419 0.0903 
wR2 0.1589 0.1649 0.0954 0.0792 
  HCA LCA MEA SRA15 
formula C26H25F3N4O5S C23H19F3N4O5S C44H29F6N8O8S2 C26H21F3N4O4S 
stoichiometry 1:1 1:1 2:1 1:1 
formula weight 562.56 520.48 975.87 542.53 
crystal system triclinic triclinic triclinic triclinic 
space group Pī Pī Pī Pī 
a (Å) 4.729(11) 4.26530(10) 9.396(6) 4.720 
b (Å) 9.139(19) 10.5529(4) 13.535(8) 8.812 
c (Å) 30.731(6) 26.0208(7) 17.036(10) 29.640 
α (deg) 93.847(14) 79.685(3) 104.757(8) 89.694 
β (deg) 94.068(15) 86.626(3) 91.076(7) 85.565 
γ (deg) 98.881(14) 85.887(3) 90.354(8) 81.898 
volume (Å3) 1304.7(5) 1148.1(6) 2094(2) 1216.7 
calc density (g cm-3) 1.43 1.51 1.55 1.48 
Z 2 2 2 2 
T (K) 173(2) 173(2) 173(2) 113(2) 
R1 0.1900 0.0685 0.2087 0.0410 
wR2 0.3340 0.1544 0.2929 0.0580 

ADA This crystal was small, twined and had poor diffraction quality but confirms 
identity of the crystal17; GUA There is a 50% disorder in the acid, two orientations for 
the chain of carbon atoms17; HCA This was a very small crystal and the data is poor but 
it confirms the identity of the crystal17. Suitable single crystals of the polymorph 
representative of the powder of BZD, HBA, MIA, MOA and SCA were not obtained. 
 

Crystal structures for cocrystals BZD, HBA, MIA, MOA and SCA remain 

unavailable at this time.  Calculated powder patterns from the single crystal structures 

were confirmed to match the experimental X-ray powder pattern of the bulk powders 

used herein confirming that the single crystals are representative of the bulk powder.  The 

calculated pKa for AMG 517 (ACD/pKa DB v12.0, Advanced Chemistry Development, 
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Inc) is -0.52 while the lowest pKa of each carboxylic acids ranges from 2.39 - 4.80.  This 

results in a minimum ΔpKa of -2.91 indicating that all of the complexes are indeed 

cocrystals and not salts.  Analysis of the C-O distances in the carboxylic acids also 

confirms that the acids remain neutral with ΔDC-O values ranging from 0.09 to 0.14 

indicating that proton transfer has not occurred.   

All of the AMG 517 cocrystals with carboxylic acids reported to date hydrogen 

bond through heterosynthon 1 as illustrated by BZA in figure 3.3 where the amide proton 

on AMG 517 hydrogen bonds to the carbonyl group on the acid and the hydroxyl group 

on the acid hydrogen bonds to the benzothiozole nitrogen on AMG 517.  Of the seven 

new AMG 517 carboxylic acid cocrystal single crystal structures disclosed here five 

(ADA, BZA, GUA, HCA and LCA) also hydrogen bond through heterosynthon 1, 

though GUA also contains the common COOH--COOH homosynthon while HCA and 

LCA form chains through a hydrogen bond with the additional hydroxyl group on the 

acid and the nitrogen on the AMG 517 pyrimidine ring (figure 3.4).  It is important to 

note that cocrystals which hydrogen bond solely through this widespread heterosynthon 1 

still lead to unpredictable crystal packing (figure 3.5). 

The first reported AMG 517 carboxylic acid cocrystals which do not bind through 

heterosynthon 1 are cocrystals GYA and MEA.  The NH--O hydrogen bond of 

heterosynthon 1 for both GYA and MEA is maintained, but in MEA an intramolecular 

OH--O hydrogen bond within maleic acid and in GYA an intermolecular OH--O 

hydrogen bond between glycolic acid molecules occupies the hydroxyl group of the 

COOH.  Cocrystal GYA forms heterosynthon 2 through an OH--N hydrogen bond 

between the additional hydroxyl group on the acid and the benzothiazole nitrogen on 
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AMG 517 as shown in figure 3.4.   Based on a search of Cambridge Structural Database 

(version 5.30 with updates through Sept 2009) heterosynthon 2 is novel for multi-

component organic complexes and could be exploited in future cocrystal screening 

efforts with molecules containing similar functionalities.   

 
FBA      ADA 

       
BZA      CNA 

 
CND      GUA 

 
Figure 3.3.  Hydrogen bonding (aqua) in FBA, ADA, BZA, CNA, CND and GUA (view 
chosen to highlight hydrogen bonds; grey = carbon, blue = nitrogen, red = oxygen, 
yellow = sulfur, green = fluorine, white = hydrogen). 
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GYA      HXA 

 
HCA      LCA 

 
MEA      SRA 

 
Figure 3.4.  Hydrogen bonding (aqua) in GYA, HXA, HCA, LCA, MEA and SRA 
(view chosen to highlight hydrogen bonds; grey = carbon, blue = nitrogen, red = oxygen, 
yellow = sulfur, green = fluorine, white = hydrogen). 
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BZA (a-axis)    CNA (c-axis) 

 

 
HXA (b-axis) 

 
SRA (a-axis) 

 
 
Figure 3.5. Crystal packing diagrams of four AMG 517 cocrystals which hydrogen bond 
solely through heterosynthon 1. 
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The only amide cocrystal crystal structure CND consists of heterosynthon 3 as 

shown in figure 3.3 which consists of a hydrogen bond from the amide proton on the API 

to the carbonyl group on cinnamamide and from the amide proton on cinnamamide to the 

benzothiazole nitrogen on the API.  The additional amide proton forms a hydrogen bond 

with a neighboring cinnamamide carbonyl group forming a chain similar to that of GYA. 

 

Conclusions 

The fifteen cocrystals prepared from solution or slurry crystallization were 

determined to be crystalline, pure complexes of AMG 517 and cocrystal former in either 

a 1:1 or 2:1 molar ratio.  The X-ray powder diffraction patterns and thermal properties 

were determined to be unique to those of FBA and the mean particle sizes were all less 

then 10 μm. 

Even though the ΔpKa values were significant enough to argue that all of the 

complexes formed are cocrystals and not salts, analysis of the C-O distances in the 

carboxylic acids verifying that they are in the neutral form was still valuable information 

obtained from the single crystals structures.  The most pertinent finding from the single 

crystal structures was that the presence of both API and cocrystal former in the complex 

is confirmed as well as the molar ratio.  Also, heterosynthon 1 was seemingly robust 

based on its presence in the majority of cocrystals and could be valuable in future 

cocrystal design. 
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Chapter 4. Dissolution and Pharmacokinetics of AMG 517 Cocrystals 

 

Introduction 

AMG 517 was a poorly soluble small molecule drug afflicted with dissolution and 

solubility limited absorption in preclinical pharmacokinetic investigations.1  The 

traditional method to improve dissolution and solubility of an API, such as salt formation, 

proved difficult due to the low basic pKa of the molecule leading to rapid dissociation of 

salts in an aqueous environment.   Cocrystallization of AMG 517 with sorbic acid has 

been proven to improve the initial dissolution rate of AMG 517 which resulted in an 

improvement in pharmacokinetics in the rat over FBA when dosed as suspensions in 10% 

Pluronic F108 in OraPlus®.1  Further study with AMG 517 from this lab produced a 

series of AMG 517 cocrystals, most of which have been shown to improve the 

dissolution rate of AMG 517 in fasted simulated intestinal fluid (FaSIF).2,3   

Deciding which form(s) of an API to develop as the final drug substance for the 

clinic will undoubtedly include pharmacokinetic studies to ensure proper coverage of the 

drug target in vivo.4-7  Ethically the number of in vivo studies conducted has been 

minimized and therefore filters prior to pharmacokinetic investigations have been utilized 

to predict and remove from consideration forms that were likely to perform poorly in vivo 

or that were not developable due to unrelated reasons such as processability or stability.  

Dissolution rates and solubility of the API form in a biologically relevant system have 

been relied upon heavily to make this prediction due to its proven correlation for salts, 

polymorphs and formulations of a drug substance.  Cocrystals, having resurged only 

recently in the literature, do not have the same comprehensive research correlating 
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dissolution to pharmacokinetics.  Therefore the focus of this research is to analyze the 

dissolution rate and behavior of sixteen AMG 517 cocrystals and associate that to the 

exposure seen in rat pharmacokinetic studies.  Both powder and intrinsic dissolution 

methods are investigated and contrasted to one another and the fate of the remaining 

solids in each study are determined. 

 

Experimental 

 

X-Ray Powder Diffractometry 

X-ray diffraction (XRPD) patterns were obtained on a PANalytical X’Pert PRO 

X-ray diffraction system (Almelo, the Netherlands).  Samples were scanned in 

continuous mode from 5-45 º (2θ) with step size of 0.0334 º on a spinning stage at 45 kV 

and 40 mA with CuKα radiation (1.54 Å).  The incident beam path was equipped with a 

0.02 rad soller slit, 15mm mask, 4 º fixed anti-scatter slit and a programmable divergence 

slit.  The diffracted beam was equipped with a 0.02 rad soller slit, programmable anti-

scatter slit and a 0.02 mm nickel filter.  Detection was accomplished with an RTMS 

detector (X’Celerator).  Data analysis was conducted with PANalytical X’Pert Data 

Viewer software. 

Thermal Analysis 

Differential scanning calorimetry was performed on a TA Instruments Q100 

calorimeter (New Castle, DE) at 10 ºC/min from 30 to 300 ºC in an open, aluminum pan.  

Thermal gravimetric analysis was performed on a TA Instruments Q500 analyzer at 10 
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ºC/min from 30 to 300 ºC in a platinum pan.  Data analysis was accomplished with TA 

Instruments Universal Analysis 2000 software v4.4A. 

Near-Infrared Spectroscopy 

NIR was performed on a FOSS NIRSystems XDSTM near-infrared rapid content 

analyzer (Laurel, MD) and the data was analyzed with Vision 3.30 software.  Absorbance 

was measured from 400 – 2500 nm.  Powders were analyzed in 20 mL clear glass 

scintillation vials with 1-2 g of compound per vial. Compacts prepared for intrinsic 

dissolution were analyzed directly pre and post dissolution.  Compacts were allowed to 

dry at room conditions for 24 hr before analysis post dissolution. 

High Pressure Liquid Chromatography 

HPLC-UV was performed on an Agilent 1100 series HPLC (Palo Alto, CA) 

equipped with a binary pump (G1312A), DAD detector (G1315B), auto sampler 

(G1329A) and a 4.5 x 150 mm, 8 nm pore size, 5μm particle size, Eclipse XDB C18 

column.  Elution was achieved by a gradient method from 10 to 95% of solvent B (98% 

acetonitrile, 2% water, 0.1% triflouroacetic acid) in solvent A (98% water, 2% 

acetonitrile, 0.1% triflouracetic acid) at 1 mL/min for 8.0 min, isocratic 8.0 to 10.0 min 

then equilibrate at 10% solvent B 10.5 – 15.0 min.  AMG 517 standards for all studies 

except intrinsic dissolution were prepared in methanol at 0.05 mg/mL and injected at 0.5, 

1, 5, 10 and 15 μL (R2 1.000).  AMG 517 standards for intrinsic dissolution were 

prepared at 1.56 μg/mL in methanol and injected at 0.1, 0.5, 1, 5 and 10 μL (R2 1.000).  

Cocrystal former standards were prepared at 0.1 mg/mL in water.  Injections were made 

at 1, 5 and 10 μL (SRA R2 0.998), or 1, 5, 10, 15 and 20 μL (BZA, BZD and HBA R2 

1.000) or 1, 5, 10 and 15 μL (CNA and CND R2 0.987).  Detection was accomplished at 
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280 nm.  Data analysis was conducted with Dionex Corporation Chromeleon Client v6.8 

(Sunnyvale, CA) software.  Representative chromatograms are shown in figure 4.1.  

Standard curves bracketed all concentration ranges for unknowns.  
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Figure 4.1. Representative HPLC-UV chromatograms of high and low standards in 
methanol and FBA in FaSIF. 
 

Particle Size Analysis 

Particle size of the suspension formulations for PK studies and the suspensions in 

FaSIF from powder dissolution studies were determined by laser diffraction on the 

Sympatec HELOS/BF with a CUVETTE disperser (Clausthal-Zellerfeld).  The 

suspension was added drop-wise to the 6mL cuvette containing 5mL vehicle (1% PVP 

K25 in water or FaSIF) until a 10-45% optical concentration was achieved.  

Measurements were taken for 10 s using R1 or R3 lens in triplicate. 

Microscopy 

Polarized light microscopy photomicrographs were acquired on a Nikon Eclipse 

E600 POL microscope (Melville, NY) at 200x magnification with a Nikon Digital Sight 

DS-5M camera and Media Cybernetics Image Pro Plus v5.1 (Bethesda, MD) software. 
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Filter Binding Investigation 

 Loss of sample due to binding to surfaces has been a common issue with 

small molecules.  Filter binding has been of significant importance especially when 

sample concentrations are very low when minute losses become significant. Due to the 

expectedly low concentrations of AMG 517 in the dissolution and formulation samples 

and investigation into the appropriate filters was conducted.  Different filter materials, 

sizes and styles were compared (table 4.1). The recovery of AMG 517 in FaSIF was best 

when a PTFE membrane was used for filtration.  Complete recovery was achieved when 

the first few drops of FaSIF were left to waste before collecting the sample.  Nylon and 

cellulose acetate recoveries were low, while the steel frit likely allowed small particles to 

pass through the filter resulting in high recoveries.  Recovery of AMG 517 from the 1% 

PVP K25 in water formulations was very low for both nylon and PTFE filters therefore 

double centrifugation (2 x 13,000 rpm for 20 min, pipette supernatant to a new vial 

before second centrifugation) was utilized as the sample preparation technique before 

HPLC analysis of the dosing formulations.  
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Table 4.1. Summary of filter binding studies 
 

Compound Media Volume (mL) Treatment Peak Area Recovery 

FBA FaSSIF 0.5 Centrifuge 0.594 control 
FBA FaSSIF 0.5 PTFE, 0.45m, miniprep 0.590 99% 
FBA FaSSIF 0.5 PTFE, 0.45m, acrodisc, 13mm 0.516 87% 
FBA FaSSIF 0.5 Nylon, 0.45m, acrodisc, 13mm 0.316 53% 

FBA FaSSIF 1 Centrifuge 0.270 control 
FBA FaSSIF 1 PTFE, 0.2m, nalgene, 25mm 0.261 97% 
FBA FaSSIF 1 CA, 0.2m, whatman, 25mm 0.000 0% 
FBA FaSSIF 1 Nylon, 0.2m, acrodisc, 25mm 0.055 21% 

SRA FaSSIF 0.5 Centrifuge 5.884 control 
SRA FaSSIF 0.5 PTFE, 0.45m, miniprep 4.524 77% 
SRA FaSSIF 0.5 PTFE, 0.45m, acrodisc, 13mm 4.536 77% 
SRA FaSSIF 0.5 Nylon, 0.45m, acrodisc, 13mm 1.497 25% 

SRA FaSSIF 1 Centrifuge 2.887 control 
SRA FaSSIF 1 PTFE, 0.2m, nalgene, 25mm 2.319 80% 
SRA FaSSIF 1 CA, 0.2m, whatman, 25mm 0.091 3% 
SRA FaSSIF 1 Nylon, 0.2m, acrodisc, 25mm 0.114 4% 

SRA FaSSIF 0.5 Centrifuge 4.651 control 
SRA FaSSIF 0.5 Steel, 0.5m, 1/8", vial 1 6.527 140% 
SRA FaSSIF 0.5 Steel, 0.5m, 1/8", vial 2 5.848 126% 
SRA FaSSIF 0.5 Steel, 0.5m, 1/8", vial 3 5.404 116% 
SRA FaSSIF 0.5 Steel, 0.5m, 1/8", vial 4 5.517 119% 
SRA FaSSIF 0.5 Steel, 0.5m, 1/8", vial 5 5.483 118% 

SRA FaSSIF 0.5 Centrifuge 7.026 control 
SRA FaSSIF 0.5 PTFE, 0.45m, acrodisc, 13mm, Vial 1 6.993 100% 
SRA FaSSIF 0.5 PTFE, 0.45m, acrodisc, 13mm, Vial 2 7.307 104% 
SRA FaSSIF 0.5 PTFE, 0.45m, acrodisc, 13mm, Vial 3 7.321 104% 
SRA FaSSIF 0.5 PTFE, 0.45m, acrodisc, 13mm, Vial 4 7.368 105% 
SRA FaSSIF 0.5 PTFE, 0.45m, acrodisc, 13mm, Vial 5 7.374 105% 

SRA FaSSIF 0.5 Centrifuge 7.026 control 
SRA FaSSIF 0.5 PTFE, 0.45m, acrodisc, 13mm, Vial 1* 7.216 103% 
SRA FaSSIF 0.5 PTFE, 0.45m, acrodisc, 13mm, Vial 2 7.318 104% 
SRA FaSSIF 0.5 PTFE, 0.45m, acrodisc, 13mm, Vial 3 7.311 104% 
SRA FaSSIF 0.5 PTFE, 0.45m, acrodisc, 13mm, Vial 4 7.314 104% 

SRA 1% PVP K25 0.5 Centrifuge 8.746 control 
SRA 1% PVP K25 0.5 PTFE, 0.45m, acrodisc, 13mm 0.646 7% 
SRA 1% PVP K25 0.5 Nylon, 0.45m, acrodisc, 13mm 0.917 10% 

 *Three drops of FaSIF went to waste prior to collection in vial 1. 
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Powder Dissolution Method 

 Approximately 30mg of compound was weighed into 20mL glass scintillation 

vials in triplicate.  Then, 10mL of FaSIF (5mM taurocholic acid sodium salt and 1.5 mM 

lecithin in pH 6.8 phosphate buffer) was added and continually stirred on a magnetic 

stirrer at room temperature (20-25˚C).  At each time point (1, 15, 30, 45, 60, 90, 120, 240 

and 1440 min) 0.6 mL was filtered through a 0.45 μ, 13 mm, PTFE syringe filter into an 

HPLC vial (leaving the first 4 drops to waste).  Samples were diluted 3 fold with DMSO 

to prevent precipitation if needed.  Analysis was conducted by HPLC-UV to determine 

the AMG 517 and cocrystal former (where possible) concentration in solution.  After the 

final time point the suspension was analyzed by laser diffraction and microscopy for 

particle size determination and then centrifuged 10 min at 13,000 rpm.  The surpernatent 

was discarded and the pellet was air dried for 24 hr then analyzed by XRPD, DSC and 

TGA to determine the form. 

Intrinsic Dissolution Method 

Intrinsic dissolution was conducted in a Varian VK 7025 dissolution apparatus 

(Palo Alto, CA) using a rotating disk apparatus at 37 ˚C at 100 rpm in 500 mL FaSIF for 

2 hr (n = 1) and 4 hr (n = 2). Compacts were produced by compressing 100 mg of 

compound into a die at 2000 psi (3000 psi for cocrystal HCA) for 2 min in a carver press 

(surface area 0.5 cm2).  Compacts were analyzed by NIR pre dissolution to assess form.  

FaSIF samples (0.7 mL) were withdrawn manually at each time point and filtered through 

0.45 μm PTFE syringe filter, leaving 8 drops to waste before collection into an HPLC 

vial, then analyzed by HPLC-UV at 280 nm for AMG 517 content.  Compacts were dried 
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at room temperature for at least 24 hr then analyzed by NIR and XRPD to assess the 

form. 

Dose Analysis Method 

The formulations dosed in the PK studies were analyzed pre-dose for total AMG 

517 content and pH and within 2 hr post-dose for particle size, solid form and AMG 517 

concentration in solution.  Total AMG 517 content was analyzed by HPLC-UV of a 10 

μL aliquot diluted 100x with methanol to dissolve (n=3 dilutions).  AMG 517 

concentration in solution was measured with HPLC-UV by direct injection of the 

supernatant after double centrifugation at 13,000 rpm for 20 min (n=3 injections).  The 

pellet was dried at room conditions over night then analyzed by XRPD to determine 

form. 

Pharmacokinetic Investigation Methods 

The animal procedures were conducted under a protocol approved by the Amgen, 

Inc (Cambridge, MA) Institutional Animal Care and Use Committee.  Male Sprague 

Dawley rats, 300-325 g, were obtained from Charles River Laboratories (Wilmington, 

MA) with catheters implanted in the femoral artery and vein; the surgical procedures 

were conducted under aseptic conditions.  The rats were housed in a temperature- and 

humidity-controlled environment subject to a 12 h light:12 h dark cycle and had access to 

water and a standard laboratory rodent diet ad libitum.  Animals were allowed to 

acclimate for one week prior to use.  Rats (n=3) were administered a single dose of test 

material (100 mg/kg) formulated as suspensions in 1% PVP K25 in water by oral gavage.  

Blood samples were collected from the femoral artery catheter at 0.25, 0.5 1, 2, 4, 6, 8, 
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and 24 h post-dose.  Plasma was separated by centrifugation and stored at -80° C until 

analyzed.   

Plasma standards were prepared by serial dilution in male Sprague-Dawley rat 

plasma with K2EDTA (Bioreclamation) at 25,000, 12,500, 6,250, 3,125, 1,562, 781, 391, 

195 and 98 ng/mL AMG 517.  Plasma standards and samples were extracted with a 4x 

dilution of an internal standard (ISTD) solution (acetonitrile with 0.1 % formic acid and 

200 ng/mL AMG 8316643) and centrifuged for 20 min at 4 ˚C.   

LC/MS-MS analysis of plasma extracts was conducted on an Agilent HPLC-MSD 

Trap equipped with an APCI probe, Varian Pursuit C18, 30 x 2 mm, 5 μ column and 

ChemStation software in multiple reaction monitoring (431.1 m/z and 445.1 m/z) mode.  

The chromatographic method was isocratic at 45 % acetonitrile in water with 0.1% 

formic acid at 0.75 mL/min.  Integration of the smoothed, extracted ion chromatogram at 

389.1 m/z was used for quantitation against the standard curve corrected with the ISTD 

concentration.  Integration of the smoothed, extracted ion chromatogram at 389.1 m/z 

with the Bruker Daltonics DataAnalysis for LC/MSD Trap software v3.3 was used for 

quantitation against the standard curve corrected with the ISTD concentration.  Retention 

time of AMG 517 is 1.4-1.5 min and the ISTD retention time is 2.2-2.3 min (figure 4.2). 
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Figure 4.2.  Representative mass spectroscopy chromatograms; low standard in plasma 
matrix and blank matrix (top), high standard and low standard in plasma matrix (bottom). 

 

According to the U.S Department of Health and Human Services Food and Drug 

Administration (FDA) accuracy of a bioanalytical method should be measured with a 

minimum of three concentrations and five determinations per concentration.8  The mean 

value should be within 15% of the target concentration except at the lower limit of 

quantification (LLOQ) where 20% is acceptable.  Due to the wide concentration range a 

second order polynomial regression equation and 1/x weighting was used to fit the curve.  

The goodness of fit (R2) ranges from 0.9945 – 0.9976.  With this method the mean 

accuracy of the nine concentrations which make up the standard curve, which were each 

freshly prepared and injected on eight different days, ranges from 93 – 106%.  The FDA 

guidance also suggests that the lowest standard on the calibration curve is acceptable as 
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the LLOQ if the analyte response is at least 5 times that of the blank and should be 

accurate within 80 – 120%.  The mean response of the 97.7 ng/mL standard and the mean 

response of the time zero plasma samples from each animal across all days are 334302 

and 16523 peak areas respectively.  The 97.7 ng/mL standard has a 20 times higher 

response than the blank response and a mean accuracy of 93% qualifying it as the LLOQ.  

All samples (mean of n = 3 injections) lie within the range of the standard curve and the 

lowest sample concentration (291 ng/mL) is 3.0 times higher than the LLOQ.  

Statistical Calculation Methods 

Statistical differences between groups were calculated using SigmaStat for 

Windows version 3.0.1 (SPSS Inc., Chicago, IL) applying a Kruskal-Wallis9 one-way 

analysis of variance on ranks (ANOVA) followed by a multiple comparison procedure 

versus FBA (Holm-Sidak method, p value must be lower than the critical value to be 

considered significant).  Student’s t-test was used to determine statistical significance 

between two groups. 

 

Results and Discussion 

 

Powder Dissolution 

 The powder dissolution profiles of FBA and the sixteen cocrystals in FaSIF at 

room temperature have been reported previously from this laboratory.2,3  The studies 

were repeated here to eliminate any variation between lots of compound, especially due 

to the large differences in particle size (historical data was produced with lots containing 

30-640 μm mean particle sizes).  FaSIF, besides being representative of in vivo 
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conditions10, was chosen over pure water or gastric media due to the low solubility of 

AMG 517 in water and its instability at low pH.  The powder dissolution profiles for all 

compounds are shown in figure 4.3 and associated data to be discussed below is 

summarized in table 4.2.  The dissolution profiles of the cocrystals are typical of an API 

that was not in its most stable form under these conditions and therefore crystallizes to a 

more stable form producing a decrease in solubility over time (i.e. dissociation of a salt to 

free form, amorphous to crystalline material or anhydrous to hydrate conformation).  The 

remaining solids for all compounds after 24 hr were isolated and analyzed by XRPD, 

DSC, TGA and laser diffraction to determine if any form changes occurred (example 

figure 4.4, all others appendix).  No form alteration or change in particle size of FBA was 

detected while the cocrystals all show total (HBA, GUA, GYA, HXA, HCA, LCA, 

MEA, MIA, MOA, and SCA) or partial (ADA, BZA, BZD, CNA, CND and SRA) 

crystallization to either FBA, AMG 517 free base form B (FBB), AMG 517 free base 

hydrate form C (FBC) or a mixture as well as an increased mean particle size 1.4 – 2.9x.  

A rough estimate of the % conversion of the solids from cocrystal to free form was made 

from the weight loss on TGA associated with the melt of the cocrystal and coinciding 

release of the cocrystal former.  By this technique cocrystals ADA, BZA, BZD, CNA, 

CND and SRA maintained approximately 38, 20, 35, 82, 87 and 65% of the cocrystal 

form respectively at 24 h. 
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Figure 4.3.  Powder dissolution profiles to 240min of FBA and the cocrystals.  FBA is 
represented in each graph for reference.
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Table 4.2.  Summary of powder dissolution analysis. 
 

pre-dissolution 
particle sizea 

post-dissolution 
particle sizeb 

sol. conc. 
15 minc initial form 

 d50 (μm) d50 (μm) (μg/mL) 
final formd 

FBA 1.73 1.85 ± 0.02 3.5 ± 1.6 FBA 

ADA 2.46 7.84 ± 0.11 24.6 ± 2.0 ~38% ADA, FBB/FBC 

BZA 1.85 7.44 ± 0.90 26.4 ± 1.2 ~20% BZA, FBB/FBC 

BZD 2.15 5.94 ± 0.68 30.1 ± 0.9 ~35% BZD, FBB/FBC 

CNA 4.59 5.35 ± 0.05 11.8 ± 0.6 ~82% CNA, FBB 

CND 2.92 3.92 ± 0.00 25.1 ± 0.8 ~87% CND, FBB 

HBA 4.35 12.83 ± 0.11 17.2 ± 0.2 FBB/FBC 

GUA 4.06 7.73 ± 0.12 35.8 ± 4.0 FBC 

GYA 3.52 5.30 ± 0.12 34.3 ± 3.6 FBC 

HXA 4.00 10.26 ± 0.04 38.2 ± 2.0 FBC 

HCA 6.24 4.02 ± 0.05 18.1 ± 2.5 FBC/FBA 

LCA 3.31 4.98 ± 0.12 25.4 ± 4.4 FBC 

MEA 3.05 6.06 ± 0.01 18.7 ± 2.6 FBB/FBC 

MIA 2.49 5.99 ± 0.03 33.7 ± 2.3 FBB/FBC 

MOA 2.04 5.10 ± 0.15 36.8 ± 4.6 FBB/FBC 

SRA 1.91 1.99 ± 0.02 23.5 ± 1.0 ~65% SRA, FBB 

SCA 4.45 6.37 ± 0.02 28.1 ± 6.3 FBB/FBC 

Control FBA 1.73 1.85 ± 0.02 1.7 ± 0.5 FBA 

(a) Mean particle size of dry powder, (b) mean particle size of solids in suspension after 
24hr in FaSIF (c) concentration of AMG 517 in solution in FaSIF at 15 min and (d) solid 
form of solids isolated from FaSIF after 24 hr. Control FBA; sorbic acid added to the 
dissolution media. 
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Figure 4.4. XRPD (left), DSC and TGA (right) of BZA pre and post powder dissolution. 

 

Another possible measurement of conversion to free form from cocrystal is the 

concentration of cocrystal former found in solution in the FaSIF assuming the former is 

freely soluble in the dissolution media. Based on published solubility in water of  benzoic 

acid, benzamide, cinnamic acid, cinnamamide, 2-hydroxybenzoic acid and sorbic acid 

(2.911, 13.511, 0.511, 1.312, 5.011 and 2.511 mg/mL respectively) and the amount of these 

cocrystal formers present in the powder dissolution study (0.45 – 0.76 mg/mL) all of the 

cocrystal formers would likely be completely solubilized in FaSIF with the exception of 

cinnamic acid which would be about 67% solubilized. Figure 4.5 shows the concentration 

of formers in solution during the same experiment as measured by HPLC through 240 

min for clarity.  Adipic acid was not detectable by the HPLC method utilized and is 

therefore not included in this analysis.  After 24 hr the concentration of former for 

cocrystals BZA, BZD, CNA, CND, HBA and SRA was 616 ± 20, 421 ± 27, 182 ± 19, 

120 ± 8, 423 ± 36 and 467 ± 49 μg/mL respectively.  This indicates approximately 7, 36, 

76, 84, 7 and 24% of the total former added to the dissolution experiment in cocrystal 

form is not in solution presumably remaining as part of the cocrystal.  There is good 



 50

agreement between the TGA and HPLC determination of % cocrystal remaining for BZD 

(35% and 36% respectively), CNA (82% and 76%), CND (87% and 84%) and HBA (0% 

and 7%) however BZA (20% and 7%) and SRA (65% and 24%) do not agree.  During 

the dissolution experiment solids are removed due to sampling (both inside and outside of 

the syringe) which decreases the amount of cocrystal or converted free base form within 

the dissolution experiment to an unknown degree.  This may account for the variability 

between the TGA and HPLC methods.  
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Figure 4.5.  Cocrystal former solution concentrations in FaSIF over time 
 

Due to the unexpected crystallization of FBB rather than FBA in the dissolution 

experiment a brief side discussion of the relationship between these free forms seems 

necessary.  The free forms FBB and FBC, when tested under the same powder 

dissolution conditions as FBA, maintain FaSIF solubility lower than that of FBA even up 

to 10 days (5 ± 3, 5 ± 2 and 25 ± 1 μg/mL respectively, figure 4.6).   
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Figure 4.6. AMG 517 solution concentration in FaSIF over ten days. 
 

Also, FBA and FBB samples remain their original solid form as determined by XRPD of 

the isolated solids.  FBC, which appears to be a mixture of FBC and FBB to start, 

converts purely to FBC after 10 days in FaSIF (see appendix for XRPD spectra).  Based 

on solubility alone crystallization of the cocrystals to the least soluble forms, FBB and 

FBC, would be expected however, FBB has been shown to be the thermodynamically 

less stable form and monotropically related to FBA by slurry conversion experiments, 

van’t Hoff plot of solubility at different temperatures and modulated DSC.  Co-slurry of 

FBA and FBB in acetonitrlie at 30˚C or ethanol and toluene at 30˚C and 50˚C all 

crystallize to FBA.  Surry of FBB alone at 30, 40 and 50˚C in toluene also crystallized to 

FBA.  Solubility of the two forms in toluene plotted against 1/T results in parallel lines 

(figure 4.7) with FBA preserving lower solubility.   
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Figure 4.7. van’t Hoff plot of FBA and FBB solubility in toluene. 

 

On DSC FBC dehydrates and then recrystallizes to FBB when heated to ~175˚C.  FBB 

has a broad melt and recrystallization (185-191˚C) to FBA which melts at 228˚C on 

DSC.  Modulated DSC was used to determine the heat of fusion of FBA (110 J/g) and 

FBB (3 J/g).  Based on the definition of a monotropic system the less soluble form on the 

van’t Hoff plot when lines are parallel and the form on DSC with both the highest melt 

and heat of fusion is the stable form at all temperatures.13  FBA should be more stable 

than FBB at all temperatures as determined by these methods, however in FaSIF at room 

temperature FBB did not convert to FBA after ten days and the cocrystals tend to 

crystallize to FBB or FBC rather than FBA.   Based on the Ostwald Rule of Stages the 

appearance of the thermodynamically less stable form from solution would be expected 

to appear first, however recrystallization to the thermodynamically stable form should 

follow.14  The crystallization of FBB was likely a kinetic event and presents an 

interesting twist to the interpretation of the pharmacokinetic data as there is no way of 

knowing if the same occurs in vivo in the study design used here.  Further study utilizing 
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techniques to measure real time transformation of the phases in a variety of media or a 

flow through dissolution system may provide more insight as to why FBB is present and 

if this is what occurs in vivo. 

A linear regression analysis to determine the slope of the initial dissolution rate 

proved ineffective due to the limited number of data points (2-3) before the Cmax is 

reached, therefore the concentration of AMG 517 in solution at 15 min is utilized as a 

point of comparison.  All of the cocrystals provide an increase in dissolution ranging 

from 3.4-11.0 fold over the free base (table 4.2).  This increase is statistically significant 

for all cocrystals (p < 0.001).  Cocrystals BZD, GUA, GYA, HXA, MOA and MIA 

rapidly approach and maintain a high concentration of AMG 517 from 15-45 min while 

the other cocrystals are either slow to reach a similar Cmax (ADA, BZA, CND, HCA, 

LCA, MEA, SRA, SCA) or maintain a low Cmax throughout the 24 h experiment (CNA, 

HBA).  After 4 hr the AMG 517 solution concentration is similar for all samples (6 - 13 

μg/mL) including FBA at 8 μg/mL, however after 24 hr FBA continues to dissolve 

reaching 19 μg/mL while the cocrystals remain at 5-11 μg/mL (with the exception of 

HCA at 16 μg/mL which is the only cocrystal to show evidence of crystallization to FBA 

form). 

 To ensure that the improved dissolution was due to the complex and not simply 

due to the presence of the carboxylic acid or amide a single control experiment was 

conducted.  A side by side dissolution study with the free base in FaSIF or in FaSIF with 

1 mg/mL sorbic acid added to the media was performed. The concentration of sorbic acid 

added to the FaSIF media was chosen to be in excess of the concentration of sorbic acid 

which would have resulted if all of the cocrystal SRA were to dissolve in the dissolution 
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experiment.  The dissolution profiles of the free base in either media were approximately 

identical (figure 4.8) indicating that the fast dissolution of cocrystal SRA is due to the 

properties of the solid complex.  
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Figure 4.8.  AMG 517 solution concentration in FaSIF with or without sorbic acid 
additive compared to SRA. 
 

 Cocrystallization of AMG 517 with the carboxylic acids or amides resulted in a 

significant increase in the initial dissolution rate of the powders compared to FBA in 

FaSIF for all cocrystals.  Even though the increase is transient ending in lower solution 

concentrations after 24 hr as compared to FBA, the high initial solution concentrations 

may provide the desired increase in exposure in the rat pharmacokinetic studies. 

 

Intrinsic Dissolution 

As a compliment to the powder dissolution studies, intrinsic dissolution was also 

conducted in FaSIF.  Intrinsic dissolution was a more controlled study in that the 

temperature is held constant, particle size is no longer considered a major influential 

factor due to the consistent surface area of the compact when using the woods apparatus 
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and the amount of solution removed through sampling over time is accounted for in the 

calculations.  This method however may be less representative of the suspension 

formulation in vivo due to the difference in surface area.   

The amount dissolved at time t (St) was calculated as follows: 

St = (CtVt) + Dt 

where Ct is the solution concentration at time t, Vt is the total volume of FaSIF remaining 

at time t and Dt is the cumulative amount of drug removed from the system at time t.   

 
Table 4.3.  Summary of intrinsic dissolution analysis for FBA and the cocrystals. 
 

IDRa 
initial form (mg/cm2/min) final formb 

FBA 0.0006 ± 0.0002 FBA 

ADA 0.0007 ± 0.0003 ADA 

BZA 0.0012 ± 0.0002  BZA, minor FBA 

BZD 0.0014 ± 0.0002  BZD, minor FBA 

CNA 0.0010 ± 0.0002 CNA 

CND 0.0013 ± 0.0002  CND 

HBA 0.0010 ± 0.0002 HBA 

GUA 0.0016 ± 0.0001  GUA, minor FBA 

GYA 0.0014 ± 0.0001  GYA 

HXA 0.0015 ± 0.0002  HXA 

HCA 0.0017 ± 0.0003  HCAc, minor FBA 

LCA 0.0010 ± 0.0002 LCA 

MEA 0.0013 ± 0.0001  MEA 

MIA 0.0014 ± 0.0002  MIA, minor FBA 

MOA 0.0016 ± 0.0002  MOA 

SRA 0.0011 ± 0.0003 SRA, minor FBA 

SCA 0.0011 ± 0.0003 SCA 

a) IDR determined from 0-30min if FaSIF b) analysis of the compact surface by XRPD 
and NIR post intrinsic dissolution c) differences noted in NIR of HCA post compaction, 
pre dissolution. 
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Figure 4.9. Intrinsic dissolution profiles at 60 min of FBA and the cocrystals. 

 

The intrinsic dissolution rate in mg/cm2/min (IDR) was determined from the slope of the 

linear regression line when St divided by the surface area was plotted against time t from 
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0-30min.  The IDR of FBA and the cocrystals are listed in table 4.3 and the dissolution 

profiles are shown in figure 4.9.  All cocrystals except ADA significantly (p ≤ 0.013) 

improve the IDR of FBA by 1.7 – 2.9 fold.   

The IDR is expected to correlate well with the powder dissolution data assuming 

that particle sizes between forms were similar and early time points were used to avoid 

the effects from phase transformation over time.  The graph in figure 4.10 comparing the 

two methods indicates that the correlation of the powder and intrinsic dissolution by 

linear regression was very poor (R2 = 0.390).   
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Figure 4.10.  Correlation analysis of powder and intrinsic dissolution data 

 

Cocrystal HCA stands out as having a very high IDR, but a very low concentration in 

solution at 15 min in the powder dissolution study.  This may be partially due to the 

larger particle size of this cocrystal which would decrease the surface area exposed to the 

media in the powder dissolution study therefore slowing the initial dissolution rate.  The 

particle size would not affect the intrinsic dissolution study since the woods apparatus 

maintains a constant surface area of 0.5 cm2.  More realistically the difference between 

powder and intrinsic dissolution rates for HCA is likely due to compaction.  HCA was 
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the only cocrystal which required a higher compression pressure (3000psi instead of 

2000psi) in order to produce a smooth surface in the woods apparatus for the IDR study.  

The surface of the compacts were analyzed by NIR after compaction and compared to the 

original powder.  A clear change in form was detected by NIR of the 1901 and 2220nm 

peaks due to compaction (appendix).  This form change may have influenced the intrinsic 

dissolution rate of this cocrystal.  If HCA is removed from the correlation between the 

two dissolution methods the relationship greatly improves (R2 = 0.598) but is still not 

remarkable.  ADA also stands out in the correlation although due to a low intrinsic 

dissolution rate as compared to its behavior in the powder dissolution study.  There is no 

evidence of any phase transformations of ADA due to compaction or even post intrinsic 

dissolution by XRPD and NIR and its particle size distribution does not stand out from 

any of the other cocrystal forms as being particularly small.  Therefore any explanation of 

the inconsistency would be conjecture, although it is worth mentioning that the 

relationship between powder and intrinsic dissolution for the remaining cocrystals and 

FBA is far superior (R2 = 0.7289).  Nonetheless, the overall discrepancies between the 

two methods in general likely arose due to the dissimilarity in exposed surface area to the 

media and the kinetics of phase transformations occurring in both conditions.  

The intrinsic dissolution curves became non-linear after only ~30-60 min when a 

maximum of 0.1% of the total weight has dissolved.  Form conversion to a crystalline 

material with slower dissolution may have taken place on the surface of the compact 

causing the diminished dissolution rate.  Analysis of the compact surface post dissolution 

by XRPD and NIR indicate cocrystals BZA, BZD, GUA, MIA, MOA and SRA 

crystallize minor FBA on the surface.  FBA has a characteristic N-H combination region 
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peak at 2064 nm on NIR (appendix).  Based on the available single crystal structures this 

NH-N hydrogen bond between molecules of FBA is replaced by an OH-N hydrogen 

bond with the carboxylic acid of cocrystals BZA, GUA and SRA.  Therefore the growth 

of this characteristic peak in the analysis of the compact surfaces post dissolution 

indicates crystallization of the FBA on the surface.  Crystal structure of MIA and MOA 

were not available, however the same changes occur on NIR indicating similar 

circumstances are possible.  For the BZD cocrystal the NIR also points toward a slight 

change in the 2064 nm region although not as dramatic as the carboxylic acids.  The 

crystal structure was not available but based on the CND crystal structure (and other 

published amide cocrystals3 with AMG 517) it is likely that one of the amine protons 

forms a hydrogen bond with the benzothiazole nitrogen of AMG 517.  This slight change 

combined with characteristic peaks of FBA in the X-ray powder pattern provide evidence 

of minor FBA on the surface of this compact at the end of the dissolution study.  For all 

other cocrystals a phase change was not apparent.  Based on experience in the powder 

dissolution experiments where crystallization of free form was identified for all 

cocrystals, it was possible that form conversion was also occurring here but the extent is 

below the limits of detection for the methods utilized.  Another possible rationalization 

for the decreased dissolution rate over time was that the tests were not performed under 

sink conditions where the total volume of dissolution media should exceed that required 

to dissolve all of the test material or be continuously replenished.  In nonsink conditions 

dissolution would be slowed as the drug is not efficiently removed from the receptor 

phase.  Nonsink conditions were likely more representative of in vivo conditions in the rat 
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based on a gut volume of only 11.3mL15 and is thus a more appropriate environment for 

the in vitro testing to build a correlation. 

Similar to the powder dissolution results the intrinsic dissolution rates of all 

cocrystals (except ADA) were significantly improved over FBA.  The linear correlation 

between the two methods is only moderate.  Though, if intrinsic dissolution were the only 

method utilized to filter the cocrystals to be tested in vivo in a drug development 

paradigm (as opposed to powder dissolution), the selection would have likely been 

similar.  HCA is the only cocrystal with a high IDR that would have been eliminated 

based on slow powder dissolution, however due to the changes in form during processing 

in preparation for the intrinsic dissolution study; HCA would likely have been removed 

from further consideration at any rate.  The decision to use one or the other technique (or 

both) would likely be made based on its similarity to the dosage form or simply the 

available supply. 

 

Pharmacokinetics 

 

Formulation Development 

As mentioned in the introduction, FBA and SRA were previously dosed in rats 

using a formulation containing OraPlus®.   The same formulation could not be used for 

the pharmacokinetic evaluation here for multiple reasons.  OraPlus® contains sorbic acid 

as a preservative.  Therefore some of the free form (and possibly other cocrystals) will 

convert to the SRA with the existing sorbic acid in the formulation which would 

influence the exposure of the dose due to the higher dissolution rate of the SRA over the 
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FBA.  OraPlus® is also a suspension itself.  The solids in this suspension would greatly 

interfere with the interpretation of the analysis of the stability of the solid form of FBA 

and the cocrystals in the formulation.  For these main reasons a new formulation was 

desired.  A simple powder in capsule formulation was considered, but concerns about the 

poor wetability of the powders leading to very slow dissolution in vivo, reduced 

absorption and possibly undetectable levels of AMG 517 in the plasma lead to the design 

of a suspension formulation.  The suspending vehicle was designed for dual purpose; to 

stabilize the cocrystal form from conversion or changes in particle size for 24 hr (to allow 

for preparation of the dose the day before dosing) and to maintain consistent solubility 

across all compounds, if possible.  High solubility was not a goal of the formulation since 

the intent of this study was not to affect exposure through formulation, but through co-

crystallization.  Also, in order to physically stabilize the cocrystals in the suspension they 

need to have a lower solubility than the free forms in the vehicle.  

 From previous experience with SRA, a 2% Pluronic® F108 in water formulation 

stabilized the cocrystal in suspension, therefore all other cocrystals were tested in this 

vehicle at 10 mg/mL.  Seven of the cocrystals were not physically stable after only one 

hour as determined by XRPD of the isolated solids (table 4.4).  
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Table 4.4  Formulation development summary 

Compound Vehicle pH 
solution 

concentration 
(μg/mL) 

physical 
stability 

FBA 2% Pluronic F108 in water 6.00 8.4 stable 1hr 
ADA 2% Pluronic F108 in water 4.28 1.4 stable 1hr 
HBA 2% Pluronic F108 in water 3.17 2.2 stable 1hr 
GUA 2% Pluronic F108 in water 2.98 13.5 not stable 1hr 
GYA 2% Pluronic F108 in water 2.76 2.9 not stable 1hr 
HXA 2% Pluronic F108 in water 4.06 0.7 stable 1hr 
HCA 2% Pluronic F108 in water 2.98 12.8 not stable 1hr 
LCA 2% Pluronic F108 in water 2.83 6.5 not stable 1hr 
MEA 2% Pluronic F108 in water 2.48 3.1 not stable 1hr 
MIA 2% Pluronic F108 in water 2.90 4.0 not stable 1hr 
MOA 2% Pluronic F108 in water 2.36 2.7 not stable 1hr 
SRA 2% Pluronic F108 in water 4.38 2.3 stable 1hr 
SCA 2% Pluronic F108 in water 3.60 0.3 stable 1hr 
HCA 2% Pluronic F108 in 100mM PB pH 6.8 6.67 63.6 not stable 1hr 
HCA 1% HPMC 1% Pluronic 50mM PB pH 6.8 6.68 69.7 amorphous 1hr 
HCA 2% HPMC 1% Pluronic 20% HP-β-CD 3.99 217.5 amorphous 1hr 
HCA 2% HPMC 1% polysorbate 80 in water 2.98 95.1 not stable 1hr 
HCA 2% HPMC in water 3.35 41.4 not stable 1hr 
HCA 10% HP-β-CD in water 3.66 355.9 stable 24hr 
HCA 20% HP-β-CD in water 4.18 1132.0 stable 24hr 
HCA 1% Methylcellulose in water 3.57 5.1 stable 24hr 
HCA 0.5% MC 1% polysorbate 80 in water 2.93 85.8 not stable 1hr 
FBA 1% PVP K25 in water 4.67 7.2 stable 24 hr 
ADA 1% PVP K25 in water 4.42 3.2 stable 24 hr 
BZA 1% PVP K25 in water 4.57 1.3 stable 24 hr 
BZD 1% PVP K25 in water 4.70 3.3 stable 24 hr 
CNA 1% PVP K25 in water 4.53 0.9 stable 24 hr 
CND 1% PVP K25 in water 4.96 1.4 stable 24 hr 
HBA 1% PVP K25 in water 3.36 0.6 stable 24 hr 
GUA 1% PVP K25 in water 3.74 1.3 stable 24 hr 
GYA 1% PVP K25 in water 3.13 1.4 not stable 24 hr 
HXA 1% PVP K25 in water 4.49 1.7 stable 24 hr 
HCA 1% PVP K25 in water 3.53 1.2 stable 24 hr 
LCA 1% PVP K25 in water 3.52 1.0 stable 24 hr 
MEA 1% PVP K25 in water 3.56 1.8 stable 24 hr 
MIA 1% PVP K25 in water 3.70 1.5 stable 24 hr 
MOA 1% PVP K25 in water 3.47 1.1 stable 24 hr 
SRA 1% PVP K25 in water 4.48 1.7 stable 24 hr 
SCA 1% PVP K25 in water 3.92 1.7 stable 24 hr 

 

Solution concentrations of AMG 517 for the stable cocrystals in this vehicle ranged from 

0.3 – 2.3 μg/mL which was lower than the solution concentration of FBA at 8.4 μg/mL 
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after one hour.  Solution concentrations of the unstable cocrystals ranged from 2.7 – 13.5 

μg/mL.  Since an unknown amount of dissociation to the free form had occurred these 

values may not be directly interpreted.  Instability was also accompanied by a drop in the 

pH to below 3 indicating dissociation of the carboxylic acid into the solution.   To 

investigate if the dissociation could be slowed by maintaining the pH above 3 HCA and 

LCA were tested for stability in 2% Pluronic® F108 in 100 mM phosphate buffer pH 6.8.  

Within one hour, although the pH was stable, both cocrystals dissociated indicating that 

the drop in pH was a consequence of the physical instability rather than the cause of 

instability.   

The HCA cocrystal was then tested in a series of other vehicles containing 

hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), hydroxypropyl-β-

cyclodextrin (HP-β-CD), polysorbate 80, polyvinylpyrrolidone (PVP) K25 and 

combinations thereof (table 4).  The cocrystal was found to be physically stabilized by 

10% or 20% HP-β-CD in water; however the solution concentration after 24 hr was very 

high at 0.355 and 1.132 mg/mL respectively.  HCA was also physically stable in 1% MC 

after 24 hr with a solution concentration of only 4 μg/mL although the formulation 

proved difficult to prepare due to the hydrophobicity of the powder rendering it very 

difficult to wet.  In order to improve the wetting of the powder a 0.5% MC and 1% 

polysorbate 80 in water vehicle was tested.  The powder was indeed easier to wet but 

HCA was no longer physically stable with an increased solution concentration to 77 

μg/mL.   

The vehicle 1% PVP K25 in water provided physical stability and a low solution 

concentration of HCA after 24 hr and also made it easier to wet the powder than the 1% 



 64

MC vehicle.  Therefore the remaining cocrystals and the FBA were then tested in this 

vehicle.  All cocrystals were found to be physically stable by XRPD for 24 hr with the 

exception of GYA which showed some minor dissociation to FBA after 24 hr.  This 

cocrystal was formulated within two hours of dosing to minimize the conversion.  

Solution concentrations after three hours of AMG 517 in the 1% PVP K25 in water 

formulations ranged from 0.6-3.3 μg/mL for the cocrystals while FBA was higher at 7.2 

μg/mL (table 4.4).  1% PVP K25 in water was therefore selected as the formulation 

vehicle for in vivo studies because it provided a formulation with physical stability, a 

narrow range of solubilities across all compounds and wettability.  

 

In Vivo Study: Formulation Preparation and Analysis 

The cocrystals and FBA were formulated as suspensions in 1% PVP K25 in water 

at 100 mg/kg (10 mg/mL) the day prior to dosing (except GLY which was prepared 

within 2 hr of dosing).  The dosing suspensions were all analyzed within 2 hr post dose to 

ensure consistency of the solids in form and particle size and to measure the solution 

concentration of AMG 517 (data summarized in table 4.5, XRPD data compiled in the 

appendix).  A few outliers were seen in the data.  Cocrystal MEA is the only formulation 

which has higher solubility than the free base in this vehicle.  This may have increased 

the plasma concentrations of this cocrystal in the animals (see discussion below) however 

no overall correlation with solution concentration of AMG 517 in the vehicle and 

exposure is seen.   
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Table 4.5.  Formulation analysis of AMG 517 and cocrystals. 
 

total conc. b sol. conc. c particle size d initial form pH a (mg/mL) (μg/mL)  d50 (μm)  final form 

FBA 4.3 9.7 ± 0.2 14.8 ± 0.0 1.49 ± 0.01 FBA 

ADA 4.1 11.7 ± 0.0 0.6 ± 0.1 2.55 ± 0.09 ADA 

BZA 4.0  11.0 ± 0.5 1.2 ± 0.2 1.85 ± 0.05 BZA 

BZD 4.2  10.2 ± 0.1 5.7 ± 0.3 1.96 ± 0.05 BZD 

CNA 4.2   9.9 ± 0.5 0.5 ± 0.1 7.96 ± 0.10 CNA 

CND 4.0   9.9 ± 0.1 2.4 ± 0.3 2.70 ± 0.03 CND 

HBA 3.4 10.2 ± 0.0 3.4 ± 0.0 2.52 ± 0.23 HBA 

GUA 4.1 9.6 ± 0.3 3.0 ± 0.2 3.65 ± 0.21 GUA, minor FBC 

GYA 3.3 10.0 ± 0.2 4.0 ± 0.4 3.05 ± 0.07 GYA 

HXA 4.0 9.8 ± 0.1 1.5 ± 0.2 4.20 ± 0.11 HXA 

HCA 3.5 10.3 ± 0.1 6.4 ± 0.5 4.16 ± 0.06 HCA 

LCA 3.0 9.7 ± 0.1 1.6 ± 0.5 19.95 ± 0.11 LCA, significant 
amorphous 

MEA 3.3 10.1 ± 0.2 24.3 ± 0.6 3.29 ± 0.01 MEA 

MIA 3.5 9.5 ± 0.2 9.3 ± 0.3 2.25 ± 0.02 MIA 

MOA 3.3 9.9 ± 0.1 4.8 ± 0.3 2.65 ± 0.03 MOA 

SRA 4.4 9.9 ± 0.1 5.8 ± 0.1 1.75 ± 0.01 SRA 

SCA 3.8 9.9 ± 0.0 0.7 ± 0.1 2.85 ± 0.03 SCA 

(a) pH measured pre-dose, (b) total concentration of AMG 517 measure pre-dose, (c) 
solution concentration of AMG 517 measured within 2 hr post dose and (d) mean particle 
size of formulation measured within 2 hr post dose. 
 

Cocrystal LCA possesses an unexpectedly large mean particle size based on the particle 

size of the starting powder.  The particle size increase is due to partial conversion of this 

cocrystal to an amorphous form, as seen by a halo and broadened peaks in the XRPD and 

loss of birefringence in polarized light microscopy, which then agglomerated in the 

formulation (see appendix).  The pH of this formulation was also low which is an 

indication that the cocrystal has partially dissociated.  The formulations were also 
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analyzed pre-dose for total AMG 517 concentration to insure that the suspensions were 

homogeneous and accurately prepared.  All formulations were within the target 

concentration of 10 mg/mL ± 10% with the exception of cocrystal ADA which was 17% 

above the target concentration (table 4.5).  Therefore the dose-normalized AUC 

(DNAUC) was used for all compounds in the data correlations to correct for the actual 

concentration of AMG 517. 

 

In Vivo Study: Results and Correlations with Dissolution 

The pharmacokinetic parameters are listed in table 4.6 and the plasma 

concentration over time curves are shown in figure 4.11.  The plasma concentrations 

measured for cocrystal SRA in this investigation are consistent with historical data when 

dosed as suspensions in 10% Pluronic® F108 in OraPlus® (Cmax 13,400 ng/mL and AUC0-

24h 320,000 ng*h/mL1) indicating that the 1% PVP K25 in water vehicle did not have a 

considerable effect on the exposure as intended.  The DNAUC is listed in table 9 for both 

0-6 hr and 0-24 hr in table 9 since groups CNA and CND both have one animal for which 

the time points after 6 or 8 hr are not available.  The linear regression analysis of the two 

DNAUC values correlates very well with R2 0.9069, the only outlier being CND whose 

DNAUC0-24 hr for two animals is high compared to its DNAUC0-6 hr for all 3 animals.  Due 

to this discrepancy, the DNAUC0-6 hr is used for statistical analysis.  All of the cocrystals 

increased the DNAUC0-6 hr 2.3 – 8.1 fold over the free base with 10 out of the 16 (BZD, 

CND, GUA, GYA, HXA, MEA, MIA, MOA, SRA and SCA) resulting in statistically 

significant increases (p ≤ 0.003).  The cocrystals also reach a higher Cmax than FBA with 

the same 10 cocrystals above as well as BZA qualify as significant increases (p ≤ 0.008). 
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Table 4.6.  Pharmacokinetic parameters of AMG 517 and cocrystals. 
 

Tmax
a Cmax

b DNAUC0-6hr
c DNAUC0-24hr

d Compound 
(hr) (ng/mL) (hr*ng/mL per mg/kg) (hr*ng/mL per mg/kg) 

FBA 4-6 2553 ± 875 116 ± 38 462 ± 169 

ADA 6-8 8638 ± 2257 329 ± 101 1454 ± 390 

BZA 1-4 13237 ± 5341 543 ± 213 1988 ± 799 

BZD 2 16900 ± 3995 789 ± 178 3000 ± 305 

CNA 2, 8 5270 268 ± 87 1072 

CND 8, 24 16310 623 ± 303 3369 

HBA 4-8 11404 ± 3353 485 ± 51 2100 ± 551 

GUA 2-8 16167 ± 5864 796 ± 311 2921 ± 848 

GYA 1-4 20110 ± 3525  938 ± 190 3444 ± 726 

HXA 2-8 13789 ± 4980 606 ± 179 2701 ± 762 

HCA 1-2 11618 ± 4827 514 ± 224 1897 ± 775 

LCA 2-8 7047 ± 3628 318 ± 155 1311 ± 701 

MEA 2-8 18145 ± 5000  810 ± 194 2976 ± 715 

MIA 2-8 18416 ± 7053  868 ± 272 3441 ± 1275 

MOA 2 19550 ± 6850  894 ± 238 3152 ± 670 

SRA 2 19533 ± 1305  882 ± 14 3283 ± 531 

SCA 2 16943 ± 2909 777 ± 130 2747 ± 602 

(a) Time of plasma maximum concentration, (b) plasma maximum concentration (c) dose 
normalized plasma area under the curve from 0-6 hr (d) dose normalized plasma area 
under the curve from 0-24 hr 
 



 68

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hr)

A
M

G
 5

17
 P

la
sm

a 
C

on
c.

 (n
g/

m
L)

.

FBA
CNA
CND
BZA
BZD

 
 

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hr)

A
M

G
 5

17
 P

la
sm

a 
C

on
c.

(n
g/

m
L)

.

FBA
ADA
HBA
GUA
GYA
HXA
HCA

 

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hr)

A
M

G
 5

17
 P

la
sm

a 
C

on
c.

 (n
g/

m
L)

FBA
LCA
MEA
MIA
MOA
SRA
SCA

 

Figure 4.11. AMG 517 plasma concentration over time profiles for FBA and the 
cocrystals. 
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As discussed in the introduction a correlation between dissolution rate and 

exposure is expected for the different forms of a poorly soluble molecule such as AMG 

517 where faster dissolution, under conditions relevant to the in vivo study, provides 

greater concentrations of drug in the plasma.  In general, this holds true here where all 

AMG 517 cocrystals had a faster IDR and a higher solution concentration at 15 min in 

FaSIF as well as a higher AUC as compared to FBA.  Nevertheless a strong overall linear 

correlation between powder or intrinsic dissolution rate and exposure was not seen (R2 

0.5065 and 0.4245 respectively).  Figure 4.12 shows the linear regression analysis of the 

two in vitro dissolution methods with the DNAUC0-6hr.  

Examining the powder dissolution relationship with DNAUC0-6hr, cocrystal MEA 

obtained one of the highest DNAUC0-6hr even though the concentration at 15min in 

solution in FaSIF was one of the lowest.  As mentioned previously this formulation was 

the only one with an AMG 517 concentration in solution higher than the free base 

formulation.  This may have provided the higher than expected exposure for this 

cocrystal.  Cocrystal LCA, which became partially amorphous and agglomerated in the 

formulation, has an unexpectedly low DNAUC0-6hr based on its behavior in the powder 

dissolution study.  The decrease in surface area due to agglomeration may have caused 

the low DNAUC0-6hr.  Deletion of this cocrystal from the correlation as well as cocrystal 

MEA discussed above results in an improved association (R2 = 0.6550).  

Examining the intrinsic dissolution relationship with DNAUC0-6hr it is seen that 

the IDR of cocrystal HCA may be exaggerated as discussed in the intrinsic dissolution 

section due to excessive compression inducing change to the form as seen by NIR.  

Elimination of this data point from the IDR and DNAUC0-6hr comparison greatly 
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improves the linear relationship (R2 = 0.5687).  Exclusion of cocrystals LCA and MEA 

as discussed in relation to the powder dissolution does not have a noteworthy effect on 

the association of DNAUC0-6hr with IDR.   
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Figure 4.12.  Correlation analysis of DNAUC with powder dissolution (top) and intrinsic 
dissolution (bottom) in FaSIF. 

 

Conclusion 

An increase in dissolution rate did lead to improved pharmacokinetics of AMG 

517 however a strong linear correlation with DNAUC0-6hr among the 16 cocrystals is not 

apparent.  Even with removing outliers based on the analysis of the formulations only a 
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moderate correlation was noted with both dissolution techniques although slightly 

improved for powder dissolution compared to intrinsic dissolution.  This was likely due 

to the similarity of the dosage form (suspension) to the powder dissolution conditions.  

Other parameters were also investigated in linear regression analysis such as the plasma 

Cmax instead of the DNAUC0-6hr or different time points in the powder dissolution profiles 

but the correlations were not greatly improved.    The lack of a strong in vitro/in vivo 

correlation was not too surprising considering the inherent variability within in vivo 

systems and the power of the study.   

What does come from that data and perhaps more relevant in a drug development 

setting is that one group of seven cocrystals were consistently high performers 

(highlighted in blue in figure 4.12) with DNAUC0-6hr ≥ 777 hr*ng/mL per mg/kg, IDR ≥ 

0.0011 mg/cm2/min and powder dissolution solution concentration ≥ 24 μg/mL at 15 

min.  If the cutoff criteria for a cocrystal to be examined in pharmacokinetic 

investigations in the rat had been set at a 30 μg/mL solution concentration at 15 min in 

FaSIF in the powder dissolution study six of the sixteen cocrystals would have continued 

into PK studies.  Three cocrystals with DNAUC0-6hr ≥ 777 hr*ng/mL per mg/kg would 

have been overlooked (MEA, SRA and SCA), one cocrystal would have performed 

poorly with a DNAUC0-6hr of only 606 hr*ng/mL per mg/kg (HXA) and five would have 

performed well as expected with DNAUC0-6hr ≥ 789 hr*ng/mL per mg/kg (BZD, GUA, 

GYA, MIA and MOA).  A similar analysis of the intrinsic dissolution data, dosing the 

top six cocrystals with IDR ≥ 0.0014 mg/cm2/min in PK studies, would have only 

encompassed four of the eight cocrystals with high DNAUC0-6hr ≥ 777 hr*ng/mL per 

mg/kg.  Most importantly, the two cocrystals with the highest exposures (GYA and 
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MOA) would have been encompassed by both filters thereby allowing for the selection 

of a single cocrystal form to be developed as a drug product. 
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Chapter 5. Acid and Amide Cocrystal Pairs 

 

Introduction 

Screening for pharmaceutical cocrystals of an API in industry is typically 

restricted to cocrystal formers which have a history of being safe for use in humans (i.e. 

listed as “generally regarded as safe” by the FDA and found in currently marketed 

products).1,2  Due to their known safety profile a product containing these cocrystal 

formers would be less time consuming and costly to develop.  This characteristically 

leads to a cocrystal screen of only carboxylic acids previously used as salt formers for 

basic APIs.  Arguments have been made that expanding beyond carboxylic acids would 

provide more variety in hydrogen bonding functional groups to interact with the API 

resulting in a higher probability of forming a cocrystal as well as more diverse 

physicochemical properties.  An amide in particular, with an additional hydrogen bond 

donor in comparison to a carboxylic acid,  is likely to form a unique hydrogen bonding 

network resulting in changes to the crystal packing and in turn the physicochemical 

properties of the compound.  A second motivation to screen for a larger variety of 

cocrystal forms is to protect the intellectual property of an API.   

Two case studies of the carboxylic acid cocrystals, BZA and CNA, and the 

corresponding amide cocrystals, BZD and CND, were examined here to see if the 

differences in crystal packing lead to varied dissolution and pharmacokinetics.  Also, the 

utility of the in silico tool of crystal structure analysis as an added layer to form selection 

in the drug development process is discussed.    
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Experimental 

Powder Dissolution Method 

 Approximately 30mg of compound was weighed into 20mL glass scintillation 

vials in triplicate.  Then, 10mL of FaSIF (5mM taurocholic acid sodium salt and 1.5 mM 

lecithin in pH 6.8 phosphate buffer) was added and continually stirred on a magnetic 

stirrer at room temperature (20-25˚C).  At each time point (1, 15, 30, 45, 60, 90, 120, 240 

and 1440 min) 0.6 mL was filtered through a 0.45 μ, 13 mm, PTFE syringe filter into an 

HPLC vial (leaving the first 4 drops to waste).  Samples were diluted 3 fold with DMSO 

to prevent precipitation if needed.  Analysis was conducted by HPLC-UV to determine 

the AMG 517 and cocrystal former (where possible) concentration in solution.  After the 

final time point the suspension was analyzed by laser diffraction and microscopy for 

particle size determination and then centrifuged 10 min at 13,000 rpm.  The surpernatent 

was discarded and the pellet was air dried for 24 hr then analyzed by XRPD, DSC and 

TGA to determine the form. 

Intrinsic Dissolution Method 

Intrinsic dissolution was conducted in a Varian VK 7025 dissolution apparatus 

(Palo Alto, CA) using a rotating disk apparatus at 37 ˚C at 100 rpm in 500 mL FaSIF for 

2 hr (n = 1) and 4 hr (n = 2). Compacts were produced by compressing 100 mg of 

compound into a die at 2000 psi (3000 psi for cocrystal HCA) for 2 min in a carver press 

(surface area 0.5 cm2).  Compacts were analyzed by NIR pre dissolution to assess form.  

FaSIF samples (0.7 mL) were withdrawn manually at each time point and filtered through 

0.45 μm PTFE syringe filter, leaving 8 drops to waste before collection into an HPLC 

vial, then analyzed by HPLC-UV at 280 nm for AMG 517 content.  Compacts were dried 
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at room temperature for at least 24 hr then analyzed by NIR and XRPD to assess the 

form. 

Pharmacokinetic Investigation Methods 

The animal procedures were conducted under a protocol approved by the Amgen, 

Inc (Cambridge, MA) Institutional Animal Care and Use Committee.  Male Sprague 

Dawley rats, 300-325 g, were obtained from Charles River Laboratories (Wilmington, 

MA) with catheters implanted in the femoral artery and vein; the surgical procedures 

were conducted under aseptic conditions.  The rats were housed in a temperature- and 

humidity-controlled environment subject to a 12 h light:12 h dark cycle and had access to 

water and a standard laboratory rodent diet ad libitum.  Animals were allowed to 

acclimate for one week prior to use.  Rats (n=3) were administered a single dose of test 

material (100 mg/kg) formulated as suspensions in 1% PVP K25 in water by oral gavage.  

Blood samples were collected from the femoral artery catheter at 0.25, 0.5 1, 2, 4, 6, 8, 

and 24 h post-dose.  Plasma was separated by centrifugation and stored at -80° C until 

analyzed.   

Plasma standards were prepared by serial dilution in male Sprague-Dawley rat 

plasma with K2EDTA (Bioreclamation) at 25,000, 12,500, 6,250, 3,125, 1,562, 781, 391, 

195 and 98 ng/mL AMG 517.  Plasma standards and samples were extracted with a 4x 

dilution of an internal standard (ISTD) solution (acetonitrile with 0.1 % formic acid and 

200 ng/mL AMG 8316643) and centrifuged for 20 min at 4 ˚C.   

LC/MS-MS analysis of plasma extracts was conducted on an Agilent HPLC-MSD 

Trap equipped with an APCI probe, Varian Pursuit C18, 30 x 2 mm, 5 μ column and 

ChemStation software in multiple reaction monitoring (431.1 m/z and 445.1 m/z) mode.  
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The chromatographic method was isocratic at 45 % acetonitrile in water with 0.1% 

formic acid at 0.75 mL/min.  Integration of the smoothed, extracted ion chromatogram at 

389.1 m/z was used for quantitation against the standard curve corrected with the ISTD 

concentration.  Integration of the smoothed, extracted ion chromatogram at 389.1 m/z 

with the Bruker Daltonics DataAnalysis for LC/MSD Trap software v3.3 was used for 

quantitation against the standard curve corrected with the ISTD concentration.   

Single Crystal: Attachment Energy and Morphology Calculation Methods 

Attachment energies and crystal morphologies were calculated using Dreiding 

force field4 and Ewald summation5 with Accelrys Materials Studio® v4.4 (San Diego, 

CA).  The calculated crystal morphology was determined using the attachment energy 

(AE) method.6,7  The AE method was based on atom-atom interactions within the crystal.  

The crystal morphology was determined by calculating the energy released when one 

layer of the molecular assembly was added to the growing crystal, which was 

proportional to the growth rate of the crystal face.7,8  Morphology calculations were 

compared to the morphology of crystals grown from solution to confirm consistency in 

crystal shape in order to determine molecular packing within the crystal planes. 

Statistical Calculation Methods 

Statistical differences between groups were calculated using SigmaStat for 

Windows version 3.0.1 (SPSS Inc., Chicago, IL) applying a Kruskal-Wallis9 one-way 

analysis of variance on ranks (ANOVA) followed by a multiple comparison procedure 

versus FBA (Holm-Sidak method, p value must be lower than the critical value to be 

considered significant).  Student’s t-test was used to determine statistical significance 

between two groups. 



 78

 

Results and Discussion 

Powder dissolution profiles of the four cocrystals in FaSIF over time are 

displayed in figure 5.1.  It is clear from this figure that BZA and BZD have comparable 

dissolution profiles where both cocrystals reach a similar maximum solution 

concentration of AMG 517 (Smax 30.1 and 30.5 μg/mL respectively) within 15-30 min.   

In contrast, CNA and CND have very different dissolution profiles where CND reaches 

Smax (26.5 μg/mL) at 30 min and CNA dissolves very slowly reaching a similar Smax 

(24.6 μg/mL), but not until 90 min.  The spread between the solution concentration of 

AMG 517 at 15 min between CNA and CND is statistically significant (P<0.001).  
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Figure 5.1. Powder dissolution profiles to 240min of FBA and the cocrystals.   

 
Intrinsic dissolution rates (IDR) of BZA, BZD, CNA and CND (0.0012, 0.0014, 

0.0010, 0.0013 mg/cm2/min respectively) while being significantly higher than the IDR 

of FBA (0.006 mg/cm2/min, p < 0.012)), are not significantly different within the acid 

and amide pairs (BZA and BZD p = 0.184 and CNA and CND p = 0.200).  The AMG 
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517 plasma concentration over time profiles from rat pharmacokinetic investigations are 

shown in figure 5.2.  Visually this data correlates well with the powder dissolution results 

where the BZA and BZD cocrystals perform similarly while the CNA cocrystal is not 

absorbed to the same extent as the CND cocrystal maintaining a lower plasma 

concentration throughout the 24 hr study.  However no statistical difference exists 

between the DNAUC0-6hr of the acid and amide pairs (BZA and BZD p = 0.291 and CNA 

and CND p = 0.123).  Over all, the dissolution and pharmacokinetics of BZA and BZD 

are very similar while CND displays properties superior to those of CNA for 

development of an API. 
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Figure 5.2. AMG 517 plasma concentration over time profiles for FBA and the 
cocrystals. 

 
 

The crystal structure of BZD is unavailable, despite great effort to crystallize a 

suitable crystal for single crystal structure analysis; consequently the discussion as it 

relates to crystal structure will utilize only the CNA and CND acid/amide cocrystal pair 

with comparisons to FBA.  The additional hydrogen bond donor on the amide as 

compared to the carboxylic acid cocrystal former did produce two unique matrices for 

CNA and CND as shown in figure 5.3. 
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Figure 5.3. Schematic representation of hydrogen bonding in CNA and CND 
 
 

The crystal structure of CNA consists of hydrogen bonded dimers of AMG 517 

and the cocrystal former resulting in a triclinic crystal system and Pī space group.  In 

contrast to CNA the dimers of AMG 517 and cocrystal former in CND form continuous 

chains through the additional hydrogen bond from amide to amide generating a 

monoclinic crystal system and C2/c space group. 

Further in silico analysis of the crystal structures may reveal characteristics of the 

different packing arrangements which could be responsible for the difference in physical 

properties described above.  This type of analysis could be included in the form selection 

process to predict or explain physical properties of a given crystal form.  The attachment 

energy (Eatt) or the energy released per mole of layer added to a crystal face is 

proportional to the growth rate of that face.10,11  Therefore, crystal faces with a low 

absolute Eatt are the slow growing and consequently morphologically significant faces.  

These crystal faces will have the most contact with the dissolution media and will directly 

impact the rate at which dissolution occurs depending on the compatibility of the crystal 

face with the media.  The calculated Eatt of the crystal faces of FBA, CNA and CND are 
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listed in table 5.1.  Overall, the absolute attachment energies of the two faces which make 

up the most % facet area for FBA (1-10 and 001) and CNA (011 and 001) are 

approximately 4 times lower than the faces which make up the largest % facet area for 

CND (200 and 20-2). These two morphologically significant faces comprise 68.6-72.2% 

of the total surface area of all three crystals, therefore the surface properties of these faces 

are likely responsible for the bulk physical properties of the powder.    

 
Table 5.1. Calculated attachment energies for FBA, CNA and CND 
 

FBA 

face (hkl)  1 -1  0  0  0  1  1  0 -1  1  0  0  0  1  0  0  1 -1 

% total 
facet area 46.4% 22.2% 14.0% 10.9% 3.3% 3.2% 

Eatt total 
(kcal/mol) -46.4 -79.7 -89.3 -104.3 -150.7 -116.3 

CNA 
face (hkl)  0  1  1  0  0  1  1  0  1  1  1  1  1  0  0   0  1  0  1  1  0 

% total 
facet area 38.0% 34.2% 17.2% 4.1% 2.5% 2.5% 1.5% 

Eatt total 
(kcal/mol) -40.3 -42.9 -70.5 -84.1 -107.2 -70.9 -103.1 

CND 

face (hkl)  2  0  0   2  0 -2  0  0  2  1  1 -1  1  1  1  3  1 -1  1  1 -2 

% total 
facet area 37.2% 32.1% 10.7% 10.6% 7.8% 1.5% 0.1% 

Eatt total 
(kcal/mol) -169.2 -176.7 -207.4 -397.5 -400.3 -416.7 -412.7 

 
 

The calculated crystal morphologies of FBA, CNA and CND are shown in figure 5.4 

along with photomicrographs of representative crystals of the same polymorph.  The 

calculated morphologies appear to correlate well with the actual crystals.  In figure 5.5 a 
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slice of the two crystal faces with the highest % total facet area for compounds FBA, 

CNA and CND are shown.   

 
Figure 5.4. Calculated crystal morphology (top) and photomicrographs (bottom) of FBA 
(left), CNA (middle) and CND (right).   
 

The slice of the (2 0-2) face of CND indicates the presence of polar amide groups (green 

circle in figure 5.5) near the crystal face while the other morphologically significant 

crystal faces of FBA, CNA and CND contain less polar acetamide, pyrimidine or CF3 

groups.  The higher absolute attachment energies of CND and the polarity of the 

significant (2 0-2) face, which would be expected to be more hydrophilic, should provide 

a stronger interaction with the aqueous environment during the dissolution processes in 

vitro and in vivo.  This correlates well with the improved dissolution and bioavailability 

of CND over CNA and FBA seen here. 
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Figure 5.5. Slice through morphologically important crystal faces of FBA (top), CNA 
(middle) and CND (bottom).  Green circle highlighting the amide group on the surface of 
the (20-2) face of CND. 
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Conclusion 

The AMG 517 amide cocrystals displayed unique dissolution and 

pharmacokinetic properties in only one of the two case studies above.  It is clear from the 

crystal structures of CNA and CND that the hydrogen bonding of the amide produced a 

unique packing arrangement to that of the carboxylic acid which has distinctive physical 

properties.  Without the crystal structure of BZD it is unknown if a similar difference in 

hydrogen bonding between BZD and BZA lead to the opposite result in this case.  

Although based on the rules derived by Etter12, all reliable proton donors and acceptors 

would be used in hydrogen bonding and the amide is classified as a reliable donor.  Also, 

one other AMG 517 amide cocrystal (propionamide)3 also contained the same hydrogen 

bonding pattern to that of CND.  Thus it is likely that the BZD hydrogen bonding pattern 

is at least unique to that of BZA if not the same as CND and the AMG 517 propionamide 

cocrystal.  If this is the case, the uniqueness of the hydrogen bonding and crystal packing 

did not produce distinctive dissolution rates for both amide cocrystals.  The benefit of 

expanding the list of cocrystal formers for screening of an API beyond carboxylic acids 

would likely need to be made on a case by case basis and may way more on protecting 

intellectual property than improving physical properties. 
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Chapter 6: Conclusions and Future Considerations 

 Dissolution testing is a vital and widely accepted in vitro tool available to the 

pharmaceutical chemist when selecting a form of a poorly soluble drug for development 

in the clinic.   Polymorphs or salts with dissolution rates similar to or less than that of the 

free form are likely not tested further unless they posses some other benefit such as 

physical stability or processability.  The same would hold true here with different 

cocrystals or polymorphs of cocrystals.  The dissolution testing would have likely led to 

selection of the top 4-6 cocrystals to continue on to in vivo studies reducing the number 

of animal studies required to reach the clinic.  As more cocrystal screening for new APIs 

is conducted and these forms are considered for development dissolution will likely be 

embedded in the form selection process as it has been for salts, polymorphs or 

formulations of an API.  Other tools utilized in conjunction with in vitro studies such as 

the in silico attachment energy calculations conducted here would be a useful addition to 

the dissolution data especially with single crystal structure determination becoming more 

accessible, with less expensive bench top X-ray diffractometors and software with more 

automated analysis. 

 Having produced a substantial library of crystal structures of AMG 517 hydrates, 

solvates, cocrystals, polymorphs of these corystals, a cocrystal-hydrate, as well as 

cocrystals of similar compounds,36 a detailed look into patterns in crystal packing and 

conformational energies is essential.  Furthermore, any insight these results may reveal 

into the physical properties such as physical stability, hygroscopicity, dissolution and 

pharmacokinetics collected thus far is warranted.   
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 The benefit of growing the list of cocrystal formers beyond carboxylic acids to 

discover a new API form is still up for debate.  While an improvement in dissolution and 

pharmacokinetics was seen here with one amide cocrystal compared to its corresponding 

acid cocrystal, there were other carboxylic acid cocrystals which performed just as well 

as the amide cocrystal.  Also, it was shown that even cocrystals which hydrogen bond 

through the same heterosynthon may result in unique crystal packing.  Although 

protecting the intellectual property of an API is clearly vital, what is the utility of a 

cocrystal produced with a cocrystal former of an unknown or questionable safety profile?  

It may be that only when no other acceptable salts, polymorphs, cocrystals or 

formulations of the API can be produced that this option would be considered.  Further 

research and publication of these alternative cocrystals is needed to elucidate the benefit 

or futility of the effort. 

Regardless of the type of cocrystal former, cocrystallization has been shown to be 

a successful process to improve the dissolution and pharmacokinetics of the poorly 

soluble API AMG 517.  While the overall linear correlation of AUC with dissolution rate 

of all sixteen AMG 517 cocrystals and the free base form A was only moderate, 

dissolution testing of the cocrystals, either powder or intrinsic, was also considered 

valuable in selecting a cocrystal form for study in pharmacokinetic investigations. 
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Chapter 7. Appendix 

 

The following is a compilation of all X-ray powder diffraction (XRPD), 

proton nuclear magnetic resonance (1H NMR), differential scanning calorimetry 

(DSC), thermal gravimetric analysis (TGA), particle size distributions, polarized light 

microscopy (PLM) and near-infrared spectroscopy (NIR) data for FBA, FBB, FBC 

and the sixteen cocrystals.  XRPD overlay is of the original powder, the solids 

isolated from powder dissolution, the pellet after intrinsic dissolution and the solids 

isolated from the formulation.  Any changes to the original form post-dissolution or in 

the formulation are noted.  Samples isolated from FaSIF may have a peak at 28.4º 

2theta due to the FaSIF component potassium chloride.  1H NMR spectra in DMSO-

d6 of the original powder.  DSC and TGA thermograms of the original powder and 

the solids isolated post-powder dissolution.  Any changes to the form are noted.  

Particle size distributions show an overlay of the original powder, the solids in FaSIF 

post powder dissolution and the solids in the formulation post dose.  Polarized light 

microscopy photos of the original powder, the solids in FaSIF post powder 

dissolution and the solids in the formulation post dose.  NIR spectra of the original 

powder in a 20mL glass vial and the compacted powder in the woods apparatus pre 

and post intrinsic dissolution.  Any changes to the original form are noted.  The glass 

vial produced a peak at 1396 nm. FBB and FBC were not included in all 

experiments; therefore the data for these forms is limited. 
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FBA (cont.) 
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FBA (cont.) 
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FBA (cont.) 
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FBB 
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FBB (cont.) 
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FBB (cont.) 
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FBC (cont.) 
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FBC (cont.) 
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ADA (cont.) 
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ADA (cont.) 
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ADA (cont.) 
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BZA (cont.) 
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BZA (cont.) 
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PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation 
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BZA (cont.) 

 

 
NIR: FBA at 2063nm post intrinsic dissolution
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BZD 
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1H NMR: 1.0 eq amide; 2(CH) 7.86ppm, CH 7.6ppm, 2(CH) 7.45ppm 
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XRPD: FBB/FBC/BZD post powder dissolution 
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BZD (cont.) 
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BZD (cont.) 
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PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation 
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BZD (cont.) 
 

 

 
NIR: Minor FBA possible at 2066nm post dissolution
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CNA 
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1H NMR: 1.0 eq acid; 2(CH) 7.7ppm, CH 7.6ppm, 3(CH) 7.4ppm, CH 6.5 ppm 
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XRPD: CNA/FBB post powder dissolution 
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CNA (cont.) 
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CNA (cont.) 
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PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation 
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CNA (cont.) 
 
 

 
NIR: No change
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CND 
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1H NMR: 1.0 eq amide; 2(CH) 7.6ppm, 4(CH) 7.4ppm, CH 6.5 ppm 

6 8 10 12 14 16 18 20 22 24 26 28 30
2Theta (°)

2500

10000

22500

In
te

ns
ity

 (c
ou

nt
s)

 
XRPD: CND/FBB post powder dissolution 
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CND (cont.) 
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CND: ~87% cocrystal remaining
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CND (cont.) 

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100
C

um
ul

at
iv

e 
di

st
rib

ut
io

n 
Q

3 
/ %

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

D
en

si
ty

 d
is

tri
bu

tio
n 

q3
*

0.100.10 0.2 0.4 0.6 0.8 1 2 4 6 8 10 20 40 60 80 100
particle size / µm

CND dose formulation
CND original

CND post powder dissolution

 
Particle Size Distributions 

 

  
PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation 
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CND (cont.) 

 
 

 
NIR: No change
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HBA 
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1H NMR: 0.5 eq acid; CH integrates as 0.5 7.16ppm, 6.98ppm and 6.78ppm 
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XRPD: FBB/FBC post powder dissolution 
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HBA (cont.) 
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TGA: No cocrystal remaining, 0.5% likely FBC
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HBA (cont.) 
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Particle Size Distributions 

 

  
PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation 
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HBA (cont.) 

 
NIR: No change
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GUA 
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1H NMR: 1.0 eq acid; 2(CH2) 2.2ppm, CH2 1.7ppm 
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XRPD: FBC post powder dissolution, GUA/FBA post intrinsic dissolution
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GUA (cont.) 
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TGA: No cocrystal remaining, 4.2% likely FBC
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GUA (cont.) 
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PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation 
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GUA (cont.) 
 

 
NIR: FBA at 2066nm post intrinsic dissolution
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GYA 
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1H NMR: 1.0 eq acid; CH2 3.91ppm 
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XRPD: FBC post powder dissolution
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GYA (cont.) 
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DSC: No cocrystal remaining, early endotherm likely FBC 
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GYA (cont.) 
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Particle Size Distributions 

 

  
PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation 
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GYA (cont.) 

 

 
NIR: No change 
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HXA 
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1H NMR: 1.0 eq acid; CH 6.83 and 5.78ppm, CH2 2.16 and 1.45ppm, CH3 0.91ppm 
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XRPD: FBC post powder dissolution



 132

HXA (cont.) 
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TGA: No cocrytsl remaining, 3.9% likely FBC
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HXA (cont.) 
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PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation 
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HXA (cont.) 
 

 
NIR: No change 
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HCA 
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1H NMR: 1.0 eq acid; CH 3.91ppm, CH2 1.52ppm, 2(CH2) 1.3ppm, CH3 0.87ppm 
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XRPD: FBC/FBA post powder dissolution, HCA/FBA post intrinsic dissolution
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HCA (cont.) 
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DSC: No cocrystal remaining, early endotherm likely FBC 
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TGA: No cocrytsl remaining, 1.7% likely FBC 
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HCA (cont.) 
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PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation 
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HCA (cont.) 

 

 
NIR: Changes at 1901 & 2220nm post compaction
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LCA 
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1H NMR: 1.0 eq acid; CH 4.03ppm, CH3 1.24ppm 
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XRPD: FBC post powder dissolution 
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LCA (cont.) 
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TGA: No cocrytsl remaining, 4.5% likely FBC 
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LCA (cont.) 
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Particle Size Distributions 

 

  
PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation  
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LCA (cont.) 
 

 
NIR: No change
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MEA 
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1H NMR: 0.5 eq acid; 2(CH) integrate as 1 at 6.26ppm 
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XRPD: FBB/FBC post powder dissolution 
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MEA (cont.) 
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DSC: No cocrystal remaining, early endotherm likely FBC 
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MEA (cont.) 
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Particle Size Distributions 
 

  
PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation 
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MEA (cont.) 
 

 
NIR: No change 
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MIA 
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1H NMR: 0.5 eq acid; 3(CH) integrates as 0.5 at 4.26, 2.61 and 2.47ppm 
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XRPD: FBB/FBC post powder dissolution 
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MIA (cont.) 
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DSC: No cocrystal remaining, early endotherm likely FBC 
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TGA: No cocrytsl remaining, 4.7% likely FBC 



 149

MIA (cont.) 
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Particle Size Distributions 

 

  
PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation 
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MIA (cont.)  
 

 
NIR: FBA very minor at 2066nm post intrinsic dissolution
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MOA 
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1H NMR: 1.0 eq acid; CH2 3.24ppm 
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XRPD: FBB/FBC post powder dissolution 
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MOA (cont.) 
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DSC: No cocrystal remaining, early endotherm likely FBC 
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TGA: No cocrytsl remaining, 4.4% likely FBC 
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MOA (cont.) 
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Particle Size Distributions 

 

  
PLM: 200x original powder (left) post powder dissolution (right) 

 

 
PLM: 200x post dose formulation 
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MOA (cont.) 
 

 
NIR: No change 
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SRA 
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1H NMR: 1.0 eq acid; CH 7.18 and 5.79ppm, 2(CH) 6.25ppm, CH3 1.83ppm 
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XRPD: SRA/FBB post powder dissolution, SRA/FBA post intrinsic dissolution 
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SRA (cont.) 
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DSC: Mostly cocrystal remaining 
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SRA (cont.) 

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100
C

um
ul

at
iv

e 
di

st
rib

ut
io

n 
Q

3 
/ %

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

D
en

si
ty

 d
is

tri
bu

tio
n 

q3
*

0.100.10 0.2 0.4 0.6 0.8 1 2 4 6 8 10 20
particle size / µm

SRA original
SRA post powder dissolution

SRA dose formulation
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PLM: 200x original powder (left) post powder dissolution (right) 
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SRA (cont.) 

 

 
NIR: FBA at 2066nm post intrinsic dissolution
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SCA 
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SCA (cont.) 
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SCA (cont.) 
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SCA (cont.) 
 

 
NIR: No change 
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