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ABSTRACT 

 

The Scanning Acoustic Microscope (SAM) is a powerful tool for understanding the mechanical 

characteristics of substrates with micro-scale near-surface graded layers.  To interpret the SAM 

results from such substrates, a theoretical model was developed that incorporated the interaction 

of focused ultrasonic field, with a substrate having a near-surface graded layer.  The focused 

ultrasonic field model was formulated in terms of spherical wave expansions.  The substrate 

wave propagation was computed with a multilayered stiffness method.  The bridging between the 

two models was accomplished by utilizing the angular spectrum.  A commercial SAM was used 

to characterize a dentin substrate subjected to acid-etching.  Calibration and a homotopic 

measurement protocol were developed for data accuracy and meaningful data comparison from 

pre and post etching states.  The reflection coefficients from the SAM measurement for the 

etched dentin exhibited frequency dependent attenuation.  The developed theoretical model was 

successfully applied to explain the observed frequency dependent phenomenon.  

 

 

 



 iv 

TABLE OF CONTENTS 

 

ABSTRACT...................................................................................................................................iii 

TABLE OF CONTENTS............................................................................................................... iv 

LIST OF FIGURES......................................................................................................................... v 

LIST OF TABLES ........................................................................................................................vii 

ACKNOWLEDGEMENTS .........................................................................................................viii 

1.0 INTRODUCTION........................................................................................................... 1 

1.1 Background ................................................................................................................. 1 

1.2 Problem Statement ...................................................................................................... 3 

1.3 Objectives of the Study ............................................................................................... 4 

1.4 Organization ................................................................................................................ 5 

2.0 THEORY......................................................................................................................... 6 

2.1 Reflection scanning acoustic microscopy ................................................................... 6 

2.1.1 Background ......................................................................................................... 6 

2.1.2 Contrast Mechanism............................................................................................ 8 

2.2 Modeling Methodology............................................................................................... 9 

2.2.1 Determination of focused ultrasonic field......................................................... 12 

2.2.2 Angular spectrum .............................................................................................. 30 

2.2.3 Focused ultrasonic field results ......................................................................... 33 

2.2.4 Substrate Model................................................................................................. 40 

2.2.5 Parametric Studies............................................................................................. 50 

3.0 EXPERIMENT.............................................................................................................. 56 

3.1 SAM used in this work.............................................................................................. 56 

3.2 SAM Calibration ....................................................................................................... 57 

3.2.1 Calibration materials ......................................................................................... 59 

3.2.2 Data acquisition and analysis ............................................................................ 60 

3.2.3 Gain Functions .................................................................................................. 65 

3.2.4 Calibration curves ............................................................................................. 68 

3.2.5 Prediction of LDPE and TPX
®

 reflection coefficients...................................... 70 

3.2.6 Repeatability...................................................................................................... 71 

3.2.7 Error analysis..................................................................................................... 72 

3.3 Homotopic Measurement .......................................................................................... 75 

3.3.1 Specimen holder for homotopic measurement.................................................. 77 

3.3.2 Principles........................................................................................................... 78 

3.4 Dentin Structure, Composition and Mechanical Properties ...................................... 80 

3.5 Characteristics of Acid-Etched Dentin...................................................................... 82 

3.6 Application of SAM to dental materials ................................................................... 85 

3.7 Dentin Specimen Preparation.................................................................................... 86 

3.8 Measurement Protocols ............................................................................................. 88 

3.8.1 Acquisition protocol.......................................................................................... 88 

3.8.2 Data processing ................................................................................................. 89 

3.9 Results from SAM Measurements of Etched Dentin ................................................ 90 

3.10 Theoretical Prediction of Reflection Coefficients..................................................... 98 

4.0 SUMMARY AND CONCLUSIONS ......................................................................... 107 

5.0 REFERENCES............................................................................................................ 112 



 v 

LIST OF FIGURES 

 

Figure 2.1 Reflection SAM setup.................................................................................................... 6 

Figure 2.2 a) A-Scan and b) Fourier amplitude spectra .................................................................. 7 

Figure 2.3 Relationship between lens aperture and elastic modulus............................................... 8 

Figure 2.4 Problem geometry........................................................................................................ 16 

Figure 2.5 Definition of wave vector and position vector............................................................. 31 

Figure 2.6 Axial fields for transducer 1 ........................................................................................ 34 

Figure 2.7 Axial fields for transducer 2 ........................................................................................ 34 

Figure 2.8 Two-dimensional contours of pressure field for transducer 2 at (a) 37.1 MHz, (b) 54.2 

MHz and  (c) 70.1 MHz ................................................................................................................ 35 

Figure 2.9 Amplitude of radial pressure fields at (a) 25.1 MHz, (b) 29.8 MHz, (c) 34.7 MHz  for 

transducer 1 and (d) 37.1 MHz, (e) 54.2 MHz and (f) 70.1 for transducer 2................................ 38 

Figure 2.10 Amplitude of angular spectra at (a) 25.1 MHz, (b) 29.8 MHz, (c) 34.7 MHz  for 

transducer 1 and (d ) 37.1 MHz, (e) 54.2 MHz and (f) 70.1 for transducer 2............................... 39 

Figure 2.11 Three-material system idealization............................................................................ 43 

Figure 2.12 Discretization of near-surface graded layer ............................................................... 44 

Figure 2.13 Material property profiles used in the parametric study ............................................ 50 

Figure 2.14 Amplitude of reflection coefficient with incidence angle for a homogeneous 

substrate......................................................................................................................................... 51 

Figure 2.15 Amplitude of reflection coefficient as a function of incidence angle for k
f
H (a) 0.42, 

(b) 10.6, (c) 29.6 and (d) 42.2 ....................................................................................................... 52 

Figure 2.16 Amplitude of reflection coefficient as a function of k
f
H for angles of incidence (a) 

0º, (b) 10º and (c) 18º .................................................................................................................... 54 

Figure 3.1 Transducer frequency spectra ...................................................................................... 56 

Figure 3.2 Reflection coefficient versus Fourier amplitude for transducer 1 at its central 

frequency....................................................................................................................................... 62 

Figure 3.3 Deconvolution of measured frequency spectra with respect to tungsten spectra ........ 63 

Figure 3.4 Caries affected tooth imaged at -10, 0 and 8 dB gain settings............................................. 63 

Figure 3.5 The gain function for (a) the -3 dB bandwidth frequency, fl, (b) the central frequency, 

fc, and, (c) the -3 dB bandwidth frequency, fh of transducer 1...................................................... 67 

Figure 3.6 Predicted and measured relationship between Fourier amplitude and reflection 

coefficient for 3 different gain settings at (a) the -3 dB bandwidth frequency, fl, (b) the central 

frequency, fc, and, (c) the -3 dB bandwidth frequency, fh. of transducer 1 and (d) the -3 dB 

bandwidth frequency, fl, (e) the central frequency, fc, and, (f) the -3 dB bandwidth frequency, fh. 

of transducer 2............................................................................................................................... 69 

Figure 3.7 Prediction of LDPE and TPX® ................................................................................... 70 

Figure 3.8 Calibration repeatability for transducer 2 shown at its central frequency ................... 71 

Figure 3.9 Reflection coefficient error analysis for transducer 1 at 6dB gain setting................... 73 

Figure 3.10 Reflection coefficient error analysis for transducer 2 at 24 dB gain setting.............. 74 

Figure 3.11 Device for homotopic measurements (a) optical image (b) SAM image .................. 77 

Figure 3.12  Initial and final placements of specimen in SAM..................................................... 78 

Figure 3.13 Dentin microstructure (adapted from Misra et al 2005) ............................................ 81 

Figure 3.14 Dentin specimen ........................................................................................................ 86 

Figure 3.15 SAM images (a) before and (b) after microtoming of dentin specimen.................... 87 

Figure 3.16 Measurement locations (units in mm) ....................................................................... 88 



 vi 

Figure 3.17 C-Scan images of before dentin substrate before (left) and after (right) acid etched 

dentin for the transducer 1 (top) and transducer 2 (bottom) ......................................................... 90 

Figure 3.18 Representative A-Scans (a) and their Fourier amplitude spectra (b) for transducer 1 

before and after acid etching of the dentin substrate..................................................................... 91 

Figure 3.19 Fourier amplitude spectra for locations 1-4............................................................... 92 

Figure 3.20 Fourier amplitude for locations 5-8 ........................................................................... 93 

Figure 3.21 Fourier amplitude spectra for locations 9-12............................................................. 94 

Figure 3.22 Fourier amplitude spectra for locations 13-16........................................................... 95 

Figure 3.23 Reflection coefficient amplitude for the subset of 16 locations ................................ 96 

Figure 3.24 Average reflection coefficients as functions of frequency before etching (top) and 

after etching (bottom) for the subset of 16 locations .................................................................... 97 

Figure 3.25 Incident and reflected angular spectra for transducer 1 at location 1 at (a) 25.1 MHz, 

(b) 29.8 MHz and (c) 34.6 MHz ................................................................................................. 101 

Figure 3.26 Incident and reflected angular spectra for transducer 2 at location 1 at (a) .37.1 MHz, 

(b) 54.2 MHz and (c) 70.1 MHz ................................................................................................. 102 

Figure 3.27 Reflected angular spectra for locations 1,5 and 11 for (a) transducer 1 at f=29.8 MHz 

and (b) transducer 2 at f=54.2 MHz ............................................................................................ 103 

Figure 3.28 Comparison between theoretical and experimental reflection coefficient amplitude 

for location 1 ............................................................................................................................... 104 

Figure 3.29 Comparison between theoretical and experimental reflection coefficient amplitude 

for location 5 ............................................................................................................................... 105 

Figure 3.30 Comparison between theoretical and experimental reflection coefficient amplitude 

for location 5 ............................................................................................................................... 105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii 

LIST OF TABLES 

Table 3-1 Calibration materials..................................................................................................... 60 

Table 3-2 Properties of etched layer for the three locations used for prediction ........................ 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 viii 

ACKNOWLEDGEMENTS 

 

 I would like to express my deepest gratitude to my advisor and mentor Prof. Anil Misra, 

for his invaluable help and guidance throughout the course of this work.  Also, I am greatly 

thankful to Prof. Paulette Spencer for her continuous support and for introducing me to the very 

intricate and fascinating world of dental materials.  Also, I would like to thank Prof. Adams, Dr. 

Kieweg, Prof. Han and Dr. Parsons for serving as members of my committee, and for taking the 

time to share their comments that contributed to the final version of this dissertation.  Special 

thanks to Prof. J. Lawrence Katz for introducing me to acoustic microscopy and for taking the 

time from his busy schedule to attend my dissertation defense.  In addition, I would like to 

acknowledge the National Institutes of Health/National Institute of Dental and Craniofacial 

Research (NIH/NIDCR) for providing partial financial support for this work (DE014392 PI: P 

Spencer, R13 DK069504 PI: P Spencer). 

 Thank you to good friends and colleagues that have stood by me during these years.  

Thank you to Geraldine, for being by my side with encouragement and patience from the very 

beginning of my Ph. D studies.  Finally, I would like to thank my mother for her endless and 

unconditional love, my father and brothers for their care and support. 

 

 

 

 

 

 

 



 1 

1.0  INTRODUCTION 

1.1 Background 

 

Material science and many engineering applications rely heavily on experimental methods to 

quantitatively evaluate materials.  Focus is set on experimental techniques that are non-

destructive in nature, in the sense that they do not cause permanent alterations to the specimen 

examined.  Such non-destructive techniques provide a unique ability to devise experimental 

protocols that involve a number of complementary evaluation techniques so that a more 

complete “picture” of a material may be formed.  Scanning acoustic microscopy (SAM) is such a 

non-destructive technique that is sensitive to the mechanical properties of a material.   

SAM appeared in the early 1970’s (Lemons and Quate 1974) as a new research technique 

that could provide images of elastic properties of a substrate with spatial resolution comparable 

to that of optical instruments.  Since then, it has received great attention and has been used in 

numerous applications for imaging as well as quantitative characterization (Briggs 1992).  

However, for biological materials scanning acoustic microscopy has been predominantly used 

for imaging, and quantitative efforts for measurement of elastic properties are scarce. 

Elastic property characterization using acoustic microscopy is typically based upon 

surface acoustic wave velocity measurements.  However, there are cases where the aperture of 

the acoustic objective does not favor the generation of leaky Rayleigh waves or any other type of 

surface waves from the specimen.  In such cases one relies only on the reflected signal amplitude 

to recover the elastic properties of the material.  Moreover, the bulk of SAM work has been 

carried out using either tone-burst or broadband excitation. 
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It is well-accepted that natural and engineered materials have varying structure and 

composition at different spatial scales which is responsible for how material properties manifest 

in experimental measurements.  In order to observe a material property, we “probe” and measure 

the reaction.  The observable property is thus intimately linked to the size of the “probe“.  For 

example, in acoustic microscopy, the probe is a focused acoustic field produced by a 

piezoelectric transducer/lens system.  The spatial resolution of this probe is a function of the 

operating frequency and the lens dimensions.  Consequently, the properties measured using SAM 

are strongly dependent upon the lens characteristics as well as the volume of material 

interrogated by the focused acoustic field.  The ability to interrogate different material volumes 

allows for characterization of complex substrates with varying microstructures. 

Complex substrates that possess microstructure are known to exhibit dissipative 

properties that manifest as a dispersion or spreading of acoustic pulses as they propagate through 

the thickness of a material (Ophir and Jaeger 1982).  A related wave propagation phenomenon is 

the frequency dependence of reflection coefficients.  However, since the reflection process 

involves interaction with a material volume with the dimensions comparable to an acoustic 

wavelength (wavelength in the coupling fluid for SAM), severe attenuation needs to occur in 

order for frequency dependence to be detected.  For example, it has been shown that for 

viscoelastic polymeric materials, the frequency dependence of reflection coefficients becomes 

important as the contrast between the elastic reflection coefficients becomes small (Bourbie 

1984).  Significant attenuation in the reflection also occurs in the presence of roughness (Nagy 

and Adler 1987).  Similar reflection phenomena are expected for substrates that have rapidly 

varying near-surface properties.   
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Many engineering applications require joining of materials through adhesive bonding.  

The interphases that the adhesives form with the materials, are thin (<100 micron) with 

significant spatial variations in material properties.  Such interphases are of interest in 

biomedical engineering and particularly in dental composite restorations.  In such restorations, 

the dentin substrate is acid-etched prior to adhesive application.  The etching is expected to de-

mineralize the dentin near-surface and expose the collagen into which the adhesive can infiltrate 

thus, producing an interphase.  The etching, however, is a complex process that results in a 

transition zone to the native dentin through a graded partially de-mineralized layer.  Therefore to 

understand the mechanical behavior of bond formed through this process it is critical to 

understand the properties of the etched layer.  

1.2 Problem Statement 

The problem driving this work is the characterization of the mechanical properties of the etched 

dentin near-surface layer.  To understand the mechanical characteristics of the etched dentin 

layer, we use Scanning Acoustic Microscopy (SAM) where ultrasonic waves are focused to 

interrogate a specimen.  We prefer SAM over more conventional indentation techniques because 

SAM is non-destructive and provides a range of spatial resolutions.  Since small-amplitude 

waves are involved, the specimen is not affected by the measurement and it is preserved in its 

near natural state.  In this way, we may subsequently subject the specimen to surface alterations, 

in this case etching, and directly observe the changes.  Additionally, the same sample may be 

used in complementary destructive or non-destructive techniques to obtain physico/mechanical 

properties. 

The determination of the mechanical properties of etched dentin with SAM requires 

proper interpretation.  The ultrasonic wave-field that is received by the acoustic microscope’s 
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objective includes the interactions with all materials and interfaces in its path.  Therefore, in 

order to adequately interpret the ultrasonic signal, a theoretical model of the wave propagation 

process is required that describes the focused acoustic field and its reflection from the substrate.  

Acid etched dentin results in gradation of the near-surface material composition and properties.  

The relative contribution of these acid-etching induced microstructures to the received ultrasonic 

signals is not known.  Moreover, the high resolution of SAM coupled with the complete 

transformation of the dentin near-surface after acid-etching, dictates that homotopic (same 

location) SAM measurements must be performed (Marangos et al 2009).  Homotopic SAM 

measurements can provide useful information about the attenuation mechanisms at the etched-

surface by utilizing acoustic fields of different wavelengths.   

 

1.3 Objectives of the Study 

In order to address the problem outlined above, the objectives were divided into two parts:  

1. Theoretical Component – the theoretical component consists of the following 3 tasks: 

1)  Modeling of focused ultrasonic field –The outcome of this task will be a methodology for 

determining the focused ultrasonic field.   

2)  Modeling of interaction of the ultrasonic field with a complex substrate – The outcome of this 

task will be: (i) a model for wave propagation in the complex substrate, and (ii) a methodology 

for bridging the focused acoustic field determined in task 1 with the substrate model developed 

in task 2. 

3)  Parametric studies to assess model capabilities – The outcome of this task is to provide 

insight to the interaction of acoustics fields with near-surface graded layer. 

2. Experimental component – the experimental component consists of the following 3 tasks: 
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1) Calibration of SAM – The outcome of this task will be a calibration methodology that 

separates the effects introduced by the instrument electronics from the material behavior and will 

include: (i) calibration curves and (ii) measurement error analysis. 

2) SAM measurement protocol – The outcome of this task will be: (i) homotopic measurement 

device, (ii) specimen preparation protocol, (iii) data acquisition protocol, and (iv) data processing 

using custom developed software.  

3) Comparison of measured results with theoretical prediction – The outcome of this task will be 

the interpretation of the measured data with the theoretical model. 

 

1.4 Organization 

The dissertation is organized in three chapters.  Chapter 2 describes the results of the theoretical 

development, Chapter 3 describes the results of the experimental tasks as well the comparison of 

the experimental results and the theoretical model, and Chapter 4 includes a summary of the 

work accomplished and a synopsis of the main findings.   
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2.0 THEORY 

2.1 Reflection scanning acoustic microscopy 

2.1.1 Background 

Scanning acoustic microscopy is the only non-destructive technique with the capability of 

measuring micro-scale mechanical properties of materials.  A comprehensive review of acoustic 

microscopy is given in Briggs (1992).  Here, we briefly describe the background and 

terminology that will be used in this dissertation.  The principle of acoustic microscopy is quite 

simple in concept; mechanical waves are generated by a source and focused onto a specimen.  

One may then measure either the part of the signal that reflects from the specimen, hence the 

term reflection acoustic microscopy, or the part of the 

signal that transmits through the specimen, in which 

case the term transmission acoustic microscopy is 

used.  Mechanical waves are generated by means of a 

piezoelectric transducer.  The piezoelectric transducer 

when excited by an electrical potential, deforms and 

creates the mechanical waves.  Acoustic microscopes 

may be classified into different types depending upon the location and shape of the piezoelectric 

element.  In type I acoustic microscopes, the piezoelectric transducer is mounted at the end of 

cylindrical sapphire rod whose other end is shaped as a spherical surface as shown in Fig 2.1.  

The mechanical wave then propagates through the sapphire rod and interacts with the spherical 

surface, which acts as a lens, to create a converging wave-field in front of the lens where the 

specimen of interest is placed.  In type II reflection microscopes, the piezoelectric element is 

 
 

Figure 2.1 Reflection SAM setup 
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shaped as a concave surface in which case there is no need for additional buffer material.  A 

coupling fluid, typically water, is required in order to facilitate ultrasound propagation from the 

lens to the specimen. 

During SAM measurements, the specimen is typically immersed in a water or suitable coupling 

fluid bath.  In reflection acoustic microscopy, which is the technique most relevant to this work, 

the ultrasonic field interacts with the near-surface of the material in question and part of it 

reflects back through the coupling medium to the lens. The lens redirects the field which, after 

travelling again through the sapphire rod, arrives at the piezoelectric transducer.  The 

deformation of the piezoelectric element creates a potential difference which is amplified and 

displayed by an oscilloscope as a waveform.  Such waveforms are called A-Scans.  Typical A-

Scans are shown in Fig 2.2a and their Fourier amplitude spectra in Fig 2.2b for various 

amplification settings.  The frequency content of the signal may be described by two parameters 

which is the central frequency and the bandwidth at the half-maximum amplitude (-6 dB).  The 

central frequency parameter is always used by manufacturers to refer to a specific objective.  The 

central frequency of an objective refers to the resonant frequency of the piezoelectric transducer.  
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Figure 2.2 a) A-Scan and b) Fourier amplitude spectra 
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However, it has been shown (Canumalla 1999) that water attenuates the higher frequencies and 

thus it is very likely that the central frequency of the received signal will be down-shifted. 

The transducer and lens are located in the same housing which is termed the ultrasonic objective.  

In SAM, the objective is coupled with an x-y-z positioning system that enables raster scan over 

the specimen.  As the objective is scanned over the specimen, an A-Scan signal is acquired for 

each scanned location and selected signal parameters may then be displayed as a grayscale 

image, termed a C-Scan. 

2.1.2 Contrast Mechanism 

The contrast in SAM images is generally 

related to the elastic properties and density 

of the substrate.  However, the interaction 

of the wave-field with a specimen is 

usually quite complex and there are a 

number of waves that may be generated at 

the fluid-specimen interface that will 

contribute to the received signal 

amplitude.  One such mechanism is based 

upon the generation of Rayleigh waves at the fluid-specimen interface and their constructive or 

destructive interference with the normally reflected ray as the objective is moved towards the 

specimen.  This interference creates periodic fluctuations in the received voltage that vary as a 

function of depth.  The wavelength of the oscillation corresponds to the Rayleigh wavelength.  

When such a measurement is taken at a single location the resulting curve is known as a V (z) 

curve.  A C-Scan taken at various z-positions, provided that the substrate is isotropic, will 
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sometimes be dark and sometimes brighter.  The generation of Rayleigh waves, however, 

depends on both the material properties of the substrate and the wave-field incident on the 

specimen which in turn depends on the aperture angle of the lens.  This relationship is illustrated 

in Fig 2.3, where the substrate in an isotropic half-space.  Points on the graph signify the smallest 

half-aperture angle α° at which Rayleigh waves will be generated for a specific Young’s 

modulus value.  The relationship immediately shows that for stiffer materials, Rayleigh waves 

are possible to be generated with smaller aperture lenses.  For dentin, the reported elastic moduli 

do not exceed 30 GPa and practical issues make construction of lenses with half-aperture angles 

greater than 60° difficult.  In relatively soft materials such as dentin and bone, there might be 

other waves that are generated such as the longitudinal surface skimming waves (LLCW).  In the 

event that the lens aperture does not permit any surface wave generation, then only the specularly 

reflected longitudinal wave-field will be received by the transducer.  In that case, a C-Scan 

image will be brightest when the specimen is placed at the focus. 

2.2 Modeling Methodology 

 

In order to develop theoretical models of the process of wave propagation in SAM, the following 

two-steps are followed: 1) determination of focused ultrasonic field, and 2) interaction of the 

ultrasonic field with a substrate and back-propagation of the reflected wave-field.  From the 

viewpoint of describing the measured received signal, we consider the integral of the average 

reflected pressure field denoted by, recp , which is expressed as:  

( ) ∫ ∫ ∫ ∫
− −

∞

∞−

∞

∞−

+








=

a

a

a

a

yx

zikxkxki

yxyxrec dxdydkdkeekkRzkkPp zyx 0
)(

0 ),(),,(ω     (2.1) 
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at a given frequency, ω, where P(kx, ky, z0) is the two-dimensional angular spectrum of the 

pressure field at the substrate-fluid interface (z0) and R(kx, ky) is the reflectance function of the 

substrate-water interface.  The limits of the integral denote the integration over the surface of the 

receiving transducer.  Thus, the determination of the angular spectrum of the focused pressure 

field and the reflectance function of the substrate-fluid interface form the two key problems of 

effective SAM modeling. 

In the SAM modeling literature, a variety of approaches have been proposed for evaluating Eq 

2.1.  The approaches most frequently adopted are founded either on Fourier theory (Atalar 1978, 

Wikramasinghe 1979) or on ray theory (Bertoni 1984).  Alternative approaches have also been 

proposed that include the finite element methods (Winkler and Davies, 1986 a, b), combination 

of the finite element and boundary element methods (Liu et al 1992), distributed point source 

methods (Kundu 2006) and frequency domain methods (Nagy and Adler 1990).  More rigorous 

diffraction theories (Li et al 1991) and asymptotic approximations (Rebinsky and Harris 1992 a, 

b) have also been used.  In addition, various substrates have also been modeled, such as 

anisotropic half-spaces (Somekh et al 1984), layered systems (Kundu et al 1985, Lee et al 1993), 

elastic discontinuities such as cracks (Ilett et al 1984) and rough surfaces (Pecorari and Briggs 

1996, Li 1993).  The theoretical foundations of these approaches have been developed more than 

a century ago in the fields of optics (Sommerfeld 1954, Born & Wolf 1999), acoustics and 

elastodynamics (Rayleigh 1945, Achenbach 1973).   As seen from Eq 2.1, the evaluation of the 

reflected pressure field requires the computation of the angular spectrum and reflectance 

function.  In general, these quantities can be computed independently.  For angular spectrum 

calculation we require methods to obtain fields generated by concave transducers, while for the 

reflectance function we require wave propagation models appropriate to the substrate.    
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In recent years an alternative analytical approach for obtaining acoustic fields generated by 

concave transducers has been presented by Coulouvrat (1993).  The computational effort 

required for this approach is significantly smaller than the numerical methods such as the finite 

element and the finite difference methods for results of similar accuracy.  In addition, this 

approach has the advantage of the boundary element method in reducing the dimensionality of 

the problem, although the method does not rely on the Green’s function which does not exist for 

concave geometries.  Coulouvrat’s method has not been widely applied since its appearance in 

1993, however in the recent past the method has been used to evaluate the thermal effects of 

focused ultrasound on biological tissue due to the advantage this method offers over other 

numerical methods (Feng et al 2005). 

Similarly, a number of approaches (too numerous to report here) have been discussed in the 

literature that can be applied to model complex substrates.  This work considers substrates with 

strong near-surface heterogeneity in the normal direction to the surface.  Substrates with such 

vertical inhomogeneities occur in various applications that include natural and engineered 

systems at both the large scale and the laboratory scale, such as in ocean bottom prospecting, 

near-surface earthquake wave propagation, etched surface characterization, osteoporotic bone 

characterization, and functionally graded material characterization (FGM).  The approaches used 

to address these problems can be classified into 3 categories: (1) numerical simulation using 

finite difference or finite elements (Vollman et al 2006, Haiat et al 2009, Berezovski et al 2003, 

Zhang et al 2007), (2) analytical methods (Robins 1990, 1998) and (3) semi-analytical methods 

such as ray theory and multi-layer theory (Thomson 1950, Haskell 1953, Rokhlin 2004).  For the 

type of problem we are addressing, the multi-layer theory with plane-wave propagation is most 
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attractive since they are relatively straightforward to implement and have a lower computational 

demand compared to the numerical simulations. 

The bridging of the acoustic field model and the substrate model require further considerations 

since these methods are typically developed in different coordinate systems.  The acoustic field 

solutions are represented as spherical wave expansions while the substrate solutions are 

represented as plane wave expansions.  To couple the acoustic field solution with the substrate 

solution, therefore requires either plane wave representation of the acoustic field or vice versa.  

The approach adopted in this work uses angular spectrum representation of the computed 

acoustic field.  This plane wave representation is then used to obtain the reflected field from the 

substrate model. 

Finally, we note that Eq 2.1 is for a monochromatic wave, however, in the acoustic microscope 

relevant to this work the source (or the input signal) is a broad band pulse.  To study these 

polychromatic (multi-frequency) waves, we consider the time dependence of the pressure field to 

be a synthesis of monochromatic functions as: 

( ) ( )∫
∞

∞−

−= ωωω
π

ω depvtp ti

rec
2

1
)(         (2.2) 

where v(ω) is frequency spectrum of the normal velocity, ω is the angular frequency, related to 

frequency by ω=2πf and the pressure is considered to have a harmonic time dependence to be 

exp(-iωt). 

2.2.1 Determination of focused ultrasonic field 

Several approximate theories have been used in scanning acoustic microscopy to model the field 

to account for the effects of focusing by the lens.  In the majority of these works, the point of 

departure is the Rayleigh integral of the scalar theory of diffraction.  This may be derived from 
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Green’s identity and the fact that the ultrasonic scalar field must satisfy the Helmholtz equation 

(Baker and Copson 1987).  The Rayleigh integral is written as: 

∫∫

















∂
∂

−
∂
∂

=
S

ikrikr

P dS
r

e

n
v

n

v

r

e
v
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        (2.3)  

where v is is the value of the pressure field on S, while v is the value of the pressure at an 

evaluation point P.  Eq 2.3 allows us to evaluate the total field at a point P if we know the value 

of the field and its normal derivative on the boundary S, which is an spherical surface in the case 

of a spherically focused lens.  In reality the boundary values in Eq 2.3 are not known and very 

often the Kirchhoff approximation is employed.  However, it has been shown that the Kirchoff 

approximation does not correctly reproduce the assumed boundary conditions (Stamnes 1986).  

Alternatively, the Rayleigh-Sommerfeld integral may be used which only requires the value of 

the function on the boundary: 

∫∫ 







=

S

ikr

P dSrn
r

e
v

i
rv ),cos(

1
)(

λ
        (2.4) 

This approach is known to be an exact formulation of Huygens principle only for plane 

boundaries (Sommerfeld 1954).  For curved boundaries, it is an approximation that assumes that 

the dimensions of the curvature are small compared to the wavelength in the medium.  Under 

this assumption, the integral of Eq 2.4, represents a superposition of hemi-spherical wavelets that 

radiate independently.  Stated in another way, the hemi-spherical wavelets are assumed not to 

suffer secondary diffraction because of the surface curvature.  O’Neil (1949) used direct 

integration of Eq 2.4 to evaluate the acoustic fields from concave radiators.  In SAM models 

based upon this approach, either the lens curvature was taken into account but not the exact 

boundary conditions (Li et al 1991, Ardebili 1995), or the lens surface is replaced by equivalent 

sources at the aperture plane (Liang et al 1985, Chou and Kino 1987, Lucas and Muir 1982, 



 14 

Atalar 1978, Wickramasinghe 1979).  In contrast to these above approaches, Coulouvrat’s 

method takes into account secondary reflections from the lens curvature that are not captured by 

the Rayleigh integral.  In addition, the exact boundary conditions on the baffle surface can be 

applied.   

2.2.1.1 Principle of Coulouvrat’s method 

The method presented by Coulouvrat (1993) and used in this dissertation, draws upon earlier 

work by Keller and Givoli (1989) for solution of acoustic scattering in unbounded domains.  

Typically, in such problems the Sommerfeld radiation condition must be satisfied at infinity.  In 

addition, the numerical solution is facilitated by the introduction of an artificial boundary, 

separating the computational domain into an interior region and an exterior region.  On the 

artificial boundary, a boundary condition is imposed such that waves are allowed through it 

without generating any spurious reflections.  In this fashion, the computational domain is 

reduced to the interior domain, where it is possible to use interior numerical methods such as 

finite elements or finite differences to obtain a solution.   

2.2.1.2 Geometry, definitions and equations 

The geometry of the problem is illustrated in Fig 2.4.  The lens used to focus the ultrasonic field 

in acoustic microscopy may be viewed as an axially symmetric spherical cap, Γs, mounted on an 

infinite plane baffle, ΓB.  The spherical cap is defined by the radius of curvature, R, and aperture 

angle, χ, which measures the angular extent of the spherical surface.  Point O is defined as the 

point on the spherical cap for which the inward surface normal is identical to the normal to the 

baffle surface.  Point F is the geometrical focus, which is defined as the point of intersection of 

lines directed normally to the spherical surface.  The line that contains points O and C is defined 
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as the acoustic axis z.  Point C, which is the point of intersection between the acoustic axis and 

the baffle plane, is used as the origin of a cylindrical coordinate system (z, R) and a spherical 

coordinate system (r, θ).  A hemisphere with surface ΓL centered at C and of radius a, separates 

domain Ω in two sub-domains, the interior sub-domain ΩI and the exterior sub-domain  
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Figure 2.4 Problem geometry 
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ΩE.  The fluid in domain Ω is considered to be homogeneous, isotropic and non-viscous with 

material density ρf and sound velocity vf.  If small amplitudes are considered, non-linear effects 

may be neglected.  Then, the pressure, p(r, θ, t), at any observation point P, satisfies the acoustic 

wave equation (Williams, 1999) 

0
),,(1

),,(
2

2

2

2 =
∂

∂
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t

trp

v
trp

f

θ
θ         (2.5) 

Additionally, the particle velocity υ (r, θ, t) at P satisfies Euler’s equation 
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f θ
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∂
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         (2.6) 

By considering harmonic time dependence for the pressure and velocity fields of the type e
(-iωt)

 

the well known scalar Helmholtz equation is obtained as: 

0),,(),,( 22 =+∇ ωθωθ rpkrp         (2.7) 

and Euler’s equation 

),,(),,( ωθνωρωθ rirp f

r
=∇          (2.8)  

in the frequency domain where k=ω/vf is the acoustic wavenumber.  Solution of the Helmholtz 

equation (Eq 2.5) in spherical coordinates for the axi-symmetric geometry of the problem yields 

the pressure for the inner domain in terms of radial functions (spherical Bessel functions of first, 

jn, and second kind, yn) and Legendre polynomials,Pn, (Arfken and Webber, 2005):  

∑∑
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In the exterior domain the solution is written in terms of spherical Hankel functions of the first 

and second kind: 
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where the spherical Hankel functions are defined as: 

)()()()1( kriykrjkrh nnn +=  (1
st
 kind)       (2.10a) 

)()()()2( kriykrjkrh nnn −=   (2
nd

 kind)       (2.10b) 

and  
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π

         (2.10d) 

where J and Y are the ordinary Bessel functions of 1
st
 and and 2

nd
 kind, respectively.  The 

solution to Helmholtz equation may in fact be given by a linear combination of any two radial 

functions, since they are all independent.  However, since it is required that the pressure is finite 

at the origin, cn is set to zero as yn(kr) has a singularity at the origin.  Similarly, in the exterior 

domain, spherical Hankel functions are more appropriate solutions since large values of the 

arguments (far from the origin) represent travelling waves, whereas spherical Bessel functions 

represent standing waves.  However, the choice of the appropriate Hankel function is based on 

the satisfaction of the Sommerfeld radiation condition at infinity.  

0lim =






 −
∂
∂

∞→
ikp

r

p

r
          (2.11) 

The interpretation of the radiation condition is that in order to obtain a unique solution to the 

acoustic radiation problem, in unbounded domains, it is not sufficient that the functions decay to 

zero at infinity, but also they have to be outgoing.  Therefore, for the time dependence given by 

e
-iωt

 , coefficients en=0 in Eq 2.9b, and spherical Hankel functions of 1
st
 kind, hn

(1)
(kr), are 

chosen.   
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2.2.1.3 Boundary conditions 

The boundary conditions on the spherical cap are given in terms of the normal velocity as: 

),( θωρ rvi
n

p
f=

∂
∂

          (2.12) 

where the normal n
r

 is pointing towards the fluid medium, and v(r, θ) is the velocity distribution 

on the spherical cap surface.  Alternatively, a pressure boundary condition may be specified on 

the spherical cap.  On the baffle plane, the inward normal velocity is considered to be zero.  

2
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The inward normal on the spherical cap boundary is given by: 
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The normal derivative of the pressure on the spherical cap surface is therefore: 
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which simplifies to: 
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Similarly, on the baffle plane  

θθ θθ ∂
∂

−=
∂
∂

+
∂
∂

−=∇⋅=
∂
∂ p

r
e

p

r
e

r

p
epn

n

p
r

1
)ˆ

1
ˆ.(ˆ

r
      (2.17) 

For convenience, the baffle surface ΓB lies in the exterior domain (see Fig 2.4) and therefore by 

substituting Eq 2.9b in Eq 2.13, we obtain: 
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Performing the differentiation of the Legendre polynomials: 
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The derivative of a Legendre polynomial at θ=π/2 vanish for even orders (Bell, 1968), as: 
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The only possibility for Eq. 2.19b to be equal to zero is that the odd coefficients of the expansion 

must vanish.  The pressure in the exterior domain may thus be expressed as: 
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2.2.1.4 Boundary conditions on the artificial surface 

On the artificial surface, continuity conditions of normal velocity and pressure are satisfied such 

that: 
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By substitution of Eqs 2.9a and 2.20 in Eq 2.21, a relationship is obtained between the even and 

the odd coefficients of the inner series (bn) given as: 

[ ]∑
∞

=
+++ ′′−′+=

0

,12

)1(

212

)1(

212

2

2 )()()()())(14(
m

nmmnmnmn Ibkahkajkahkajkanib

   (2.22) 

Also, a relationship between the coefficients of the outer series (an) is obtained as 
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where 
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To obtain a solution to the boundary value problem, the infinite series of Eqs 2.9a and 2.20 are 

truncated keeping the first NB and NA coefficients, respectively.  Eq 2.22 provides NA equations 

with NB coefficients while the boundary condition of Eq 2.12. is discretized by boundary 

collocation, to provide another set of NP equations also with NB coefficients.   

2.2.1.5 Normalization of the matrix system 

The method described above results in a system of NB equations with unknowns as the 

coefficients of the inner series (Coulouvrat, 1993).  For accurate numerical solutions, the 

resultant system of equations has to be normalized.  The normalization procedure has not been 

discussed in Coulouvrat’s paper.  Therefore, the matrix partitioning and the rearrangement of 

terms followed in this work is different from that presented in Coulouvrat’s paper.   

To ensure that no zero entries lie on the main diagonal, we carry out a column 

rearrangement such that columns corresponding to the odd coefficients, bO, appear first, followed 

by the even coefficients, bE.  This column rearrangement leads to a partitioning of Eqs 2.12 and 

2.22 as: 
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where the coefficients of the inner series have been normalized, NO is the number of odd terms 

of the inner series and NE is the number of the even terms of the inner series, calculated as: 
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and 

OBE +++ −=  

The normalized coefficients are related to the coefficients of Eq 2.9a by: 
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By considering normalized coefficients of the inner series, we ensure that the resultant matrix M 

is non-singular as we consider higher orders of the basis functions and accuracy of solution of 

the system of equations (Eq 2.25) is maintained.  We note that alternative normalization for the 

system of equations arising from Coulouvrat’s method has been suggested by Sapozhnikov and 

Sinilo (2002), similar to the one used by Schmidt (1993) for the solution of global stiffness 

matrices from spherically stratified shells. 

Partition [A] is further subdivided into two partitions [A
1
], associated with the collocation points 

NP and [A
2
] associated with the terms in excess of NB/2. 
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Similar to [A], partition [B] is also subdivided into two partitions [B
1
], associated with the 

collocation points NP and [B
2
]=0 associated with the number of terms in excess of NB/2. 
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The advantage of presenting [A
1
] and [B

1
] in this form is that the terms are separated into two 

parts, the bracketed term that is always of order 1, and the factor Nm,n which is computed 

separately as: 
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The factor Nm,s decreases with increasing order and will eventually underflow. 

Terms in partitions [C] and [D] are given as: 
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The right hand-side vector P  is given as:  
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As seen in Eqs 2.27-2.34, we need to compute a range of orders of the radial functions jq(x), and 

hq(x) for a specific argument.  Similar requirements are found in applications that involve 

acoustic and electromagnetic scattering.  It is well known that Bessel functions exhibit two 

distinctly different behaviors depending if the order is smaller or larger than their argument.  

When the order is smaller than the argument (q<x), the behavior of the spherical Bessel functions 

jq(x) is oscillating whereas, as soon as q>x it rapidly and monotonically decreases towards zero.  

On the other hand, spherical Bessel functions of the second kind (Neumann functions) that form 

the imaginary part of the Hankel functions, rapidly diverge to infinity as the order becomes 

greater than the argument.  For computations performed in double precision, a floating point 

number according to IEEE standard can be represented if it lies between ~ 10
308

 and 10
-308

.  

Beyond these limits the radial functions cannot be computed, and overflow or underflow occurs.  

This puts a limitation to the maximum order of radial functions that we may compute.  For 

example, for x=10, the maximum order we may compute is q~244 whereas for x=1000, q~1842.  

Since it is not known in advance how many terms need to be included for a solution to converge, 

we must be able to compute orders that are between 1-5 times greater than the argument as 

suggested by Coulouvrat and researchers following his method (Cathignol and Saposhznikov, 

1999, Sapozhnikov and Sinilo 2002).  Thus, rather than computing Bessel and Hankel functions 
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directly, we chose to re-formulate the terms in the matrix system of Eq 2.25 by combinations of 

Bessel and Hankel functions which are more amenable for computation (Babenko et al 2003). 
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These combinations appear as a result of the normalization of the coefficients of the inner series 

and facilitate accurate estimation of the matrix coefficients.  For example, the ratio Tq(x) behaves 

well as the q>x which is the root cause of numerical overflow/underflow problem.  Tq(x) 

asymptotically approaches ½ as q>x.  By considering the ratio Rq, we ensure that the underflow 

delayed considerably.  Hq(x) yields numbers whose real parts are on the order of 0.1, however 

the imaginary part can still decrease to very small numbers.  Gq (x) has a similar behavior as Hq 

(x) where the imaginary part is well behaved number of the order 0.1 whereas the real part 

decreases to small numbers. 

2.2.1.5.1 Ratios Tq(x) and Rq(x) 

All radial wave functions follow recurrence relationships of the type 
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where fq(x)=jq(x), yq(x), h
(1)

q(x) or h
(2)

q(x).  Dividing recurrence (11) by jq(x), we obtain: 
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where we set  
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Recurrence (11) may be divided by jq-1(x) and written in the form: 
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Computation of Bessel functions of the first kind is unstable by upward recurrence of Eq 2.36 

since it is performed in the direction which the function is decreasing (Gautschi 1967), whereas 

computation of the Neumann functions by the same recurrence is perfectly fine.  For this reason, 

algorithms have been devised to compute the Bessel functions of the first kind by backward 

recurrence where then the obvious challenge is the determination of a starting value.   

Miller’s method (Miller 1952) or “ratio” method (Corbato and Uretski 1959) suggest that an 

approximate starting value of jq(x) and jq+1(x) or their ratio may be used to initialize the 

downward recurrence starting however from a much higher order than the one we actually desire 

to compute.  An alternative method to compute the starting value has been presented by Lentz 

(1976) using a continued fraction representation of the Bessel function ratio [Rq(x)]
-1

.  A 

modified approach presented by Barnett (1996) has been utilized in this work, given as: 
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where q will take the value of the maximum order we want to compute. 
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Methods for computing continued fractions of the type given by: 
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have been discussed by Lentz (1976), Thompson and Barnett (1986) and Press et al. (1988).  

Such fractions carry on to infinity but may be truncated at any desired accuracy by considering 

terms up to the nth convergent Fl(x) as: 
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In this work the algorithm developed by Thompson and Barnett (1986) and found in Press et al 

(1988 pg 169-172), has been utilized to compute the continued fraction of Dq(x) in Eq 2.40.  

However in order to reduce the computational effort, we have used the even part of the continued 

fractions such that the terms in Eq 2.42 have the following form: 
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Values of orders lower than the maximum order, qmax, are then computed through a downward 

recurrence given by: 
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where repeated use of Eq 2.11 is performed to derive Eq 2.44.  Having computed all the orders 

of Dq(x) we use Eqs 2.38 and 2.39 to compute Rq(x) and Tq(x) respectively. 

2.2.1.5.2 Ratio Hq(x) 

Along the lines of previous derivation, for Rq(x) and Tq(x), the ratio Hq(x) is computed using an 

upward recurrence given as: 
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where the beginning term
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=  is used to initialize the recurrence. 

2.2.1.5.3 Product Gq(x) 

Gq(x) is a product of a Hankel function of the first kind and a Bessel function of the next lower 

order.  The product may be separated into real and imaginary parts as: 
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where )()()( 1 xjxjxJ qqq −= ,  )()()( 1 xjxyxY qqq −=  

To calculate )(xYq we can derive the following upward recurrence relation: 
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The recurrence in Eq 2.47 may be initialized by: 



 29 






 +−==
x

x
x

x

x
xyxjxY

)cos(
)sin(

)sin(
)()()(

2100       (2.48) 

We note that even though the value in Eq 2.48 becomes infinity for x=0, such a case will not 

occur since the argument of Gq(x) in the matrix system is never the origin. 
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The recurrence in Eq 2.49 is initialized by 
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Taking logarithms on both sides yields: 
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For accurate computations, the mantissa and the characteristic of the logarithms in Eq 2.53 are 

computed separately. 

2.2.1.5.4 Normalization Factors Nm,n 
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The normalization factor Nm,n is computed using a relationship of the type of Eq 2.50 as: 
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Thus, taking inverse logarithms, we obtain: 
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2.2.2 Angular spectrum 

The angular spectrum decomposition provides the means to couple the computed ultrasonic 

fields with a plane wave propagation model for the substrate.  We consider the pressure field at 

the plane z0 from the origin C as a superposition of elementary functions exp(i(kxx+kyy)) as: 
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where the amplitude spectrum P(kx, ky) may be interpreted as a complex weight distribution that 

must be applied to each elementary function in order to construct the pressure field (Goodman, 

1996). The elementary functions are regarded as plane waves of the form: 
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where k=kxe1+kye2+kze3 is the vector that defines the direction of propagation of the wavefront 

with components kx, ky and kz in the x, y and z direction respectively.  Vector r=xe1+ye2+ze3 is 

the position vector of an observation point in the pressure field as shown in Fig 2.5.   

In a spherical coordinate system, the components of the wave vector are given as: 

α

βα

βα

cos

sinsin

cossin

kk

kk

kk

z

y

x

=

=

=

          (2.58) 

where, k=ω/vf and the angles  α and β as shown in Fig 2.5. 
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The kz component is dependent upon kx and ky as: 

222

yxz kkkk −−±=           (2.59a) 

In Eq 2.59a, it is possible that the quantity underneath the square root may become negative, 

rendering kz complex. In that case, waves are called evanescent and Eq 2.59a then becomes: 

222 kkkik yxz −+±=           (2.59b) 

The amplitude P(kx, ky) of each plane wave in all directions of propagation is called the angular 

spectrum of the pressure field at a plane. 

2.2.2.1 Details of computation of the angular spectrum of pressure fields at a plane 

In order to evaluate the amplitude P(kx, ky) of each plane wave, we utilize a two-dimensional 

Fourier transform of the form:  
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Figure 2.5 Definition of wave vector and position 

vector 
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Eq 2.60 can be evaluated using a two-dimensional fast Fourier transform (2-D FFT) ( Orofino 

and Pedersen, 1993).  To this end, the pressure field at a plane z0 is computed at N×N uniformly 

sampled locations over a square discretization region of size L×L.  The sampling interval in the 

spatial domain is given as: 
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L
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For convenience, the sampling interval is chosen as powers of 2.  Introducing integer indices 

1,1,0,,, −= +qpml L the spatial domain and wave-number domains are then discretized as: 
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The spatial domain was discretized in this fashion so that the spatial coordinates are centered at 

the origin of the acoustic axis.  Similarly, the wavenumber domain was discretized so that the 

spatial scale will allow both positive and negative angles.  The angular spectrum of Eq 2.60 then 

takes the following discrete form: 
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where we used tilde to distinguish between the discrete and the continuous angular spectra.  The 

two-dimensional angular spectrum evaluated numerically through MATLAB® two-dimensional 

FFT routine.  
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The spatial sampling interval, as specified by the Nyquist criterion, ultimately determines the 

highest spatial frequency present in the angular spectrum.  Thus, if the highest spatial frequency 

kmax, is known in advance, then the sampling interval in the spatial domain should be: 

max2

1

k
yx ≤∆=∆           (2.64) 

However, it is known that in the case of a system with a finite source, the angular spectrum is not 

band-limited, but contains an infinite number of spatial frequencies, which makes the Nyquist 

criterion impossible to meet.  In the case of aperture limited focused systems, as shown by the 

Debye approximation (Stamnes, 1986), the angular spectrum is mostly concentrated in the 

directions of propagation that fall within the aperture angle.  The sampling interval calculation 

criterion in this case can be simply stated in terms of the aperture as L=4a along with Eq 2.61. 

 

2.2.3 Focused ultrasonic field results 

Using the method described above, the acoustic fields of the ultrasonic objectives used in 

this work were computed for the ultrasonic objectives that were used in the experimental part of 

this dissertation.  The speed of sound in water was considered as v
f
=1490 m/s while the 

ultrasonic objective geometrical parameters considered for the two transducers were: half 

aperture angle, χ= 13.4º and aperture radius a=3mm for transducer 1 and while for transducer 2, 

χ= 10º and aperture radius a=1.4 mm.  The number of terms in the external series used were NA 

=610 while the internal series was truncated at NB=1200.  Truncation was decided by 

performing convergence studies.  Figs 2.6 and 2.7 give the trace of the ultrasonic pressure fields 

along the axis of the lens generated from the acoustic objectives used in this work at three chosen 
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frequencies of their frequency spectrum.  We note the focus, represented by the peak amplitude 

has a dependence upon the frequency.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Axial fields for transducer 1 

 

Figure 2.7 Axial fields for transducer 2 
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In Fig 2.8 two-dimensional contours of the focused acoustic field along the plane x-r are 

shown for transducer 2 at frequencies 37.1 MHz, 54.2 MHz and 70.1 MHz.  We observe that the 

focal region of the lens becomes narrower with increasing frequency.  

 

The fields perpendicular to the lens axis were evaluated at a plane near the focus and are 

presented in Fig 2.9.  In pulse-echo measurements, the specimen is held at a fixed distance from 

the acoustic objective.  Since, broadband transducers were used in this work and the focal plane 

 

 

      (a)          (b)     (c) 

Figure 2.8 Two-dimensional contours of pressure field for transducer 2 at (a) 37.1 MHz, (b) 54.2 MHz and  (c) 

70.1 MHz 



 36 

is frequency dependent, the specimen will not be in focus at all frequencies.  The plane at which 

the pressure fields were computed, was chosen to lie between the focal planes at the two edge 

frequencies of the frequency spectrum.  Thus, for the transducer 1 (30 MHz objective), the 

pressures were computed at z0=12.4 mm while for the transducer 2 (110 MHz objective), z0=7.7 

mm.  Spatial resolutions at the computation plane for the transducer 1 at -3 dB (70 % of the peak 

amplitude) were calculated from the pressure fields as 130 microns, 105 microns, 92 microns for 

temporal frequencies of 25.1 MHz, 29.8 MHz and 34.7 MHz respectively.  Similarly, for the 

transducer 2, the -3 dB spatial resolutions are 115 microns, 80 microns and 60 microns for 

frequencies of 37.1 MHz, 54.2 MHz and 70.1 MHz respectively.  This indicates that a 

polychromatic ultrasonic field is able to interrogate material volumes of different sizes and 

consequently the received signal contains contributions from multiple scales.  Thus modeling 

accurately the ultrasonic field becomes important, when we study complex materials with 

microstructure especially when this microstructure is of the order of the spatial resolution.   

The angular spectra corresponding to the ultrasonic fields of Fig 2.9 are plotted in Fig 2.10.  We 

note that since the angular spectrum is axisymmetric, we only need to plot the angular spectrum 

on the line ky=0. The number of samples, N, for the calculations was chosen as 512 after 

convergence studies.  It is important to note here that the ultrasonic pressure fields and the 

angular spectra are different representations of the same quantity but they provide us with 

different insights.  The pressure fields give us explicitly information about the area of the 

specimen that interacts with the ultrasonic field.  The angular spectrum on the other hand 

provides information about the directionality of the field. Thus it becomes more useful for 

analysis as plane wave directions of propagation may be used as angles of incidence, which is 

the usual way we think of reflection and transmission.  For transducer 1, 90 % of the amplitude 
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spectra lie within 18º, while for transducer 2 approximately 90% of the angular spectra lie within 

14º.  However, the variation of the amplitude within these angles is quite complicated and has an 

oscillating behavior.  This non-monotonic behavior shows that aspects of the received amplitude 

are ignored if a smooth function is used to model the angular spectrum, such as Gaussian 

distribution.  Thus, another advantage of the model presented in section 2.2.1 is that it may be 

used to assess the errors that are made when simpler functions are used to approximate angular 

spectra. 
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(a)      (d) 

(b)      (e) 

(c)      (f) 

 

Figure 2.9 Amplitude of radial pressure fields at (a) 25.1 MHz, (b) 29.8 MHz, (c) 34.7 MHz  for 

transducer 1 and (d) 37.1 MHz, (e) 54.2 MHz and (f) 70.1 for transducer 2. 
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(a)      (d) 

(b)      (e) 

(c)      (f) 

 

Figure 2.10 Amplitude of angular spectra at (a) 25.1 MHz, (b) 29.8 MHz, (c) 34.7 MHz  for 

transducer 1 and (d ) 37.1 MHz, (e) 54.2 MHz and (f) 70.1 for transducer 2. 
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2.2.4 Substrate Model 

It is common in acoustic microscopic studies that the substrate is idealized as a homogeneous 

half-space.  This implies that the transition in elastic properties between the coupling fluid and 

the substrate is abrupt.  In this case, and especially when the two materials are elastic and 

isotropic, the reflection coefficient amplitude achieves the well-known form of the Rayleigh-

Fresnel reflection coefficients (Achenbach 1971).  Such reflection coefficients, though dependent 

on the angle of the incident plane wave, are independent of its frequency.  However, there are 

many instances when the substrate’s elastic properties are not constant but vary with depth from 

the surface.  In these cases, the profile as well as the extent of the depth variation is highly 

dependent on the process by which the property profile developed.  In ion-etching processes for 

example (Zinin et al 1999), one finds a layer of finite thickness over which the material 

properties vary before gradually transitioning to the native homogeneous material.  In other 

cases, such as for functionally graded materials (FGM), gradual variations in microstructure and 

composition are engineered to alleviate mechanical stress concentrations usually by graded 

distributions of particles embedded in a matrix.  Such material systems are found in many 

engineering applications, including naturally occurring geomaterials, armor for military 

applications, and tissue engineered biomaterials.   

A distinctive feature of the reflectance behavior of substrates that have graded layers is 

the frequency dependence of the reflection coefficients.  This is especially true when the 

thickness of the graded layer is of the same order as the wavelengths of the incident field (Robins 

1990).  Using micro-Raman spectroscopy, it has been found that dentin etching results in a layer 

of graded composition whose thickness ranges from 20-100 µm (Wieliczka et al 1997).  These 

observations lead us to idealize the etched dentin substrate as an inhomogeneous material where 
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the inhomogeneity is only along the direction normal to the surface, while the initial dentin 

surface is considered as homogeneous before etching.  While the source of the inhomogeneity 

can be traced to the depletion of apatitic mineral from the dentin matrix by the acid diffusion and 

reaction, the profile of the mineral distribution remains largely undefined.  It is reasonable 

though to assume that the mineral distribution is continuous or at least perceived as continuous 

up to a certain scale much smaller than the wavelength of the interrogating ultrasonic waves.  

The reflection behavior of graded materials is far more complex compared to their 

homogeneous counterpart.  Firstly, the idealization of the microstructure for modeling wave 

propagation phenomena in complex substrates is not straightforward, especially when such 

models are used to predict their overall dynamic behavior (Berezovski et al 2003).  Secondly, 

finite computational resources prohibit from including all the elements of the microstructure in a 

single model and simplifying assumptions and averaging procedures are always required.  In 

addition, the solutions for plane wave propagation in continuously graded substrates in closed 

form are not easily obtained, especially for substrates with gradients in shear moduli (Robins 

1998).  The main difficulty in obtaining a general closed form solution, is the fact that the 

solution of the elastic wave equation for inhomogeneous media (Karal and Keller 1959) cannot 

be expressed as displacement potentials that define purely irrotational and solenoidal fields 

(Hook 1961a and b) as is the case for the displacement fields in homogeneous media.  However, 

this limitation can be circumvented by considering elastic wave propagation in discretely layered 

substrates of homogeneous material property in each layer.  The basis for such an approximation 

has its foundations on a theorem by Volterra (Gilbert and Backus 1966, Aki and Richards 1980) 

which proves that it is possible to model wave propagation in substrates with continuous 
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variations in materials properties (density and elastic moduli) by considering the elastic wave 

solution in discretely layered systems in the limit when the number of layers becomes infinite.   

Several approaches have been presented over the past few decades for plane wave 

propagation in discretely layered solids. This review is not aimed to be comprehensive, but it 

offers a background on plane wave methods in multilayered media.  Thomson (1950) and 

Haskell (1953), who corrected a minor error in Thomson’s development, used a transfer matrix 

method to study the transmission of elastic waves and dispersion of surface waves in stratified 

solid homogeneous media.  The transfer matrix, relates the traction and displacement vectors at 

the top of the layer surface with respect to those at the bottom layer surface.  The transfer matrix 

of the whole layer was then obtained by multiplication of each layer matrix.  It was shown by 

Gilbert and Backus (1966) that the transfer matrix is a special case of the propagator matrix.  In 

this case the stress and displacement vectors, and the constitutive equations with inhomogeneity 

dependent only on a single direction, were formulated as a system of first order differential 

equations.  Numerical integration of the system of differential equations results in the same 

interpretation as the layer transfer matrix products.  In spite of its simplicity, the transfer matrix 

method was found to be unstable for high frequencies/layer thickness products.  The delta matrix 

approach, proposed first by Dunkin (1965) was able to overcome the numerical instabilities of 

the transfer matrix method, however, at the expense of higher computational effort.  A different 

approach was developed by Knopoff (1964) known as the ‘global matrix’ method, where a single 

matrix, represents the layered system.  The matrix system is formed by satisfying continuity 

conditions at each layer interface.  This method, which does not suffer from the transfer matrix 

instabilities, was modified by Kausel and Roesset (1981) to utilize the layer stiffness matrix.  

The layer stiffness matrix, in contrast to the transfer matrix, relates the traction vector at the top 
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and bottom surfaces of a layer to the respective displacement vector.  The layer matrices are then 

assembled in a similar fashion as stiffness matrices in structural analysis.  Recently, Rokhlin and 

Wang (2001, 2002) have presented a recursive algorithm for assembling the global stiffness 

matrix from the layer stiffness matrix.  For this work we adopt the method by Rokhlin and Wang 

since it is computationally efficient and stable for very thin layers. 

2.2.4.1 Substrate idealization 

In order to model the reflection process from substrates with near-surface graded layer, such as 

etched dentin, a three-material model is adopted as shown in Fig 2.11.  

 

 

 

 

 

 

 

The upper half-space, A, is considered as a homogeneous non-viscous fluid corresponding to the 

coupling fluid in the acoustic microscope water bath.  The second material, B, is a transition 

layer of depth H used to represent the etched layer. This material is inhomogeneous only along 

the direction of x3 and has isotropic elastic properties.  The property variation for this material is 

taken to be linear with x3 given by the following relationship:   
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Figure 2.11 Three-material system idealization 
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where Pi
0
 is the i

th
 material property at the top of material B, Pi

h
  is the i

th
 material property at the 

bottom of material B, P1 = material density (ρ), P2 = constrained modulus C11, P3 = shear 

modulus C44,  The variation of elastic isotropic moduli, C11 and C44, is such that the positive 

definiteness of strain energy at any material point along the x3 axis is satisfied.  The third 

material, C, is considered as a homogeneous solid half-space which represents the native dentin 

substrate. 

We consider the second material (B) to be subdivided into N layers as shown in Fig 2.12.   

 

The displacement u
m

 for the m
th

 layer is composed of six partial waves and may be written as 

(Rokhlin and Wang 2002): 
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and corresponding traction vectors σσσσm
 can be obtained from Eq 2.66 and Hooke’s law as: 
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Figure 2.12 Discretization of near-surface graded layer 
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The positive and negative subscripts correspond to waves propagating in the positive or negative 

x3 directions, dj are the unit polarization vectors that determine the direction of particle motion, 

vectors mj are the slowness vectors which determine the direction of propagation and Aj are 

complex displacement amplitudes for each partial wave. For simplicity, the field is considered 

for a single frequency and a single direction of propagation. For isotropic materials, the slowness 

vector components m3
j
 have simple closed form solutions given as: 
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In Eq 2.68, superscript j=1 corresponds to a longitudinal (or compressional) wave for which the 

particle motion is along the direction of propagation, j=2 corresponds to an SV shear wave, 

where the direction of particle motion is normal to the direction of propagation, and j=3 

corresponds to a SH wave where the direction of particle motion is also normal to the direction 

of propagation but it is confined within a plane orthogonal to the SV motion. 

Vectors, gj are related to the polarization vectors and the elastic properties of the layer as: 
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The m
th

 layer has two interfaces m-1 and m with which it communicates with the layer above 

and below respectively.  Next the displacement (Eq 2.66) and stress vectors and (Eq 2.67) at the 

top and bottom interfaces are written in a matrix form as: 
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or 

m

u

m

m

m

m

m
AE

A

A

DHD

HDD

u

u
=

















=









+

−

+−−

++−
−1                           

























































=































+

+

+

−

−

−

+++−−−−−−

+++−−−−−−

+++−−−−−−

+++−−−

+++−−−

+++−−−

−

−

−

−

−

−

−−−

−−−

−−−

+++

+++

+++

3

2

1

3

2

1

3

3

2

3

1

3

3

1

2

3

1

3

3

2

2

2

1

2

3

2

2

2

1

2

3

1

2

1

1

1

3

1

2

1

1

1

3

3

2

3

1

3

3

3

2

3

1

3

3

2

2

2

1

2

3

2

2

2

1

2

3

1

2

1

1

1

3

1

2

1

1

1

1,33

1,12

1,13

1,33

1,12

1,13

3
3

2
3

1
3

3
3

2
3

1
3

3
3

2
3

1
3

3
3

2
3

1
3

3
3

2
3

1
3

3
3

2
3

1
3

m

m

m

m

m

m

hmihmihmi

hmihmihmi

hmhmihmi

hmihmihmi

hmihmihmi

hmihmihmi

m

m

m

m

m

m

A

A

A

A

A

A

gggegegeg

gggegegeg

gggegegeg

egegegggg

egegegggg

egegegggg

mmm

mmm

mmm

mmm

mmm

mmm

ωωω

ωωω

ωωω

ωωω

ωωω

ωωω

σ
σ
σ
σ
σ
σ

   (2.71) 

mm

m

m

m

m
AE

A

A

GHG

HGG σ

σ
σ

=
















=









+

−

+−−

++−
−1    

Substituting Eq 2.70 into 2.71 the stiffness matrix for a layer is obtained as: 
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The stiffness matrices for each layer are subsequently assembled through a recursive algorithm 

as: 
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and K
M

 is the total stiffness matrix of the top m layers, K
M-1

ij is the total stiffness matrix of the 

top m-1 layers, and K
m

ij is the stiffness matrix of the m
th

 layer as given by Eq 2.72, with i, j=1..3. 

Through the recurrence algorithm of Eqs 2.73 and 2.74, a global stiffness matrix is formed that 

relates the stress and displacement vectors at the top interface of the first layer with the stresses 

and displacements at the bottom interface of the last layer.  A global compliance matrix may also 

be defined as the inverse of the stiffness matrix, [ ] 1−
= ++S K  as: 
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In order to obtain the effective reflection coefficient of the layered structure, we impose 

boundary conditions at interface 1 between the fluid half-space A and the 1
st
 layer of material B, 

and at the N
th

 interface between the last layer of B and the underlying half-space C.  For interface 

1 the boundary conditions are: 
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Substituting Eqs 2.77b, c in Eq 2.73 we obtain: 
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Next, the displacement fields in the fluid as u
A
 and the bottom half-space, u

C
, are introduced as: 
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In Eq 2.80, A
0
 is the amplitude of the incident field and R(kx, ky) is the reflectance function 

defined in Eq 2.1, where the wave vector components kx, and ky are defined in Eq 2.58, while in 



 49 

Eq 2.81, Tp, TSV, and TSH, are the corresponding transmittance functions.  Utilizing Eqs 2.80 and 

2.81 and elastic properties, the pressure p
A
 field in the fluid and the stress vector in the bottom 

solid half-space σσσσC
 can be obtained.  Thus, using Eqs 2.79-2.81, we can solve for the reflectance 

function. 

2.2.4.2 Layer discretization and Convergence 

Since we are using a model for wave propagation in a discretely layered medium to approximate 

a continuously layered medium, an iterative discretization criterion is utilized to achieve solution 

convergence.  Thus, the computation for each incidence angle and frequency begins with a single 

layer and subsequently, the layer is subdivided into equal thickness increments, where the 

material properties are assigned to the m
th

 layer using the following equation: 

( )
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h
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i ≤≤+
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−= 1,

2

)12(
)( 0

0

      (2.82) 

N is the total number of layers and property P follows the notation of the Eq. 2.65.  The number 

of layers in the subdivision is incremented by a predefined quantity until the difference in the 

amplitude of the reflection coefficient at the i
th

 and i
th

-1 step was less than a specified tolerance, 

ε, as: 

ε<−
−1ii

RR           (2.83) 

In the computations performed in this work, the tolerance was set to e=10
-5

.  This procedure 

always provided a converged solution, however, the number of layers required to converge 

depends both on the angle of incidence and the temporal frequency considered, as well as the 

steepness of the profile. 
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2.2.5 Parametric Studies 

We performed parametric studies in order to 

understand the effects of gradation in material 

properties to the frequency dependence of the 

reflection coefficients.  In our parametric study, 

we have considered that material B transitions 

with no discontinuity to the underlying half-

space C so that P1
h
=ρh 

= ρs
, P2

h
=C11

h
=C11

s
 and 

P3
h
=C44

h
=C44

s
.  However, the material properties 

at the top material B, were allowed to differ 

from the overlying fluid half-space such that ρf 
≤ 

ρ0 
≤ ρs

, C11
f 
≤ C11

0 
≤ C11

s
 and 0

 
≤ C44

0 
≤ C44

s
. 

Furthermore, we have considered a specific set 

of material properties appropriate for dentin so 

as to keep the results relevant to the substrate 

used in our experimental studies.  For the water 

half-space, the bulk modulus, C11
f
 was 

considered as 2.22 GPa, and density ρf
 = 1.0 

Mg/m
3
.  The material density of the dentin 

substrate was taken as ρs
=2.1 Mg/m

3
, while the 

elastic moduli are taken as, C11
s
=38.6 GPa, and 

C44
s
=8.03 GPa.  Dentin elastic properties were adapted from a Kinney et al (2004).  The density 

of the dentin substrate was computed using literature values for the collagen and mineral 
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Figure 2.13 Material property profiles used in the 

parametric study 



 51 

components and porosity for mid-coronal dentin (Marangos et al 2009).  Example profiles for the 

graded layer (material B) are shown in Fig 2.13. 

In the following discussion, we use the wavenumber-thickness product, k
f
H=ωH/v

f
.  The 

dimensionless number k
f
H is a relative measure that relates the depth of the transition layer, H, 

with respect to the wavelength in water.  For example, for k
f
H=40 indicates that the layer 

thickness is approximately 6.37 times larger than the wavelength in water.  Such a notation 

eliminates the need to have separate plots for different thickness or frequencies.   

We first examine the effect of the angle of incidence on the amplitude of the reflection 

coefficients.  In the case of a homogeneous half-space, the reflectance function is frequency 

independent, and as shown in Fig 2.14, we observe very distinct regions.  First, at an angle of 

approximately 20.4º the amplitude 

of the reflection coefficient becomes 

unity.  This is the longitudinal wave 

critical angle and it signifies that 

longitudinal wave has become a 

surface wave.  At an angle of 50 º 

we observe the again the same 

phenomenon, but this time, the shear 

wave also has become a surface 

wave.  The longitudinal wave and the shear wave at this angle combine to give rise to the 

Rayleigh surface wave, and the angle at which it appears is the Rayleigh angle.  These 

characteristics are universal to all isotropic materials. The angles at which the surface waves 

occur however do depend on the material properties. We recall from the results of section 2.2.3 
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Figure 2.14 Amplitude of reflection coefficient with 

incidence angle for a homogeneous substrate 
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that for the acoustic objectives used in this work, the most significant contribution to the angular 

spectra comes from incidence angles not more than 18º.  Therefore, it is expected that the effect 

of such waves will not be captured by these objectives.  For the homogeneous substrate, and for 

angles <10º there is hardly any difference in the reflection coefficient amplitude compared to 

normal incidence.  Between 10-20º the reflection coefficient amplitude rapidly rises to unity. 

Between the longitudinal and the Rayleigh angle, the amplitude of the reflection coefficient 

drops rapidly and has an undulating behavior.  Beyond the Rayleigh angle, the amplitude of the 

reflection coefficient remains unity.   

In Fig 2.15 we show the amplitudes of the reflection coefficients for a substrate with 

graded layer, for values of k
f
H of 0.42, 10.6, 29.6 and 42.2.  On each plot, we superimpose the 
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Figure 2.15 Amplitude of reflection coefficient as a function of incidence angle for k
f
H (a) 0.42, (b) 10.6, (c) 29.6 

and (d) 42.2 
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reflectance function for the homogeneous substrate of Fig 2.14.  Interestingly, at very low k
f
H 

numbers, the region before the longitudinal critical angle is less affected, while the region 

between the longitudinal and first Rayleigh angles is greatly affected.  For higher k
f
H there is a 

significant reduction in the amplitude of the reflection coefficient before the longitudinal critical 

angle and the difference between the reflection coefficient amplitude at normal incidence 

becomes more prominent. The range between the longitudinal and the Rayleigh angles becomes 

almost indistinguishable.  Material property quantification in conventional acoustic microscopy 

relies heavily on the generation of the acoustic surface waves, preferably Rayleigh waves, while 

the reflectance functions at small incidence angles are typically overlooked.  However, even at 

small incidence angles, it is possible to discern differences that may reveal unique characteristics 

of a complex material. 
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In our subsequent discussion 

we show results up to angles of 

incidence within 18º, that are more 

relevant to the acoustic objectives 

used in this work.  Three profiles of 

the elastic properties and density 

were considered for the graded-layer 

as shown in Fig 2.13.  In Fig 2.16, 

we plot the amplitude of the 

reflection coefficients with respect to 

the non-dimensional number k
f
H for 

three angles of incidence, α = 0º, 10º 

and 18º.  Under normal incidence, as 

shown in Fig 2.16(a), we observe 

that when the k
f
H is small, the 

amplitude of the reflection 

coefficient approaches that for the 

underlying substrate.  However, for 

high k
f
H products, the amplitude of 

the reflection coefficient approaches 

that of the discontinuity between the 

fluid half-space and the top surface 

of the transition layer.  This observation is consistent with theoretical considerations (Robins 
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Figure 2.16 Amplitude of reflection coefficient as a function 

of k
f
H for angles of incidence (a) 0º, (b) 10º and (c) 18º 
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1990).  The range over which the reflection coefficient varies with frequency is thus bounded.  

However, the greatest change in the reflection coefficient amplitude occurs at values of k
f
H 

between 1.5 and 6.28, which corresponds to thicknesses approximately 0.25 and 1 times the 

wavelength in the fluid half-space.  As k
f
H > 6.28 the behavior of the amplitude of the reflection 

coefficient becomes oscillating.  At angles of incidence smaller than 18º (Figs 2.16b and c) the 

behavior with k
f
H is qualitatively similar as that of the normal incidence.  However, the main 

lobe appears to have a change in its shape and becomes broader.  Additionally, the oscillations 

become deeper while their repetition becomes slower which means that their minima occur at 

different k
f
H.  We note that the variation of density is limited from 1-2.1 Mg/m

3
 and hence its 

effect is somewhat limited in contrast to the elastic properties where they are possible to have 

variations of an order of magnitude.   
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3.0 EXPERIMENT 

3.1  SAM used in this work 

A commercially available SAM (WINSAM 100, Kramer Scientific Instruments GmbH, Herborn, 

Germany) was used in this work.  The ultrasonic objectives used included, a 30 MHz central 

frequency lens (KSI PT30-002) and a 110 MHz lens.  The 30 MHz transducer specifications 

were as follows: nominal lateral resolution ≈ 100 µm, half aperture angle ≈ 13.4
o
, nominal focal 

length =12.7 mm and the -6dB amplitude bandwidth frequencies are 21.6 MHz and 38 MHz.  

Similarly, the 110 MHz transducer specifications were as follows: nominal lateral resolution ≈ 

50 µm, half aperture angle ≈ 10
o
, nominal focal length =8.0 mm and the -6dB amplitude 

bandwidth frequencies are 28.9 MHz and 80.9 MHz.  In the subsequent discussion we will refer 

to the KSI PT30-002 objective as “Transducer 1” and the 110 MHz transducer as “Transducer 

2”.  The Fourier amplitude spectra for the two objectives used are shown in Fig 3.1. 
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Figure 3.1 Transducer frequency spectra 
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3.2 SAM Calibration 

Numerous researchers have used SAM in pulse-echo mode to directly measure material 

reflection coefficient and, consequently, acoustic impedance (Raum et al 2003, Hirsekorn et al 

1995 and 1996, Prasad 2001, Katz et al 2001, 2003).  The measurement of the reflection 

coefficient requires calibration of the received signal characteristics to the reflection coefficient 

of known materials.  Theoretically, the received signal amplitude is a linear function of the 

material reflectance (Hirsekorn et al 1995 and 1996).  However, it has been shown that the 

received signal may be significantly influenced by saturation effects due to system electronics at 

high amplifications (Raum et al 2003).  The linear relationship between material reflectance and 

received signal characteristics may therefore lose validity.  Furthermore, very often, higher 

amplification settings have to be used in order to obtain measurable signals from materials with 

very low reflection coefficients (~<0.20).  In all these cases, the use of linear data fitting may 

greatly compromise the accuracy of the calculated micromechanical properties, especially when 

(1) the unknown material reflectance is outside the range of the calibration materials, and (2) the 

unknown material has heterogeneous reflectance varying over a wide range.   

Furthermore the implicit assumption present in such calibration procedures is that the 

material reflection coefficient obtained independently (from literature or acoustic impedance 

measurements), and the reflection coefficient obtained from SAM measurements are identical.  

This is rarely the case since the scale of measurement using SAM is orders of magnitude smaller 

than bulk wave time of flight measurements and accurate volume displacement methods for 

density determinations require a sufficiently large sample.  In the presence of non-linear 

amplification, any errors in estimating the reflection coefficients used for calibration may be 

amplified and that error will subsequently propagate to the determination of the “calibration-

curves”. 
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Therefore for accurate quantification of properties, conventional calibration methods with 

linear or nonlinear regression are not sufficient and a methodology is needed that can distinguish 

the effect of system electronics from the material response.  Consequently, it is necessary to 

characterize the nonlinearity introduced by various system components.  Since the 

characterization of nonlinearity emanating from each sub-system and component is highly 

intrusive, especially for commercial systems, we address the overall system behavior.  In this 

work, the overall nonlinearity introduced by various system components is modeled using gain 

functions that are obtained for a variety of reference materials with reflection coefficients 

ranging from 0.21 to 0.97.  Frequency domain methods are used to analyze the signals from 

SAM to obtain gain functions for various system amplification settings.  These gain functions are 

found to depend upon both the material reflectance as well as the frequency at high amplification 

settings.  These gain functions are then used to predict the relationships between reflection 

coefficients and Fourier amplitude.  The advantage of the developed approach is that it is 

possible to separate the material effect from the system electronics effect.  As a result, the errors 

in the measured reflection coefficient may be better defined.  Moreover, the developed approach 

may be applied to detect frequency dependence of reflection coefficient due to material or 

surface properties.  The developed gain functions are validated by comparison with 

independently measured reflection coefficient for two very low acoustic impedance materials: 

LDPE (reflection coefficient= 0.12) and TPX
®

 (reflection coefficient= 0.09).  These validated 

gain functions were then used to predict the reflection coefficients and acoustic impedance of 

unknown materials. 

We represent the signal received by the piezoelectric element as 

( ) ωωωω ω deRFRGtV ti∫
∞

∞−

−= )(),()( 0         (3.1) 
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where, F0 (ω) is the incident wave-field’s temporal frequency spectrum, and G(R, ω) is a 

amplification (or gain) function that is applied after the signal has been received by the 

piezoelectric element and  R(ω) is the substrate’s reflection coefficient which may be frequency 

dependent.   Eq. 3.1 may alternatively be written in the frequency domain as a multiplication of 

the three functions as: 

( )ωωωω RFRGV )(),()( 0=          (3.2) 

We note that in the case of an isotropic half-space, the reflection coefficient for normal incidence 

takes the form: 

AB

AB

ZZ

ZZ
R

+

−
=            (3.3) 

where ZA = acoustic impedance of coupling fluid (= ρAcA), ZB = acoustic impedance of the 

specimen (=ρBcB). 

 

3.2.1 Calibration materials  

The following materials were used in order to provide a wide range of reflection 

coefficients and acoustic impedances: tungsten, copper, brass, aluminum, vitreous carbon, silica 

glass, polyvinyl chloride (PVC), polyethylene terephthalate glycol (PETG), polycarbonate, 

polypropylene, high density polyethylene (HDPE), low density polyethylene (LDPE) and 

polymethylpentene (TPX
®

).  For this set of materials, the acoustic impedance was determined by 

independently measuring longitudinal wave velocity and material mass density.  The longitudinal 

speed of sound, c, in each of the materials was measured by the time of flight method using a 5 

MHz contact transducer.  Material density, ρ, was measured by Archimedes principle.  The value 

of the theoretical reflection coefficient (R
th

) of each material was then determined from Eq 3.3.  
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The speed of sound in water, cA, was used as 1490 m/s for distilled water which corresponded to 

the average temperature of the water tank for a temperature range of 22-24ºC (Del Grosso and 

Mader 1972).  Materials LDPE and TPX
®

 were not part of the calibration, but their 

independently measured reflection coefficients were used to validate the calibration procedure. 

The reflection coefficients and impedances for the calibration materials are shown in Table 1. 

 

 

 

 

 

 

 

 

 

 

3.2.2 Data acquisition and analysis 

The SAM and transducers described in 3.1 were used.  In the pulse-echo mode, A-scan 

signals were recorded at different amplification (gain) settings.  All the samples were placed at 

the focal plane of the transducer and the A-scan signals were recorded at the same location of a 

sample for different gain settings.  The gain settings for transducer 1 were varied from -10 dB to 

8 dB.  For this range of gain settings measurable signals were obtained for all the calibration 

materials (materials with reflection coefficients > 0.21).  For the transducer 2, gain settings 

ranged from 10 dB to 30 dB by increments of 2 dB.  For the validation materials, LDPE and 

Table 3-1 Calibration materials 

 

0.7711.853692.20Quartz Glass

0.413.620471.77PVDF

0.646.745651.48Vitreous Carbon

-1.514901.00Distilled WaterCouplant

0.091.721800.82TPX®

0.121.920710.91LDPEValidation

Materials

0.212.324390.95HDPE

0.232.426400.90Polypropylene

0.292.722701.19Polycarbonate

0.332.923251.27PETG

0.383.323661.41PVC

0.8417.362682.76Aluminum (Al)

0.9235.141958.37Brass

0.9340.746628.72Copper (Cu)

0.9799.58522219.07Tungsten (W)

Calibration

Materials

Rth
Z = ρ.c

(MRayl)

c

(m/s)

ρ

(g/cm3)
Material

0.7711.853692.20Quartz Glass

0.413.620471.77PVDF

0.646.745651.48Vitreous Carbon

-1.514901.00Distilled WaterCouplant

0.091.721800.82TPX®

0.121.920710.91LDPEValidation

Materials

0.212.324390.95HDPE

0.232.426400.90Polypropylene

0.292.722701.19Polycarbonate

0.332.923251.27PETG

0.383.323661.41PVC

0.8417.362682.76Aluminum (Al)

0.9235.141958.37Brass

0.9340.746628.72Copper (Cu)

0.9799.58522219.07Tungsten (W)

Calibration

Materials

Rth
Z = ρ.c

(MRayl)

c

(m/s)

ρ

(g/cm3)
Material

 



 61 

TPX
®

, measurable signals were possible for gain settings of 0 dB and higher.  For each 

calibration material, 32 waveform signals were captured, gated and averaged in order to increase 

signal to noise ratio.  Same gate size was used for all the calculations. A Fast Fourier Transform 

(FFT) was used to obtain the frequency spectrum of the averaged signal for the frequency 

domain analysis.   

 The main objective is to characterize the gain function G(R, ω) of Eq 3.2.  We note that 

each amplification setting has a different gain function.  Additionally, each transducer will have 

different set of gain functions.  We may think of G(R, ω) as a mapping or transfer function that 

modifies an input signal F0(ω)R(ω).  To determine the gain function of the amplifier, we use the 

calibration materials whose reflection coefficients have been independently measured.  We 

represent the received reflected signal amplitude, m
iV ,modified, in general, by the gain function 

G(R,ω), in the frequency domain as: 

)(),()( ωωω oi

m

i FRGRV =           (3.4) 

where Fo(ω) is the Fourier transform of the incident signal, ω=cyclic frequency (=2πf), f = 

frequency, and Ri is the reflection coefficient of the i-th material.  If the gain function G(R,ω) is 

independent of the material reflectance and frequency, then the reflection coefficient of an 

unknown material, Runkn, may be obtained through straightforward de-convolution using an 

independently characterized reference material of reflectance, th
refR , as follows:  

th
refm

ref

m
unkn

unkn R
V

V
R

)(

)(

ω

ω
= ,          (3.5) 

where, superscript m refers to the measured spectra.  However, due to the non-linear behavior of 

system electronics at high amplifications, the gain function is likely to be dependent upon the 

frequency and material reflectance.  To illustrate the effect of system non-linearity, we determine 
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the theoretical signal amplitude of the calibration materials using tungsten (W) as the known 

reference material and the theoretical reflection coefficients, th
iR , given in Table 1 as: 

)()( ωω m
Wth

W

th
ith

i V
R

R
V =           (3.6) 

In Fig 3.2, we plot the measured Fourier amplitude at the central frequency (fc) as the abscissa 

and the theoretical reflection coefficient from Table 1 as the ordinate for different gain settings.   

 

 

 

 

 

 

 

 

 

We see that the measurements exhibit increasing non-linearity as the gain settings are increased 

from -10 dB to 8 dB.  This measured non-linearity reflects the saturation effects induced by the 

system electronics (Raum et al 2003).  At 8 dB gain setting, the percentage deviations range from 

-90% to -3% for low to high reflectance material, while at 0 dB gain settings, the percentage 

deviations range from -37% to -1% for low to high reflectance material.  At -10 dB, the 

deviations range from +1% to -10% and do not show any trend from low to high reflectance 

materials.  The deviations at -10 dB are, therefore, considered to be a result of local variations in 

material properties, rather than the effect of system electronics. 
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Figure 3.2 Reflection coefficient versus Fourier 

amplitude for transducer 1 at its central frequency 
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To further illustrate the effect of 

system nonlinearity over the -6dB 

frequency bandwidth, we show the 

deconvolution of the measured 

spectra of the various materials with 

respect to the reference tungsten 

spectra in Fig 3.3.  For materials 

with frequency independent 

reflectance, the deconvolution 

should yield a constant value of the 

normalized Fourier amplitude over 

the frequency range.  From Fig 3.3, 

we see that at 0 and 8 dB gain 

settings, the normalized Fourier 

amplitudes show significant 

variations away from the central 

frequency for all the samples.  At -10 

dB, the normalized Fourier 

amplitudes show minor variations 

over the frequency range.  The 

deviation from the constant value 

could be caused by local variations 

in material/surface properties, or 

 

 

Figure 3.3 Deconvolution of measured frequency spectra with 

respect to tungsten spectra 
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effects of system electronics.  As discussed previously, at -10 dB, we expect minimal effects of 

system electronics.  Therefore, the deviations seen at -10 dB are expected to be from local 

variations in material properties.  However, there is a limited range of material reflection 

coefficients over which we can utilize -10 dB gain setting.  At this low gain setting, materials 

with very low reflection coefficients (~<0.2) provide a weak signal which falls within the noise 

floor.  The problem becomes more acute for cases in which the unknown material has 

heterogeneous reflectance varying over a wide range; a case very often seen in biological 

samples.  We illustrate the problem in Fig 3.4 which shows a caries affected tooth imaged at -10, 

0 and 8 dB gain settings. 

The high reflectance regions of dentin and enamel are seen in all the 3 images, however the low 

reflectance caries affected regions are not visible at lower gain settings. Therefore for imaging 

low reflectance materials or material with heterogeneous reflectance, higher gain settings have to 

be used in order to obtain a measurable signal and a realistic image.  Thus, the system electronics 

effects have to be considered in order to utilize the measured signal to accurately calculate the 

reflection coefficient.  Consequently, a set of independently characterized calibration materials 

has to be used to establish the gain function, G(R,ω), for accurate determination of the unknown 

 

-10 dB  0 dB 8 dB   

Figure 3.4 Caries affected tooth imaged at -10, 0 and 8 dB gain settings  
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reflection coefficient.  In the past work using SAM, linear fits have been often used to relate the 

reflection coefficient and signal amplitude (Hirsekorn et al 1995 & 1996, Prasad 2001, Katz et al 

2001, 2003).  The linear fits or piecewise linear fits could lead to erroneous results when 1) the 

linear fit does not agree with the theoretical linear relationship, such as the measured data shown 

in Fig 3.2 for 0 and 8 dB gain settings, 2) the target material reflectance is outside the range of 

the calibration materials, and 3) the target material has heterogeneous reflectance varying over a 

wide range.  Furthermore, the rationale for the choice of appropriate functional forms for 

nonlinear regression is unclear. 

3.2.3 Gain Functions 

For further development, we express the discrepancy between the measured Fourier 

amplitude spectra, m
iV , at a given gain setting for the i-th calibration material and the theoretical 

Fourier amplitude obtained from Eq.3.4 as a sum of two parts: 

( )g
i

s
i

th
i

m
i VVVV ∆+∆=−           (3.7) 

where ∆V
s
 is the systematic discrepancy of the measured Fourier amplitude from the theoretical 

linear relationship due to local variations in material properties, and ∆V
g
 is the discrepancy from 

the theoretical linear relationship because of the system electronics.  The systematic discrepancy, 

∆V
s
, is obtained from the measurements at -10dB gain setting at which the system electronic 

effects are considered negligible (i.e. ∆V
g≈0) using the following relationship:  
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We now define a scaled gain function, m
iG , obtained as the ratio of the measured Fourier 

amplitude corrected for the systematic discrepancy, ∆V
s
, and the theoretical Fourier amplitude 

written for the i-th calibration material as follows: 

th
i

s
i

m
im

i
V

VV
G

∆−
=            (3.9) 

The system electronics induced discrepancy, ∆V
g
, may then be obtained by combining (3.7) and 

(3.9) as follows: 

( )1−=∆ m
i

th
i

g
i GVV           (3.10) 

Fig 3.5 shows the plot of the scaled gain values versus the theoretical reflection coefficients for 

the central frequency, fc, and -3dB bandwidth frequencies, fl and fh, at 8, 0 and -10 dB gain 

settings for transducer 1.  Clearly, at a given gain setting, the scaled gain values have an inverse 

relationship with reflectance.  Thus the gain function serves to saturate the signal for high 

reflectance materials.  Since the gain functions are not known for the system electronics, we 

obtain these through non-linear regression for the data in Fig 3.5 as follows: 

)(
1

1
)(),( 1 ωωω oa

R

R
aRG +











+

−
=          (3.11) 

where ao(ω) and a1(ω) are frequency dependent fitting parameters for a given gain setting.  We 

note that the 110 MHz transducer also exhibits the same behavior.   
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Figure 3.5 The gain function for (a) the -3 dB 

bandwidth frequency, fl, (b) the central frequency, fc, 

and, (c) the -3 dB bandwidth frequency, fh of 

transducer 1 
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3.2.4 Calibration curves 

We utilize the obtained gain functions to predict the relationship between Fourier 

amplitude and reflection coefficient, given by combining Eqs 3.4 and 3.11 as follows: 

( )
( ) W

m

W

o

W

m

W

R

V
Ra

R

RR
a

R

V
GRV 





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



+

+

−
== )(

1

1
)(1 ωω       (3.12) 

The predicted calibration curves for the transducer 1 are plotted in Figs 3.6 a, b and c, for the 

transducer central frequency, fc, and the transducer -3dB bandwidth frequencies, fl and fh, at 8, 0 

and -10 dB gain settings.  The calibration curves are shown by lines and the measured Fourier 

amplitudes are shown by symbols.  Excellent agreement is obtained for gain settings of -10 and 0 

dB.  However, at 8 dB gain setting the predicted values slightly deviate for high reflectance 

materials.  This deviation is a result of highly nonlinear behavior of gain function at such high 

gain settings.   Similar plots are obtained for transducer 2 as shown in Figs 3.6 d, e and f at gain 

settings of 30, 20 and 10 dB. 
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Figure 3.6 Predicted and measured relationship between Fourier amplitude and reflection 

coefficient for 3 different gain settings at (a) the -3 dB bandwidth frequency, fl, (b) the central 

frequency, fc, and, (c) the -3 dB bandwidth frequency, fh. of transducer 1 and (d) the -3 dB 

bandwidth frequency, fl, (e) the central frequency, fc, and, (f) the -3 dB bandwidth frequency, fh. of 

transducer 2 
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3.2.5 Prediction of LDPE and TPX
®

 reflection coefficients 

To validate the above relationships, we determine the reflection coefficient of LDPE and 

TPX
®

 using the calibration curves and compare these with the theoretical reflection coefficients 

given in Table 1.  These materials were chosen for validation because their reflection coefficients 

are smaller than those used to develop the calibration curves and these do not provide 

measurable signals at -10 dB gain setting.  Thus, we can assess the applicability of the calibration 

curves for predicting reflection coefficients outside the range of the calibration materials.  In Fig 

3.7, we plot the reflection coefficients as a function of frequency over approximately the -6dB 

transducer bandwidth calculated using the calibration curves given by Eq. 3.12.  For comparison, 

the independently determined theoretical reflection coefficients from Table 1 are shown as 

colored horizontal lines in Fig 3.7.  Clearly, the developed calibration curves provide a closer 

prediction of unknown material whose reflection coefficient lies outside the range of calibration 

materials.  Therefore, these validated calibration curves may be used to predict the reflection 

coefficients of unknown materials. 
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3.2.6 Repeatability 

We assessed the repeatability of the system by performing the calibration two consecutive days.  

In Fig 3.9, we show the results on the calibration curves obtained for transducer 2 at the central 

frequency.  At the lower gain settings the change is undetectable and at higher gain settings the 

higher reflectance materials have a small error. 
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Figure 3.8 Calibration repeatability for transducer 2 shown at its central frequency 
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3.2.7 Error analysis 

To determine the uncertainty on the reflection coefficient, we return to the calibration 

relationship given in Eq. 3.12.  Solving for R (reflection coefficient of the unknown substrate) 

we end up with the solution for predicting R from the measured Fourier amplitude at a particular 

frequency as: 
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where absolute value signs are implied.  Based on the 32 A-scan signals at the same location of 

each calibration material, the standard deviation of the Fourier amplitude was found to be 3 units 

and it is normally distributed about the mean Fourier amplitude.  In addition, the standard 

deviation of the Fourier amplitude was also not changing for all the reference materials over the 

useful transducer bandwidth and as different amplification settings were applied.  The 

uncertainty of the measured Fourier amplitude was therefore 3 units and can therefore be 

attributed to random noise.  Since we use tungsten (W) as the reference material, the measured 

Fourier amplitude of tungsten also has the same uncertainty of 3 units. 

We may treat V and Vw as two separate variables which are independent and whose uncertainty 

is random.  By that assumption, the error on the reflection coefficient can be given as (Taylor 

1997): 

22 )()(
wV

w

VR
V

R

V

R
εεε

∂
∂

+
∂
∂

=         (3.14) 

Carrying the partial differentiations we obtain: 
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 Therefore, the error on the reflection coefficient may be written as: 

( ) ( )

( ) ( )









−++







+






















−++








+








+++









+









+

=
w

V

W

w

W

w

W

w

W

w

w

w
w

w

R
V

aaaaR
V

V
R

V

V

aaaaR
V

V
R

V

V
aaR

V

V

aa

V

V
R

ε
ε

2

1010

2

2

2

1010

2

2

10

10

2

32

32)3(

)(2

1
   (3.15) 

In Figs 3.10 and 3.11 we plot Eq. 3.15 with respect to the ratio V/Vw, for a value of εv=3 for both 

transducer 1 and 2.  For each objective, three frequencies are considered, the two lower -3 dB 
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Figure 3.9 Reflection coefficient error analysis for transducer 1 at 6dB gain 

setting 
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frequencies and the central frequencies which were, 25.0 MHz, 29.7 MHz and 35.0 MHz for 

transducer 1, and 36.0 MHz, 51 MHz 70.9 MHz for transducer 2.  The corresponding gain 

settings were 6 dB gain setting for transducer 1 and 24 dB for transducer 2.  The parameters a0 

and a1 for transducer 1 were, 0.96 and -1.27 at 25.0 MHz, 0.97 and -0.98 at 29.7 MHz, 0.95 and -

1.32 at 35.0 MHz.  Similarly for transducer 2, parameters a0 and a1 are given as, 0.97 and -0.59 at 

36.0 MHz, 0.99 and -0.54 at 51 MHz, 1.01 and -0.63 at 70.9 MHz.  

We observe that the error on the reflection coefficient becomes larger at the edge 

frequencies than the central frequencies, which is consistent between the two transducers.  This 

is explained by observing the bracketed term of Eq. 3.15.  This term may be represented as a 

signal to noise ratio with respect to the tungsten Fourier amplitude.  Amplitudes close to the 

central frequency are higher and noise amplitude remains constant, then the signal to noise ratio 

is higher.  Furthermore we observe that error on the reflection coefficient increases in a nonlinear 
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Figure 3.10 Reflection coefficient error analysis for transducer 2 at 24 dB gain 

setting 
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fashion as the measured Fourier amplitude becomes closer to tungsten.  This is an implication of 

the specific nonlinear behavior of the amplifier close to saturation.  However, we note that for 

the Fourier amplitudes measured from the dentin substrate, the error on the reflection coefficient 

is approximately 0.01. 

 

3.3 Homotopic Measurement 

With recent advances in experimental methods, the characterization of biological tissues 

and biomimetic materials has been made possible at increasingly high spatial resolutions. For 

elucidating the interrelationship between physical, chemical and mechanical properties, 

complementary high resolution methods are required.  However, when complementary methods 

are applied on highly heterogeneous materials, such as calcified tissues, it is especially important 

that the measurements are performed at the same location.  Recently, we have introduced the 

term homotopic (Greek homos = identical and topos = place) (Marangos et al 2009) to describe 

the measurement of physico-mechanical properties performed at the same location of the same 

sample.   

Relatively few attempts have been made to perform homotopic measurement of the 

micro-scale elastic moduli, composition and density of calcified tissues.  Most of these 

investigations have used destructive indentation techniques for the micromechanical property 

determination.  In the past decade, some investigators have combined ultra-micro or 

nanoindentation with backscattered scanning electron microscopy (BSEM) to study the 

relationship between mechanical properties and mineral content of a variety of calcified tissues 

(Angker et al 2004, Bembey et al 2005, Ferguson et al 2003, 2004).  Nanoindentation has also 

been used in combination with atomic force microscopy (AFM), Fourier-transform infrared 



 76 

microspectroscopy (FTIR), small angle x-ray scattering and BSEM to relate hardness and elastic 

modulus to a variety of structural and compositional properties of dentin (Tesch et al 2001, 

Gupta et al 2005).  More recently, nanoindentation has been used with time-of-flight secondary 

ion mass spectroscopy to image same regions of in vitro carious lesions in human dental enamel 

(Dickinson et al 2007).  

Non-destructive methods as an alternative to nanoindentation, have rarely been used in 

homotopic measurement for the correlation of mechanical properties, composition and density of 

calcified tissues. The advantage of non-destructive methods is that sample is preserved in its 

natural state for analysis with other complementary techniques.  Among the earliest efforts to use 

non-destructive methods is the work by Katz and Meunier (1993) in which the same regions of 

human and canine osteons were imaged using backscattered scanning electron microscopy 

(BSEM) and scanning acoustic microscopy (SAM).  The contrast in the SAM images was 

explained upon the basis of mineral density variations observed in the BSEM images.  More 

recently, Turner et al (1999) have measured elastic moduli using SAM and compared it to 

nanoindentation measurements at similar locations on adjacent sections.  SAM has also been 

used in conjunction with synchrotron radiation micro computed tomography (Raum et al 2006a, 

b) and in combination with Raman micro-spectroscopy and nanoindentation (Hofmann et al 

2006) to obtain site matched mechanical and compositional properties.   

Furthermore, multi-scale measurements require to be performed with multiple resolution 

instruments.  Since natural materials have properties that vary from location to location or 

respond in a heterogeneous manner to surface treatments, it becomes extremely important that 

complementary measurements are performed at the same location.  Moreover, for multiple 
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resolution determinations, the lower resolution measurement is necessary to contain the same 

ensemble of material points measured at the higher resolution.   

In this work, the research protocol requires the specimen to be imaged in SAM before 

and after acid-etching treatment.  Since the etching process cannot be performed in situ, it is 

necessary that the specimen be moved and placed back in the measuring system. As part of this 

requirement, a prototype device was developed that ensures tracking of the same locations that 

were measured before etching. Such device was necessary for meaningful comparison of pre and 

post acid-etching states.   

 

3.3.1 Specimen holder for homotopic measurement 

A prototype device was designed to obtain homotopic measurements the SAM described 

in 3.2.3.  It consists of a steel block, with a circular depression on which the specimen will be 

mounted as shown in Fig 3.11a.  A perforated sheet with a regular array of 400 µm openings was 

 

      (a)               (b) 

Figure 3.11 Device for homotopic measurements (a) optical image (b) SAM image 
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fixed on the surface of the block.  The size of the openings was chosen such that it would be 

resolved by the SAM transducers used in this study.  A SAM image of the assembly with the 

specimen mounted is shown in Fig 3.11b.  The specimen is rigidly mounted on the device and 

remains so throughout the testing schedule. 

 

3.3.2 Principles 

During the movement and re-placement of the specimen/device assembly, it is reasonable 

to assume that there is no relative movement between material points and the specimen may 

experience a rigid body displacement and rotation.  In Fig 3.12 we show two placements of the 

sample-holder.  We use superscripts 0 and 1 to distinguish between initial and final placements.  

Point P denotes the location of interest on the specimen and our goal is to return to P with the 

highest accuracy in the subsequent measurements.  Our goal is to be able to identify P
0
 with the 

 
X 

Y 

 

Figure 3.12  Initial and final placements of specimen in SAM 
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highest accuracy in the subsequent measurements.  To establish the final position of any location 

P on the specimen, we need to know the initial and final positions only of a few selected 

locations.  These locations correspond to the vertices of an equilateral triangle A, B and C which 

are tracked throughout the experiment.  At the initial placement, the spatial coordinates of 

vertices, A
0
 (X

0
A, Y

0
A), B

0
 (X

0
B, Y

0
B), C

0
 (X

0
C, Y

0
C) as well as those of P

0
 (X

0
P, Y

0
P) on the 

specimen are known with respect to a global coordinate system [X, Y].  This is the case as the 

SAM used is equipped with a positioning stage that provided the spatial coordinates of all the 

measured locations with respect to the stage’s global coordinate system.  The vertex positions are 

associated with the A, B and C were determined by acquiring an image.  By sizing the feature to 

be slightly larger (~4 times) than the resolution of the imaging modality, it was possible to 

resolve the boundary of the opening and the locations within it. 

For convenience, we define a local right-handed coordinate system.  This local system 

moves with the specimen/device assembly. The local y-axis is aligned with the triangle edge AB 

with the positive direction pointing towards B. The origin of the local coordinate system is 

placed at A.  The coordinates of a location P with respect to the local coordinate system may be 

found through a coordinate transformation as: 
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P −=          (3.16) 

The components of matrix [T
0
] are functions of the vertex coordinates at the initial placement 

and are given as: 
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At the final placement, the new global coordinates of vertices A
1
 (X

1
A, Y

1
A), B

1
 (X

1
B, Y

1
B), C

1
 

(X
1

C, Y
1
C) are established by again identifying the corresponding features in a similar fashion.  
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With the new vertex coordinates established, and since we already know the local positions of P 

with respect to the local coordinate system, we then seek the new global coordinates of location 

P
1
 (X

1
P, Y

1
P).  The process may be described as a coordinate transformation from the local 

coordinate system, to the new global coordinate system as: 

{ } [ ]{ } { }O
1

P

11

P XxTX +=          (3.18) 

The components of the transformation matrix [T
1
] and circumcenter vector {X

1
O} are now 

functions of the vertex coordinates at the final placement. 

Combining Eqs. 3.13 and 3.15 we may obtain the global coordinates of location P in the 

final placement as a function of the global coordinates of location P in the initial placement and 

the vertex coordinates in the initial and final placements as: 

{ } [ ][ ] { } { }O
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P XXXTTX +−= OP

T 00        (3.19) 

 

3.4 Dentin Structure, Composition and Mechanical Properties 

Dentin is a mineralized tissue that forms a bulk of a tooth body.  Dentin composition is 

approximately 30-35% organic material, 45-50% inorganic material, and 20% fluid by volume.  

The organic component is predominantly type I collagen with minor contribution from other 

proteins, while inorganic component is a carbonate rich, calcium deficient apatite mineral 

deposited within collagen fibril (Marshall et al 1997, Gage et al 1989, Linde 1989, Butler 1992, 

Arsenault 1989).  The interactions between collagen and nanocrystalline mineralite gives rise to 

the stiffness of the dentin structure.  The consequent dentin elasticity is an important feature that 

determines the mechanical behavior of the tooth structure. 
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The structural characteristics of sound dentin are well known at the micro-scale (100 

µm).  Dentin is described as a system of dentinal tubules surrounded by a collar of highly 

mineralized peritubular dentin (Wang and Weiner 1998) as shown in Fig 3.13.  The tubules 

traverse the structure from the pulp cavity to the region just below the dentin-enamel junction 

(DEJ) or the dentin-cementum junction (CEJ).  Tubule density, size and orientation vary from 

location to location.  The density and size are lowest close to the DEJ and highest at the 

predentin surface at the junction to the pulp chamber.  Thus, the porosity of dentin varies from 

0.5% to 25% from the DEJ to the pulp (Manly and Deakins 1940, Sumikawa et al 1999, Koutsi 

et al 1994).  The composition of the peritubular dentin is carbonated apatite with very small 

amounts of organic matrix whereas intertubular dentin, i.e., the dentin separating the tubules, is 

type I collagen matrix reinforced with apatite.  Water in dentin may be classified as either free or 

bound.  Water is present within the dentinal tubules as pulpal fluid and within the interstitial 

spaces between collagen fibrils.  Based upon experimental chemical microanalyses, bound water 

 

pulp 

Enamel 

Dentin 

 

Figure 3.13 Dentin microstructure (adapted from Misra et al 2005) 
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is likely present as hydroxyl groups bound to the mineral component (Gruner et al 1937, Bird et 

al 1940, LeFevre et al 1937). 

Beginning in 1960s, macro-scale elastic moduli of dentin have been measured by a 

variety of methods as reviewed by Kinney et al. (2003).  Using nanoindentation methods, Kinney 

et al. (1999), have measured the elastic modulus of peri-tubular dentin and inter-tubular dentin.  

At somewhat larger, unspecified micrometer scales, Katz et al. (2001) measured similar values of 

dentin elastic modulus using SAM.  At even higher scales, Lees and Rollins (1972) used 

longitudinal and shear wave velocity measurements, Kinney et al (2004) used resonant 

ultrasound spectroscopy to determine elastic moduli of millimeter scale samples, and John 

(2006) used longitudinal velocity measurements on approximately millimeter thick slices to find 

location dependent elastic moduli.   

 

3.5 Characteristics of Acid-Etched Dentin 

Since the replacement of the amalgam by acrylic composite fillings, the problem of 

bonding composite restorations to dentin has become the “Lernaean Hydra”.  As it is well 

known, the native tooth surface, is supposed to provide the foundation that supports composite 

fillings.  A necessary step to complete the bond between the dentin surface and the filling, is the 

application of polymeric adhesives.  During cavity preparation, the exposed tooth surface is left 

with a layer of debris known as the “smear layer” (Kramer and McLean 1952, Eick 1992).  The 

presence of this smear layer, proved to be the culprit for the premature failure of early resin 

composite restorations, as it occluded the dentinal tubules with smear plugs and prohibited 

bonding of the adhesive to the native tooth structure.  Buonocore (1955), in order to improve 

composite restorations on enamel, suggested exposing the dentin surface to a phosphoric acid 
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treatment for a short time (a few seconds) as a conditioning step before adhesive application.  

The addition of this step proved very successful in enamel bonding, but when it was later 

attempted for bonding on dentin, did not perform quite as well.  Although the phosphoric acid 

etching step served its intended purpose of removing the smear layer from the dentin surface, it 

also completely altered the near-surface of the exposed dentin creating a new and unknown 

substrate, different from the native tissue.  The unexpected outcome of the etching regime was 

the removal of the mineral from the first few micrometers of dentin leaving behind a porous 

collagen scaffold (Pashley et al 1993, Kinney et al 1995).  Consequently, the interface resulting 

from subsequent application of the adhesive system was a highly heterogeneous composite of 

collagen, mineral and adhesive monomer, known now as the “hybrid layer” (Nakabayashi et al 

1982).  Since then, researchers in clinical dentistry have been working to understand the effects 

that acid etching imposes on dentin and its relationship to bonding efficiency and to develop 

alternative conditioning techniques and adhesive formulations compatible with the etched 

substrate.   

To evaluate the sub-surface structural alterations that acid-etching imposes on dentin 

Scanning and Transmission Electron Microscopy (SEM and TEM) studies have been performed.  

Van Meerbeek et al (1993) through high resolution SEM and TEM observations showed that the 

near-surface of acid-etched inter-tubular dentin was separated into three distinct sub-layers.  The 

first layer was comprised of collapsed disorganized collagen. Below it, the collagen showed 

partial structure with sparse instances of residual mineral.  The third layer was a partially de-

mineralized zone that transitioned to the deeper native dentin.  There has been concern (Eick 

1992, Nakabayashi et al 1992, Spencer and Swafford 1999) that the top denatured collagen layer 

could inhibit to the subsequent infiltration of adhesive.  Kinney et al (1995) using Atomic Force 



 84 

Microscopy (AFM) and X-ray tomography attempted to quantify the dimensional changes that 

occur in fully hydrated dentin during demineralization with lactic acid and to relate them to the 

mineral density distribution as a function of depth.  Their work, suggested that the tubule orifices 

become wider by removal of the more mineralized peritubular dentin.  Their work also indicates, 

that the mineral density distribution is affected by two different rates of de-mineralization, one 

related to the fast transport of acid through the tubule orifices, and one associated with the slower 

diffusion of the acid through the de-mineralized collagen layer.  However, the extent of 

demineralization of the acid-etched zone as well as the effects on the tubule orifice widening has 

been shown to vary with the conditioner used, the concentration of the conditioner, time of 

exposure and technique (Oliveira et al 2002, Susin et al 2008, Wang and Spencer 2004).  

Furthermore, the extent of demineralization has been shown to depend on the substrate as dentin 

may be sclerotic or affected by caries (Marshall et al 2000, 2001). 

The profile and extent of inter-tubular dentin de-mineralization under short-term 

clinically relevant exposure to acid etching has been most effectively shown using infrared and 

micro-Raman Spectroscopy (Suzuki et al 1991, Wieliczka et al 1997, Lemor et al 2000, Spencer 

et al 2000, Wang and Spencer 2003, Santini and Miletic 2008).  Results from these studies, have 

shown clearly that the adhesives were unable to completely infiltrate the dentin etched-surface.  

From these studies the extent of the de-mineralized zone was approximately 20 µm. 

Topographical effects of acid-etching on dentin such as roughness and surface recession 

have been observed by AFM and profilometry.  Oliveira et al (2002) has shown that after 

etching, the surface recession after few seconds of etching was found to be less than 1 micron, 

provided that dentin remains fully hydrated.  AFM based roughness measurements of de-

mineralized dentin (Rosales et al 1999, Oliveira et al 2002, Shuyean et al 2009) show an increase 
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in roughness and are consistent with profilometric studies (Toledano et al 1999).  However, 

roughness measurements depend upon the exposed surface with regards to tubule orientation.  

Mechanical property measurements of etched dentin are very scarce.  Balooch et al (1998) used 

AFM-based indentation under small deformations reported the visco-elastic and elastic values of 

de-mineralized dentin.  According to their work, hydrated dentin had a very low Young’s 

modulus of elasticity ~0.2 MPa whereas de-hydrated was ~2 GPa.  However, indentation studies 

are very challenging for substrates such as etched dentin and the interaction of the indent with a 

graded substrate is not well defined.  Pashley et al (2003) through miniature compressive and 

tensile stress-relaxation and creep tests concluded that completely de-mineralized dentin 

exhibited non-linear viscoelastic effects.  Quantitative characterization techniques have increased 

our understanding of the morphological and ultra-structural characteristics of the near-surface of 

acid-etched dentin.  However, there is still a big gap in our knowledge of the mechanical 

properties of acid-etched dentin as well as how these properties influence the interpretation of the 

experimental measurements of mechanical and physical properties. 

 

3.6 Application of SAM to dental materials 

In one of the earliest efforts in application of SAM in dental materials (Peck and Briggs 

1987, Peck et al. 1989) carious enamel lesions were imaged at a spatial resolution of 

approximately 4 µm.  Even though the work was largely qualitative, they recognized the 

sensitivity of SAM in detecting small changes in elastic properties of enamel and the existence of 

an intimate relationship to the level of de-mineralization.  Kushibiki et al. (1987) in an attempt to 

investigate the visco-elastic properties of dental hard tissues, performed SAM measurements on 

human enamel and dentin using line focus (cylindrical lens) at 225 MHz and point focus 
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(spherical lens) at 400 MHz at a resolution of ~ 3 µm.  They came to the conclusion that the 

surface acoustic wave velocities and attenuations in both enamel and dentin had a marked 

variation with frequency, position and direction.  More recently, Zheng et al (2000) used acoustic 

microscopy at 25, 50 and 100 MHz for obtaining acoustic impedance images.  In addition, Maev 

et al (2002) used acoustic microscopy at frequency of 50 MHz in reflectance mode to obtain 

images and time of flight at 25 µm resolution.  In the same study they used transmission mode 

with contact transducers to measure time of flight at 20 MHz.  Acoustic wave velocities in 

mantle dentin near the enamel were 7% to 8% less than in bulk dentin at approximately 100 µm 

resolution.  Katz et al. (2001 and 2003) used SAM at 400 MHz and inferred the mechanical 

properties of mineralized, partially de-mineralized and completely de-mineralized dentin through 

a series of calibration curves.  More recently, Raum et al. (2007) used acoustic microscopy at 50 

MHz (23 µm resolution) to study the effect of storage media on the acoustic properties of enamel 

and dentin.  This work pointed out the need for understanding how the microstructure affects the 

interpretation of the acoustic measurement. 

3.7 Dentin Specimen Preparation 

For the experimental component of this work, a human 

unerupted 3
rd

 molar with no visual caries was used under an 

IRB approved protocol.  The specimen preparation 

proceeded as follows:  the cervical third, right below the neck 

of the tooth, was sectioned perpendicular to its long axis by 

means of a H2O-cooled low-speed diamond saw (Buehler, 

Lake Bluff, IL).  Subsequently, the occlusal crown was 

removed resulting to an approximately 5 mm slab of mid-coronal dentin as shown in Fig 3.14.  

 
 

Figure 3.14 Dentin specimen 
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To remove surface irregularities such as saw marks and the smear layer caused by the diamond 

saw the specimen was polished successively by 600 and 1200 grit size abrasive papers followed 

by a few passes with a polishing cloth (Buehler, Lake Bluff, IL).  An alternative protocol for 

removing the smear layer was evaluated which included micro-toming approximately a 5 µm 

section from the surface.  Micro-toming was evaluated as previous researchers have suggested 

that polishing has a tendency to alter the surface microstructure by smearing the collagen and 

mineral (Ho et al 2004).  We found that micro-toming generally resulted in some damage of the 

dentin structure and even more at the vicinity of the DEJ.  The damage was especially evident in 

SAM as shown in Fig 3.15.  In contrast, hand polishing using 600 to 1200 grit paper produced 

uniform and smooth surfaces for SAM analysis.  We also found that the results from SAM were 

not affected provided the polishing was done by applying a light pressure and the surfaces are 

sonicated and rinsed clean promptly after polishing.  For the acid-etching studies, the tooth was 

etched for 20 seconds using 35% phosphoric acid (H3PO4).  The phosphoric acid was thoroughly 

rinsed with distilled water and the specimen lightly sonicated.  When the specimen was not used, 

it was stored in phosphate buffered saline solution
 
with 0.002% sodium azide, thus keeping it 

constantly hydrated. 

 

 

           (a)    (b) 

Figure 3.15 SAM images (a) before and (b) after microtoming of 

dentin specimen 
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3.8 Measurement Protocols 

3.8.1 Acquisition protocol 

In order to compare between the pre and post-acid etched states of the specimen, we 

developed the following acquisition protocol.  The acquisition was completed in 2 phases   

Phase 1 - Pre-acid etching phase 

The specimen, before acid-etching, was mounted on the specimen holder described in 3.3.1 and 

imaged in SAM with transducer 1 (30 MHz objective).  The vertices A, B and C were selected 

and 64 locations of interest were identified as shown in Fig 3.16. At each of the 64 locations, 32 

A-Scans were acquired.  Care was taken such the acoustic field was focused on all the selected 

locations. The global coordinates of these 64 locations were input into an in-house MATLAB 

software to find their local coordinates as described in 3.3.2.  Transducer 1 was then replaced by 

transducer 2 (110 MHz objective), and a C-scan image acquired.  Subsequently, vertices A, B 

 

Figure 3.16 Measurement locations (units in mm) 
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and C were identified and their new global coordinates were input in our software to perform the 

transformation in Eqn 3.19 and find the locations of the 64 points of interest.  This step was 

necessary because we could not assume that transducer 2 was centered exactly over the same 

location. Out of the 64 locations, a subset of 16 locations was selected and 32-A-Scans were 

acquired over each of these locations.   

Phase 2 - Post acid-etching 

At completion of phase 1 the specimen, always rigidly attached to the specimen holder, was 

removed from SAM and acid-etched as described in 3.7.  After etching, the specimen was placed 

again in SAM and the same procedure as phase 1 was followed. 

3.8.2 Data processing 

Following the data acquisition, the 32 A-Scans acquired at each location were averaged, 

gated and Fourier transformed.  The amplification setting for the A-Scans acquired transducer 1 

was 6 dB whereas for transducer 2 the amplification setting was set to 24 dB.  The calibration 

curves corresponding to those gain settings were retrieved and using Eqn. 3.19, the measured 

Fourier amplitudes were converted to reflection coefficients over the useful frequency band of 

each transducer.   
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Pre Acid Etching Post Acid Etching 

 

3.9 Results from SAM Measurements of Etched Dentin 

We begin by presenting qualitative SAM results of the effect of acid etching on the dentin 

surface.  The C-Scans for the pre and post-acid etching states for both transducers are compared 

in Fig 3.17.  It is observed that before acid-etching, the dentin surface is fairly homogeneous in 

terms of grayscale 

values.  However, 

after acid etching 

many differences may 

be observed.  The 

etching process has 

clearly changed the 

reflectance of the 

substrate in a location 

dependent manner, 

where different 

regions appear to have 

varying grayscale 

values.  However, the 

C-Scan images tell 

only part of the story.  

Representative A-

scans, acquired with transducer 1 before and after etching, are compared in Fig 3.18.  We 

Pre Acid Etching Post-Acid-Etching 

 Transducer 1 

Transducer 2 

 

Figure 3.17 C-Scan images of before dentin substrate before (left) and 

after (right) acid etched dentin for the transducer 1 (top) and transducer 2 

(bottom) 
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observe that the signal amplitude after acid-etching is lower than before acid etching at the same 

location.  To further draw attention to the differences between locations within the dentin before 

and after acid-etching, we plot the Fourier amplitude spectra of the subset of the sixteen locations 

where we have obtained waveforms from both transducers as shown in Figs 3.19-3.22.  The 

Fourier amplitude spectra from transducer 1, before etching show minor differences at all sixteen 

locations.  After etching however, we observe a general reduction in the overall amplitude that 

differs depending on the location.  Additionally, a downshift of the peak frequency was observed 

and the location of the peak frequency was dependent on location.  For transducer 2, the results 

revealed remarkable differences.  While before etching the Fourier amplitudes were almost 

identical at all locations, after etching each location showed a completely different frequency 

behavior.  Although, a reduction of the Fourier amplitudes was consistently observed, the 

frequency shift behavior differs between locations.  For example, in location 1, the peak 

frequency is up-shifted while locations 5 and 8 exhibit a plateau over a large range of frequencies 

(35-60 MHz) and the other locations show downshifts of the peak frequency.   
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   (a)               (b) 

Figure 3.18 Representative A-Scans (a) and their Fourier amplitude spectra (b) for transducer 1 

before and after acid etching of the dentin substrate 
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Figure 3.19 Fourier amplitude spectra for locations 1-4 



 93 

Location 5 

Transducer 2 

Location 5 

Transducer 1 

Location 6 

Location 7 

Location 8 

Location 6 

Location 7 

Location 8 

0

300

600

900

1200

1500

10 20 30 40 50 60
Frequency (MHz)

F
o
u
ri
e
r 
A
m
p
lit
u
d
e
 (
a
rb
. 
u
n
it
s
)

Before Etching

After Etching

0

300

600

900

1200

1500

10 20 30 40 50 60
Frequency (MHz)

F
o
u
ri
e
r 
A
m
p
lit
u
d
e
 (
a
rb
. 
u
n
it
s
)

Before Etching

After Etching

0

300

600

900

1200

1500

10 20 30 40 50 60
Frequency (MHz)

F
o
u
ri
e
r 
A
m
p
lit
u
d
e
 (
a
rb
. 
u
n
it
s
)

Before Etching

After Etching

0

300

600

900

1200

1500

10 20 30 40 50 60
Frequency (MHz)

F
o
u
ri
e
r 
A
m
p
lit
u
d
e
 (
a
rb
. 
u
n
it
s
)

Before Etching

After Etching

0

100

200

300

400

500

10 20 30 40 50 60 70 80 90 100
Frequency (MHz)

F
o
u
ri
e
r 
A
m
p
lit
u
d
e
 (
a
rb
. 
u
n
it
s
)

Before Etching

After Etching

0

100

200

300

400

500

10 20 30 40 50 60 70 80 90 100
Frequency (MHz)

F
o
u
ri
e
r 
A
m
p
lit
u
d
e
 (
a
rb
. 
u
n
it
s
)

Before Etching

After Etching

0

100

200

300

400

500

10 20 30 40 50 60 70 80 90 100
Frequency (MHz)

F
o
u
ri
e
r 
A
m
p
lit
u
d
e
 (
a
rb
. 
u
n
it
s
)

Before Etching

After Etching

0

100

200

300

400

500

10 20 30 40 50 60 70 80 90 100
Frequency (MHz)

F
o
u
ri
e
r 
A
m
p
lit
u
d
e
 (
a
rb
. 
u
n
it
s
)

Before Etching

After Etching

 

Figure 3.20 Fourier amplitude for locations 5-8 
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Figure 3.21 Fourier amplitude spectra for locations 9-12 
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Figure 3.22 Fourier amplitude spectra for locations 13-16 
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For quantitative comparison, we obtained the amplitude of the reflection coefficients for 

the subset of the sixteen locations.  Since the useful band-widths of each transducer overlapped, 

the reflection coefficients for all sixteen locations were plotted as a function of frequency for 

both transducers on the same graph as shown in Fig 3.23.  As a result, reflection coefficients over 

a frequency ranging from 25 MHz to 70 MHz were obtained.  Fig 3.23 shows that all the 

locations after etching are different in terms of their reflectance.  For example, at a frequency of 

approximately 25 MHz, the reflection coefficient ranges between 0.49 and 0.65.  This is 

definitely a significant difference especially since the measurement error in the mean reflection 

coefficient is approximately 0.01 as derived in section 3.2.7.  Similar ranges of the reflection 

coefficient amplitude are observed over all the frequencies of the combined result.  Interestingly, 

in the range between 40 and 70 MHz, several locations show a non-monotonic behavior in the 

amplitude of the reflection coefficient. 
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Figure 3.23 Reflection coefficient amplitude for the subset of 16 locations 
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In Fig 3.24, we plot the average of the result shown in Fig 3.23.  Each data point, 

corresponding represents the spatial average of the 16 locations and the error bars shows their 

spatial standard deviations.  The average reflection coefficients confirm our previous 

observations.  Before etching, over the frequency band between 20-70 MHz the reflection 
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Figure 3.24 Average reflection coefficients as functions of frequency 

before etching (top) and after etching (bottom) for the subset of 16 

locations 
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coefficient varies slightly between 0.7 and 0.8. The standard deviation at each frequency is less 

than 0.01.  However after etching, the average reflection coefficient showed a gradual reduction 

and ranged between 0.6 and 0.2.  At the same time, the spatial standard deviation increased to 

approximately 0.04 which confirms the location dependent reflectance.   

It is noteworthy that the average behavior can be very misleading, since it obscures the 

phenomena that are location specific.  If each location is examined independently, we find that 

the reflection behavior suffers a frequency dependent attenuation of wavefield induced by the 

acid etching process.  Since we know that acid etching results in a near-surface graded-layer, we 

utilize the theoretical approach developed in Chapter 2 in order to explain the phenomena 

observed. 

 

3.10 Theoretical Prediction of Reflection Coefficients 

For each transducer, the theoretical angular spectra of the incident wave-field were 

computed using the methodology presented in 2.2.1 for a range of frequencies within each 

transducer’s bandwidth (25-38 MHz for transducer 1 and 35-74 MHz for transducer 2).  For the 

same range of frequencies, the reflectance function of the substrate was computed by the 

methodology presented in 2.2.4.  Subsequently, the incident angular spectra are multiplied by the 

reflectance functions at the corresponding frequencies and propagated back to the aperture plane 

through a phase factor.  At the aperture plane, an inverse two dimensional Fourier transform of 

the reflected angular spectrum is performed, resulting to the reflected pressure distribution at that 

plane.  The pressure distribution is then integrated over the aperture domain to yield the average 

reflected pressure at the aperture plane )(ωrecp .  Since the average reflected pressure has been 

evaluated for a range of frequencies, we regard it as a spectrum.   



 99 

From Eq. 2.2, we may define the temporal Fourier transform V(ω) of the average 

reflected pressure as: 

( ) ( )ωωω recpvV =)(           (3.20) 

Since the frequency spectrum of the normal velocity v(ω) is not known a priori, it is back-

computed by using the experimentally measured Fourier amplitude spectrum for tungsten, 

VW(ω) at the gain setting where the effects of system electronics are negligible (-10 dB for 

transducer 1 and 10 dB for transducer 2) as:  
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dxdyyxp )0,,,(ω  is the spectrum of the average pressure at the aperture 

plane , computed using Coulouvrat’s method in section 2.2.2.  The predicted reflected frequency 
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In addition, the Fourier amplitude V(w) may also be written as: 

( ) )()( ωωω effW RVV =          (3.23) 

where we have defined Reff as the effective reflection coefficient of the system given by 
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To demonstrate the methodology for predicting the experimental reflection coefficient 

amplitudes shown in Fig 3.23, we considered locations 1, 5 and 11, which are representative 

examples of frequency dependent behavior observed from the etched dentin substrate.  The 

ultrasonic fields and angular spectra were computed using the geometric parameters in section 

2.2.3, which are pertinent to transducer 1 and 2 used in our experiment.  For computing the 

reflectance function, a graded surface layer of etched dentin of depth H, over a homogeneous 

dentin half-space was considered.  Furthermore, the etched layer transitions with no discontinuity 

to the underlying dentin half-space C so that ρh 
= ρs

, C11
h
=C11

s
 and C44

h
=C44

s
.  The material 

density of the dentin substrate was taken as ρs
=2.1 Mg/m

3
, while the elastic moduli are taken as, 

C11
s
=38.6 GPa, and C44

s
=8.03 GPa.  For the water half-space, the bulk modulus, C11

f
 was 

considered as 2.22 GPa, and density ρf
 = 1.0 Mg/m

3
.  The material gradation for the graded 

surface layer was considered as linear and the parameters used for predicting the experimental 

frequency spectra and reflection coefficients locations 1, 5 and 11 are given in Table 2.   

 

Table 3-2 Properties of etched layer for the three locations used for prediction 

 

The predicted angular spectra for location 1 are shown in Fig 3.24 for transducers 1 and 2 at their 

edge and central frequencies.  These figures demonstrate the process of obtaining the reflected 

angular spectrum by multiplication of the incident angular spectrum with the reflectance 

function.  We highlight the fact that the incident angular spectra are different for each frequency. 

Location C11
0
  

(GPa) 

C44
0
 

(GPa) 
ρρρρ0

 

(Mg/m
3
) 

H 

(µµµµm) 

1 6.44 0.59 1.0 36 

5 5.91 0.54 1.0 32 

11 3.31 0.30 1.0 27 
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Figure 3.25 Incident and reflected angular spectra for transducer 1 at 

location 1 at (a) 25.1 MHz, (b) 29.8 MHz and (c) 34.6 MHz 
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Figure 3.26 Incident and reflected angular spectra for transducer 2 at location 1 at (a) 

 37.1 MHz, (b) 54.2 MHz and (c) 70.1 MHz 
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Additionally, Fig 3.25 and Fig 3.26 show that the effect of angles larger than ~14° for transducer 

1 and ~10° for transducer 2 have a negligible contribution to the reflected spectrum.  In Fig 3.27 

we plot the reflected angular spectra for the three locations 1, 5 and 11 at the central frequencies 

of transducers 1 and 2. 
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Figure 3.27 Reflected angular spectra for locations 1,5 and 11 for (a) 

transducer 1 at f=29.8 MHz and (b) transducer 2 at f=54.2 MHz  
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Finally, the predicted effective reflection coefficients at the three locations are plotted in Figs 

3.28-3.30.  We observe that for each of the three locations, the theoretical model is able to 

capture the main attenuation effects with a reasonable set of parameters assumed for the acid 

etched layer.  In order to establish an appropriate set of parameters for the theoretical model that 

can match the experimental reflection coefficients and spectra ideally the inverse problem needs 

to be solved formally through optimization.  However, since this was not the scope of this 

dissertation, the model parameters were obtained by trial and error.   
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Figure 3.28 Comparison between theoretical and experimental reflection coefficient 

amplitude for location 1 
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Figure 3.29 Comparison between theoretical and experimental reflection 

coefficient amplitude for location 5 
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Figure 3.30 Comparison between theoretical and experimental reflection 

coefficient amplitude for location 5 
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Nevertheless, the predicted results from our theoretical model provide valuable insights 

to the effects of etching on the dentin substrate.  The close match between the model prediction 

and experimental data suggests that acid etching induces a near-surface layer of graded material 

properties.  The elastic property variation predicted by the model indicates that the topmost part 

of this layer is very soft (3-6 GPa) and becomes stiffer as it transitions to the dentin substrate.  

The density variation in this layer should also follow a similar pattern.  Furthermore, the etching 

depth is likely not uniform as the best-fit graded layer thickness for the three locations were 36, 

32 and 27 microns.  There are clinical implications of this finding as the dental literature 

suggests that only the first few microns of the etched dentin surface are eventually infiltrated by 

the dentin adhesive.  Thus, the dentin-adhesive bonding is a near-surface interaction of the 

adhesive and the etched adherent, which is mostly de-mineralized dentin.  Our results would then 

suggest that a soft graded layer is present underneath the composite restoration.  The contribution 

of such a layer to the eventual failure of the composite restoration remains unknown and 

deserves to be studied in the future. Finally, we note that the theoretical methodology presented 

is necessary in order to interpret results from reflection acoustic microscopy of materials with 

near-surface graded layer.   
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4.0 SUMMARY AND CONCLUSIONS 

 

The work accomplished in this dissertation is summarized as follows: 

1. Modeling of focused ultrasonic field – An extensive literature review of methods for calculation 

acoustic field from concave lenses was performed.  Based upon this literature review, a 

method proposed by Coulouvrat (1993) for computing the field produced by a concave lenses 

using Legendre polynomial expansions and boundary collocation while satisfying the exact 

radiation condition at infinity was adopted.  The above method was implemented for 

numerical calculations in a computer program.  A normalization procedure was developed 

for accurate solution of the matrix system resulting by this method.  To that end, the system 

matrix was recast in terms of ratios and products of spherical Bessel and Hankel functions.  

An algorithm based upon continued fraction expansions was developed for computing these 

ratios and products in an efficient manner. 

2. Modeling of interaction of the ultrasonic field with a complex substrate – A methodology was 

developed for computing the angular spectrum of the pressure field generated by the lens.  

This methodology was used to compute the angular spectrum at the plane of the substrate 

surface, such that the incident field can be expressed in terms of plane waves with different 

directions of propagation.  The incident field obtained from the angular spectrum was then 

used as input to the wave propagation model for the substrate.  In addition, a multilayered 

stiffness method was implemented in a computer program to model the wave propagation in 

a substrate with a layer of graded material properties.  An iterative criterion for solution 

convergence was established to reduce the effect of layer discretization.   
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3. Parametric studies to assess model capabilities – The above models were applied to 

investigate the interaction of focused acoustics fields with substrates possessing near-surface 

graded layer.  The effect of material mechanical and physical property gradation and layer thickness 

on the frequency dependence of the reflection coefficients was studied by parametric variation.   

4. Calibration of SAM – A commercial acoustic microscope was utilized in this work to 

characterize a dentin substrate subjected to acid etching.  For accurate quantification using 

the commercial SAM, a calibration methodology was developed to determine substrate 

reflection coefficients that compensates for the nonlinearities in the amplification system.  A 

suite of calibration materials was utilized to develop calibration curves for a variety of 

instrument amplification setting.  Furthermore, an error analysis was performed to define the 

measurement errors with this instrument. 

5. SAM measurement protocol – A homotopic measurement protocol was developed in order to 

acquire the acoustic microscopy data from the same locations pre and post-etching of the 

dentin sample.  Consequently, a prototype sample holder was developed for performing 

homotopic measurements.  In addition, protocols for etched dentin specimen preparation and 

data acquisition were developed and utilized to obtain A-scan data from several locations on 

pre- and post-etched dentin sample.  Customized software was developed to aid data 

acquisition and perform data post processing to obtain time signal FFT and reflection 

coefficients in the frequency domain. 

6. Comparison of measured results with theoretical prediction – The theoretical model 

developed in this dissertation was used to predict the frequency dependent reflection 

coefficients of a substrate with near-surface graded layers.  The predicted results were used 

to explain the frequency dependent attenuation effects exhibited by the measured data.   
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A synopsis of the main findings is as follows:  

1. Ultrasonic field modeling – The method for computing the ultrasonic field adopted in this 

dissertation is rigorous and elegant.  It does not suffer from any approximations stemming 

from the geometry of the ultrasonic objective and it is expected to have a greater range of 

applicability in modeling more complicated acoustic objective geometries.  Theoretical 

computation of the pressure fields at focal regions provides direct information about the area 

of the specimen that interacts with the ultrasonic field.  For multiple frequency SAM 

measurements on complex substrates, such as near-surface graded layers considered in this 

work, the received signal contains a richness of information from ultrasonic field interactions 

from multiple scales.  In order to understand the material characteristics, it is extremely 

important to have an accurate representation and understanding of the “probe” with which we 

are interrogating the material. 

2. Modeling of interaction of the ultrasonic field with a complex substrate –  An important 

aspect of SAM modeling is the mix of two coordinate descriptions.  While the pressure field 

that is generated from the spherical lens is best described using spherical coordinates, the 

ultrasonic field interacting with the planar specimen surface is described in Cartesian 

coordinates.  The angular spectrum approach provides an excellent means to interface the 

solutions of acoustic and elastic wave propagation from spherical to Cartesian geometries.  

Modeling a near-surface layer with continuously graded material properties by a discretely 

layered system was successful however it requires a convergence criterion in order to 

minimize the effect of discretization since the number of layers required for accurate 

approximation depends both on the angle of incidence and the temporal frequency 

considered, as well as the steepness of the gradation profiles. 
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3. Parametric studies – Parametric studies show that near-surface graded layers exhibit 

profound frequency dependence of their reflectance functions.  This behavior is characteristic 

to the material property gradation profiles as well as the depth of the property gradations and 

it is detectable even at near-vertical incidence angles. 

4. Calibration of SAM – It is important in quantitative SAM measurements that the linearity of 

the amplification system is assessed.  Near saturation effects at high amplification settings 

hamper the accuracy of the reflection coefficient measurement.  Additionally, excessive 

nonlinearity of the amplification electronics generates higher order harmonics that 

contaminate the amplitude spectra and mask any frequency dependent material response.  In 

such cases, the calibration methodology developed in this work is able to compensate for the 

effects of the amplification electronics.  Performing error analysis on the measured reflection 

coefficients based on signal to noise ratio is essential for assessing the precision of the 

reflection coefficient measurements. 

5. SAM measurement protocol – Homotopic measurements are essential in SAM.  The 

measurements carried out in SAM are high resolution and for meaningful comparison 

between two different states of the same substrate, as the example of acid-etching of dentin 

these measurements have to be carried out at the same location.  Additionally by sequencing 

the measurement protocol, we are able to have knowledge of the initial condition of the 

material. 

6. Comparison of experimental data with theoretical prediction – The theoretical model is able 

to capture the frequency dependent effects observed by the experiment.  It thus provides 

valuable insights about the effects of acid etching on the dentin substrate.  The theoretical 

model suggests that the etching process creates a graded surface layer of non-uniform depth.  
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In addition, the close fit between the experimental results and the model, suggest that the 

dimensions of the near-surface layer induced by acid-etching on dentin and the frequency 

range used are such that the frequency dependence of the reflection coefficient is prominent. 

 

Possible future work to advance the methods developed in this dissertation are as follows: 

1. Parameter identification and inverse problem implementation – The method developed in 

this dissertation focused upon the computation of the reflection coefficient for a substrate 

whose parameters are pre-assigned, i.e. the method solves the forward problem.  In order to 

establish an appropriate set of parameters for an unknown substrate, the inverse problem 

needs to be solved formally through optimization.  Future development along these lines will 

eliminate the need for trial and error procedure for parameter identification. 

2. Further parametric study to evaluate the effects of non-linear property gradations – In this 

dissertation, a linear variation of material properties with depth was assessed.  Near-surface 

graded layers could have various grading profiles depending upon their genesis.  How non-

linear profiles affect the attenuation of the reflected fields needs further investigation. 

3. Further develop the theoretical model – The current theoretical model addresses axi-

symmetric problems and substrates with vertical heterogeneity.  Additionally, uniform 

discretization of the layer profile was performed to approximate the continuous vertical 

inhomogeneity.  Further development of the model is desired to address: (i) non-axi-

symmetric problems, (ii) lateral heterogeneities, (iii) the coupling medium attenuation (iv) 

non-uniform discretization of the vertical inhomogeneity. 
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