View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by KU ScholarWorks

Content-Based Image Retrieval Using
Deep Belief Networks

By

Jason Kroge

Submitted to the graduate degree program in the
Department of Electrical Engineering and Computer
Science of the University of Kansas in partial fulfillment of

the requirements for the degree of Master’s of Sciences.

Dr. Brian Potetz (Committee Chair)

Dr. Xue-Wen Chen (Committee Member)

Dr. Bo Luo (Committee Member)

Date Defended


https://core.ac.uk/display/213391267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Thesis Committee for Jason Kroge certifies
that this is the approved version of the following thesis:

Content-Based Image Retrieval Using
Deep Belief Networks

Dr. Brian Potetz (Committee Chair)

Dr. Xue-Wen Chen (Committee Member)

Dr. Bo Luo (Committee Member)

Date Defended



Acknowledgements

| would like to thank Dr. Brian Potetz for his advice and guidance during the past two
years. This thesis would not have been possible without his help. | would also like to

thank Dr. Xue-wen Chen and Dr. Bo Luo for serving as members of my committee.

Finally, I would like to thank Dr. Hinton for supplying source code for training deep

belief networks.



Abstract

With the shear amount and variety of digital images available in the world todgje pe
need an effective method to search for any particular image. The comusedly
strategy of searching by keyword has several problems, especially veinehnisg for
aspects that are difficult to describe with words. In this paper, | will disougmage
retrieval system that can be used to search for visually-similaesrtzased on image
content rather than associated keywords. | will discuss the major componergs of thi
system including a pre-processing step using Haar wavelets and the stegisifay a
deep belief network to recognize higher-order features that may have aisemant
category specific meaning. The paper concludes with a comparison of perfermanc

between the newly proposed system and other published results.
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1. Introduction

There are millions upon millions of digital images that exist on the World Wiele and
within the private domain. As each day passes, this number increases, and it will
continue to increase as more and more people utilize computers and the Internet. As the
number of images increases, it becomes increasing difficult to find a spefie or to

locate images related to a specific class.

The most commonly used searching strategy is to index the images with keywords
However, this approach has many downsides. It requires a person to maneatyl lab
the images with tags or keywords which can be a slow and arduous task. Another
problem with the keyword approach comes from the fact that some visual aspects of
images are difficult to describe, while other aspects could be desaribeate than one
way. It may also be difficult for the user to predict which visual aspects haxalact

been indexed for searching.

In this paper, | will describe a system that allows a user to search baseggencontent.
The user will begin by presenting the system with a target image. ni&geicould be
digitally drawn, or it could be the result of an initial image search usingdegw First,
the system will go through a pre-processing phase to extract informetiaryismg scales
of detail. Next, the system will feed that information into a multi-legiereural network

which will respond with a group of images that is most similar to the targgeim



One type of use for this systensesrch by example [6] which aims the search at a
specific image. The search may be for an exact copy of the image in mindargolex
searching within an art catalog. On the other hand, the search may be for ematjee
of the same object or scene of which the user already has an image. Thessaaplied
when the user has a specific image in mind and the resulting images areteithiar
given example. This system is best suited to search for art, stampsjahdustr

components, and other catalogs in general.

Another type of use for this systemcetegory search [6] which aims at retrieving

images that are representative of a particular class. It midneloase that the user has an
example and the search is for other elements that are within or relatedéonthelass.
For example, a business or some other entity may want to check their newhedesig
logo to ensure that it is not similar to an already existing image that has been

trademarked. This system is also well-suited for images of naturakscene

2. Background and Related Work

In this section, | will provide details about the major components used within dige im

retrieval system.



2.1 Haar Wavelet Transform

Haar wavelets offer a mathematical way of encoding image pixel aléhatsthe data is
layered according to level of detail. It can be thought of as a samplingsprimcwhich

values of the transform matrix act as samples of finer and finer resolution.

To demonstrate how to transform a matrix, | will first describe a methodafmsfarming
an array of data. This method is often referred @veasaging and differencing [10].

Later, we will use this method to transform an entire matrix.

We start with our original data as seen in Figure 1. For each pair of numbers, we
calculate the average and place those values in the first half of the nextlesty we
calculate the difference between each pair of numbers, and we place thosenvtiae

second half of the next row.

Original Data 56 74 132 150 156 130 147 147
After Round 1 65 141 143 147 -9 -9 11 0
After Round 2 103 145 -38 -4 -9 -9 11 0
After Round 3 124 -21 -38 -4 -9 -9 11 0

Figure 1. Example Haar wavelet transform of an aray.

After one round, we can see that the averages between the original pé&ss&#, 143,

and 147. The differences between the original pairs are -9, -9, 11, and 0.



This process is repeated, using the averages generated from the previous datadoas
the next round. The process is complete, when there is only one average value
remaining. All other values in the array represent differences on vagiels bf detail.
As you may have already guessed, the discrete wavelet transformaticnbest on

arrays of length'2and requires k rounds of averaging and differencing.

Now that it is clear how to transform an arrayi, it is very simple to apply toess to a
matrix. You simply treat each row as an array, and perform the aveeaging
differencing on each one to obtain a new matrix, and then apply exactly the spmerst

each column of this new matrix, finally obtaining a row and column transébmaerix.

Another way to picture this is to do each of the row transformations, transposerilke mat
do the row transformations on the result of that transposition, and then finaljyosans

the matrix back. The result is called thaar wavel et transform.

2.2 Restricted Boltzmann Machine

A Boltzmann Machine is a recurrent neural network that consists of stachastry
units. It is similar to a Hopfield Network, but differs with its stochastic eatihese
random variations in the data are useful for optimization problems becausanhssie

escape from a local minimum.



A Restricted Boltzmann Machine has a condition stating that the units in a&#ayaot

be connected to each other. This creates visible uni{,v1} and hidden units b {0,

1} that form an undirected bipartite graphical model as can be seen in Figure 2. The
visible units will receive data from the training set. The hidden units will represme

higher order information. Each unit is represented by the energy function:
E(v,h)=-> w,vh, = > bv, - > ¢;h,
i i j

wherew;; is a weight representing the strength betweeni amd unit, v; is the visible

state of unit, h; is the hidden state of unjtandb; andc; are bias parameters fgrandh,

respectively.
ho hi - -] hu
Vo Vi T — - WV

Figure 2. Restricted Boltzmann Machine

The stochastic nature of the system comes from the probability of turning onwimith

is given by:



1
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whereb; is the bias parameter of the usitis the current state of the unit, anglis a
weight representing the strength between the maitaaother unit connected to the one in

guestion.

The network is run by repeatedly choosing eachamdtsetting its state according to the
probability function. To train the network accardito external data, we need to set the
weights so that the global states with the highesbabilities will receive the lowest

energies. Eventually, the network will reach anigrium state.

To approximate the external distribution, we carasouee the difference between the
external distribution and the model-generated itistion using the Kullback-Leibler
divergence. This learning rule is the same as miaxig the log probability of the data

[4]. Atthis point, the gradient of the log prdiilgty for the training data is given by:

ol ° 0RO\ /o
%‘\/):W )= {vhy)

1

where < - > denotes the average over the states.



2.3 Deep Belief Network

A Deep Belief Network simply consists of multipbeyers of Restricted Boltzmann
Machines. The first, or the lowest layer, is gouindata vector. There can be any number
of layers in the middle. Lastly, the top two laydave undirected, symmetric

connections which form an associative memory.

The network is trained one layer at a time by inggthe hidden units of the previous

layer as the input for the next layer. This coméig for as many layers as needed until the
top layer is reached. After the training phasetlaer learning procedure is applied to
adjust the weights in each layer in order to imprthe performance of the entire

network.

During the testing phase, the weights of the ndtvaoe refined by calculating the mean-
squared error between the modeled output and thettaalue. The goal is to further
improve the network by minimizing the cost of tlmmoections using gradient decent.
This technique is commonly referred to as backpgapan. Figure 3 depicts a 768-500-
500-1000-26 network architecture that was usetierekperiment. The network is

trained from the bottom up and refined from the dopvn.

Given that the number of features in each layes ame decrease, it has been shown that
a deep belief network increases the lower bountherog probability of the data [4]. A
deep hierarchical model is capable of learning dermgelationships between the features

in the layers below.
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Figure 3. Deep Belief Network with 768-dimensionahput vector and 26 output classes.

3. Methodology

3.1 Dataset

Images from the Caltech 101 Dataset were usedtadhe system. This dataset contains
pictures of objects belonging to 101 different gatées. For my experiment, | choose to
use a subset of this dataset. | choose this be@noamber of the categories contained
objects in overly busy environments, and some @fctitegories did not contain enough

sample images for accurately training and testidgep belief network.



For the experiment, | used 26 of the 101 categorldese 26 categories contained 1008
images. Figure 4 shows sample images from a faweoimage classes. For each class,
the images were randomly split into two equal sigedips. One group was used for
training the network while the other group was uedesting the network. On average,
there were about 20 training images for each cagegbwas important to use a separate
set of images for testing in order to show thatrtévork did not simply memorize the

training set, but instead show that it is capalbleoorectly classifying new images.

Figure 4. Example images from the Caltech 101 dagat.



3.2 Pre-processing

The images in the dataset are of various sizesyrbaverage, each image is roughly
300x200 pixels. Initially, each image is represdrity a w x h x 3 matrix, where w
represents the width, h represents the heighttten@ represents the number color
channels in the RGB colorspace. Each value imieix ranges from 0 (no intensity) to
1 (full intensity). Since the Haar wavelet transfiovorks best on images that afe 2
pixels in width and height, each image is scalegte 2 pixels. This may create minor
distortions, but the images in each category anghty the same dimensions, so each

image within a category will be distorted in thensamanner.

After an image has been appropriately sized, ealdr channel is individually
decomposed using the Haar wavelet transform. @édtrof this transform is a matrix
containing the average intensity of the color clehhor the image in the first position.
All other elements will contain a number represamthe difference in intensity across
regions of various sizes within the original imagenally, the transformation data from
all three color channels are combined into a simgkgor. For example, if k is chosen to

be 4, the length of the vector will b&22* x 3 = 768.

3.3 Training the Networks

After the pre-processing, each 16 x 16 image isesgmted by a vector of length 768.

These vectors are presented as input to the déieprmtworks. During the experiment,

10



| trained the networks with varying parametersudahg several different image sizes

and several different configurations of nodes mfhidden layers.

| used two different methods for training the déepef networks. The first method used
supervised learning. During the training phase,dlass label for each of the training
images is used for adjusting the weights. Thersgt@ining method used unsupervised
learning. During the training phase, the netwak ho knowledge of which class the

image belongs to. The network will group the ingageo classes that are best fit.

4. Results

In order to achieve the best results, | trainecdsdh\different network configurations on
the same dataset of 1000 images within 26 imagseta After each network had been
trained, | calculated the resulting class labehpplying the learned weights. Figure 5
and Figure 6 show the accuracy of label assignteeimages in the training set and

images in the test set for each network configanati

Figure 5 shows that the best performing networkl@seimage size of 16 x 16 with a
configuration of 500 first-level hidden units, 58€8cond-level hidden units, and 1000
third-level hidden units. This network achieved«accuracy on the test set. For
images with a size of 16 x 16, the accuracy gelyegaks down as the number of hidden
units increases. This observation seems reasobab#eise there are fewer details that

can be represented with a small image size. Witlef details, it is harder to make

11



higher-level connections, and the extra hiddensusggin to contribute to additional

error.

0.8 —

0.6 —

@ Train
| Test

Accuracy

0.4

Figure 5. Accuracy of network configurations for B x 16 images.

Figure 6 shows the same network configurations@s & 5, but uses images with a size
of 32 x 32 pixels. Overall the images of size 322xunderperformed when compared to
images of size 16 x 16. Itis interesting to rtbed this time the network configurations
with more hidden units performed better than nekwaovith fewer hidden units. It seems
reasonable to believe that performance could libduincreased by adding more hidden
units, but due to computational constraints withnlamber of network nodes, | was not

able to test this hypothesis.

12
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Figure 6. Accuracy of network configurations for 2 x 32 images.

Next, | compared the performance between the dekgf network and the well-known

k-nearest neighbors algorithm. To make this compar the 10 nearest neighbors for

each image were found and the accuracy of thosgesiaelonging to the same class as

the initial image was calculated. For images pé4i6 x 16 the DBN achieved 72%

accuracy whereas the nearest neighbors algorithime\a only 44% accuracy. The deep

belief network improves drastically over the penfi@ance of k-nearest neighbors

algorithm.

13
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Figure 7. Comparison between the accuracy of 10-aeest neighbors and the best performing deep

belief network.

It is clear that the 500, 500, 1000 network usifg116 images has the best performance
within the computational limits. Using this netwpt executed search queries by
comparing the distance between the output vecttreofuery image and the output
vector associated with every other image. Figusb@vs six search queries and the top
three matches for each query. The first threeigsi@re successful examples and the last
three queries are unsuccessful examples. Thergageeunder each image shows how
similar the result was to the query using the ouyegtor produced by the network. In
general, images of natural environments were hdoderatch than images that were

computer generated.
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Query Image 98%

-

Query Imags

Query Image

Query Image

Cuery Image 3%

Figure 8. Top three results for each query. Theirfst three queries are successful examples. Thesta
three queries are unsuccessful examples. When theayy fails, the resulting images are likely to

have a similar structure to the query image.
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Lastly, | compared the performance between the dekef network and other published
results for object recognition on the Caltech 1@tadet. To make this comparison, |
used the best performing deep belief network oretfige Caltech 101 dataset. Figure 9

shows the mean rate of recognition per class is #¥8%he deep belief network.

0.8 B Zhang, Berg, Maire, &
Malik(CV PR06)

O Grauman & Darrell(ICCV
2005)

O Deep Belief Netw ork

0.6 -

O Holub, Welling, &
Perona(ICCVv05)

| Serre, Wolf, &
Poggio(CVPRO05)

O Fei-Fei, Fergus, & Perona

Accuracy

0.4

0.2

Figure 9. Comparison between the accuracy of theslst performing deep belief network and other

published results for object recognition on the Caech 101 dataset.

The deep belief network falls behind the best periog recognition algorithm by Zhang
et al. [16], which uses a hybrid of KNN and SVM classifi@nd achieves a 65% mean

rate of recognition per class. Also, Grauman aad &l [3] achieve better performance
using local image features that are matched taanpig of histograms. The resulting

score forms a kernel which is then used in an SMMe method proposed by Zhagtg
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al. uses a deformation model to capture informatiou@d a control point, and Grauman
and Darrell similarly capture information about tiigect region by using sets of two
points. These algorithms are tuned towards olbgatignition whereas the deep belief

network approach is tuned more towards the gewgeraposition of the image.

It is more difficult to compare the performanceloé deep belief network in the field of
image retrieval because a standard benchmarkingmsysas not been defined. Figure 10
shows a comparison of precision-recall curvesviar different image categories. Wang
et al. used a SVM as a classifier for their image reaieystem. The results are similar,
but the deep belief network underperformed whikerdtall was low, but then performed
better as the recall reached 50%. In terms oferdsiased image retrieval, the deep
belief network performed well, and it would providegjood alternative to the standard

method of searching for images by keyword.

Ant Dolphin

1 1

0.9 0.9 \/\
- \/> o :
0.7 ‘/\_—R\-\\ 07
0.6 0.6 1

\ \ — DBN § —— DBN
0.5 0.5

\\ Wang, Forsyth Wang, Forsyth

0.4 \ 0.4
0.3 \\\- 031

0.2 0.2

Precision
Precision

0.1 0.1
0

0

0 01 02 03 04 05 06 07 08 09 1

Recall Recall

0 01 02 03 04 05 06 07 08 09 1

Figure 10. Precision-recall curves for images irhte ant and dolphin classes.
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5. Conclusions and Future Work

It has been shown that deep belief networks carsbd as an alternative to labeling
images with keywords in order to provide effectivege retrieval. After the network
has been trained on a sample set of possible imagesimages can be automatically
labeled and associated with other similar imagasgusnly the content within the new
image (the pixel data). This technique is morgigfit than having human subjects
assign labels to the countless number of new imageded everyday. Not only can new
images be labeled, but labeling could be skippedptetely. The system could simply
be used to group similar images together. An inegecar would not have to be labeled
as a car. The system would be trained such thamage of a car would point to a group

containing images of cars.

The major shortcoming of this system is that it wérform poorly on images where the
object is not the focus of the image. Too muctkgemund noise, occlusion, and
translational and rotational invariance will affpetrformance. These problems could be
relieved by performing segmentation and alignirgydbject before it is processed by the

deep belief network.

Although, it is important to keep in mind that teggoblems may affect object
recognition, but the system will still return imageith similar visual features. The
output vector for each image will represent theé gighe scene [11] which may be

enough to match user’s intended query. If the yjobject appears in a grassy field with

18



a small amount of sky, the results are likely tatam similar images of this natural

scene.

There are other techniques worth trying to helpecefih variances on the objects.
Initially, 1 tried using SIFT descriptors insteafitbe Haar wavelet transform. SIFT has
the advantage of being invariant to small amouhtcale and orientation distortions
along with partial occlusion of the object [9]. tBdugh, for this case, the SIFT
descriptors varied too much from one image of geatkio another and did not work well

with the deep belief network.

Another way to achieve translation invariance igse a bag of words approach. Feature
descriptors could be calculated at salient poiritsimveach region of the image. The, a
histogram of the Haar wavelet responses at eatltesé points could be used as input to
the deep belief network. Using this approach]dbation and orientation of the object
would be less of a concern, and the system coutddre effective on a wider variety of

images.
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