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Abstract:  Cartographic modeling (also known as map algebra) is a powerful set of 

operations for manipulating raster geographic data. Zonal operations are one type of 

cartographic modeling operations where the spatial scopes of the operations are 

defines by zones. The conventional zonal operations only work with raster data and 

lack the capability of performing spatiotemporal analysis. This research developed 

zonal operations for spatiotemporal analysis where spatiotemporal zones can be 

defined in the vector data model. The zonal operations were used to extract 

watershed hourly or daily precipitation for use in non-point source pollution models 

and to explore the effects of antecedent precipitation on water quality samples. The 

case studies demonstrated the usefulness of the operations. A software tool, NexTool 

was also developed to process and build NEXRDA precipitation database, which 

was used in the case studies. 

 

Key words: GIS, cartographic modeling, zonal operation, spatiotemporal analysis, 

NEXRAD 
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Chapter 1.    Introduction 

        Cartographic modeling (also known as map algebra) is a powerful set of operations 

for manipulating raster geographic data. It treats raster layers as variables that can be 

transformed or combined into new layers by using primitive operations.  Cartographic 

modeling (CM) operations are based on the raster data model because raster data have a 

simple data structure that is computationally efficient and permits a large variety of data 

analysis operations. Based on spatial scope, primitive operations are divided into three 

groups: local, focal, and zonal (Tomlin, 1990). Local functions are cell-by-cell operations 

that use the input raster layers to compute cell values at the same location for the output 

raster layer, which means that the value of each new pixel is defined by the values of the 

same pixel on the input layer(s). Focal operations calculate a focus cell value using the 

cell values within a neighborhood of the focus cell. Common spatial neighborhoods 

include rectangles, circles, and wedges. Zonal operations utilize a zone layer and a value 

raster layer as inputs and calculate a value for each cell using the cell values in the same 

zone into which the cell falls. Zones are defined by the cells which have the same value 

on the zone layer. 

A raster layer in conventional cartographic modeling represents the spatial 

distribution of an environmental variable measured at a particular moment or during a 

certain period of time. Because of the lack of a temporal dimension, only non-temporal 

spatial analysis can be performed on the raster layer and thus conventional cartographic 
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modeling does not offer operations to analyze spatiotemporal data. In the real world, 

however, very few geographic phenomena and processes are static so that the temporal 

dimension should always be considered in analyses (Dalton, 2005). In addition, 

developments in data collection techniques, especially remote sensing, have produced a 

large number of spatiotemporal datasets. For example, Normalized Difference Vegetation 

Index (NDVI) data have been available bi-weekly since the 1970s; MODIS has been 

providing global daily snow cover data since 2002; and the NEXRAD system has been 

providing hourly precipitation data since the early 1990s. These spatiotemporal data offer 

the opportunity to explore and study spatiotemporal processes that are essential to the 

understanding of earth systems. Unfortunately, analyzing these data is hindered by the 

lack of spatiotemporal analysis functions in current GIS (Mannis, 2005). 

Although some GIS functions can visualize spatiotemporal datasets (for example, 

the Tracking Analyst extension in ESRI ArcGIS), few have the ability to analyze 

spatiotemporal datasets. Taking zonal operations as an example, zones are always defined 

only in the spatial dimension and the operations are performed within the spatial scopes 

of the zones. But with spatiotemporal data, where the time scope is added, zones can be 

defined in either the spatial or temporal dimensions or both, and zonal operations can be 

extended to be performed in spatiotemporal scopes.  

Besides the temporal limitation, conventional CM operations can only be applied on 

raster layers. This is problematic because some geographic phenomena are better 
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represented as vector features than raster layers. For uncontinuous geographic features 

such as roads, streams, and residents houses, these are better represented by vectors than 

rasters. To overcome this shortage, progress has been made for CM operations on vector 

data (French and Li, in press), but there is still no corresponding analysis framework 

available in the vector data model. A further extension to conventional CM would allow 

spatiotemporal zones defined in the vector data model. In response to the increasing 

availability of spatiotemporal data and the demand for spatiotemporal analysis, this 

research extends the zonal operations in conventional cartographic modeling to handle 

spatiotemporal datasets.  

In chapter two, I reviewed the extensions of CM that have been made for 

implementing spatiotemporal analysis in GIS and illustrated the three basic types of 

spatiotemporal zones. In chapter three, I explained what the NEXRAD precipitation data 

is and why the NEXRAD is a good database source for spatiotemporal analysis. In 

Chapter four, I introduced the components of the Nextool software package and how we 

can use the tool to implement diverse of applications that are corresponded with 

NEXRAD precipitation data. A case study was provided to illustrate the ability of using 

vector spatiotemporal zonal operations to generate certain time precipitation input files 

for non-point source pollution models. In Chapter 5, I describe how we can use flow 

length and antecedent time period to define spatiotemporal zones and use them to explore 

the effects of antecedent precipitation on water quality. In Chapter 6, I made the 
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conclusions of the thesis and also point out some future researches that I haven’t 

described sufficiently in this article but certainly would like to have for the further study.  
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Chapter 2.    Extending Cartographic Modeling for Spatiotemporal Process 

2.1 The Development of Spatiotemporal Data Analysis 

In recent years, a growing number of researchers have been using spatiotemporal 

analysis to understand dynamic geographic phenomena. They have been using time series 

images or photos to detect climate change (Stern, 2005), monitor ecological systems 

change (Pettorelli et al., 2005) and urban growth (Tachizuka et al., 2005). For GIS 

functions part, Yuan (1996 and 2001) described a framework for representing complex 

geographic phenomena in both the spatial and temporal dimensions and a framework for 

implementing temporal GIS analysis. In the framework, where and when precipitation 

events occur and how precipitation processes progress in geographic space and over time 

are explicitly stored. Nadi and Delavar (2001) argued that a temporal database, 

visualization, and analysis should be added as essential components in GIS. They 

developed a prototype temporal GIS to simulate traffic information using a cadastral map. 

Turner (2007) developed a GIS-based approach to implement spatial and temporal 

analysis of landscape patterns and found out that spatiotemporal GIS CM functions can 

play an important role for ecological topics. Many spatiotemporal analysis GIS functions 

have been developed, but most of them can only visualize dynamic geographic processes 

such as Yuan’s research and provide limited or ad hoc (for specific use but not general) 

analysis functions and few cartographic modeling operations have been systematically 

proposed to match the increasing demand for spatiotemporal analysis. 
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2.2 Cartographic Modeling Operations and Its Extensions 

      Extensive work has been done to extend the cartographic modeling framework for 

GIS applications. In addition to early work on the raster data model (Tomlin 1990), 

cartographic modeling operations were developed for vector data model where cell values 

are vectors rather than scalar measurements (Li and Hodgson, 2005). Wang and Pullar 

(2005) also applied cartographic modeling operations to physical processes described by 

vector fields. Tobler (1995) and Ledoux et al. (2006) extended cartographic modeling 

operations to irregular polygons where neighborhoods and zones are defined by polygons. 

All these extensions to CM assume the data layers are snapshots of dynamic geographic 

processes and did not consider the time scope as a dynamic variable. On the other hand, 

Yuan (2001) and Mennis and Peuquet (2003) developed some cartographic modeling 

concepts and functions to identify spatiotemporal zones for specific spatiotemporal raster 

datasets, but they did implement these for vector datasets. Furthermore, based on the 

concept of the spatiotemporal ‘data cube’ (Raper and Livingstone, 1995; Mennis, 2003), 

Mennis et al. (2005) developed what they called “cube–functions” to handle raster 

spatiotemporal data cubes consisting of two spatial dimensions and one temporal 

dimension. Although they proposed cubic local, focal, and zonal operations for 

spatiotemporal raster data, they did not provide details on how various kinds of 

spatiotemporal neighborhoods and zones could be defined. In addition, their operations 

could only be applied to raster data. 
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2.3 Cartographic Modeling Zonal Operations in the Temporal Dimension 

      Since zonal operations obviously require zones, defining zones is the initial step for 

performing a zonal analysis. In conventional cartographic modeling, zones are defined by 

a set of cells in two-dimensional space. By adding the temporal dimension, zones can be 

defined by using only spatial scope, using only temporal scope, and using spatiotemporal 

scope for spatiotemporal analysis. Mennis et al. (2005) proposed cubic map algebra to 

handle raster spatiotemporal data, which turns two-dimensional cells into three-

dimensional cubes by adding the time dimension. With spatiotemporal cubes, locations, 

zones, and neighborhoods can be defined in cubic form (Figure 2-1). The cubic CM 

extends raster square cells into cubes. Figure 2-1a illustrates how a local sum function can 

be performed with two spatiotemporal cubic layers. Here each cube has a values and the 

result cube will have a new value by adding two cubes together which these two cubes 

have the same row and column number. Figure 2-1b shows how a 3x3 focal 

neighborhood (row and column) could be extended into a 3x3x3 spatiotemporal focal 

neighborhood (row, column, and timesteps). And Figure 2-1c gives an example of a zonal 

sum operation with a value cube and zone cube.  There are three zone cubes for the zone 

cube, from gray to black. They varies both over space and time. And the value cubes 

within different cube zone are added to get a new value for the result table. 
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Figure 2-1. Cubic CM operations (Mennis et al, 2005). (a) Three-dimensional CM local 

function, (b) Three-dimensional CM 3x3x3 focal neighborhood, (c) Three-dimensional 

CM zonal function. 

For cubic zonal operation, three types of zones can be defined for spatiotemporal 

datasets and analysis (Mennis et al. 2005). The first type of zone varies only over space 

but not in time (figure 2-2a). The second type of zone varies only over time but not in 

space (figure 2-2b). And the last type of zone varies both in space and time (figure 2-2c).  

a 

b 

c 
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Figure 2-2. Types of zone cubes used in spatiotemporal zonal operations (Mennis et al, 

2005). (a) A zone cube that varies only over space but not in time; (b) A zone cube that 

varies over time but not in space; and (c) A zone cube that varies in space and time. 

        While Mennis et al. (2005) pioneered cubic map algebra, they did not provide a 

systematic approach for defining temporal neighborhoods and zones. In addition, their 

cubic operations only work in the raster data model. In this study, I used sub-watersheds, 

flow length and antecedent time periods to define vector spatiotemporal zones and 

perform spatiotemporal vector zonal sum operation with NEXRAD data. Two 

applications were also provided to demonstrate the use of the spatiotemporal zones to 

generate watershed daily precipitation for non-point source pollution models and to 

explore the effects of antecedent precipitation on water quality.
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Chapter 3.    NEXRAD Spatiotemporal Data 

The Next-Generation Radar (NEXRAD) system is a network of over 150 high-

resolution Doppler weather radars operated by the National Weather Service (NWS). It 

detects precipitation and atmospheric movement (or wind) and returns data that can be 

displayed in a map showing patterns of precipitation or wind and their changes over time. 

For years, NEXRAD radar-based estimates were combined with rainfall data from real 

time rain gauge stations to make multisensor precipitation estimates (MPE) (Krajewski 

1987). NWS River Forecast Centers (RFCs) produce regional multisensor precipitation 

products using information from numerous WSR-88D radars and a network of gauges 

that send data to RFCs in near real-time (Fulton, 1998). These NEXRAD multisensor 

precipitation estimates are widely used to detect severe wind, hail, and tornadoes and for 

improved hydrological forecast operations and services (Fulton, 2002). In addition, 

NEXRAD precipitation products have also been used to analyze the statistical 

characterization of extreme rainfall frequency and to validate satellite remote sensing 

algorithms (Krajewski and Smith, 2002; Habib and Krajewksi, 2003). A long period of 

NEXRAD precipitation data is a critical input for hydrological modeling, weather and 

climate modeling, and drought monitoring and it is an excellent dataset for spatiotemporal 

analysis using  due to its good temporal resolution (every hour).. 

NEXRAD produces precipitation estimates at a higher temporal (one hour) and 

spatial (4 km x 4 km) resolution than has traditionally been available for hydrological 
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modeling, and several levels of NEXRAD data products are available. The lowest level 

NEXRAD data product (Stage I) only uses radar information to estimate hourly rainfall. 

Stage II NEXRAD data product are improved by combining rain gauge data, satellite 

information, and surface temperature information from Stage I data. In Stage III, after 

being calibrated with gauge observations and combining individual radar observations, 

data from several radars are used to generate the rainfall estimates in a common grid 

system so that the NWS RFCs can use these estimates to forecast basin-wide stream flow 

(NOAA and NWS websites). As a higher level of NEXRAD data product, multiple 

weather radars covering an entire river basin are combined using the average of available 

estimates for each grid cell (Fulton et al., 1998).  

The multisensor precipitation estimator (MPE) data uses rain gauges and the GOES 

satellite to reduce existing biases in radar rainfall estimates and produces a radar-gauge-

satellite precipitation product. The MPE precipitation data was introduced in 2002 and 

has been replacing the Stage III precipitation data since 2003. The Stage III and MPE 

datasets are especially valuable for hydro-meteorological applications since rainfall is 

corrected using multiple surface rain gauges and their quality is controlled through 

interactive quality control by the Hydrometeorological Analysis and Service (HAS) 

forecasters at individual River Forecast Centers (RFCs) (Fulton et al., 1998; Young et al., 

2000). All of these data are in the Hydrological Rainfall Analysis Projection (HRAP) 
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coordinate system. HRAP cell size is 4.00 km and is defined in a polar stereographic map 

projection using a spherical earth datum (Reed and Maidment, 1999).  

      Both the Stage III and MPE precipitation data are broken down into 13 separate 

geographical regions (Figure 3-1). Each region covers a NWS-designated river basin. The 

temporal coverage of the dataset in each river basin varies. For instance, Stage III data in 

the Arkansas Red River Basin (ABRFC) extend back to May 1993, while the latest RFC 

region, San Juan only extends back to March of 2000. Both datasets can be downloaded 

from the NOAA website http://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html or 

from individual RFCs.  

 

Figure 3-1. Twelve NWS river forecast centers in which Stage III and MPE NEXRAD 

precipitation data are distributed. Note that the Alaska River Forecast Center (AKRFC) is 

not shown in the figure. 
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Chapter 4.    Generating Precipitation Inputs for Non-point Source Pollution Models 

4.1 Overview 

Precipitation data are critical to non-point source pollution modeling (NPSPM) 

applications. Traditionally, precipitation is only measured at weather stations scattered in 

space. Spatial and temporal distribution of precipitation is typically obtained through 

various interpolation methods. Those methods, however, may not be able to characterize 

the significant spatial and temporal variations in precipitation. NEXRAD has the 

capability of capturing both the spatial variation and dynamic nature of rainfall and, 

therefore, has the potential to provide better spatiotemporal precipitation data as the 

technology advances (Garbrecht et al., 2001; Ogden et al., 2001). Unfortunately, 

NEXRAD precipitation data is difficult to use due to its unfamiliar file formats and 

coordinate system, large dataset size, and the lack of spatiotemporal analysis tools. The 

combination of these factors hinders both researchers and practitioners from using the 

NEXRAD precipitation datasets for NPSPM applications. Recognizing these problems, I 

developed a software toolset which can manage, visualize, and calculate daily 

precipitation for non-point source pollution models, such as AnnAGNPS and SWAT (see 

appendix for more details about these two models).  

I chose MATLAB© to develop the toolset. MATLAB has a file format (.mat) which has 

very good data compression capability. With 11 years of hourly NEXRAD precipitation 

data, the average hourly file size stored in MATLAB format, NEXRAD raw binary 
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format, and ESRI ASCII GRID© format are 7.8 KB, 105.4 KB, and 468.9 KB, 

respectively. Second, MATLAB offers a scripting environment that can handle large 

spatiotemporal datasets reliably and has many built-in functions for manipulating 

multidimensional datasets. A few GIS functions such as projection, extraction, and 

intersection are also available through the Mapping Toolbox in MATLAB. Third, it is 

easy to develop graphical user interfaces (GUI) and to compile MATLAB scripts into 

standalone Windows applications. Fourth? Deployment of a Windows application does 

not require a MATLAB license. The toolset is available either as MATLAB scripts (i.e., 

m-files) or a standalone Windows application.  

4.2 Building NEXRAD Precipitation Databases   

      The first step in using NEXRAD data for spatiotemporal analysis is to create a 

precipitation database. In the current NEXRAD data distribution from the NOAA web 

site, both Stage III and MPE hourly binary files are compressed in .gz format. All the 

compressed hourly files for a single day are then tarred into a daily file, which in turn is 

compressed into a monthly file. This compression structure is used to save total storage 

space and increase distribution throughput on the Internet. Both Stage III and MPE 

NEXRAD unzipped hourly files are stored in a binary format called XMRG. The 

database tools in the MATLAB toolset can be used to create a new database, open, or get 

the metadata of an existing NEXRAD precipitation database from the above data format. 

In the current implementation, a database is a folder under which hourly precipitation 
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files are stored. These hourly binary files are then converted from the XMRG format to 

MATLAB format by a compiled C program within MATLAB (i.e., the MEX function). 

This compiled C program is a modified version based on the C program provided by the 

NWS at http://www.nws.noaa.gov/oh/hrl/dmip/nexrad.html. Each hourly file in the 

database has a unique name indicating a time stamp, which is obtained from its original 

XMRG file name. In addition to this above, the NexTool database creation function also 

creates a file (i.e., DBInfo.mat), which stores important metadata for the precipitation 

database. Information in the file includes the precipitation unit, spatial and temporal 

extents, and spatial and temporal reference systems.  The tool can process Stage III and 

MPE data spanning from a few hours to several years. Depending on NEXRAD data size 

and duration, this tool can run from a few seconds to hours to create a precipitation 

database. 

4.3 Coordinate System Conversion 

      Both Stage III and MPE precipitation data are mapped in the Hydrologic Rainfall 

Analysis Projection (HRAP) coordinate system (Greene and Hudlow, 1982). The HRAP 

coordinate system is based on a conformal polar stereographic map projection, which 

uses a projection plane that is parallel to the equatorial plane and intersects with a 

reference spheroid at the latitude of 60º. The origin of the map projection is located at the 

intersection of latitude 60º N and longitude 105º W. The equations to perform forward 

and backward transformation between HRAP geographic coordinates (i.e., latitudes and 
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longitudes) and HRAP projected coordinates are provided by Reed and Maidment (1999). 

The toolset provides two tools to project and unproject between geographic coordinates 

defined on NAD83 and the HRAP coordinate system. And supports both vector and raster 

data. The toolset accepts vector datasets in the Shapefile© format and raster datasets in the 

ESRI ASCII GRID format. 

4.4 Data Exporting and Visualization 

      Hourly precipitation in the NEXRAD database can be extracted at points or within 

rectangular regions and aggregated into daily precipitation. Extracted daily precipitation 

is exported as text files that can be examined by text editors or imported into GIS as raster 

layers. ,The toolset provides a tool that generates a polygon shapefile representing 

NEXRAD cells and/or a point shapfile representing the centers of the NEXRAD cells. 

These shapefiles are created in HRAP coordinates but they can be converted into NAD83 

geographic coordinates by using the coordinate conversion tools, which enable them to be 

well used in various GIS environments. A very preliminary visualization tool is also 

provided to show hourly precipitation within a certain period of time within a RFC. The 

animation can be directly seen within the toolset’s display window or saved as a movie 

file, which can then be viewed using compatible movie players. 

4.5 Generating Precipitation Input Files for AnnAGNPS and SWAT  

        While NEXRAD precipitation is estimated at square cells, the precipitation inputs 

for most non-point source pollution models, such as AnnAGNPS and SWAT, are 
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typically based on irregular sub-watershed polygons at a daily scale. Essentially, an 

aggregation operation within a spatiotemporal zone is needed. This aggregation operation 

is a spatiotemporal zonal sum operation where the spatial dimensions of the 

spatiotemporal zones are defined by the sub-watersheds and the temporal dimensions are 

24 hours (one day). These spatiotemporal zones, which vary over both in space and time, 

belong to the third type of spatiotemporal zone discussed in section 2.3 (figure 2-2c). 

Figure 4-1 illustrates how the spatiotemporal vector zone is defined for one watershed 

and three days.  

 

Figure 4-1. Vector spatiotemporal zones used to calculate daily precipitation inputs for 

non-point source pollution models. The red zone is the first 24 hours for a sub-watershed. 

The blue zone is the second 24 hours and the green is the third 24 hours.  

Time

X Y
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      Hourly NEXRAD precipitation can be aggregated into the sub-watershed zone using 

different approaches. For AnnAGNPS, each sub-watershed is assigned to the precipitation 

of the NEXRAD cell which covers the largest portion of the sub-watershed. For example, 

precipitation in the sub-watershed (i.e., a zone) indicated by a dashed line in in Figure 4-

2a would have the value of P5 since this NEXRAD cell covers the largest portion of the 

sub-watershed . This approach of estimating sub-watershed precipitation is appropriate 

when the sub-watersheds are smaller than NEXRAD cells, which is the case in 

AnnAGNPS models. 

 

Figure 4-2. Two methods of deriving sub-watershed precipitation from NEXRAD cell 

precipitation. (a) Each sub-watershed is assigned the precipitation of the NEXRAD cell 

which covers the largest area of the sub-watershed. (b) Sub-watershed precipitation is 

calculated based on an areal interpolation. 

      For SWAT, sub-watershed precipitation is calculated based on the concept of areal 

interpolation. For the example in figure 4-2b, the precipitation of the sub-watershed 

indicated by a dashed line is calculated using the following equation: 
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where pi is the precipitation at nine NEXRAD cells and ai is the intersection area between 

each NEXRAD cell and the sub-watershed. This approach is more accurate than the one 

above and should be used when sub-watersheds are larger than NEXRAD cells. After 

hourly precipitation is calculated within sub-watersheds, each hourly precipitation can 

then  be added together to get daily precipitation files for use as precipitation inputs in the 

models. 
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Chapter 5.    Exploring the Effects of Antecedent Precipitation on Water Quality 

5.1 Overview 

      Many studies have used watersheds as spatial zones to monitor ecologic changes. 

Martinko et al. (2007) proposed an ecoregional classification system to assess biological 

impairment of watersheds. They used vegetation phenology metrics (VPMs), which were 

derived from 10 years of Advanced Very High Resolution Radiometer (AVHRR) satellite 

time-series images, as dynamic landscape indicators to estimate water quality inside 

watersheds. Their primary research goal was to predict watershed water quality through 

VPMs. Although there generally was a good relationship between VPMs and water 

quality, Martinko et al. found some water sample outliers that did not fit the relationship. 

One possible factor that may have caused such outliers is the antecedent rainfall within 

the watersheds of the water samples. Several studies (Jackson et al, 1993; Salamanca et al, 

2002) have shown that rainfall is a very important short-term factor affecting the 

environment, especially in semiarid and arid areas.  

In this chapter, I used a vector zonal operation and the NEXRAD precipitation 

database to explore the effects of antecedent precipitation on water quality. Here 

antecedent precipitation is the cumulative rainfall occurring hours or days before water 

samples were collected. For a specific water sample, the watershed of the water sample 

and flow length of the watershed were used to define the spatial extent of a 

spatiotemporal zone and a certain number of hours before the water sample was taken 
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was used to define the temporal dimension of the spatiotemporal zone. Accumulated 

precipitation from those spatiotemporal zones was extracted and the relationship between 

water quality and antecedent precipitation was explored.   

 5.2 Study Area 

     The study area is located in the Arkansas Red River Basin (Figure 5-1). A total of 

1,406 water samples were collected by the Kansas Biological Survey (KBS) from 1992 to 

1999. Ninety percent of the water samples were located in the eastern part of the basin. 

Table 5-1 shows a small portion of the samples. There are several attributes within the 

table. The “Name” field is the location where the water samples were taken. The “Date” 

field is the date when the water samples were collected. The fields “Total P (mg/l)”, 

“Turbidity (NTU)”, and “Total N (mg/l)” store water quality measurements.  From the 

table we can see that some water samples were collected at the same location but at 

different times. As a result, there are only 89 unique spatial locations among the 1,406 

samples. Each location was sampled about 16 times on average. 
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Figure 5-1. Water samples within the Arkansas Red River Basin. Yellow dots are water 

sample locations. Polygons with blue outlines are sub-watershed associated with each 

water sample points.  Raster layer is the DEM data for ABRFC. And the background is 

the boundary map of U.S. State. 
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Table 5-1. Fifteen water quality sample data collected by Kansas Biological Survey (KBS). There are a total of 1,406 water samples.  

Name Date Total P (mg/l) Turbidity (NTU) Total N (mg/l) 

LITTLE COW CREEK NEAR LYONS 17-May-1999 1.289999962 405  

ARKANSAS RIVER NEAR FORD 7-Jun-1999 0.600000024 350  

COWSKIN CREEK NEAR BELLE PLAINE 9-Jul-1999 0.539065003 330 1.77 

ARKANSAS RIVER NEAR KINSLEY 8-Jun-1999 0.579999983 325  

ARKANSAS RIVER NEAR DEERFIELD 7-Jun-1999 0.419999987 315  

ARKANSAS R. NEAR ARKANSAS CITY. 18-May-1999 0.959999979 295  

ARKANSAS RIVER NEAR KINSLEY 10-Aug-1999 0.670000017 295  

BLACK KETTLE CREEK NEAR HALSTEAD 15-Sep-1999 0.689999998 295  

ARKANSAS RIVER AT OXFORD 18-May-1999 0.860000014 290  

ARKANSAS RIVER NEAR DUNDEE 8-Jun-1999 0.519999981 280  

COWSKIN CREEK IN WICHITA-VALLEY CENTER FLOOD 17-May-1999 0.930000007 265  

ARKANSAS RIVER NEAR FORD 9-Aug-1999 0.850000024 245  

WALNUT RIVER AT GORDON 18-May-1999 0.649999976 245  

ARKANSAS R. NR GREAT BEND, KS. 9-Jun-1999 0.50999999 240  

ARKANSAS RIVER NEAR DUNDEE 10-Aug-1999 0.870000005 240  
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5.3 Water Quality and Antecedent Precipitation 

5.3.1 Method 

       The approach for this analysis was to calculate the amount of antecedent precipitation 

within the spatiotemporal zone associated with each water sample and to examine the 

relationship between water quality and antecedent precipitation, i.e., whether antecedent 

precipitation (the independent variable) is correlated with water quality measurements 

(dependent variables). After consulting with water quality experts at KBS, two water quality 

measurements, total amount of phosphorus (Total_P) and water turbidity, were used to 

explore the effects of antecedent precipitation on water quality. Various researchers have also 

demonstrated that high values of these two variables usually indicate poor quality of stream 

water (Martinko et al., 2007; U.S. EPA, 1989; Buttner et al., 1993). 

       Because the sub-watersheds associated water quality samples vary over space and the 

sampling dates are different, the spatiotemporal zones used for this approach are the same as 

the previous spatiotemporal zones (Figure 4-1), which were used to calculate sub-watershed 

daily precipitation for non-point source pollution models. As a result, this type of 

spatiotemporal zones would vary over both space and time. Table 5-2 provides two examples 

of water samples which were taken at different places and times. Figure 5-2 shows how two 

spatiotemporal zones were defined for the water samples with an antecedent time of 5 hours. 

The total amount of precipitation within the spatiotemporal zones is calculated using the areal 

weighted zonal sum operation discussed in section 4.6. 

Table 5-2. Water sample points table (two samples) 

IDCPCB Date 

Total P 

(mg/l) 

1272a 10/10/1999 0.167

1224b 10/9/1999 0.458
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Figure 5-2. Spatiotemporal zones associated with two water samples in Table 5-2. Red circles 

are water sample points in space and time. Blue and red walls represent the spatiotemporal 

zones associated with the water samples. 

There were 1,406 water samples taken at 89 different locations from 1992 to 1999. 

However, because the NEXRAD precipitation data only cover the time period from 

1995/10/01 to 2007/12/31, there are only 799 samples at 87 unique spatial locations that could 

be used for this analysis. Instead of just using entire watersheds as the spatial zones, I created 

several spatiotemporal zones for each watershed. Those spatiotemporal zones are defined by 

different flow lengths within the watersheds and antecedent time periods. This approach 

would allow us to identify the flow length which is critical to water quality. Several 

antecedent time periods from 0 to 4 hours to 0 to 36 hours before water samples were taken 

were also used for the same purpose of identifying critical time periods that might be 

important to water quality.  

the flow lengths of the 87 watersheds varied considerably.  Figure 5-3 shows the 

distribution of the maximum flow lengths in the 87 watersheds. The shortest flow length is 

about 4 km and the longest one is about 1230 km. Flow length increases slowly until the 77th 

watershed. There is a obveious change from the 77th watershed to the 78th watershed, where 

flow length jumps from aound 320 km to 630 km. The following nine flow lengths increase 

1272a 

1224b 

Time 

       X 

Y
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nearly linearly from 630km to 1230km. With the help from Dr. Li, I developed fourteen 

critical flow length values to make sure various flow lengths are sampled for the watersheds. 

The first threshold value is 4.14 km, which allows all the watersheds to be used in the 

statistical analysis. The second threshold is the average value of the first 10 flow lengths, 

which is 9.87 km. The third one is the average value from the 11th flow length to the 20th flow 

length, which is 21.67km. By repeating this step, I got the first 8 flow length threshold values, 

which ended at the 70th flow length. Because there is a significant change from the 77th flow 

length to the 78th, a different method was applied. From the 71st flow length to the 74th flow 

length, I calculated the average value as the 9th threshold value. From the 75th to the one 

which has a flow length value of 320 km, I calculated the average value as the 10th threshold 

value. Between 320 km and 630 km, two values (430 km and 530 km) were chosen as 

threshold values. The last threshold value, 972.24 km, was calculated by averaging flow 

length from 630 km to the last flow length value. After these steps, 14 flow length threshold 

values were used to define flow length zones. These critical values were subject to my 

personal study to reduce the flow length change issue.  Table 5-3 shows the flow length 

threshold values and the number of watersheds included with those threshold values. 

 

Figure 5-3. Maximum flow lengths of the 87 watersheds. 
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Table 5-3. Flow length threshold values and the number of watersheds included. 

Flow length Number of watersheds included 

0 – 4.14km 87 

0 – 9.87km 85 

0 – 21.67km 73 

0 – 40.49km 64 

0 – 61.36km 53 

0 – 92.43km 42 

0 – 138.79km 34 

0 – 184.74km 23 

0 – 257.89km 16 

0 – 328.02km 12 

0 – 430km 12 

0 – 530km 12 

0 – 630.95km 11 

0 – 972.24km 7  

 

Besides using different flow lengths as spatial zones, several temporal zones were also 

used in this analysis. After discussions with water quality experts at KBS, I recognized that 36 

hours would be the longest time that antecedent rainfall might affect water sample quality and 

4 hours would be an appropriate interval to divide 36 hours into nini temporal zones.  

Each combination of a flow length zone and an antecedent time zone defines a 

spatiotemporal zone for a water sample. This means that each water sample would have at 

least nine antecedent precipitation values (when the watershed only has one flow length zone) 

to at most 126 antecedent precipitation values (when the watershed has 14 flow length zones). 

The antecedent precipitation values within these spatiotemporal zones were first calculated. A 

correlation coefficient matrix was then generated by calculating correlation coefficients 
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between antecedent precipitation and water quality measurements for each spatiotemporal 

zone. Relatively higher correlation coefficients in the matrix would indicate the 

spatiotemporal zones within which antecedent precipitation give more affects to water quality. 

5.3.2 Statistical Results for Total Amount of Phosphorous 

      Using these spatiotemporal zones, antecedent precipitation values for each water sample 

in space and time were extracted. Because the antecedent precipitation values could be zero, 

statistic analysis was performed in two ways, one included zero antecedent precipitation and 

the other only used non-zero antecedent precipitation. Table 5 – 4 contains the correlation 

coefficients between all antecedent precipitation (including zero precipitation) and total 

amount of phosphorous between the water samples. 
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Table 5-4. Correlation coefficients between antecedent precipitation and total amount of phosphorous for each spatiotemporal zone. Numbers in parentheses 

in the first column are the number of water samples. Numbers in the parenthesis in the rest of the columns are the P-values of the correlation coefficients.   

  Time 

FL(km) 

0-4 hours 0-8 hours 0-12 hours 0-16 hours 0- 20 hours 0-24 hours 0-28 hours 0-32 hours 0-36 hours 

0     –  4.138 

(804) 

0.045 

(0.1987) 

0.0573 

(0.1046) 

0.0782 

(0.0267) 

0.1148 

(0.0001) 

0.1293 

(0.0002) 

0.1289 

(0.0003) 

0.1278 

(0.0003) 

0.1374 

(9.42E-05) 

0.148 

(2.54E-05) 

0  –   9.867 

(804) 

0.0351 

(0.3205) 

0.0543 

(0.1241) 

0.0778 

(0.0275) 

0.1138 

(0.0012) 

0.1235 

(0.0005) 

0.1217 

(0.0005) 

0.1230 

(0.0005) 

0.1306 

(0.0002) 

0.1391 

(7.63E-05) 

0  –  21.666 

(795) 

0.0523 

(0.1405) 

0.0564 

(0.1118) 

0.0759 

(0.0324) 

0.109 

(0.0021) 

0.1111 

(0.0017) 

0.1086 

(0.0002) 

0.1095 

(0.0002) 

0.1166 

(0.0009) 

0.1241 

(0.0005) 

0  – 40.497 

(747) 

0.0481 

(0.1889) 

0.0453 

(0.2159) 

0.0651 

(0.0755) 

0.0918 

(0.0121) 

0.1088 

(0.0029) 

0.1045 

(0.0043) 

0.1056 

(0.0039) 

0.1163 

(0.0015) 

0.1214 

(0.00083) 

0  –  61.364 

(699) 

0.0246 

(0.5163) 

0.0423 

(0.2645) 

0.044 

(0.2450) 

0.0291 

(0.4423) 

0.0294 

(0.4372) 

0.0348 

(0.3582) 

0.0365 

(0.3348) 

0.0385 

(0.3093) 

0.0434 

(0.2513) 

0  –  92.429 

(605) 

0.008 

(0.8438) 

0.0013 

(0.9738) 

0.044 

(0.9139) 

0.047 

(0.9769) 

0.0038 

(0.9245) 

0.0024 

(0.9519) 

0.0027 

(0.9471) 

0.0022 

(0.9558) 

0.0122 

(0.7627) 

0  – 138.794 0.0659 0.0435 0.0362 0.0109 0.048 0.0015 

(0.9707) 

0.003 

(0.9429) 

0.0033 

(0.9366) 

0.0063 

(0.881) 



30

(562) (0.1182) (0.3027) (0.3915) (0.7964) (0.9087) 

0  – 184.739 

(468) 

0.0541 

(0.2336) 

0.0398 

(0.3813) 

0.0319 

(0.482) 

0.05 

(0.2703) 

0.0416 

(0.36) 

0.0404 

(0.3736) 

0.0434 

(0.3393) 

0.031 

(0.494) 

0.0396 

(0.3827) 

0  – 257.894 

(376) 

0.0491 

(0.3422) 

0.0155 

(0.7635) 

0.0141 

(0.7848) 

0.0359 

(0.4869) 

0.0332 

(0.52) 

0.0427 

(0.4083) 

0.0414 

(0.4224) 

0.0459 

(0.374) 

0.0521 

(0.3127) 

0  – 328.024 

(296) 

0.0498 

(0.393) 

0.0414 

(0.477) 

0.0378 

(0.5163) 

0.004 

(0.9448) 

0.0298 

(0.6089) 

0.0174 

(0.7653) 

0.0107 

(0.8539) 

0.0029 

(0.9597) 

0.0017 

(0.9759) 

0  –  430.00 

(240) 

0.0549 

(0.3966) 

0.0462 

(0.4755) 

0.0448 

(0.4894) 

0.0417 

(0.5201) 

0.0377 

(0.5601) 

0.0278 

(0.6682) 

0.0236 

(0.7149) 

0.0164 

(0.7995) 

0.0078 

(0.9042) 

0  –  530.00 

(240) 

0.0767 

(0.2362) 

0.0464 

(0.4739) 

0.0406 

(0.531) 

0.0445 

(0.4922) 

0.0165 

(0.799) 

0.0121 

(0.8508) 

0.0131 

(0.839) 

0.0166 

(0.7975) 

0.0176 

(0.7855) 

0  – 630.955 

(240) 

0.0948 

(0.1427) 

0.0702 

(0.2784) 

0.0193 

(0.7655) 

0.0324 

(0.6165) 

0.0393 

(0.544) 

0.0546 

(0.3989) 

0.0535 

(0.4088) 

0.0565 

(0.3828) 

0.0571 

(0.378) 

0  – 972.235 

(227) 

0.0892 

(0.1803) 

0.0669 

(0.3148) 

0.04955 

(0.4574) 

0.055 

(0.4089) 

0.0618 

(0.3538) 

0.0769 

(0.2481) 

0.074 

(0.2663) 

0.0808 

(0.2252) 

0.0787 

(0.2372) 
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We can see from this table that the correlation coefficients are very low (around 0.1) and 

they don’t indicate a good relationship between antecedent precipitation and total amount of 

phosphorous. About 80% of the P-values are higher than 0.05, and only the P-values within 

the first 4 flow lengths and between 12 – 36 antecedent hours are lower than 0.05, indicating 

these correlation coefficients are statistically significant. The highest correlation coefficient 

(0.148) comes from the flow length between of 0 and 4.138 km and antecedent time between 

0 and 36 hours, which indicates rainfall within that flow length range and that antecedent 

period affects water quality the most.  

Two maps (Figure 5-4a and 5-4b) were created based on the numbers in Table 5-4. 

Figure 5-4a displays the P-values which are less than or equal to 0.05 (green cells) and the P-

values which are greater than 0.05 (purple cells). Figure 5-4b shows the variation of 

correlation coefficients in the spatiotemporal zones. We can see from these maps that higher 

correlation coefficients are in the upper right corner within the first 4 rows and they are also 

statistically significant. In addition, the correlation coefficient values within these 

spatiotemporal zones (upper right corner) are about 10 times higher than those in other 

spatiotemporal zones, indicating a possible relationship between antecedent precipitations and 

total amount of phosphorous within these spatiotemporal zones. 

 

Figure 5-4a & 5-4b. Maps of P-values and correlation coefficients between antecedent 

precipitations (including zero antecedent precipitations) and total amount of phosphorous for 
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different spatiotemporal zones. The x-axis is antecedent periods (from 4 hours to 36 hours) 

and y-axis is flow length zones. 

Figure 5-5 shows the significant correlation coefficients of the first 4 flow length zones. 

From this figure we can see that for the same antecedent time period, the correlation 

coefficient decreases as flow length increases, and for the same flow length zone, the 

correlation coefficient increases as antecedent time period increases. This indicates that 

antecedent precipitation which is closer to the water sample locations would affect water 

quality more than more distant precipitation, and the longer the antecedent time period is, the 

more the precipitation affects the total amount of phosphorous. 

 

Figure 5-5. Significant correlation coefficients within the first 4 flow length zones.  

The correlation coefficients between non-zero antecedent precipitation and total amount 

of phosphorous were calculated in Table 5-5. The correlation coefficients are higher than 

those in Table 5-4. However, the coefficients are still low and 78% of the p-values are higher 

than 0.05, indicating a general non-significant relationship between antecedent precipitation 

and total amount of phosphorous within most of the spatiotemporal zones.  



33

Table 5-5. Correlation coefficients between non-zero antecedent precipitation and total amount of phosphorous for each spatiotemporal zone. The first 

numbers in parentheses are the number of water samples and the second number in the parentheses is the p-value of the correlation coefficient.  

  Time  

FL(km) 

0-4 hours 0-8 hours 0-12 hours 0-16 hours 0- 20 hours 0-24 hours 0-28 hours 0-32 hours 0-36 hours 

0     –  4.138 0.2024 

(106, 0.037) 

0.0983 

(143, 0.242) 

0.1591 

(176, 0.035) 

0.2818 

(185, 0.0001) 

0.3282 

(201, 1.98E-06) 

0.2378 

(257, 0.0001) 

0.3196 

(266, 9.86E-08) 

0.2786 

(301, 9.05E-07) 

0.2751 

(327, 4.33E-07) 

0  –  9.867 0.1053 

(94,   0.312) 

0.1656 

(122, 0.068) 

0.3282 

(154, 2.4E-05) 

0.2839 

(164, 0.0002) 

0.3026 

(178, 4.04E-05) 

0.2785 

(225, 2.5E-05) 

0.2863 

(236, 7.84E-06) 

0.2395 

(280, 5.17E-05) 

0.2268 

(306, 6.23E-05) 

0   – 21.666 0.1827 

(103, 0.065) 

0.1712 

(129, 0.052) 

0.1623 

(156, 0.043) 

0.271 

(164, 0.0004) 

0.2858 

(178, 0.0001) 

0.2589 

(220, 0.0001) 

0.2634 

(229, 5.44E-05) 

0.2173 

(271, 0.0003) 

0.2066 

(297,0.0003) 

0   – 40.497 0.1997 

(96, 0.0511) 

0.1264 

(128, 0.155) 

0.1179 

(153. 0.1466) 

0.2302 

(162, 0.0032) 

0.2891 

(176, 9.95E-05) 

0.2646 

(224, 6.1E-05) 

0.2763 

(231, 2.05E-05) 

0.2346 

(267, 0.0001) 

0.1973 

(290, 0.0007) 

0   – 61.364 0.0881 

(91, 0.4064) 

0.1209 

(129, 0.172) 

0.1249 

(153, 0.1241) 

0.0686 

(165, 0.3812) 

0.0567 

(178, 0.4521) 

0.0335 

(226, 0.6166) 

0.0387 

(233, 0.5562) 

0.0388 

(263, 0.5306) 

0.0342 

(282, 0.5678) 

0   – 92.429 0.0458 

(80, 0.6868) 

0.0763 

(115, 0.418) 

0.0749 

(141, 0.3776) 

0.065 

(150, 0.4289) 

0.0655 

(164, 0.405) 

0.03491 

(212, 0.6132) 

0.03265 

(218, 0.6315) 

0.0298 

(239, 0.6465) 

0.03575 

(258, 0.5675) 

0  – 138.794 0.0277 

(71, 0.8183) 

0.0391 

(109, 0.686) 

0.0306 

(132, 0.7278) 

0.0637 

(144, 0.4478) 

0.0636 

(161, 0.4227) 

0.0465 

(206, 0.5064) 

0.0442 

(217, 0.5169) 

0.0463 

(236, 0.4789) 

0.0374 

(252, 0.5545) 
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0  – 184.739 0.2251 

(62, 0.0784) 

0.186 

(93, 0.0742) 

0.0778 

(107, 0.7997) 

0.104 

(122, 0.2542) 

0.0914 

(142, 0.2794) 

0.083 

(181, 0.2661) 

0.0719 

(190, 0.3241) 

0.0651 

(199, 0.3604) 

0.0752 

(215, 0.2718) 

0  – 257.894 0.0957 

(56, 0.4827) 

0.0428 

(81,  0.704) 

0.0491 

(90, 0.646) 

0.0232 

(102, 0.8169) 

0.0557 

(117, 0.5509) 

0.0568 

(151, 0.4878) 

0.0563 

(157, 0.4834) 

0.0678 

(166, 0.3853) 

0.0741 

(172, 0.3334) 

0  – 328.024 0.0953 

(45, 0.5333) 

0.0413 

(61, 0.7522) 

0.0078 

(68, 0.9491) 

0.0114 

(85, 0.9178) 

0.0782 

(94, 0.4537) 

0.0612 

(122, 0.5029) 

0.0315 

(129, 0.7226) 

0.0303 

(137, 0.7248) 

0.0258 

(141, 0.7613) 

0   – 430.00 0.1074 

(57, 0.4627) 

0.0775 

(63, 0.5459) 

0.0728 

(72,0.5431) 

0.0504 

(89, 0.6387) 

0.0851 

(95, 0.4122) 

0.0983 

(117, 0.2912) 

0.0694 

(125, 0.4414) 

0.0644 

(129, 0.468) 

0.0571 

(133, 0.5134) 

0   – 530.00 0.1069 

(57, 0.4284) 

0.0421 

(74, 0.7213) 

0.0322 

(85, 0.7696) 

0.0441 

(104, 0.6565)

0.0083 

(111, 0.9308) 

0.0335 

(129, 0.7055) 

0.0369 

(135, 0.6707) 

0.0189 

(137, 0.8258) 

0.0232 

(143, 0.7803) 

0  – 630.955 0.1301 

(57, 0.3345) 

0.0645 

(73, 0.5874) 

0.0556 

(80, 0.6238) 

0.0127 

(102, 0.8993) 

0.0208 

(109, 0.8306) 

0.0393 

(127, 0.6613) 

0.0392 

(130, 0.6574) 

0.0472 

(134, 0.5875) 

0.0443 

(140, 0.6024) 

0  – 972.235 0.1087 

(76, 0.3501) 

0.0558 

(84, 0.6137) 

0.0242 

(96, 0.8144) 

0.0289 

(115, 0.7587) 

0.0492 

(120, 0.5931) 

0.0505 

(149, 0.5404) 

0.0514 

(152, 0.5293) 

0.0698 

(153, 0.3911) 

0.0676 

(153, 0.4061) 
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Figure 5-6a and 5-6b display the P-values and correlation coefficients shown in table 5-5 

as maps. Figure 5-6a displays the P-values which are less than or equal to 0.05 (green cells) 

and the P-values which are greater than 0.05 (purple cells). The variation of correlation 

coefficients in the spatiotemporal zones is shown in Figure 5-6b. Higher correlation 

coefficients are at the upper right corner within the first 4 rows and they are also statistically 

significant. Similar to Figure 5 – 4b, the correlation coefficient values within these 

spatiotemporal zones (upper right corner) are about 10 times higher than those in other 

spatiotemporal zones, indicating a possible relationship between antecedent precipitations and 

total amount of phosphorous within these spatiotemporal zones.  

 

Figure 5-6a & 5-6b. Maps of P-values and correlation coefficients between antecedent 

precipitations (only with non-zero antecedent precipitations) and total amount of phosphorous 

for different spatiotemporal zones. The x-axis is antecedent periods (from 4 hours to 36 hours) 

and y-axis is flow length zones. 

The highest coefficient (0.3282) occurred twice in Table 5-5, one comeing from the flow 

length less than 4.138 km and antecedent period less than 20 hours and the other from the 

flow length less than 9.867 km and antecedent period less than 12 hours. Among the 

significant correlation coefficients within the first four flow length zones, antecedent periods 

between 16 and 36 hours have higher correlation coefficients than others, indicating a 
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stronger significant statistical relationship between antecedent precipitation and total amount 

of phosphorous within those antecedent periods, especially within the antecedent period of 20 

hours, which has relatively the highest correlation coefficient value. One possible reason to 

explain this longer antecedent period is that a longer time period has a higher chance of 

precipitation. Based on these observations, antecedent precipitation which occurs within a 

shorter flow length (i.e., closer to the water samples) and with a longer antecedent time period 

might affect water quality more significantly than those that are far away from the samples.  

The antecedent period of 20 hours within the first four flow lengths has the highest 

correlation coefficients except for the 2nd flow length which has the second highest coefficient 

(0.3026). This indicates that antecedent rainfalls within this time period affect the amount of 

phosphorous most strongly. Figures 5-7a to 7d show the relationship between antecedent 

precipitation and the total amount of phosphorous within those spatiotemporal zones. In these 

figures, we can observe that even for the spatiotemporal zones that have the highest 

correlation coefficients.  However, the relationship between antecedent precipitation and total 

amount of phosphorous is not as strong. 

 

Figure 5-7a. Scatter plot of total amount of phosphorous and antecedent precipitation within 

the flow length zone of 0 to 4.138 km and antecedent period of 20 hours. 
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Figure 5-7b. Scatter plot of total amount of phosphorous and antecedent precipitation within 

the flow length zone of 0 to 9.867 km and antecedent period of 20 hours  

 

Figure 5-7c. Scatter plot of total amount of phosphorous and antecedent precipitation within 

the flow length zone of 0 to 21.666 km and antecedent period of 20 hours  
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Figure 5-7d. Scatter plot of total amount of phosphorous and antecedent precipitation within 

the flow length zone of 0 to 40.497 km and antecedent period of 20 hours 

5.3.3 Statistical Results for Turbidity 

Water turbidity is another water quality measurement that is regularly collected at KBS. 

Usually, high water turbidity is related to high values of phosphorus. To attempt to verify this, 

I correlated turbidity with total phosphorus, but the correlation coefficient was only 0.2353. 

Although the coefficient was low, the p-value was 2.52E-05, which indicates a significant 

correlation between the two water quality variables. Because of this, I would expect a weak 

relationship between antecedent precipitation and turbidity as it exists between antecedent 

precipitation and total phosphorus.  

There were 314 unique water samples that have turbidity measurements. I used the same 

spatiotemporal zones to examine the relationship between antecedent precipitation and 

turbidity.  Table 5–6 shows the correlation coefficients between antecedent precipitation 

(including zero precipitation) and turbidity of the water samples.  
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Table 5–6. Correlation coefficients between precipitation and water turbidity for each spatiotemporal zone at?? the water samples. Numbers in the parentheses 

in the first column are the numbers of water samples. Numbers in the parentheses in the rest of the columns are P values of the coefficient correlations  

  Time  

  

FL (km) 

0-4 hours 0-8 hours 0-12 hours 0-16 hours 0- 20 hours 0-24 hours 0-28 hours 0-32 hours 0-36 hours 

0     –  4.138 

(314) 

0.0358 

(0.5263) 

0.1215 

(0.0313) 

0.2212 

(7.67E-05) 

0.2366 

(2.27E-05) 

0.2175 

(0.0001) 

0.2188 

(9.26E-05) 

0.2243 

(6.06E-05) 

0.2469 

(9.54E-06) 

0.2934 

(1.18E-07) 

0  –  9.867 

(314) 

0.0368 

(0.5148) 

0.1175 

(0.0372) 

0.2153 

(0.001) 

0.2374 

(2.12E-05) 

0.2198 

(8.54E-05) 

0.2203 

(8.24E-05) 

0.2246 

(5.89E-05) 

0.243 

(1.33E-05) 

0.2809 

(4.18E-07) 

0  – 21.666 

(306) 

0.0261 

(0.6486) 

0.0943 

(0.1007) 

0.193 

(0.0006) 

0.2063 

(0.0002) 

0.2012 

(0.0003) 

0.2008 

(0.0004) 

0.2037 

(0.0003) 

0.2205 

(0.0001) 

0.252 

(8.1E-06) 

0  – 40.497 

(280) 

0.0099 

(0.868) 

0.0715 

(0.2324) 

0.1558 

(0.009) 

0.1519 

(0.0108) 

0.1981 

(0.0007) 

0.1993 

(0.0007) 

0.2036 

(0.0006) 

0.2234 

(0.0002) 

0.2549 

(1.57E-05) 

0  – 61.364 

(253) 

0.0111 

(0.8601) 

0.0159 

(0.8002) 

0.066 

(0.2973) 

0.1166 

(0.064) 

0.1860 

(0.0029) 

0.1871 

(0.0028) 

0.1883 

(0.0026) 

0.2063 

(0.0009) 

0.2352 

(0.0002) 

0  – 92.429 

(212) 

0.0231 

(0.7376) 

0.0213 

(0.7577) 

0.0417 

(0.5459) 

0.0612 

(0.3751) 

0.0624 

(0.3657) 

0.0772 

(0.2631) 

0.0801 

(0.2452) 

0.1037 

(0.1319) 

0.1478 

(0.0313) 
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0  – 138.794 

(188) 

0.0154 

(0.8337) 

0.0187 

(0.7984) 

0.0369 

(0.6142) 

0.1171 

(0.1092) 

0.1136 

(0.1203) 

0.1573 

(0.031) 

0.1593 

(0.0028) 

0.1806 

(0.0131) 

0.2157 

(0.0029) 

0  – 184.739 

(154) 

0.0006 

(0.9937) 

0.0115 

(0.8866) 

0.0172 

(0.8321) 

0.0916 

(0.2566) 

0.0874 

(0.2811) 

0.1209 

(0.1350) 

0.1201 

(0.1376) 

0.1262 

(0.1185) 

0.1354 

(0.0938) 

0  – 257.894 

(115) 

0.0416 

(0.6587) 

0.0144 

(0.8754) 

0.0126 

(0.8931) 

0.0915 

(0.3305) 

0.0885 

(0.3467) 

0.0971 

(0.3021) 

0.0863 

(0.359) 

0.0864 

(0.3581) 

0.1011 

(0.2825) 

0  – 328.024 

(90) 

0.0701 

(0.518) 

0.0781 

(0.4597) 

0.07771 

(0.4662) 

1.42E-05 

(0.9998) 

0.0387 

(0.7171) 

0.0365 

(0.7321) 

0.0302 

(0.7772) 

0.0292 

(0.7841) 

0.0423 

(0.6917) 

0  – 430.00 

(72) 

0.0798 

(0.5048) 

0.0829 

(0.4884) 

0.0799 

(0.5041) 

0.0189 

(0.8745) 

0.146 

(0.2208) 

0.1232 

(0.3025) 

0.1225 

(0.3051) 

0.1178 

(0.324) 

0.1189 

(0.3194) 

0  – 530.00 

(72) 

0.0688 

(0.5656) 

0.0778 

(0.5157) 

0.0676 

(0.5722) 

0.0478 

(0.6901) 

0.1196 

(0.3168) 

0.1234 

(0.3017) 

0.1236 

(0.3007) 

0.1182 

(0.3227) 

0.1205 

(0.3131) 

0  – 630.955 

(72) 

0.0511 

(0.6698) 

0.0826 

(0.4898) 

0.0739 

(0.5371) 

0.0558 

(0.6409) 

0.0417 

(0.7276) 

0.0677 

(0.5715) 

0.0692 

(0.5632) 

0.0688 

(0.5654) 

0.0818 

(0.4944) 

0  – 972.235 

(72) 

0.0634 

(0.5967) 

0.0028 

(0.9809) 

0.0119 

(0.9209) 

0.0223 

(0.8521) 

0.0197 

(0.8692) 

0.1929 

(0.1043) 

0.2063 

(0.0819) 

0.2056 

(0.0831) 

0.208 

(0.0795) 
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Correlation coefficients in the table 5-6 are low [say something about how they compare 

to the earlier analysis]. The highest correlation coefficient in table 5-6 is 0.2934. It is located 

within the first flow length zone and an antecedent period of 36 hours. P-values and 

correlation coefficients maps are shown in Figure 5-8a and 5-8b. Seventy percent of the P-

values are higher than 0.05 and only a few within the first 5 flow length zones and the seventh 

flow length zone are lower than 0.05, indicating a possible significant relationship between 

antecedent precipitation and turbidity in those spatiotemporal zones. As flow length increases, 

only longer antecedent time periods have P-values less than 0.05. In the correlation 

coefficient map, higher correlation coefficients (red cells in Figure 5-8b) are located within 

the spatiotemporal zones where their P-values are also less than 0.05 (green cells in Figure 5-

8a). Some higher correlation coefficients are located at the longest flow length zone within 

antecedent periods from 24 to 36 hours. However, the P-values in those spatiotemporal zones 

are higher than 0.05, indicating no significant statistical relationships in those zones and this 

might be caused by sample size problems. In addition, for these significant correlation 

coefficients, within each antecedent time period, they decrease as flow length increases. On 

the other hand, within each flow length zone, these significant correlation coefficients 

increase when antecedent period increases. Thus, these results imply that precipitation closer 

to the water sample locations and within a longer antecedent period affect water turbidity 

more strongly. 
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Figure 5-8a & 5-8b. Maps of P-values and correlation coefficients between antecedent 

precipitation (including zero antecedent precipitations) and water turbidity for different 

spatiotemporal zones. The x-axis is antecedent periods (from 4 hours to 36 hours) and y-axis 

is flow length zones. 

Table 5-7 shows the correlation coefficients between non-zero antecedent precipitation 

and turbidity. It only contains the coefficients for the first five flow length zones, because the 

P-values for all other correlation coefficients are higher than 0.05. Furthermore, some of the 

spatiotemporal zones don’t have sufficient samples (less than 30) for statistical analysis.  

The following table gives us similar information as seen in Table 5-5. The correlation 

coefficients are relatively higher than those calculated using all antecedent precipitation 

(including zero precipitation). However, the coefficients are still low and don’t indicate a 

good relationship between antecedent precipitation and water turbidity. The highest 

coefficient is 0.3587 and is found within the flow length less than 4.138 km and antecedent 

period of 36 hours.  
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Table 5-7. Correlation coefficients between non-zero antecedent precipitation and water turbidity for the combinations of flow length and antecedent time. 

The first number in the parenthesis is the number of water samples and the second number in the parenthesis is the p-value of the correlation coefficient. 

 Time   

FL (km) 

0-4 hours 0-8 hours 0-12 hours 0-16 hours 0- 20 hours 0-24 hours 0-28 hours 0-32 hours 0-36 hours 

0     –  4.138 0.0642 

(36,0.7098) 

0.2194 

(45,0.1475) 

0.2898 

(63,0.0212) 

0.3106 

(65,0.0117) 

0.2781 

(65,0.0248) 

0.288 

(89,0.0062) 

0.2972 

(89,0.046) 

0.2856 

(106,0.0029) 

0.3587 

(108,0.0001) 

0     –  9.867 0.1462 

(30,0.4578) 

0.2618 

(34,0.1346) 

0.2815 

(54,0.0391) 

0.3106 

(55,0.0209) 

0.2856 

(55,0.0344) 

0.3292 

(79,0.0031) 

0.3372 

(79,0.0023) 

0.2745 

(100,0.0057) 

0.3205 

(103,0.0009) 

0     – 21.666 0.0435 

(34,0.8067) 

0.163 

(40,0.3149) 

0.2351 

(57,0.0782) 

0.242 

(58,0.0671) 

0.2481 

(59,0.058) 

0.2929 

(75,0.0107) 

0.2982 

(75,0.0093) 

0.2401 

(96,0.0184) 

0.2820 

(97,0.0051) 

0     – 40.497 0.0137 

(35,0.9374) 

0.1225 

(42,0.4392) 

0.1964 

(56,0.1467) 

0.1815 

(57,0.1766) 

0.2771 

(57,0.0352) 

0.2565 

(73,0.0284) 

0.2638 

(73,0.0241) 

0.2266 

(92,0.0298) 

0.266 

(93,0.0095) 

0     – 61.364 0.1168 

(31,0.5312) 

0.0218 

(38,0.8965) 

0.0205 

(53,0.8836) 

0.1298 

(55,0.3448) 

0.2835 

(55,0.0358) 

0.2687 

(69,0.0255) 

0.2705 

(69,0.0245) 

0.2253 

(63,0.0369) 

0.2656 

(88,0.0123) 
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Figure 5-9. Antecedent precipitation and water turbidity within the spatiotemporal zone 

which has the highest correlation coefficient  

Figure 5-9 is a scatter plot of antecedent precipitation and water turbidity in the 

spatiotemporal zone which has the highest correlation coefficient. 65% of the turbidity 

values of the water samples are less than 50 NTU and are associated with nearly zero 

antecedent precipitation. We can roughly see that when antecedent precipitation increases, 

turbidity also increases. With a P-value of 0.0001 and correlation coefficient of 0.3587, 

there is a statistical relationship between antecedent precipitation and turbidity within the 

first flow length zone and antecedent period of 36 hours. However, it is not a strong 

relationship and is not obvious from the figure. 

Generally speaking, for the statistically significant correlation coefficients in the 

above tables, the correlation coefficients decrease as flow length increases, and within 

each flow length zone, the correlation coefficients increase when the antecedent period 

increases. This indicates that longer antecedent periods and precipitation near to the water 

sample locations affects water quality (turbidity and total amount of phosphorus) more 

than the antecedent precipitation in longer flow length and shorter antecedent time 

periods spatiotemporal zones.   
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5.4 Procedures to Perform the Spatiotemporal Analysis  

In order to help other researchers perform the above analysis with their own water 

samples, flow lengths, and antecedent periods, detailed steps involved in the analysis are 

described in this section. The data needed in the analysis include water sample data saved 

as an ESRI point shapefile and a Digital Elevation Model (DEM), which is used to derive 

flow direction and flow accumulation raster layers. The first step is to check the 

coordinate systems of the data to make sure that all of them are in the Hydrologic Rainfall 

Analysis Projection (HRAP) coordinate system used in the NEXRAD precipitation 

database. If they are not, they should be projected into HRAP by using the NexTool 

software discussed in section 4.3. With the DEM and water sample points as outlets, flow 

direction and the watershed associated with each water sample can be delineated using 

the hydrological function available in ArcGIS. With the flow direction in each watershed, 

flow length can then be calculated by using the FlowLength function in ArcGIS. The 

figure below shows what a flow length raster layer looks like. 

 

Figure 5-10. Flow length for a water sample. 
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The next step is to divide a watershed into several spatial zones based on the flow 

length in the watershed. The number of zones and the threshold values used to define the 

zones are application dependent and should be based on the potential effects of flow 

length on water quality. The Reclassify function in ArcGIS can be used to generate the 

zones.  The following figure shows the result after the watershed associated with a water 

sample is classified into 7 flow length zones. 

 

Figure 5-11. Classification of watersheds into flow length zones.  

After reclassification, we need to convert the flow length raster zones into a polygon 

shapefile, which is the required input data format for the NexTool software. This raster-

to-vector conversion usually creates many small polygons, each of which has a unique ID. 

We need to combine those small polygons if they are from the same raster zones. This 

can be done by using the Dissolve function available in ArcGIS. The following figure 

shows the polygon flow length zones after raster-to-vector conversion and applying the 

dissolving function (Figure 5-12). 
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Figure 5-12. Vector flow length zones for the watershed associated with the water sample 

in Figure 5-11. 

Now we are done with the analysis in GIS and we have a polygon shapefile which 

stores flow length zones. We next use the NexTool software, which was introduced in 

chapter 4. We extract antecedent precipitation from spatiotemporal zones by using the 

weighted area method discussed in section 4.5. First, we need to calculate areal weights 

associated with each flow length zone. Figure 5-13 shows the user interface for 

calculating the weights. 

 

Figure 5-13. User interface in the NexTool to calculate areal weights for each flow length 

zone.  



48

The result from this tool is a text file (Figure 5-14) which stores the relationship 

between each flow length zone and the NEXRAD cells which intersect with the flow 

length zone. Each row in the file contains the flow length zone ID, NEXRAD cell ID, the 

percentage of area of the NEXRAD cell covered by the flow length zone, and several 

other pieces of useful values. 

 

Figure 5-14. Output text file from the NexTool software. The text file stores the areal 

weights for each flow length zone. 

The areal weight text file is then used to extract antecedent precipitation with the 

following user interface in the NexTool (Figure 5-15). 
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Figure 5-15. User interface in NexTool to extract antecedent precipitation. 

The linked file on the user interface is the text file which stores the areal weights for 

each flow length zone. Point ID is the ID of a water sample for which antecedent 

precipitation in different spatiotemporal zones will be extracted. Taken Time is the date 

and time when the water sample was collected. Several water samples might be taken at 

the same location but at different times. Since most of the water samples didn’t record the 

exact time when the sample was collected, we used time around 12:00 pm as the default 

data collection hour. Time shift Local to UTC indicates the difference between UTC time 

and local time as the NEXRAD precipitation database is based on the UTC time. 

Antecedent time on the interface decides the antecedent period to extract precipitation and 

the Time interval item determines the number of temporal zones. For example, if the 

antecedent time is set to 36 hours and time interval is set to 4, there would be 9 temporal 

zones for each flow length zone. The combination of spatial flow length zones and 

temporal zones creates spatiotemporal zones. This tool generates a text file which records 

cumulative antecedent precipitation within each spatiotemporal zone (Figure 5 – 16). The 
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antecedent precipitation can then be used for further statistical analysis. For the example 

water sample in Figure 5-12, since it has 7 flow length zones and each flow length zone 

has 9 antecedent periods, there are a total of 63 antecedent precipitation values extracted 

for the water sample. 

 

Figure 5-16. Cumulative antecedent precipitation within 63 spatiotemporal zones. 
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Chapter 6.   Conclusions and Future Researches 

6.1 Conclusions 

      This research extends the cartographic modeling operations to analyze spatiotemporal 

datasets. More specifically, it developed zonal operations to handle vector spatiotemporal 

zones, which are lacking in current GIS implementations. Those zonal operations were 

tested and used in two applications, one for the generation of precipitation input for non-

point source pollution models and the other for exploring the effect of antecedent 

precipitation on water quality.  

Current cartographic modeling operations only work with raster layers, which are 

measured at a particular moment or during a certain period of time. Because of the lack of 

a temporal dimension, only spatial analysis can be performed on the raster layers. In 

addition, some geographic phenomena are better represented as vector features rather than 

raster layers and there is no corresponding operation available in the vector data model. 

With the increasing availability of spatiotemporal data and the demand for spatiotemporal 

analysis, this research extended the original zonal functions to handle spatiotemporal data 

with vector zones.  

A software package, NexTool, was developed to use NEXRAD precipitation data. 

The software provides the functions to build spatiotemporal precipitation databases, to 

convert between different coordinate systems, and to visualize precipitation databases. An 

hourly NEXRAD precipitation database, which covers the ABRFC and covering 11 years 

(from October 1, 1995 to September 30, 2006), was created using the software.  

The vector zonal operation and the NEXRAD precipitation database were first used 

to generate daily precipitation input for non-point source pollution models (AnnAGNPS 

and SWAT). Daily precipitation within vector spatiotemporal zones was extracted from 

the NEXRAD precipitation database. In this case, sub-watershed boundaries used in the 

models defined the spatial extent of the spatiotemporal zones and a day (i.e., 24 hours) 
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defined the temporal extent of the spatiotemporal zones. The area-weighted vector zonal 

summary operation was used to calculate daily total precipitation within each sub-

watershed. 

       The vector zonal summary operation was also used to explore the effects of 

antecedent precipitation on water quality. Precipitation that occurred within a certain 

number of hours before a water sample was taken and was within a certain flow length 

was extracted from the NEXRAD precipitation database. In this case, sub-watershed flow 

length defined the spatial extent of a spatiotemporal zone and antecedent period defined 

the temporal extent of the spatiotemporal zone. Different flow lengths and antecedent 

periods were used to identify the spatiotemporal zones in which precipitation might affect 

water quality. Based on the analysis in chapter 5, significant correlation coefficients 

occurred only for flow lengthes less than 40.49 km. Those significant correlation 

coefficients generally decreased as flow length increased and they increased as antecedent 

periods increased. A preliminary conclusion from this analysis is that antecedent 

precipitation which occurred 12 to 36 hours before a water sample was collected and 

within 40 km of flow length from the water sample location affected the turbidity and 

total amount of phosphorus the most.    

6.2 Future Researches  

Although this research discussed the general concept of vector cartographic 

modeling operations for spatiotemporal analysis, it focused only on one such operation 

(i.e., spatiotemporal zonal summary). In a future study I plan to explore other vector 

cartographic operations, including local and focal operations, for spatiotemporal analysis. 

In addition, although this research discussed three types of spatiotemporal zones based on 

the work from Mennis (2005), it does not discuss how spatiotemporal zones can be 

defined efficiently and precisely for specific applications. While defining spatial zones 
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has matured and been implemented in many GIS software packages, defining temporal 

zone efficiently need further research.   

        The NexTool is a powerful software tool to handle NEXRDA data but it has some 

limitations. First, the software is based on MATLAB and thus requires a MATLAB 

runtime application installed in order to use the tool. Second, the software tool only 

provides the coordinate system conversion between NAD83 and HRAP, which are often 

used for hydrological analysis. Third, the software can only generate daily precipitation 

inputs for two non-point source pollution models (AnnAGNPS and SWAT). New 

functions must be added in order to generate precipitation inputs for other models.  The 

software needs to be further developed to overcome these limitations.  

One issue in exploring the effects of antecedent precipitation on water quality is how 

to more objectively select flow length thresholds.  There is a big gap between two set of 

flow lengths, from thousands of meters to millions of meters. I chose the flow lengths 

subjectively. As such, if the number of flow length zones is too small, some critical flow 

lengths might be missed. Because of this, this thesis provided detailed steps to perform 

the analysis so that other researchers can follow the steps if they want to use their own 

spatiotemporal zones. Many other methods could be applied to make flow length 

threshold values for different analysis purposes, such as Jenks optimal method of data 

classification within ArcGIS. 

Another issue I noticed was that from all the correlation coefficients tables, most of 

the correlation coefficients increased as antecedent time period increased and researched 

the highest value at 0 to 36 antecedent time period. No longer antecedent time period than 

36 hours was test because this is the longest time which would affect water quality by 

conclusions of the experts of KBS. But now we may doubt the longest antecedent time 

period. Because there is no result for 0-40 antecedent time period, will the correlation 

coefficients still increase in that time period or will they decrease. Only when we know 
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the correlation coefficients result from longer time periods than 0 to 36 hours, we can 

conclude what is the longest antecedent time that within which the precipitation will still 

affect water quality.   

Finally, water quality is not just affected byprecipitationl. The low correlation 

coefficients between antecedent precipitation and water quality measurements indicated 

this. Many other factors, such as land use, soil type, and temperature, may also affect 

water quality. This research simply assumes that other conditions for the entire Arkansas 

Red River Basin are uniform. To better understand the effect of precipitation on water 

quality, many other environmental factors, such as land use type, soil erosion and etc., 

should be considered in the future. 
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Appendix A 

AnnAGNPS (US Department of Agriculture) 

      AnnAGNPS is a distributed parameter, watershed scale model that is used for 

continuous simulations and the AnnAGNPS stands forAnnualized Agricultural Nonpoint 

Source Pollution Model. It is a continuous simulation watershed-scale program developed 

based on the single-event model AGNPS. AnnAGNPS simulates quantities of surface 

water, sediment, nutrients, and pesticides leaving the land areas and their subsequent 

travel through the watershed. Output of the model is expressed on an event basis for 

selected stream reaches and as source accounting (contribution to outlet) from land or 

reach components over the simulation period.  

        AnnAGNPS divides the watershed into homogenous drainage areas, which are then 

integrated together by simulated rivers and streams, routing the runoff and pollutants 

from each area downstream. The hydrology of the model is based on simple water 

balance approach. Inputs of the model are watershed delineation, daily precipitation, 

temperatures, management information and so on. For the model itself, daily precipitation 

can be generated by the climate data generator (GEM), which is calculated the daily 

precipitation by using nearby rain gauges. For my study, instead of using rain gauges, I 

generated daily precipitation from hourly NEXRAD precipitation database by using 

Nextool. And after evaluating the NEXRAD daily precipitation input file by comparing it 

with real rain gauges daily precipitation input file, the NEXRAD daily precipitation input 

file is more accurate and suitable to use for the Chenny Lake watershed within ABRFC. 
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Appendix B 

SWAT (Neitsch et al., 2002) 

      SWAT (Soil Water Assessment Tool) is a continuous time nonpoint source modeling 

that operates on a daily time step at basin scale and can be considered as a watershed 

hydrological transport model which can handle almost hydrolyogocal analysis such as 

surface runoff, transmission losses, water transfer, nutrient and pesticide loading, and so 

on. The objective of this model is to predict the long-term impacts in large basins of 

management and also timing of agricultural practices within a year. It can be used to 

simulate at the basin scale water and nutrients cycle in landscapes whose dominant land 

use is agriculture. It can also help in assessing the environmental efficiency of BMP’s 

(Best Menagement Practice) and alternative management policies. 

      As AnnANGPS, daily precipitation is a critical input for SWAT ((Neitsch et al., 2002) 

and the most frequently used daily precipitation data are from rain gauge estimations. In 

chapter 4, I developed a area weighted method which allowed us to generate daily 

precipitation input file for SWAT by using NEXRAD hourly precipitation database and 

Nextool. Testfiy working has been done by people in Kansa State University. They 

compared the daily precipitation input file for SWAT from both rain gauges and 

NEXRAD on Chenny Lake watershed and found out the NEXRAD daily precipitation 

input file can be used to take place of the rain gauge precipitation data.   

 

 

 

 

 

 


