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Abstract

In this thesis, we present a reduced-complexity decision-directedjoint timing and

phase recovery method for continuous phase modulation (CPM). Using a simple linear

modulation—pulse amplitude modulation (PAM)—representation of CPM, more pop-

ularly known as the Laurent representation of CPM, we developformulations of a PAM

basedjoint timing error detector (TED) and a phase error detector (PED). We consider

the generalM -ary single-h CPM model in our developments and numerical examples.

We show by analysis and computer simulations that the PAM based error detector for-

mulations have characteristics similar to theconventional(i.e., non-PAM) formulations

and they render reliable performance when applied to specific CPM examples; in fact,

we show the error detectors are able to perform close to the theoretical limit given by

the modified Cramer-Rao bound (MCRB) and able to provide a bit errorrate (BER)

close to the theoretical value. Also, we investigate the false lock problem inM -ary

CPMs and are able to obtain much improved performance over conventional CPM de-

tectors with our PAM based method. Furthermore, the PAM based receivers perform

well in the presence of a large frequency offset (on the orderof the symbol rate) and

are, in general, much more resistant to small carrier frequency variations compared to

conventional CPM receivers. We use an existing PAM based frequency difference de-

tector (FDD) for a large carrier frequency recovery. As such, the proposed method of

combining the error detectors (FDD, TED and PED) provides important synchroniza-

tion components forjointly recovering the respective signal attribute offsets (i.e, carrier

frequency, symbol timing and carrier phase) for reduced-complexity PAM based CPM

receivers, which have been missing up to this point.
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Chapter 1

Introduction

Continuous phase modulation (CPM) [1], as the name suggests, is a type of digi-

tal phase modulation where the phase change is done continuously instead of abruptly

(viz. Quadrature Phase Shift Keying or QPSK) over time in order to reduce out of band

power requirement. It is a jointly power and bandwidth efficient digital modulation

scheme. In long range telemetry applications, its constant-envelope nature is bene-

ficial as it allows simple (inexpensive) transmitters and high efficiency in converting

source power into radiated power. In other power-limited (i.e. battery powered) mo-

bile applications such as Global System for Mobile (GSM), this feature is also critical.

The CPM transmitters are simple to build because the analog power amplifiers can be

made to work in thesaturationzone all the time thereby discarding the need for any

complex adaptive gain compensations. However, since the modulation itself is non-

linear in nature, its receivers are often complex and its deployment beyond the family

of minimum-shift keying (MSK)-type versions has been limited. Also, the nonlinear

nature of the modulation makes synchronization more difficult.

The most popular method of dealing with the nonlinearity of CPM has been to “lin-

earize” it with a pulse amplitude modulation (PAM) representation. This method of

1
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Figure 1.1. Overview of CPM receiver synchronization related research
work.

“linearizing” CPM was first proposed for binary CPMs in the widely known paper by

Laurent [2]. This method has since been extended toM -ary single-h CPM [3], M -

ary multi-h CPM [4], and cases such as integer modulation index [5], data-dependent

pulses [6] etc. This linearization of CPM made way for the design of reduced-complexity

detectors [7–9], carrier phase recovery [8] and carrier frequency recovery [10].

The problems of symbol timing and carrier phase recovery forCPM have received

persistant attention over the years. As we can see from Figure.1.1the following related

works in CPM are of importance: In [11], a novel NDA timing recovery scheme was

developed which was slow in nature but free from any false lock problems. In [12],

another decision-directed (DD) joint phase and timing recovery scheme was developed

which was much faster than the one based on NDA recovery but suffers from the false

2



lock problem. Both these algorithms used theconventionalCPM models. In [13], a

joint time and phase synchronization scheme was proposed based on nonorthogonal

exponential expansions and Kalman filtering. None of these previous studies for CPM

timing and phase recovery were based on the reduced-complexity PAM representation

of CPM.

The PAM representation was applied to timing recovery in [14], but only for the

special case of MSK-type signals, not for CPM in general. The algorithm for reduced-

complexity PAM based phase recovery was first presented in [8] but without the consid-

eration of any non-synchronized symbol timing clock. In [12] frequency detectors for

the PAM representation of CPM were discussed but no symbol timing and carrier phase

offsets were taken into consideration. An interesting similarity of all these previous

studies involving the PAM representation of CPM is that they are not comprehensive in

the following two ways:

1. They did not consider the case of PAM based reduced-complexity joint timing

and phase recovery for CPMs.

2. They did not present any concrete observations on the performance of timing

or phase recovery algorithms under a large carrier frequency shift which is a

common problem in any long range telemetry applications.

In this thesis, we first attempt to unify all the previous workdone on the PAM represen-

tation of CPM to solve the problem ofjoint symbol timing and carrier phase recovery

without any offset in carrier frequency. Next, we cover the most general case ofjoint

timing and phase recovery for the PAM based model under a large carrier frequency

offset. This necessitates a non-data-aided (NDA) carrier frequency recovery [10] be-

fore timing and phase recovery can be attempted. We derive the formulation for a PAM

based timing error detector (TED) and use the existing phaseerror detector (PED) and

3



frequency difference detector (FDD) formulations in orderto present a comprehensive

evaluation of their performance against theirconventionalCPM counterparts in terms

of the error tracking efficiency and the bit error probability. The proposed decision-

directedjoint PAM-based frequency, timing and phase recovery scheme is valid for any

CPM. The PAM-based TED, PED and FDD can have different arrangements of the

front-end matched filters (MFs). We use common binary andM -ary single-h CPMs as

case studies for the proposed approach although this can be easily extended to the more

general case ofM -ary multi-h PAM based CPM receivers.

Furthermore, we expand on the work done in [9] into reduced-complexity nonco-

herent detection of our proposed PAM based receivers for CPM as this is very useful

when the carrier frequency offset is large making coherent detection difficult.

Finally, we revisit the serious problem of false locks that is often suffered byM -ary

partial-response CPMs. In [11], a NDA false lock recovery wasdescribed. Although,

this eliminates the false lock problem, but it is very slow inacquiring the lock and

adds extra noise to the system. We propose an easier and faster false lock recovery

solution forM -ary CPMs. We show by simulations that a PAM based noncoherent

TED with a single pulse is most suitable for accurately determining the timing lock. As

the number of PAM components in the TED increases, its lock detection capability goes

down making the probability of false locks higher. We also observe that a small amount

of frequency offset is helpful for both conventional and PAMbased CPM systems to

reduce the possibility of false lock significantly. A comparative study on the false

lock problem involving a PAM based CPM and its corresponding conventional form is

presented in Chapter6 to demonstrate the effectiveness of the solution.

4



Chapter 2

Signal Model

2.1 Conventional CPM Model

The conventional CPM signal model is given in [1]. It has a complex envelope of

the form

s(t; α) ,

√

Es

Ts

exp {jψ(t; α)} (2.1)

whereEs is the symbol energy andTs is the symbol duration. The phase of the signal

is given by

ψ(t; α) , 2π
∑

i

αihiq(t− iTs) (2.2)

whereα , {αi} is a sequence ofM -ary data symbols carryingm = log2(M) bits and

{hi}
Nh−1
i=0 is a set ofNh modulation indexes. The underlined subscript notation in (2.2)

is defined as modulo-Nh, i.e. i , i modNh. WhenNh = 1 we havesingle-h CPM,

which is the most common case. WhenNh ≥ 1 we have the less-commonmulti-h

CPM case. Henceforth, we will consider only the single-h case and all our examples

in Chapter6 are based on single-h CPMs. We assume thath is a rational number,

i.e.,h = k
p
, with k andp mutually prime integers. We write the phaseψ(t; α) for the

5



single-h case as

ψ(t; α) , 2πh
∑

i

αiq(t− iTs). (2.3)

Thephase responseq(t) is obtained by integrating thefrequency pulsef(t) over a time

duration ofL symbol times. Before integration,f(t) is normalized to have an area of

1/2, irrespective of the pulse shape used. Therefore,q(t) can be defined as

q(t)=































0, t < 0
∫ t

0

f(τ)dτ, 0 ≤ t ≤ LTs.

1
2
, t ≥ LTs

,

WhenL = 1 the signal isfull-responseand whenL > 1 the signal ispartial-response.

Some common pulse shapes are length-LTs rectangular (LREC), length-LTs raised-

cosine (LRC), and Gaussian, which are all defined in [15, p. 119]. Using the fact that

h = k
p

andq(t) = 1
2

for t ≥ LTs, the phaseψ(t; α) in (2.3) can be further decomposed

into two parts as

ψ(t; α) = η(t; cn) + φn−L, nTs ≤ t < (n+ 1)Ts, (2.4)

where

η(t; cn) , 2πh
n

∑

i=n−L+1

αiq(t− iTs),

cn , [αn−L+1, · · · , αn−1, αn], (2.5)

and

φn−L , πh
n−L
∑

i=0

αi mod2π. (2.6)

6



In the above equations,cn is thecorrelative state vector, φn−L is thephase state, and

n is thecurrent symbol index. For rational modulation indexes, the phase states are

drawn from afinite alphabet ofp points evenly distributed around the unit circle when

k is even and2p points whenk is odd:

φn−L =















π
p

[

k
∑n−L

−∞ αi

]

mod p
, (evenk)

π
p

[

k
∑n−L

−∞ αi

]

mod 2p
, (oddk)

,

Therefore, the signal in (2.4) can be represented by a phase trellis ofNS = pML−1

states for evenk andNS = 2pML−1 for oddk. Each branch is associated with a unique

value of thebranch vector[φn−L, cn].

2.2 PAM Based CPM model

In his paper [2], Laurent showed that the right-hand side of (2.1) can be represented

as a superposition of data-modulated pulses for the specialcase of binary (M = 2)

single-hCPM with non-integer modulation index. This has been furtherextended to the

cases mentioned in Chapter1. For our development, we restrict ourselves to the cases

considered in [2, 3] although it can be extended to cases described in [4–6]. Using the

PAM based model forM -ary single-h CPM, the right-hand side of (2.1) can beexactly

represented as [3]

s(t; α) =

√

Es

Ts

N−1
∑

k=0

∑

i

bk,igk(t− iTs) (2.7)

where the number of PAM components isN = 2P (L−1)(M − 1) andP = log2(M)

when the alphabet sizeM is an integer power of2. The pseudo-symbols{bk,i}
N−1
k=0

and the pulsesgk(t) can be obtained by multiplyingP binary PAM waveforms, each of
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which has the form

sb(t; α) =

Q−1
∑

k=0

∑

i

ak,ick(t− iTs) (2.8)

where the set ofQ signal pulsesck(t) can be found from the phase response of the CPM

scheme. More detailed definitions of the pseudo-symbols canbe found in [2, 3] for

binary andM -ary cases with general multi-h cases described in [4]. The important fact

to note about the pseudo-symbols is that the nonlinearity ofconventional CPM is now

isolated in the pseudo-symbols. Also, the important characteristics of the PAM signal

pulses{gk(t)}
N−1
k=0 are that they vary greatly in amplitude and in duration, having the

total signal energy unevenly distributed among them. Theirdefinitions can be found

in [2–4] for the binary,M -ary, and multi-h cases. In general, thek-th pulse has a

duration ofDk symbol times, whereDk is an integer in the range1 ≤ Dk ≤ L + 1.

The strongest energy pulse has the longest duration. Following the definition of the

pseudo-symbols, the phase stateφi−L can be factored out ofbk,i, leaving a term that is

a function of the correlative state vectorci, i.e.

s(t; α) =

√

Es

Ts

∑

i

ejφi−L

N−1
∑

k=0

bk(ci)gk(t− iTs). (2.9)

Equation (2.9) emphasizes thePAM complexity reduction principle, which has been

used to formulate reduced-complexity detectors [7]. The complexity reduction is done

in two ways. First, the facts that the pulses with the largestamplitudes also have the

longest durations (i.e. the most energy), and that there areonly a few such pulses [2,3]

are taken into consideration. The longest duration pulse indexes are grouped together in

the subsetK, whereK ⊆ {0, 1, · · · , N−1} and has|K| elements. The reduced number

of pulses are now used for the matched filter (MF) bank and the synchronization error

detectors (TED, PED and FDD).
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The second complexity-reduction step is to shorten the length of the correlative state

vectors, which has the net effect of reducing the number of trellis states. It is observed

that, with the remaining pseudo-symbols{bk(ci)}k∈K, it is still possible to factor out

additional data symbols, starting withαi−L+1, whichshortensthe correlative state vec-

tor and thereby reduces the number of trellis states in the Viterbi based detector [7].

The full correlative state vectorcn in (2.5) containsL elements, whereas the shortened

versionc′n contains onlyL′ ≤ L elements. The{αi}
n−L′

i=n−L+1 elements that are removed

from c
′
n areabsorbedinto the phase stateφn−L′ . The value ofL′ is determined by the

choice ofK. Usually the duration of theshortest PAM pulseis used to fix the value of

K. Although there are some intricate inner-workings involved, it was shown in [9] that

L′ can be identified via the relation

L′=















L−Dmin+1, Dmin < L+ 1

1, Dmin = L+ 1

, whereDmin , min
k∈K

Dk.

Therefore, this two fold concept outlined above is used to formulate reduced-complexity

PAM based detectors and are used in conjuction with decision-directed symbol detec-

tion, timing and phase recovery and NDA frequency recovery discussed in the next

chapter.
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Chapter 3

PAM Based Detection and Signal

Recovery

In this chapter, we first present coherent PAM based symbol detection and timing

recovery using the complexity-reduction concepts developed in the previous chapter.

Next, we present, in brief, the formulations for noncoherent detection derived in [16].

Finally, we illustrate the formulations for PAM based methods of phase recovery and

frequency recovery which are originally derived in detail in [8] and in [10] respectively.

In the subsequent chapters, we will use these algorithms to find a way to “fuse” them

together to find formulations forjoint frequency, phase and timing recovery.

To present the algorithms, we fix a generic signal model that is observed at the

receiver as

r(t) = s(t− τ ; α)e(jθ+j2πνt) + w(t) (3.1)

wherew(t) is complex-valued additive white Gaussian noise (AWGN) withzero mean

and power spectral densityN0. The variablesα, τ , θ, andν represent the data symbols,

the symbol timing offset, the carrier/channel phase offsetand the carrier frequency
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offset respectively. In practice, all of these variables are unknown to the receiver and

must be recovered. In order to simplify the analysis of phase, timing and frequency

recovery, we will make several assumptions without disturbing the generality of (3.1).

3.1 Receiver with Explicit Recovery of Symbol Sequence, Symbol

Timing and Carrier/Channel Phase

We follow maximum likelihood methods to recover all the signal attributes men-

tioned. The idea is to first detect the symbol sequence, and then use this symbol se-

quence to direct the PLL to lock on to the correct timing and phase. For illustration

purpose, however, while describing recovery of one attribute we will assume that all

the other attributes (including the carrier frequency offset in (3.1)) are known. We

will discuss about the frequency recovery in3.3 as it is recovered in a non-data-aided

fashion.

3.1.1 Sequence Detection

The symbol sequenceα is recovered using maximum likelihood sequence detection

(MLSD). Following the assumptions stated before the received signal takes the form

r(t) = s(t; α) + w(t). (3.2)

Here, we carry out the analysis for a known timing, phase and frequency offset. Ac-

cording to [1], the symbol sequence is determined by maximizing the log-likelihood

function for the hypothesized symbol sequenceα̃ over the observation interval0 ≤

t ≤ L0Ts

Λ(r|α̃) = Re

{
∫ L0Ts

0

r(t)s∗(t; α̃) dt

}

(3.3)
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where(·)∗ denotes the complex conjugate. UsingK from (2.9) in (3.3), results in the

form

Λ(r|α̃) ≈ Re

{

∫ L0Ts

0

r(t)
∑

i

e−jφ̃i−L′

∑

k∈K

b∗k(c̃
′
i)gk(t− iTs)dt

}

.

Since integration and summation are both linear operations, they are interchangable;

this results in

Λ(r|α̃) ≈

L0−1
∑

i

Re

{

e−jφ̃i−L′

∫ L0Ts

0

r(t)
∑

k∈K

b∗k(c̃
′
i)gk(t− iTs)dt

}

.

This can be written in a compact form as

Λ(r|α̃) ≈

L0−1
∑

i=0

Re
{

yi(c̃
′
i, φ̃i−L′)

}

(3.4)

Equation (3.4) can be maximized efficiently using the Viterbi Algorithm (VA), e.g. [1,

Ch. 7]. Themetric incrementthrough each step of the VA isyi(c̃
′
i, θ̃i−L′) and has the

following form:

yi(c̃
′
i, φ̃i−L′) , e−jφ̃i−L′

∑

k∈K

b∗k(c̃
′
i)xk,i. (3.5)

The time-reversed PAM pulses{gk(−t)}k∈K serve as the impulse responses of the MF

bank [7, 9]. The outputs can be obtained by correlating the MFimpulse response with

the received signal

xk,i ,

∫ (i+Dk)Ts

iTs

r(t)gk(t− iTs) dt (3.6)

The matched filter output is sampled at variable instants oft = (i + Dk)Ts. The

implementation of the MF bank requires a delay ofLTs in order to make the longest

impulse response causal. Let us take a moment to observe someof the key attributes

of (3.5) and (3.6):
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1. The interval of integration in (3.6) spansmultiplesymbol intervals to account for

the variable lengths of the MF pulses.

2. For the current time stepn within the VA, the metric incrementyn(c̃′n, φ̃n−L′)

produces a branch metric update of

λ(n) = λ(n− 1) + yn(c̃′n, φ̃n−L′) (3.7)

Also, yn a function only of the currentshortenedbranch vector[c̃′n, φ̃n−L′ ] and

therefore requires a trellis of onlypML′−1 or2pML′−1 states depending on whether

k in the modulation indexh is even or odd respectively. This is the state com-

plexity reduction principle discussed in Chapter2.

3.1.2 Timing Recovery and PAM Based Timing Error Detector Implementation

We now look into the data-aided recovery ofτ , in which we assume thatα is exactly

known. This is one of the major contributions of this thesis,as shown in Figure1.1.

These results also appear in [17]. The received signal is of the form

r(t) = s(t− τ ; α) + w(t). (3.8)

Using the same conditional likelihood function defintions in Section3.1.1, it can be

easily shown that that the likelihood function for a hypothesized timing valuẽτ is

Λ(r|τ̃) = Re

{
∫ L0Ts

0

r(t)s∗(t− τ̃ ; α) dt

}

. (3.9)
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The maximum ofΛ(r|τ̃) with respect tõτ is obtained by setting the partial derivative

of (3.9) with respect tõτ equal to zero,

Re

{

−

∫ L0Ts

0

r(t)ṡ∗(t− τ̃ ; α) dt

}

= 0 (3.10)

whereṡ(t) is the derivative ofs(t) with respect to timet, which leads to differentiat-

ing (3.5). Thus, the TED formulation parallels (3.4)–(3.6) yielding

L0−1
∑

i=0

Re{ẏi(ci, φi−L, τ̃)} = 0 (3.11)

where the TED incremenṫyi(ci, φi−L, τ̃) is given by

ẏi(ci, θi−L, τ̃) =
∑

k∈KTED

b∗k,iẋk,i(τ̃) (3.12)

This TED increment could also be formulated with the shortened valueL′, i.e. ẏi(c
′
i, φi−L′ , τ̃).

ẋk,i(t) is the output of the received signal correlated with the timederivative of the

matched filter and can be shown as

ẋk,i(τ̃) ,

∫ τ+(i+Dk)Ts

τ+iTs

r(t)ġk(t− τ̃ − iTs) dt. (3.13)

A discrete-time differentiator is used to implementẋk,i(τ̃), which can be found in [18].

Some important observations made in formulating the solution to (3.11) are listed be-

low:

1. Decision-directed timing recovery can be practically realized if the decisions

from the VA are applied to direct the TED instead of the actualdata symbols.

2. Satisfactory tracking performance can be achieved by using a different number of
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PAM components (usually less) in the TED,KTED, than what is used for sequence

detection,K. This reduces the number of filters needed to support the TED.

The solution to (3.11) (i.e., the value of̃τ that causes the left-hand side of the equa-

tions to vanish) is obtained in an adaptive/iterative manner. Equation (3.11) assumes

true data sequence{· · · , αn−2, αn−1, αn} is available, which is not the case in prac-

tice. As we mentioned before, the PLL is driven by the sequence of tentative decisions

within the VA. These decisions become more reliable the deeper we trace back along

the trellis. In view of these facts, the following PAM based timing error signal can be

formulated as

e[n−D] = Re
{

ẏn−D(ĉn−D, θ̂n−L−D, τ̂ [n−D])
}

(3.14)

whereD is the traceback depth (delay) for computing the error andĉn−D andφ̂n−L−D

are taken from the best survivor path history in the VA. The PAM based timing error

signal in (3.14) has features in common with the one derived in [12] using thecon-

ventional CPM model in (2.1). A largeD could result in longer delays in the timing

recovery loop, but our observation in Chapter6, which parallels the finding in [12], is

thatD = 1 produces satisfactory results.

Figure3.1 shows a discrete-time implementation of the sequence detection opera-

tion in (3.4) and the TED operation in (3.14). The discrete-time received signalr[m] is

sampled at a rate ofN samples per symbol. A sample interpolator (See AppendixB.1)

is used to synchronize the received signal based on the most recent timing estimate,

τ̂ [n−D]. The synchronized samples are fed to the MF bank, the outputsof which form

the values in the set{xk,n}k∈K. The MF outputs are sampled at the symbol rate at the

proper timing instant, and these MF samples are used to update the branch metrices

within the VA in (3.4). In addition to the samples of{xk,n}k∈K that are used in the VA,
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Figure 3.1. Discrete-time implementation of the PAM-based decision-
directed timing recovery system for CPM.

anearly sample of each{xk,n}k∈KTED
is taken, as well as alate sample. Thedifference

between the early and late samples is used to approximate thederivativeẋk,n(t). This

procedure is detailed further in [12]. Once the error signale[n−D] is formed, it is fed

to a phase-locked loop (PLL), which in turn outputs the timing estimatêτ [n−D].

3.1.3 Phase Recovery and PAM Based Phase Error Detector Implementation

The PAM based maximum likelihood phase recovery was derivedin [8], assuming

perfect knowledge of symbol timing. In this section we derive the same assuming that

the symbol sequences are known or recovered according to3.1.1. For the purpose of

easy illustration we ignore the symbol timing and the frequency offset in (3.1), so that

the signal model at the receiver becomes

r(t) = s(t; α)ejθ + w(t). (3.15)

The conditional likelihood formulation for a hypothesizedvalue ofθ̃ can be shown as

Λ(r|θ̃) = Re

{
∫ L0Ts

0

r(t)s∗(t; α)e−jθ̃ dt

}

. (3.16)
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Substituting (2.7) of s(t; α) into (3.16) the likelihood function may be expressed as

Λ(r|θ̃) = Re

{

e−jθ̃

N−1
∑

k=0

∑

i

b∗k,ixk,i

}

(3.17)

with the PED MF outputsxk,i defined as

xk,i ,

∫ (i+Dk)Ts

iTs

r(t)gk(t− iTs) dt (3.18)

The maximum ofΛ(r|θ̃) is found by setting the partial derivative of (3.17) with respect

to θ̃ equal to zero. Thus, the phase error detector formulation can be expressed as

L0−1
∑

i=0

Im
{

zi(ci, φi−L)e−jθ̃
}

= 0 (3.19)

where the PED incrementzi(ci, φi−L)e−jθ̃ is

zi(ci, φi−L)e−jθ̃ = e−jθ̃
∑

k∈KPED

b∗k,ixk,i (3.20)

As before, some important observations made for (3.19) are given below:

1. From an implementaion perspective, the decision-directed phase recovery is per-

formed by selecting the information sequence from the best survivor path of VA

at each time step according to method described in Section3.1.1, and then using

those decisions to drive the PED.

2. To achieve satisfactory tracking performance, the number of PAM components

can be less in PED than what is used for sequence detection. This reduces

the number of filters required for PED. There is no requirement for derivative

matched filters, so the same or a subset of these filters, used for sequence detec-
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Figure 3.2. Discrete-time implementation of the PAM-based decision-
directed phase recovery system for CPM.

tion purpose can be used for phase recovery.

As with the TED implementation, the maximization of (3.19) is accomplished by an

iterative search through a gradient algorithm. As the formula shows, (3.11) assumes

the knowledge of the true data in a data-aided environment{· · · , αn−2, αn−1, αn}. A

more practical substitute for the true data sequence is the sequence of tentative deci-

sions within the VA, which become more reliable as we trace back along the trellis.

Therefore, the formulation for the PAM based PED error can beshown as

e[n−D] = Im
{

zn−D(ĉn−D, φ̂n−L−D)e−jθ̂[n−D]
}

(3.21)

whereD is the traceback depth, along the best survivor, necessary to make decisions

which are reliable enough to direct the PLL.ĉn−D andφ̂n−L−D are taken from the path

history of the best survivor in the VA.

Figure3.2 shows a discrete-time implementation of the sequence detection oper-

ation in (3.4) and PED operation in (3.21). The discrete-time received signalr[m] is

sampled at a rate ofN samples per symbol. Assuming the samples are time synchro-

nized, they are fed to the MF bank, the outputs of which form the values in the set

{xk,n}k∈K. The MF outputs are sampled at the symbol rate at the perfect timing instant,
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and these MF samples are used to update the branch metrics within the VA, i.e. (3.4).

Once the error signale[n − D] is formed through the PED, it is fed to a phase-locked

loop (PLL), consisting of a loop filter and a VCO that converts the error signal voltage

to a more suitable phase estimateθ̂[n−D].

3.2 Receiver without Explicit Recovery of Phase: Noncoherent

Detection

When the carrier phaseθ(t) is unknown but slowly varying, i.e., it can be assumed

to be constant over several symbol times, then we can detect the information symbols

and the symbol timing offset by noncoherent methods. In sucha formulation, the phase

recovery is implicit and does not require to be recovered seperately. The noncoherent

approach was used in [16]. To obtain the formulation for noncoherent detection we

assume the received signal has no carrier frequency offset and has the form

r(t) = s(t− τ ; α)ejθ + w(t) (3.22)

The metric increment for the VA in (3.5) changes to accomodate thephase referenceas

yNC,i(c̃
′
i, φi−L′ , τ̃) = Q∗

i (S̃i)yi(c̃
′
i, φi−L′ , τ̃). (3.23)

whereQ∗
i (·) is defined as the phase reference and can be updated after eachsymbol

time indexi via the recursion

Qi+1(Ẽi) = aQi(S̃i) + (1 − a)yi(c̃
′
i, θ̃i, τ̃). (3.24)
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where0 ≤ a < 1 is the forgetting factor,̃Si is the starting state and̃Ei is the end-

ing state for each path in the VA. Usually, the value ofa is chosen close to1 as the

BER is observed to be affected more as the value ofa goes down. In our simulations,

we selecta = 0.875. In the recursion in the VA, first, the cumulative metric update

using the branch metric increment (3.23) is performed after each time index to obtain

the survivors at each ending state. Next, the phase reference is updated in (3.24) for

each ending statẽEi. Finally, the TED increment for noncoherent timing recovery is

obtained by usingQi(S̃i) andyi(c̃
′
i, θ̃i, τ) from each surviving branch at each ending

state

ẏNC,i(c
′
i, φi−L′ , τ̃) = Q∗

i (S̃i)ẏi(c
′
i, φi−L′ , τ̃). (3.25)

3.3 Frequency Recovery and PAM Based Frequency Error

Detector Implementation

We defineν as the frequency of the carrier. The maximum likelihood estimate of

ν as mentioned earlier was first derived in [10]. To suit our purpose, we explain here

only the important steps leading to the final expression. To do that, first, we model the

received signal as in (3.1). Also, ν, θ, τ andα, all are taken as unknown parameters.

Since this frequency recovery algorithm is NDA, it does not require knowledge of in-

formation, symbol timing and carrier phase. Using (2.7), the signal (3.1) observed at

the receiver can be represented in the form

r(t) = ej(2πνt+θ)

√

Es

Ts

N−1
∑

k=0

∑

i

bk,igk(t− τ − iTs) + w(t) (3.26)
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The log-likelihood function for the channel output observed over an interval0 ≤ t ≤

L0Ts is described in [10] as a joint likelihood function that has the form

Λ(ν̃, θ̃, τ̃ , α̃) = Re

{

e−jθ̃

N−1
∑

k=0

L0−1
∑

i=0

xk(iTs + τ̃)b̃∗k,i

}

(3.27)

Wherexk(t) is the response tor(t)ej2πν̃t of a filter matched togk(t) and its expression

can be found in [10]. So, the marginal likelihood functionΛ(ν̃) is found by averaging

out the other parameters. We ignore the the intricate details of the derivation and focus

on the final expression which is given as

Λ(ν̃) =

∫ L0Ts

0

[

N−1
∑

k=0

|xk(t)|
2

]

dt (3.28)

To maximizeΛ(ν̃), we set the derivative ofΛ(ν̃) with respect tõν equal to zero and

obtain the formulation for the frequency difference detector (FDD) as

T

2L0
∑

l=1

N−1
∑

k=0

Im

{

xk

(

lTs

2
+ t0

)

y∗k

(

lTs

2
+ t0

)}

= 0 (3.29)

where the sampling phaset0 is chosen arbitrarily in the interval0 ≤ t ≤ Ts/2 andyk(t)

is the response tor(t)e−j2πν̃t of a filter matched tȯgk(−t) and has a lengthy expression

defined in [10].

The solution to (3.29) is carried out by an iterative search to find a valueν̃ as fol-

lows: first, we collect both(n+1)-th andn-th terms into the errore[n] so that,̃ν(n) can

be updated everyTs seconds instead ofTs/2. Second, the number of matched filters

N is limited to a value|KFDD| ≤ N to reduce the computing load as much as possible.
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Figure 3.3. Discrete-time implementation of the PAM-based non-data-
aided frequency recovery system for CPM.

Considering these factors, we can summarize the error function as

e[n] = Γ
∑

k∈KFDD

Im{xk(nTs − Ts/2 + t0)y
∗
k(nTs − Ts/2 + t0)

+ xk(nTs + t0)y
∗
k(nTs + t0)}

(3.30)

whereΓ is a normalizing constant, and its value is given asΓ , EsT
2
s /4.

Figure3.3 shows a discrete-time implementation of the FDD operation in (3.30).

Here, the blocks labeled MF and DMF represent matched filter and derivative matched

filter, respectively. The received waveform is first fed to ananti-aliasing filter (not

shown in the figure) and then sampled at a rate1/T , N/Ts. The samplesr[m] (where

m , nT ) are counter-rotated by2πν̂[m] and are fed to the MF and DMF. Filter outputs

are decimated to1/Ts before entering the error generator. The loop filter performs

the digital integration on the error and an estimate ofν̃[n] is generated. The VCO

generates the sequencee−j2πν̂[m] according to the method given in AppendixB.2. It is

seen, however, from simulation results that only one pair ofMF and DMF is sufficient

to produce satisfactory result. This also reduces the computation load on the detector.
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Chapter 4

Performance Analysis and Bounds for

Tracking Error Variances

In this chapter, we briefly discuss several performance lower bounds, analyze sev-

eral criteria for the PLL considerations, and develop S-curves that play important roles

in determining signal acquisition and tracking behavior ofthe error detectors. All the

formulations we discuss here already exist in the literature. We find it relevant to spare

a chapter for this because we use these to evaluate the performance of the proposed

joint carrier frequeny, symbol timing and carrier phase synchronizers discussed later.

4.1 Modified Cramer-Rao Bound for CPM

We use the modified Cramer-Rao bound (MCRB) [19] to establish a lower bound

on the degree of accuracy to whichτ , θ andν can be estimated. To find the MCRB for

timing, We follow the approach in [20, Ch. 2] and take the complex-baseband signal
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model with channel delayτ , carrier/channel phaseθ and carrier frequencyν as

s(t; α, τ, θ, ν) =

√

Es

Ts

exp

{

j2πh
∑

i

αiq(t− τ − iTs)

}

exp {j2πνt+ jθ} . (4.1)

The MCRB with respect toτ for a baseband signal is defined as [20]

MCRB(τ) ,
N0/2

Euτ

{

∫ T0

0

∣

∣

∣

∣

∂s(t; τ,uτ)

∂τ

∣

∣

∣

∣

2

dt

}

whereuτ = {α, θ, ν} contains all the unwanted parameters that need to be averaged

out. T0 , L0Ts is the length of the observation interval and assume thatL0 is an

integer. After taking the partial derivative with respect to τ of (4.1), we obtain the

following integral

Tsh
2

∫ T0

0

∑

i

f 2(t− τ − iTs).

The expression for the energy of the frequency pulse over thetotal pulse length in time

L0Ts can be computed as

Cf , Ts

∫ LTs

0

f 2(t)dt (4.2)

The final expression for the MCRB (normalized to the symbol rate) is

1

T 2
s

× MCRB(τ) =
1

8π2h2CαCfL0

×
1

Es/N0

(4.3)

whereCα , E{α2
n} = (M2 − 1)/3 for uncorrelatedM -ary data symbols. The obser-

vation intevalL0 is related to the equivalent normalized noise bandwidth asBτTs =

1/2L0. For the special case ofLREC we haveCf = CLREC , 1/(4L), and for the

special case ofLRC we haveCf = CLRC , 3/(8L). For all other frequency pulse

shapes, (4.2) can be computed analytically or numerically. In Chapter6, we use the
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MCRB(τ ) to evaluate computer simulation results for thenormalized timing error vari-

ance, which is defined as

1

T 2
s

× σ2
τ ,

1

T 2
s

× Var{τ̂ [n] − τ} . (4.4)

The MCRB with respect toθ for a baseband signal is defined in [20] as

MCRB(θ) ,
N0/2

Euθ

{

∫ T0

0

∣

∣

∣

∣

∂s(t; θ,uθ)

∂θ

∣

∣

∣

∣

2

dt

} . (4.5)

whereuθ = {α, τ, ν} contains all the unwanted parameters that need to be averaged

out. After going through the derivation using (4.1) as the signal model the expression

for the denominator yields

Euθ

{

∫ T0

0

∣

∣

∣

∣

∂s(t; θ,uθ)

∂θ

∣

∣

∣

∣

2

dt

}

= EsL0. (4.6)

Inserting (4.6) into (4.5) The final expression for MCRB forθ can be expressed as

MCRB(θ) =
1

2L0

×
1

Es/N0

(4.7)

where the observation intevalL0 is related to the equivalent normalized noise band-

width asBθTs = 1/2L0. We use the MCRB(θ) to evaluate computer simulation results

for thephase error variance, which is defined as

σ2
θ , Var

{

θ̂[n] − θ
}

. (4.8)
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The MCRB with respect toν for a baseband signal is defined in [20] as

MCRB(ν) ,
N0/2

Euν

{

∫ T0

0

∣

∣

∣

∣

∂s(t; ν,uν)

∂ν

∣

∣

∣

∣

2

dt

} (4.9)

where the expectation is taken overuν = {α, τ, θ} that contains all the unwanted

parameters. After going through the derivation using (4.1) as the signal model the

expression for the denominator yields

Euν

{

∫ T0

0

∣

∣

∣

∣

∂s(t; ν,uν)

∂ν

∣

∣

∣

∣

2

dt

}

=
3Ts

8π2EsL3
0T

3
s

. (4.10)

Inserting (4.10) into (4.9) yields the final expression for MCRB forν in terms of the

equivalent noise bandwidthBνTs = 1/2L0 as

T 2
s × MCRB(ν) =

3

2π2L3
0

×
1

Es/N0

. (4.11)

We use the MCRB(ν) to evaluate computer simulation results for thenormalized fre-

quency error variance, which is defined as

T 2
s × σ2

ν , T 2
s × Var{ν̂[n] − ν} . (4.12)

4.2 PLL Considerations

The PLL is an essential part of each of the error detectors we discussed so far. The

performance of the PLL depends on the loop filter bandwidth, normalized with respect

to the symbol rate, which controls the step size by which it increments or decrements

the error in order to lock on to the correct value. During lockacquisition, the loop band-
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width of the PLL is set relatively high and while tracking, itis set to a lower value. PLLs

can have several orders. A first-order PLL is easy to implement but performs worse un-

der frequency offsets than a seccond-order PLL. We use the relationship between the

observation lengthL0 of a feedforward scheme and thenormalized loop bandwidth

BTs of a feedback scheme,L0 = 1
2BTs

, to explain the PLL workings. However, this

relationship is valid for only a first-order PLL [12].

4.2.1 PLL for TED

We use a standard first-order PLL implementation for timing recovery; the raw

TED outputeτ [n] is refined into a more suitable timing estimateτ̂ [n] via the update

τ̂ [n] , τ̂ [n − 1] + γτeτ [n]. This process is recursive and is performed after every

symbol indexn. γτ , 4Bτ Ts

kpτ
is called the PLLstep size. kpτ is the positive slope of

the S-curvecharacteristic of the TED at its zero crossing points and is explained in

Section4.3.1.

4.2.2 PLL for PED

In all the simulations for carrier phase recovery, we have used first and second order

PLL for PEDs depending on the presence of carrier frequency offset in the received

signal. First-order PLLs can be used in the presence of very little ( 10−4Ts) or no

frequency offset. When implemented, a standard first-order PLL converts the raw PED

outputeθ[n] into a phase estimatêθ[n] through the updatêθ[n] , θ̂[n − 1] + γθeθ[n]

which is performed after each symbol indexn. Thestep sizefor phase PLL isγθ ,

4BθTs

kpθ
where the constantkpθ is obtained from theS-curvecharacteristic of the PED as

per Section4.3.2. The second-order PLL is used when there is a relatively large amount

of phase jitter caused by the Doppler shift or local osclillator instabilities resulting in
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a carrier frequency shift in the system, and, can be implemented as methods described

in [18]. Thus, the new phase estimate is obtained asθ̂[n] , θ̂[n−1]+γθξ[n] whereξ[n]

is the update from the first order loop filter obtained from thephase erroreθ[n] asξ[n] =

ξ[n−1]+(K1+K2)kpθeθ[n]−K2kpθeθ[n−1]. Here,K1 andK2 are the proportional

and integration constants repectively and their values canbe found out from [18, p.738,

Equation C.61], with the damping coefficient asζ = 1√
2
. Interesting to note here is that

the relationship between the observation lengthL0 and thenormalized loop bandwidth

BθTs is not valid in this case and the tracking accuracy has to be evaluated based on the

BER instead of MCRB(θ).

4.2.3 PLL for FDD

In this case, a first-order PLL refines the raw FDD outputeν [n] into a more suitable

frequency estimatêν[n] via the updatêν[n] , ν̂[n− 1] + γνeν [n], performed after each

symbol index n. The PLLstep sizeis γν , 4BνTs

kpν
where the constantkpν is obtained

from theS-curvecharacteristic of the FDD.

4.3 S-Curves

S-curves are useful for characterizing the behavior of the error detectors. They are

defined as theexpected valueof the error detector output as a function of the respective

offsets (timing, phase and frequency). S-Curve charaterization of a system is two fold.

First, it gives a method of identifying the stable lock points which are the zero-crossing

positive slope points on the curve. These determine if any false lock points exist. Sec-

ond, the S-curve also determines the value ofkp, mentioned in Section4.2, as the slope

of the S-curve evaluated at an offsetδ = 0. This in turn, is used to determine the

step size for the PLL. In the following subsections we define the S-curve of each error
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detector. The analytical expressions for S-curves of the TED and the PED, assuming

known symbol sequences are briefly described in AppendixA. In the practical case of

decision-directed recovery for symbol timing and carrier phase, where the known sym-

bols in the data-aided case are replaced by the decisions taken from the VA, S-curves

for M -ary partial-response CPMs show false lock points. However,the NDA S-curve

of FDD ensures that there is no false lock.

4.3.1 S-Curve for TED

The formulation for S-curve for TED as per the definition given above can be ob-

tained as

S(δτ ) ,
√

Es/Ts · E
{

eτ [n] | δτ
}

, (4.13)

where the timing offset is defined asδτ , τ − τ̂ . eτ [n] is the error output of the TED

after every symbol indexn.

4.3.2 S-Curve for PED

The S-curve for PED is defined as theexpected valueof the PED outputeθ[n] as a

function of thephase offset, i.e.

S(δθ) ,
√

Es/Ts · E
{

eθ[n] | δθ
}

, (4.14)

where the phase offset is defined asδθ , θ − θ̂.
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4.3.3 S-Curve for FDD

The frequency S-curve is defined as theexpected valueof the FDD outputeν [n] as

a function of thenormalized frequency offset, i.e.

S(δν) ,
√

Es/Ts · E
{

eν [n] | δν
}

, (4.15)

where the normalized frequency offset is defined asδν , ν − ν̂.
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Chapter 5

PAM Receivers with Joint

Synchronization

Up to this point, we have knowledge about how the frequency, phase and timing

recovery are done separately for a CPM signal using its PAM representations. In this

chapter, we first describe ajoint carrier phase and symbol timing recovery for PAM

based CPM receivers algorithm that may be employed with any CPMformat, and with

either full or reduced state detectors. We aim to find an optimal solution in terms of

complexity reduction and error tracking performance. Their implementations, as dis-

cussed in previous chapters, are fully digital and have excellent tracking performance.

Later, we look into the same algorithms but in the presence ofa large frequency offset

(on the order of the symbol rate). In particular, we describea joint frequency, phase

and timing recovery method for PAM based CPM receivers. This is another major

contribution of this thesis as shown in Figure1.1.

In Chapter6, we present the performance of these algorithms we discussed in this

chapter with examples. Finally, we revisit the problem of false lock forM -ary partial-

response systems in Chapter7 where we propose a novel solution to the false lock
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problem in connection with the PAM based receivers algorithms we describe in this

chapter.

5.1 Joint Timing and Phase Recovery

We explored the so-called decision-directed (DD) methods of symbol timing and

carrier phase recovery in Chapter3. In this section, first, we simply simultaneously run

these two algorithms to form ajoint timing and phase recovery technique for PAM-

based CPM receivers assuming zero frequency offset in the carrier. To do that, we

consider the signal model presented in (3.1) and set the frequency offsetν = 0. The

phase and timing loop are operated separately, with the decision for the symbol directed

recovery taken from the best survivor of the Viterbi decoder. Therefore, for the received

signal with unknown symbol timing offsetτ and carrier phase offsetθ,

r(t) = s(t− τ ; α)ejθ + w(t) (5.1)

The TED formulation in3.11and the PED formulation in3.19will now change to solve

the following equations

L0−1
∑

i=0

Re
{

ẏi(ci, φi−L, τ̃)e
−jθ̃

}

= 0 (5.2)

and
L0−1
∑

i=0

Im
{

zi(ci, φi−L, τ̃)e
−jθ̃

}

= 0 (5.3)

respectively.

The following points are of importance:

1. There are assumed to be no interactions between timing andphase locked loops.
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Figure 5.1. Discrete-time implementation of PAM based joint timing and
phase recovery.

In other words, they are operated independently.

2. The number of matched filters may vary for TED and PED. Each one is also inde-

pendent of the matched filters employed for sequence detection. Conventionally,

more MFs are used for sequence detection in order to obtain reliable decisions

from the VA.

Figure5.1shows the digital implementation of the PAM receiver withjoint timing

and phase recovery. The incoming waveform is passed throughan antialiasing filter

with a bandwidth large enough not to introduce distortion inthe signal. The discrete-

time output of the filter is then sampled at a rate ofN samples per symbol. They are

then fed to a sample interpolator used to time-align the received signal. The timing

estimate is obtained from the TED error after every symbol time according tôτ [n] ,

τ̂ [n− 1] + γτeτ [n−D] with

eτ [n−D] = Re
{

ẏn−D(ĉn−D, φ̂n−L−D, τ̂ [n−D])e−jθ̂[n−D]
}

(5.4)
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The synchronized samples are also used to obtain the PED error according to (5.3).

The error obtained is used to drive the phase PLL, consistingof a loop filter and a

VCO, converting the phase error signal voltage to a suitable phase estimate according

to θ̂[n] , θ̂[n− 1] + γθeθ[n] with

eθ[n−D] = Im
{

zn−D(ĉn−D, φ̂n−L−D, τ̂ [n−D])e−jθ̂[n−D]
}

(5.5)

TheD is the delay parameter in the error signal, conveniently chosen as1.

The PLL step sizesγτ , 4Bτ Ts

kpτ
andγθ , 4BTs

kpθ
can be found from the corresponding

loop filter bandwidths of timing and phase PLL.kpτ andkpθ are the slopes at the zero-

crossings of the timing and phase S-curves respectively.

A comparative study of coherent and noncoherentjoint timing and phase recov-

ery algorithms for conventional and various suboptimal PAMreceivers is presented in

Chapter6 for binary andM -ary CPM schemes.

5.2 Joint Frequency, Timing and Phase Recovery

So far, we have not considered the effects due to oscillator instabilities and the

Doppler effect. These introduce frequency distortion in the signal which can be as

large as the symbol rate. We employ the existing PAM based nondata aided (NDA)

frequency detection algorithm discussed in Section3.3first to find an estimatẽν of the

frequency offset in the received signal. We used this frequency offset to counter-rotate

the received waveform at an angular frequency of2πν̃ before feeding the signal for

timing and phase recovery as already explained in Section5.1. In our discussion here,

we distinguish between two major cases:

1. The frequency offset is much smaller than1/Ts that occurs when a receiver is
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Figure 5.2. Discrete-time implementation of PAM based joint frequency,
timing and phase recovery.

operating in steady-state conditions. In this case, ajoint timing and frequency

recovery is possible, in which, the timing recovery is done at first and then ex-

ploited for estimating̃ν [14].

2. The frequency offset is on the order of the symbol rate1/Ts. This occurs dur-

ing initial acquisition in low-capacity digital radios, aeronautical telemetry and

satellite communication systems. In these applications, it can be reasonably as-

sumed that the data symbols, the carrier phase, and the timing information all are

unknown. Therefore, reducing the frequency error to a smallpercentage of the

symbol rate is always recommended before attempting to begin other synchro-

nizations.

Figure 5.2 shows the digital implementation of the PAM receiver withjoint fre-

quency, timing and phase recovery. We base our approach considering both coherent

and noncoherent cases discussed above in that we apply the NDA frequency recovery

algorithm discussed in Section3.3to the incoming signal to obtain a final estimateν̃ by

averaging̃ν over a number of preamble symbols whose lengths can be determined by

simulations for different CPM modulation formats. While estimating the frequency,S1
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remains closed andS2 opened. Once the average estimateν̃avg is done the FDD loop

is disconnected by openingS2. This estimatẽνavg is then used to counter-rotate the re-

ceived signal by2πν̃avg[m] and fed to thejoint timing and phase detector by closingS2.

The timing and phase estimates are then obtained according to the method described

in Section5.1. We observed that accurate timing information can be obtained even in

the presence of a moderate frequency offset (10% to 20% of the symbol rate). This is

not the case with phase recovery. Therefore, we feed the signal output from the FDD

block to noncoherent PAM based timing recovery detection discussed in Section3.2,

thus, avoiding the carrier phase recovery. A good reason forchoosing the NDA fre-

quency recovery algorithm is that it has a relatively large lock acquisition range on the

order of the symbol rate depending on the variations in CPM modulation. However,

we observe the performance of both coherent and noncoherentdetectors under Case 2

and noncoherent CPM/PAM detectors seem to perform much better than their coher-

ent counterparts. From the implementation perspective, the maximum likelihood based

FDD described in Section3.3 is used and the error signal is obtained as in (3.30). The

raw FDD outputeν [n] is refined into a suitable frequency estimateν̂[n] via the update

ν̂[n] , ν̂[n−1]+γνeν [n] which is performed after each symbol indexn. The PLLstep

sizeis γν , 4BνTs

kpν
where the constantkpν is obtained from theS-curvecharacteristic of

the FDD.

A comparative study of coherent and noncoherent joint frequency, timing and phase

recovery algorithms for conventional and various suboptimal PAM receivers is pre-

sented in Chapter6 for binary andM -ary CPM schemes.
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Chapter 6

Simulation Results

In this chapter, we present the tracking and BER performancesof CPM schemes

and their PAM based counterparts under steady-state condition over the AWGN chan-

nel. In order to compare and contrast the performance differences between the systems

described here, we do the following:

• Compare the performance variations of binary andM -ary CPM.

• Study the effects of coherent and noncoherent detection of CPM.

• Observe the important results and provide recommendationsto suitably replace

conventional CPM systems with reduced-complexity PAM basedsystems.

6.1 Joint Timing and Phase Recovery Performance of PAM Based

Receivers Under No Carrier Frequency Offsets

We now present a comprehensive comparative study of thejoint timing and phase

recovery of the existing conventional CPM receivers and our proposed PAM based

receivers of binary andM -ary CPM systems. We assume that there is no extra “jitter”

present because of the Doppler shift in the channel or the oscillator instabilities between

37



transmitter and receiver.

6.1.1 Binary GMSK: M = 2, L = 4, h = 1/2

We first discuss the binary GMSK scheme withM = 2, L = 4, h = 1/2 and

B = 1/4, which is popularly known as “Gaussian MSK” and is the modulation scheme

used for the seccond generation mobile (GSM) system, first introduced in Europe. The

optimal PAM based detector for this scheme has a16-state trellis and a bank of8

MFs/pulses. There are a number of reduced-complexity PAM based detector config-

urations that are possible based on the number of PAM pulses we choose (See Ap-

pendixC.1). We select a4-state coherent detector withL′ = 2 that uses a bank of

|K| = |KTED| = |KPED| = 2 MFs/pulses and also works for|KTED| = |KPED| = 1

pulse. We then compare its detection and tracking efficiencies to that of the conven-

tional CPM scheme. We also use noncoherent detectors with similar configurations for

conventional and PAM based CPMs for comparison. In this example, and in all the

subsequent examples in this chapter, we select the tentative decision delayD as1.

Figure 6.1 and Figure6.2 show S-curves for PAM-TED and PAM-PED for this

detector obtained by computer simulations. Analytical expressions of the S-curves are

also given in (A.1) and (A.4). The S-curves are shown properly marked on the figure

for various PAM pulses. The curves indicate that the TED and the PED lock onto

the correct timing and phasing instants atδτ = 0 and atδθ = 0 respectively. The

results from computer simulations for thedecision-directedcase also conform with the

corresponding analytical (data-aided) expressions. In practice, however, thedecision-

directedcase is the intended implementation. Both analytical and decision-directed S-

curves match near the zero-crossings as shown in the figures.We note that the decision-

directed S-curve for the TED is periodic with the periodTs, and therefore, has stable
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Figure 6.1. S-Curves for the TED. The modulation scheme is GMSK
(M = 2, L = 4, h = 1/2 andB = 1/4).

lock points whenδτ equals an integer multiple ofTs. For the PED, the stable lock

points are the evenly distributed4 points along a unit circle and with a periodπ
2
. The

performance of the decision-directed TED breaks down asδτ approaches half-integer

multiples ofTs or δθ approaches half-distance on the circle between two consecutive

phase lock points, due to unreliable tentative decisions within the VA.

In Figure6.3, we compare thenormalized timing error varianceof the TED for the

conventional CPM and the PAM based implementations. We also compare cases with

2 pulses and1 pulse in the PAM based TED for coherent and noncoherent detections.

The coherent TEDs show better tracking accuracy compared tothe noncoherent TEDs

in the fact that they operate very close to the practical lower bound of MCRB(τ ). We

also observe that the tracking accuracy of the reduced-complexity PAM-TEDs are very
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Figure 6.2. S-Curves for the PED. The modulation scheme is GMSK
(M = 2, L = 4, h = 1/2 andB = 1/4).

much comparable to the original implementation of the conventional TED. Also, the

performance of all the reduced-complexity configurations is quite good for small values

ofEs/N0 but at large values ofEs/N0 it appears to deviate from the MCRB(τ ) which is

due to the internal noise generated by the DD algorithm. In the example considered, the

relative ranking between the reduced-complexity TED configurations often fluctuates

depending on the operating range ofEs/N0 although, for the most part, the TED with

2 pulses offer better tracking performance than the TED with1 pulse.

Next, in Figure6.4, we compare thephase error varianceof the PED for conven-

tional CPM and the PAM based implementations. Like with the TED, we also consider

cases with2 pulses and1 pulse in the PAM based PEDs for comparisons. We observe

that, for lower values ofEs/N0, the tracking performance of the reduced-complexity
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Figure 6.3. MCRB vs. normalized timing error variances for the TED.
The modulation scheme is GMSK (M = 2, L = 4, h = 1/2, B = 1/4) with
BτTs = 1 × 10−3.

PEDs are comparable to the conventional CPM PED. At relatively higher values of

Es/N0, however, it deviates further away from the MCRB(θ) due to the internal noise

generated by the DD algorithm. Here, we use only a first-orderPLL for phase acqui-

sition and tracking. In this example, both the reduced-complexity PED configurations

offer similar tracking performance over the operating range ofEs/N0.

Lastly, in Figure6.5, we compare the BER for the conventional CPM and the PAM

based configurations. The coherent conventional CPM receiver has the lowest BER and

is the same as the theoretical BER for this scheme for AWGN channel. The conven-

tional noncoherent CPM receiver is the next best: operating only about0.2 dB off the

coherent receiver at a probability of error of10−4. Reduced-complexity PAM based
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Figure 6.4. MCRB vs. phase error variances for the PED. The modulation
scheme is GMSK (M = 2, L = 4, h = 1/2, B = 1/4) with BθTs =
1 × 10−2.

coherent receivers with|K| = |KTED| = 2 MFs/pulses show good BER and within0.5

dB of the theoretical value at a given probability of error, but with |KTED| = 1 pulse,

we obtain about a2 dB worse performance in BER. This is due to rapid deterioration

of the timing tracking efficiency with|KTED| = 1, especially for higherEs/N0.

6.1.2 M -ary CPM: M = 4, h = 1/4, 2RC

In our seccond example, we discuss the quaternary CPM scheme with M = 4,

h = 1/4 and2RC. The optimal PAM based detector for this scheme requires a16-state

trellis and a bank of12 MFs/pulses. Out of a number of reduced-complexity PAM

based detector configurations that could be chosen (See Appendix C.2), we select a
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4-state coherent detector withL′ = 1 that uses a bank of|K| = |KTED| = |KPED| =

2 MFs/pulses and, also, can be made to work for|KTED| = |KPED| = 1 pulse. We

then compare their detection and tracking efficiencies to that of the conventional CPM

scheme. Also, noncoherent detectors are considered for comparison.

Figure6.6and Figure6.7show S-curves for PAM-TED and PAM-PED respectively

for this detector obtained from computer simulations. In this case, the second and third

PAM pulses for this CPM scheme have relatively large amplitudes as seen in FigureC.2;

their absence with|KTED| = 1 has resulted in lowering the amplitude of the S-curve for

the TED. The curves indicate that the TED and the PED lock ontothe correct timing and

phasing instants atδτ = 0 andδθ = 0 respectively. We note that the decision-directed
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Figure 6.6. S-Curves for the TED. The modulation scheme is Quaternary
CPM (M = 4, L = 2, h = 1/4).

S-curves for the TEDs are periodic with the periodTs, and therefore have stable lock

points whenδτ equals an integer multiple ofTs. For the PEDs, the stable lock points are

the evenly distributed8 points along a unit circle and with a periodπ
4
. The simulated

S-curves show that the performance of the decision-directed TED breaks down asδτ

approaches1
3
Ts. The breakdown causes additional zero crossing points withpositive

slope at1
3
Ts and 2

3
Ts. These additional points are false lock points. This is in contrast

with the binary GMSK scheme discussed earlier where no such unintended lock point

is created. Therefore,M -ary partial response CPM systems suffer from the problem of

false lock.

In Figure6.8, we first compare the normalized timing error variance of theTED

for conventional CPM and the PAM based implementations. Caseswith 2 pulses and
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Figure 6.7. S-Curves for the PED. The modulation scheme is Quaternary
CPM (M = 4, L = 2, h = 1/4).

1 pulse in the PAM based TED for coherent and noncoherent detections are consid-

ered for comparison. The coherent TEDs show better trackingaccuracy compared

to the noncoherent TEDs by operating very close to the practical lower limits of the

MCRB(τ ). We also observe that the tracking accuracy of the reduced-complexity TEDs

are very much comparable to the original implementation of the conventional CPM

TED. Also, the tracking performance of all the reduced-complexity configurations are

quite good for small values ofEs/N0, but, at higher values ofEs/N0, they deviate from

the MCRB(τ ) due to the internal noise in the DD algorithm. In this example, for the co-

herent case, the relative ranking between the reduced-complexity TED configurations

often fluctuates depending on the operating range ofEs/N0 but in general a TED with

2 pulses offers similar or better tracking performance when compared to a TED with1

45



0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
s
/N

0
 [dB]

N
or

m
al

iz
ed

 T
im

in
g 

E
rr

or
 V

ar
ia

nc
e

 

 
Var(τ), Coherent Conv. CPM
Var(τ), Noncoherent Conv. CPM
Var(τ), PAM Coherent |K

TED
|=2

Var(τ), PAM Noncoherent |K
TED

|=2

Var(τ), PAM Coherent |K
TED

|=1

Var(τ), PAM Noncoherent |K
TED

|=1

MCRB(τ)

Figure 6.8. MCRB vs. normalized timing error variances for the TED. The
modulation scheme is CPM (M = 4, 2RC,h = 1/4) with BτTs = 1×10−3.

pulse. This is readily visible for the noncoherent case, where the2 pulse TED offers a

slightly better tracking performance than the1 pulse TED, especially for higherEs/N0.

Both noncoherent PAM based TEDs operate about1 to 2 dB away from the MCRB(τ ).

Next, in Figure6.9, we compare the phase error variance of the PED for the con-

ventional CPM and the PAM based implementations. We also compare cases with2

pulses and1 pulse in the PAM based PEDs for coherent detections. We observe that the

tracking accuracy of the reduced complexity PEDs are very much comparable to the

original implementation of the conventional CPM PED, especially for lower values of

Es/N0. At large values ofEs/N0 it deviates further away from the MCRB(θ) which is

due to the internal noise generated by the DD algorithm. We employ only a first-order

PLL for phase acquisition and tracking in this case also. In this example, the relative
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Figure 6.9. MCRB vs. phase error variances for the PED. The modulation
scheme is CPM (M = 4, 2RC,h = 1/4) with BθTs = 1 × 10−2.

ranking between the reduced-complexity PED configurationsoften fluctuate depending

on the operating range ofEs/N0. The PED with1 pulse offer slightly better tracking

performance than the PED with2 pulses which is in contrast with the corresponding

TED cases.

Finally, we compare the bit error rates shown in Figure6.10 for the conventional

CPM and the PAM based configurations. The coherent conventional CPM receiver has

the lowest BER and is similar or slightly worse in most part as the theoretical BER for

this scheme for AWGN channel. The conventional noncoherent CPM receiver comes

next; operating only within about0.5 dB off the coherent receiver at a probability of

error of10−4. The reduced-complexity PAM based receivers all show good BER and

vary within 1 dB of the theoretical value at a given probability of error. We notice
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Figure 6.10. Theoretical BER vs. BER obtained for various conventional
and PAM based implementations of the CPM scheme (M = 4, 2RC, h =
1/4) with BτTs = 1 × 10−3 andBθTs = 1 × 10−2.

a performance improvement here for the detector with1 pulse TED compared to the

GMSK modulation observed previously.

6.1.3 Observation Summary

A comparative study of the results we found in this chapter are now summerized in

Table6.1and Table6.2.

They show that, for a givenEs/N0, the PAM based receiver performance is com-

parable to that of the conventional CPM receiver for different MF pulse and trellis con-

figurations. We also observe that though the tracking variance for timing operates very

close to the MCRB for most of the inputEs/N0 range, such is not the case with phase
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Table 6.1. BER and Tracking Error Variance performance comparison For
GMSK with an inputEs/N0 of 10 dB in AWGN channel.
Modulation Error Variance(τ ) Error Variance(θ) BER

Coherent (C) CPM 8.21 × 10−5 0.25 × 10−2 2.55 × 10−4

CPAM |KTED| = |KPED| = 2 8.25 × 10−5 0.85 × 10−3 2.54 × 10−4

CPAM |KTED| = |KPED| = 1 8.39 × 10−5 0.85 × 10−3 40.25 × 10−4

Noncoherent (NC) CPM 8.41 × 10−5 N/A 3.05 × 10−4

NCPAM |KTED| = 2 9.57 × 10−5 N/A 3.25 × 10−4

NCPAM |KTED| = 1 1 × 10−4 N/A 40.25 × 10−4

Table 6.2. BER and Error Tracking Variance performance comparison for
a4-ary CPM with an inputEs/N0 of 10 dB in AWGN channel.
Modulation Error Variance(τ ) Error Variance(θ) BER

Coherent (C) CPM 2.84 × 10−4 1.01 × 10−3 0.95 × 10−4

CPAM |KTED| = |KPED| = 2 2.88 × 10−4 1.23 × 10−3 0.94 × 10−4

CPAM |KTED| = |KPED| = 1 3.48 × 10−4 9.86 × 10−4 0.97 × 10−4

Noncoherent (NC) CPM 3.57 × 10−4 N/A 1.15 × 10−4

NCPAM |KTED| = 2 5.57 × 10−4 N/A 1.25 × 10−4

NCPAM |KTED| = 1 5.61 × 10−4 N/A 3.85 × 10−4

as it starts to deviate about halfway through the inputEs/N0 range. Also, interestingly,

the |KPED| = 2 PAM based system seem to have worse phase tracking efficiencythan

the|KPED| = 1 pulse PAM receiver. However, the BER is not affected by a largeamount

by this relative lack of efficiency in phase tracking. Both coherent PAM receivers pro-

vide BERs close to the theoretical value of10−4 for the inputEs/N0 = 10 dB as seen

from the table.

6.2 Perfomance of PAM Based Receivers Under Large Frequency

Offsets

We again present a comprehensive comparative study of the existing conventional

CPM and PAM based receivers of binary andM -ary CPM systems under the assump-

tion that there is a large frequency offset on the order of thesymbol rate present due to
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the Doppler shift in the channel or the oscillator instabilities between transmitter and

receiver.

In Section5.2, we explained why coherent detection in the presence of a large

frequency offset can be quite difficult. In this section, we actually show the results

of the PAM based coherent and noncoherent detection under a large carrier frequency

offset. For coherent detection, we keep the phase PLL second-order as the second-order

PLL is suitable in situations where there is a small carrier frequency offset. However,

after the frequency recovery, the residual frequency offset in the carrier is still around

2% to 3% of the symbol rate. The results obtained through simulations confirm that

coherent detection is not suitable for symbol recovery under large frequency offsets,

even with the initial frequency recovery. This is due to large error in phase acquisition

under the presence of frequency offsets. Simulations show that, any frequency offset

of more than 10−4Ts causes phase PLL to loose the lock. The timing lock, however

still remains attainable. Therefore, it is more feasable touse noncoherent detection.

Another reason behind opting for the noncoherent detectionis that, it is usually inferior

to its coherent counterpart (under no frequency offset condition) by only about1 dB to

2 dB in terms of error tracking and BER performances as we have shown in Section6.1.

6.2.1 Binary GMSK Under a Large Frequency Offset:M = 2, L = 4, h = 1/2

We first apply the NDA PAM based frequency recovery algorithmfor the binary

GMSK scheme withM = 2, L=4, andh = 1/2 andB = 1/4. By simulation we found

that, only keeping a single MF pulse is sufficient for the FDD described in Section3.3.

We also use a delay and multiply based FDD scheme for CPM described in [20] and use

it in the conventional CPM receiver for comparing the performance against the PAM

based CPM receivers.
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Figure 6.11. S-Curves for the FDD. The modulation scheme is GMSK
(M = 2, L = 4, h = 1/2, B = 1/4).

Figure6.11shows that the S-curve of the PAM based FDD has a lock point at zero

and no false lock points which is true for any NDA scheme. We also observe that the S-

curve is linear within about±0.35 of the symbol rate which is quite a large lock range.

Out of a number of reduced-complexity PAM based detector configurations, we select

a 4-state detector withL′ = 2 that uses a bank of|K| = |KTED| = 2 MFs/pulses and

|KTED| = 1 pulse respectively and then compare their detection and tracking efficiencies

with that of the conventional noncoherent CPM scheme.

Figure6.12shows the normalized timing error variances of the noncoherent PAM

based and conventional CPM detectors. We select a4-state PAM based detector with

L′ = 2 that uses a bank of|K| = |KTED| = 2 MFs/pulses and|KTED| = 1 pulse

respectively and then compare their detection and trackingefficiencies with that of the
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Figure 6.12. MCRB vs. normalized timing error variances for the TED.
The modulation scheme is GMSK (M = 2, L = 4, h = 1/2, B = 1/4) with
BτTs = 1 × 10−3.

conventional noncoherent CPM scheme.

Figure6.13shows the frequency error variances of the NDA PAM based and con-

ventional CPM detectors. The conventional CPM-FED performs marginally better than

the PAM-FED.

Figure6.14 shows the BERs of the PAM based and conventional CPM detectors

under a large frequency offset. The noncoherent conventional CPM performs better

than noncoherent PAM with|K| = |KTED| = 2 MFs/pulses and|KTED| = 1 pulse by

about1.7 dB at a BER of10−5. The coherent PAM with|KTED| = |KPED| = 1 pulse,

however, performs the worst.
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Figure 6.13. MCRB vs. normalized frequency error variances for FDD.
The modulation scheme is GMSK (M = 2, L = 4, h = 1/2, B = 1/4) with
BνTs = 5 × 10−3.

6.2.2 Quaternary CPM Under a Large Frequency Offset:M = 4, 2RC, h = 1/4

We first describe the NDA conventional and PAM based frequency recovery schemes

for the quaternary CPM scheme withM = 4, L = 2, andh = 1/2. By simulation

we found that, only keeping a single pulse is sufficient for the FDD described in Sec-

tion 3.3. We also apply one conventional CPM based FDD scheme cited in [20] and use

it as a reference to compare the performance against PAM based noncoherent receiver

under a large frequency offset.

The S-curves in Figure6.15show that the PAM S-curve has only one lock point at

zero and no false lock points which is true for any NDA scheme.It is also observed

that the S-curve is linear within about0.7 of the symbol time with is quite a large lock
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Figure 6.14. Theoretical BER vs. BER obtained for various conventional
and PAM based implementaions with the initial carrier frequency recov-
ery.The modulation scheme is GMSK (M = 2, L = 4, B = 1/4 h = 1/2)
with BτTs = 1 × 10−3 andBνTs = 5 × 10−3.

range. Out of a number of reduced-complexity PAM based detector configurations, we

select a4-state detector withL′ = 1 that uses a bank of|K| = |KTED| = 2 MF/pulses and

|KTED| = 1 pulse respectively. We then compare their detection and tracking efficiencies

to that of the conventional noncoherent CPM scheme.

Figure 6.16 shows that the noncoherent CPM-TED and PAM-TED offer much

lower tracking variances than their corresponding coherent counterparts. Figure6.17

shows that the conventional CPM-FED performs better than thePAM-TED but both

perform far away from the MCRB(ν).

We simulate the coherent conventional CPM and PAM based systems under a large
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Figure 6.15. S-Curves for the FDD. The modulation scheme isM -ary
CPM (M = 4, 2RC,h = 1/4).

frequency offset condition and they provide much worse BER than the noncoherent

schemes as seen from Figure6.18. This is due to inadequate phase tracking under even

a small amount of frequency offset. The carrier phase is affected a lot more by the

introduction of the frequency offset as compared to the symbol timing.

6.2.3 Observation Summary

We summarize a comparative study of the results we found in this section in the

following tables.

Table 6.3 and 6.4 show that for a given inputEs/N0, the PAM based receivers

with various MF/TED pulse and trellis configurations are comparable in performance

to the conventional CPM receivers for noncoherent detection. The results also indicate
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Figure 6.16. MCRB vs. normalized timing error variances for the TED.
The modulation scheme isM -ary CPM (M = 4, 2RC, h = 1/4) with
BτTs = 1 × 10−3.

Table 6.3. BER and Variance performance comparison for GMSK with an
inputEs/N0 of 10 dB in AWGN channel.
Modulation Error Variance(τ ) Error Variance(ν) BER

Noncoherent (NC) CPM 1.21 × 10−4 2.5 × 10−4 8.15 × 10−4

NCPAM |KTED| = 1 1 × 10−4 1.5 × 10−3 43.5 × 10−4

a marked degradation in the system performance in the presence of large frequency

offsets. The FDD algorithm, although has a relatively higher lock range and does not

require being driven by decisions or actual data, it introduces enough jitter due to its

noisy tracking process that, it affects the noncoherent system performance by as much

as3 dB.
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Figure 6.17. MCRB vs. normalized frequency error variances for the
FDD. The modulation scheme isM -ary CPM (M = 4, 2RC, h = 1/4)
with BνTs = 1 × 10−3.

Table 6.4. BER and Variance performance comparison for a4-ary CPM
for an inputEs/N0 of 10 dB in AWGN channel.
Modulation Error Variance(τ ) Error Variance(ν) BER

Noncoherent (NC) CPM 5.41 × 10−5 1.96 × 10−4 4.57 × 10−4

NCPAM |KTED| = 1 7.31 × 10−5 1.73 × 10−3 6.75 × 10−4

Coherent (C) CPM 9.56 × 10−5 1.96 × 10−4 5.07 × 10−3

CPAM |KTED| = 1 1.93 × 10−4 1.73 × 10−3 2.13 × 10−2

6.3 Key Points and Recommendations

Based upon the simulation results presented in this chapter,we can infer that

• PAM based reduced-complexity CPM detectors provide very good tracking char-

acteristics under no carrier frequency offset.
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Figure 6.18. Theoretical BER vs. BER obtained for various conventional
and PAM based implementaions with the initial carrier frequency recovery.
The modulation scheme isM -ary CPM (M = 4, 2RC, h = 1/4) with
BτTs = 1 × 10−3 andBνTs = 5 × 10−3.

• Coherent and noncoherent detection can be done based on PAM based detectors.

The noncoherent detectors are worse by about2 dB in BER under all practical require-

ments and under no frequency offset condition.

• With a frequency offsets on the order of10−4 of the symbol rate, the performance

of PAM based detectors does not suffer deterioration in terms of tracking accuracy and

BER.

• With the carrier frequency offset on the order of the symbol rate, noncoherent

detection outperforms coherent detection in terms of tracking accuracy and BER.

• Frequency detectors are non-data-aided, thereby causing arelatively large residual
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frequency jitter which can be further removed by methods discussed in [14], if coherent

detection is used. However, noncoherent detection allows further simplification of the

receiver structure by alleviating the need for a second stage of frequency recovery,

although more investigation on this is required.

• Algorithms discussed in this thesis are simple to implementand comparable in

performance to conventional CPMs. They reduce the complexity of the CPM receivers

and have good timing, phase and frequency synchronization components making them

an alternative option for commercial cost-effective receivers.
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Chapter 7

Timing False Lock Recovery with

M -ary CPM

So far, we have discussed and compared simulation results for both conventional

and PAM based receivers under the steady-state condition. In this chapter, we con-

centrate on the acquisition characteristic of the synchronizers. We propose a suitable

solution to a common problem during acquisition, i.e., the false lock problem. This is

another important contribution of this thesis.

7.1 False Lock with No Frequency Offset

Under no carrier frequency offset, the steady-state results indicated very good track-

ing performance for both conventional and PAM based synchronizers. However, the

acquisition behavior may be different for them. In fact, it can be found by simulation

that, depending on the modulation format, the timing and/orphase synchronizers get

into false locks which was earlier described in [12]. This happens only withM -ary

partial response formats. A simple explanation for the false lock is that the decision-
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Table 7.1. BER and Variance performance comparison ofM -ary CPM un-
der spurious lock with inputEs/N0 = 12 dB.

Metric Value by Simulation Theoretical
BER 0.2808 0

Timing Variance 0.5007 × 10−3 0.0511 × 10−3

Phase Variance 0.0397 0.0006

directed timing and phase recovery use ML method to find the location of the maximum

of (5.2) and (5.3) in the(τ̃ , θ̃, ) plane with the assumption that a reliable estimate of the

data sequencẽα is available from the VA. It appears that the functions whichthey try to

maximize are not monotonic (increasing or decreasing) and consequently have several

local peaks along with one global maximum. Spurious or falselocks occur when the

algorithm tends to settle on one of the local peaks from the initial conditions. This can

be analogically related to a marble on top of a convex side of acurved floor that has

several concave structures. When the marble is moved a littlefrom its unstable posi-

tion, it tries to go to the closest minimum point on the surface, regardless of whether

it is a local minimum or the global minimum. A case of this false lock problem was

shown in [12] for a quaternary3RC CPM scheme with a modulation index of1/2 and

is reproduced here for illustration purpose.

Figure7.1shows a situation of occurrence of a spurious lock. The timing estimate

gets locked onto a value of−0.35 and phase wanders around a value of−1.6 radians.

Typical values of the BER, timing and phase variances under thefalse lock situation

are shown in Table7.1.

Table7.1 shows that under a spurious lock the system has fairly high timing and

phase tracking variances and its BER is about1/3, which shows poor system perfor-

mance. In [12], a non data aided “auxiliary” lock detector isemployed. While it does

detect a false lock and removes it, it has some distinct disadvantages: it is slow, noisier

due to its NDA nature and has a longer acquisition time.
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Figure 7.1. Timing and Phase estimates forM = 4, 3RC, h = 1/2 with
BτTs = 5 × 10−3 andBθTs = 5 × 10−2.

In this thesis, we observe a simple solution to the false lockproblem. The vari-

able lengths of the PAM based matched filters impart extra “variation” to the system

whereby any false lock, if occurs, can be eventually removed. This is promising be-

cause the proposed receiver does not use any additional lockrecovery circuitry and is

suitable for use with faster decision-directed algorithms. During several simulations

runs it is observed that, a noncoherent synchronizer with only 1 TED pulse does very

well to keep the system from falling into a false lock. Also,2 pulse coherent and non-

coherent synchronizers do reasonably well. This can be attributed to lower peaks at the

false lock points for the PAM based TED system as compared to the conventional CPM

based system as shown in Figure7.2. These lower peaks and lesser slopes, combined

with the internal noise in the algorithm due to varied MF lengths, help drive the system
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Figure 7.2. S-curves of the noncoherent CPM and the PAM based TEDs.

out of the false lock. In our simulations, we focus mainly on the noncoherent PAM

based TED with1 pulse as this provides the best result.

From Figure7.2it is observed that the noncoherent PAM based system with1 TED

pulse has the lowest slope around the false lock points and consequently, the largest

step size. Therefore, its probability of getting out of a spurious lock is more than the

other TEDs shown in the figure. With the conventional CPM-TED,we run a simulation

of 100000 times and plot the lock acquisition time distribution. Figure 7.3 shows that

there is a large number of cases, represented by the solid virtical section at the end of

the figure, where the conventional CPM system is unable to recover from false locks

and therefore, is unsuitable for use.

In the PAM based system shown in Figure7.4, the simulation is run independently
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Figure 7.3. False lock trials (noncoherent1 pulse TED) forM = 4, 3RC,
h = 1/2 andBTs = 5 × 10−3.

100000 times and the lock acquisition time distribution is plotted. It appears similar

to an exponential distribution with mean lock acquisition point is within about700

symbol periods. In comparison to the conventional CPM scheme, there are very few

cases where the PAM based system is unable to avoid the false lock. In particular,

only 30 cases out of the100000 independent trials, the system was unable to recover

from the false lock; thus providing a very low false lock probability of 0.03%. The

situation gets worse a little as we increase the inputEs/N0. The PAM based system

shows0.089% false lock at an inputEs/N0 of 20 dB, still, much better than the conven-

tional CPM system under similar condition. The result variesminutely across different

modulations schemes. We found, by simulation that, for all realizable CPM schemes,

the PAM based noncoherent single pulse TED guarantees that any spurious lock will
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Figure 7.4. False lock trials (noncoherent1 pulse TED) forM = 4, 3RC,
h = 1/2 andBTs = 5 × 10−3.

be removed, or, at least the probability of false lock will beconfined to a negligible

amount. Compared to a similar conventional CPM scheme, this isa huge improvement

in the acquisition performance. Therefore, our approach shows that, a simple reduced-

complexity PAM based noncoherent single pulse TED system can be employed without

any extra circuitry for guaranteed performance improvement in terms of the spurious

lock removal, when compared to a similar conventional CPM scheme.

7.2 False Lock Under a Large Carrier Frequency Offset

While discussing joint frequency, timing and phase recoveryin Chapter5, we men-

tioned that after the frequency lock is achieved, the internal noise of the NDA frequency
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acquisition algorithm introduces a residual frequency offset that can not be completely

removed from the signal before it is fed to the timing and phase DD synchronizers. The

small frequency offset introduces extra noise in the systemwhich helps reduce further

the false lock probability. Returning to the marble analogy,the additional noise pre-

vents the marble from settling easily in local minima and ultimately helps it find the

global minimum. Simulation results with various CPM schemesconfirm our predic-

tion. Interestingly, in the presence of a small (2% to 3% of the symbol rate) frequency

offset, conventional CPM receivers in noncoherent mode perform equally well to their

PAM based single TED counterparts when it comes to avoiding the false lock. But,

overall, in a complete tracking environment where the incoming frequency, phase and

timing information are unknown to the receiver, our PAM based model ensures a very

low probability of false locks, as shown in Table7.2.

Figure7.5presents a comparison of timing lock acquisitions in the presence of a fre-

quency offset for conventional CPM and PAM based noncoherentreceivers with single

TED pulse. Compared to Figure7.4discussed in the previous section, the conventional

CPM system does provide a comparable performance against ourPAM based system.

We did100000 independent trial runs with a frequency offset of about3 × 10−3 of the

symbol rate and found no false lock occurrences for both conventional and PAM based

systems. Therefore, a small frequency offset appears to addenough extra noise to both

the systems so that, it helps them avoid false locks.

We summarize the results discussed in Section7.1and in Section7.2in the follow-

ing Table7.2.

Table7.2shows that, the solution to the false lock problem lies in theinternal noise

in the system itself! we observe that there are little or no false locks if we use a nonco-

herent single pulse PAM-TED receiver. Introduction of a small frequency offset ben-
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Figure 7.5. False lock trials (noncoherent1 pulse TED) forM = 4, 3RC,
h = 1/2 andBτTs = 5 × 10−3.

efits both CPM and PAM based system in the fact that, both systems are now able to

act without getting into spurious locks. So, in general, reduced-complexity PAM based

receivers produce consistent performance under false lockconditions with or without

carrier frequency offsets. We conclude this chapter by pointing out the fact that a trade-

off exists between the choice of the PAM pulses in the TED and its ability to recover

from false lock during acquisition. A single pulse TED is best when avoiding a false

lock is of prime importance, whereas, a2 pulse TED provides slightly better tracking

accuracy and BER.
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Table 7.2. Performance comparison - timing lock recoveryM = 4, 3RC,
h = 1/2 andBτTs = 5 × 10−3 under false lock.

No Frequency Offset NC conventional NC PAM |KTED| = 1
No. of Simulations 105 105

No. of False locks 105 30
False lock probability 1 0.0003

Lock state No lock Consistent over no. of symbols

Small Frequency Offset NC conventional NC PAM |KTED| = 1
No. of Simulations 105 105

No. of False locks 0.0 0.0
False lock probability 0.0 0.0

Lock state Consistent 1 or 2 momentary loss
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Chapter 8

Conclusions and Future Work

We have shown how the PAM representations of binary as well asM -ary CPMs can

be applied to the problem ofjoint carrier frequency, carrier phase and symbol timing

recovery for reduced-complexity CPMs in general. We have developed formulations

for joint operation of PAM based TEDs and PEDs, and also incorporated FDDs to an-

alyze and compare their performances under various offset conditions in timing, phase

and frequency. From the simulation results it is confirmed that the PAM based CPM

receivers provided a comparable performance against conventional CPM receivers and

proved to be a better choice where there is a possibility of spurious locks. We also

have analyzed the possibility of noncohrerent detection for the PAM based receivers

have shown superiority over their coherent counterpart when there is a large carrier

frequency offset present. Therefore, this thesis considers all possible signal recov-

ery scenarios for CPM transmission over AWGN channel and provides importantjoint

synchrozation components for recovering carrier frequency, symbol timing and carrier

phase of the signal that have been missing up to this point.

The future work will include looking into the possibility ofnoncoherent detection

and eliminate the need for a second frequency offset synchronizer which is used to
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further improve the frquency recovery of the signal. A comparative study of system

performance with out the second synchronizer is essential to determining the effective-

ness of the solution.

There is also a possibiity of looking further into the false lock recovery solution we

proposed and try out various combinations of PAM pulses to see if the system recovers

from it completly without the need of any extra lock detector. For example, having

a single pulse noncoherent TED during initial acquisition of the symbol timing and

reverting to a two-pulse noncoherent TED when the timing lock is acquired, could

improve the acquisition and tracking performance of the error detectors greatly.

Finally, the performance of the proposed algorithms have only been described in

AWGN channel where the channel frequency response remains constant over the entire

transmission length. The behavior of thejoint synchronizers under steady-state as well

as acquisition stages can be further explored for fading channels and provide a detailed

understanding of the algorithms under the most practical considerations.
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Appendix A

Calculation of S-Curves

In this appendix, we present some useful derivations and implementation method-

ologies for the S-curves we discussed previously in Section4.3.

A.1 Timing S-Curve

We now give a derivation in fair detail of the S-curve for the timing TED assuming

that, we know the transmitted symbol sequenceα (i.e. thedata-aidedcase).

To proceed, we make use of the fact that, the S-curve deals only with the difference

between original and estimates and use the substitutionδτ = τ − τ̂ to replaceτ , with

τ̂ = 0 to further simplify the analysis. Inserting (3.14), (3.12), and the derivative

of (3.6) into (4.13) we obtain

S(δτ ) = −

√

Es

Ts

E

{

Re

{

∑

k∈KTED

b∗k,n

∫ (n+Dk)Ts

nTs

r(t)ġk(t−nTs)dt

}∣

∣

∣

∣

∣

δτ

}

.

We next insert the received signal (2.7), into the above expression. Since noise is con-

sidered to be independent of the data symbols, we can furthersimplify to obtain the

71



following expression

S(δτ ) = −
Es

Ts

∑

k∈KTED

∫ (n+Dk)Ts

nTs

N−1
∑

q=0

⌊ t−δτ
Ts

⌋
∑

i=⌊ t−δτ
Ts

⌋−Dq+1

Aq,k(n− i)gq(t− δτ − iTs)ġk(t− nTs) dt

(A.1)

where

Aq,k(n− i) , E
{

bq,ib
∗
k,n

}

is the real-valued cross-correlation function of the pseudo-symbols and is given in

closed-form in [3]. The limits for the summation oni are⌊x⌋ denotes the largest integer

value ofx not exceedingx.

A.2 Phase S-Curve

As mentioned previously, the S-curveS(δθ) determines the loop acquisition proper-

ties of the phase PLL. This is defined as the expectation computed under the assumption

of correct decision and a fixed known value of phase offsetδθ = θ − θ̂. To further sim-

plify the analysis we assumêθ = 0. Then from3.20, we have

S(δθ) =

√

Es

Ts

E{en|δθ} =

√

Es

Ts

E

{

Im

[

∑

k∈KPED

xk,ib
∗
k,ie

−jδθ

]

|δθ

}

(A.2)

Substituting2.7 into 3.15and from3.6we expressxk,ib
∗
k,i as

xk,ib
∗
k,i =

[

∑

m∈KPED

∑

n

bm,nb
∗
k,iρm,k(i− n)Ts

]

ejδθ (A.3)

whereρm,k , gm(t) ⊗ gk(−t). Assuming noise and data symbol are uncorrelated

72



and therfore independent (Gaussian noise), expectation taken of the noise, becomes

zero.

S(δθ) =

√

Es

Ts

Im

{

∑

j∈KPED

∑

k∈KPED

∑

n

Am,k(i− n)ρm,k[(i− n)Ts]e
jδθ

}

(A.4)

where

Am,k(i− n) , E
{

bm,nb
∗
k,i

}

A.3 General Guidelines for Simulating the S-Curve

The following are a few important steps to simulate an S-curve using MATLAB or

other simulation tools.

1. Open the loop filter and run the detectors described as Figure3.1, Figure3.2and

Figure3.3with known offsets in the corresponding signal attributes and discard

the noise introduced in the channel (AWGN).

2. Accumulate the errors from the TED, PED output after each symbol index.

3. Assuming the error generation process is wide sense stationary (WSS), obtain the

average of the errors over the total received symbol length.

4. Follow steps1 to 3 for another known timing or phase offset.

5. Finally, plot the average error against the corresponding offset for the selected

range.
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Appendix B

Performing Digital Synchronizations

B.1 Digital Sample Interpolation

The problem of timing correction for synchronous sampling is now addressed. We

used linear interpolation discussed in [18] to produce synchronized samples based on

the timing estimate obtained from the timing PLL after everysymbol time. A linear

interpolation algorithm is illustrated in FigureB.1 The received discrete-time signal is

sampled at a higher sample rateN called the over-sampling factor. Ideally, we would

like the sampling pulses to be issued at the instantstn = Ts

N
+ τ for every symbol index

k. Therefore, we have to computer(ktn) from the available samples of the received

signal r(nT ) by a technique called “interpolation”. Assuming thek-th interpolated

sample is between samplesr(nT ) andr((n + 1)T ), the sample index is calledk-th

basepoint index; denoted bym(k)T . The time instantktn is some fractionτ(k)T of

a sample time greater thanm(k)T that satisfies the condition0 ≤ τ(k) < 1 and is

defined byτ(k)T = ktn −m(k)T . To produce the samples at the desired instantsktn,

samples ofr(nT ) are recreated at intervalsktn.

Linear interpolation is practically performed from a piecewise polynomial inter-
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Figure B.1. Linear interpolation overview: relationships between the exact
time instanttn, sample time T, base-point indexm(k) and fractional time-
delayτ(k)

polation model. With this model, the discrete-time waveform is approximated by the

polynomial of order m and sampled att = ktn as

r(ktn) ≈ hm(ktn)m + hm−1(ktn)m−1 + · · · + h1(ktn) + h0 (B.1)

The polynomial or the FIR filter coefficientshm are obtained easily using a first-order

piecewise polynomial approximation, so thatB.1 is reduced to

r(ktn) ≈ h1(ktn) + h0 (B.2)

Therefore, the desired samples at the instantst = ktn are computed from

r((m(k) + τ(k))T ) = h1((m(k) + τ(k))T ) + h0 (B.3)
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Figure B.2. Digital integration of phase

The coefficientsh1 andh0 are computed from the equation descried in [18, p. 465, eq. 8.60]







r(m(k)T )
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r(m(k)T ) 1

r((m(k) + 1)T ) 1






+







h1

h0






(B.4)

Solving forh1 andh0 and substituing their values intoB.3 we obtain

r((m(k) + τ(k))T ) = τ(k)r((m(k) + 1)T ) + (1 − τ(k))r(m(k)T ) (B.5)

which is the equation of a linear interpolator.

B.2 Digital Integration of Phase

We discuss here the algorithm for derivation of integrationoperation on the phase

Φ(nT ) described in Section3.3 To do that, we first divide the intervalkTs ≤ t ≤

(k + 1)Ts into N sub-intervals of lengthT = Ts/N as shown inB.2. The digital

integration is performed over a subintervalnT ≤ t ≤ (n+ 1)T yielding

Φ [(n+ 1)T ] = Φ(nT ) + 2πν̃(kT )Ts/N (B.6)

The above equation involves two indexes: A sample indexn and a symbol indexk.
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From FigureB.2 they are related byk = int( n
N

). where int(m) represents the largest

integer not exceedingm. Practically, to limit the overflow while computing (B.6), Φ

modulo2π is taken. Therefore, (B.6) is expressed as

Φ [(n+ 1)T ] = Φ(nT ) + 2πν̃(kT )Ts/N mod2π (B.7)
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Appendix C

Laurent Decomposition of CPM and

Approximation of the PAM pulses

In this chapter, we present theLaurentdecomposition of CPM pulses used in this

thesis to explain thejoint frequency, timing and phase recovery algorithms and false

lock recovery forM -ary CPMs.

C.1 Binary GMSK System with Gaussian Pulses:M = 2, h = 1/2,

L = 4

In this case, Laurent decomposition withL = 4 will give QP (2P − 1) = 8 PAM

pulses according to [3], whereQ = 2L − 1 andP = log2(M).

FigureC.1 shows that out of these8 pulses only pulse marked asg0(t) andg1(t)

have significant energies. Therefore, we select only2 PAM pulses for using as the

matched filter responses. For TED, PED and FDD however we can select onlyg0(t)

without degrading the acquisition and tracking performances too much.
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Figure C.1. Laurent decomposition of binary GMSK withM = 2, L = 4
andh = 1/2

C.2 M -ary Partial Response System withM = 4, h = 1/4, 2RC

We now have, after the Laurent decomposition,QP (2P − 1) = 12 PAM pulses

according to [3], whereQ = 2L − 1 andP = log2(M).

FigureC.2shows that, out of these12 pulses, only3 pulses, marked asg0(t), g1(t)

andg2(t) have significant energies. To reduce the MF pulse requirement in this case,

we select only2 PAM pulses for using as the matched filter response. While selecting

the pulses, we observe that,g1(t) andg2(t) have almost the same energy. We use a

simple average of these two similar energy pulses for the second MF response. We

select onlyg0(t) for the error detection pupose.
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Figure C.2. Laurent decomposition of the quaternary CPM withM = 4,
L = 2 andh = 1/4

C.3 M -ary Partial Response System withM = 4, h = 1/2, 3RC

We now have, after the Laurent decomposition,QP (2P − 1) = 12 PAM pulses

according to [3], whereQ = 2L − 1 andP = log2(M).

This case is different than the previous two as the Laurent decomposition generates

a product of two binary signals with modulation indexes1/2 and1. As we know that

Laurent decomposition doesn’t work for integer modulationindexes, so we use the

method described in [5]. So instead ofQP (2P −1) = 48 predicted by Laurent, actually

we get17 PAM pulses.

FigureC.3shows that, out of these17 pulses, only3 pulses, marked asg0(t), g1(t)

andg2(t) have significant energies. For the reduced MF pulse requirement in this case,

we take only2 PAM pulses for using as the matched filter response. We also make note

of the fact that,g1(t) andg2(t) have comparable energies than other low energy pulses.

Therefore, we use a simple average of these two energy pulsesfor the second MF
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Figure C.3. Laurent decomposition of the quaternary CPM with M=4, L=3
and h=1/2

response. Again, for the TED, the PED and the FDD, selecting only g0(t) is sufficient

in most cases. In fact, as this scheme is aM -ary partial-response, selecting onlyg0(t)

for the error detectors is beneficial in avoiding the false lock problem mentioned in

Chapter7.
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