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Abstract 

Elastography is the imaging of the biomechanical properties of a tissue to detect 

and diagnose abnormal pathologies in a variety of disease conditions.  Static 

Magnetic Resonance Elastography (MRE) is a modality of elastography that uses 

Magnetic Resonance Imaging (MRI) principles for data acquisition from a biological 

sample under external loading.  An estimation of the mechanical deformation of the 

loaded sample from its Magnetic Resonance (MR) images constitutes a key 

component of the static MRE.  Efforts in this area of research have mainly been 

focused on developing data acquisition protocols and motion estimation algorithms 

for producing high quality elastography images.  So far, however, progress made in 

static MRE remains limited in both clinical and experimental fields. 

This dissertation work performed a comprehensive investigation of the data 

acquisition, pre-processing, and motion analysis stages of the static MRE modality.  

First, a mechanical device was introduced to reliably apply repetitive external 

compression to the sample.  The design of this device and how it was interfaced with 

the scanner for gated data acquisition are described in detail.  Next, MRI basics are 

summarized, and the use of tagged MRI sequence as the data acquisition protocol is 

justified.  Optimal parameters that led to the best quality tagged MRI data were 

determined by taking the repetitiveness of the compression and the use of tag lines 

into consideration.  Lastly, two reliable motion estimation algorithms were 

implemented and successfully tested on a variety of synthetic and real MRE data.  

After adjusting the parameters of the techniques using the prior knowledge of the 
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features of the tagged MR images, both Iterative and One-step Optical Flow (OF) 

algorithms consistently produced acceptable results.  It was found, that while applied 

to the real data, the Iterative OF algorithm slightly outperforms the One-step OF 

algorithm.  The results of the testing are provided and discussed. 

This research is interdisciplinary and embraces concepts from the fields of 

Physics, Image Processing, Computer Vision, Algorithmics, Electrical Engineering, 

and Biomedical sciences.  Future extensions of the research include a variety of 

studies on phantoms with an inclusion, small oncology animal models, and possibly 

followed by clinical human research that would contribute to improving the 

reliability, accuracy, and speed of tumor detection.  Other possible applications may 

involve processing of different types of MRI data, such as cardiac tagged gated MRI. 
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Chapter 1 

Introduction 

A variety of biomedical imaging modalities is currently used in practice, and new 

ones are also being developed for potential applications in preclinical research and 

clinical environments.  Magnetic Resonance Elastography (MRE) is one of these 

modalities and constitutes the main focus of this dissertation. 

In this introductory chapter, the motivation and driving problem for the research 

is described (Section 1.1), followed by an introduction of the research hypothesis as 

well as the research plan and evaluation in Sections 1.2 and 1.3, respectively. 

1.1 Motivation and Driving Problem 

Tissue elasticity properties carry important diagnostic information for a wide 

range of diseases associated with inflammation and altered soft tissue biomechanics.  

For example, a majority of tumors, liver fibrosis, and different muscle pathologies are 

intrinsically characterized by their properties of abnormal stiffness.  If spatial changes 

in biomechanical properties or in short elasticity are to be a valuable indicator of a 

disease or pathology, reliable and accurate tools are needed for objectively assessing 

the stiffness directly by using in vivo measurements.  MRE has recently been 

proposed to address this need.  MRE uses Magnetic Resonance Imaging (MRI) as the 

principle of data gathering, and it is further divided based on the implementation of 

the acquisition sequence.  In this research, we consider data acquisition using tagged 

MRI and tissue motion measurements estimated indirectly using a sequence of two or 

more tagged images.  The sequence of tagged images that encodes the tissue motion 

is acquired while the compression applied by an external actuator to the biological 
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tissue is in progress.  An important step in post-processing is to accurately quantify 

the motion resulting from the compression using the images. 

In the literature, algorithms and image processing techniques have been described 

to estimate motion between two given images in a sequence.  However, the majority 

of the existing motion estimators cannot be directly applied to process the tagged 

images.  Special adaptation, implementation, modifications, and optimization of the 

existing techniques are required.  It is also desirable that the estimator would perform 

well within reasonable error limits in the motion estimates.  The goal of this project 

was to implement a robust algorithm to estimate the tissue motion in tagged images.  

Optical Flow (OF) algorithms have been successfully used as motion estimators in a 

wide range of applications, but these algorithms have yet to be applied to MRE.  

Because of their relatively well understood behavior and performance limits, in this 

dissertation we examined what OF can offer in post-processing of the sequential 

images with motion encoded inherently by the tagged lines under external 

compression. 

1.2 Research Hypothesis 

The results from our initial evaluation suggested that it is possible to use OF in 

analyzing tagged MRI data.  Based on these results, we hypothesized that the OF 

algorithm could perform in MRE as well as it did in other applications provided that a 

suitable data acquisition mechanism was built and a new set of constraints and a 

priori knowledge were appropriately incorporated into the design and implementation 

of the algorithm.  Our research aimed at testing this hypothesis.  To accomplish this 
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task, we performed critical preliminary work and essential procedures as listed in the 

following. 

1.3 Research and Evaluation 

MRE involves discrete application of external compression and simultaneous 

acquisition of time-sequential MR images followed by off-line processing of acquired 

data to estimate the motion experienced by the tissue.  To successfully generate the 

motion maps in MRE in this research, the following work was performed: 

(i) Synthetic tagged MRI representing images of soft biological tissues with different 

compressibility features were generated and used as a numerical simulation 

medium.  The process included producing sequences of images with standard 

patterns of tag lines, different levels of signal-independent additive noise, and 

different models of tissue motion.  The synthetically generated data ranged from a 

simple translation of the simulated uniformly soft tissue to a more complicated 

model with a stiff 2-D cylindrical inclusion embedded into a soft background 

biological media. 

(ii) The performances of the OF algorithms were demonstrated using the synthetic 

data, and their accuracies were quantified using error analysis. 

(iii) An effective tissue compression device with electromagnetic components was 

built to operate within a 9.4 Tesla MRI scanner (Varian, Inc., Palo Alto, Ca). 

(iv) Tagged MRI protocol was optimized for tag line generation and image 

acquisition. 
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(v) A set of agar-based phantoms was developed to represent biological tissue with a 

stiff region.  These phantoms were used to acquire tagged MRI data, which were 

then used to evaluate the proposed algorithms.  
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Chapter 2 

Background 

Biomedical imaging is an important and one of the most rapidly advancing areas 

of research in medicine.  Many imaging modalities already exist and are widely used 

in diagnostics radiology as well as in treatment assistance in oncology.  MRI is one of 

these modalities, and it provides anatomical, structural, functional, and biochemical 

information about the underlying tissue.  MRI is a non-invasive and non-ionizing 

technique.  MRE uses MRI as a data acquisition method, making it non-invasive and 

non-ionizing, but including additional methodological steps to compress the tissue 

with an external source (actuator) and post-process the MRI data for estimating the 

resulting motion.  Here, we first briefly summarize the basic principles of the image 

formation in MRI and then cover background material relevant to the performed 

research in detail.  The detailed treatment of MRI can be found in [1]. 

In this chapter, the background information concerning the area of the research 

based on the literature review is provided.  The chapter is organized as follows: 

Section 2.1 introduces the basics of MRI physics, and Section 2.2 gives some insides 

on the assessment of soft tissue elastic properties, followed by principles of 

Elastography in general and MRE in particular. 

2.1 Basic Physics of MRI 

The atomic nuclei possess spin angular momentum, a characteristic that allows 

them to interact with an external magnetic field [1, 2].  This interaction provides the 

basis for the MRI principles.  Spin can be viewed as an angular momentum arising 

from rotation of the nucleus around an axis through its center.  The most used nucleus 
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in MRI is hydrogen (
1
H) due to its abundance in biological tissue.  

1
H experiences 

two spin energy states: spin-up and spin-down.  Within an external magnetic field 0B


, 

the magnetic moment  of a spin S


 can be written as 

S


                                                                                 (2.1) 

where is the gyromagnetic ratio and is equal to 42 MHz/T for 
1
H. 

The energy of the spin is expressed as 

0BE


 
                                                                        (2.2) 

and the energy transition between two states is 

 

ΔE                                                                             (2.3) 

where   is the Plank constant, and  is the frequency of the electromagnetic 

radiation.  Transition between two adjacent states occurs at the Larmor frequency

  00 B  .  For 
1
H, ω0 = 420 MHz at B0=10 T.  With the interaction between 


 and 

0B


, 


 tends to align with 0B


.  However, due to thermal fluctuations, 


 usually 

orients at an angle to and precesses around 0B


. 

2.1.1 Macroscopic View 

Consider an ensemble of 
1
H nuclei in an external magnetic field 0B


that is 

oriented in the z direction.  The equilibrium distribution of the spins is the Boltzmann 

distribution in each state (spin-up or spin-down).  The magnetization of the ensemble 

of spins is the mean of the magnetic moments: 




M
                                                                            (2.4)
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The external magnetic field is in the z direction.  While the transverse components of 

each 


 are randomly oriented in the transverse (x-y) plane and 0 yx MM , the 

longitudinal component
zM  does not vanish.  For 

1
H, the magnetization can be 

calculated as 

 
2

tanh
2

1

2

1 0

0

22

22
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         (2.5)

 

where 0N is the total number of spins, T is the temperature, and 
Bk  is the Boltzmann 

constant.  For 0B  = 10 T at room temperature (~300 K),  /   10~ 0

32 TJNM z

 .  For 1 

mg of water, N0 ~ 10
19

 and  / 10~ 13 TJM z

 .  
zM  values can be measured by using 

the induction principle (Faraday‟s law) in MRI [3]. 

2.1.2 Dynamics of Magnetization 

In the presence of the external field 0B


, the equilibrium state of the magnetization 

of a biological tissue sample is 0 yx MM  and 0zz MM   where 0zM is given in 

Eq. 2.5.  If another magnetic field is introduced to the system, the magnetization 

moves away from the equilibrium.  After the additional magnetic field is eliminated, 

the magnetization relaxes back to the original equilibrium state. The relaxation 

process highly depends on the sample structure.  In MRI, the characteristic of this 

relaxation is measured to obtain the information about the biological structure of the 

sample. 
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With 0B


 in the longitudinal direction present, the spins in a sample precess at a 

small angle around 0B


 with the Larmor frequency ω0.  Another magnetic field 
1B


that 

is perpendicular to 0B


is applied to produce the excitation of the spins.  Under the 

influence of 
1B


, the spins tip away from 0B


with a greater angle.  In order to 

efficiently perturb the spins, 
1B


has to rotate with the spins.  The rotational frequency 

of )(1 tB


is the same as the Larmor frequency.  Note that 
1B


is much weaker than 0B


 (

1B


/ 0B


 ~ 0.1%) [4]. 

To describe the dynamics of the excited magnetization of a sample, it is 

convenient to use a rotating reference frame in which )(1 tB


 is constant [1].  Consider 

a spin that precesses around 0B


in the clockwise direction (see Fig. 2.1).  The 

transverse plane (x’-y’) of the rotating frame rotates with the precession in the same 

direction with the Larmor frequency ω0.  The transformations between the rotating 

frame ),,( ''' zyx eee


and the laboratory frame ),,( zyx eee


is then 

zz

yxy

yxx

ee

etete

etete













'

00'

00'

)cos()sin(

)sin()cos(





                                           (2.6)

 

In the laboratory frame, )(1 tB


is in the transverse plane and is rotating with the spin as 

  '10011 )sin()cos()( xyx eBetetBtB


 
                       (2.7)

 

In the rotating frame, therefore, 
1B


is a constant field in the x direction.  Note that 0B


 

is still in the longitudinal direction in both laboratory and rotating frames. 



9 
 

 The dynamics of M


 in the presence of 0B


and )(1 tB


 is governed by the Bloch 

equation 

BM
dt

Md 


 
                                                                    (2.8)

 

 

 

Figure 2.1: Laboratory and Rotating Frames. 

 

In a rotating frame, the time derivative of M


 can be written as 

M
t

M

dt

Md 








                                                       (2.9)
 

where '0 ze


 ,  '''' zzyyxx eMeMeMM


 and  

'
'

'

'

'

'

z
z

y

y

x

x e
dt

dM
e

dt

dM
e

dt

dM

t

M 







                                 (2.10)
 

Then Bloch equation becomes 













 










BM
dt

Md

                                                     (2.11)
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where '10 xz eBeBB


 .  With the resonance condition of 0B


 , the Bloch 

equation in the rotating frame reduces to 

 '1 xeM
dt

Md 


 
                                                              (2.12)

 

where 
11 B  .  Consider an initial condition of a typical MRI measurement in which 

0'  xx MM , 0'  yy MM , and 00'  zzz MMM at t = 0.  )(tM


 can be solved 

from Eq. 2.12 as 

)cos(

)sin(

0

10'

10'

'

tMM

tMM

M

zz

zy

x











                                                            (2.13)

 

where 0zM is the maximum (longitudinal) value of the magnetization. 

 

Figure 2.2: Precession of M


 around 
1B


 in Rotating Frame. 

 

As shown in Eq. 2.13, M


precesses around 'xe


 with angular velocity 1  in the 

rotating frame (see Fig. 2.2).  In MRI, )(1 tB


is usually applied as a pulse.  For a pulse 

)(1 tB


with a duration of t , the angle precessed (tipped away from zz ee


' ) for M


is 
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tBtt  11  .  In MRI measurement, a 90° tip is usually preferred for a strong 

signal.  For 
1B ~10 mT, the duration of the pulse )(1 tB


is about 2 ms [4]. 

2.1.3 Relaxation Mechanism 

Consider the case of a 90° tip in which 90t of M


due to )(1 tB


 [1].  Right 

after )(1 tB


is turned off, 
0' zyx MMM  , 0'  xy MM , and .0'  zz MM   With 

the time, the restoration of M


to its equilibrium ( 0,0  yxzz MMMM ) occurs via 

two processes.  The first process is the release of the magnetic energy in the form of 

heat from the spins to the surrounding materials.  This process is directly linked to the 

alignment of M


to 0B


 as 
zM recovers from 0 to 0zM . 

The restoration of the 
zM is governed by 

)1( 1
0

T

t

zz eMM




                                                              (2.14)

 

where 
1T is the longitudinal relaxation time.  The second restoration process of M


is 

the decay of xM .  After 
1B


 is turned off, xM is gradually decaying from 0zx MM   to 

0xM .  During this process xM is measured by a closely placed coil.  This 

measurement is commonly referred to as an MRI signal.  The decay of the MRI signal 

is therefore 

2

0

T

t

zx eMM




                                                                     (2.15)

 

where 2T is the transverse relaxation time. Typically, T1 and T2 depend on the 

biological tissue properties and the strength of the external magnetic field. 
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2.1.4 Gradient Coil, k-Space, and Image Formation 

Consider a biological body that contains only three small distinct regions where 

there is hydrogen spin density (Fig. 2.3) [5].  In reality, the entire body would 

contribute to the formation of the MR signal.  When these regions of spin experience 

the same external magnetic field, only one peak is produced in the spectrum (Fig. 

2.3). 

 

 

 

 

 

 

 

 

If each of the regions would experience a unique magnetic field, then it would be 

possible to image their positions.  A gradient in the magnetic field allows 

accomplishing of this localization task.  A magnetic field gradient is a variation in the 

magnetic field with respect to a position.  A one-dimensional magnetic field gradient 

is a variation with respect to one direction, while a two-dimensional gradient is a 

variation with respect to two.  The most useful type of gradient in magnetic resonance 

imaging is a one-dimensional linear magnetic field gradient.  A one-dimensional 

magnetic field gradient along the  axis in a magnetic field , indicates that the 

 

Figure 2.3: Three Distinct Regions with Hydrogen Spin Density and a 

Single Peak in the Spectrum Produced under the same Magnetic Field 

Strength. 
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magnetic field is increasing in the  direction.  The length of the vectors represents 

the magnitude of the magnetic field (Fig. 2.4).  The symbols for a magnetic field 

gradient in , , and  directions are , , and . 

 

 

 

 

 

 

 

 

The point in the center of the magnet where  is called the 

isocenter of the magnet.  The magnetic field at the isocenter is  and the resonant 

frequency is  (Fig. 2.5). 

 

 

 

 

 

 

 

 

 

Figure 2.4: Field Gradient. 

 

Figure 2.5: Isocenter of the Magnet. 
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If a linear magnetic field gradient is applied to the biological sample in Figure 2.3 

with three spin containing regions, the three regions experience different magnetic 

fields.  The result is a spectrum with more than one peak (Fig. 2.6).  The amplitude of 

the signal is proportional to the number of spins in a plane perpendicular to the 

gradient.  This procedure is called frequency encoding and causes the resonance 

frequency to be proportional to the position of the spin. 

                    (2.16) 

                                         (2.17) 

This principle forms the basis behind all magnetic resonance imaging [6]. 

 

 

 

 

 

 

 

 

 

 

 

The basic principles of image formation can be explained by using k-space [5].  -

space is an array of numbers whose inverse Fourier Transform (iFT) is the MR image 

in the spatial domain.  Each element in a k-space contains information about every 

image pixel.  So, in order to have a complete image of good quality, each element in 

the k-space has to be filled with the acquired MR signal.  Filling the k-space requires 

 

Figure 2.6: Three Distinct Regions with Hydrogen Spin Density and 

Two Different Peaks in the Spectrum Produced with Magnetic Field 

Gradient Applied along Horizontal Direction. 
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repetitive signal acquisition, which explains why MR scans take a relatively long 

time.  In this regard, the faster the k-space can be filled, the quicker the image is 

acquired [5]. 

The parameter  is given by 

                                                                            (2.18) 

where  is the amplitude of the frequency encoding gradient and  is the duration of 

this gradient (  is the „area under the gradient‟). 

An example of an image acquisition pulse sequence is given in Figure 2.7.  

Varying the angle of the gradient θ is accomplished by the application of linear 

combinations of two gradients. 

To make MR imaging viable we have to have the ability to capture the spins in a 

thin slice of the biological body.  The  gradient on the last graphic (Fig. 2.7) 

accomplishes this. 

Slice selection in MRI is the selection of spins in a plane through the object.  The 

principle is explained by the resonance equation.  Slice selection is achieved by 

applying a one-dimensional, linear magnetic field gradient during the period that the 

radio frequency (RF) pulse is applied.  A 90
o
 pulse applied in conjunction with a 

magnetic field gradient rotates the spins that are located in a slice (or plane) through 

the object [6]. 

Consider the sample RF pulse sequence provided in Figure 2.7 [5].  When the 

magnetic field gradient, , is originally applied, each slice through the biological 

body perpendicular to the z-axis is labeled by a definite frequency.  Any plane 
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perpendicular to z can be chosen by using a selective RF pulse that has a center 

frequency matching that of the selected position on  and the bandwidth determines 

the selected slice width along .  After the selective RF pulse, an entire plane of spins 

perpendicular to the -axis is tipped into the  direction; the precession of these 

spins creates the signal arising from the entire selected slice (initial tissue excitation). 

This isolates the chosen slice of the object for imaging, since all other parts of the 

body cannot give rise to any MR signal.  At this stage there is no information about 

the contents of the slice since all spins have the same frequency. Once the slice has 

been selected, additional magnetic field gradients are applied across the slice in 

different directions (first , then  series, in our case) in order to obtain the slice 

image data. 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2.7: An Example of a Pulse Sequence for MR 

Signal Acquisition. 
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Then the decay of the excited tissue is observed (“listening” to the emitted signal) to 

fill the -space corresponding to the spatial location of all the pixels located on the 

line in a given  -direction of the image of the chosen slice.  The process is periodic, 

so we come back to the beginning of the RF pulse sequence for the next -line 

acquisition until the -space information is collected about all of the pixels of the 

selected slice in the object [7]. 

Figure 2.8 is a schematic representation of -space gathered for the selected slice.  

After all of the -space array elements for the particular slice of the object are filled, 

2-D iFT is performed to translate the information from frequency to spatial domain.  

The outcome is a complete, reconstructed MR image of the selected slice in the  

direction. 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2.8: Schematic Representation of -Space Array Transformed 

via 2-D  into an MR Image. 
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2.1.5 Tag Lines 

In order to identify the medical pathology in the scanned object, sufficient 

contrast between the healthy and the diseased tissues is needed.  As will be discussed 

in future sections, some stiff inclusions can be no different in the gray levels from 

those of normal tissue [8].  This lack of intensity contrast raises an issue when the 

motion evaluation is concerned.  To address this issue, a technique known as tagging 

is used.  In this technique, RF tagging pulses are used to spatially label an image with 

a specified physical or physiological property.  Most commonly, a tagging pulse 

places a series of parallel stripes or orthogonal grids on an image.  These stripes or 

grids are known as tag lines.  An interesting feature of the tags is that they are being 

applied to the tissue once, and they are present throughout all the data acquisition 

process in sequential cinema-type imaging. This allows them to reflect all of the 

motion that originally occurs in the tissue. While the motion of the tissue occurs, the 

tag lines move (bend) in the same direction with the tissue itself.  The deformation of 

the tags can be used later to evaluate the biomechanical properties of the imaged 

object [7]. 

Tags are typically applied as a magnetization preparation pulse prior to the actual 

imaging RF pulse sequence [1].  Virtually any imaging pulse sequence can be 

combined with a tagging pulse or a train of tagging pulses (Fig. 2.9).  A gradient 

(known as a „tagging gradient‟) is generally required to produce the desired spatial 

pattern. 
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As the spatial patterns can be different for the applied tagging, the parameters for 

their application vary.  Also, the width and frequency of their appearance (the number 

of lines per image) can be controlled.  In this research the tag lines are applied in 

vertical, horizontal, and both directions simultaneously (grid). 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Soft Tissue Elasticity Properties 

Tissue elasticity properties convey important diagnostic information.  

Pathological tissues such as tumors of the breast or liver are 5 to 20 times stiffer than 

the surrounding healthy tissue [9].  This stiffening is a result of inflammation, dense 

cellular reactions, and highly cross-linked collagenous fibers.  The increase in 

stiffness noted in these pathologic tissues provides unique bioelasticity contrasts for 

 

Figure 2.9: An Example of Image Acquisition Pulse 

Sequence with Tag Pulse. 
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disease diagnostics purposes.  The existing methods to identify the stiff inclusions are 

manual palpation and elastography. 

2.2.1 Manual Palpation 

Palpation is an examination of the tissue by pressing on the surface of the body to 

feel the organs or tissues underneath; this is an effective technique that utilizes 

information about tissue elasticity properties.  The idea of using simple palpation to 

detect this contrast is not new but is still effective.  For example, most breast cancers 

are discovered by self-examination using manual palpation.  Physicians also apply 

this technique to detect potential tumors in other soft tissues such as liver or prostate. 

Figure 2.10 illustrates the principle of manual palpation [9].  The object consists 

of a soft medium shown in light grey and a stiff spherical inclusion (appears to be 

circular in 2-D) shown in dark grey.  This can be considered a simplified model of a 

cross sectional view of a tumor embedded in normal tissue.  If a compressive force is 

applied to the object, it will deform.  However, the stiff target cannot be deformed as 

easily as the soft region.  A constant compressive displacement deforms the region 

 

 

 

 

 

 

 
 

Figure 2.10: Manual Palpation [9]. 
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above the stiff inclusion more than the adjacent regions [9].  Because the tissues are 

elastic, the more they are deformed, the greater counter force they generate.  Thus, 

large stress builds above the inclusion because of large deformation.  The fingers that 

displaced the surface also feel this stress distribution above the region that is being 

palpated.  In the case shown in Figure 2.10, the fingers detect the stress difference, 

which leads to the discovery of a stiff object inside the tissue.  Although the palpation 

is an effective technique for tumor or other stiffness detection [10, 11], it has some 

limitations in its usage: (i) only relatively large inclusions can be detected; (ii) the 

inclusion must be relatively close to the surface of the tissue; and (iii) the size and the 

stiffness of the inclusion cannot be reliably quantified. The major driving force 

behind the development of elastography was the need to overcome the limitations of 

the palpation method [10, 12]. 

2.2.2 Elastography 

The term elastography applies to a broad range of parametric elasticity imaging in 

soft biological tissue, and an elastogram describes the spatial variations in the strain 

tensor components or reconstructed tissue bioelasticity (also called viscoelasticity, 

tissue stiffness, compliance, Young's elastic modulus, or shear modulus).  Over the 

past few decades, there have been numerous investigations conducted to characterize 

the mechanical properties of biological tissue systems [13, 14].  Much of the work has 

focused on bone, dental materials, and vascular tissue.  There are many articles that 

discuss methods used to characterize these tissues, and there is a large volume of 

experimental data on the mechanical response of these tissues to various types of 
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loading [15].  The stiffness parameter is a function of the elastic modulus of the tissue 

and its geometry and cannot be measured directly. A mechanical stimulus of some 

kind must be propagated into the tissue, and some precision means for detecting the 

resulting internal tissue motions must be provided.  Such means include MRI or other 

diagnostic imaging modalities, including ultrasound imaging that can track minute 

tissue motion with high precision.  Ultrasonic Elastography Imaging (UEI) uses an 

ultrasound transducer as a remote sensing device to scan the object before and after a 

compression is applied. A comprehensive literature review for UEI can be found in 

[16].  The main limitation of UEI is that the motion cannot be measured in arbitrary 

directions with equal sensitivity.  Due to the limitation of ultrasound methods and the 

ability to overcome it by using MRI and unexplored nature, MRE is considered in this 

research because motion can be measured in all directions, including 3-D 

displacements. 

2.2.3 Magnetic Resonance Elastography 

Magnetic Resonance Elastography is an imaging technique for non-invasively 

assessing the elasticity properties of biological tissues using MRI.  Although major 

contributions to elastography were initially made by the ultrasound community, the 

advantages of MRE have only recently been recognized.  Initial studies demonstrated 

that this novel imaging technique has the potential to probe biological tissues 

effectively.  MRE can provide estimates of the mechanical properties of tissues, such 

as shear modulus or Young‟s modulus [17, 18].  For example, small lesions of less 

than 1 cm in diameter and with stiffness only three times that of the background were 
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detected in vivo in human subjects [19].  While there are many possible applications 

of MRE, breast cancer detection and classification is currently the most common use. 

MRE has further potential as a diagnostic tool in such diseases as strokes, 

hyperthyroidism, disuse atrophy, or paralysis.  A detailed description of multiple 

MRE methods is given in [17, 20, 21].  The technical task of MRE generally consists 

of the application of a deformation force, followed by tracking the tissue deformation 

(motion analysis).  By the nature of the deformation force application, all the methods 

of MRE currently can be divided into static or dynamic techniques [22]. 

Static methods (or quasistatic) are characterized by applying quasistatic 

compression to the tissue and by estimating the resulting components of the strain 

tensor [8, 23].  Static approaches are best described as palpation by remote sensing.  

They are considered static because the data acquisition rate (frame rate) is much 

faster than the deformation rate. After producing an internal strain field, the object 

tissue is allowed to relax to reach equilibrium before measuring the displacement 

field.  With these techniques, viscoelastic effects are generally ignored, making the 

reconstruction of the images easier. 

Dynamic methods (also called harmonic) are characterized by applying periodic 

mechanical excitation at low frequencies (»250 Hz) to the tissue near the region of 

interest and inspecting the resulting tissue behavior by magnetic resonance.  One or 

several “snapshots” of low-frequency shear wave propagation within the object are 

produced by controlling the relative phase differences between the mechanical 
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excitation and the motion-encoding gradients.  The local displacement information in 

these images is then used as an input for an elasticity reconstruction algorithm. 

While both dynamic and static techniques represent valid approaches to MRE, the 

dynamic methods have some limitations [8, 23]: shear-wave propagates in soft tissue 

at speeds of 1-20 m/s.  A shear wave can require tens of milliseconds to traverse an 

object of small size (»30 mm), which may not be appropriate for studying small 

objects.  The time to reduce the amplitude of the reflected waves can be much longer. 

Dynamic measurements, which encode displacement during shear-wave 

propagation, are potentially inaccurate because of the interference of the primary 

shear wave with reflected or standing shear waves.  To avoid these conditions, our 

research utilizes the static approach for the compression model.  The general steps of 

the static MRE are as follows: 

 

 

 

The details of implementation of each step specified above are provided in the 

following chapters.  

Step 1: Periodically compress the tissue. 

Step 2: Acquire a series of tagged MR images at different time points of the 

compression cycle. 

Step 3: Estimate the tissue motion on the images (image processing and analysis). 
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Chapter 3 

Mechanical Compression Instrument 

Data acquisition in MRI involves spin dynamics where an imaging sequence 

applies repetitive RF pulses followed by listening to the echoes emitted from the 

sample.  The received echoes are orchestrated to fill the k-space with the help of the 

gradient pulses.  The compression device was expected to work in synchrony with 

this repetitious acquisition process and was furnished with a capability of applying 

compression periodically to induce motion on the underlying sample.  In this regard, 

an essential operational feature and practical aspect of the device was to achieve a 

stable, repeatable, and uniform compression that would enable triggering the 

acquisition of the real MRI data.  Such a device was not available commercially, and 

limited information existed about its construction to operate in a high magnetic field 

environment [24].  Interfacing the device to the scanner and making it work 

harmoniously with the tagged imaging sequence was another challenge and involved 

time-gating principles.  Therefore, extensive learning and training were needed on 

how to operate the gating and monitoring system installed in the scanner for 

originally receiving the vital signs of live animals while being scanned.  Another 

unique desirable feature of the device was that it had to be able to comfortably 

accommodate small animal oncology models for future research. 

In this chapter, these issues concerning the drafting of a practical device are 

addressed and a final successfully working prototype is introduced.  The chapter is 

organized as follows: Section 3.1 introduces the design of the instrument and gives a 

diagrammatic look at its components. Section 3.2 describes the implementation of the 
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prototype, and Section 3.3 details how the compression of the device was monitored 

and how this information was relayed to the scanner for the gating purposes. 

3.1 Design 

The requirements for the design of the compression device were first outlined to 

meet the following criterions. 

Overall: The device should be light weight and must fit into an experimental 9.4 

T MRI scanner with a 12 cm inner diameter gradient coil where a 7 cm inner diameter 

volume coil was inserted.  The available space for inserting the compression device 

was therefore a 7 cm diameter cylindrical volume. 

Material: Due to the magnetic field of the MRI scanner, the instrument had to be 

made of non-magnetic material. 

Compression: The compression induced by the device had to be uniform, 

periodically repetitive, and stable over time.  This requirement was introduced 

because tagged MRI protocol involves gated-data acquisition. 

Size: Since an immediate application was in mind for the animal research in the 

future, the device had to be able to accommodate small laboratory animals, 

particularly mice, since this animal model allows tumor cells to be implanted into its 

mammalian gland for further growth.  Therefore, the hardware had to be adjustable to 

hold different sized animal oncology models or phantom samples ranging from 1 to 5 

cm in length. 

In compliance with the above requirements for the hardware design, a 

compression device depicted in Figure 3.1 was first drafted as a blue print and 
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dimensions were then decided.  Based on this information, a prototype was 

constructed. 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Prototype 

The prototype (Fig. 3.2) was built according to the design in Figure 3.1. Several 

iterations took place to reach its finalized form.  All real data acquisitions were 

conducted using this prototype device.  Note that the MR volume coil (X) was also 

included in Figure 3.2 to clearly show the positioning of the device into the coil. 

  

 

Figure 3.1.  Original Draft of the Prototype Compression Device. 

Components identified by numerals. 

I - Electromagnetic coil to produce angular motion. 

II - Pin. 

III - Gear assembly to transfer circular motion to linear motion using teethed bar. 

IV - Teethed bar was allowed to slide horizontally. 

V - Compression plate was attached to the end of the pole to deform the sample. 

VI - Sample with an inclusion was placed on a slick surface. 

VII - Fixed plate supporting the sample against the applied compression. 
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The prototype device consisted of a hollow tube made of Plexiglas (MRI-safe 

material).  It was cut in half along its axis and housed two main components inside: a 

motion generator and a sample holder. 

The motion generator consisted of an electro-magnetic coil (I) and gear assembly, 

as shown in Figure 3.3.  The coil was formed by winding 50 turns of 18 gauge 

insulated wire on a 3 cm x 6 cm rectangular piece of Plexiglas, which was carved at 

the edges to hold the wires.  A plastic circular gear (III) was mounted inside this 

piece, and both were attached to the tube by a strong and durable nylon pin (II).  A 

teethed bar (IV) was passed through the opening in the center of the rectangular piece 

and engaged with the gear.  When placed in a strong magnetic field of 9.4 T and 

energized by bipolar pulses delivered across its terminals, the coil‟s internal magnetic 

field interacted with the external magnetic field.  This interaction forced the coil to 

reorient itself depending on the polarity of the applied voltage. 

  

 

Figure 3.2: Implementation of Prototype Compression Device. 

X points to a Volume coil. 
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The reorientation prefers a minimum energy state where the internal and external 

magnetic fields are aligned in the same direction.  The circular flip motion during the 

reorientation is converted to a linear motion by the gear assembly that slides the 

teethed bar back and forth and subsequently delivers the motion to the compression 

plate attached to the bar. 

To drive the electro-magnetic coil, we used a 4017A 10 MHz Sweep Function 

Generator (BK Precision Yorba Linda, Ca) that was capable of producing functions 

with frequencies between 0.1 Hz and 10 MHz.  The output of this generator could be 

set to either Sinusoidal, Square, Triangle, Pulse, or Ramp waveform that would run 

 

Figure 3.3: Motion Generator of Compression Device. 

Components identified by numerals. 

I - Electromagnetic coil. 

II – Nylon pin. 

III – Plastic circular gear. 

IV - Teethed bar. 
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periodically.  We examined square and triangular waveform settings while changing 

the frequency from 1 and 10 Hz and the peak amplitude from ±1 to ±5 V.  Depending 

on the compliance of the sample being studied, different settings for the frequency or 

voltage were used to induce the desired motion in the sample. 

The sample holder is shown in Figure 3.4. The phantom or the biological tissue 

sample with or without the embedded stiff inclusion (or tumor) and with affixed on 

top the pneumatic pillow (I) was placed within the opening (II) and secured between 

the compression plate (III), fixed plate (IV), and the wall of the Plexiglas tube.  The 

compression plate was allowed to move freely with no friction, and its motion was 

dictated by the sliding bar.  The movement of the compression plate squeezed the 

sample against the fixed plate at the other end.  The configuration seen in the figure 

describes the boundary conditions “stress free.” 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.4: Sample Holder of Compression Device. 

Components identified by numerals. 

I - Tissue sample with affixed on top pneumatic pillow. 

II – Opening. 

III – Compression plate. 

IV - Fixed plate. 
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3.3 Compression Monitoring 

In principle, the output from the function generator could be used to assess the 

compression of the sample and ultimately to trigger the scanner.  However, this 

process required additional hardware development.  Considering the difficulty in 

predicting the time delays between the output signal and the compression experienced 

by the samples with different compliances, we opted to use a MR-compatible Small 

Animal Monitoring and Gating System (Model 1025, SA Instruments, Inc., NY) that 

was readily available and used regularly with the scanner.  As indicated above, the 

externally introduced compression on the sample during the MR acquisition was a 

periodic process similar in its qualities to those seen during a physiological vital sign 

of respiration.  This similarity provided a strong justification for monitoring the 

compression by using the same principles of respiration monitoring and gating in 

living animals being scanned.  The monitoring system was originally designed 

specifically to meet the physiological monitoring and gating needs for anesthetized 

animals in the MR environment.  The system consists of data acquisition modules 

located near the animal (agar phantom or biological samples in the context of this 

research).  The control/gating module connected to a Personal Computer (PC) located 

near the operator console.  The PC displayed multiple waveforms that represent 

measured respiration values read by the sensors of the pneumatic pillow, estimated 

trends, and produced gating pulses. The sensory modules were controlled by menu-

driven software from the PC. 
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The respiration module resided just outside the magnet bore. Respiration was 

measured using a small pneumatic pillow (Fig. 3.5) that was attached to the sample 

(in our case, the phantom). The control/gating module received data from the 

acquisition modules using optical fibers. The module sent data to the PC for display 

and received instructions from the PC to control measurement and gating functions. 

Respiratory gates were generated by the control/gating module‟s microprocessor and 

sent to the MR system. 

 

 

 

 

 

 

 

 

 

Figure 3.6 depicts a sample process of monitoring the compression that was 

produced by the monitoring instrument during one of the agar phantom data 

acquisitions. The compression was being monitored at all stages during the data 

acquisition process. As seen in the figure, the compression was periodic and stable 

over the indicated time frame. The peaks of the cycle show the highest points of the 

compression of the sample, and the lower points display the decompression. The 

 

Figure 3.5: Pneumatic Pillow. 
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gating of the process was performed while the compression was monitored. A proper 

gating was required for a successful MR data acquisition.  Each period was divided 

into phases, and number of frames in the MRI sequence was set a priori according to 

this division.  After the triggering, MR data were gathered sequentially for each 

phase.  The MRI sequence also allowed introducing additional time-delay between 

the trigger signal and the start of the acquisition.  However, this feature was not used 

in this research. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 shows a screenshot of the scanner‟s computer window after displaying 

the sequential tagged images acquired from a uniform phantom.  This acquisition 

involved 20 frames within the full period, spanning both the compression and 

decompression phases.  Note that the sizes of images in horizontal and vertical 

 

 

Figure 3.6: Screenshot of Compression Monitoring. 
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directions change due to the applied compression.  The other parameters of the data 

acquisition are provided in Section 4.2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.7: Screenshot with Sample MRI Data Acquisition. 
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Chapter 4 

Experimental Procedures for Generating Data 

In this chapter, the experiments that were performed for generating both synthetic 

and real data are described.  The chapter is organized as follows: Section 4.1 provides 

information regarding synthetic data, and Section 4.2 shows the process of 

preparation and the features of the agar phantoms with details about how the 

experiments for gathering real data from the phantoms were performed. 

4.1 Synthetic Data 

Synthetic tagged images were generated using numerical simulations of signal, 

noise, and motion to systematically test the performance of the implemented OF 

algorithm under controlled settings.  The simulated motion constituted the true 

motion field that was used as a benchmark reference for comparing the motion 

estimates [25].  This allowed us to quantitatively assess the performance of our OF-

based motion estimator.  Images embedded with motion and degraded by signal 

independent Gaussian noise were generated using software written in Matlab 

programming language (Mathworks, Inc., Natick, MA) [26].  Relevant Matlab codes 

to produce these images are provided in the Appendix. 

For the purpose of proving the concept, the first simulation set was kept very 

simple.  A square image with tag lines was initially synthesized.  Motion encoded 

noisy images were obtained by spatially shifting this image and introducing a 

different amount of noise. 

This set of images was instrumental in understanding the dependence of the 

performance of the OF algorithm on the translational motion and noise level under 
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otherwise identical conditions.  We considered a synthetic tagged image of a square 

size in 40 pixels x 40 pixels and tag lines applied in both horizontal and vertical 

directions with the spacing of 10 pixels. 

The image consists of a gray scale intensity variation.  To introduce the intensity 

variation (speckles), we applied a small amount of white noise to the original square 

and then smoothed the composition with a Gaussian filter (to make the noise more 

evenly distributed).  In the next step, the tag lines were simulated.  To do so, we 

created a 2-D Gaussian window with the size of 10 pixels x 10 pixels and a standard 

deviation of 1.5 pixels and convolved it with the speckled square.  The result was an 

original image similar to the real experimentally acquired tagged MRE data.  

Formation of the image step-by-step is given in Figure 4.1. 

 

 

 

 

 

 

 

After the original image was formed, it was rigidly translated diagonally by 1, 2, 

and 3 pixels.  The original images and the resulting versions from the translations are 

shown in Figure 4.2. 

  

   *         =     

Figure 4.1: Tagged Speckled Square Image Formation (left to right): 

Speckles generated; Tag lines grid; Tagged Speckled Square Image. 
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To make our simulation data as close as possible to the real experimentally 

acquired tagged images, we introduced signal independent noise to each original and 

translated images individually.  We generated random white noise in 2-D and 

smoothed the realization by a 2-D Gaussian filter.  Since the task was to test our OF 

algorithm‟s sensitivity to the amount of noise introduced, we generated a set of pairs 

of the original and the translated images with different amounts of noise.  The sample 

pair is provided in Figure 4.3. As can be seen, there are two images, original and 

translated diagonally by 1 pixel, with the multiplicative noise coefficient 0.05. 

 

 

 

 

 

 

  

    

Figure 4.2: Series of Translated Square Images with Tag Lines (left to 

right): Original Image; Square translated diagonally by 1 Pixel; Square 

translated diagonally by 2 Pixels; Square translated diagonally by 3 Pixels. 

  

Figure 4.3: A Pair of Original Speckled 

Square Image (left) and its Translated 

Diagonally by 1 Pixel Version (right).  

Noise Coefficient = 0.05. 
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In mathematical terms, image formation for this simulation data can be written as 

 

                     (4.1) 

where  is an original noise-free intensity image with tags and speckles, 

 is a shifted noise-free intensity image with tags and speckles, n1 

and n2 are two different realizations of a signal-independent noise model, α is the 

noise constant, and  and  are original and shifted images, respectively, 

with the noise added. 

The second simulation set involved a cylindrical inclusion contained in a 

homogeneous background, as shown in Figure 4.4.  The background of the image 

represents a healthy tissue that is being compressed normally, and the circular 

insertion models a tumor or a region of suspected cancerous growth that is stiff.  

Again, the contrast between the target and the background were left unchanged.  We 

considered the plane strain condition and utilized the analytical formulas provided in 

[27] for the profiles under the uniform loading from the top and bottom boundaries. 

 

 

 

 

 

 

 

  

Figure 4.4: Images with 2-D Cylindrical Inclusion and 

Tag Lines (left to right): 2-D cylindrical inclusion 

simulation; Speckled image with inclusion and tag lines. 
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According to cylindrical geometry, the motion of each pixel in a series of two or 

more consequent images can be described by  that denotes radial direction, and  

– a radial angle. 

To create a motion profile for compression of media that includes a stiff 2-D 

cylindrical inclusion, two sets of motion parameters should be defined:  and  

inside the boundary of inclusion, as well as  and  outside of the boundary. 

To simplify formulas provided later, we introduce the following constants: 

 

 

 

 

 

                                         (4.2) 

where  is shear modulus for the media,  is shear modulus for inclusion,  is 

bulk modulus for media, and  is bulk modulus for inclusion. 

Then, using (4.2), for each point  

- outside of inclusion (media) 
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                          (4.3) 

- inside the boundary of inclusion (inclusion): 

 

                                       (4.4) 

where T is the applied stress from the top and bottom boundaries, and a is the 

radius of the inclusion. 

During the compression, the left boundary was fixed and the upper and lower 

boundaries were allowed to slide freely.  The  and maps upon compression are 

depicted in Figure 4.5. 

 

 

 

 

 

 

 

 

 

4.2 Real Data 

The research considered real data from two types of samples: phantoms with and 

without a cylindrical inclusion.  The samples were prepared using different 

  

Figure 4.5:  and Maps for Image with 2-D Cylindrical Inclusion (left to right, 

respectively). 
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concentrations of agar (or gelatin) home-made samples.  The phantoms were 

constructed as   blocks to quantitatively simulate mechanical properties 

of a soft biological healthy tissue and one with a tumor.  While the first type of 

phantoms had no inclusion present, the second type contained a hard inclusion of 

cylindrical shape placed at the center of a uniform background.  The inclusions had a 

shear modulus value of 40 kPa (that is a typical value for malignant tumors), while 

the background was at 10 kPa.  To make such a phantom, two batches of gel were 

prepared separately for the background and inclusion by varying the concentration of 

agar (3 to 6%).  The gel mixture for the inclusion was poured into cylindrical or 

spherical molds with a 5 mm radius and cured for 2 hours at room temperature.  Next, 

the batch of gel mixture was prepared for the background.  The inclusion was 

removed from the mold and suspended in a rectangular container that was then filled 

with the second batch of gel.  Each sample contained only one inclusion (Fig. 4.4).  

Since we cannot clearly see the stiff cylindrical inclusion on the picture due to lack of 

contrast between the two batches of agar with different concentrations, it is 

schematically shown on Figure 4.6 with a red circle.  In order to hold its shape, each 

phantom is wrapped in clear plastic. 
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4.2.1 Experimental Data Acquisition from Phantoms 

As described above, our ready phantoms were wrapped in a thin layer of plastic 

film.  The respiration pneumatic pillow was tightly fixed on the top of the sample 

using self-adhesive tape.  The compartment size of the MRE compression device was 

adjusted to the size of the sample, and then the phantom was loaded into the 

compartment.  It was important to make sure there was no space left between the 

phantom and the walls of the sample holder so that no or minimal friction is created 

during the data acquisition associated with the improper spacing of the phantom.  

This was difficult to control during the experimental data gathering for this research 

due to the design of the sample holder chamber.  To improve that, some modifications 

will be introduced to the design of the compression device as a part of future work. 

We used the volume RF coil with a 7 cm inner diameter for data acquisition.  In 

order to successfully acquire data, the coil had to be positioned around the chamber of 

the MRE compression device with the sample inside so that the center of the sample 

    

Figure 4.6: Agar Phantoms without and with the Stiff Cylindrical Inclusion 

(left to right, respectively). Radius of inclusion r = 5 mm. 
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coincided with the center of the coil.  Following that, our compression device with the 

coil was then fitted and fixed inside a positioning slot for MRI experiments.  For the 

positioning slot, we used a half tube of non-magnetic material with a 12 cm diameter.  

This size was chosen in consideration of the inner diameter of the MRI bore and the 

experimental hardware setup size.  Some minor adjustments had to be made in order 

to buffer possible motion of the device inside the MRI scanner during data 

acquisition.  The adjustments were made using non-magnetic materials and self-

adhesive tape. 

The next procedure of the experimental setup was to perform the rough tuning of 

the volume coil. The coil was connected to the coil tuner. By alternatively 

manipulating the two sets of poles of the tuner, the coil was calibrated to operate at 

400 MHz. 

After preliminary preparations were performed, the device was ready to be placed 

in the magnet bore of the MRI scanner. It had to be positioned inside the scanner so 

that the sample was located precisely in the middle of the bore (at the isocenter of the 

scanner) and the coil of the compression device was located at the periphery.  The 

wave generator was connected to the coil of the device. The next step was to perform 

the final tuning of the volume RF coil. 

Testing of the positioning in the bore of the MRI scanner of our setup was 

performed using the predefined pulse sequence “scout” with the following 

parameters: minimal TE = 1.88, Data Matrix = 128 x 128, Readout = 100, Phase = 

100, Slices = 1, Thickness = 2. As the result, three images were acquired: axial, 
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coronal, and sagittal projections of one slice located in the middle of the scanned 

sample. 

As the next stage of the experimental setup, we tested the gating system and chose 

the parameters for the compression monitoring.  For this purpose, we generated a 

sinusoidal electromagnetic wave with the frequency of 7 Hz using the wave 

generator.  This produced the compression of our sample.  The motion was captured 

by the registration/ECG pillow and was transferred to the monitoring system.  Due to 

the close monitoring of motion, we could reliably define the needed gating 

parameters for our experiments.  The parameters were as follows: TR = 300, TE = 

1.88, Flip Angle = 30, Readout = 40, Phase = 40, Receiver Gain = 10, Frames = 10, 

R-R Interval = 130, Tag Line Width = 1.00, Tag Line Spacing = 3.00.  The 

experiment was performed with the “tagcine_MB” pulse sequence written in our 

laboratory specifically for the tagged cardiac MR images acquisition using a 9.4 T 

MRI scanner. 

The parameters of the acquisition were changing in order to obtain images with 

different features: different projections of the same phantom, different parameters of 

tag lines patterns, different resolution on the images, etc.  As we performed 

experiments, the compression was instantly monitored and the needed adjustments in 

experiment configurations were done in real time.  Depending on the parameters, 

each experiment took approximately 7 minutes. 
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Chapter 5 

Motion Analysis 

The goal of a motion analysis is to describe the change in the position of a moving 

body that occurs between two images.  Algorithms are developed for handling global 

motion problems such as rigid motion (translation, rotation) or alignment of images 

from different imaging modalities (CT, MRI, and mammogram).  This type of 

algorithms accomplishes registration [28].  Other techniques consider local motion, 

which occurs when the motion shows dependence on the underlying specific region 

of the image.  Optical Flow (OF) algorithms were developed to analyze such motion. 

This chapter provides information on motion analysis techniques and their 

evaluation methods.  Section 5.1 introduces the concept of OF techniques and gives 

an explanation of the algorithms that were implemented, tested, and optimized in 

applications to MRE data in this research.  The errors that were calculated and used as 

an evaluation tool for the performances of the OF algorithms are described in Section 

5.2. 

5.1 Optical Flow 

Optical Flow is a technique used to compute an approximation to the 2-D motion 

field -- a projection of 3-D velocities of surface points onto the imaging surface from 

spatiotemporal patterns of image intensity.  In mathematical terms, the OF at the pixel 

 is a 2-D velocity vector as an approximation to the real motion: 
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                                                               (5.1) 

The fundamental assumption in the OF approach is that the brightness intensity 

function of the moving object remains approximately constant at least for a short 

duration of time [29].  That is  

                (5.2) 

Here  represents intensity,  are spatial coordinates, and  is time variable.  

The major stages of processing in OF are as follows [25]: 

(1) Prefiltering or smoothing with low-pass/band-pass filters (to extract signal 

structure of interest and enhance SNR); 

(2) Extraction of basic measurements such as spatiotemporal derivatives (to measure 

normal components of the velocity) or local correlation surfaces; 

(3) Integration of the previously extracted measurements to produce a 2-D flow field. 

5.1.1 Differential Techniques 

There are different ways to calculate the velocity field [30].  After a literature 

review, we chose differential OF techniques for their simplicity and reliability. 

The differential technique was introduced for calculating the velocity in two 

consecutive images [29].  The approach uses a linear constraint in the space spanned 

by horizontal and vertical components of the velocity vectors known as Optical Flow 

Constraint (OFC).  This constraint relates the spatial and temporal  derivatives of the 

image brightness function at each point to the velocity vectors  and , at that point.  

Since there is only one equation and two unknowns, this equation cannot be solved 

for both horizontal and vertical components of the OF without additional assumptions 
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or information.  In other words, a single equation produced by OFC only constrains 

the solution vectors  to lie on a constraint line in 2-D u-v-space: we need at least 

one other non-parallel constraint line to uniquely determine the flow.  Various 

alternative strategies have been suggested, but regardless of the strategy, we usually 

arrive at a set of linear equations to solve for the optical flow at each point. 

Requirements for differential techniques are that  must be differentiable 

and the image intensity must be nearly linear.  In general terms, the flowchart of OF 

estimation using differential methods can be described as follows: 

Input: Sequence of images 

Output: Difference between the images (velocity flow) 

Step 1: Filter each image (to suppress noise) 

Step 2: For each pixel in the images 

Step 2.1: Compute the matrix of spatial image gradients and the vector 

of partial temporal derivatives of the image brightness 

Step 2.2: Compute image flow in both x- and y- directions 

Step 2.3: Mark each point with an arrow 

Step 2.4: If the point's flow magnitude is larger than a threshold, 

indicate its flow 

Step 3: Visualize the flow 
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As follows from [30], differential techniques produce the best results based on 

their accuracy and density of velocity estimates in motion analysis from an image 

sequence. 

One of the primary goals of this research was to develop and test a robust and 

effective algorithm for motion analysis that will be used for motion analysis in tagged 

MRI with high accuracy and noise insensitivity.  Based on the literature review and 

our preliminary investigations on the performance and complexity of the current 

approaches, the following OF algorithms were implemented and evaluated using 

simulation and experimental based data. 

- One-step differential technique [31]; 

- Iterative differential technique of [29]. 

5.1.2 One-step OF Method  

The One-step method uses a weighted least-squares fit of local first-order 

constraints to a constant model for velocity estimates  in each small spatial 

neighborhood Ω by minimizing 

       (5.3) 

where gradient ,  is the partial time 

derivative of , and  denotes a window function that gives more 

influence to constraints at the center of the neighborhood than those at the periphery.  

The solution to (5.3) is given by 

                                                   (5.4) 

where for n points xi Ω at a single time t, 



49 
 

 

 

                          (5.5) 

The solution to (5.4) is 

                                            (5.6) 

which is solved in closed form when A
T
W

2
A is nonsingular, since it is a 2 × 2 matrix 

    (5.7) 

where all sums are taken over points in the neighborhood Ω [30-32]. 

5.1.3 Iterative OF Method 

The Iterative OF method combines the gradient constraint with a global 

smoothness term to constrain the estimated velocity field (u, v), minimizing 

   (5.8) 

defined over the domain D.  is a smoothness constraint.  

Magnitude of  reflects the influence of the smoothness term. 

We obtain image velocity by minimizing (5.8) via solving iterative equations 

 

                                         (5.9) 

where k denotes the iteration number, and  and  are neighborhood averages of  

and . 
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Since we are using two consequent images, our time is considered as 1 unit, and our 

velocities  and  in fact represent displacement of the same pixel [29, 30]. 

5.2 Error Analysis 

One-step and Iterative OF algorithms were tested on synthetically generated and 

experimentally acquired phantom data.  The performances of the methods were 

compared quantitatively using criteria of angular error (AE) and vector length error 

(VLE) between the estimated values of  by OF and their corresponding true 

values  from the numerical simulations [25].  Note that true values from 

the phantom studies were not available. 

Angular error was calculated as 

                                    (5.10) 

Vector length error was calculated according to 

                            (5.11) 
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Chapter 6 

Results and Discussion 

In this chapter, the results of our research are provided.  Section 6.1 considers the 

outcomes of the synthetic data experiments with the simple translational motion.  

Section 6.2 illustrates the results for the simulations of the soft media with a stiff 2-D 

cylindrical inclusion.  Details of the experiments with the agar phantoms without an 

inclusion and with a stiff cylindrical inclusion embedded in the center of the soft 

media are given and discussed in Sections 6.3 and 6.4, respectively. 

6.1 Simple Translational Motion 

Figure 6.1 shows typical synthetic noise-free tagged images representing purely 

translational type motion diagonally by 1 pixel.  The size of the images was 40 pixels 

x 40 pixels, and the tag line spacing was 10 pixels in both directions.  Motion 

estimates from the images were obtained by using One-step and Iterative OF 

algorithms.  Quivers were drawn for the true motion profile as well as the results for 

the motion estimates from both algorithms, and all three are displayed in Figure 6.2.  

The true motion vectors appear in blue, and the estimates by One-step and Iterative 

algorithms are represented by flow vectors with red and green colors, respectively.  

The window size was set to 5 pixels x 5 pixels in the One-step algorithm, which 

resulted in no estimates for the 2 pixels at the edges surrounding the flow map, and 

hence the estimates were produced over 36 pixels x 36 pixels.  The Iterative 

algorithm was run with 1,000 iterations, and the smoothness parameter was set to λ = 

100.  The lengths of the vectors in the figures were scaled by ¾ for better 

visualization of the flow maps.  All vectors were also plotted jointly.  The magnified 
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version within a central region of the joint display of the flow map in Figure 6.2 is 

provided in Figure 6.3 to clearly display the typical behaviors of the vectors.  From 

the flow maps, it is visually evident that for the given data parameters, both 

algorithms perform relatively well, and the estimated motion vectors closely match 

the true motion when the images are noise-free.  This is further supported by the 

quantitative error calculations from Eq. 5.10 and Eq. 5.11: AE = 0.83˚ and VLE = 

0.03 pixels for the One-step algorithm and AE = 1.05˚ and VLE = 0.04 pixels for the 

Iterative OF algorithm, both computed over a square section centered from pixels 5 to 

35 in both directions.  Small AE values mean that the estimated flow vectors are 

aligned along the same direction with the true motion vectors.  The small VLE value 

indicates that the estimated flow vectors have nearly the same lengths as the true 

motion vectors.  The corresponding error results when the noise-free image was 

translated by 1, 2 and 3 pixels diagonally are given in Table 6.1.  When the true 

motion increases, the performance of both estimators degrades as indicated by the 

increased error results in both the angle and length values. 

 

Figure 6.1: Original Noise-Free Image (left) and its Translated Diagonally 

by 1 Pixel Version (right).  These two images constitute a pair for 

estimating flow vectors representing motion using One-step and Iterative 

OF algorithms. 
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Figure 6.2: Motion Analysis Results between the Pair of Images in 

Figure 6.1 (from left top to right bottom): 

True motion profile between the pair of images.  Note that the flow 

vectors were scaled in length by ¾ for better visualization of the 

vectors; 

Motion estimates from One-step algorithm; 

Motion estimates from Iterative algorithm; 

Display of vectors jointly by using the same color coding. 
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Figure 6.3:  Joint Display of the Flow Vectors in Figure 

6.2 Depicted in Higher Magnification.  Color Code:  

  True Motion diagonally by 1 pixel; 

 Iterative OF algorithm estimated vectors; 

 One-step algorithm estimated vectors. 

 

 

Table 6.1: Error Analysis of the Estimated Flow Vectors between the Original 

Noise-Free Image and its Translated Version. 

Spatial Shift 

(diagonal) 

One-step OF Algorithm Iterative OF Algorithm 

AE (degrees) VLE (pixels) AE (degrees) VLE (pixels) 

1 pixels  0.83 0.03 1.05 0.04 

2 pixels 5.86 0.34 5.85 0.37 

3 pixels 12.46 1.04 13.73 0.96 

 

The error values in Table 6.1 were computed for the ideal case where the images 

were free of signal-independent noise.  This implies that the reported values 

established the lower bounds for the errors to be expected when the images are 

corrupted by signal independent noise.  Therefore, the effects of signal independent 

noise on the motion estimates next were investigated by changing the noise constant α 
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(Eq. 4.1) at increments of 0.05 for only two cases of spatial shifts by 1 and 2 pixels.  

The joint display of the true motion profile by 2 pixels diagonally and the estimates 

by both OF algorithms, as well as a magnified version of a part of the joint display, 

are given in Figure 6.4. The effects of the translation by 3 pixels were not studied 

because the errors for noise-free images for this case were already high.  The results 

of error analysis for the estimated flow vectors from the images with the spatial shifts 

of 1 and 2 pixels diagonally are given in Table 6.2 and Table 6.3, respectively.  As 

expected, the readings in the tables indicate that both estimators perform worse with 

increased noise.  Furthermore, the closeness of the values for each noise level 

suggests that both estimators perform nearly equally under similar conditions of noise 

level and spatial shifts. 

To visually compare the estimates obtained when the images were noisy, the true 

motion and flow estimates were simultaneously plotted in Figure 6.3.  For noise-free 

images, the estimated vectors had good alignment with the true motion vectors in 

Figure 6.2, but the presence of noise in images degraded this alignment, and the 

degradation was greater when the noise level and spatial shift increased.  These 

behaviors are typical and are reported to be the case for the classical motion 

estimators [25]. 
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Table 6.2: Error Analysis of the Estimated Flow Vectors from Noisy Images in Case 

of Diagonal Translation by 1 Pixel. 

Noise Constant  

Α 

One-step OF Algorithm Iterative OF Algorithm 

AE (degrees) VLE (pixels) AE (degrees) VLE (pixels) 

0.05 1.09 0.05 1.28 0.06 

0.10 2.03 0.09 2.09 0.09 

0.15 3.28 0.12 3.57 0.12 

0.20 4.30 0.17 4.62 0.18 

 

 

Table 6.3: Error Analysis of the Estimated Flow Vectors from Noisy Images in Case 

of Diagonal Translation by 2 Pixels. 

 

Noise Constant  

Α 

One-step OF Algorithm Iterative OF Algorithm 

AE (degrees) VLE (pixels) AE (degrees) VLE (pixels) 

0.05 4.64 0.28 5.24 0.32 

0.10 4.90 0.37 5.49 0.39 

0.15 5.22 0.38 6.12 0.41 

0.20 5.69 0.46 6.07 0.48 
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Figure 6.4:  Joint Display (left) of Motion Analysis Results between the Pair of 

Translated Diagonally by 2 Pixels Images and its Magnified Version (right).  The 

noise constant α = 0.2.  A magnified view of the vectors from within the rectangular 

window is marked by the red rectangle on the left image.  Color Code:       True 

Motion diagonally by 2 pixel;        Iterative OF algorithm estimated vectors; 

           One-step algorithm estimated vectors. 

 

6.2 Inclusion with Cylindrical Geometry 

The next stage of simulation experiments was carried out with a more 

complicated model of a hard inclusion embedded in a softer host in an environment 

that can best be described using cylindrical geometry.  In particular, we produced 

square-sized synthetic tagged images of 128 pixels x 128 pixels with tag lines applied 

in both horizontal and vertical directions with tag spacing of 16 pixels.  A cylindrical 

inclusion of a 25 pixel radius was centered symmetrically and assumed to be four 

times stiffer than the host media in order to produce a spatially varying motion profile 

in 2-D.  The MRI pattern from this inhomogeneous simulation sample was made with 

slight intensity variation between the inclusion and the background.  The motion 

experienced by the constituents of the sample under these conditions was calculated 

using Eq. 4.3 and Eq. 4.4.  The force T applied on the compression plate was set to 
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0.05 kP.  Vertical deformation was applied to the noise-free image using the 

computed motion profile.  Tagged images obtained before and after the compression 

are shown in Figure 6.5.  The true motion profile that was computed from the 

analytical expressions and the estimates from One-step and Iterative OF algorithms 

are depicted in Figure 6.6.  The orientation and size variations of the vectors indicate 

that material in stiff inclusion experiences less motion than that of the soft 

background.  The motion profiles along the vertical and horizontal lines crossing the 

center of the inclusion are plotted in Figure 6.7. Motion estimation errors were 

computed over a square section centered from pixels 5 to 123 in both directions, and 

results are found in Table 6.4 when noisy and noise-free images were considered.  

Unlike the case of simple translational motion studied above, the cylindrical 

simulation did not reveal a clear indication of an increasing trend in errors for the 

angle and length between the true and estimated flow vectors when noise content of 

the images was increased.  This was an interesting finding, and instead of 

characterizing these errors globally over the whole image, local analysis of errors in 

the inclusion or identified regions in the host may be needed. 
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Figure 6.5: Original Noise-Free Tagged Image of the Media with the 

Stiff 2-D Cylindrical Inclusion (left) and its Uniformly Compressed 

Version (right).  Uniform Compression was performed according to 

the analytical formulas in Eq. 4.3 and Eq. 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Joint Display of Motion Analysis Results between the 

Original and Uniformly Compressed Images with the Stiff 2-D 

Cylindrical Inclusion.  The noise constant α = 0.05.  Color Code: 

       True Motion;        Iterative OF algorithm estimated vectors; 

         One-step algorithm estimated vectors. 
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Figure 6.7: Displacement of the Material in the 

Sample along the Vertical (red) and the 

Horizontal (blue) Line Crossing at the Center of 

the Stiff 2-D Cylindrical Inclusion. 

 

Table 6.4: Error Analysis of the Estimated Flow Vectors from Noisy Images with the 

Stiff 2-D Cylindrical Inclusion in Case of Uniform Compression. 

Noise Constant  

α 

One-step OF Algorithm Iterative OF Algorithm 

AE (degrees) VLE (pixels) AE (degrees) VLE (pixels) 

0.0 9.22 0.05 6.27 0.03 

0.05 16.07 0.06 12.97 0.04 

0.10 10.02 0.05 7.89 0.03 

0.15 13.86 0.06 11.61 0.04 

0.20 20.42 0.07 16.47 0.04 
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6.3 The Phantom without an Inclusion 

Tagged MRI from the phantom in Figure 4.6 were acquired and processed to 

estimate the motion.  Figure 6.8 shows the images used in the motion analysis. 

 

 

 

 

 

 

 

 

 

 

 

Both OF algorithms were tested in application to this real MRI data.  The 

individual results for One-step and Iterative techniques are given in Figure 6.9 and 

6.10 respectively.  The original parameter of neighborhood window W = 5 used in the 

One-step algorithm in all the other studies did not produce good results. After 

optimization, we used W = 10, and the results improved greatly. Both original and 

improved estimations are provided in Figure 6.9. 

  

  

Figure 6.8: Two Consequent Images of the Compressed Agar Phantom without an 

Inclusion. 
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Figure 6.9: One-step OF Algorithm Motion Analysis Results between 

Two Consequent Images of the Compressed Agar Phantom without an 

Inclusion (top to bottom): 

With neighborhood window W = 5; 

With neighborhood window W = 10. 
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Since there is no real motion profile that can be gathered for this type of data, 

only qualitative (visual) evaluation was possible.  A joint display of the estimation 

results for both algorithms is given in Figure 6.11.  The magnified area is marked 

with a red rectangle and provided in Figure 6.12. 

As we can see from both Figure 6.11 and Figure 6.12, both algorithms perform 

well when applied to the MRI data acquired from an agar phantom with no inclusion. 

Also, the Iterative algorithm slightly outperformed the One-step algorithm. 

There was some unusual small motion pattern present that was not expected. It is 

explained by either or both irregularities in the phantom texture and imperfections in 

 

Figure 6.10: Iterative OF Algorithm Motion Analysis Results 

between Two Consequent Images of the Compressed Agar Phantom 

without an Inclusion. 
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real compression introduced to the phantom during data acquisition (possible friction 

between the phantom and the sample holder walls), which is acceptable and 

frequently occurs in real data experiments. It may be possible to minimize or 

eliminate these irregularities by further developments and improvements of both the 

mechanical compression device and the agar phantom preparation and handling 

technologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 6.11: Joint Display of Motion Analysis Results between the Two 

Consequent Images of the Compressed Agar Phantom without an 

Inclusion.  Color Code:        Iterative OF algorithm estimated vectors; 

          One-step algorithm estimated vectors. 
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6.4 The Phantom with the Stiff Cylindrical Inclusion 

Tagged MR images from the phantom in Figure 4.6 were acquired and processed 

to estimate the motion.  Figure 6.13 shows the images used in the motion analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Magnified Version of the Marked by the Red 

Rectangle Area of Figure 6.11.  Color Code:         Iterative OF, 

           One-step OF. 

  

Figure 6.13: Two Consequent Images of the Compressed Agar Phantom with 

the Stiff Cylindrical Inclusion.  The bending of the tag lines that suggests the 

presence of a stiff inclusion in the middle of the sample is marked by the red 

arrows. 
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By visually analyzing the MR images of the phantom presented in Figure 6.13, 

we can clearly see the expected bending of the tag lines in places where the inclusion 

and soft media strain differently with the applied compression (shown with the red 

arrows). 

Both OF algorithms were tested in application to this phantom data.  The results 

of One-step and Iterative algorithms are given in Figure 6.14 and Figure 6.15, 

respectively.  In a similar manner with the estimations for the agar phantom without 

an inclusion, the window size in the One-step OF algorithm had to be adjusted from 5 

to 10 pixels. Both estimations are provided in Figure 6.14. 

Again, as in the case of the real experimental data described previously, there was 

no real motion profile that could be gathered for this type of data, and only a 

qualitative evaluation was possible to perform. 
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Figure 6.14: One-step OF Algorithm Motion Analysis Results between 

Two Consequent Images of the Compressed Agar Phantom with the 

Stiff Cylindrical Inclusion (top to bottom): 

With neighborhood window W = 5; 

With neighborhood window W = 10. 
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The joint display of estimation results by both OF algorithms is presented in 

Figure 6.16, and a magnified version is given in Figure 6.17. The magnified area is 

marked with a red rectangle in Figure 6.16. 

The qualitative assessment of motion estimation by OF algorithms for this 

phantom showed that both techniques perform well and produce similar results after 

optimization of their parameters, with the Iterative technique slightly outperforming 

the One-step algorithm.  There were some significant inconsistencies in the estimates, 

especially at the edges of the images.  These inconsistencies, as in the case of the agar 

phantom without inclusion, were introduced due to the irregularities in the motion at 

the boundary of the phantom, such as possible friction between the phantom and the 

walls of the sample holder part of the compression device.  This problem can be 

 

Figure 6.15: Iterative OF Algorithm Motion Analysis Results between Two 

Consequent Images of the Compressed Agar Phantom with the Stiff 

Cylindrical Inclusion. 
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resolved in the future by lubricating the surfaces to introduce slip boundary 

conditions.  Overall, when the trends of the motion described by the cylindrical 

geometry model that was provided as a part of simulation are observed, the motion 

estimates suggest that there is an inclusion in the center of the sample. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 6.16: Joint Display of Motion Analysis Results between the Two 

Consequent Images of the Compressed Agar Phantom with the Stiff 

Cylindrical Inclusion.  Color Code:           Iterative OF algorithm estimated 

vectors;          One-step algorithm estimated vectors. 
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Figure 6.17: Magnified Version of the Marked by the Red Rectangle 

Area of Figure 6.16. 

Color Code:            Iterative OF;             One-step OF. 



71 
 

Chapter 7. 

Future Work and Other Applications 

Although the results of the motion analysis from real MRE data were feasible, 

more studies on the phantoms with the inclusions of different bioelasticity properties 

are needed.  Another possible extension of this research would be in application and 

optimization of other OF algorithms that were introduced more recently and are 

shown to be effective in estimating motion in a wide range of data [33, 34]. 

Future work includes a variety of studies on small oncology animal models 

followed by clinical human research [35].  While the prototype of the compression 

mechanism that was built as a part of our research is expected to work well in animal 

applications, significant adjustments should be introduced to the design of the device 

to use in clinical human research.  Adjustments include, but are not limited to, the 

size of the device, its positioning/attachment to the human body, and operation with 

different properties of the magnetic field of the MRI scanner. 

One of the other great potential areas for the development of this research is in 

cardio-vascular applications where regional myocardial function is assessed [36].  

The motion in such applications is introduced inherently.  Figure 7.1 demonstrates a 

series of two consequent cardiac images with tag lines similar to the ones used in 

MRI data acquisition. 
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The motion analysis result by the Iterative OF algorithm is presented in Figure 

7.2. As we can see, flow vectors clearly depict the motion of the left ventricular wall 

during the cardiac cycle.  The motion information can be used to estimate the regional 

contractility or function of the heart. 

 

 

 

 

 

 

 

 

 

  

  

Figure 7.1: Two Consequent Cardiac Tagged Images. 

 

Figure 7.2: Motion Analysis Result between Two Consequent 

Cardiac Tagged Images. 
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Conclusions 

Based on the results presented above, the following conclusions can be reached.  

The synthetic tagged images encoding either translational motion or deformation 

from an inclusion in cylindrical geometry were proven to be valuable numerical tools 

for benchmark tests.  These images provided a controlled medium for testing the 

motion analysis algorithms, understanding the issues, determining the sensitivity of 

the algorithms on the noise and spatial shift, and subsequently optimizing the window 

size in the One-step OF algorithm or smoothness parameter in the Iterative OF 

algorithm.  Motion analysis performed on the synthetic data using these algorithms 

suggested that both One-step and Iterative OF algorithms perform nearly equal when 

the errors in the estimates are concerned, provided that the window size or 

smoothness parameter is adjusted properly.  In some unique cases, the Iterative OF 

approach may perform slightly better than the One-step approach due to the flexibility 

of the smoothness settings on the estimates. 

The results from this research show that our optimized experimental protocols 

were in place to acquire reliable tagged-MRI data under the applied external 

compression and to estimate the resulting motion using One-step and Iterative OF 

algorithms.  The compression instrument developed in this research was a viable tool 

for deforming the underlying agar-based tissue mimicking phantoms and for 

providing a consistent trigger signal for gating the scanner.  The uniform phantoms 

and inhomogeneous phantoms with cylindrical inclusions remained stable and 

integral under the repetitive deformation applied by the compression device during 
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the data acquisition.  The tagged MRI sequence worked well and provided quality 

images. However, some images suffered from susceptibility artifacts, which reflect 

slight perturbations in the magnetic field that commonly occur when data acquisition 

is carried out at high speeds.  As demonstrated above, proper adjustment of the 

window size or smoothness parameters in the algorithms reduces the effects of these 

artifacts on the motion estimates. 

In addition, we tested the merits of the algorithms when the tagged MRI data was 

acquired from myocardium undergoing an inherent contraction.  The results showed 

that the algorithms can also be used to analyze the regional motion in the left 

ventricle of the heart. 

Future research extends to implementations and adjustments of the mechanical 

compression device to perform a variety of small animal oncology studies, which 

would be followed by human preclinical and clinical research.  The device would 

need to be adjusted to accommodate different size of samples and MRI scanner 

dimensions, as well as other parameters of data acquisitions (for example, in human 

research we would use a 3T MRI scanner instead of the High magnetic field MRI 

scanner used for our original research). 
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Appendix 

This appendix contains Matlab software written as a part of our research.  Both 

OF algorithms implementations as well as their testing and evaluation experiments on 

synthetic and phantom data are provided.  The codes for the synthetic data 

simulations are also presented. 

 

One-step OF Algorithm 

function [u, v] = One_step_OF(im1, im2, windowSize); 

 

[fx, fy, ft] = ComputeDerivatives(im1, im2); 

 

u = zeros(size(im1)); 

v = zeros(size(im2)); 

 

halfWindow = floor(windowSize/2); 

for i = halfWindow+1:size(fx,1)-halfWindow 

   for j = halfWindow+1:size(fx,2)-halfWindow 

      curFx = fx(i-halfWindow:i+halfWindow, j-

halfWindow:j+halfWindow); 

      curFy = fy(i-halfWindow:i+halfWindow, j-

halfWindow:j+halfWindow); 

      curFt = ft(i-halfWindow:i+halfWindow, j-

halfWindow:j+halfWindow); 

 

      curFx = curFx'; 

      curFy = curFy'; 

      curFt = curFt'; 

 

 

      curFx = curFx(:); 

      curFy = curFy(:); 

      curFt = -curFt(:); 
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      A = [curFx curFy]; 

 

      U = pinv(A'*A)*A'*curFt; 

      u(i,j)=U(1); 

      v(i,j)=U(2); 

   end; 

end; 

 

u(isnan(u))=0; 

v(isnan(v))=0; 

 

 

% =========== Supplementary functions 

==========================  

% ==== Computes horizontal, vertical and time derivatives 

function [fx, fy, ft] = ComputeDerivatives(Image1, 

Image2); 

 

if (size(Image1,1) ~= size(Image2,1)) | (size(Image1,2) 

~= size(Image2,2)) 

   error('input images are not the same size'); 

end; 

 

if (size(Image1,3)~=1) | (size(Image2,3)~=1) 

   error('method only works for gray-level images'); 

end; 

 

 

fx = conv2(Image1,0.25* [-1 1; -1 1]) + conv2(Image2, 

0.25*[-1 1; -1 1]); 

fy = conv2(Image1, 0.25*[-1 -1; 1 1]) + conv2(Image2, 

0.25*[-1 -1; 1 1]); 

ft = conv2(Image1, 0.25*ones(2)) + conv2(Image2, -

0.25*ones(2)); 

 

% make same size as input 

fx=fx(1:size(fx,1)-1, 1:size(fx,2)-1); 

fy=fy(1:size(fy,1)-1, 1:size(fy,2)-1); 
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ft=ft(1:size(ft,1)-1, 1:size(ft,2)-1); 

 

 

Iterative OF Algorithm 

function [U,V] = Iterative_OF( Image1, Image2, niter, 

lambda ) 

[N1,N2]=size(Image1); 

 

PI1=zeros(N1+2,N2+2); 

PI1(2:end-1,2:end-1)=Image1; 

[PI11,PI12,PI13,PI14,PI15]=shifted_im(Image1); 

 

PI2=zeros(N1+2,N2+2); 

PI2(2:end-1,2:end-1)=Image2; 

[PI21,PI22,PI23,PI24,PI25]=shifted_im(Image2); 

 

Ix=border_remove(0.25*((PI13+PI23+PI15+PI25)-

(PI1+PI2+PI12+PI22))); 

Iy=border_remove(0.25*((PI12+PI22+PI15+PI25)-

(PI1+PI2+PI13+PI23))); 

It=border_remove(0.25*((PI2+PI22+PI23+PI25)-

(PI1+PI12+PI13+PI15))); 

It=border_remove(0.25*((PI1+PI12+PI13+PI15)-

(PI2+PI22+PI23+PI25))); 

 

Y_temp=zeros(N1,N2); 

X_temp = Y_temp; 

 

for i = 1:niter 

   [Y1_temp,Y2_temp,Y3_temp,Y4_temp]=shifted_im(Y_temp); 

   [X1_temp,X2_temp,X3_temp,X4_temp]=shifted_im(X_temp); 

 

   Yk=(Y1_temp+Y2_temp+Y3_temp+Y4_temp)/4; 

   Xk=(X1_temp+X2_temp+X3_temp+X4_temp)/4; 
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   Yn=Yk-

Ix.*(Ix.*Yk+Iy.*Xk+It).*lambda./(1+lambda*(Ix.*Ix+Iy.*Iy)

); 

   Xn=Xk-

Iy.*(Ix.*Yk+Iy.*Xk+It).*lambda./(1+lambda*(Ix.*Ix+Iy.*Iy)

); 

 

   Y_temp=Yn(2:end-1,2:end-1); 

   X_temp=Xn(2:end-1,2:end-1); 

end 

U=X_temp; 

V=Y_temp; 

 

% =========== Supplementary functions ===================  

% ==== Zeroes out the mergins of the image 

function I=border_remove(I); 

I(1,:)=0; 

I(end,:)=0; 

I(:,1)=0; 

I(:,end)=0; 

 

 

% ==== Shifts image over and recording modified image 

matrices 

function [s1,s2,s3,s4,s5]=shifted_im(Image); 

[N1,N2]=size(Image); 

 

% down 

s1 = zeros(N1+2,N2+2); 

s1(3:end,2:end-1)=Image; 

 

% left 

s2 = zeros(N1+2,N2+2); 

s2(2:end-1,1:end-2)=Image; 

 

% up 

s3 = zeros(N1+2,N2+2); 

s3(1:end-2,2:end-1)=Image;  
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% right 

s4 = zeros(N1+2,N2+2); 

s4(2:end-1,3:end)=Image; 

 

% up-left 

s5 = zeros(N1+2,N2+2); 

s5(1:end-2,1:end-2)=Image; 

 

 

% ==== Gaussian Smoothing 

function [L,filters] = gauss_smooth(Image, sigma, shape, 

radius) 

nd = ndims(Image); 

 

if(length(sigma)==1) 

   sigma=repmat(sigma,[1,nd]); 

end; 

 

if(nd ~= length(sigma)) 

   error('Incorrect # of simgas specified'); 

end; 

 

if(isa(Image, 'uint8')) 

   Image = double(Image); 

end; 

 

if(nargin<3 || isempty(shape)) 

   shape='full'; 

end; 

 

if(nargin<4 || isempty(radius)) 

   radius=2.25; 

end; 

 

L = Image; 

filters = cell(1,nd); 

 

for i=1:nd 

   if(sigma(i)>.3) 
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      r = ceil(sigma(i)*radius); 

      f = filter_gauss_1D(r, sigma(i)); 

      f = permute(f, circshift(1:nd,[1,i-1])); 

      filters{i} = f; 

      L = conv2(L,f,shape); 

   else 

      filters{i}= 1; 

   end 

end 

 

% ==== Gaussian 1-D filter 

function f = filter_gauss_1D(r, sigma) 

if( isempty(r) ) 

   r = ceil(sigma*2.25); 

end; 

 

if( mod(r,1)~=0 ) 

   error('r must be an integer'); 

end; 

 

x = -r:r; 

f = exp(-(x.*x)/(2*sigma*sigma))'; 

f(f<eps*max(f(:))*10) = 0; 

sumf = sum(f(:)); 

 

if sumf ~= 0 

   f = f/sumf; 

end 

 

 

Errors Calculation 

function [Error_Angle,Error_Length] = 

errors_calculation(u,v,u_true,v_true) 

 

size_x = size(v,1); 

size_y = size(v,2); 
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LE = sqrt(u.^2 + v.^2); 

LT = sqrt(u_true.^2 + v_true.^2); 

 

Length_Diff= (LT-LE); 

Error_Length=std2(Length_Diff); 

 

% figure('Name','Error in Length Difference') 

% imagesc(Length_Diff); 

% colormap(gray) 

 

Angle=acos( (u.*u_true+v.*v_true)./(LE.*LT)) *180/pi;  % 

result is between 0 and 180 

 

 

for i=1:size_x 

   for j=1:size_y 

      if LT(i,j)==0 

         Angle(i,j)=0.0; 

      end 

   end 

end 

 

Error_Angle=std2(Angle); 

 

 

Simple Translational Motion Simulation 

close all; clear all; clc; 

 

NY=20; 

NX=20; 

 

Y = linspace(-(NY-1),NY,2*NY); 

X = linspace(-(NX-1),NX,2*NX); 

 

im_speckle = rand(2*NY,2*NX); 

im_speckle = gauss_smooth( im_speckle, 1, 'same', 5); 
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im_speckle = im_speckle+0.2; 

 

w=gausswin(10,1.5); 

mb=w ; 

for i=1:3 

   mb=[mb;w]; 

end 

tag=mb*mb'; 

% to avoid 0 intensity 

tag=tag+0.1; 

tag_c = tag.*im_speckle; 

Image1=double(tag_c); 

 

figure('Name','Original Image') 

imagesc(Image1); 

colormap(gray); 

axis off 

 

% translation 

dx=-2; 

dy=-2; 

N=20; 

x = linspace(-N,N,2*N); 

y = x; 

 

[X,Y] = meshgrid(x,y); 

 

for i=1:2*N 

   for j=1:2*N 

      XI_G(i,j)=X(i,j)+dx; 

      YI_G(i,j)=Y(i,j)+dy; 

   end 

end 

 

Imageshift = interp2(X,Y,Image1,XI_G,YI_G,'cubic'); 

 

for i=1:2*N 

   for j=1:2*N 

      if isnan(Imageshift(i,j)) 
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         Imageshift(i,j) = 0; 

      end 

   end 

end 

 

figure('Name','Translated Tagged Image') 

imagesc(Imageshift); 

colormap(gray); 

axis off 

 

% imwrite(Image1,'im_0.jpg','jpg') 

% imwrite(Imageshift,'im_xy.jpg','jpg') 

 

% adding noise with same properties to both original and 

translated images (separately!) 

Noise_Constant = 0.2; 

im_speckle_1 = rand(2*NY,2*NX); 

im_speckle_1 = gauss_smooth( im_speckle_1, 1, 'same', 2); 

Image1_mod = Image1 + Noise_Constant * im_speckle_1; 

 

% figure('Name','Noise for Image 1') 

% imagesc(im_speckle_1); 

% colormap(gray); 

% axis off 

figure('Name','Original Image with Noise') 

imagesc(Image1_mod); 

colormap(gray); 

axis off 

 

im_speckle_2 = rand(2*NY,2*NX); 

im_speckle_2 = gauss_smooth( im_speckle_2, 1, 'same', 2); 

Imageshift_mod = Imageshift + Noise_Constant * 

im_speckle_2; 

 

% figure('Name','Noise for Image 2') 

% imagesc(im_speckle_2); 

% colormap(gray); 

% axis off 
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figure('Name','Translated Tagged Image with Noise') 

imagesc(Imageshift_mod); 

colormap(gray); 

axis off 

 

% imwrite(Image1_mod,'im_0_mod.jpg','jpg') 

% imwrite(Imageshift_mod,'im_xy_mod.jpg','jpg') 

 

 

% true motion calculation 

u_true= X-XI_G; 

v_true= Y-YI_G; 

 

figure('Name','Translated Tagged Image. True motion. 

Quiver') 

quiver(u_true,v_true,0.75) 

colormap(gray); 

axis off 

 

 

% motion estimation 

[U_iterative,V_iterative] = Iterative_OF(Image1_mod, 

Imageshift_mod, 1000, 100); 

 

figure('Name','Iterative OF Motion Estimation') 

quiver(U_iterative,V_iterative,0.75,'g'); 

colormap(gray); 

axis off 

[U_one_step, V_one_step] = One_step_OF(Image1_mod, 

Imageshift_mod, 5); 

figure('Name','One-step OF Motion Estimation') 

quiver(U_one_step,V_one_step,0.75,'r'); 

colormap(gray); 

axis off 

 

figure('Name','True Motion and Both OF Estimations') 

quiver(u_true,v_true,0.75) 

hold on 

quiver(U_iterative,V_iterative,0.75,'g'); 
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quiver(U_one_step,V_one_step,0.75,'r'); 

hold off 

colormap(gray); 

axis off 

 

% segemented out internal region from (5:35,5:35) to 

eliminate the edge effects 

[Error_Angle_iterative,Error_Length_iterative]= 

errors_calculation(U_iterative(5:35,5:35),V_iterative(5:3

5,5:35),u_true(5:35,5:35),v_true(5:35,5:35)) 

 

[Error_Angle_one_step,Error_Length_one_step]= 

errors_calculation(U_one_step(5:35,5:35),V_one_step(5:35,

5:35), 

u_true(5:35,5:35),v_true(5:35,5:35)) 

 

 

Cylindrical Inclusion Deformation 

function [Image2, u_true, v_true] = 

cylindrical_inclusion_deform(Image1, NY, NZ, a, T,  

base_y, base_z) 

 

% constants 

mi = 4; 

mm = 1; 

ki = 3 - 0.45 * 4; 

km = ki; 

 

b = - 2 * (mi - mm) / (mm + mi * km); 

g = (mm * (ki - 1) - mi * (km - 1)) / (2 * mi + mm * (ki 

- 1)); 

d = (mi - mm) / (mm + mi * km); 

b0 = mi * (km + 1) / (2 * mi + mm * (ki - 1)); 

g0 = 0; 

d0 = mi * (km + 1) / (mm + mi * km); 
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y = linspace(-(NY - 1) * 0.1, NY * 0.1, 2 * NY); 

z = linspace(-(NZ - 1) * 0.1, NZ * 0.1, 2 * NZ); 

 

for i = 1 : 2 * NY 

   for j = 1 : 2 * NZ 

      radius(i,j) = sqrt(y(i)^2 + z(j)^2); 

      tetaang(i,j) = atan2(y(i), z(j)); 

   end 

end 

 

for i = 1 : 2 * NY 

   for j = 1 : 2 * NZ 

      r = radius(i,j); 

      teta = tetaang(i,j); 

 

% outside of inclusion 

      if r > a 

         ur(i,j) = -(T / (8 * mm * r)) * ((km - 1) * r^2 

+ 2 * g *a^2 + (b * (km + 1) * a^2 + 2 * r^2 + (2 * d * 

(a^4) / (r^2))) * cos(2.0 * teta)); 

         uteta(i,j) = (T / (8 * mm * r)) * (b * (km - 1) 

* a^2 + 2 * r^2 - (2 * d * (a^4) / (r^2))) * sin(2.0 * 

teta); 

 

% inside inclusion 

         else 

            ur(i,j) = -(T * r / (8 * mi)) * (b0 * (ki - 

1) + (g0 * (ki - 3) * (r / a)^2 + 2 * d0) * cos(2 * 

teta)); 

            uteta(i,j) = -(T * r / (8 * mi)) * (g0 * (ki 

+ 3) * (r / a)^2 – 2 * d0) * sin(2.0 * teta); 

         end 

 

% True motion: conversion from cylindrical to Cartesian 

geometry 

% relative position to the original point 

         uz(i,j) = ur(i,j) * cos(teta) - uteta(i,j) * 

sin(teta); 
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         uy(i,j) = ur(i,j) * sin(teta) + uteta(i,j) * 

cos(teta); 

      end 

end 

 

% global position 

yi = base_y - uy; 

zi = base_z - uz; 

Image2 = griddata(base_y, base_z, Image1, yi, zi, 

'linear'); 

 

% motion calculation (true motion) 

u_true = uz * 10; 

v_true = uy * 10; 

 

 

Tagged Images with the Stiff 2-D Cylindrical Inclusion Simulation 

close all; clear all; clc; 

 

NY=64; 

NZ=64; 

a=25; 

 

y=linspace(-(NY-1),NY,2*NY) ; 

z=linspace(-(NZ-1),NZ,2*NZ) ; 

 

im_speckle = rand(2*NY,2*NZ); 

im_speckle = gauss_smooth( im_speckle, 1, 'same', 5); 

 

% figure('Name','Speckled Image') 

% imagesc(im_speckle); 

% colormap(gray); 

% axis off 

% imwrite(im_speckle,'im_speckle.jpg','jpg') 
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w=gausswin(16,1.5); 

mb=w; 

 

for i=1:7 

   mb=[mb;w]; 

end 

 

tag=mb*mb'; 

% to avoid 0 intensity 

tag=tag+0.1; 

 

% figure('Name','Tags Grid') 

% imagesc(tag); 

% colormap(gray); 

% axis off 

% imwrite(tag,'tags_grid.jpg','jpg') 

 

tag_c = tag.*im_speckle; 

 

% figure('Name','Tags with speckles Image') 

% imagesc(tag_c_d); 

% colormap(gray); 

% axis off 

% imwrite(tag_c_d,'tags_speckles.jpg','jpg') 

 

for i=1:2*NY 

   for j=1:2*NZ 

      media(i,j) = 100; 

      r=sqrt((y(i)-y(NY))^2 +(z(j)-z(NZ))^2); 

      if r<a 

         media(i,j) = 140; 

      end 

      tagged(i,j)=media(i,j) * tag_c(i,j); 

      base_y(i,j)=y(i) ; 

      base_z(i,j)=z(j) ; 

   end 

end 

 

tagged = double(tagged); 
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Image1 = tagged; 

 

figure('Name','Tagged Speckled Image with the Stiff 2-D 

Cylindrical Inclusion') 

imagesc(Image1); 

colormap(gray); 

axis off 

% imwrite(Image1,'tag_speck_cylinder_incl.jpg','jpg') 

 

T=-.05; 

[Image2, u_true, v_true] = 

cylindrical_inclusion_deform(Image1,NY,NZ,a,T, base_y, 

base_z); 

for i=1:2*NY 

   for j=1:2*NZ 

      if isnan(Image2(i,j)) 

         Image2(i,j) = 0.1; 

      end 

   end 

end 

 

figure('Name','Deformed Tagged Speckled Image with the 

Stiff 2-D Cylindrical Inclusion') 

imagesc(Image2); 

colormap(gray); 

axis off 

colorbar 

%imwrite(Image2,'tag_speck_cylinder_incl_deformed005.jpg'

,'jpg') 

 

% adding noise with same properties to both original and 

translated images (separately!) 

Noise_Constant = 0.1; 

im_speckle_1 = rand(2*NY,2*NZ); 

im_speckle_1 = gauss_smooth( im_speckle_1, 1, 'same', 2); 

Image1_mod = Image1 + Noise_Constant * im_speckle_1; 

 

% figure('Name','Noise for Image 1') 

% imagesc(im_speckle_1); 
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% colormap(gray); 

% axis off 

 

figure('Name','Original Image with Noise') 

imagesc(Image1_mod); 

colormap(gray); 

axis off 

 

im_speckle_2 = rand(2*NY,2*NZ); 

im_speckle_2 = gauss_smooth( im_speckle_2, 1, 'same', 2); 

Image2_mod = Image2 + Noise_Constant * im_speckle_2; 

% figure('Name','Noise for Image 2') 

% imagesc(im_speckle_2); 

% colormap(gray); 

% axis off 

 

figure('Name','Deformed Tagged Image with Noise') 

imagesc(Image2_mod); 

colormap(gray); 

axis off 

 

%imwrite(Image1_mod,'tag_speck_cylinder_incl_mod.jpg','jp

g') 

%imwrite(Image2_mod,'tag_speck_cylinder_incl_deformed005_

mod.jpg','jpg') 

 

figure('Name','Deformed Tagged Image with the Stiff 2-D 

Cylindrical Inclusion. True motion. Quiver') 

quiver(imresize(u_true,[32 32]),imresize(v_true,[32 

32]),0) 

% axis off 

% saveas(gcf, 'True_Motion_deformed005.jpg') 

 

Image1_mod=Image1_mod/max(max(Image1_mod)); 

Image2_mod=Image2_mod/max(max(Image2_mod)); 

 

% motion estimation 

[U_iterative,V_iterative] = Iterative_OF( Image1_mod, 

Image2_mod, 1000, 50); 
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figure('Name','Iterative OF Motion Estimation') 

quiver(imresize(U_iterative,[32 

32]),imresize(V_iterative,[32 32]),0,'g'); 

colormap(gray); 

% saveas(gcf, 'Iterative_cyl_incl_deformed005.jpg') 

 

[U_one_step, V_one_step] = One_step_OF(Image1_mod, 

Image2_mod, 5); 

figure('Name','One-step OF Motion Estimation') 

quiver(imresize(U_one_step,[32 

32]),imresize(V_one_step,[32 32]),0,'r'); 

colormap(gray); 

% saveas(gcf, 'One_step_cyl_incl.jpg') 

 

figure('Name','True Motion and Both OF Estimations') 

quiver(imresize(u_true,[32 32]),imresize(v_true,[32 

32]),0) 

hold on 

quiver(imresize(U_iterative,[32 

32]),imresize(V_iterative,[32 32]),0,'g'); 

quiver(imresize(U_one_step,[32 

32]),imresize(V_one_step,[32 32]),0,'r'); 

 hold off 

% saveas(gcf, 'All_OF_cyl_incl.jpg') 

 

% segemented out internal region to eliminate the edge 

effects 

M1=5;M2=123; 

 

[Error_Angle_iterative,Error_Length_iterative]= 

errors_calculation(U_iterative(M1:M2,M1:M2),V_iterative(M

1:M2,M1:M2),u_true(M1:M2,M1:M2),v_true(M1:M2,M1:M2)) 

[Error_Angle_one_step,Error_Length_one_step]= 

errors_calculation(U_one_step(M1:M2,M1:M2),V_one_step(M1:

M2,M1:M2),u_true(M1:M2,M1:M2),v_true(M1:M2,M1:M2)) 
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Phantom Studies 

close all; clear all; clc; 

 

NY=64; 

NZ=64; 

 

% for the phantom without an inclusion 

Image1= 

double(imread('II_II_both_flan30_20fr_rr130.0002.jpg')); 

Image2= 

double(imread('II_II_both_flan30_20fr_rr130.0003.jpg')); 

Image1_mod = Image1(65:192,65:192); 

Image2_mod = Image2(65:192,65:192); 

 

% for the phantom with the stiff cylindrical inclusion 

% Image1 = double(imread('Im5.jpg')); 

% Image2 = double(imread('Im6.jpg')); 

% Image1_mod = Image1(65:192,65:192); 

% Image2_mod = Image2(65:192,65:192); 

 

% for the heart images 

% Image1_mod= imresize(double(imread('heart_1.jpg')),[128 

128]); 

% Image2_mod= imresize(double(imread('heart_2.jpg')),[128 

128]); 

 

Image1_mod=Image1_mod/max(max(Image1_mod)); 

Image2_mod=Image2_mod/max(max(Image2_mod)); 

 

% motion estimation 

[U_iterative,V_iterative] = Iterative_OF(Image1_mod, 

Image2_mod, 1000, 1); 

figure('Name','Iterative OF Motion Estimation') 

quiver(imresize(U_iterative,[32 

32]),imresize(V_iterative,[32 32]),0,'g'); 

colormap(gray); 

% saveas(gcf, 'Iterative_no_incl.jpg') 
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[U_one_step, V_one_step] = One_step_OF(Image1_mod, 

Image2_mod, 5); 

figure('Name','One-step OF Motion Estimation') 

quiver(imresize(U_one_step,[32 

32]),imresize(V_one_step,[32 32]),0,'r'); 

colormap(gray); 

% saveas(gcf, 'One_step_no_incl.jpg') 

 

 

figure('Name','Motion Estimation') 

quiver(imresize(U_iterative,[32 

32]),imresize(V_iterative,[32 32]),0,'g'); 

hold on 

quiver(imresize(U_one_step,[32 

32]),imresize(V_one_step,[32 32]),0,'r'); 

hold off 
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