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Chapter 1: Introduction 

 
Biodiversity researchers who investigate the ecological, evolutionary and 

conservation biology surrounding plant and animal species rely on observational and 

specimen collection data to document the occurrence of a species at a particular place 

and time.  For over 250 years, natural history museums and herbaria have amassed 

collections of specimens from biological surveys and inventories of life on earth.  An 

estimated three billion specimens are housed and curated in museums around the 

world.  It is from these collections that species distributions, descriptions and 

identifications are known.  Specimen “vouchers” (also called “occurrence points”) 

represent single or multiple collections of specimens and are the physical basis for the 

discovery and documentation of new species. Within the last decade, online databases 

consisting of these specimen occurrence points have begun to gain in popularity. The 

increasing use of collaborative online databases by institutions represents a potential 

for comparison among specimen holdings of multiple museums collections. However, 

despite the online availability of data from specimen vouchers of species from around 

the world, individual researchers currently have no easy method to aggregate massive 

amounts of specimen holding data in order to analyze the relevance and value of 

specimen collections in different museums for their research. In this study we seek to 

create an interactive environment, suitably intuitive, easy to use, and fast, that will 

enable large data sets from multiple collections to be efficiently rated and ranked 

according to standard criteria of relevance to a scientist and her particular research 

requirements. 
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Before the advent of distributed query technologies on the Internet in the early 

1990s, paper mail, word-of-mouth, reputation of museums, or actually visiting 

collections to see what they had in their cabinets were  the only effective ways to 

discover specimen research resources for the initiation of a research, thesis or 

dissertation project in systematics or species biogeography. With the invention of the 

Gopher and WAIS protocols, and soon thereafter HTTP, biological museums began 

to take advantage of remote access to distributed specimen database catalogs, thus 

transforming the specimen discovery process for biodiversity scientists looking for 

documented and vouchered species records. As more museums computerized their 

holdings and made them available on the internet via new query-response protocols 

(DiGIR and TAPIR), the opportunity became available to cache data from museum 

databases located around the world. 

The Global Biodiversity Information Facility (GBIF) was initiated in 2000. 

GBIF is a service that provides a global distributed network of databases which 

contain primary biodiversity data made available by participating museums from 

around the world; museums voluntarily provide as much or as little primary 

biological data as they see fit. The 'primary biodiversity data' is data associated with 

specimens in biological collections, as well as documented observations of plants and 

animals in nature [1].  Scientists, researchers, and students use the service by 

querying the GBIF databases to get species occurrence data sets. GBIF was created in 

large part to take advantage of this burgeoning biodiversity informatics infrastructure, 

by creating such a global cache of museum data, thus in turn creating new 



 5

opportunities for data mining and cross-collection comparative analysis of specimen 

holdings.  

Being able to simultaneously query multiple individual museum data 

providers or the GBIF cache for individual collection records was a great advance 

over manual methods of species voucher discovery, but long lists of specimen data 

are an inefficient way to combine, compare, and analyze these individual data points 

for research project planning and prioritization. This makes seeking out collaboration 

between museums a hit or miss affair because collection managers do not have 

readily available resources describing the strengths of another museum’s species 

collection, hence they have no reliable way of determining whether or how a potential 

collaboration would benefit them. Moreover, these collection managers do not even 

have readily available data about the weaknesses of their own species collections; 

hence they do not know the areas in which they should seek collaborations in order to 

improve the quality of their collection. Such information would allow a collection 

manager to focus on important areas for future growth.  

 Collaboration is just one of the many applications of comparative collection 

analysis. The technique can also provide a way to discover specimen research 

resources for the initiation of a research, thesis or dissertation project. Furthermore, 

for museum administrators and funders, knowing the uniqueness and research 

strength of a collection’s specimen holdings is a key factor in evaluating curatorial, 

staff, and building resources for biological collection repositories. Therefore a 
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measure of value for their respective collection data would not only help users assess 

the quality of their data, but also to seek out higher quality data if necessary. 

Comparative collection analysis must overcome multiple problems. There is 

currently no formal definition for 'quality' of a museum’s species collection. The 

quality of a museum’s species collection is inherently subjective, and the traits of a 

valuable collection change based on the biological domain of each user. Therefore, a 

useful value measure must dynamically tailor how 'quality' is defined. However, there 

is currently no method to dynamically structure primary biological data based on 

common attributes. Several technical reasons can be cited. For starters, the 

computation required to dynamically identify and analyze common attributes among 

large sets of primary biological data from multiple museums is significant. 

Furthermore, any useful value measure must take into account the geospatial location 

of each specimen in a data set. Unfortunately, distance calculation among larges sets 

of geospatial data (sometimes involving tens of thousands of points) has traditionally 

been a very time consuming process because one must compare every geospatial 

point with all others in the data set. Finally, a useful application of comparative 

collection analysis must provide some sort of user interface to display the spatial 

distribution of specimen data and provide tools to select relevant comparison criteria. 

Currently there is no straightforward way to visualize and compare museum species 

collections with one another. 

 In this paper we use a quadtree in conjunction with two novel methods 

developed for this research project: (i) ‘branch bypassing’, a fast method of speeding 
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up quadtree traversal time over large sets of clustered spatial data; and (ii) a unique 

geospatial spread calculation which quickly approximates the relative spread of large 

sets of geospatial data. Taken together, these methods allow us to create a value 

measure to determine the strengths and weaknesses of a biological collection based 

on any number of criteria. For the purpose of museum ranking, we created a standard 

that consists of three key factors: geospatial spread, environmental attributes, and 

each collection’s ‘unique contribution’.  The value is then visualized in a real-time 

interactive environment to display the rank of each collection’s specimen data 

compared to others. Clearly representing the value of a species collection in a visual 

and interactive manner allows scientists to make more informed decisions, recognize 

the need for and seek out collaboration when needed, and assess the strengths and 

weakness of their own collections.  

 

In summary the major contributions are: 

-     The first-of-its-kind framework to quickly analyze large amounts of geospatial 

data in order to rank biological collections.  

-     The ‘branch bypassing’ operation which improves traversal speed, preserves 

quadtree structure, and is extensible to any region based quadtree. 

-     A fast method of assessing geospatial spread amongst large amounts of input 

data, by exploiting the spatial hierarchy of a quadtree. 

-     An operational real-time interactive application to visualize our comparative 

collection analysis. 
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 The rest of the thesis is organized as follows. Chapter 2 gives the problem 

formation and establishes the three value measure criteria. In Chapters 3, 4, and 5 we 

present a framework for handling large collections of occurrence point data. We 

examine the benefits of our data structure when dealing with geospatial data, discuss 

branch bypassing, and propose a value measure algorithm. Chapter 6 discusses the 

importance of user interactivity in the modeling and visualization of the rankings and 

briefly presents the user interface developed to address these needs. In Chapters 7 and 

8 we discuss our results and state our conclusions, respectively.  

   

 

 

 

 

1.1:  Why specify a Value? 

 

Individual museums have traditionally been stocked with specimens reflecting 

their local and historical research interests.  With the biological surveys of the 

western hemisphere by European scientists, collections in Europe and the U.K. 

became the repositories for new world species.  Similarly, extraordinarily diverse 

tropical habitats later became the focus of research and research collections of 

scientists from the U.S. and from European museums.  In the 20th century, most 
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countries had established national biodiversity research programs to document the 

flora and fauna of their own lands.  This historical precedent and patchwork of 

specimen collecting programs and diverse research interests, has led to a highly 

distributed global repository of species vouchers and related museum preparations.  

Museums throughout the world now catalog collections of biological samples, which 

reflect their historical collecting programs and also new collaborations with 

biodiverse countries. 

As a consequence, the research breadth and depth of collections varies widely 

among museums and herbaria. Museum collection managers and researchers would 

benefit in many ways from knowing which collection is the strongest or most unique 

with respect to a certain species. (As suggested above, this is much more complex 

than just how many specimens they have.) With such information, they could asses 

the strengths and weakness of their own collection. This would aid in determining 

road maps for their collections goals in the future. It would also allow them to 

prominently display their strengths when explaining the importance of their 

respective collection in proposals, etc. Comparative collection analysis would also 

greatly aid in museum collaboration. Currently, when a researcher seeks out an 

institution to collaborate with, they contact various institutions in hopes of finding 

one that meets their criteria. However, if the researcher had easily accessible concrete 

evidence, they could more easily target certain institutions. Furthermore, a spatial 

visualization of species occurrences would not only allow researchers to see in 

seconds which museums have specimens in a geographical area of their interest, but 



 10

would also show the actual specimen distribution localities, densities, spread. Finally, 

a ranking system would also encourage more museums to make their specimen 

holdings data available in online databases. 
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Chapter 2: Previous Work 

 

2.1: Previous efforts to rank museum species collections 

 

To the best of our knowledge, there have been no significant efforts to rank 

museum biological collections. It is not for a lack of interest, as shown from user 

testing of our comparative collection analysis (Chapter 7). Museum collection 

mangers and curators highly value the ability to easily visualize specimen occurrence 

data and identify strong or weak species collections in their area of interest. There are 

however many possible reasons why no such ranking has been done. The main reason 

is the fact that comparisons involving collections around the world have simply not 

been feasible in the past because museum specimen records were stored on paper and 

sorted into file cabinets. There was no method to perform a large scale comparison 

among many species from a museum because each record had to be physically 

accessed. Museums around the world have only recently begun to digitize their data 

and make it available online. The GBIF online repository of biological collections 

started in 2000 and has only 233 different providers [1].  There are still many more 

museums that could put forward their collections and make their species collection 

data available online, although the process of converting hundreds of thousands of 

physical specimen occurrence records to a digital format is a daunting and time 

consuming task. If museums had more of a reason to make their data available, such 

as having the ability to easily assess their own collections in comparison to others, 
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then more museums around the world might contribute to projects like GBIF. 

Another reason for the lack of previous work is that aggregating a massive amount of 

distributed data, analyzing it quickly, and then providing the results in a user friendly 

manner is an imposing task. For example, analyzing large amounts of occurrence 

point data for such aspects as geospatial spread is traditionally a very time consuming 

task. 

 

2.2: Previous CS-related work 

 

Biological collections data are essentially registered using geospatial 

attributes. Given the large numbers of collections and the fact that they tend to be 

very large, we needed a mechanism to partition the multidimensional data space 

quickly and efficiently. Data Structures for multidimensional point data are of great 

interest in the scientific data visualizations literature. These multidimensional data 

structures are most often defined by hierarchical subdivisions of space. One such 

multidimensional data structure is the region-quadtree. A quadtree is a hierarchical 

data structure based on a recursive subdivision of space [15]. More specifically, a 

region-quadtree subdivides a data space into four equal quadrants until each quadrant 

contains no more points than specified by some ‘maximum capacity’. If that capacity 

is exceeded, the quadrant must be split into four equal sub-quadrants. This process of 

sub-dividing will continue until all the elements of the input data are inserted into the 
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tree. As will be detailed in chapter 4, we used a region-based quadtree data structure 

for the purpose of quickly querying and analyzing occurrence points.  

There is a history of geospatial applications that make use of quadtree data 

structures. Rosenfeld, et al. [17] used region-quadtrees to handle cartographic data. 

They digitize maps and use region-quadtrees to store the images. They found that 

quadtrees were useful for performing the intersection and union of images and that 

they greatly reduced the memory required to store the images. Quadtrees have also 

been used in conjunction with geographic point data as described by Samet, et al. 

[14]. They concluded that quadtrees were a good fit for geographic point data because 

of the efficiency with which many types of queries could be preformed over the data. 

To the best of our knowledge, quadtrees have not previously been used in 

conjunction with a value measure to rank point data. 

Quadtrees have been proven to work well with geographic data, but a problem 

arises when using region quadtrees with specimen occurrence data. Specimen 

occurrence data is gathered from researchers who physically collect and document 

each specimen sighting. As a result of the way in which specimen occurrence data are 

collected, the distribution of data is generally clustered. Clustered data sets are a 

problem for quadtrees, as the worst case performance arises from very small clusters.  

There has been research into handling clustered data by compressing the quadtree, as 

shown by Samet [9]. They seek to compress images, and in turn use a method to 

reduce the size of a resulting quadtree. However, this method and others primarily 

work with image and video data and compress a quadtree by reducing the amount of 
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data needed to encode the image or video, resulting in approximations; a trade off 

normally seen when dealing with compression. While we need compression, we 

cannot afford to lose information about the input data or structure of the quadtree. 

 

2.3: Summary 

 

 In summary, the research we present here has overcome the problem of slow 

comparison amongst large amounts of geospatial data. We also present the concept of 

‘branch bypassing’, which is extensible to any region-based quadtree and alleviates 

the problems that arise in quadtrees from a clustered distribution of input data, a 

common characteristic of occurrence point data. Furthermore, we provide a first-of-

its-kind framework to rank museums according to specific criteria in a real-time 

interactive environment. Details of our work are presented in subsequent chapters.  
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Chapter 3: The Value Measure 

 

3.1: How to Specify a Value Measure 

 

The idea of using a single value to determine the quality of a species 

collection is difficult to imagine, let alone justify. From the perspective of a particular 

species, a strong or valuable collection would contain a large representative sample of 

the species. However, a small collection might also be valuable if it contains species 

references in a unique area that no other collection has. As a consequence, the 

perceived research breadth and depth of collections varies widely among museums 

and herbaria.  Large national museums often have the most important historical 

collections, whereas regional or university-associated collections frequently have 

high quality, specialized subsets of species vouchers.  For example, university 

museums often have high quality, in depth specimen representations of narrow 

taxonomic groups which reflect the personal research interests of their own scientists. 

Alternatively, species collections may be highly concentrated on a particular 

geographic region for various historical reasons. For example, a museum in Michigan 

may have the best collection of Mexican dry forest trees in the world, whereas a 

collection in Costa Rica may have the best insect representation for Central America, 

or perhaps the best collection of Central American water beetles, or plants in the 

coffee family. 
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  There are also many variables in species occurrence data that affect the 

relative value of that specimen. For instance, the geospatial location, occurrence 

density, and diversity of environmental variables are just some of the factors that 

might influence the value of a particular specimen. There are many other potentially 

valuable attributes, a few of which are the date the specimen was collected, the type 

of preservation method used, and the amount of specimens in each collection. 

Therefore, a meaningful value measure might incorporate a combination of all the 

above traits. 

 The goal was to find general criteria that could be applied to any species 

collection. That is, we hoped to establish some sort of a standard baseline. However, 

we must first look at the data format common to all biological collection data. 

Occurrence point data is stored in a common data exchange format such as Darwin 

Core or MaNIS [1]. As a result, each biological domain has different attributes 

associated with different species. Thus, the only guaranteed common attributes 

among all occurrence point data sets are the following: scientific name and geospatial 

location. Our selected criteria are a result of the limitation of these few common 

attributes, so that a measure of comparison can be reliably performed upon any 

biological collection. Fortunately, our framework for comparative collection analysis 

is extensible to easily handle additional attributes specific to a biological domain, as 

there are no restrictions on the number of attributes that can be added. 

The goal was to create a standard by which any museum’s biological 

collections could be compared against that of any other. Therefore, any standard 
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criteria must consist of a select few common attributes guaranteed to exist in every 

species occurrence data set. After consulting multiple curatorial and collection 

managers, at the University of Kansas Biodiversity Institute, with expertise in various 

biological domains, and considering the previously explained limitations of common 

attributes, we decided to focus our initial efforts on three common attributes: location, 

environment, and ‘unique contribution’, with the ability to include more attributes for 

specific domains. The location criterion refers to the geospatial spread of a collections 

specimen occurrence data. Environment determines the environmental diversity of 

each specimen occurrence. Finally, the unique contribution refers to the amount of 

non duplicate specimens a collection owns. These three variables are used to create an 

overall ‘value score’ for a species collection.   

 

3.2: Three Value Criteria 

 

In the work described here, we take into account three large categories of 

information about a species sighting: geospatial location, environmental diversity, 

and the overall contribution of unique occurrence points. Comparing biological 

collections based on these criteria provides a useful research planning tool for finding 

specimens of interest to a biodiversity researcher, and to document quantitatively the 

actual strength of a collection (depth, breadth, currency, etc.). 

The first value measure analyzes geospatial spread of the specimen localities 

(i.e. species occurrences); a stronger collection will hold species in a wide variety of 
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locations. The geospatial spread value measure will account for the geospatial 

location of each occurrence point in relation to others. That is, having specimens from 

diverse geographical regions significantly increases the value of the collection. The 

geospatial location value also accounts for unique specimen occurrences. An 

occurrence that lies far removed from others would indicate a special sighting, 

assuming it is not an error. The special sighting, or outlier, would increase the total 

value for its associated species collection. By visualizing this value measure in 

conjunction with geographical representations of species occurrence points, 

researchers will not only be able see in seconds which museums have specimens in a 

geographical area of interest, but also show the actual specimen distribution localities, 

densities, and spread. 

The second value measure analyzes the environmental diversity in which the 

occurrence points were found. It is well known that species vary in many ways 

throughout their native ranges, and adaptations to local environmental parameters in 

one part of a species’ range will be different from adaptations (morphological, 

physiological, life history, genetic, etc.) in another part of the species’ range.  It is 

important for museums to know if the artifacts they hold represent unique adaptations 

or some sort of extreme environmental range of the species’ distribution. 

Environmental variables include data such as precipitation, temperature, pressure, etc. 

which describe the area in which a species was found. If all the species share similar 

environmental characteristics, this confirms a truth about the species habitat. 

However, if there exists one or more occurrence points with significantly different 
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environmental variables, more information can be gained about this species' ability to 

survive in other habitats. Visually comparing species collections holdings on these 

additional environmental variables allows quantitative comparisons to be made of the 

ecological uniqueness of collections based on the environmental variable values 

associated with species collection points. 

Finally, the last criterion in the value measure is the ‘contribution’. This value 

measure accounts for the contribution of unique occurrence points provided from 

each species collection. A strong collection will contribute the most unique 

occurrence points to the data set. Museums which have unique or rare species 

collections, unduplicated by collections elsewhere, have that much more ammunition 

when seeking continued financial support and investment on the basis of their 

scientific uniqueness. “Unique contribution” can be measured by the number of 

occurrence points not shared by other institutions. Contribution is a legitimate value 

measure because the goal is to find the data that maximize the information gained 

about a species. Duplicate occurrence values with the same variables add little new 

information to the existing data set. However, a species collection that provides a 

large number of non-duplicate occurrence points contributes a significant amount of 

new information to the data set, and as such should have a higher value score. The 

contribution is a very important dimension for collections when they seek funding 

from external sources, such as public or private foundations. The uniqueness (both 

taxonomically and spatially) is a prime consideration for long-term financial support 

and investment. 
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Taken together, the location, environmental and contribution measures 

provide meaningful standard criteria to rank value for biological collections. In 

another sense, relative value – like beauty – lies in the eye of the beholder: in this 

case, in the eye of a researcher who is interested in research involving a particular set 

of species and a particular collection of related attribute data. The three value 

measures, previously defined, can be applied to all biological collections; but each 

value measure will have a different level of importance to each researcher. Our 

approach can be tailored to the needs of any such researcher by allowing them to 

define the value measures of most importance to their current study, and having 

collections ranked accordingly.  
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Chapter 4: Reducing the Data Space 

 

4.1: Reducing the Data Space  

 

The size of species occurrence data sets can be very large. In order to rank the 

species collections, we had to create a way to analyze and compare scores of these 

geospatial points in a fast and efficient manner. The analysis of occurrence points 

involves assessing the geospatial spread by comparing the latitude and longitude of 

each occurrence point with others in the collection. Furthermore, information about 

the local environment of each occurrence point in relation to others is also assessed. 

By analyzing the variety of latitude, longitude, and environmental variables across 

specimen occurrences, we can assess the strength of each species collection based on 

the three merits discussed in an earlier section.   

Additionally, the comparative analysis must be performed quickly. This 

application will be used as a starting point for reference or future collaboration. A 

typical use case involves a user opening the application, loading a species occurrence 

data set, then performing some analysis or reference, such as noting collections that 

cover an area of interest or identifying a collection with largest holding of a particular 

species. The user might then load another data set, perform further analysis, and 

finally shut the program down. Therefore, it is not desirable for the application to 

consume a large amount of time performing calculations. Typically though, the 

analysis of accurate latitude and longitude distance calculations between two points 
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involves math operations dealing with spherical geometry and trigonometric math 

functions [6]. This can be a time consuming process when distance is determined 

amongst a large number of geospatial points. Many geospatial applications do not 

compute latitude longitude geospatial distance between many points. For example, 

ArcGIS, a geospatial statistical tool, converts points to a Cartesian coordinate system 

and then uses the Euclidian distance in an X and Y space to compute an exact 

distance between points [3]. This method provides an exact solution, and proves to be 

a fast pairwise calculation between two points. However, because pairwise distance 

calculation is )( 2nO , large data sets (>100,000) require a considerable amount of time 

to compute. 

Fortunately, because we seek to rank museums specimen collections against 

one another, the exact distance between points is not required. For instance, the 

location value ranks museums according to the geographical spread of their specimen 

holdings. 

A researcher using the application does not need to know the exact distance 

between occurrence points for each museum, rather they are interested in the ‘largest 

spread’, ‘smallest spread’ etc. Therefore, instead of calculating the distance between a 

single occurrence point and every other in the data set, we create a spatial hierarchy 

based on the latitude and longitude of each occurrence point. Thus, the location 

measure can exploit a hierarchical geospatial representation of occurrence points to 

quickly calculate relative geospatial spread. Similarly, the environmental analysis is 



 23

computed using an ‘environmental space’ to calculate spread, rather than query each 

point and compare its environment to that of every other. 

 

4.2: A Quadtree 

 

Figure 1a.    Figure 1b.   

    

 

Figure 1c. 

 

Figure 1a: shows the 22x22 binary array. 1’s are elements of interest. 

Figure 1b: shows a region-based decomposition of the array, with a maximum capacity of 1. At most each 

quadrant has one element of interest. 

Figure 1c: The quadtree representation of the region-based decomposition 
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In order to create a spatial hierarchy of occurrence points, we use a quadtree.  

A quadtree is a hierarchical data structure based on a recursive subdivision of space 

[15]. The type of quadtree used for any given application varies based upon: the input 

data, the decomposition process, and the resolution of decomposition (variable or 

not). Quadtrees are most commonly used with point, rectangle, and line data. The 

process of decomposition is done in either equal parts or based upon the input; 

wherein the data space is divided into equally sized sub quadrants or the data space is 

divided at the spatial location of input points respectively. The resolution of a 

quadtree can be determined a priori, or controlled by properties of the input data. 

Two very common types are the point-based and region-based quadtree. As 

the name implies, the point-based quadtree partitions space based on the location of 

the input points. A point quadtree is multidimensional generalization of a binary 

search tree (BST). [11, 4 16] Each node in the point quadtree has four children 

representing four quadrants of decomposition, and each data point is a node. Thus, the 

center of each subdivision lies on a point. For instance, the first point inserted serves 

as the root, while the next point is inserted into an appropriate quadrant of the tree 

rooted at the first point [11]. This makes the shape of the point quadtree highly 

dependent on the order of the input data. In contrast, the region-based quadtree is not 

a generalization of a BST, and instead subdivides the data space into four equal 

quadrants until each quadrant contains no more points than specified by some 

‘maximum capacity’. For instance, when an item is inserted into the tree, it is inserted 

into a quadrant that encompasses the item's position (or spatial index). Each quad has 
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a maximum capacity. If that capacity is exceeded, the quadrant then splits into four 

equal sub-quadrants. This process of sub-dividing will continue until all the elements 

of the input data are inserted into the tree.  

As an example, consider the 22 x 22  binary array shown in Figure 1a. The 1’s 

in the array correspond to elements of interest, whereas the 0’s represent blank space. 

Figure 1c shows a region-based quadtree decomposition of the space, with a 

maximum capacity of 1. The result is a tree of height 3. The root node of the tree 

represents the entire array. Each node within the tree corresponds to a subdivision of 

four equal quadrants: northwest (NW), northeast (NE), southeast (SE), and southwest 

(SW). Whereas each leaf node represents a region of space containing less-than or 

equal-to the maximum capacity of elements, in this case 1.  

The recursive decomposition of this region-based quadtree enables many 

benefits. First, by decomposing the 22 x 22  binary space into an equivalent quadtree, 

the size of the space has been greatly reduced from 16 cells to a much smaller 7 cells 

of interest. Second, algorithms operating on the elements of interest can now use the 

hierarchical aggregation to decrease execution time. The speed up is gained from 

traversal within the tree, usually preorder, which is a linear function of the number of 

nodes in the quadtree. 

 

4.3: Potential Quadtree Problems 
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The efficiency and speed of the quadtree operation also largely depends upon 

the distribution of input data. The use of a quadtree has little benefit if the data is 

grouped into one small area. “The worst case performance happens when all objects 

are in one small cluster that is the same size as the smallest Quad; in this case the 

performance of the quadtree will be slightly worse than just iterating through all 

objects.” [3]. Fortunately, the nature of specimen occurrence data assures it will 

rarely occur as a uniform distribution. Unfortunately, there are many cases where 

specimen occurrences do exist in small areas. One of the significant contributions of 

the work described here is the development of a novel technique called 'branch 

bypassing' to address such cases. This technique is described in Section 4.5. 

A quadtree data structure can become as good as )(nO  complexity but require 

a large amount of memory as the size of the tree grows. It is possible for a quadtree to 

increase in size (or total node count) at a rate of
( )

3

14 1 −+h

, where h  is the height of 

the quadtree. The rapid increase in size happens because on each successive partition 

of the data space, four new nodes are created within the tree structure. Each of these 

nodes takes up a specific amount of machine memory. For example, a node consisting 

of 5 integer pointers (4 for the children, 1 for the parent) would have a size of 20 

bytes. A naïve approach to quadtree construction would result in 4 nodes with 5 

pointers each, created on each successive partition of the data space. This growth is 

not desirable behavior. 
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As such, there has been extensive research into different approaches to 

handling the size of quadtrees [3]. As mentioned in [3] there is a method to construct 

quadtrees without pointers. One such way is through a linear tree. A linear tree stores 

an image of the quadtree as a preorder traversal of its nodes. The linear tree consists 

of an array which contains the nodes and leaves of the tree. Using this method, search 

through the tree can be done in )(lgnO time. However, the lack of pointers in linear 

trees makes analysis over the quadtree structure, such as finding neighbors, ancestors, 

and siblings of nodes, “cumbersome and time consuming”[3]. Alternatively, the 

number of pointers in the quadtree can be reduced by limiting the amount of nodes 

created on each partition of the data space. A quadtree can then be constructed where 

each partition of the data space does not create 4 new nodes, and rather only adds 

those which are required. 

 

4.4: Our Quadtree 

 

 We chose to employ a region based quadtree for occurrence data. The 

properties of region-based quadtrees are desirable when working with geospatial data 

[16], more specifically occurrence point data. This is because occurrence point data 

rarely consists of a uniform distribution. Occurrence data is also bounded by a 

constant area, the earth, which makes dividing the space into regions very fitting. 

Furthermore, the benefits of hierarchical aggregation alleviate the need for n  by n  

comparison among all occurrence points. A further benefit of region-based quadtrees 
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is that their structure allows for sub-division in any data space. Thus we can divide 

the geographical space based upon latitude and longitude, and also map each 

occurrence point to its associated ‘environmental space’ simply by changing the 

latitude and longitude to environmental measures (e.g. average rainfall, temperature, 

etc) in order to assess the environments of each occurrence point.   

Our quadtree implementation goal was to create a quadtree with fast search 

and node retrieval, while also maintaining memory efficiency. One common 

implementation method for quadtrees is the pointer based quadtree. A pointer-based 

quadtree stores parent and child indices at each node. This representation is a very 

common type of quadtree implementation because it “greatly eases the motion 

between arbitrary nodes and is exploited by a number of algorithms”[10] such as 

“search” and “neighbor finding” algorithms. Our pointer based quadtree 

implementation uses a dynamic array to store the resulting tree. As mentioned in [2], 

a dynamic array (such as a Vector or ArrayList in Java) minimizes required memory 

footprint to store a tree.  

Our implementation of the region-based quadtree includes a select few 

enhancements to improve the speed of operations over the quadtree. The 

optimizations include: storing depth information at each node/leaf, and 'branch 

bypassing'. These are described in turn below. 

Because quadtrees can become very large, we would like to reduce the data 

space without loosing hierarchical and structural information of the quadtree. In order 

to achieve this, each node must first store additional information about its location 
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within the tree. The contents of each node and leaf are described as follows: a node 

contains its depth within the tree along with indices of its parent and children, if any. 

Whereas a leaf contains all the variables of a node, including occurrence point data 

and a value score. Storing depth information eliminates the need to determine the 

depth of a node when later analyzing and calculating value scores. 

4.5: Branch bypassing 

 

Figure 2a        

  

 

Figure 2b    Figure 2c 
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Figure 2a: A region-based decomposition to separate the clustered elements A, B, C. 

Figure 2b: The resulting quadtree has a long chain of nodes that contain no information of interest. We can skip 

those nodes, as long as depth information is stored at every node. 

Figure 2c: The resulting smaller quadtree after branch bypassing the long superfluous chain of nodes. 

 

The depth information also provides another benefit, it allows for size 

reduction optimizations without losing relevant information about the structure of the 

quadtree. As mentioned in Section 4.3, the inherent nature of occurrence data often 

has distributions grouped into small areas of the globe resulting in clusters. Small 

clusters of occurrence points slow quadtree traversal time by creating long branches 

within the quadtree. Refer to Figure 2b. These long branches convey information 

about the structure of the quadtree, such as depth. However, these long branches are 

not absolutely critical because we have previously stored depth and index information 

in every node. Thus these long branches hold superfluous information already present 

at each node. We can now eliminate these long branches without loosing information 

about the tree, through a process called ‘branch bypassing’. Branch bypassing seeks 

to decrease the traversal time of quadtrees resulting from clustered input data. Branch 

bypassing the quadtree reassigns parent and children nodes to skip over portions of 
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the quadtree that are simply long singly-linked lists of nodes. Doing so results in 

faster tree traversal as documented later. 

The branch bypassing algorithm operates by traversing the tree in a pre-order 

fashion. The algorithm identifies any nodes whose grandchild has only a single node. 

The grandchild's only child is traversed until a leaf is found or more than one child 

exists in a node. Finally, the references of child and parent are reassigned between the 

starting node and the appropriate leaf/node, respectively. It is important to note that 

no nodes are added or deleted from the internal data structure of the quadtree. As 

such, the reassignment of node references is a very fast operation.  

Before the branch bypassing algorithm can be applied, we assume the 

quadtree has been fully constructed. The algorithm is run after quadtree construction 

so it can best detect superfluous branches within the tree and be more easily 

generalized to any region-based quadtree. Once the branch bypassing algorithm has 

been executed, no new nodes may be inserted into the tree without first undoing the 

branch bypassing operation. This restriction is relatively minor, as many reference 

applications create a quadtree from input files, resulting in a static quadtree that is 

built once and then later analyzed. For our purpose, we read an input file/s, create a 

quadtree, and then trim the resulting quadtree; no new nodes are added to the 

quadtree once it has been created. Although, branch bypassing can be undone just as 

quickly as it was first performed because the quadtree is stored in a dynamic array as 

a linear tree. To undo branch bypassing, each parent node that was trimmed is simply 

flagged during the initial branch bypassing operation. Branch bypassing can be 
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undone by first traversing to each flagged node. Then the parent pointer of the 

flagged node’s child is reassigned to the node directly to the left of it in the array; and 

the flagged node’s child pointer is reassigned to the node directly to the right of it in 

the array, restoring the original linear tree. 

 Branch bypassing can result in a significant reduction of superfluous nodes on 

highly clustered data sets. For example, consider the real world specimen occurrence 

data set of 'Dimelaena orenina' oreina (Ach.) Norman, a lichen species, downloaded 

from the GBIF online repository. The data set is relatively clustered and contains 203 

occurrence points that represent nine species collections in such areas of the earth as 

Spain, Sweden, North America, and Northern Russia. When we construct our region-

based quadtree without the use of branch bypassing, the total number of nodes created 

is 198, excluding leaf nodes. However, after applying the branch bypassing 

algorithm, the number of nodes decreases to 135, a 31% reduction in the amount of 

nodes required for traversal. The reduction of nodes within the tree results in a speed 

up of traversal time, and consequently decreases the execution time of any algorithm 

that traverses the tree.  

In spite of significant reduction of nodes in clustered data sets, the benefits of 

branch bypassing decrease according to the distribution of input data. For instance, 

the occurrence data set for the species 'Argentian anseria' contains 2,340 occurrence 

points, but features a less clustered distribution. As such, branch bypassing applied to 

the subsequent quadtree resulted in only a 7% reduction of superfluous nodes. Refer 

to Figure 2.1, a chart that shows the effect of branch bypassing on data sets consisting 
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of different distributions and sizes. On biological collection data, Figure 2.1 confirms 

that branch bypassing has a greater effect on data sets with a clustered distribution. In 

contrast, as expected, branch bypassing has little effect on random point data with a 

random distribution regardless of data set size. Being that biological collection data is 

most often highly clustered, branch bypassing proves very useful in applications that 

deal with biological collection data as well as any other point data with a clustered 

distribution.  
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Figure 2.1 
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Figure 2.2 
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Figure 2.2: A chart that shows four data sets from Figure 2.1. Each data set had two algorithms run (location value 

measure, and neighbor finding) on untrimmed and trimmed quadtrees.  

 

*There was no single data set with 100,000 occurrence points so we aggregated five different 

‘Somateria’ data sets to create a file consisting of 100,000 occurrence points. 
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Figure 2.3 
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Refer to figure 2.2, which displays the effect of branch bypassing in regards to 

the execution time of two different algorithms: location value, and neighbor finding 

algorithms. The location value algorithm assigns a value to each leaf based upon the 

geospatial spread of its respective occurrence points; the algorithm is described in 

detail in Chapter 5. We have also used a simple neighbor finding algorithm to test the 

effect of branch bypassing on quadtrees. The neighbor finding algorithm simply finds 

an adjacent quadrant, if one exists, directly to the left or right of a given leaf node. 

For testing purposes our neighbor algorithm attempts to find a neighboring quadrant 

for each leaf node in the quad tree.  
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Figure 2.2 reveals that execution time on trimmed quadtrees is reduced for 

both algorithms. Although, there is no significant measurable reduction in the data set 

’Argentian anseria’ because it is less clustered and has a much smaller amount of 

data. It should also be noted that the amount of speed gained will vary from algorithm 

to algorithm. Because branch bypassing reduces the total amount of traversable 

nodes, algorithms that spend time traversing and analyzing the structure of the 

quadtree will see a greater speed up. 

 In summary, branch bypassing is a fast operation because only parent and 

child indices are reassigned and no elements are added to or removed from the 

dynamic array tree structure. Additionally, branch bypassing is extensible to any 

region-based quadtree, as the quadtree structure is preserved because depth 

information is stored at every node and leaf. The branch bypassing algorithm 

effectively skips over superfluous paths significantly speeding up traversal over a 

quadtree when the distribution input data is clustered. 
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Chapter 5: Value Measure Equation 

 

As explained in Chapter 4, a quadtree partitions a data space, allowing us to 

optimize performance of analysis operations involving the occurrence points. The 

analysis is based upon the number of implemented value criterion. Our application 

may use an arbitrary number of value criterion, therefore the number of criterion will 

be defined as n. These n criteria are combined into an overall score that we use as a 

value measure. By utilizing the hierarchy of the quadtree, each of the n value criteria 

equations assigns a score to every occurrence point in the data set. Thus, the total 

value measure of a provider is the sum of the values over the provider’s respective 

points. The value for a provider, p, is as follows: 

)(*)(*...)(* 1111 prionvalueCritewprionvalueCritewprionvalueCritew nnnn +++ −−  

Each ‘valueCriterioni’ is a value measure ranging from 0 to 1. In addition, the 

quantities wi are user assignable weights that also range from 0-1. The purpose of the 

weights is to provide an interactive way for the user to explore the strengths and 

weakness of a species collection. Interactivity with the algorithm is explained later in 

Chapter 6.  Therefore, the resulting combined value score for a provider will range 

from 0 to n. For testing purposes, we have used n=3: 

)(*)(*)(* 321 poncontributiwpenvironwplocationw ++  

The first measure determined by the algorithm is the location, more 

specifically the geospatial spread of occurrence points. The location measure seeks to 

rank each provider based on the geospatial spread of their respective occurrence 
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points. The goal is to assign a higher score to providers which possess a large 

geographic region of coverage, or to providers which have occurrence points in an 

area that no other provider has. It must be possible to compute the location measure 

very quickly, without resorting to the costly and time consuming )( 2nO  comparison 

of all occurrence points. In turn, we have developed a fast calculation method that 

takes advantage of the quadtree, and alleviates the need for n  by n  comparison. 

Thus, the location measure algorithm can exploit the hierarchical spatial 

representation of the quadtree to quickly calculate relative geospatial spread, rather 

than compare the latitude and longitude of every occurrence point with that of every 

other point. 

In order to do this, the location measure performs a pre-order traversal of the 

quadtree and assigns a value to each leaf node based upon two criteria. The first 

criterion is computed by determining the relative depth of the leaf node within the 

tree. A leaf node deeper within the tree implies a close geospatial proximity to other 

occurrence points, and as such, the leaf node would be given a lower score. However, 

a node’s depth in the quadtree alone does not reliably determine geospatial spread 

[10]. The second criterion addresses this problem by adjusting the maximum 

capacity. The second criterion addresses this problem by adjusting the maximum 

capacity of each quadrant, in other words adjusting the resolution. The quadtree has 

an initial maximum capacity that defines the maximum number of data points that 

reside in each quadrant. When the maximum capacity in increased, a quadrant will 

encompass more data points. Therefore, in regards to the location measure, by 
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increasing the quadrant size we encapsulate those occurrences which lie in close 

geospatial proximity together. The method of interactively increasing the maximum 

capacity proves useful to normalize the results when one provider has a significantly 

large number of occurrence points in a small geographical location. 

While the location measure does use the spatial hierarchy of the quadtree, it 

also is fortunately not tightly coupled to the structure of the quadtree so that it can 

consistently produce valid results. We would expect that the same data sets would 

have similar results regardless of where in the quadtree they are rooted. For example, 

a data set of ‘GallinulaChloropus’ with 10,000 occurrence points has three providers. 

On an initial run of the application we recorded the first, second, third and last place 

rankings. Next, for the sake of testing, we moved the geospatial locations of each 

provider’s occurrence points and ran the application again. The location measure 

provided a different numerical score, but the application continued to rank the 

providers in the same order: the previous first place was still in first, the previous 

second stayed in second, and so on. Further tests moving the providers occurrence 

data yielded the same results, fluctuations in numerical score while keeping the same 

ranking. The location measure provides a fast approximation of geospatial spread, 

and does so regardless of the where in the tree a collection of points of rooted. 

Diversity of environmental variables also contributes to the overall value 

measure. Ideally a user would like to know if a provider has occurrence points in an 

environment that no other provider has. The second part of the algorithm, 

environmental measure, provides a measure of diversity. Our application has twenty 
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environmental layers that species may be compared with. Environmental layers are 

raster data files representing some region of the world. Each cell in the layer is a 

measurement of the parameter associated with that layer [7]. The twenty layers in our 

application each represent the entire earth for some parameter; for example, average 

precipitation, or mean temperature. The environmental measure then creates a 

quadtree by mapping each occurrence point to its respective point in a new 

environmental space.   

The environmental space is determined by two user chosen environmental 

layers that represent the x and y axes. Users may choose any combination of 

environmental layers. By using a quadtree that consists of two differing 

environmental variables as the x and y axes, we can create an environmental space in 

order to identify niches; a niche is the relational position of a species in its ecosystem 

compared to others of the same species. Then we can traverse the tree and assign 

values in the same manner as the location value measure. It is important to note that 

these values are not based on a geospatial distance. The reason is because the 

environmental space can represent any combination of environmental layers, thus a 

distance measure does not have biological meaning. Instead, the environmental 

measure can aid in the identification of niches and correlations within the chosen 

environmental space. Calculating the environmental diversity in this manner provides 

the benefit of fast determination of spatial spread and the ability to combine any two 

environmental variables. The environmental measure provides valuable insight into 

the relation between environmental attributes of the occurrence points. 
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The final part of the value measure algorithm computes a contribution amount 

for each provider. The goal for the contribution measure is to determine a ratio of 

how much new information a provider adds to the existing set of information. Each 

provider contributes a certain number of occurrence points to the total data set; a 

provider may or may not have duplicate occurrence points which affect the amount of 

unique information the provider contributes. Duplicate points can either be shared 

among other providers or represent duplicates from within that provider’s own 

species collection. Therefore, a distinction between duplicates must be made. 

Duplicates can either be 'internal' or 'shared'. An internal duplicate represents a 

duplicate occurrence point with only one provider. Internal duplicates arise from 

human error, when the same occurrence point is entered into a provider’s data set 

more than once. Whereas, a 'shared duplicate’ (SD) denotes an occurrence point 

shared amongst multiple providers. The contribution measure can then be computed 

for each provider by: 

)()()( )()()1()1()1()1(
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Where p is a provider and x denotes the current provider. ST is the ‘specimen total’, and SD represents 

‘shared duplicates’. 

The ' specimen total' (ST) accounts for every unique occurrence point the provider 

owns. More specifically, ‘specimen total’ is the sum of a provider's non-duplicate and 

internal duplicate occurrence points. However, an internal duplicate only accounts for 

one specimen occurrence sighting, no matter how many internal duplicates represent 

the same point. The reason internal duplicates only account for a single occurrence 
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point is because they arise from human error at the time the data set was created. One 

must consider that every occurrence point originally existed on a paper record, and 

these paper records were entered one by one into a data set by a person; there is 

bound to be the occasional mistake or duplication of a species occurrence point. For 

example, if a provider held 3 occurrence points and 2 of them represented the same 

occurrence, the provider would have one non-duplicate and one internal duplicate 

occurrence point. Therefore, the ' specimen total' would result in 2 occurrence points.  

The denominator of the contribution equation essentially represents every 

unique specimen occurrence point in the data set by summing the result of every 

providers ST subtracted from its SD. By calculating the contribution for a provider in 

this manner, we can subtract a providers shared duplicates from its specimen total, 

and then divide by all unique specimen occurrence points to get a ratio of the amount 

of unique information the provider contributes to the data set. For instance, if a 

provider held the majority of occurrence points, but all of its occurrence points were 

shared duplicates, then that provider would add no new information to the data set.  

Our application may be extended, with minimal programmer effort, to include 

relevant attributes and equations for a specific domain. Additional attributes require a 

new graphical user interface element (GUI) and may either require a new quadtree or 

may perform some analysis over an existing quadtree. For instance, the 

implementation of environmental variables only required a new quadtree with a 

different data space, environmental rather than geospatial, and a graphical user 

interface (GUI) slider bar. Similarly, the contribution attribute was added by 
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including an additional statistical calculation into the final value score, and inserting a 

GUI slider bar element.   
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Chapter 6: Real-time Interactive Framework 

 

6.1: User Interface 

 

The comparative analysis of specimen occurrence points produces a large 

amount of data that must be easily interpreted by the user. Therefore, a suitably 

intuitive and real-time interactive visual representation is necessary to provide a 

method for assessment of results. Users must be able to view their specimen 

occurrence data along with specimen data from other institutions, in order to quickly 

see the overall geographical layout of a particular species. By displaying each 

occurrence point (color coded to match their associated provider) on the globe, users 

can quickly identify the global coverage of each species collection. The application 

must also provide a clear visual representation of the value for each collection in 

question. Value should be displayed in such a manner that allows it to be easily and 

quickly interpreted. An elegant way to represent rank among many objects is a bar 

chart. Although for our purpose, the bar chart is dynamic and reacts instantly to user 

adjustments of the value measure algorithm. For instance, users can adjust the 

weights of each criterion as they see fit, and likewise the bar chart will reflect those 

adjustments. 

For the purpose of visualization, the application uses NASA’s WorldWind. 

Similar to Google Earth in its visual capabilities, WorldWind is an application API 

and framework that leverages Landsat satellite imagery, Shuttle Radar Topography 
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Mission data, and a variety of surface elevation models to view the earth’s terrain in 

3D [18]. However, WorldWind is a more fitting choice than Google Earth because it 

is open source, and it is designed to be used as an application framework to facilitate 

the development of custom applications such as ours. WorldWind also provides a 

visually rich 3D environment to view the earth along with any other form of 

geospatial data. 

The user interface for our application consists of three main panes. (See 

Figure 3.) The first and largest pane holds an interactive view of the earth and all of 

the occurrence data. Users can zoom, spin, and change the projection (2D sinusoidal, 

2D lat lon, 3D globe, etc) of the earth as they see fit. The second pane resides on the 

bottom of the screen and displays a dynamic bar chart. The bar chart displays the 

current value of each species collection. Additionally, the bar chart changes in real 

time as the user adjusts the weights of the three value measures. Finally the third 

pane, which sits on the right side of the application, displays statistics about the 

currently selected provider. Such statistics include the score for location, 

environment, and contribution. Most importantly, this pane holds the sliders to adjust 

the weights of each value measure criterion. 
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Figure 3 

 

Figure 3: (1) The WorldWind display. (2) The dynamic bar chart that instantly reflects user changes to the value 

measure algorithm. (3) The collections statistics and slider bars for the three value criteria. 

 

6.2: The Role of User Interaction 

 

The results of comparative collection analysis must make logical sense to 

users. The graphical user interface (GUI) should effectively convey the rank of each 

collection. A naive GUI approach could feature a static ranking, unchangeable 

through user interaction, for each collection. However, a static ranking is detrimental 

to the goal of comparative collection analysis. We want users to not only see the rank, 
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but also to understand why a species collection is ranked in a certain way. Users gain 

insight into their data by not only seeing the results, but by also interacting with the 

value measure algorithm to better comprehend the value score. Through interaction, 

users can assess which factors contribute the most or least to the overall value score.  

 User interaction is achieved through the use of weights, in conjunction with 

GUI  ‘slider bars’. As previously shown in the provider value measure equation; 

21,ww  and 3w  are weights that range from 0 to 1, and are multiplied by the location, 

environment, and contribution measures, respectively. The weights affect the 

influence that each value measure criteria has on the final value score. Each slider bar 

adjusts the weight of its respective value measure from 0 to 1.  As a slider bar is 

adjusted, the dynamic bar chart and geographical displays are updated in real-time to 

reflect changes to the overall value score. This interaction allows users to focus on 

those parts of the value measure of interest to them. For instance, if a user is only 

concerned with environmental diversity, they can use the sliders to turn off the 

location and contribution measures. In this manner, users can explore the data to 

determine strengths and weaknesses of multiple collections. Through customizable 

interaction, users not only view, but also understand the results of the value score. 

User interaction further benefits from real-time interactivity with the 

application. Researchers and scientists will most likely use comparative collection 

analysis of this type as a reference tool. Therefore, the application must perform its 

analysis and display the results quickly. When talking with a museum curator we 

learned of another open-source geospatial visualization program called GeoDa that 
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can not handle input data sets over 25,000 points, and with data sets over 10,000 it 

becomes very sluggish. In contrast, our application can effectively analyze several 

tens of thousands of species occurrence points. For instance, it takes less than 3 

seconds to construct two quadtrees in order to analyze all three criteria of an 

occurrence data set that consists of 100,000 occurrence points (A 3Ghz quad-core 

computer with 4Gb ram, and our quadtree set with a maximum capacity of 15.). The 

speed of analyzing very large data sets is made possible by our quadtree and fast 

geospatial calculations. 

 

6.3: Achieving Real-time Interaction 

 

Real-time interaction is achieved through the speed up gained by using our 

quadtree and slight modifications to WorldWinds icon render, explained further in 

subsequent paragraphs. The application takes only seconds to load a species data set; 

thereafter the user experiences no ‘input lag’ with the application. Input lag is the 

time required for an application to respond to user input; generally input lag less than 

1 second is acceptable for an application of this type. The input lag is minimized by 

performing the value measure calculations while a data set is initially loaded. Thus, 

when a user modifies a criterion of the value score, the application does not need to 

re-traverse the quadtree and recalculate the value score; instead the application 

updates the dynamic bar chart and geographical visualizations to display effects of the 
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user’s action. There is only input lag when the user changes the environmental layers; 

in this case a new quadtree must be built and analyzed for a new environmental space. 

The quadtree data structure also enables fast node retrieval upon a user query. 

When a user selects a group of occurrence points, the application can rapidly query 

and display more information about the selected points. As mentioned earlier, the 

speed of node retrieval is attributed to the fact that every node stores its index within 

the dynamic array, allowing for rapid retrieval of all the information associated with 

relevant occurrence points. 

As of this writing WorldWind 1.4 was not able to efficiently display a large 

number of icons. For example, 2,000 occurrence point icons would restrict the display 

to running very slowly, about 5-10 frames per second. However, with some 

modification to the WorldWind icon render, we were able to allow it to display a 

large number of icons (3,000 icons) at 20-23 frames per second. Our modification 

involved view based culling of icons. That is, any occurrence icons that resided 

outside the current viewable sectors of the display were not rendered. Additionally, 

another modification enabled the ability to draw icons in a large batch in order to save 

OpenGL state switching. For the purpose of informative visualization, it was not 

beneficial to display more than 3,000 occurrence point icons at a time. Therefore, on 

very large data sets exceeding 3,000, only a sample of the occurrence point data is 

displayed. Together our quadtree data structure, value algorithm, and WorldWind 

icon renderer modifications allows the user interface to achieve real-time 

interactivity.  
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Chapter 7: Evaluation 

 

7.1: Data Set and Test Subjects 

  

A survey was administered to test and evaluate the usefulness of our 

comparative collection analysis. For the purpose of evaluation, we used the 

occurrence data set of   Dimelaena oreina (Ach.) Norman, a lichen species, 

downloaded from the GBIF online repository on January 10th 2009. The data set 

contained a relatively clustered distribution of 203 occurrence points from Spain, 

Sweden, North America, and Northern Russia among other areas.  Those specimen-

based occurrence points for the species came from nine biological collection 

institutions. The data with its widely dispersed and clustered occurrence points nicely 

exercised the various dimensions of the ranking system. In contrast, we also used 

GBIF occurrence data for the weed species Argentina anserina (L) Rydb. This 

contained 2,340 occurrence points from seven institutional collections. This data set 

contained over 10 times the number of points and had a much less clustered 

distribution than the lichen data set.  

 Our application is targeted toward users who have a background in museum 

collections. As such, the test subjects included scientists and curators with a strong 

background in managing biological collections. There were 5 test subjects, 3 men and 

2 women, from the University of Kansas Biodiversity Institute. The test subjects areas 

of expertise were quite varied, those areas included: ichthyology, mammalogy, 
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entomology, and botany. Testers were either curatorial or collection management 

staff. 

 

7.2: Results 

 

The survey was administered as follows: First, the test subject was given a 

brief explanation of the purpose of the application. Next, a concise explanation was 

given of the GUI controls of the application and how to use them along with a brief 

explanation of each value measure. The test subject was then free to explore and 

manipulate the application in an undirected manner and asked to vocalize any 

thoughts, questions, or concerns.   

We evaluated whether the results of comparative collection analysis were 

useful. Four of the five participants confirmed that the results of our application made 

logical sense. They agreed and understood why certain species collections were 

ranked near the top or bottom. Furthermore, one test subject, with a background in 

botany had prior professional knowledge of reputable herbaria collections, confirmed 

that our application did in fact correctly rank the top collection in the lichen data set 

based on his knowledge of the field. The overall reactions to comparative collection 

analysis were positive. The participants echoed that our application was beneficial for 

collaboration and provided a method to document strengths and justify future 

collection priorities. Other participants said that our application was useful for finding 

gaps in geographical coverage, as well as providing an incentive for curators to make 
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their collection data available online. Furthermore, three test subjects expressed their 

desire to use the tool on their own collections, as there is currently no such way to 

assess these qualities of a species collection. 

There were also negative reactions to the application. A concern expressed by 

the first three test subjects involved the coloring of icons and collections. The colors 

among icons were difficult to distinguish. For that reason, we adjusted the colors, and 

the following two test subjects made no mention of difficulty distinguishing among 

colors. Participants expressed another concern: they thought it would be helpful to 

rank collections on a genus and family level. This concern could be easily addressed, 

because instead of importing one occurrence data file we could just import multiple 

occurrence data sets to build a quadtree. Another repeated concern was that it would 

be helpful to have other criteria for comparison. Each test subject suggested different 

additional criteria, which served to reinforce our previous notion that researchers in 

specialized biological disciplines have different priorities on important criterion. 

Fortunately, our framework for comparative collection analysis is extensible to easily 

handle additional attributes specific to a biological domain, as there are no restriction 

on the number of attributes which can be added. As a result, all participants 

appreciated the ability to weigh the different criteria as they saw fit. Finally, they all 

agreed that the three criteria we have defined (location, environment, and 

contribution) are criteria they would also use as a standard to rank biological 

collection holdings. 
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The evaluation of comparative collection analysis proved successful. Based on 

test subject feedback, the application correctly ranked collections. The three value 

criteria also proved to be more than sufficient for ranking biological species 

collections. Test subjects also understood how and why collections were ranked, and 

they could also foresee many uses for comparative collection analysis. The user 

interface also provided an intuitive method to adjust weights for all three criteria. 

Additionally, our application quickly processed a large number of occurrence points, 

and no test subject mentioned ‘input lag’ or ‘slow response’ of the application. The 

results of our comparative collections analysis method delivered insightful aspects 

into the value of ranking species collections, and illustrated how our approach is an 

effective ranking and analysis tool. 
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Chapter 8: Conclusions 

 

8.1 Summary 

 We have described the design and development of several novel techniques. 

The first is the method of “branch bypassing” for quadtrees which speeds traversal 

time by skipping over superfluous paths within the quadtree created from clustered 

data sets. Branch bypassing also preserves the structure of the quadtree because it 

neither removes nor deletes nodes from the underlying data structure. We also 

developed an extensible framework for evaluating point data sets, and created a 

standard general value measure to rank biological collections on three criteria: 

geospatial spread, environmental attributes, and ‘unique contribution’. User testing 

further reinforced the usefulness and benefits of our application in the biological 

collections area. Furthermore, we developed a fast geospatial spread approximation 

which exploits a quadtrees spatial hierarchal aggregation to quickly operate over large 

sets of data. Finally, we developed a real-time interactive application to allow users to 

explore and understand how and why collections are ranked amongst each other. 

 

8.2 Conclusions 

 We have proposed a framework to create an interactive environment, suitably 

intuitive, easy to use, and fast that allows massive data collections to be efficiently 

rated/ranked according to standard criteria. We have found that the quadtree structure, 

in conjunction with branch bypassing, effectively provided a fast and efficient way to 
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calculate geospatial spread, while concurrently working with large data sets. The 

geospatial spread calculations are also extensible to other applications that assess 

geospatial spread on large sets of data. Our framework also provided a first-of-its-

kind useful value measure based upon three standard criteria in order to rank 

biological collections specimen holdings. Furthermore, branch bypassing proved to 

be a fast operation, because it neither deleted nor added nodes to the underlying 

dynamic data structure, to increase traversal time of the tree while preserving the 

original quadtree data structure. Branch bypassing can also be generalized to any 

region-based quadtree. The results of our application will lead to a richer description 

of collection holdings of interest to researchers in biological sciences, resource 

planning, development, and collaboration. 

 

8.3 Future work 

Though the results given in this paper show the success of comparative 

collection analysis, there is room for possible future directions with the application. 

The environmental impact of the species sightings could be further investigated by 

overlaying various maps on to specimen occurrence data. For instance, modern land 

use, land change maps or remote sensing data overlaid on top of historic species 

distributions could prove highly valuable for a museum to know that they may have 

the last or only collections of species from a habitat that no longer exists. The 

application would also benefit from the ability for users to reduce their comparisons 

to specific areas of the globe. Additional value measures could be incorporated, such 
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as preservation method, date collected, etc.  These kinds of analyses, which can only 

be done with cross-collection comparisons, and which can only be done efficiently 

and interactively with desktop geospatial visualization tools, will be highly valued by 

biodiversity collections, researchers, students, curators and administrators. 
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