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Abstract

An abundant literature is concerned with the existence of equilibrium in incomplete mar-

kets where participation to financial markets is not restricted. To mention a few, Cass

(1984), Werner (1985), Geanakoplos and Polemarchakis (1986), Duffie (1987), Duffie and

Shafer (1985) and Magill and Quinzii (1996). Financial economies with incomplete markets

assume (in general) a symmetric participation structure, i.e. each consumer is confronted

with the same restrictions on her portfolio trades. This is a very limiting assumption: in

reality, people get to know about different investment opportunities and not all investors

are able to trade in the same markets. In this work we consider institutional restrictions on

trading activity in the financial markets. Following Siconolfi (1989), Angeloni and Cornet

(2006), and Hahn and Won (2007), the broadest formulation of such restricted partici-

pation is to assume that households face financial constraints modeled by closed convex

subsets of the portfolio space.

Our contribution to the literature on general equilibrium of financial markets is threefold.

In Chapter 2 we refine the definition of reduced financial structure to accommodate the case

of financial structures with restricted participation. We then provide a characterization

of reduced financial structures in terms of arbitrage-free prices and by the compactness

of a set of “admissible” portfolio allocations. In Chapter 3 we introduce an equivalence

relation on the set of financial structures and we show that, under mild assumptions, every

financial structure is equivalent to a reduced financial structure, and that subsequently,

all equilibria in a financial economy are in one-to-one correspondence with the equilibria

of an economy where the financial structure is replaced by an equivalent reduced one.

Finally, in Chapter 4 we prove a general existence result of equilibria for financial exchange

economies with restricted participation in which agents may have nonordered preferences.

Our result extends the results by Radner (1972), and Siconolfi (1989), and also extends

to the restricted participation case the results by Cass (1984), Werner (1985), and Duffie

(1987).
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Chapter 1

Introduction to financial markets

1.1 The financial exchange economy

1.1.1 The model of a stochastic economy

1 We consider the basic model of a two time-date economy with nominal assets. It is also

assumed that there are finite sets I, H, S, and J , respectively, of agents, divisible physical

commodities, states of nature, and nominal assets.

In what follows, the first date will also be referred to as t = 0 and the second date, as

t = 1. There is an a priori uncertainty at the first date (t = 0) about which of the states

of nature s ∈ S will prevail at the second date (t = 1). For the sake of unified notations

of time and uncertainty, the non-random state at the first date is denoted by s = 0 and S̄

stands for the set {0} ∪ S.
1We shall use the following notation. If I and J are finite sets, the space RI (identified to R#I whenever

necessary) of functions x : I → R (also denoted x = (x(i))i∈I or x = (xi)i) is endowed with the scalar

product x · y :=
P

i∈I x(i)y(i), and we denote by ‖x‖ :=
√

x · x the Euclidean norm. By B(x, r) we denote

the closed ball centered at x ∈ RL of radius r > 0, namely B(x, r) = {y ∈ RL : ‖y − x‖ ≤ r}. In RI , the

notation x ≥ y (resp. x > y, x ( y) means that, for every i, x(i) ≥ y(i) (resp. x ≥ y and x )= y,

x(i) > y(i)) and we let RI
+ = {x ∈ RI | x ≥ 0}, RI

++ = {x ∈ RI | x ( 0}. An I ×J-matrix A = (aj
i )i∈I,j∈J

is an element of RI×J whose rows are denoted Ai = (aj
i )j∈J ∈ RJ (i ∈ I), and columns Aj = (aj

i )i∈I ∈ RI

(j ∈ J). To the matrix A, we associate the linear mapping, from RJ to RI , also denoted by A, defined by

Ax = (Ai · x)i∈I . The span of the matrix A, also called the image of A, is the set < A >:= {Ax | x ∈ RJ}.
The transpose matrix of A, denoted by AT , is the J × I-matrix whose rows are the columns of A, or

equivalently, is the unique linear mapping AT : RI → RJ , satisfying Ax · y = x · AT y for every x ∈ RJ ,

y ∈ RI .
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At each state of nature s ∈ S̄, there is a spot market where the finite set H of physical

commodities is available. We assume that each commodity does not last more than one

period so that the commodity space is RL, with L = H × S̄ (in this model, a commodity

is a couple (h, s) ∈ H × S̄ of a physical commodity, h, and a state of nature s, at which h

will be available). An element x ∈ RL is called a consumption (or a consumption plan),

that is x = (x(s))s∈S̄ ∈ RL, where x(s) = (x(h, s))h∈H ∈ RH , for every s ∈ S̄.

We denote by p = (p(s))s∈S̄ ∈ RL the vector of spot prices and p(s) = (p(h, s))h∈H ∈ RH

is called the spot price at state s. The spot price p(h, s) is the price paid, at date 0 if

s = 0 and at date 1 if s ∈ S, for the delivery of one unit of commodity h at state s.

Each agent i ∈ I, also called a consumer, is endowed with a consumption set Xi ⊂ RL

which is the set of her possible consumptions. Typically we can take Xi = RL
+, but we

allow for more general consumption sets. An allocation is an element x = (xi)i∈I ∈ ΠiXi,

and we denote by xi the consumption of agent i.

The tastes of each consumer i ∈ I are represented by a strict preference correspondence

Pi : Πk∈IXk → Xi, where Pi(x) defines the set of consumptions that are strictly preferred

by i to xi, that is, given the consumptions xk for other consumers k &= i.

At each state of nature, s ∈ S̄, every consumer i ∈ I has a state-endowment of physical

commodities, ei(s) ∈ RH , contingent to the fact that s prevails and we denote by ei =

(ei(s))s∈S̄ ∈ RL her endowment vector across the different states.

The consumption side of the economy, denoted E , can be summarized by

E =
(
I, H, S, (Xi, Pi, ei)i∈I

)
.

Definition 1.1 The economy E is said to be standard if it satisfies the following two

standard assumptions C and LNS.

Consumption Assumption C

(i) For every i ∈ I, Xi is a bounded below, closed, convex subset of RL(1+S).

(ii) Continuity of Preferences For every i ∈ I, the correspondence Pi : ΠiXi → Xi is

lower semicontinuous with convex open values in Xi for the relative topology of Xi.

(iii) Irreflexive Preferences For every i ∈ I, for every x = (xi)i∈I ∈ ΠiXi, xi /∈ Pi(x).

6



(iv) Strong Survival SS For every i ∈ I, ei ∈ intXi.

(v) Non-Satiation NS For every i ∈ I, for every x ∈ ΠiXi, for every s ∈ S̄, there

exists (xn
i )n ⊂ Pi(x) such that xn

i (s′) = xi(s′) for all s′ &= s, and xn
i −→n→∞

xi.

Agents may operate financial transfers across states in S̄ (i.e. across the two dates and

across the states of the second date) by exchanging a finite number of nominal assets

j ∈ J , which define the financial structure of the model.2 The nominal assets are traded

at the first date (t = 0) and yield payoffs at the second date (t = 1), contingent on the

realization of the state of nature s ∈ S. The payoff of the nominal asset j ∈ J , when state

s ∈ S is realized, is vj
s, and we denote by V the S × J-payoff matrix V = (vj

s), which does

not depend upon the asset prices q ∈ RJ (and will not depend upon the commodity prices

p in the associated equilibrium model). A portfolio z = (zj) ∈ RJ specifies the quantities

|zj | (j ∈ J) of each asset j (with the convention that the asset j is bought if zj > 0 and

sold if zj < 0). Thus V z ∈ RS is the random financial payoff of portfolio z across states at

time t = 1, and Vs · z is the payoff if state s prevails. Given an asset price vector q ∈ RJ ,

we define the (S + 1)× J matrix

W (q) =



 −q

V





referred to as the full-payoff matrix.

We assume that each agent i is restricted to choose her portfolio within a portfolio set

Zi ⊂ RJ , which represents the set of portfolios that are (institutionally) admissible for

agent i. This general framework allows us to address, for example, the following important

cases:

(i) Zi = RJ (unconstrained portfolios).

(ii) Zi = zi + RJ
+, for some zi ∈ −RJ

+ (exogenous bounds on short sales).

(iii) Zi = BJ(0, 1) (bounded portfolio sets).

(iv) Zi is a vector space (linear equality constraints).

(v) Zi is polyhedral and contains 0 (linear equality and inequality portfolio constraints).
2The case of no financial assets – i.e., J is empty – is called pure spot markets.
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Note that the polyhedral case covers situations (i)-(iv) (with an appropriate choice of the

norm in (iii)). In the sequel, we make the following assumption which covers all the above

cases.

F1. For every i ∈ I, the set Zi is closed, convex, and contains 0.

We summarize by F =
(
I, S, J, V, (Zi)i∈I

)
the financial characteristics, referred to as the

financial structure. When there is no risk of confusion, the financial structure F will be

denoted
(
V, (Zi)i

)
. When there are no constraints, F will be simply denoted by V .

The financial exchange economy (E ,F) is a couple of an exchange economy E and a financial

structure F as described above and it can be summarized by

(E ,F) =
(
I, H, S, (Xi, Pi, ei)i∈I , J, V, (Zi)i∈I

)
.

1.1.2 Financial equilibria and no-arbitrage

Consider a financial exchange economy (E ,F). Given the spot price vector p ∈ RL and

the asset price vector q ∈ RJ , the budget set of consumer i ∈ I in this setting is defined as

follows3

Bi(F , p, q) = {(xi, zi) ∈ Xi × Zi : ∀s ∈ S̄, p(s) · [xi(s)− ei(s)] ≤ [W (q)zi](s)}

= {(xi, zi) ∈ Xi × Zi : p (xi − ei) ≤ W (q)zi}.

An equilibrium in the financial exchange economy is then defined as a collection of com-

modity spot prices, consumptions (one for each agent), asset prices, and portfolios (one for

each agent) such that each agent maximizes her preferences over her budget set, and all

markets clear (commodity markets clear in all dates and states, and asset markets clear).

Formally, we have

Definition 1.2 An equilibrium in the financial exchange economy (E ,F) is a list
(
p̄, x̄, q̄, z̄

)

∈ RL\{0}× (RL)I × RJ × (RJ)I such that

(a) for every i ∈ I, (x̄i, z̄i) maximizes the preferences Pi in the budget set Bi(F , p̄, q̄), in

the sense that

(x̄i, z̄i) ∈ Bi(F , p̄, q̄) and [Pi(x̄)× Zi] ∩Bi(F , p̄, q̄) = ∅,
3For x = (x(s))s∈S̄ , p = (p(s))s∈S̄ in RL = RHS̄ (with x(s), p(s) in RH for each s ∈ S̄) we let p x =

(p(s) · x(s))s∈S̄ ∈ RS̄ .
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where x̄ = (x̄i)i∈I , and

(b)
∑

i∈I

x̄i =
∑

i∈I

ei and
∑

i∈I

z̄i = 0.

A consumption equilibrium in the financial exchange economy (E ,F) is a list of commodity

prices and consumptions (p̄, x̄) ∈ RL\{0} × (RL)I such that there exist asset prices and

portfolios (q̄, z̄) ∈ RJ × (RJ)I with
(
p̄, x̄, q̄, z̄

)
is an equilibrium in (E ,F).

The following notion of no-arbitrage takes into account only arbitrage opportunities that

might yield an infinite payoff.

Definition 1.3 Given the financial structure F =
(
V, (Zi)i∈I

)
, the portfolio vi ∈ RJ is

said to be an asymptotic arbitrage opportunity for agent i ∈ I at the price q̄ ∈ RJ if vi

belongs to the asymptotic cone4 of Zi, denoted AZi, and W (q̄)vi > 0.

Definition 1.4 The asset price vector q̄ is said to be asymptotic-arbitrage-free if for every

agent i ∈ I there is no asymptotic arbitrage opportunity at q̄, that is, if

W (q̄) (
⋃

i∈I

AZi) ∩ RS+1
+ = {0},

and we denote by Q the set of asymptotic arbitrage-free prices.

It is worth noticing that the set Q is a convex cone5, a property which will be used

throughout this thesis.

Proposition 1.1 The set Q is a convex cone of RJ .

We recall that, under the non-satiation assumption NS, equilibrium asset price vectors

are asymptotic-arbitrage-free. See [5] for a proof of Proposition 1.2.

Proposition 1.2 Under NS, if
(
p̄, x̄, q̄, z̄

)
is an equilibrium of the economy (E ,F), then

q̄ is asymptotic-arbitrage-free.
4If C is a nonempty convex set in Rα, the asymptotic cone of C is AC = {v ∈ Rα : v + clC ⊂ clC}.

Note that the definition is given with “clC” instead of C as in the cone O+(C) as defined by Rockafellar

[35] so that AC = O+(clC).
5A set Q is a cone if for every q ∈ Q and λ > 0, one has λq ∈ Q.
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1.1.3 Equivalent financial structures

We introduce an equivalence relation on the set of all financial structures. We will say that

two financial structures are equivalent if they are indistinguishable in terms of consumption

equilibria. The intuition behind this definition is the following. Financial structures allow

agents to transfer wealth across states of nature and thereby give them the possibility

to enlarge their budget set. Hence if, regardless of the standard exchange economy E ,

equilibrium consumption allocations and equilibrium commodity price vectors are the

same when agents carry out their financial activities through two different structures,

then these two financial structures are said to be equivalent. Formally

Definition 1.5 Consider two financial structures F =
(
V, (Zi)i

)
and F ′ =

(
V ′, (Z ′i)i

)
.

We say that F ∼ F ′ (read F is equivalent to F ′) if for every standard exchange economy E,

the financial exchange economies (E ,F) and (E ,F ′) have the same consumption equilibria.

1.2 The unconstrained case

1.2.1 Existence of equilibria: the unconstrained case

In this section we consider an unconstrained financial structure F =
(
V, (RJ)i

)
.

Unconstrained Portfolios For every i ∈ I, Zi = RJ .

The following theorem is the standard result of existence of equilibria in a financial ex-

change economy where agents portfolios are unrestricted (see for example Cass [10], Werner

[37], Duffie and Schafer ([19], [20]), and Duffie [17]).

Theorem 1.1 Let (E ,F) =
(
(Xi, Pi, ei)i∈I , (V, (RJ)i∈I)

)
be a financial exchange economy

with unconstrained portfolios satisfying assumption C, then (E ,F) admits an equilibrium.

The standard proof of Theorem 1.1 is performed in three steps which are worth describing

explicitly since we will follow the same scheme in the constrained case:

Step 1. Consider a reduced form (see Definition-Proposition 1.7). This is straightforward

in the unconstrained case.
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Step 2. Consider an equivalent reduced form F ′ of F (use Proposition 1.6 to eliminate

redundant assets and get an equivalent reduced form).

Step 3. Show existence of equilibrium for the financial exchange economy (E ,F ′) using

the compactness property of the set of “admissible” portfolio allocations (see Proposition

1.3). This would imply that (E ,F) has an equilibrium since F is equivalent to F ′.

1.2.2 Reduced form: Eliminating redundant assets or useless portfolios?

In this section, we recall the notions of reduced financial structure and useless portfolio al-

location when market participation is unrestricted. We will see later on that the definitions

given in this section need to be refined to suit the case of restricted participation.

Definition 1.6 We say that a financial structure F =
(
V, (Zi)i

)
is unconstrained if, for

every i ∈ I, agent i’s participation to the financial markets is unrestricted, that is Zi = RJ

where J is the number of assets available (J is the number of columns in the matrix V ).

An unconstrained financial structure F = (V, (RJ)i) will be simply denoted V .

Proposition 1.3 The unconstrained financial structure F is said to be reduced if it sat-

isfies one of the following equivalent properties:

(i) The financial structure has no redundant6 assets, that is, the return matrix V has

full column rank (rank V = J).

(ii) The return matrix V is one-to-one (kerV = {0}), hence there is no nonzero portfolio

allocation ζ = (ζ1, · · · , ζI) ∈ (kerV )I (called useless hereafter).

(iii) The set Q of asymptotic arbitrage-free prices has full dimension (dimQ = J) or

equivalently, there is no nontrivial linear dependence between the asset prices, that

is, there does not exist α ∈ RJ , α &= 0, such that
∑

j∈Jαjqj = 0 for every q ∈ Q.

(iv) For every v = (vi)i ∈ (RS)I , the set K0(v) of “admissible” portfolio allocations is

compact, where

K0(v) := {(zi)i ∈ (RJ)I : ∀i ∈ I, V zi ≥ vi,
∑

i∈I

zi = 0}.

6Recall that an asset is said to be redundant if its payoff is a linear combination of other assets payoffs.
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Proof. The implication (i) ⇒ (ii) is trivial. We show (ii) ⇒ (iii). It is well known that in

the unconstrained case, Q = V T (RS
++). Since the linear map V is one-to-one, the linear

map V T is onto hence open. Therefore the set Q is open as the image of an open set by

an open mapping. This shows that Q has full dimension. Now we show (iii) ⇒ (iv). To

this end, we show that AK0(v) = {0}. K0(v) is obviously closed, convex and

AK0(v) =
{
(ζi)i ∈ (RJ)I ,∀i V ζi ≥ 0,

∑

i∈I

ζi = 0
}
.

Let (ζ1, · · · , ζI) ∈ AK0(v). From V ζi ≥ 0 for each i, and
∑

i∈Iζi = 0, we get V ζi = 0.

Thus for every i ∈ I and for every q ∈ Q, one has q · ζi = 0 (otherwise ζi or −ζi would be

an asymptotic arbitrage opportunity at q which contradicts the fact that q is in Q). Hence

for every i ∈ I, ζi ∈ Q⊥ = {0}, that is (ζ1, · · · , ζI) = (0, · · · , 0). Finally we show that (iv)

⇒ (i). If z ∈ kerV , then (z,−z, 0, · · · , 0) ∈ AK0
(
(0, · · · , 0)

)
= {0}. Hence z = 0.

Definition 1.7 The unconstrained financial structure F is said to be reduced if it satisfies

one of the equivalent properties of Proposition 1.3.

The concept of reduced financial structure is intimately related to the concept of useless

portfolio allocation. We will say that a portfolio z ∈ RJ is useless if it has zero payoff,

that is V z = 0. Proposition 1.3 establishes that absence of nonzero useless portfolio

allocations is equivalent to the financial structure being reduced when participation to

financial markets is unrestricted. Therefore either concept can be taken as a primitive in

the description of financial structures.

An important motivation to our interest in reducing financial structures is property (iv)

in Proposition 1.3. We will call an opportunity of financial transfers to tomorrow (t = 1),

any collection (v1, · · · , vI) of vectors in the space of returns RS . We will say that the

opportunity of financial transfers to tomorrow (v1, · · · , vI) is achievable through or offered

by (respectively, guaranteed by) the financial structure F if there exists a family of feasible

and mutually compatible7 portfolios (z1, · · · , zI) such that V zi = vi (respectively, V zi ≥
vi) for each i ∈ I. Proposition 1.3 states that a financial structure is reduced if and only if

the set of mutually compatible portfolio allocations that guarantee a given level of returns

is compact and, à fortiori, the set of mutually compatible portfolio allocations that achieve

a given opportunity of financial transfers to tomorrow is compact.
7A portfolio allocation (z1, · · · , zI) is mutually compatible if it clears asset markets, that is,

P
i∈Izi = 0.
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Consider an unconstrained financial structure F =
(
V, (RJ)i

)
. Proposition 1.4 provides a

first justification for the term “useless” used in Definition 1.7.

Proposition 1.4 (i) For every q ∈ Q, for every i ∈ I, and for every useless portfolio

ζi for agent i, that is, ζi ∈ kerV , one has q · ζi = 0.

(ii) Under the non-satiation assumption NS, if ζi is useless for agent i, then the following

two assertions are equivalent.

(a) (x∗i , z
∗
i ) maximizes the preferences of agent i in Bi(F , p∗, q∗).

(b) (x∗i , z
∗
i + ζi) maximizes the preferences of agent i in Bi(F , p∗, q∗).

(iii) Under the non-satiation assumption NS, for every mutually compatible useless port-

folio allocation ζ = (ζ1, · · · , ζI), one has: (p̄, x̄, q̄, z̄) is an equilibrium in (E ,F) if

and only if (p̄, x̄, q̄, z̄ + ζ) is an equilibrium in (E ,F).

Proof. Assertions (i) and (ii) are immediate. We show assertion (iii). Let z = (z1, · · · , zI) ∈
(kerV )I be such that

∑
i∈Izi = 0. It suffices to show that, for every i ∈ I, (x̄i, z̄i + zi) ∈

Bi(F , p̄, q̄). This follows from 

−q̄

V



 (z̄i + zi) =



−q̄

V



 z̄i

because (1) zi ∈ kerV for each i, and (2) by Proposition 1.2, q̄ ∈ Q (under NS), hence

−q̄ · zi = 0 (if not, zi would be an arbitrage opportunity at q̄).

1.2.3 Equivalent financial structures

When portfolios are unconstrained, a sufficient condition for two financial structures to be

equivalent, can be obtained in terms of income transfers to the second date.

Consider two unconstrained financial structures V and V ′.

Proposition 1.5 If ImV = ImV ′ then the financial structures V and V ′ are equivalent.

Proof. Let E be an exchange economy satisfying the non-satiation assumption NS, and

let (x̄, p̄) be a consumption equilibrium in (E ,F). Then there exist a portfolio allocation

z̄ = (z̄i)i ∈ (RJ)I and an asset price vector q̄ ∈ RJ such that (x̄, z̄, p̄, q̄) is an equilibrium in

(E ,F). By NS, q̄ is arbitrage free, hence there exists λ ∈ RS
++ such that q̄ = V T λ. Define
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q̄′ = V ′T λ. Since ImV = ImV ′, one can find z̄′′ = (z̄′′i )i ∈ (RJ ′)I such that V z̄i = V ′z̄′′i

for every i ∈ I. Note that since z̄ is an equilibrium portfolio allocation,
∑

i∈I z̄i = 0 and

therefore
∑

i∈I z̄
′′
i ∈ kerV ′. Let z̄′1 = z̄′′1 −

∑
i∈I z̄

′′
i and z̄′i = z̄′′i for i &= 1. Then V z̄i = V ′z̄′i

for every i ∈ I (because
∑

i∈I z̄
′′
i ∈ kerV ′) and

∑
i∈Iz

′
i = 0. Now, it is easy to check that



−q̄

V



 z̄i =



−q̄′

V ′



 z̄′i.

We claim that (x̄, z̄′, p̄, q̄′) is an equilibrium in (E ,F ′). Assume that for some agent i there

exists (xi, z′i) ∈ Bi(F ′, p̄, q̄′) such that xi ∈ Pi(x̄). Let zi ∈ RJ be such that V zi = V ′z′i

(this is possible since ImV = ImV ′). Then

−q̄

V



 zi =



−q̄′

V ′



 z′i.

Hence (xi, zi) ∈ Bi(F , p̄, q̄) which together with xi ∈ Pi(x̄) contradicts the fact that

(x̄, z̄, p̄, q̄) is an equilibrium in (E ,F).

As the following proposition shows, when agents’ portfolios in F are unrestricted, then

removing redundant assets of F leads to a reduced financial structure F ′ which is equivalent

to F . This result is not robust to restrictions on agents participation to financial markets

as we shall explain in the sequel. Note that properties (i) and (ii) in Definition 1.7 are

independent of financial restrictions faced by agents. It is then this latter definition that

we will need to change to accommodate the case of financial structures with restricted

participation.

Proposition 1.6 (Equivalent reduced form) Every unconstrained financial structure is

equivalent to a reduced one (the latter can be chosen to be unconstrained).

Proof. If F =
(
V, (RJ)i

)
is not already reduced then rankV < J , and there exists a

subset J ′ of J such that rankV ′ = J ′ where V ′ = [Vj , j ∈ J ′]. It is easy to check that F is

equivalent to F ′ :=
(
V ′, (RJ ′)i

)
(first notice that ImV = ImV ′, and then use Proposition

1.5 to conclude).

1.3 The constrained case

The main existence result in this thesis is a generalization of Theorem 1.1 to financial

exchange economies with restricted participation. We will essentially follow the same

scheme used to prove existence of equilibria in the unconstrained case.
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We, therefore, need to modify the definition of a reduced financial structure to allow for

financial constraints. This is done in Chapter 2.

We then show an analogous to Proposition 1.6, namely that every financial structure is

equivalent to a reduced one. The proof of the latter result is constructive in the sense

that we actually show how to transform a given financial structure (not necessarily uncon-

strained) into a reduced structure which is equivalent to the original one. This procedure

is presented in Chapter 3.

Then, in Chapter 4, we state and prove the main existence result that we will present in

the next section.

1.3.1 Main existence result

We make the same standard assumption C on the consumption side as in the unconstrained

case. We make the following assumption F on the financial side. Given the financial

structure F =
(
V, (Zi)i∈I

)
, we denote Z(F) =<

∑
i∈IZi > the linear space spanned by

∑
i∈IZi, that is the space where financial activity takes place.

Assumption F

F1 For every i ∈ I, Zi is closed, convex and 0 ∈ Zi.

F2 Closedness Assumption The following set G(F) is closed, where

G(F) := {(V z1, · · · , V zI ,
∑

i∈I

zi) ∈ (RS)I × RJ : ∀i ∈ I, zi ∈ Zi}.

F3 FSSA For every q ∈
(
Q∩Z(F)

)
\{0}, for every i ∈ I there exists a portfolio ζi ∈ Zi

such that q · ζi < 0.

We can now state the main existence result of this thesis.

Theorem 1.2 Let (E ,F) =
(
(Xi, Pi, ei)i∈I , (V, (Zi)i∈I)

)
be a financial exchange economy

satisfying Assumptions C and F, then it admits an equilibrium (p̄, x̄, q̄, z̄) such that p̄(s) &=
0 for every s ∈ S̄.

The proof of Theorem 1.2 will be performed in three steps corresponding to the three

chapters of this thesis.
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Step 1. Consider a reduced form. This step which was straightforward in the uncon-

strained case, will be treated in Chapter 2.

Step 2. Show the existence of a reduced financial structure F ′ which is equivalent to F .

This is the purpose of Chapter 3.

Step 3. Show the existence of equilibria for the financial exchange economy (E ,F ′) using

the compactness property of the set of “admissible” portfolio allocations (see Chapter 4).

From Step 1-3, we then deduce that the financial exchange (E ,F) has an equilibrium since

F is equivalent to F ′ and (E ,F ′) has an equilibrium.

Remark 1.1 Under NS, q̄ ∈ Q (by Proposition 1.2) and p̄(s) &= 0 for every s ∈ S̄ (by

assumption NS).

Remark 1.2 In Theorem 1.2, we can choose the equilibrium asset price q̄ to be in Q(F)∩
Z(F). Indeed, if q∗ = projZ(F)q̄ then (p̄, q∗, x̄, z̄) is also an equilibrium of (E ,F) since for

every i ∈ I, and for every zi ∈ Zi, one has q∗ · zi = q̄ · zi.

Remark 1.3 Under the assumptions of Theorem 1.2, the equilibrium asset price vector

may be zero, that is, we may have q̄ = 0 at equilibrium. A necessary and sufficient

condition guaranteeing that q̄ &= 0 is

∃i ∈ I,∃vi ∈ AZi, V vi > 0.

Indeed, under this assumption, 0 /∈ Q and under the non-satiation assumption NS, q̄ ∈ Q,

hence q̄ &= 0.

1.3.2 Examples of restrictions satisfying assumption F2

As shown by the following Propositions 1.7 and 1.8, assumption F2 holds true in many

situations. Indeed, F2 is fulfilled when the restrictions on portfolio choices are given by a

finite number of linear inequalities, that is, when all portfolios sets are finite intersections

of half spaces. In particular, F2 is fulfilled when the portfolios sets are linear subspaces,

when the portfolio sets are unconstrained, or when the portfolio sets are bounded from

below. Furthermore, assumption F2 holds true under the no mutually compatible po-

tential arbitrage condition (Page [31]) that is when the family {AZi ∩ kerV, i ∈ I} is

positively semi-independent (Siconolfi [36]), in particular F2 holds true when the portfolio

16



sets are bounded, or when there are no redundant assets i.e. rank(V ) = J . The proofs of

Proposition1.7 and Proposition 1.8 are given in [4].

Proposition 1.7 Assumption F2 holds true under anyone of the following conditions.

(a) For all i ∈ I, Zi = RJ (unconstrained portfolios).

(b) For all i ∈ I, Zi is a linear subspace (linear equality constraints).

(c) For all i ∈ I, Zi = zi + RJ
+, for some zi ∈ −RJ

+ (exogenous bounds on short sales).

(d) For all i ∈ I, Zi is polyhedral (linear equality and inequality constraints).

(e) For all i ∈ I, Zi = BJ(0, 1) (bounded portfolio sets).

(f) For all i ∈ I, Zi = Ki + Pi where Ki is nonempty compact and convex, and Pi is

polyhedral.

Definition 1.8 If C is a nonempty convex subset of RJ , the lineality space of C is L(C) =

AC ∩ −AC.

Proposition 1.8 Assumption F2 holds true under anyone of the following conditions.

(g) There are no redundant assets i.e. rank V = J , or equivalently, kerV = {0}.

(h) ∀i, AZi ∩ kerV = {0}.

(i1) L
(∑

i∈I(Zi ∩ {V ≥ 0})
)

= {0}.

(i2) L
(∑

i∈I(Zi ∩ kerV )
)

= {0}.

(i3)
∑

i∈I(AZi ∩ {V ≥ 0}) ∩ −
∑

i∈I(AZi ∩ {V ≥ 0}) = {0}.

(i4)
∑

i∈I(AZi ∩ kerV ) ∩ −
∑

i∈I(AZi ∩ kerV ) = {0}.

(j1) The family {AZi ∩ {V ≥ 0} : i ∈ I} is positively semi-independent8.

(j2) The family {AZi ∩ kerV : i ∈ I} is positively semi-independent.

(k1) The family {AZi ∩ {V ≥ 0}, i ∈ I} is weakly positively semi-independent9.
8A collection {Ci, i ∈ I} of nonempty convex cones in Rα is positively semi-independent if ci ∈ Ci, for

all i ∈ I and
P

i∈Ici = 0, implies that for all i ∈ I, ci = 0.
9A collection {Ci, i ∈ I} of nonempty convex cones in Rα is weakly positively semi independent if

vi ∈ Ci, for all i ∈ I and
P

i∈Ivi = 0, implies that for all i ∈ I, vi ∈ L(Ci).
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(k2) The family {AZi ∩ kerV, i ∈ I} is weakly positively semi-independent.

Proposition 1.9 (l1) For every i ∈ I, V (Zi) is closed and there exists i such that Zi =

RJ .

(l2) For every i ∈ I, V (Zi) is closed and
⋃

i Zi = RJ .

1.3.3 Some consequences of the existence result

Many results in the literature are now corollaries to Theorem 1.2.

Corollary 1.1 (Radner 1972 [34]) The financial exchange economy (E ,F) admits an equi-

librium if it satisfies assumption C and

F2’ For every i ∈ I, Zi is the closed ball B(0, ri), for some ri > 0.

Corollary 1.2 (Radner 1972 [34]) The financial exchange economy (E ,F) admits an equi-

librium if it satisfies assumption C and

F2’ For every i ∈ I, Zi = {z ∈ RJ , z ≥ −zi}, for some zi 0 0.

Corollary 1.3 The financial exchange economy (E ,F) admits an equilibrium if it satisfies

assumptions C, F1, F3, and

F2’ kerV = {0}.

Corollary 1.4 (Siconolfi 1987 [36]) The financial exchange economy (E ,F) admits an

equilibrium if it satisfies assumptions C, F1, F3 and

F2’ For every i ∈ I, AZi ∩ kerV = {0}.

Corollary 1.5 The financial exchange economy (E ,F) admits an equilibrium if it satisfies

assumptions C, F1, F3, and

F2’ The family {AZi ∩ kerV, i ∈ I} is positively semi-independent.

Corollary 1.6 (Aouani and Cornet 2007 [2]) The financial exchange economy (E ,F) ad-

mits an equilibrium if it satisfies assumptions C, F1, F3, and

F2’ The family {AZi ∩ kerV, i ∈ I} is weakly positively semi-independent.
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Corollary 1.7 The financial exchange economy (E ,F) admits an equilibrium if it satisfies

assumption C together with

F2’ For every i in I, Zi is a linear subspace of RJ and,

F3’ −clQ ∩
(
∪iZ⊥i

)
= {0}.

Corollary 1.8 The financial exchange economy (E ,F) admits an equilibrium if it satisfies

assumption C together with

F2’ For every i ∈ I, Zi = Ki + Pi where Ki is nonempty compact and convex and Pi is

polyhedral and,

F3’ −clQ ∩
(
∪iZo

i

)
⊂ {0}.

1.3.4 Reduced financial structures

Consider a financial structure F =
(
I, J, S, V, (Zi)i∈I

)
satisfying assumption F1. We will

say that F is reduced if it satisfies one of the following equivalent conditions.

Theorem 1.3 Under F1, the following assertions are equivalent.

(i) A(
∑

i∈I Zi ∩ {V ≥ 0}) ∩ −A(
∑

i∈I Zi ∩ {V ≥ 0}) = {0}.

(ii) (
∑

i∈I AZi ∩ {V ≥ 0}) ∩ −(
∑

i∈I AZi ∩ {V ≥ 0}) = {0}.

(iii) The convex10 set Q of asymptotic arbitrage-free prices has full dimension (dimQ = J)

or equivalently, there is no nontrivial linear dependence between the asset prices, that

is, there does not exist α ∈ RJ , α &= 0, such that
∑

j∈Jαjqj = 0 for every q ∈ Q.

(iv) For every v = (vi)i ∈ (RS)I , the set K1(v) defined below is compact.

K1(v) := {(zi)i ∈ ΠiZi : ∀i V zi ≥ vi,−
∑

i∈I

zi ∈
∑

i∈I

(AZi ∩ {V ≥ 0})}.

Proof. See [3].

Definition 1.9 The financial structure F is said to be reduced if one of the equivalent

conditions of the above Proposition is satisfied.
10The set Q is convex by Proposition 1.1.
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We denote

L(F) := (
∑

i∈I

AZi ∩ {V ≥ 0}) ∩ −(
∑

i∈I

AZi ∩ {V ≥ 0}),

and elements of L(F) will be called aggregate useless portfolios in F (as explained in [3]).

As shown by Theorem 1.3, the absence of aggregate useless portfolios in a financial struc-

ture is intimately related to the richness of the set of asymptotic-arbitrage-free prices.

Indeed, a financial structure has no aggregate useless portfolios if and only if the associ-

ated set of asymptotic-arbitrage-free prices has full dimension.

Example 1.1 Assume there exists i such that Zi = RJ . Then L(F) = kerV and F is

reduced if and only if kerV = {0}, that is if and only if there are no redundant assets.

Proposition 1.10 If assertion (i) of Theorem 1.3 holds then the set
∑

i∈I(AZi∩{V ≥ 0})
is closed11.

1.3.5 Equivalent reduced form of a financial structure

Under a suitable assumption, every financial structure, F = (V, (Zi)i), is equivalent to a

reduced financial structure F ′.

Theorem 1.4 Let F =
(
V, (Zi)i

)
be a financial structure satisfying assumptions F1 and

F2. Then there exists a financial structure F ′ satisfying F1, such that

(i) F ′ is reduced.

(ii) For every standard exchange economy E, every consumption equilibrium of (E ,F ′)
is a consumption equilibrium of (E ,F).

(iii) The financial structures F and F ′ are equivalent if the financial structure F satisfies

the following additional assumption: existence of a riskless asset.

F0 For every i ∈ I, there exists ζi ∈ AZi such that V ζi 0 0.

Moreover we can choose F ′ so that the following property P is satisfied:

P For every (q, z) ∈
(
Q(F ′) ∩ Z(F ′)

)
×ΠiZi, one has

11Assertion (i) implies that the sets AZi ∩ {V ≥ 0} are positively semi-independent. Recall that a

collection {Ci, i ∈ I} of nonempty convex sets in Rα is positively semi-independent if ci ∈ Ci, for all i ∈ I

and
P

i∈Ici = 0, implies that ci = 0 for all i ∈ I.
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(i) q ∈ Q(F) ∩ Z(F), and

(ii) there exists z′ = (z′i)i ∈ ΠiZ ′i such that q · zi = q · z′i for every i ∈ I.

Theorem 1.4 is a consequence of the following Theorem 1.5. Before giving the statement

of the theorem we need some definitions.

Definition 1.10 Given the financial structure F =
(
V, (Zi)i∈I

)
, we say that (q, zi) ∈

RJ ×Zi is arbitrage-free for agent i ∈ I if there is no portfolio z̄i ∈ Zi such that W (q)z̄i >

W (q)zi.

Let z = (zi)i∈I ∈ ΠiZi. Then (q, z) is said to be arbitrage-free, if for every i ∈ I, (q, zi) is

arbitrage-free for agent i.

The asset price vector q ∈ RJ is said to be arbitrage-free if there exists z = (zi)i∈I ∈ ΠiZi

such that (q, z) is arbitrage-free.

First, we introduce a preorder on the set of all financial structures. A financial opportunity

is a collection (w1, · · · , wI) of vectors in the space RS+1. We will say that the financial

opportunity (w1, · · · , wI) is achievable through (or offered by) the financial structure F if

there exists an asset price vector q ∈ RJ and a family of mutually compatible portfolios

z = (z1, · · · , zI) ∈ ΠiZi such that (q, z) is arbitrage-free in F and for every i ∈ I, W (q)zi =

wi. Then the set, W (F), of financial opportunities achievable through F , is

W (F) :=
{(

W (q)z1, · · · , W (q)zI
)

: (zi)i ∈ ΠiZi,
∑

i∈I

zi = 0, and (q, z) is arbitrage-free
}

.

Definition 1.11 Consider two financial structures F =
(
V, (Zi)i

)
and F ′ =

(
V ′, (Z ′i)i

)
.

We say that F ′ ! F (read F ′ offers at most as many financial opportunities as those

offered by F) if

W (F ′) ⊆ W (F).

When there is no risk of confusion, we simply denote the preorder defined in Definition

1.11 by !W and, given the financial structure F =
(
V, (Zi)i

)
, we denote

V (F) :=
{(

V z1, · · · , V zI
)

: (zi)i ∈ ΠiZi,
∑

i∈I

zi = 0
}

.

Theorem 1.5 Let F =
(
V, (Zi)i

)
be a financial structure satisfying assumptions F1 and

F2, and let π be a linear projection of RJ such that

kerπ ⊂ L(F) := L
(∑

i∈I

(Zi ∩ {V ≥ 0})
)
.

21



Denote Fπ :=
(
V, (clπZi)i

)
. We have

(a) The financial structure Fπ satisfies V (F) = V (Fπ).

(b) If kerπ = L(F), then the financial structure Fπ is reduced, that is L(Fπ) = {0}.

(c) If π is orthogonal, then the financial structure Fπ satisfies:

for every standard exchange economy E, every consumption equilibrium of (E ,Fπ)

is a consumption equilibrium of (E ,F), more precisely, if (E ,Fπ) has an equilibrium

(p̄, q̄, x̄, ȳ), then there exists z∗ ∈ ΠiZi such that (p̄, πq̄, x̄, z∗) is an equilibrium of

(E ,F).

(d) If π is orthogonal and the financial structure F satisfies the following additional

assumption F0, then the financial structures F and Fπ are equivalent.

F0 For every i ∈ I, there exists ζi ∈ AZi such that V ζi 0 0.

(e) If π is orthogonal, then the financial structure Fπ satisfies the following property P.

P For every (q, z) ∈
(
Q(Fπ) ∩ Z(Fπ)

)
×ΠiZi, one has

(i) q ∈ Q(F) ∩ Z(F), and

(ii) there exists z′ = (z′i)i ∈ ΠiclπZi such that q · zi = q · z′i for every i ∈ I.

1.4 Sketch of the proof of the existence result

1.4.1 Existence result under additional assumptions

We make the following additional assumption.

SF2: The financial structure F is reduced, that is
(
A

∑

i∈I

(Zi ∩ {V ≥ 0})
)
∩ −

(
A

∑

i∈I

(Zi ∩ {V ≥ 0})
)

= {0}.

Note that, by Proposition 1.8, assumption SF2 implies F2.

Theorem 1.2 will be proved as a consequence of the following Theorem 1.6 in which the

consumption structure E is standard and the financial structure F is reduced that is the

financial exchange economy (E ,F) satisfies the additional assumption SF2.
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Theorem 1.6 Let (E ,F) =
(
(Xi, Pi, ei)i∈I , (V, (Zi)i∈I)

)
be a financial exchange economy

satisfying Assumptions C, F1, SF2, F3, then it admits an equilibrium.

The proof of Theorem 1.6 is in [5].

1.4.2 From Theorem 1.6 to Theorem 1.2

Now we show how to prove Theorem 1.2 as a consequence of Theorem 1.6. This is done

in two steps. First, we transform the financial structure F to get SF2. Finally, we show

how to get an equilibrium in (E ,F) once we have found an equilibrium in the transformed

financial exchange economy.

Step 1: Transforming the financial structure to get SF2

Let π be the orthogonal projection of RJ such that

kerπ = A
(∑

i∈I

(Zi ∩ kerV )
)
∩ −A

(∑

i∈I

(Zi ∩ kerV )
)
.

Let Fπ =
(
V, (clπZi)i

)
. Obviously, the sets cl(πZi) are closed, convex and contain 0, that

is Fπ satisfies F1 when F satisfies F1. We recall the definition of the sets Q(F) (denoted

Q previously) and Q(Fπ) of arbitrage-free prices for F and Fπ, respectively.

Q(F) = {q ∈ RJ , W (q)(∪iAZi) ∩ RS̄
+ = {0}},

Q(Fπ) = {q ∈ RJ , W (q)(∪iA
(
clπZi)

)
∩ RS̄

+ = {0}}.

Proposition 1.11 Let F satisfy Assumption F1. Then

(i) If F satisfies Assumption F3, then the financial structure Fπ satisfies Assumption

F3.

(ii) If F satisfies Assumption F2, then the financial structure Fπ satisfies Assumption

SF2, that is

A
(∑

i∈I

(clπZi ∩ {V ≥ 0})
)
∩ −A

(∑

i∈I

(clπZi ∩ {V ≥ 0})
)

= {0}.

(iii) Under NS, LNS, F1, and F2, if (E ,Fπ) has an equilibrium (p̄, q̄, x̄, z̄), then there

exists z∗ ∈ ΠiZi such that (p̄, πq̄, x̄, z∗) is an equilibrium of (E ,F).

Assertions (ii) and (iii) are consequences of Theorem 1.5. The proof of assertion (i) is in

[5].
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Step 3: Proof of Theorem 1.2

We start with a financial exchange economy (E ,F) satisfying C and F. We perform the

following steps.

1. We project the financial structure F as in 1.4.2 step 1, to obtain a financial structure

Fπ satisfying F1, SF2, and F3.

2. We apply Theorem 1.6 to find an equilibrium (p̄, q̄, x̄, z̄) of (E ,Fπ).

3. We apply Proposition 1.11(iii) to find an equilibrium (p̄, πq̄, x̄, z∗) of (E ,F).
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Chapter 2

Characterizing reduced financial

structures

We refine the definition of reduced financial structure to accommodate the case of financial

structures with restricted participation. We provide a characterization of reduced financial

structures in terms of arbitrage-free prices and by the compactness of a set of “admissible”

portfolio allocations.

2.1 Introduction

When participation to financial markets is unconstrained, it is customary to say that an

asset is redundant if its payoff is a linear combination of other assets’ payoffs, and that a

portfolio is useless if it has zero payoff. An unconstrained financial structure is said to be

reduced if it has no redundant assets. It is then obvious that an unconstrained financial

structure is reduced if and only if it has no useless portfolios, which is also equivalent to the

set of arbitrage-free prices having full dimension. We will call an opportunity of financial

transfers to tomorrow (t = 1), any collection (v1, · · · , vI) of vectors in the space of returns

RS . We will say that the opportunity of financial transfers to tomorrow (v1, · · · , vI) is

achievable through or offered by (respectively, guaranteed by) the financial structure F
if there exists a family of feasible and mutually compatible1 portfolios (z1, · · · , zI) such

that V zi = vi (respectively, V zi ≥ vi) for each i ∈ I. It is then easy to show that an

unconstrained financial structure is reduced if and only if the set of mutually compatible
1A portfolio allocation (z1, · · · , zI) is mutually compatible if it clears asset markets, that is,

P
i∈Izi = 0.
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portfolio allocations that guarantee a given level of returns is compact and, à fortiori,

the set of mutually compatible portfolio allocations that achieve a given opportunity of

financial transfers to tomorrow is compact.

In this chapter, we refine the definition of reduced financial structure to suit the case

of restricted financial structures. By doing so, we identify the set of useless portfolios.

It is worth noticing that, when there are financial restrictions, a redundant asset is not

necessarily useless.

2.2 The model and the main result

2.2.1 The model of a stochastic economy

2 We consider the basic model of a two time-date economy with nominal assets. It is also

assumed that there are finite sets I, H, S, and J , respectively, of agents, divisible physical

commodities, states of nature, and nominal assets.

In what follows, the first date will also be referred to as t = 0 and the second date, as t = 1.

There is an a priori uncertainty at the first date (t = 0) about which of the states of nature

s ∈ S will prevail at the second date (t = 1). For the sake of unified notations of time and

uncertainty, the non-random state at the first date is denoted by s = 0 (S0 = {0}) and S̄

stands for the set {0} ∪ S.

At each state of nature s ∈ S̄, there is a spot market where the finite set H of physical

commodities is available. We assume that each commodity does not last more than one

period so that the commodity space is RL, with L = H × S̄ (in this model, a commodity
2We shall use the following notation. If I and J are finite sets, the space RI (identified to R#I whenever

necessary) of functions x : I → R (also denoted x = (x(i))i∈I or x = (xi)) is endowed with the scalar

product x · y :=
P

i∈I x(i)y(i), and we denote by ‖x‖ :=
√

x · x the Euclidean norm. By B(x, r) we denote

the closed ball centered at x ∈ RL of radius r > 0, namely B(x, r) = {y ∈ RL : ‖y − x‖ ≤ r}. In RI , the

notation x ≥ y (resp. x > y, x ( y) means that, for every i, x(i) ≥ y(i) (resp. x ≥ y and x )= y,

x(i) > y(i)) and we let RI
+ = {x ∈ RI | x ≥ 0}, RI

++ = {x ∈ RI | x ( 0}. An I ×J-matrix A = (aj
i )i∈I,j∈J

is an element of RI×J whose rows are denoted Ai = (aj
i )j∈J ∈ RJ (i ∈ I), and columns Aj = (aj

i )i∈I ∈ RI

(j ∈ J). To the matrix A, we associate the linear mapping, from RJ to RI , also denoted by A, defined by

Ax = (Ai · x)i∈I . The span of the matrix A, also called the image of A, is the set < A >:= {Ax | x ∈ RJ}.
The transpose matrix of A, denoted by AT , is the J × I-matrix whose rows are the columns of A, or

equivalently, is the unique linear mapping AT : RI → RJ , satisfying Ax · y = x · AT y for every x ∈ RJ ,

y ∈ RI .
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is a couple (h, s) ∈ H × S̄ of a physical commodity, h, and a state of nature s, at which h

will be available). An element x ∈ RL is called a consumption (or a consumption plan),

that is x = (x(s))s∈S̄ ∈ RL, where x(s) = (x(h, s))h∈H ∈ RH , for every s ∈ S̄.

We denote by p = (p(s))s∈S̄ ∈ RL the vector of spot prices and p(s) = (p(h, s))h∈H ∈ RH

is called the spot price at state s. The spot price p(h, s) is the price paid, at date 0 if

s = 0 and at date 1 if s ∈ S, for the delivery of one unit of commodity h at state s.

Each agent i ∈ I, also called a consumer, is endowed with a consumption set Xi ⊂ RL

which is the set of her possible consumptions. An allocation is an element x ∈ ΠiXi, and

we denote by xi the consumption of agent i, that is the projection of x onto Xi.

The tastes of each consumer i ∈ I are represented by a strict preference correspondence

Pi : Πk∈IXk → Xi, where Pi(x) defines the set of consumptions that are strictly preferred

by i to xi, that is, given the consumptions xk for other consumers k &= i.

each state of nature, s ∈ S̄, every consumer i ∈ I has a state-endowment ei(s) ∈ RH

contingent to the fact that s prevails and we denote by ei = (ei(s))s∈S̄ ∈ RL her endowment

vector across the different states.

The consumption structure, denoted E , can be summarized by

E =
(
I, H, S, (Xi, Pi, ei)i∈I

)
.

Agents may operate financial transfers across states in S̄ (i.e. across the two dates and

across the states of the second date) by exchanging a finite number of nominal assets

j ∈ J3, which define the financial structure of the model. The nominal assets are traded

at the first date (t = 0) and yield payoffs at the second date (t = 1), contingent on the

realization of the state of nature. The payoff of the nominal asset j ∈ J , when state s ∈ S

is realized, is V j
s , and we denote by V the S × J-return matrix V = (V j

s ), which does not

depend upon the asset prices q ∈ RJ . A portfolio z = (zj) ∈ RJ specifies the quantities |zj |
(j ∈ J) of each asset j (with the convention that it is bought if zj > 0 and sold if zj < 0),

thus V z is its random financial return across states at time t = 1, and < V [s], z >J is its

return if state s prevails.

We assume that each agent i is restricted to choose her portfolio within a portfolio set

Zi ⊂ RJ , which represents the set of portfolios that are (institutionally) admissible for

agent i. This general framework allows us to address, for example, the following important
3The case of no financial assets – i.e., J is empty – is called pure spot markets.
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cases:

(i) For every i, Zi = RJ (unconstrained portfolios).

(ii) For every i, Zi = zi + RJ
+, for some zi ∈ −RJ

+ (exogenous bounds on short sales).

(iii) For every i, Zi = BJ(0, 1) (bounded portfolio sets).

(iv) For every i, Zi is a vector space.

(v) For every i, Zi is polyhedral and contains 0 (linear equality and inequality portfolio

constraints).

Note that the polyhedral case covers the cases (i)-(iv) (with an appropriate choice of the

norm in (iii)). In the sequel, we make the following assumption which covers all the above

cases:

F1. For every i ∈ I, the set Zi is closed, convex, and contains 0.

We summarize by F =
(
I, S, J, V, (Zi)i∈I

)
the financial characteristics, referred to as the

financial structure. When there is no risk of confusion, the financial structure F will be

denoted
(
V, (Zi)i

)
.

The financial exchange economy is thus summarized by

(E ,F) =
(
I, H, S, (Xi, Pi, ei)i∈I , J, V, (Zi)i∈I

)
.

2.2.2 Financial equilibria and no-arbitrage

Consider a financial exchange economy (E ,F), where E is an exchange economy and F a

financial structure. Given the spot price vector p ∈ RL and the asset price vector q ∈ RJ ,

the budget set of consumer i ∈ I in this setting is defined as follows4

Bi(F , p, q) = {(xi, zi) ∈ Xi × Zi : ∀s ∈ S̄, p(s) · [xi(s)− ei(s)] ≤ [W (q)zi](s)}

= {(xi, zi) ∈ Xi × Zi : p (xi − ei) ≤ W (q)zi}.

Where W (q) is the (S + 1)× J matrix



 −q

V



, referred to as the full-return matrix.

4For x = (x(s))s∈S̄ , p = (p(s))s∈S̄ in RL = RHS̄ (with x(s), p(s) in RH for each s ∈ S̄) we let p x =

(p(s) · x(s))s∈S̄ ∈ RS̄ .
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An equilibrium in the financial exchange economy is then defined as a collection of com-

modity spot prices, consumption strategies (one for each agent), asset prices, and asset

trade strategies (one for each agent) such that each agent maximizes her preferences over

her budget set, and all markets clear (commodity markets clear in all dates and states,

and asset markets clear).

Definition 2.1 An equilibrium in the financial exchange economy (E ,F) is a list
(
p̄, x̄, q̄, z̄

)

∈ RL\{0}× (RL)I × RJ × (RJ)I such that

(a) for every i ∈ I, (x̄i, z̄i) maximizes the preferences Pi, in the sense that

(x̄i, z̄i) ∈ Bi(F , p̄, q̄) and [Pi(x̄)× Zi] ∩Bi(F , p̄, q̄) = ∅

where x̄ = (x̄i)i∈I , and

(b)
∑

i∈I

x̄i =
∑

i∈I

ei and
∑

i∈I

z̄i = 0.

A consumption equilibrium in the financial exchange economy (E ,F) is a list of commodity

prices and consumption strategies (p̄, x̄) ∈ RL\{0}×(RL)I such that there exist asset prices

and trade strategies (q̄, z̄) ∈ RJ × (RJ)I with
(
p̄, x̄, q̄, z̄

)
is an equilibrium in (E ,F).

Our notion of no-arbitrage takes into account only arbitrage opportunities that might yield

an infinite payoff (the intuition underlying this definition is that the market will be able

to rule out any arbitrage opportunity with finite payoff).

Definition 2.2 If C is a nonempty convex set in RJ , we let

AC := {ζ ∈ RJ : ζ + clC ⊂ clC} be the asymptotic cone of C

L(C) := AC ∩ (−AC) be the lineality space of C.

Definition 2.3 The set of arbitrage-free prices of F =
(
V, (Zi)i∈I

)
is

Q =
{
q ∈ RJ : W (q)(

⋃

i

AZi) ∩ RS+1
+ = {0}

}
.

where AZi denotes the asymptotic cone of the set Zi.

Proposition 2.1 The set Q is a convex cone with vertex 0.

Proof. The set Q is obviously a cone. We show that Q is convex. Let q1, q2 ∈ Q and

α ∈ (0, 1). Assume αq1 + (1 − α)q2 /∈ Q. Then there exists i ∈ I and v ∈ AZi such that
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W (αq1 + (1− α)q2)v > 0. Hence

either





−(αq1 + (1− α)q2) · v > 0

V v ≥ 0
or





−(αq1 + (1− α)q2) · v ≥ 0

V v > 0

In the first case, we conclude that either −q1 · v > 0 or −q2 · v > 0 which, together with

V v ≥ 0, implies that W (qi)v > 0 for i = 1 or i = 2 contradicting the fact that q1 and

q2 are both in Q. Similarly, in the second case, we conclude that either −q1 · v ≥ 0 or

−q2 · v ≥ 0 which, together with V v > 0, contradicts the fact that q1 and q2 are both in

Q.

2.2.3 The main result

Let F =
(
V, (Zi)i

)
be a financial structure satisfying assumption F1. The aim of this

paper is to prove the following result.

Theorem 2.1 Under assumption F1, the following assertions are equivalent.

(i1) A
(∑

i∈IZi ∩ {V ≥ 0}
)
∩ −A

(∑
i∈IZi ∩ {V ≥ 0}

)
= {0}.

(i2) (
∑

i∈I AZi ∩ {V ≥ 0}) ∩ −(
∑

i∈I AZi ∩ {V ≥ 0}) = {0}.

(ii) The convex set Q of asymptotic arbitrage-free prices has full dimension (dimQ = J)

or equivalently, there is no nontrivial linear dependence between the asset prices, that

is, there is no α = (αj)j ∈ RJ , α &= 0, such that
∑

j∈Jαjqj = 0 for every q ∈ Q.

(iii1) For every v = (vi)i ∈ (RS)I , the set K1(v) defined below is compact.

K1(v) := {(zi)i ∈ ΠiZi : ∀i V zi ≥ vi,−
∑

i∈I

zi ∈
∑

i∈I

(AZi ∩ {V ≥ 0})}.

Definition 2.4 The financial structure F is said to be reduced if one of the equivalent

conditions of the above Theorem is satisfied.

Each of the three above equivalent conditions defining a reduced financial structure has an

economic interpretation that will be developed in the following sections. We now consider

the case of unconstrained portfolio sets for which we can deduce the following (known)

result.

Corollary 2.1 (The unconstrained case) If we assume that Zi = RJ for some i ∈ I, then

the following assertions are equivalent.
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(i0) The financial structure has no redundant5 assets, that is, there is no α = (αj)j ∈
RJ , α &= 0 such that

∑
j∈JαjV j = 0.

(i’) kerV = {0}.

(ii) The convex set Q of asymptotic arbitrage-free prices has full dimension (dimQ = J)

or equivalently, there is no nontrivial linear dependence between the asset prices, that

is, there is no α = (αj)j ∈ RJ , α &= 0, such that
∑

j∈Jαjqj = 0 for every q ∈ Q.

(iii2) For every v = (vi)i ∈ (RS)I , the set K1(v) of “admissible” portfolio allocations is

compact6.

If we further assume that Zi = RJ for every i ∈ I, then the above properties are also

equivalent to the compactness of the standard set of “admissible” allocations.

(iii0) For every v = (vi)i ∈ (RS)I , the following set K0(v) is compact, where

K0(v) := {(zi)i ∈ ΠiZi : ∀i V zi ≥ vi,
∑

i∈I

zi = 0}.

Proof. Conditions (i’), (ii), and (iii2) are straightforwardly obtained from conditions (i1),

(ii), and (iii1) of Theorem 2.1 by replacing one of the Zi’s, say Z1, by RJ . Condition (i0) is

obviously equivalent to (i’). We prove that (iii2) and (iii0) are equivalent. Since for every

v = (vi)i ∈ (RS)I , the set K0(v) is a subset of K1(v), we have (iii2) ⇒ (iii0). Finally, we

show that (iii0) implies (iii2). First, notice that condition (iii”) implies that kerV = {0}.
Indeed, if z ∈ kerV , then

(z,−z, 0, · · · , 0) ∈ {(ζi)i ∈ (RJ)I ,∀i V ζi ≥ 0,
∑

i∈I

ζi = 0} = AK0
(
(0, · · · , 0)

)
.

But AK0
(
(0, · · · , 0)

)
= {0} by compactness of K0

(
(0, · · · , 0)

)
, hence z = 0. Therefore

condition (iii0) implies (i’) which is equivalent to (iii2) from above.
5Recall that an asset is said to be redundant if its payoff is a linear combination of other assets payoffs.
6Note that in this case K1(v) reduces to

K1(v) := {(zi)i ∈ ΠiZi : ∀i V zi ≥ vi,
X

i∈I

V zi ≤ 0}.
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2.2.4 Some remarks on Conditions (i)-(iii)

We let

L(F) := A
(∑

i∈I

Zi ∩ {V ≥ 0}
)
∩ −A

(∑

i∈I

Zi ∩ {V ≥ 0}
)
,

L(F) := (
∑

i∈I

AZi ∩ {V ≥ 0}) ∩ −(
∑

i∈I

AZi ∩ {V ≥ 0}).

Conditions (i1) and (i2) can then be written as follows

L(F) = {0},

L(F) = {0}.

The set L(F) plays a crucial role in showing the existence of a reduced financial structure

that is equivalent to F (see [1]). The set L(F) will be interpreted in the following Section

2.3 in terms of aggregate useless portfolios.

In Theorem 2.1 and its corollary we have defined the following “admissible sets”

K0(v) = {(zi)i ∈ ΠiZi : ∀i V zi ≥ vi,
∑

i∈I

zi = 0}

K1(v) = {(zi)i ∈ ΠiZi : ∀i V zi ≥ vi,−
∑

i∈I

zi ∈
∑

i∈I

(AZi ∩ {V ≥ 0})}.

Remark 2.1 It is worth noticing that the condition “V zi ≥ vi” for some vi is mild since

equilibrium portfolios’ payoffs at t = 1 are bounded below and the lower bound is uniform

i.e. it depends only on the characteristics of the economy.

Indeed, assuming that Xi = RL
+ (or more generally, Xi is bounded below), denote by A(E)

the set of attainable allocations of the economy, that is

A(E) =
{

(xi)i∈I ∈
∏

i∈I

Xi |
∑

i∈I

xi =
∑

i∈I

ei

}
,

and by X̂i the projection of A(E) on Xi. Note that for every i ∈ I, ei ∈ X̂i. Then the

equilibrium portfolios satisfy

for every s ∈ S, vi(s) = inf{p · (xi(s)− ei(s)), p ∈ RL, ||p|| ≤ 1, xi ∈ X̂i} ≤ (V zi)(s).

Remark 2.2 We always have the following inclusion K0(v) ⊂ K1(v), so the following

implication always holds:

(iii1) [K1(v) is compact] ⇒ (iii0) [K0(v) is compact].

We have seen that the converse is true when Zi = RJ , for every i ∈ I. The following

remark gives a characterization of condition (iii0) and the next example 2.1 shows that
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the converse [(iii0) ⇒ (iii1)] may not hold true if only one of the Zi’s is equal to RJ .

Remark 2.3 Condition (iii0) is easily shown to be equivalent to the following condition

(i0) The sets AZi ∩ {V ≥ 0} are positively semi-independent PSI7.

Indeed, it is easy to check that the sets AZi ∩ {V ≥ 0} are positively semi-independent if

and only if AK0(v) = {0} which in turn is equivalent to K0(v) being bounded (see [2]).

Example 2.1 Let V =



0 0

0 1



, Z1 = R2, and Z2 = {0}× R.

Then AZ1 ∩ {V ≥ 0} = R × R+, AZ2 ∩ {V ≥ 0} = {0} × R+, and it is easy to check

the latter two cones are positively semi-independent, hence K0(v) is compact for every

v = (vi)i ∈ (RS)I , that is condition (iii0) is fulfilled.

Furthermore,
∑

i∈I(Zi∩{V ≥ 0}) = R×R+, hence L
(∑

i∈IZi∩{V ≥ 0}
)

= R×{0} &= {0},
that is condition (i1) is violated, therefore so is condition (iii1).

Remark 2.4 We always have

α = (αj)j∈J ∈ Q⊥ ⇒
∑

j∈J

αjV j = 0.

The converse is true if there exists i ∈ I such that Zi = RJ .

Definition 2.5 The asset jo is redundant if there exists α−jo = (α1, · · · , α̌jo , · · · , αJ) ∈
RJ−1 such that qjo =

∑
j (=jo

αjqj for every q = (qj)j∈J ∈ Q.

The above definition implies the classic definition of a redundant asset when participation

to financial markets is not restricted, that is V jo =
∑

j (=jo
αjV j (since Q⊥ ⊂ kerV ).

The converse is true if there exists at least one agent whose participation to the financial

markets is not restricted.

2.3 Eliminating useless portfolios

We start by transposing the notion of useless commodity bundles, introduced by Werner

(1987)[3], to the setting of financial structures. Werner (1987)[3] distinguishes among all
7The family (Ci)i∈I of closed convex cones of RJ is said to be positively semi-independent PSI if

∀i ∈ I, ci ∈ Ci,
P

i∈Ici = 0 ⇒ ci ∈ Ci ∩ −Ci, ∀i ∈ I.
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bundles of commodities (including assets and securities) available in the economy, those

which are useful or useless according to the taste of an individual. A commodity bundle x̂i

is useless for agent i when she starts at the consumption bundle xi, if x̂i is a direction in

which agent i’s utility function is constant. A direct application of Werner’s definition to

financial structures is not possible since it presumes the existence of a preference relation

over agents portfolio choice sets. However, if an agent starts with a portfolio ζi, one can

restrict attention to a smaller set of portfolios: those which are “naturally preferred” by

agent i to the portfolio ζi. Subsection 2.3.1 is devoted the construction of useless portfolios

à la Werner and their properties. A new definition of useless portfolio allocations in the

case of financial structures with restrictions is then given in Subsection 2.3.2.

2.3.1 Useless portfolios à la Werner

Consider a financial structure F =
(
V, (Zi)i∈I

)
. Given a family of portfolios ζ = (ζi)i ∈

ΠiZi, a set of important interest for agent i is the set of all portfolios zi’s that generate a

flow of return at t = 1 at least as much as the flow of return generated by ζi, that is the

set

{zi ∈ Zi : V zi ≥ V ζi} = Zi ∩ {V ≥ V ζi}.

Definition 2.6 If C is a nonempty convex set in RJ , the lineality space of C is the set

L(C) := AC ∩ (−AC).

Following Werner (1987)[3], we define useless portfolios as follows.

Definition 2.7 A portfolio ξi ∈ RJ is said to be a potential asymptotic arbitrage oppor-

tunity for agent i at ζi, if for every portfolio zi ∈ Zi ∩ {V ≥ V ζi}, we have zi + ξi ∈
Zi ∩ {V ≥ V ζi}. Thus the set of potential asymptotic arbitrage opportunities for i at ζi is

the asymptotic cone of Zi ∩ {V ≥ V ζi}, denoted A(Zi ∩ {V ≥ V ζi}).

The portfolio ξi ∈ RJ is said to be (individually) Werner useless to agent i at ζi, if for every

portfolio zi ∈ Zi∩{V ≥ V ζi}, we have zi+ξi ∈ Zi∩{V ≥ V ζi}, and zi−ξi ∈ Zi∩{V ≥ V ζi}.
The set of useless portfolios for i at ζi is then the lineality space of Zi∩{V ≥ V ζi}, denoted

L(Zi ∩ {V ≥ V ζi}).

When the set Zi is closed, convex and contains 0, the set of potential asymptotic arbitrage

opportunities for i at ζi does not depend on ζi and therefore, neither does the set of
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useless portfolios, which turns out to be the largest linear subspace contained in the set of

zero-return portfolios for agent i, that is the lineality space of the set Zi ∩ kerV .

Proposition 2.2 Under F1, the set of potential asymptotic arbitrage opportunities for i

at ζi and the set of useless portfolios for i at ζi are, respectively,

A(Zi ∩ {V ≥ V ζi}) = AZi ∩ {V ≥ 0},

L(Zi ∩ {V ≥ V ζi}) = L(Zi) ∩ {V = 0} = L(Zi ∩ kerV ).

Proof. Follows straightforwardly from the definition and Corollary 8.3.3 in [2].

Definition 2.8 A portfolio allocation (ξ1, · · · , ξI) is said to be Werner useless if for every

i ∈ I, the portfolio ξi is Werner useless to agent i.

The portfolio ξ ∈ RJ is said to be Werner aggregate useless in F if ξ =
∑

i∈Iξi with ξi is

Werner useless to agent i, for every i ∈ I.

The set of Werner aggregate useless portfolios in F will be denoted

LW (F) =
∑

i∈I

(
L(Zi) ∩ kerV

)
.

Proposition 2.3 There are no nonzero Werner aggregate useless portfolios in F if and

only if there are no nontrivial Werner useless portfolio allocations. That is the following

two conditions are equivalent

(i)
∑

i∈I

(
L(Zi) ∩ kerV

)
= {0}

(ii) L(Zi) ∩ kerV = {0},∀i ∈ I.

Proof. For each i ∈ I, L(Zi) ∩ kerV ⊂
∑

i∈I

(
L(Zi) ∩ kerV

)
, hence if

∑
i∈I

(
L(Zi) ∩

kerV
)

= {0}, we must have L(Zi)∩kerV = {0},∀i ∈ I, that is (i) implies (ii). Conversely,

if L(Zi) ∩ kerV = {0}, for each i ∈ I, then
∑

i∈I

(
L(Zi) ∩ kerV

)
=

∑
i∈I{0} = {0}.

The first part of the following proposition states that all individually useless portfolios are

free (their value is equal to zero) at asymptotic-arbitrage-free prices. The second part gives

another justification for the term “individually useless”. When an agent is maximizing

her preferences using a given portfolio, then trading a useless portfolio does not yield

any benefit. Finally, the last part shows that if the financial exchange economy is at
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equilibrium then it remains at equilibrium after trading in mutually compatible8 potential

asymptotic arbitrage opportunities.

Proposition 2.4 (i) For every q ∈ Q, for every i ∈ I, and for every Werner useless

portfolio ζi for agent i, that is, ζi ∈ L(Zi) ∩ kerV , one has q · ζi = 0.

(ii) Under the non-satiation assumption NS, if ζi is Werner useless for agent i, then the

following two assertions are equivalent.

(a) (x∗i , z
∗
i ) solves agent i’s problem in Bi(F , p∗, q∗).

(b) (x∗i , z
∗
i + ζi) solves agent i’s problem in Bi(F , p∗, q∗).

(iii) Under the non-satiation assumption NS, for every mutually compatible Werner use-

less portfolio allocation ζ = (ζ1, · · · , ζI), one has: if (x∗, z∗, p∗, q∗) is an equilibrium

in (E ,F) then (x∗, z∗ + ζ, p∗, q∗) is an equilibrium in (E ,F).

Proof. (i) Since ζi ∈ L(Zi) ⊂ AZi, V ζi = 0 ≥ 0, and q ∈ Q we must have −q ·ζi ≤ 0. But

ζi ∈ L(Zi) implies that −ζi ∈ L(Zi), hence we must also have −q · (−ζi) ≤ 0. Therefore

q · ζi = 0.

(ii) z∗i + ζi ∈ Zi since ζi ∈ L(Zi) ⊂ AZi. Moreover V (z∗i + ζi) = V zi because ζi ∈ kerV ,

and −q · (zi + ζi) = −q · z∗i because q · ζi = 0 from (i).

(iii) Follows easily from (ii) bearing in mind that
∑

i∈Iζi = 0.

2.3.2 Useless portfolios continued

Definition 2.9 For every i ∈ I, we define the set Li of useless portfolios for agent i by

Li :=
(
AZi ∩ {V ≥ 0}

)
∩ −

(∑

i∈I

AZi ∩ {V ≥ 0}
)
.

A portfolio allocation (ζ1, · · · , ζI) is said to be useless if for every i ∈ I, the portfolio ζi is

useless to agent i.

The portfolio ξ ∈ RJ is said to be aggregate useless in F if ξ =
∑

i∈Iξi with ξi is useless

to agent i, for every i ∈ I.
8A family of portfolios (z1, · · · , zI) ∈ ΠiZi is mutually compatible if

P
i∈Izi = 0.
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Denote by L(F) the set of aggregate useless portfolios in F , that is

L(F) :=
∑

i∈I

Li.

Proposition 2.5 (i) The set Li is a cone which is not necessarily a linear space.

(ii) The set Li contains the set of Werner useless portfolios for agent i, that is L(Zi) ∩
kerV ⊂ Li for each i ∈ I.

(iii) We have

L(F) =
∑

i∈I

Li = (
∑

i∈I

AZi∩{V ≥ 0})∩−(
∑

i∈I

AZi∩{V ≥ 0}) = L
(∑

i∈I

AZi∩{V ≥ 0}
)
.

Proof. Assertions (i) and (ii) are immediate. We show assertion (iii). Denote by Ci =

AZi ∩ {V ≥ 0} and C =
∑

i∈ICi. Then Li = Ci ∩ −C, hence Li ⊂ C ∩ −C and
∑

i∈ILi ⊂ C ∩ −C. Conversely, let z =
∑

i∈Ici with ci ∈ Ci for each i ∈ I, and z ∈ −C.

Then, for each i ∈ I,

ci = z −
∑

k (=i

ck ∈ −C − C ⊂ −C.

Therefore ci ∈ Ci ∩−C = Li for each i ∈ I, and we conclude that z =
∑

i∈Ici ∈
∑

i∈ILi.

Proposition 2.6 There are no nonzero useless portfolios if and only if there are no non-

trivial useless portfolio allocations. That is, the following two conditions are equivalent.

(i) L(F) = {0}.

(ii) Li = {0},∀i ∈ I.

Proof. For each i ∈ I, Li ⊂
∑

i∈ILi = L(F) ⊂ L(F), hence if L(F) = {0}, then we must

have Li = {0},∀i ∈ I, that is (i) implies (ii). Conversely, if Li = {0}, for each i ∈ I, then

since L(F) =
∑

i∈ILi (by Proposition 2.5), we have L(F) =
∑

i∈I{0} = {0}. Therefore

L(F) = {0} by Theorem 2.1.

Proposition 2.7 (i) For every asymptotic arbitrage-free price vector q ∈ Q, for every

i ∈ I, and for every useless portfolio ζi for agent i, that is, ζi ∈ Li, one has q ·ζi = 0.

Hence For every asymptotic-arbitrage-free asset price vector q ∈ Q and for every

aggregate useless portfolio ζ in F , one has q · ζ = 0.

(ii) Under the non-satiation assumption NS, if ζi is useless for agent i, then for every

q ∈ Q, assertion (a) implies assertion (b).
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(a) (xi, zi) ∈ Bi(F , p, q).

(b) (xi, zi + ζi) ∈ Bi(F , p, q).

(iii) Under the non-satiation assumption NS, for every useless portfolio allocation ζ =

(ζ1, · · · , ζI), one has: if (x∗, z∗, p∗, q∗) is an equilibrium in (E ,F) then there exists

a useless portfolio allocation ξ = (ξ1, · · · , ξI) such that (x∗, z∗ + ζ + ξ, p∗, q∗) is an

equilibrium in (E ,F).

Proof. (i) Since ζi ∈ Li ⊂ AZi ∩ {V ≥ 0}, and q ∈ Q we must have −q · ζi ≤ 0. But

ζi ∈ L(Zi) implies that −ζi ∈ L(Zi), hence we must also have −q · (−ζi) ≤ 0. Therefore

q · ζi = 0.

(ii) zi + ζi ∈ Zi since ζi ∈ AZi. Moreover V (zi + ζi) = V zi because ζi ∈ kerV (since

V ζi ≥ 0 and V ζi ≤ 0), and −q · (zi + ζi) = −q · zi because q · ζi = 0 since q ∈ Q and

ζi ∈ Li ⊂ L(F).

(iii) Follows from (ii).

2.3.3 Equivalence between the two definitions of useless portfolios

Remark 2.5 The set of Werner useless portfolios can be strictly contained in the set of

useless portfolios. Indeed, let V =



0 0

0 1



, I = 2, Z1 = R2
+, and Z2 = R− × R+. Then

L1 = R+×{0}, L2 = R−×{0}, and L(AZ1∩{V ≥ 0}+AZ2∩{V ≥ 0}) = R×{0}. Note

that there is no nontrivial Werner useless portfolio since L(Z1)∩ kerV = L(Z2)∩ kerV =

{0}.

The following proposition provides a necessary and sufficient condition for the definitions

of useless portfolios to coincide. We recall the following definition.

Definition 2.10 The family (Ci)i∈I of closed convex cones of RJ is said to be weakly

positively semi-independent WPSI if

∀i ∈ I, ci ∈ Ci,
∑

i∈I

ci = 0 ⇒ ci ∈ Ci ∩ −Ci,∀i ∈ I.

Proposition 2.8 The following two assertions are equivalent.

(i) For every i ∈ I, L(Zi) ∩ kerV = Li.
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(ii) The sets AZi ∩ {V ≥ 0} are weakly positively semi-independent.

Proof. For i ∈ I, denote Ci = AZi ∩ {V ≥ 0}. Hence L(Zi) ∩ kerV = L(Ci) and

Li = Ci ∩ −
∑

i∈ICi = Ci ∩L(
∑

i∈ICi).

We show (i) ⇒ (ii). Let ci ∈ Ci,
∑

i∈Ici = 0. Then c1 = −
∑

i(=1 ci ∈
∑

i∈ICi ∩ −
∑

i∈ICi.

Hence c1 ∈ C1 ∩L(
∑

i∈ICi) and by (i) one has c1 ∈ L(C1).

We show (ii) ⇒ (i). We claim that if the sets Ci are weakly positively semi-independent

then
∑

i∈I

[Ci ∩ −Ci] =
∑

i∈I

Ci ∩ −
∑

i∈I

Ci.

Indeed, let c ∈
∑

i∈I Ci ∩ −
∑

i∈I Ci then c =
∑

i∈I ci = −
∑

i∈I c′i for some ci, c′i in Ci.

Consequently,
∑

i∈I ci + c′i = 0, with ci + c′i ∈ Ci (because Ci is convex). Since the Ci are

weakly positively semi-independent, we deduce that for all i, ci + c′i ∈ Ci ∩ −Ci, hence

ci ∈ Ci ∩ −Ci. This shows that c =
∑

i∈I ci ∈
∑

i∈I [Ci ∩ −Ci] and ends the proof of the

claim.

Let v1 ∈ C1 ∩ L(
∑

i∈ICi). Let v2 = · · · = vI = 0. Then
∑

i∈Ivi = v1 ∈ L(
∑

i∈ICi) and

∀i, vi ∈ Ci. Therefore, by the above claim, ∀i, vi ∈ L(Ci) in particular v1 ∈ L(C1).

Remark 2.6 Condition (i) implies that

(i’)
∑

i∈IL(Zi) ∩ kerV =
∑

i∈ILi.

But the converse is not true as shown by the following example. That is having the same

useless portfolio allocations is stronger than having the same aggregate useless portfolios.

Example 2.2 Consider C1 = R+×R and C2 = R×{0}. We have Li := Ci∩−
∑

i∈ICi = Ci

and L(C1) = {0}× R, and L(C2) = R× {0}. Then L(C1) + L(C2) = R2 = L1 + L2, but

L(C1) &= C1, that is, L(C1) &= L1.

2.4 Polar Characterization of Q and consequences

Theorem 2.2 Assume that for every i, Zi is closed convex and contains 0, then the

following holds
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clQ = −
(∑

i∈I

(AZi ∩ {V ≥ 0})
)o

= −
⋂

i

(AZi ∩ {V ≥ 0})o

= −
⋂

i

cl
(
(AZi)o + V T (−RS

+)
)
.

−Qo = cl
∑

i∈I

(AZi ∩ {V ≥ 0}).

Before giving the proof of Theorem 2.2 we provide some consequences.

Corollary 2.2 The following holds:

Q⊥ = cl
∑

i∈I

(AZi ∩ {V ≥ 0}) ∩ −cl
∑

i∈I

(AZi ∩ {V ≥ 0})

= L
(∑

i∈I

(AZi ∩ {V ≥ 0})
)
,

Aff(Q) = < Q >=
(
L

(∑

i∈I

(AZi ∩ {V ≥ 0})
))⊥

,

dimRJ = dimQ + dimL
(∑

i∈I

(AZi ∩ {V ≥ 0})
)
.

Proof. Note that Q⊥ = Qo ∩ −Qo. Hence from the last assertion of Theorem 2.2,

Q⊥ = cl
∑

i∈I

(AZi ∩ {V ≥ 0}) ∩ −cl
∑

i∈I

(AZi ∩ {V ≥ 0}),

and from the definition of the lineality space, we get Q⊥L
(∑

i∈I(AZi ∩ {V ≥ 0})
)
. Now,

using the bipolar theorem,

< Q >= Q⊥⊥ =
(
L

(∑

i∈I

(AZi ∩ {V ≥ 0})
))⊥

and the equality dimQ + dimL = dimRJ follows.

Corollary 2.3 The following two assertions are equivalent.

(i) The financial structure F is reduced, that is,

L
(∑

i∈I

AZi ∩ {V ≥ 0}
)

= {0}.

(ii) The convex set Q of asymptotic arbitrage-free prices has full dimension (dimQ = J)

or equivalently, there is no nontrivial linear dependence between the asset prices, that

is, there does not exist α = (αj)j ∈ RJ , α &= 0, such that
∑

j∈Jαjqj = 0 for every

q ∈ Q.
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Proof. From Corollary 2.2, we have L
(∑

i∈I AZi ∩ {V ≥ 0}
)

= {0} if and only if

dimQ = J .

Corollary 2.4 Assume one of the following assumptions holds.

(i) WPSI The cones AZi ∩ {V ≥ 0} satisfy weak positive semi-independence9.

(ii) Unconstrained There exists io such that Zio = RJ .

(iii) CassThere exists io such that for every i, Zi ⊂ Zio.

Then the set
∑

i∈I(AZi ∩ {V ≥ 0}) is closed and one has

−Qo =
∑

i∈I

(AZi ∩ {V ≥ 0}) = A(
∑

i∈I

Zi ∩ {V ≥ 0}), (2.4.1)

Q⊥ = L
(∑

i∈I

(AZi ∩ {V ≥ 0})
)

= L
(∑

i∈I

(Zi ∩ {V ≥ 0})
)

=
∑

i∈I

L(Zi ∩ {V ≥ 0}).

Proof. (i) If the cones AZi ∩ {V ≥ 0} satisfy WPSI then by Theorem 2.3 (in the

appendix), C =
∑

i∈I(AZi∩{V ≥ 0}) is closed,
∑

i∈I(AZi∩{V ≥ 0}) = A(
∑

i∈IZi∩{V ≥
0}) and L

(∑
i∈I(Zi ∩ {V ≥ 0})

)
= L

(∑
i∈I(AZi ∩ {V ≥ 0})

)
=

∑
i∈IL(Zi ∩ {V ≥ 0}).

Hence the desired result follows from Theorem 2.2 and Corollary 2.2.

(ii) Notice that (ii) ⇒ (iii), hence it suffices to show that the result of Corollary 2.4

holds true under assumption (iii).

If there exists io such that for every i, Zi ⊂ Zio , then for every i, AZi ∩ {V ≥ 0} ⊂
AZio ∩ {V ≥ 0}. But AZio ∩ {V ≥ 0} is a convex cone, hence

∑
i∈I(AZi ∩ {V ≥ 0}) =

AZio ∩ {V ≥ 0}. On the other hand,
∑

i∈I(Zi ∩ {V ≥ 0}) ⊂ (&I)(Zio ∩ {V ≥ 0}) hence

A(
∑

i∈IZi∩{V ≥ 0}) ⊂ A(Zio∩{V ≥ 0}) and we have equality since the reverse inclusion

is immediate. Therefore
∑

i∈I

(AZi ∩ {V ≥ 0}) = A(
∑

i∈I

Zi ∩ {V ≥ 0}),

which shows that
∑

i∈I(AZi ∩ {V ≥ 0}) is closed and we get (2.4.1) from Theorem 2.2.

9A collection {Ci, i ∈ I} of nonempty cones in Rα is weakly positively semi-independent (WPSI), if

vi ∈ Ci, for all i ∈ I and
P

i∈Ivi = 0, implies that for all i ∈ I, vi ∈ L(Ci).
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Now we show the last part of the corollary. If there exists io such that for every i, Zi ⊂ Zio ,

then for every i, L(Zi ∩ {V ≥ 0}) ⊂ L(Zio ∩ {V ≥ 0}) hence
∑

i∈IL(Zi ∩ {V ≥ 0}) =

L(Zio ∩ {V ≥ 0}). But, from above
∑

i∈I(AZi ∩ {V ≥ 0}) = AZio ∩ {V ≥ 0} hence

L
(∑

i∈I(AZi ∩ {V ≥ 0})
)

= L(Zio ∩ {V ≥ 0}) =
∑

i∈IL(Zi ∩ {V ≥ 0}).

2.5 Proof of the main result

2.5.1 Proof of Theorem 2.1

1. The implication (i1) ⇒ (i2) is a consequence of the following inclusion
∑

i∈I

AZi ∩ {V ≥ 0} ⊂ A
(∑

i∈I

Zi ∩ {V ≥ 0}
)
.

2. The equivalence (i2) ⇔ (ii) is a consequence of Corollary 2.3.

3. We show (i2) ⇒ (iii1). To show that the closed set K1(v) is compact, it suffices to

show that AK1(v) = {0} (see [2]). We have

AK1(v) =
{

(ζ1, . . . , ζI) ∈ Πi∈IAZi : V ζi ≥ 0,−
∑

i∈I

ζi ∈
∑

i∈I

(AZi ∩ {V ≥ 0})
}

.

Let (ζ1, . . . , ζI) ∈ AK1(v). Then from ζi ∈ AZi, V ζi ≥ 0 for every i, and −
∑

i∈I ζi ∈
∑

i∈I(AZi ∩ {V ≥ 0}) we deduce that
∑

i∈I

ζi ∈
(∑

i∈I

(AZi ∩ {V ≥ 0})
)
∩ −

(∑

i∈I

(AZi ∩ {V ≥ 0})
)

= {0},

that is,
∑

i∈Iζi = 0. Hence

ζ1 = −
∑

i(=1

ζi ∈
∑

i∈I

(AZi ∩ {V ≥ 0}) ∩ −
∑

i∈I

(AZi ∩ {V ≥ 0}) = {0}.

Similarly, ζi = 0 for every i. Hence (ζ1, · · · , ζI) = (0, · · · , 0).

4. We show (iii1) ⇒ (i2). Since K1(v) is compact, we have (by [2]) AK1(v) = {0}. But

AK1(v) =
{

(ζ1, . . . , ζI) ∈ Πi∈IAZi : V ζi ≥ 0,−
∑

i∈I

ζi ∈
∑

i∈I

(AZi ∩ {V ≥ 0})
}

=
{

ζ ∈ Πi∈I(AZi ∩ {V ≥ 0}) : −
∑

i∈I

ζi ∈
∑

i∈I

(AZi ∩ {V ≥ 0})
}

.

Let ξ ∈
∑

i∈I(AZi ∩ {V ≥ 0}) ∩ −
∑

i∈I(AZi ∩ {V ≥ 0}). Then ξ =
∑

i∈Iξi where

ξi ∈ AZi ∩ {V ≥ 0} for each i ∈ I. Hence (ξ1, · · · , ξI) ∈ AK1(v) = {0}, that is, ξi = 0 for

each i ∈ I. Consequently, ξ =
∑

i∈Iξi = 0.

5. Finally we show (i2) ⇒ (i1). Let ξ ∈ RJ . We claim that the closed set κξ defined below
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is compact.

κξ := {(zi)i ∈ ΠiZi : ∀i V zi ≥ 0,
∑

i∈I

zi = ξ}.

Indeed, for every v = (vi)i ∈ (RS)I , consider the following closed set

K0(v) := {(zi)i ∈ ΠiZi : ∀i V zi ≥ vi,
∑

i∈I

zi = 0}.

Assertion (i2) implies assertion (iii1) which in turn implies that K0(v) is compact since

K0(v) ⊂ K1(v). Hence AK0(v) = {0} (see [2]). But

AK0(v) =
{

(ζ1, . . . , ζI) ∈ Πi∈IAZi : V ζi ≥ 0,
∑

i∈I

ζi = 0
}

= Aκξ.

Therefore Aκξ = {0} and since κξ is closed, we conclude that κξ is compact (see [2]). This

ends the proof of the claim.

We come back to the proof of (iii1) ⇒ (i1). Let ξ ∈ A(
∑

i∈I Zi∩{V ≥ 0})∩−A(
∑

i∈I Zi∩
{V ≥ 0}), then for every integer n, there exists zn

i ∈ Zi∩{V ≥ 0} such that nξ =
∑

i∈I zn
i

or equivalently ξ =
∑

i∈I zn
i /n and we notice that zn

i /n ∈ Zi ∩ {V ≥ 0} (since Zi is

convex and contains 0). From the compactness of κξ one deduces that, without any

loss of generality each sequence (zn
i /n) converges to some ξi ∈ AZi ∩ {V ≥ 0}. Hence

ξ =
∑

i∈I ξi ∈
∑

i∈I AZi ∩ {V ≥ 0}. Similarly we prove that −ξ ∈
∑

i∈I AZi ∩ {V ≥ 0}.
Therefore ξ ∈

∑
i∈I(AZi ∩ {V ≥ 0}) ∩ −

∑
i∈I(AZi ∩ {V ≥ 0}) = {0} (from (iv)).

2.5.2 Proof of Theorem 2.2

The proof of Theorem 2.2 is a consequence of Lemma 2.1, also of interest in itself, and

Claims 2.5.1 and 2.5.2.

Lemma 2.1 Let C be a nonempty convex cone in RJ and let L = clC ∩ −clC.

(a) Aff(Co) =< Co >= L⊥, hence dimCo = dimL⊥ = J − dimL.

(b) ri(Co) = {q ∈ L⊥ | q · c < 0,∀c ∈ clC\L}. (Therefore ri(Co) = L⊥ if clC = L).

(c) Moreover if clC &= L, one also has ri(Co) = {q ∈ RJ | q · c < 0,∀c ∈ clC\L}.

The proof of Lemma 2.1 is given in the Subsection 2.5.3. In the remaining of this section,

we let

C =
∑

i∈I

(AZi ∩ {V ≥ 0}).

Claim 2.5.1 clQ ⊂ −Co.
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Proof. Let q ∈ Q, let vi ∈ AZi ∩ {V ≥ 0} (i ∈ I). Then −q · vi ≤ 0 for every i ∈ I

(otherwise −q · vi > 0 which together with V vi ≥ 0 contradicts q ∈ Q). Consequently

−q ·
∑

i∈Ivi ≤ 0, hence −q ∈ Co = (
∑

i∈IAZi ∩ {V ≥ 0})o.

Claim 2.5.2 −ri(Co) ⊂ Q.

Proof. Let q ∈ −ri(Co) = {q ∈ L⊥ | q ·v > 0,∀v ∈ clC\L} (we have the equality from the

Lemma above), and assume that q /∈ Q. Then there exists i ∈ I and there exists vi ∈ AZi

such that



−q

V



 vi > 0. Thus vi ∈ AZi ∩ {V ≥ 0} ⊂ C.

We show that vi ∈ L. Indeed, otherwise vi ∈ C\L ⊂ clC\L and we must have q · vi > 0

since q ∈ −ri(Co). A contradiction to −q · vi ≥ 0.

From vi ∈ L, we deduce that V vi = 0 (since L ⊂ kerV ), moreover from q ∈ L⊥ and

vi ∈ L, we get q ·vi = 0 therefore



−q

V



 vi = 0 which obviously contradicts the inequalities



−q

V



 vi > 0.

Proof of Theorem 2.2. (i) First we show clQ = −Co. We have

−Co = −clri(Co) by Theorem 6.3 page 46 in [2]

⊂ clQ by Claim 2.5.2

⊂ −Co by Claim 2.5.1.

Hence clQ = −Co.

Now we show that clC = −Qo. From clQ = −Co we get −Coo = (clQ)o = Qo. Further-

more Coo = clC since clC is a closed convex cone from The Bipolar Theorem. Therefore

clC = −Qo.

(ii) Q⊥ = Qo ∩ −Qo. Hence Q⊥ = L
(∑

i∈I(AZi ∩ {V ≥ 0})
)
.

(iii) riQ = −ri(Co): From (i), we have −ri(Co) = riclQ and since Q is convex (by

Proposition 2.1), riclQ = riQ (by Theorem 6.3 page 46 in [2]). Hence −ri(Co) = riQ.
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2.5.3 Proof of Lemma 2.1

Claim 2.5.3 Let C be a nonempty convex cone in RJ and let L = clC ∩−clC. Then the

linear space spanned by the polar cone Co of C is exactly L⊥, that is

< Co >= L⊥.

Proof. Since L ⊂ C we get Co ⊂ L⊥, hence < Co >⊂ L⊥. Assume that Co ⊂< Co >!
L⊥. Then

clC = Coo ⊃ < Co >⊥ " L⊥⊥ = L by the Bipolar Theorem [2].

That is < Co >⊥ is a linear subspace contained in clC and strictly contains the lineality

space of clC. This contradicts the definition of L.

Claim 2.5.4 Let C be a nonempty convex subset of RJ , and let L ⊂ AC ∩ −AC. Then

clC = clC ∩L⊥ + L.

Proof. Denote by π the orthogonal projection of RJ on L⊥. If c ∈ clC then c =

πc+(c−πc). The second term c−πc is in kerπ = L and the first term πc is in πclC ⊂ L⊥

and can be written πc = c − (c − πc) ∈ clC + L ⊂ clC, hence πc ∈ clC ∩ L⊥. For the

converse, clC ∩ L⊥ + L ⊂ clC + L ⊂ clC by definition of L. This ends the proof of the

claim.

Proof of Lemma 2.1. (a) From Claim 2.5.3 we have < Co >= L⊥. Hence dimCo =

dimL⊥ = J − dimL.

(b) Suppose first that clC = L then Co = L⊥ and ri(Co) = L⊥.

Assume now that clC &= L. First we show ri(Co) ⊂ {q ∈ L⊥ | q · c < 0,∀c ∈ clC\L}. Let

q ∈ ri(Co), then q ∈ L⊥ (from Claim 2.5.3) and there exists ε > 0 such that B(q, 2ε) ∩
L⊥ ⊂ Co. Let c ∈ clC\L with ||c|| ≤ 1. Using Claim 2.5.4, write c = č + ) with

č &= 0, č ∈ clC ∩ L⊥ and ) ∈ L. Then ||č|| ≤ ||c|| ≤ 1 and (q + εč) · c ≤ 0 (since

q + εč ∈ B(q, 2ε) ∩ L⊥ ⊂ Co and c ∈ clC). Therefore q · c ≤ −εč · c = −ε||č||2 < 0 (since

č &= 0). Thus q ∈ {q ∈ L⊥ | q · c < 0,∀c ∈ clC\L}.

Conversely, let q ∈ {q ∈ L⊥ | q · c < 0,∀c ∈ clC\L} and assume that q /∈ ri(Co). Recall

that Co ⊂ L⊥. Then by means of a separation theorem in L⊥, there exists c∗ ∈ L⊥\{0}
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(hence c∗ /∈ L) such that

sup
v∈Co

c∗ · v = sup
v∈ri(Co)

c∗ · v ≤ c∗ · q because Co = clriCo by [2].

Since 0 ∈ Co, we get c∗ · q ≥ 0. Moreover, since Co is a cone and the linear form v 4→ c∗ · v
is bounded above on Co, we have supv∈Co c∗ · v ≤ 0. Then c∗ ∈ Coo = clC (from the

Bipolar Theorem) and since c∗ /∈ L we must have q · c∗ < 0 (by definition of q). This

contradicts the fact that c∗ · q ≥ 0.

(c) Let q ∈ {q ∈ RJ | q · c < 0,∀c ∈ clC\L} and let ) ∈ L. We show that q · ) = 0.

Let v ∈ clC\L (which is nonempty by assumption) and consider vn := 1
nv + (1 − 1

n)).

Notice that vn ∈ clC\L (since vn ∈ clC because v, ) ∈ clC and clC is convex, and vn /∈ L

because v /∈ L, ) ∈ L and L is a linear space). Consequently q · vn < 0, and by taking

the limit when n goes to infinity, we get q · ) ≤ 0. Since L is a linear space we also have

q·)(−)) ≤ 0. Hence q · ) = 0.

Corollary 2.5 (a) Let C be a nonempty convex cone in RJ . Then the following assertions

are equivalent.

(i) int(Co) &= ∅.

(ii) dimCo = dimRJ .

(iii) clC ∩ −clC = {0}.

(b) Let C be a nonempty convex cone in RJ such that clC ∩ −clC = {0}. Then

int(Co) = {q ∈ RJ | q · c < 0,∀c ∈ clC\{0}}.

Proof. (a) Assertions (i) and (ii) are obviously equivalent since a convex set has full

dimension if and only if it has nonempty interior. The fact that assertions (ii) and (iii)

are equivalent is an immediate consequence of Lemma 2.1.

(b) clC ∩ −clC = {0} implies that int(Co) &= ∅, which in turn implies that int(Co) =

ri(Co). The desired result follows from Lemma 2.1.

2.6 Appendix

Let Xi (i ∈ I) be convex subsets of RJ containing 0 and denote Li = L(Xi) = L(clXi).
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Theorem 2.3 Let Xi (i ∈ I) be convex subsets of RJ containing 0. Then

(a) The following hold:

(i)
∑

i∈I AXi ⊂ A(
∑

i∈I Xi),

(ii)
∑

i∈I L(Xi) ⊂ L(
∑

i∈I AXi) ⊂ L(
∑

i∈I Xi).

(b) If we additionally assume that the sets AXi are weakly positively semi-independent

then the above inclusions are equalities, that is

(i)
∑

i∈I AXi = A(
∑

i∈I Xi),

(ii)
∑

i∈I L(Xi) = L(
∑

i∈I AXi) = L(
∑

i∈I Xi).

For the proof of Theorem 2.3, we need a claim. Let B be a compact set of RJ and

K := {(x1, · · · , xI) ∈ ΠiclXi :
∑

i∈I

xi ∈ B},

Kw := {(projL⊥1 x1, · · · ,projL⊥I xI) ∈ Πi(clXi ∩Li
⊥) : (x1, · · · , xI) ∈ K}.

Note that Kw = F (K) where F : (RJ)I → (RJ)I is defined by

F (x1, · · · , xI) = (projL⊥1 x1, · · · ,projL⊥I xI).

Claim 2.6.1 The following assertions are equivalent.

(i) The sets AXi are weakly positively semi-independent.

(ii) The set Kw is bounded.

Moreover the set Kw is closed (without assuming (i)).

Proof. [(i) ⇒ (ii)] By contradiction, assume Kw is not bounded and let ((x⊥n
i )i)n be a

sequence in Kw (each x⊥n
i is in clXi ∩ L⊥i ) such that

∑
i∈I ||x⊥n

i || −→
n→∞

∞. Let x̂n
i ∈ Li

be such that (x⊥n
i + x̂n

i )i ∈ K. Then, without loss of generality (taking subsequences if

necessary), one can assume that for every i,
x⊥n

i∑
i∈I ||x⊥n

i ||+
∑

i∈I ||x̂n
i ||

−→
n→∞

x⊥i ∈ AXi ∩L⊥i

and ∑
i∈I x̂

n
i∑

i∈I ||x⊥n
i ||+

∑
i∈I ||x̂n

i ||
−→
n→∞

α ∈ A(
∑

i∈I

Xi) ∩
∑

i∈I

Li.
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Write α =
∑

i∈Iαi where for each i, αi ∈ Li. Then
∑

i∈I(x
⊥
i + αi) = 0 since

∑
i∈I(x

⊥n
i +

x̂n
i ) ∈ B and

∑
i∈I ||x⊥n

i || −→
n→∞

∞. But x⊥i ∈ AXi and αi ∈ Li then x⊥i + αi ∈ AXi hence,

by WPSI, for every i, x⊥i + αi ∈ Li that is x⊥i = 0. So,
∑

i∈Iαi = 0. But for every n,

1 =
∑

i∈I ||x⊥n
i ||

∑
i∈I ||x⊥n

i ||+
∑

i∈I ||x̂n
i ||

+
||
∑

i∈I x̂
n
i ||∑

i∈I ||x⊥n
i ||+

∑
i∈I ||x̂n

i ||
implies 1 = ||

∑
i αi||. A contradiction.

[(ii) ⇒ (i)] Conversely, if vi ∈ AXi, and
∑

i∈Ivi = 0, then for each i, vi = v⊥i + v̂i

with v⊥i ∈ AXi ∩ L⊥i and v̂i ∈ Li. Let (xi)i ∈ K, then for every t ≥ 0,
∑

i∈I(xi + tvi) =
∑

i∈Ixi ∈ B. Therefore (projL⊥i x⊥i + tv⊥i )i ∈ Kw for every t ≥ 0. Since Kw is bounded we

must have v⊥i = 0 for every i, that is vi ∈ Li for each i.

Now we show that Kw is closed. Let ((projL⊥i xn
i )i)n be a sequence in Kw (the sequence

((xn
i )i)n is in K) such that projL⊥i xn

i −→n→∞
x⊥i ∈ L⊥i ∩ clXi for each i. For each n, let

(x̂n
i )i ∈ ΠiLi be such that (projL⊥i xn

i )i + (x̂n
i )i ∈ K. That is

∑

i∈I

projL⊥i xn
i +

∑

i∈I

x̂n
i ∈ B.

The first term,
∑

i∈IprojL⊥i xn
i , converges to

∑
i∈Ix

⊥
i , and since B is compact we can

assume that the second term,
∑

i∈I x̂
n
i , converges to some α. The limit α is in

∑
i∈ILi,

hence α =
∑

i∈Iαi where, for each i, αi ∈ Li. Since x⊥i ∈ L⊥i ∩ clXi and αi ∈ Li, and
∑

i∈I(x
⊥
i + αi) ∈ B, we get (x⊥i + αi)i ∈ K hence (x⊥i )i ∈ Kw.

Proof of Theorem 2.3

(a) We first notice that, for all i, L(Xi) ⊂ AXi ⊂ Xi. Hence
∑

i∈I

L(Xi) ⊂
∑

i∈I

AXi ⊂
∑

i∈I

Xi.

Using the fact that L(A) ⊂ L(B) if A ⊂ B we get
∑

i∈I

L(Xi) ⊂ L(
∑

i∈I

AXi) ⊂ L(
∑

i∈I

Xi).

(b) (i) Let v ∈ A(
∑

i∈IXi). Write

v =
∑

i∈I

1
n

xn
i =

∑

i∈I

1
n

x⊥n
i +

∑

i∈I

1
n

x̂n
i

where, for each i, xn
i ∈ Xi, x⊥n

i ∈ Xi ∩ L⊥i ⊂ clXi ∩ L⊥i , and x̂n
i ∈ Li. Then (by Claim

2.6.1), for each i,
1
n

x⊥n
i −→

n→∞
x⊥i ∈ AXi ∩L⊥i
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and
∑

i∈I

1
n

x̂n
i −→n→∞

β ∈
∑

i∈I

Li.

Write β =
∑

i∈Iβi with βi ∈ Li for each i. Then v =
∑

i∈I(x
⊥
i + βi) ∈

∑
i∈IAXi.

(b)(ii) From (i) above, we get L(
∑

i∈IXi) ⊂ L(
∑

i∈IAXi). We show that L(
∑

i∈IAXi) ⊂
∑

i∈IL(Xi). Let ξ ∈ L(
∑

i∈IAXi). Write

ξ =
∑

i∈I

ξi = −
∑

i∈I

ξ′i

with ξi and ξ′i in AXi. Then 0 =
∑

i∈I(ξi + ξ′i) and for each i ∈ I, ξi + ξ′i ∈ AXi which

implies (by definition of WPSI) that for every i ∈ I, ξi + ξ′i ∈ L(Xi). Hence

ξi = −ξ′i + (ξi + ξ′i) ∈ −AXi + L(Xi) ⊂ −AXi.

Therefore for every i ∈ I, ξi ∈ L(Xi) that is ξ =
∑

i∈Iξi ∈
∑

i∈IL(Xi).
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Chapter 3

Reduced equivalent form of a

financial structure

We show that, under mild assumptions, every financial structure is equivalent to its re-

duced form, and that subsequently, all equilibria in a financial economy are in one-to-one

correspondence with the equilibria of an economy where the financial structure is replaced

by the reduced one.

3.1 Introduction

When market participation is unrestricted, there is no loss of generality in assuming that

there are no redundant assets1, otherwise, i.e. in the presence of redundant assets, agents

would be indifferent between the financial possibilities offered by the set of all assets and

those offered by a strictly smaller set of linearly independent assets. Furthermore, in the

absence of arbitrage opportunities (an arbitrage opportunity is a feasible portfolio that

generates non-negative return in all states and positive return in some state but has non-

positive value), the pricing of redundant assets and more generally redundant portfolios

is simple and done by arbitrage, that is the value of an asset is equal to the value of any

replicating portfolio (a portfolio is said to replicate an asset if it yields the same returns

as the asset).
1Some assets pay returns that are linearly dependent on those of other available assets. Such assets are

redundant in a frictionless market in that they can be replicated by a portfolio containing other assets.
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This is not the case, however, when market participation is restricted and if redundant

assets are able to have a real effect on risk sharing opportunities, which is generally the

case in the presence of market frictions. To illustrate this, we give a few examples where

frictions force agents to make distinct use of redundant assets.

We work in a basic two time-date (today and tomorrow) economy with I agents and an

a priori uncertainty about the future represented by S states of nature in the second

date. Financial transfers across today and tomorrow and across the states of the world

are allowed by means of a set J of financial assets that agents can trade in. The assets

payoffs are given by the return matrix V . Restrictions on agents trade possibilities are

represented by the sets Zi, i ∈ I.

Example 3.1 Suppose I = 3, S = 2, J = 3, and V =



 1 0 1

0 1 1



. Let Z1 = {(z1, z2, z3) ∈

R3 : z1+z3 = 0, z2+z3 = 0}, Z2 = {(z1, z2, z3) ∈ R3 : z3 = 0}, and Z3 = {(z1, z2, z3) ∈ R3 :

z1 = z2 = 0}. Then, removing the risk-free asset, i.e. the third asset which is redundant,

would “kill” the market. No financial activity would take place.

Example 3.2 Suppose I &= ∅, S = 2, J = 3, and V =



 1 2 −1

1 0 1



. We do not give

the constraints faced by agents explicitly, but we can think of the second asset as being

an illiquid stock and the third asset is the combination of a long position in a put option

on the stock with strike equal to 1 and a short position in a call option on the stock with

the same strike. Assume an agent possesses 4 units of the stock (that she cannot get rid

of immediately since the stock is supposed to be illiquid) and wants to guarantee a payoff

of 6 tomorrow no matter what the state of the world is. In the presence of the third asset,

the agent can achieve the payoff (6, 6), by purchasing 2 units of the risk-free asset and

4 units of the third asset. Removing the third asset from the market would prevent the

agent from efficiently hedging her position against the downward movement of the stock

return.

An interesting example illustrating the fact that portfolio constraints generally generate

mispricing between redundant assets and that some arbitrage portfolios might persist at

equilibrium (with fixed prices) is given in [4].

As shown by the examples above, simply removing redundant assets in the presence of

portfolio restrictions would considerably change the nature of the market by altering wealth
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transfer sets. In this paper we provide a different approach to the problem posed by dealing

with redundant assets. Instead of removing all redundant assets, we show that actually,

there is no harm in removing some of the redundant portfolios (the useless ones). More

precisely, we show that every financial structure is equivalent (in terms of financial possi-

bilities) to another structure in which there are no useless portfolios (its reduced form),

and that subsequently, all equilibria in a financial economy are in one-to-one correspon-

dence with the equilibria of an economy where the financial structure is replaced by the

reduced one.

The paper is organized as follows. In the next section, we describe the financial structure,

we define useless portfolios and the reduced form of a financial structure, and we state

our main result. Section 3.3 is devoted to the proof of our main result, some examples are

gathered in Section 3.4 and some proofs are deferred to the appendix.

3.2 The two-period model and the main result

3.2.1 The stochastic exchange economy

2 We consider the basic model of a two time-date economy with nominal assets. It is also

assumed that there are finite sets I, H, S, and J , respectively, of agents, divisible physical

commodities, states of nature, and nominal assets.

In what follows, the first date will also be referred to as t = 0 and the second date, as t = 1.

There is an a priori uncertainty at the first date (t = 0) about which of the states of nature

s ∈ S will prevail at the second date (t = 1). For the sake of unified notations of time and
2We shall use hereafter the following notations. If I and J are finite sets, the space RI (identified to

R#I whenever necessary) of functions x : I → R (also denoted x = (x(i))i∈I or x = (xi)) is endowed with

the scalar product x · y :=
P

i∈I x(i)y(i), and we denote by ‖x‖ :=
√

x · x the Euclidean norm. By B(x, r)

we denote the closed ball centered at x ∈ RL of radius r > 0, namely B(x, r) = {y ∈ RL : ‖y − x‖ ≤ r}.
In RI , the notation x ≥ y (resp. x > y, x ( y) means that, for every i, x(i) ≥ y(i) (resp. x ≥ y and x )= y,

x(i) > y(i)) and we let RI
+ = {x ∈ RI | x ≥ 0}, RI

++ = {x ∈ RI | x ( 0}. An I ×J-matrix A = (aj
i )i∈I,j∈J

(identified with a classical (#I)× (#J)-matrix if necessary) is an element of RI×J whose rows are denoted

Ai = (aj
i )j∈J ∈ RJ (i ∈ I), and columns Aj = (aj

i )i∈I ∈ RI (j ∈ J). To the matrix A, we associate the

linear mapping, from RJ to RI , also denoted by A, defined by Ax = (Ai · x)i∈I . The span of the matrix

A, also called the image of A, is the set < A >:= {Ax | x ∈ RJ}. The transpose matrix of A, denoted by

AT , is the J × I-matrix whose rows are the columns of A, or equivalently, is the unique linear mapping

AT : RI → RJ , satisfying Ax · y = x · AT y for every x ∈ RJ , y ∈ RI .
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uncertainty, the non-random state at the first date is denoted by s = 0 (S0 = {0}) and S̄

stands for the set {0} ∪ S.

At each state of nature s ∈ S̄, there is a spot market where the finite set H of physical

commodities is available. We assume that each commodity does not last more than one

period so that the commodity space is RL, with L = H × S̄ (in this model, a commodity

is a couple (h, s) ∈ H × S̄ of a physical commodity, h, and a state of nature s, at which h

will be available). An element x ∈ RL is called a consumption (or a consumption plan),

that is x = (x(s))s∈S̄ ∈ RL, where x(s) = (x(h, s))h∈H ∈ RH , for every s ∈ S̄.

We denote by p = (p(s))s∈S̄ ∈ RL the vector of spot prices and p(s) = (p(h, s))h∈H ∈ RH

is called the spot price at state s. The spot price p(h, s) is the price paid, at date 0 if

s = 0 and at date 1 if s ∈ S, for the delivery of one unit of commodity h at state s.

Each agent i ∈ I, also called a consumer, is endowed with a consumption set Xi ⊂ RL

which is the set of her possible consumptions. An allocation is an element x ∈ ΠiXi, and

we denote by xi the consumption of agent i, that is the projection of x onto Xi.

The tastes of each consumer i ∈ I are represented by a strict preference correspondence

Pi : Πk∈IXk → Xi, where Pi(x) defines the set of consumptions that are strictly preferred

by i to xi, that is, given the consumptions xk for other consumers k &= i.

At each state of nature, s ∈ S̄, every consumer i ∈ I has a state-endowment ei(s) ∈ RH

contingent to the fact that s prevails and we denote by ei = (ei(s))s∈S̄ ∈ RL her endowment

vector across the different states.

The consumption structure, denoted E , can be summarized by

E =
(
I, H, S, (Xi, Pi, ei)i∈I

)
.

Definition 3.1 The consumption structure E is said to be standard if it satisfies the fol-

lowing two standard assumptions C and LNS.

Consumption Assumption C

(i) For every i ∈ I, Xi is a bounded below, closed, convex subset of RL(1+S).

(ii) Continuity of Preferences For every i ∈ I, the correspondence Pi : ΠiXi → Xi is

lower semicontinuous with convex open values in Xi for the relative topology of Xi.

(iii) Irreflexive Preferences For every i ∈ I, for every x = (xi)i∈I ∈ ΠiXi, xi /∈ Pi(x).
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(iv) Strong Survival SS For every i ∈ I, ei ∈ intXi.

(v) Non-Satiation NS For every i ∈ I, for every x ∈ ΠiXi, for every s ∈ S̄, there

exists x′i ∈ Pi(x) such that x′i(s
′) = xi(s′) for all s′ &= s.

Local Non-Satiation LNS For every i ∈ I, for every x̄ ∈
∏

i∈I Xi, and for every

xi ∈ Pi(x̄), (x̄i, xi] ⊂ Pi(x̄).

3.2.2 The Financial Structure

Agents may operate financial transfers across states in S (i.e. across the two periods and

across the states of the second period) by exchanging a finite number of nominal assets

j ∈ J , which define the financial structure of the model.3 The nominal assets are traded

at the first period (t = 0) and yield payoffs at the second period (t = 1), contingent on the

realization of the state of nature s ∈ S1. The payoff of the nominal asset j ∈ J , when state

s ∈ S is realized, is V j
s , and we denote by V the S×J-return matrix V = (V j

s ), which does

not depend upon the asset prices q ∈ RJ (and will not depend upon the commodity prices

p in the associated equilibrium model). A portfolio z = (zj) ∈ RJ specifies the quantities

|zj | (j ∈ J) of each asset j (with the convention that the asset j is bought if zj > 0 and

sold if zj < 0). Thus V z is its random financial return across states at time t = 1, and

Vs · z is its return if state s prevails.

We assume that each agent i is restricted to choose her portfolio within a portfolio set

Zi ⊂ RJ , which represents the set of portfolios that are (institutionally) admissible for

agent i. This general framework allows us to address, for example, the following important

cases:

(i) Zi = RJ (unconstrained portfolios),

(ii) Zi = zi + RJ
+, for some zi ∈ −RJ

+ (exogenous bounds on short sales),

(iii) Zi = BJ(0, 1) (bounded portfolio sets).

(iv) Zi is a vector space.

(v) Zi is polyhedral and contains 0 (linear equality and inequality portfolio constraints).
3The case of no financial assets – i.e., J is empty – is called pure spot markets.
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Note that the polyhedral case covers the cases (i)-(iv) (with an appropriate choice of the

norm in (iii)). Throughout the paper we make the following assumption which covers all

the above cases:

F1. For every i ∈ I, Zi is closed, convex, and contains 0.

We summarize by F =
(
I, J, S, V, (Zi)i∈I

)
the financial characteristics, referred to as the

financial structure. When there is no risk of confusion, the financial structure F will be

denoted F :=
(
V, (Zi)i

)
. We use the following notation when there is no risk of confusion.

• If Zi = C for every i ∈ I, we denote F = (V,C). In particular when C = RJ , we drop

the dependence of F on C, that is we write F = V .

• If F =
(
V, (Zi)i

)
and F ′ =

(
V ′, (Z ′i)i

)
, we denote4 F ⊗ F ′ :=

(
[V, V ′], (Zi × Z ′i)i

)
.

3.2.3 Financial equilibria and no-arbitrage

Consider a financial exchange economy (E ,F), where E is an exchange economy and F a

financial structure. Given the spot price vector p ∈ RL and the asset price vector q ∈ RJ ,

the budget set of consumer i ∈ I in this setting is defined as follows5

Bi(F , p, q) = {(xi, zi) ∈ Xi × Zi : ∀s ∈ S̄, p(s) · [xi(s)− ei(s)] ≤ [W (q)zi](s)}

= {(xi, zi) ∈ Xi × Zi : p (xi − ei) ≤ W (q)zi}.

Where W (q) is the (S + 1)× J matrix



 −q

V



, referred to as the full-return matrix.

An equilibrium in the financial exchange economy is then defined as a collection of strate-

gies (a consumption and an asset trade strategy for each agent) and prices (commodity

spot prices and asset prices) such that each agent maximizes her preferences over her bud-

get set, and all markets clear (commodity markets clear in all dates and states, and asset

markets clear).

Definition 3.2 An equilibrium in the financial exchange economy (E ,F) is a list of strate-

gies and prices
(
x̄, z̄, p̄, q̄

)
∈ (RL)I × (RJ)I × RL\{0}× RJ such that

4The matrix [V, V ′] is the (S × (J + J ′)) matrix whose first J columns are those of V and the last J ′

columns are those of V ′.
5For x = (x(s))s∈S̄ , p = (p(s))s∈S̄ in RL = RHS̄ (with x(s), p(s) in RH for each s ∈ S̄) we let p x =

(p(s) · x(s))s∈S̄ ∈ RS̄ .
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(a) for every i ∈ I, (x̄i, z̄i) maximizes the preferences Pi, in the sense that

(x̄i, z̄i) ∈ Bi(F , p̄, q̄) and [Pi(x̄)× Zi] ∩Bi(F , p̄, q̄) = ∅

where x̄ = (x̄i)i∈I , and

(b)
∑

i∈I

x̄i =
∑

i∈I

ei and
∑

i∈I

z̄i = 0.

A consumption equilibrium in the financial exchange economy (E ,F) is a list of consump-

tion strategies and commodity prices (x̄, p̄) ∈ (RL)I × RL\{0} such that there exist trade

strategies and asset prices (z̄, q̄) ∈ (RJ)I ×RJ with
(
x̄, z̄, p̄, q̄

)
is an equilibrium in (E ,F).

Our notion of no-arbitrage takes into account only arbitrage opportunities that might yield

an infinite payoff (the intuition underlying this definition is that the market will be able

to rule out any arbitrage opportunity with finite payoff).

Definition 3.3 If C is a nonempty convex set in RJ , we let

AC := {ζ ∈ RJ : ζ + clC ⊂ clC} be the asymptotic cone of C

L(C) := AC ∩ (−AC) be the lineality space of C.

Definition 3.4 The set of arbitrage-free prices of F =
(
V, (Zi)i∈I

)
is

Q(F) =
{
q ∈ RJ : W (q)(

⋃

i

AZi) ∩ RS+1
+ = {0}

}
.

where AZi denotes the asymptotic cone of the set Zi.

3.2.4 Equivalent and reduced financial structures

We introduce an equivalence relation on the set of all financial structures. We will say that

two financial structures are equivalent if they are indistinguishable in terms of consumption

equilibria. The intuition behind this definition is the following. Financial structures allow

agents to transfer wealth across states of nature and thereby give them the possibility

to enlarge their budget set. Hence if, regardless of the standard exchange economy E ,

equilibrium consumption allocations and equilibrium commodity price vectors are the same

when agents carry out their financial activities through two different structures, then we

say that these two financial structures are equivalent.

Definition 3.5 Consider two financial structures F =
(
V, (Zi)i

)
and F ′ =

(
V ′, (Z ′i)i

)
.
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We say that F ∼ F ′ (read F is equivalent to F ′) if for every standard exchange economy E,

the financial exchange economies (E ,F) and (E ,F ′) have the same consumption equilibria.

Definition 3.6 The financial structure F is said to be reduced if one of the following

equivalent conditions is satisfied.

(i1) L(F) := A
(∑

i∈IZi ∩ {V ≥ 0}
)
∩ −A

(∑
i∈IZi ∩ {V ≥ 0}

)
= {0}.

(i2) L(F) := (
∑

i∈I AZi ∩ {V ≥ 0}) ∩ −(
∑

i∈I AZi ∩ {V ≥ 0}) = {0}.

(ii) The convex set Q of asymptotic arbitrage-free prices has full dimension (dimQ = J)

or equivalently, there is no nontrivial linear dependence between the asset prices, that

is, there is no α = (αj)j ∈ RJ , α &= 0, such that
∑

j∈Jαjqj = 0 for every q ∈ Q.

(iii1) For every v = (vi)i ∈ (RS)I , the set K1(v) defined below is compact.

K1(v) := {(zi)i ∈ ΠiZi : ∀i V zi ≥ vi,−
∑

i∈I

zi ∈
∑

i∈I

(AZi ∩ {V ≥ 0})}.

The equivalence between the above conditions is established in [1].

3.2.5 The main results

Before stating our first result we introduce an assumption that will be discussed in the

next section.

F2 Closedness Assumption The following set G(F) is closed, where

G(F) := {(V z1, · · · , V zI ,
∑

i∈I

zi) ∈ (RS)I × RJ : ∀i ∈ I, zi ∈ Zi}.

We can now state the first result of this paper.

Theorem 3.1 Let F =
(
V, (Zi)i

)
be a financial structure satisfying assumptions F1 and

F2. Then there exists a financial structure F ′ satisfying F1, such that

(i) F ′ is reduced.

(ii) For every standard exchange economy E, every consumption equilibrium of (E ,F ′)
is a consumption equilibrium of (E ,F).

(iii) If the financial structure F satisfies the following additional assumption F0, then

the financial structures F and Fπ are equivalent.
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F0 For every i ∈ I, there exists ζi ∈ AZi such that V ζi 0 0.

Moreover we can choose F ′ so that the following property P is satisfied:

P For every (q, z) ∈
(
Q(F ′) ∩ Z(F ′)

)
×ΠiZi, one has

(i) q ∈ Q(F) ∩ Z(F), and

(ii) there exists z′ = (z′i)i ∈ ΠiZ ′i such that q · zi = q · z′i for every i ∈ I.

The proof of Theorem 3.1 is postponed to Section 3.3

To state our second result, we need the following assumption. Given the financial structure

F =
(
V, (Zi)i∈I

)
, we denote Z(F) =<

∑
i∈IZi > the linear space spanned by

∑
i∈IZi,

that is the space where financial activity takes place.

F3 FSSA For every q ∈
(
Q(F) ∩ Z(F)

)
\{0}, for every i ∈ I there exists a portfolio

ζi ∈ Zi such that q · ζi < 0.

Theorem 3.2 Let (E ,F) =
(
(Xi, Pi, ei)i∈I , (V, (Zi)i∈I)

)
be a financial exchange economy

such that E is standard and F satisfies F1, F2, and F3, then it admits an equilibrium

(p̄, x̄, q̄, z̄) such that p̄(s) &= 0 for every s ∈ S̄.

3.2.6 Examples of restrictions satisfying assumption F2

As shown by the following Propositions 3.1 and 3.2, assumption F2 holds true in many

situations. Indeed, F2 is fulfilled when the restrictions on portfolio choices are given by a

finite number of linear inequalities, that is, when all portfolios sets are finite intersections

of half spaces. In particular, F2 is fulfilled when the portfolios sets are linear subspaces,

when the portfolio sets are unconstrained, or when there is an exogenous bound on portfolio

short sales. Furthermore, assumption F2 holds true under the no mutually compatible

potential arbitrage condition (Page [5]) that is when the family {AZi ∩ kerV, i ∈ I} is

positively semi-independent6 (Siconolfi [7]), in particular F2 holds true when the portfolio

sets are bounded, or when there are no redundant assets i.e. Rank(V ) = J .

Proposition 3.1 Assumption F2 holds true under anyone of the following conditions.

(a) For all i ∈ I, Zi = RJ (unconstrained portfolios).
6A collection {Ci, i ∈ I} of nonempty convex sets in Rα is positively semi-independent if vi ∈ Ci, for

all i ∈ I and
P

i∈Ivi = 0, implies that vi = 0 for all i ∈ I.
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(b) For all i ∈ I, Zi is a linear subspace.

(c) For all i ∈ I, Zi = zi + RJ
+, for some zi ∈ −RJ

+ (exogenous bounds on short sales).

(d) For all i ∈ I, Zi is polyhedral.

(e) For all i ∈ I, Zi = BJ(0, 1) (bounded portfolio sets).

(f) For all i ∈ I, Zi = Ki + Pi where Ki is nonempty compact and convex, and Pi is

polyhedral.

The proof of Proposition 3.1 is given in the Appendix.

Proposition 3.2 Assumption F2 holds true under each of the following conditions.

(g) There are no redundant assets i.e. rank(V ) = J , or equivalently, kerV = {0}.

(h) ∀i, AZi ∩ kerV = {0}.

(i1) L
(∑

i∈I(Zi ∩ {V ≥ 0})
)

= {0}.

(i2) L
(∑

i∈I(Zi ∩ kerV )
)

= {0}.

(i3)
∑

i∈I(AZi ∩ {V ≥ 0}) ∩ −
∑

i∈I(AZi ∩ {V ≥ 0}) = {0}.

(i4)
∑

i∈I(AZi ∩ kerV ) ∩ −
∑

i∈I(AZi ∩ kerV ) = {0}.

(j1) The family {AZi ∩ {V ≥ 0} : i ∈ I} is positively semi-independent.

(j2) The family {AZi ∩ kerV : i ∈ I} is positively semi-independent.

(k1) The family {AZi ∩ {V ≥ 0}, i ∈ I} is weakly positively semi-independent7.

(k2) The family {AZi ∩ kerV, i ∈ I} is weakly positively semi-independent.

The proof of Proposition 3.2 is given in the Appendix.
7A collection {Ci, i ∈ I} of nonempty convex cones in Rα is weakly positively semi independent if

vi ∈ Ci, for all i ∈ I and
P

i∈Ivi = 0, implies that for all i ∈ I, vi ∈ L(Ci).
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3.2.7 Proof of the equilibrium existence result

Let (E ,F) =
(
(Xi, Pi, ei)i∈I , (V, (Zi)i∈I)

)
be a financial exchange economy such that E is

standard and F satisfies F1, F2, and F3. By Theorem 3.1, the financial structure F is

equivalent to a reduced financial structure F ′ satisfying F1, and P. Claim 3.2.1 below,

shows that since F satisfies F3, F ′ also satisfies F3. This allows us to apply the existence

result in [2] to the financial exchange economy (E ,F ′) in which E is standard and F ′ is

reduced and satisfies F1 and F3, to conclude to the existence of an equilibrium in (E ,F ′).
Then (E ,F) has an equilibrium since F and F ′ are equivalent.

Claim 3.2.1 If F satisfies assumption F3, then the financial structure F ′ provided by

Theorem 3.1, satisfies assumption F3.

Proof. Assume F satisfies F3 and let q ∈ Q(F ′) ∩ Z(F ′)\{0}. Then, by Theorem 3.1

(more precisely, by property P(i)), q ∈ Q(F)∩Z(F)\{0} and by F3 in F , for every i ∈ I,

there exists zi ∈ Zi such that q · zi < 0. Hence, again by Theorem 3.1 (more precisely, by

property P(ii)), for each i ∈ I, there exists z′i ∈ Z ′i such that q · z′i = q · zi < 0.

3.3 Proof of Theorem 3.1

3.3.1 A sharper result

Definition 3.7 Given the financial structure F =
(
J, V, (Zi)i∈I

)
, we say that (q, zi) ∈

RJ ×Zi is arbitrage-free for agent i ∈ I if there is no portfolio z̄i ∈ Zi such that W (q)z̄i >

W (q)zi. A list of portfolios z = (zi)i∈I ∈ ΠiZi is said to be arbitrage-free at q, or (q, z) is

said to be arbitrage-free, if for every i ∈ I, (q, zi) is arbitrage-free for agent i. The asset

price vector q ∈ RJ is said to be arbitrage-free if there exists z = (zi)i∈I ∈ ΠiZi such that

(q, z) is arbitrage-free.

First, we introduce a preorder on the set of all financial structures. We will call a financial

opportunity any collection (w1, · · · , wI) of vectors in the space RS+1. We will say that

the financial opportunity (w1, · · · , wI) is achievable through (or offered by) the financial

structure F if there exists an asset price vector q ∈ RJ and a family of feasible and mutually

compatible8 portfolios z = (z1, · · · , zI) such that (q, z) is arbitrage-free in F and for every
8The portfolio allocation z = (z1, · · · , zI) is said to be mutually compatible if

P
i∈Izi = 0.
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i ∈ I, W (q)zi = wi. Let us denote W (F) the set of financial opportunities achievable

through F . Then

W (F) :=
{(

W (q)z1, · · · , W (q)zI
)

: (zi)i ∈ ΠiZi,
∑

i∈I

zi = 0, and (q, z) is arbitrage-free
}

.

Definition 3.8 Consider two financial structures F =
(
V, (Zi)i

)
and F ′ =

(
V ′, (Z ′i)i

)
.

We say that F ′ ! F (read F ′ offers at most as many financial opportunities as those

offered by F) if

W (F ′) ⊆ W (F).

For the sake of clarity and to avoid lengthy sentences we denote the preorder defined in

Definition 3.8 by !W and, given the financial structure F =
(
V, (Zi)i

)
, we denote

V (F) :=
{(

V z1, · · · , V zI
)

: (zi)i ∈ ΠiZi,
∑

i∈I

zi = 0
}

.

Theorem 3.1 is a consequence of the following theorem.

Theorem 3.3 Let F =
(
V, (Zi)i

)
be a financial structure satisfying assumptions F1 and

F2, and let π be a linear projection of RJ such that

kerπ ⊂ L(F) := L
(∑

i∈I

(Zi ∩ {V ≥ 0})
)
.

Denote Fπ :=
(
V, (clπZi)i

)
. We have

(a) The financial structure Fπ satisfies V (F) = V (Fπ).

(b) If kerπ = L(F), then the financial structure Fπ is reduced, that is L(Fπ) = {0}.

(c) If π is orthogonal, then the financial structure Fπ satisfies:

(i) if (q, y) is arbitrage-free in Fπ and
∑

i∈Iyi = 0, then there exists a mutually

compatible portfolio allocation z∗ ∈ ΠiZi such that (πq, z∗) is arbitrage-free, and

W (q)yi = W (πq)z∗i for every i ∈ I. That is Fπ !W F .

(ii) for every standard exchange economy E, if (E ,Fπ) has an equilibrium (p̄, q̄, x̄, ȳ),

then there exists z∗ ∈ ΠiZi such that (p̄, πq̄, x̄, z∗) is an equilibrium of (E ,F).

(d) If π is orthogonal and the financial structure F satisfies the following additional

assumption F0, then the financial structures F and Fπ are equivalent.

F0 For every i ∈ I, there exists ζi ∈ AZi such that V ζi 0 0.
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(e) If π is orthogonal, then the financial structure Fπ satisfies the following property P.

P For every (q, z) ∈
(
Q(Fπ) ∩ Z(Fπ)

)
×ΠiZi, one has

(i) q ∈ Q(F) ∩ Z(F), and

(ii) there exists z′ = (z′i)i ∈ ΠiZ ′i such that q · zi = q · z′i for every i ∈ I.

Notation Let F =
(
V, (Zi)i

)
be a financial structure and denote

• L(F) := L
(∑

i∈I

(Zi ∩ {V ≥ 0})
)
,

• G(F) := {(V z1, · · · , V zI ,
∑

i∈I

zi) ∈ (RS)I × RJ : ∀i ∈ I, zi ∈ Zi},

• G′(F) := {(v,
∑

i∈I

zi) ∈ (RS)I × RJ : ∀i ∈ I, zi ∈ Zi, V zi ≥ vi},

• π := a linear projection of RJ such that kerπ ⊂ L(F).

3.3.2 Preliminary results

Lemma 3.1 The set G(F) is closed if and only if the set G′(F) is closed.

Proof. Assume G′(F) is closed and let (wn)n be a sequence in G(F) which converges to

some w ∈ (RS)I × RJ i.e. wn = (V zn
1 , · · · , V zn

I ,
∑

i∈Iz
n
i ) −→

n→∞
w = (v1, · · · , vI , z), with

zn
i ∈ Zi for each i ∈ I and for every n ∈ N. Then wn ∈ G′(F) for every n, and since G′(F)

is closed, we have w ∈ G′(F). That is z =
∑

i∈Izi with zi ∈ Zi and V zi ≥ vi for every

i ∈ I. But
∑

i∈Ivi =
∑

i∈I limn V zn
i = limn V (

∑
i∈Iz

n
i ) = V z = V (

∑
i∈Izi) =

∑
i∈IV zi,

hence vi = V zi for each i ∈ I, and consequently, w = (V z1, · · · , V zi,
∑

i∈Izi) ∈ G(F).

Conversely, assume G(F) closed and let (w′n)n be a sequence in G′(F) which converges

to some w′ ∈ (RS)I × RJ i.e. w′n = (v′n1 , · · · , v′nI ,
∑

i∈Iz
n
i ) −→

n→∞
w′ = (v′1, · · · , v′I , z), with

zn
i ∈ Zi and V zn

i ≥ v′ni for each i ∈ I and for every n ∈ N. For each i ∈ I, the sequence

(v′ni )n converges hence is bounded, therefore the sequence (V zn
i )n is bounded below (since

V zn
i ≥ v′ni for every n). Moreover the sequence (

∑
i∈IV zn

i )n converges (towards V z), hence

for each i ∈ I, the sequence (V zn
i )n is bounded. We can therefore assume that for each i ∈

I, the sequence (V zn
i )n converges (use subsequences if necessary) to vi ∈ RS satisfying vi ≥

v′i. Now we consider the sequence (wn)n ⊂ G(F) where wn = (V zn
1 , · · · , V zn

I ,
∑

i∈Iz
n
i ).

Then from above, wn −→
n→∞

w = (v1, · · · , vI , z) ∈ G(F) (since G(F) is assumed to be closed).

Hence z can be written as z =
∑

i∈Izi with zi ∈ Zi and V zi = vi for each i ∈ I. Recall
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that V zi = vi ≥ v′i for each i ∈ I and that w′ = w′ = (v′1, · · · , v′I , z) = (v′1, · · · , v′I ,
∑

i∈Izi),

hence w′ ∈ G′(F).

Lemma 3.2 Under NS and LNS, if (x̄, z̄, p̄, q̄) is an equilibrium of the financial exchange

economy (E ,F), then for every i ∈ I, there is no zi ∈ Zi such that W (q̄)zi > W (q̄)z̄i. That

is (q̄, z̄) is arbitrage-free in F .

Proof. By contradiction. Assume that for some i ∈ I, there exists zi ∈ Zi such that

W (q̄)zi > W (q̄)z̄i, namely [W (q̄)zi](s) ≥ [W (q̄)z̄i](s), for every s ∈ S̄, with at least one

strict inequality, say for s̄ ∈ S̄. Then, since
∑

i∈I(x̄i−ei) = 0, from Assumption NS, there

exists x ∈
∏

i∈I Xi such that, for each s &= s̄, xi(s) = x̄i(s) and xi ∈ Pi(x̄). Consider λ ∈
(0, 1) and define xλ

i := λxi + (1− λ)x̄i. Then, by Assumption LNS, xλ
i ∈ (xi, x̄i) ⊂ Pi(x̄).

Now, we claim that for λ > 0 small enough, (xλ
i , zi) ∈ Bi(F , p̄, q̄), which contradicts the

fact that [Pi(x̄) × Zi] ∩ Bi(F , p̄, q̄) = ∅ (since (x̄, z̄, p̄, q̄) is an equilibrium). Indeed, since

(x̄i, z̄i) ∈ Bi(F , p̄, q̄), and for every s &= s̄, xλ
i (s) = x̄i(s) we have

p̄(s) · [xλ
i (s)− ei(s)] = p̄(s) · [x̄i(s)− ei(s)] ≤ [W (q̄)z̄i](s) ≤ [W (q̄)zi](s).

Now, for s = s̄, we have

p̄(s̄) · [x̄i(s̄)− ei(s̄)] ≤ [W (q̄)z̄i](s̄) < [W (q̄)zi](s̄).

But, when λ → 0, xλ
i → x̄i, hence for λ > 0 small enough we have

p̄(s̄) · [xλ
i (s̄)− ei(s̄)] < [W (q̄)zi](s̄).

Consequently, (xλ
i , zi) ∈ Bi(F , p̄, q̄).

3.3.3 Proof of Part (a) of Theorem 3.3

We prepare the proof by some claims.

Claim 3.3.1 Under F1 and F2 we have, for all v = (vi)i∈I ∈ (RS)I ,

(a) A
(∑

i∈I(Zi ∩ {V ≥ 0})
)
⊂ A

(∑
i∈I(Zi ∩ {V ≥ vi})

)
.

(b) L(F) := L
(∑

i∈I(Zi ∩ {V ≥ 0})
)
⊂ L

(∑
i∈I(Zi ∩ {V ≥ vi})

)
.

Proof. (a) Let ζ ∈ A
(∑

i∈I(Zi ∩ {V ≥ 0})
)
, then for every n ∈ N, nζ =

∑
i∈Iz

n
i for

some zn
i ∈ Zi ∩ {V ≥ 0}. We need to show that ζ ∈ A

(∑
i∈I(Zi ∩ {V ≥ vi})

)
, that is, for
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zi ∈ Zi (i ∈ I) such that V zi ≥ vi, we have

ζ +
∑

i∈I

zi ∈
∑

i∈I

(Zi ∩ {V ≥ vi}).

From above,

ζ +
∑

i∈I

zi = lim
n→∞

∑

i∈I

( 1
n

zn
i + (1− 1

n
)zi

)
.

Notice that, for n ≥ 1, 1
n ∈ [0, 1] hence yn

i := 1
nzn

i + (1 − 1
n)zi belongs to Zi (because

zn
i and zi belong to Zi, and Zi is convex). Furthermore V yn

i ≥ (1 − 1
n)V zi ≥ (1 − 1

n)vi.

Consequently, yn
i ∈ Zi ∩ {V ≥ (1− 1

n)vi}. Therefore
(
(1− 1

n
)v1, · · · , (1− 1

n
)vI ,

∑

i∈I

yn
i

)
∈ G(F).

Now, since the set G(F) is closed (by assumption F2) and
∑

i∈Iy
n
i −→n→∞

ζ +
∑

i∈Izi, and

for each i ∈ I, (1− 1
n)vi −→

n→∞
vi, we conclude that (v1, · · · , vI , ζ +

∑
i∈Izi) ∈ G(F), that is

ζ +
∑

i∈Izi ∈
∑

i∈IZi ∩ {V ≥ vi}.

(b) This is a direct consequence of Part (a) of this claim, and the definition of the

lineality space.

Claim 3.3.2 L
(∑

i∈I(Zi ∩ kerV )
)

= L
(∑

i∈I(Zi ∩ {V ≥ 0})
)
. In particular L(F) ⊂

kerV .

Proof. The first inclusion is immediate. We show

L
(∑

i∈I

(Zi ∩ {V ≥ 0})
)
⊂ L

(∑

i∈I

(Zi ∩ kerV )
)
.

Let ζ ∈ L
(∑

i∈I(Zi ∩ {V ≥ 0})
)
, then for every λ ∈ R+, both vectors λζ and −λζ belong

to
∑

i∈I(Zi ∩ {V ≥ 0}), that is, there exist vectors z1, · · · , zI , z′1, · · · , z′I such that zi and

z′i are both in Zi ∩ {V ≥ 0} for every i ∈ I, and

λζ =
∑

i∈I

zi = −
∑

i∈I

z′i.

Hence
∑

i∈I(zi + z′i) = 0 which together with the inequalities V zi ≥ 0, V z′i ≥ 0 for every

i ∈ I implies V zi = V z′i = 0, for every i ∈ I. Therefore, for every λ ∈ R+, both vectors

λζ and −λζ are in
∑

i∈I(Zi ∩ kerV ), that is, ζ ∈ L
(∑

i∈I(Zi ∩ kerV )
)
.

Claim 3.3.3 Under F1 and F2, we have, for all v = (vi)i∈I ∈ (RS)I ,
∑

i∈I

cl
(
πZi ∩ {V ≥ vi}

)
⊂ cl

∑

i∈I

(
Zi ∩ {V ≥ vi}

)
.
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Proof. (a) First, we show that
∑

i∈I

(
πZi ∩ {V ≥ vi}

)
=

∑

i∈I

π
(
Zi ∩ {V ≥ vi}

)
(3.3.1)

⊂ kerπ +
∑

i∈I

(
Zi ∩ {V ≥ vi}

)
(3.3.2)

⊂ cl
(∑

i∈I

(
Zi ∩ {V ≥ vi}

))
. (3.3.3)

To prove the equality (3.3.1), it suffices to notice that for every i ∈ I, πZi ∩ {V ≥ vi} =

π(Zi ∩ {V ≥ vi}). Indeed, let yi ∈ πZi ∩ {V ≥ vi}, then there exists zi ∈ Zi such that

yi = πzi, and V yi ≥ vi. But V zi = V yi +V (zi−πzi) = V yi (since zi−πzi ∈ kerπ ⊂ L(F)

and L(F) ⊂ kerV from Claim 3.3.2). Then zi ∈ Zi ∩ {V ≥ vi} and Consequently

yi ∈ π(Zi ∩ {V ≥ vi}). The proof of the converse inclusion is similar.

To prove the inclusion (3.3.2), let y =
∑

i∈Iπzi with zi ∈ Zi ∩ {V ≥ vi}. Then y = πz =

(πz − z) + z with πz − z ∈ kerπ and z =
∑

i∈Izi ∈
∑

i∈I(Zi ∩ {V ≥ vi}). This ends the

proof of the inclusion of (3.3.2).

The second inclusion (3.3.3) comes from the fact that

kerπ ⊂ L(F) by assumption

L(F) ⊂ L
(∑

i∈I

(Zi ∩ {V ≥ vi})
)

by Claim 3.3.1

L
(∑

i∈I

(Zi ∩ {V ≥ vi})
)
⊂ A

(∑

i∈I

(Zi ∩ {V ≥ vi})
)

by definition of the lineality space,

consequently,

kerπ +
∑

i∈I

(Zi ∩ {V ≥ vi}) ⊂ A
(∑

i∈I

(Zi ∩ {V ≥ vi})
)

+
∑

i∈I

(Zi ∩ {V ≥ vi})

⊂ cl
∑

i∈I

(Zi ∩ {V ≥ vi}).

Using the above result (3.3.3) and recalling that for a finite family of sets Ai ⊂ Rk, (i ∈ I),

one always has
∑

i∈IclAi ⊂ cl(
∑

i∈IAi), we get
∑

i∈I

cl
(
πZi ∩ {V ≥ vi}

)
⊂ cl

∑

i∈I

(
πZi ∩ {V ≥ vi}

)
⊂ cl

∑

i∈I

(
Zi ∩ {V ≥ vi}

)
.

This ends the proof of the claim.

Claim 3.3.4 Under F1 and F2, we have, for all v = (vi)i∈I ∈ (RS)I ,
∑

i∈I

(
(clπZi) ∩ {V ≥ vi}

)
⊂

∑

i∈I

(
Zi ∩ {V ≥ vi}

)
.
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Proof. Let yi ∈ (clπZi) ∩ {V ≥ vi}. Take vn
i ↑ vi such that vi 0 vn

i for every n. Pick

ȳi ∈ riπZi and consider yn
i = (1 − λn)yi + λnȳi with 0 < λn < 1

n small enough so that

V yn
i 0 vn

i . Then yn
i ∈ [ȳi, yi) ⊂ riπZi since yi ∈ clπZi and ȳi ∈ riπZi (Theorem 6.1 page

45 in [6]). Thus yn
i ∈ πZi ∩ {V ≥ vn

i }.

Therefore, by Claim 3.3.3,
∑

i∈I

yn
i ∈ cl

∑

i∈I

(
Zi ∩ {V ≥ vn

i }
)
.

Now, since the set G(F) is closed (by assumption F2) and vn
i −→n→∞

vi,
∑

i∈Iy
n
i −→n→∞

∑
i∈Iyi,

we get
∑

i∈Iyi ∈
∑

i∈I

(
Zi ∩ {V ≥ vi}

)
.

Proof of Part (a) of Theorem 3.3

Step 1. V (F) ⊂ V (Fπ): Since kerπ ⊂ L(F) ⊂ kerV (by Claim 3.3.2), we always have

F 8 Fπ. Indeed, if zi ∈ Zi (i ∈ I) are such that
∑

i∈Izi = 0, then yi = πzi ∈ clπZi (i ∈ I)

satisfy
∑

i∈Iyi =
∑

i∈Iπzi = π(
∑

i∈Izi) = 0, and for each i ∈ I, V yi = V (πzi− zi)+V zi =

V zi since kerπ ⊂ kerV .

Step 2. V (Fπ) ⊂ V (F): Let y := (yi)i ∈ ΠiclπZi be such that
∑

i∈Iyi = 0. Then, by

Claim 3.3.4,

0 =
∑

i∈I

yi ∈
∑

i∈I

(
(clπZi) ∩ {V ≥ V yi}

)
⊂

∑

i∈I

(
Zi ∩ {V ≥ V yi}

)
.

Hence 0 =
∑

i∈Izi for some zi ∈ Zi ∩ {V ≥ V yi}, that is, zi ∈ Zi and V (zi − yi) ≥ 0 for

every i. Noticing that
∑

i∈I(zi−yi) = 0, we get
∑

i∈IV (zi = yi) = 0 and we conclude that

V zi − V yi = 0 for every i.

3.3.4 Proof of Part (b) of Theorem 3.3

First, we need a claim.

Claim 3.3.5 L(Fπ) ⊂ L(F) ∩ Imπ.

Proof. We clearly have L(Fπ) ⊂ Imπ since
∑

i∈I

(
clπZi ∩ {V ≥ 0}

)
⊂ Imπ. It remains

to show that L(Fπ) ⊂ L(F). By Claim 3.3.4, taking vi = 0 for each i ∈ I, we have
∑

i∈I

(
(clπZi) ∩ {V ≥ 0}

)
⊂

∑

i∈I

(Zi ∩ {V ≥ 0}).

Thus L
(∑

i∈I

(
(clπZi)∩ {V ≥ 0}

))
⊂ L

(∑
i∈I(Zi ∩ {V ≥ 0})

)
, that is, L(Fπ) ⊂ L(F).

69



Proof of Part (b) of Theorem 3.3

If L(F) = kerπ, then from Claim 3.3.5, we get

L(Fπ) ⊂ L(F) ∩ Imπ = kerπ ∩ Imπ = {0}.

This ends the proof of Part (b) of Theorem 3.3.

3.3.5 Proof of Part (c) of Theorem 3.3

First, we need a claim.

Claim 3.3.6 If the projection π is orthogonal and V (Fπ) ⊂ V (F), then for (q, y) arbitrage-

free in Fπ such that
∑

i∈Iyi = 0, there exists z∗ ∈ ΠiZi such that

(a) For every i,



−πq

V



 z∗i =



−q

V



 yi, and
∑

i∈Iz
∗
i = 0,

(b) (πq, z∗) is arbitrage-free in F .

Proof. (a) Let (q, y) be arbitrage-free in Fπ and such that
∑

i∈Iyi = 0. Since V (Fπ) ⊂
V (F), there exists z∗ ∈ ΠiZi such that

∑
i∈Iz

∗
i = 0 and V yi = V z∗i , for every i ∈ I. We

show that, for every i, πq · z∗i = πq · yi (= q · πyi since the projection π is orthogonal).

Let us first note that it suffices to show that for every i ∈ I, −πq · z∗i ≤ −πq · yi. In this

case −πq · (
∑

i∈Iz
∗
i −

∑
i∈Iyi) = 0 implies for every i, πq · z∗i = πq · yi.

By contraposition suppose that for some i, −πq ·z∗i > −πq ·yi. We have −πq ·z∗i = −q ·πz∗i

(since the projection π is orthogonal), V z∗i = V yi and V yi = V πyi (since yi−πyi ∈ kerπ ⊂

kerV ). Hence πz∗i ∈ πZi ⊂ clπZi and



−q

V



 πz∗i >



−q

V



 πyi. It thus suffices to show

that πyi = yi and we will contradict the assumption that (q, yi) is arbitrage-free in Fπ for

agent i.

Since yi ∈ clπZi, yi = limn πyn
i with yn

i ∈ Zi. Then πyi = π limn πyn
i = limn π(πyn

i ) =

limn πyn
i = yi.

(b) If (πq, z∗i ) is not arbitrage-free, then there exists z̄i ∈ Zi such that



−πq

V



 z̄i >



−πq

V



 z∗i . But



−πq

V



 z̄i =



−q

V



 πz̄i since π is an orthogonal projection and kerπ ⊂
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kerV . Then



−q

V



 πz̄i >



−q

V



 yi. Contradiction to the fact that (q, y) is arbitrage-free

in Fπ.

Proof of Part (c) of Theorem 3.3

(i) Assume the projection π is orthogonal and let (q, y) be arbitrage-free in Fπ such that
∑

i∈Iyi = 0. From Part (a) we know that V (Fπ) ⊂ V (F), hence by Claim 3.3.6, there

exists z∗ ∈ ΠiZi such that
∑

i∈Iz
∗
i = 0, (πq, z∗) is arbitrage-free in F , and for every i ∈ I,

W (πq)z∗i = W (q)yi. Therefore Fπ !W F .

(ii) Assume E satisfies NS and LNS, and F satisfies F1 and F2. We show that if (E ,Fπ)

has an equilibrium (p̄, q̄, x̄, ȳ), then there exists z∗ ∈ ΠiZi such that (p̄, πq̄, x̄, z∗) is an

equilibrium of (E ,F).

Let (p̄, q̄, x̄, ȳ) be an equilibrium in (E ,Fπ). By Lemma 3.2, (q̄, ȳ) is arbitrage-free in Fπ,

and by Part (c)(i) of Theorem 3.3, for each i, there exists z∗i ∈ Zi such that W (πq̄)z∗i =

W (q̄)ȳi,
∑

i∈Iz
∗
i = 0, and (πq̄, z∗) is arbitrage-free. We show that (p̄, πq̄, x̄, z∗) is an

equilibrium of (E ,F).

First, from W (πq̄)z∗i = W (q̄)ȳi for each i ∈ I, we conclude that (x̄i, z∗i ) ∈ Bi(F , p̄, πq̄)

since (x̄i, ȳi) ∈ Bi(Fπ, p̄, q̄)).

To complete the proof, we need only show that for each i,

Bi(F , p̄, πq̄) ∩ [Pi(x̄)× Zi] = ∅.

Since (p̄, q̄, x̄, z̄) is an equilibrium of (E ,Fπ), we have

Bi(Fπ, p̄, q̄) ∩ [Pi(x̄)× clπZi] = ∅.

In view of the above, the proof will be completed if we show that if (xi, zi) ∈ Bi(F , p̄, πq̄),

then (xi, πzi) ∈ Bi(Fπ, p̄, q̄), which is true if W (πq̄)zi ≤ W (q̄)πzi. Recalling that for every

i, V zi = V πzi (since zi − πzi ∈ kerπ ⊂ L(F) ⊂ kerV ), we only need to show that

πq̄ · zi = q̄ · πzi. But πq̄ ∈ Imπ = (kerπ)⊥ (since the projection π is orthogonal) implies,

πq̄ · zi = πq̄ · πzi, and again since q̄ − πq̄ ∈ (Imπ)⊥, we have πq̄ · πzi = q̄ · πzi. Hence

πq̄ · zi = q̄ · πzi.
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3.3.6 Proof of Part (d) of Theorem 3.3

First, we need some claims.

Claim 3.3.7 (a) Under assumption F0, if q is an arbitrage-free asset price then

q ∈ −
(
A

∑

i∈I

(Zi ∩ [V ≥ 0])
)o⊂

(
L(F)

)⊥
.

(b) Under assumptions F0 and NS, and LNS, if (x̄, z̄, p̄, q̄) is an equilibrium of the

economy (E ,F), then q̄ is arbitrage-free hence

q̄ ∈ −
(
A

∑

i∈I

(Zi ∩ [V ≥ 0])
)o⊂

(
L(F)

)⊥
.

Proof. (a) By contraposition. Let q be an arbitrage-free asset price vector and suppose

that q &∈ −
(
A

∑
i∈I(Zi ∩ {V ≥ 0})

)o. Then there is ζ ∈ A
∑

i∈I(Zi ∩ {V ≥ 0}) such that

−q · ζ > 0. Then for all n ∈ N, n2ζ =
∑

i∈Iz
n
i with zn

i ∈ (Zi ∩ {V ≥ 0}), for every

i ∈ I. Therefore −q ·
∑

i∈I
zn
i
n = −nq · ζ → +∞ when n →∞. Hence, without any loss of

generality, we can assume that for some agent, say i = 1, −q · zn
1
n → +∞ when n →∞.

By F0, there exists ξ1 ∈ AZ1 such that V ξ1 0 0. Consider z̄ = (z̄i)i ∈ ΠiZi such that q

is arbitrage-free at z̄, and define

ζn
1 :=

1
n

zn
1 + (1− 1

n
)(z̄1 + ξ1).

We end the proof by showing that, for n large enough, ζn
1 is an arbitrage opportunity for

agent 1 at z̄1, that is (i) ζn
1 ∈ Z1, and (ii) W (q)ζn

1 > W (q)z̄1 (which contradicts that q

is arbitrage-free at z̄). Indeed, first z̄1 + ξ1 ∈ Z1 since ξ1 ∈ AZ1, hence ζn
1 belongs to Z1

since it is a convex combination of zn
1 ∈ Z1, z̄1 + ξ1 ∈ Z1 and Z1 is convex.

Second, one has −q · ζn
1 = −q · 1

nzn
1 + −q · (1 − 1

n)(z̄1 + ξ1) > −q · z̄1 for n large enough

(since −q · zn
1
n → +∞).

Finally, since zn
1 ∈ {V ≥ 0} and V ξ1 0 0 one has, for n large enough,

V ζn
1 = V [

1
n

zn
1 + (1− 1

n
)(z̄1 + ξ1)] ≥ (1− 1

n
)V (z̄1 + ξ1) 0 V z̄1.

(b) If (x̄, z̄, p̄, q̄) is an equilibrium of the economy (E ,F) then, under NS, and LNS, q̄ is

arbitrage-free (from Claim 3.2), and under F0 we have the result from Part (a).

Claim 3.3.8 Assume that for all s ∈ S̄, p(s) &= 0 and for all i ∈ I, ei ∈ intXi, then

Bi(Fπ, p, q) = cl
{

(x, v) ∈ Xi × πZi : p (x− ei) 9 W (q)v
}

.
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Proof. We first claim that there exists δ = (δ(s))s∈S̄ ∈ RL such that (i) ei − δ ∈ Xi and

(ii) p(s) · δ(s) > 0 for every s ∈ S̄. Indeed, take δ = λp for λ > 0 small enough so that

ei + δ ∈ Xi, using the fact that ei ∈ intXi, and for all s ∈ S̄, p(s) ·p(s) > 0, since p(s) &= 0.

Let (xi, vi) ∈ Bi(Fπ, p, q). For all α ∈ (0, 1), we claim that

p (αxi +(1−α)(ei−δ)−ei)−W (q)(αvi) = α
(
p (xi−ei)−W (q)vi

)
− (1−α)p δ 9 0.

Indeed, we first have p (xi − ei) −W (q)vi ≤ 0 because (xi, vi) ∈ Bi(Fπ, p, q). Second,

−(1− α)p δ 9 0 from above. Furthermore,

xα
i := αxi + (1− α)(ei − δ) ∈ Xi since xi ∈ Xi and ei − δ ∈ Xi, and

αvi ∈ clπZi since clπZi is convex and 0 ∈ clπZi.

Consequently, there exists vα
i ∈ πZi such that ||vα

i − vi|| ≤ (1− α)||vi|| and

p (xα
i − ei)−W (q)vα

i 9 0.

Noticing that, when α → 1, (xα
i , vα

i ) → (xi, vi), we thus get the result.

Proof of Part (d) of Theorem 3.3

Assume E satisfies NS and LNS, and F satisfies F0, F1 and F2. Assume that for all

i ∈ I, ei ∈ intXi. We show that if (E ,F) has an equilibrium (p∗, q∗, x∗, z∗) such that

Pi(x∗) is open for every i, then (p∗, πq∗, x∗, πz∗) is an equilibrium of (E ,Fπ).

Let (p∗, q∗, x∗, z∗) be an equilibrium in (E ,F). The asset market clearing condition in

(E ,Fπ):
∑

i∈Iπz∗i = 0 is a direct consequence of
∑

i∈Iz
∗
i = 0. First, we show that for

each i ∈ I, (x∗i , πz∗i ) ∈ Bi(Fπ, p∗, πq∗). We have W (πq∗)πz∗i = W (q)z∗i since πq∗ · πz∗i =

q∗ · πz∗i = q∗ · z∗i (the first equality because π is orthogonal and the second equality

because, under assumption F0, q∗ ∈
(
L(F)

)⊥ by Claim 3.3.7 and therefore q∗ ∈ (kerπ)⊥

since kerπ ⊂ L(F)), and V πz∗i = V z∗i because ker π ⊂ kerV .

We now show that for each i ∈ I, (x∗i , πz∗i ) solves agent i’s problem in (E ,Fπ). Suppose

on the contrary that for some agent, say i = 1, there exists (x1, z1) ∈ B1(Fπ, p∗, πq∗) such

that x1 ∈ P1(x∗). From the above Claim 3.3.8, (x1, z1) = limn(xn
1 , πzn

1 ) for some sequences

(xn
1 )n ⊂ X1 and (zn

1 )n ⊂ Z1 such that

p∗ (xn
1 − e1)−W (πq∗)(πzn

1 ) ≤ 0.

We notice that (for the first equality we use the fact that, under F0, q∗ ∈
(
L(F)

)⊥ hence
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q∗ ∈ (kerπ)⊥)

W (q∗)zn
1 = W (q∗)πzn

1 = W (πq∗)πzn
1

since zn
1 − πzn

1 ∈ kerπ, πq∗ ∈ Imπ = (kerπ)⊥ and kerπ ⊂
(
L(F)

)
⊂ kerV . Consequently,

from above

p∗ (xn
1 − e1)−W (q∗)zn

1 = p∗ (xn
1 − e1)−W (πq∗)(πzn

1 ) ≤ 0.

Hence (xn
1 , zn

1 ) ∈ B1(F , p∗, q∗). Recalling that x1 ∈ P1(x∗), x1 = limn xn
1 and using the

fact that P1(x∗) is open, we deduce that for n large enough xn
1 ∈ P1(x∗) . Then the two

assertions (xn
1 , zn

1 ) ∈ B1(F , p∗, q∗) and x1 ∈ P1(x∗) contradict the optimality of (x∗1, z∗1) in

(E ,F).

3.3.7 Proof of Part (e) of Theorem 3.3

We prepare the proof by some claims.

Claim 3.3.9 πQ(Fπ) ⊂ Q(F).

Proof. Let q ∈ Q(Fπ) and assume that πq /∈ Q(F). Then there exists i ∈ I and

vi ∈ AZi such that W (πq)vi > 0. The vector πvi ∈ π(AZi) ⊂ A(πZi) and, since π is an

orthogonal projection, q · πvi = πq · πvi = πq · vi (because both q− πq and vi− πvi belong

to kerπ = (Imπ)⊥). Furthermore V πvi = V vi since vi − πvi ∈ kerπ ⊂ kerV . Hence

W (q)(πvi) = W (πq)vi > 0 which contradicts the fact that q ∈ Q(Fπ). This ends the proof

of the claim.

Claim 3.3.10 Q(Fπ) ∩ Imπ = πQ(Fπ).

Proof. Let q ∈ Q(Fπ) ∩ Imπ. Then q = πq since q ∈ Imπ, hence q ∈ πQ(Fπ) . This

shows that Q(Fπ) ∩ Imπ ⊂ πQ(Fπ).

Let q ∈ Q(Fπ), and write πq = q − (q − πq) ∈ Q(Fπ) + kerπ. And we claim that

Q(Fπ) + kerπ ⊂ Q(Fπ) (which will end the proof of Claim 3.3.10).

Indeed, let α ∈ kerπ, q ∈ Q(Fπ) and suppose q + α /∈ Q(Fπ). Then there exists i ∈ I and

there exists vi ∈ A(πZi) such that



−q − α

V



 vi > 0. But vi ∈ Imπ and α ∈ kerπ, hence

α · vi = 0. Therefore



−q

V



 vi > 0 which contradicts the fact that q ∈ Q(Fπ).
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Claim 3.3.11 Z(Fπ) ⊂ Z(F).

Proof. First we show that Z(Fπ) ⊂ πZ(F). For each i ∈ I, Zi ⊂ Z(F). Then for

each i, πZi ⊂ πZ(F), which implies clπZi ⊂ πZ(F), therefore Z(Fπ) ⊂ πZ(F) (since

Z(Fπ) =< ∪iclπZi >).

Second we show that πZ(F) ⊂ Z(F). Let z ∈ Z(F) and write πz = (πz − z) + z ∈
kerπ + Z(F) ⊂ Z(F) since kerπ = L

(∑
i∈IZi ∩ {V ≥ 0}

)
⊂ Z(F).

Claim 3.3.12 Q(Fπ) ∩ Z(Fπ) ⊂ Q(F) ∩ Z(F).

Proof. First, we show Q(Fπ) ∩ Z(Fπ) ⊂ Q(F).

Q(Fπ) ∩ Z(Fπ) ⊂ Q(Fπ) ∩ Imπ because Z(Fπ) ⊂ Imπ

Q(Fπ) ∩ Imπ = πQ(Fπ) by Claim 3.3.10

πQ(Fπ) ⊂ Q(F) by Claim 3.3.9.

Second, we show Q(Fπ) ∩ Z(Fπ) ⊂ Z(F).

Q(Fπ) ∩ Z(Fπ) ⊂ Z(Fπ)

Z(Fπ) ⊂ Z(F) by Claim 3.3.11.

Hence Q(Fπ) ∩ Z(Fπ) ⊂ Q(F) ∩ Z(F).

Proof of Part (e) of Theorem 3.3

Claim 3.3.12 implies that Fπ satisfies property P(i). We need only show that Fπ satisfies

property P(ii). Let q ∈ Q(Fπ) ∩ Z(Fπ), i ∈ I, and zi ∈ Zi. Then πzi ∈ clπZi and

q · πzi = q · zi since the projection π is orthogonal, q ∈ Q(Fπ) ∩ Z(Fπ) ⊂ Imπ, and

zi − πzi ∈ kerπ. This ends the proof of Theorem 3.3.

3.3.8 Final Remark

Proposition 3.3 Let π be a linear projection of RJ such that kerπ ⊂ L
(∑

i∈I(Zi ∩

kerV )
)
, and consider the following assertions.

(i) kerπ = L
(∑

i∈I(Zi ∩ kerV )
)
.

(i’) kerπ = L
(∑

i∈I(AZi ∩ kerV )
)
.
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(ii) L
(∑

i∈I

(
clπZi ∩ kerV

))
= {0}.

(ii’) L
(∑

i∈I

(
AclπZi ∩ kerV

))
= {0}.

(iii) ∀i ∈ I,L
(
clπZi ∩ kerV

)
= {0}.

Then the following hold9

(a) (i) ⇒ (ii) ⇔ (ii’) ⇒ (iii).

(b) (i’) &⇒ (ii).

(c) If the cones AZi ∩ kerV satisfy WPSI then (i) ⇔ (i’) ⇔ (ii) ⇔ (ii’) ⇔ (iii).

Proof. (a) [(i) ⇒ (ii)]. This is Part (d) of Theorem 3.3.

[(ii) ⇔ (ii’)]. The implication (ii) ⇒ (ii’) is immediate. We show (ii’) ⇒ (ii). We will

show the following more general result

L
(∑

i∈I

(
AZi ∩ kerV

))
= {0}⇒ L

(∑

i∈I

(
Zi ∩ kerV

))
= {0}.

Let ζ ∈ A(
∑

i∈I Zi ∩ kerV ) ∩ −A(
∑

i∈I Zi ∩ kerV ), then for every integer n, there exists

zn
i ∈ Zi ∩ kerV such that nζ =

∑
i∈I zn

i or equivalently ζ =
∑

i∈I zn
i /n and we notice that

zn
i /n ∈ Zi ∩ kerV (since Zi is convex and contains 0). Consider now the set

K := {(z1, . . . , zI) ∈ Πi∈IZi :
∑

i∈I

zi = ζ, V zi = 0}.

We claim that the set K is compact. Indeed, K is obviously closed and we only need to

show that it is bounded. To this end, we show that the asymptotic cone AK of K is equal

to {0} (see [6]). We have

AK := {(ξ1, . . . , ξI) ∈ Πi∈IAZi :
∑

i∈I

ξi = 0, V ξi = 0}.

Hence, if (ξ1, . . . , ξI) ∈ AK, from V ξi = 0 for every i ∈ I and
∑

i∈Iξi = 0 we deduce that

ξ1 = −
∑

i(=1 ξi ∈
∑

i∈I(AZi ∩ kerV ) ∩ −
∑

i∈I(AZi ∩ kerV ) = {0}. Therefore ξ1 = 0 and

similarly, ξi = 0 for every i ∈ I. That is AK = {0}. This ends the proof of the claim.

From the compactness of K one deduces that, without any loss of generality each sequence

(zn
i /n) converges to some ζi ∈ AZi ∩ kerV . Hence ζ =

∑
i∈I ζi ∈

∑
i∈I AZi ∩ kerV .

Similarly we prove that −ζ ∈
∑

i∈I AZi ∩ kerV . Therefore ζ = 0.

9The implication (3) ⇒ (1) holds true under WPSI.
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[(ii’) ⇒ (iii)]. This is obvious since, for each i ∈ I, we have

L
(
clπZi ∩ kerV

)
= L

(
AclπZi ∩ kerV

)
⊂ L

(∑

i∈I

(
AclπZi ∩ kerV

))
= {0}.

(b) [(i’) &⇒ (ii’)]. This is an example of a financial structure where

kerπ = L(
∑

i∈I

(AZi ∩ kerV )) &⇒ L(
∑

i∈I

(AπZi ∩ kerV )) = {0}.

Let V =
(
0 0 1

)
, I = 2, and

Z1 = {(z1, z2, z3) ∈ R3 : z1 ≥ 0, z2 ≥ 0, z3 ∈ R or z1 ≤ 0, z2 ≥ z2
1 , z3 ∈ R},

Z2 = {(z1, z2, z3) ∈ R3 : z1 ≥ 0, z2 ≤ 0, z3 ∈ R or z1 ≤ 0, z2 ≤ −z2
1 , z3 ∈ R}.

Then kerV = R× R× {0},AZ1 = R+ × R+ × R,AZ2 = R+ × R− × R, and

AZ1 ∩ kerV = R+ × R+ × {0},

AZ2 ∩ kerV = R+ × R− × {0},
∑

i∈I

(AZi ∩ kerV ) = R+ × R× {0},

kerπ = L(
∑

i∈I

(AZi ∩ kerV )) = {0}× R× {0},

Imπ = (kerπ)⊥ = R× {0}× R,

AπZ1 = πZ1 = R× {0}× R,

AπZ2 = πZ2 = R× {0}× R,

AπZ1 ∩ kerV = AπZ2 ∩ kerV = R× {0}×{ 0}.

Hence

L
(∑

i∈I

(AπZi ∩ kerV )
)

= R× {0}×{ 0} &= {0}.

(c) We need only show that, under WPSI, (i) is equivalent to (i’) and (iii) implies (i).

[(i) ⇔ (i’)]. Follows from Lemma 3.4.

[(iii) ⇒ (i) When the cones AZi ∩ kerV satisfy WPSI]. Let ζ ∈ L
(∑

i∈I(Zi ∩ kerV )
)
,

then by WPSI (see Theorem 3.4(b)(ii) in the appendix), ζ ∈
∑

i∈I

(
L(Zi) ∩ kerV

)
, that

is ζ =
∑

i∈Iζi with ζi ∈ L(Zi) ∩ kerV for each i ∈ I. Thus πζ =
∑

i∈Iπζi and for each

i ∈ I,

πζi ∈ π
(
L(Zi) ∩ kerV

)
⊂ π

(
L(Zi)

)
∩ kerV ⊂ L(πZi) ∩ kerV

(notice that for the first inclusion we used the following fact: π(kerV ) ⊂ kerV ). Recall

that, by assumption (iii), L(πZi) ∩ kerV = {0} for every i. Hence πζi = 0 for each i and
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consequently πζ = 0, that is ζ ∈ kerπ.

3.4 Examples

Example 3.3 The financial structures F = (V, (Zi)i) and F ′ = (V ′, (Z ′i)i), where10 V ′ =

[V,1] and for i ∈ I, Z ′i = Zi × R+, are equivalent. That is F ∼ F ⊗ (1, R+).

Proof. (a) F 8 F ′. Indeed if zi ∈ Zi,∀i and
∑

i∈Izi = 0 then z′i := (zi, 0) are in Z ′i and

satisfy
∑

i∈Iz
′
i = 0 and V ′z′i = V zi.

(b) F ′ 8 F . Indeed if z′i = (zi, αi) ∈ Z ′i,∀i and
∑

i∈Iz
′
i = 0 then necessarily αi = 0,∀i

and
∑

i∈Izi = 0, hence V ′z′i = V zi.

Example 3.4 The financial structures F = V and F ′ = (V, (kerV )⊥) are equivalent.

In the following we will construct equivalent financial structures using the same scheme,

which relies on linear projection as defined hereafter.

Definition 3.9 Let ΠV be the set of all linear projections π : RJ → RJ such that kerπ ⊂
kerV. Let F =

(
V, (Zi)i

)
, and let π ∈ ΠV , we denote Fπ :=

(
V,

(
cl(πZi)

)
i

)
.

The following example gives simple cases under which F and Fπ are equivalent.

Example 3.5 For all π ∈ ΠV , F =
(
V, (Zi)i

)
8

(
V, (πZi)i

)
8 Fπ :=

(
V,

(
cl(πZi)

)
i

)
.

Moreover, for π ∈ ΠV , F ∼ Fπ in each of the following cases.

(1) For all i, Zi = Z is a linear subspace.

(2) For all i, Zi is a linear subspace and kerπ ⊂
∑

i∈I(Zi ∩ kerV ).

(3) For all i, Zi = Z is closed, convex, and contains 0 and kerπ ⊂ L(Z ∩ kerV ).11

10The symbol 1 represents the vector of RS′
whose components are all equal to one. The matrix [V,1]

is the (S′ × (J + 1)) matrix whose first J columns are those of V and the last column is the vector 1.
11For the sake of completeness, the proof of these assertions goes as follows. Let (zi)i ⊂ Zi be such that

P
i∈Izi = 0. Then V zi = V πzi + V (zi − πzi) = V πzi with

P
i∈Iπzi = π(

P
i∈Izi) = 0. Hence F / Fπ.

(1) We need only show that Fπ / F . Let yi = πzi, zi ∈ Z be such that 0 =
P

i∈Iyi =
P

i∈Iπzi. Then
P

i∈Izi ∈ ker π and ∀i, V πzi = V zi + V (πzi − zi) = V zi. Let ẑi = zi − 1
I

P
i∈Izi, then ẑi ∈ Z (since Z is a

linear subspace),
P

i∈I ẑi = 0 and V ẑi = V zi = V yi.
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Remark 3.1 If kerπ ⊂ L(Z ∩ kerV ) then AZ ∩ kerπ ⊂ L(Z) and πZ is closed when

Z is closed by Theorem 9.1 page 73 in Rockafellar [6] which is (by the way) valid in our

setting.

3.4.1 Symmetric linear portfolio sets: for all i, Zi = Z is a linear subspace

Example 3.6 (a) If Z ′ is a linear subspace, then the following assertions are equivalent.

(1) (V, (Z ′)i) ∼ (V, (RJ)i), (2) V Z ′ = V RJ , (3) Z ′ + kerV = RJ .

(4) Z ′ = π(RJ) for some π ∈ ΠV .

(b) Moreover, if (1) is satisfied, the following assertions (5)-(8) are equivalent.

(5) Z ′ ∩ kerV = {0}, (6) dim Z ′ = rank V , (7) Z ′
⊕

kerV = RJ .

(8) Z ′ = π(RJ) for some π ∈ ΠV such that kerπ = kerV .12

Example 3.7 (Eliminating redundant assets) Consider V = [V 1, V 2, · · · , V J ] and let

Ṽ = [V 1, · · · , V r], (r ≤ J) and assume that rankV = rankṼ . Let Z = Rr × {0}J−r.

(2) We need only show that Fπ / F . Let yi = πzi, zi ∈ Zi be such that 0 =
P

i∈Iyi =
P

i∈Iπzi. Then
P

i∈Izi ∈ ker π and ∀i, V πzi = V zi +V (πzi−zi) = V zi. Write
P

i∈Izi =
P

i∈Ivi where ∀i, vi ∈ Zi∩ker V ,

and define ẑi = zi − vi. Then ∀i, ẑi ∈ Zi,
P

i∈I ẑi = 0 and V ẑi = V zi = V yi.

(3) We need only show that Fπ / F . Let yi = πzi, zi ∈ Z be such that 0 =
P

i∈Iyi =
P

i∈Iπzi. Then
P

i∈Izi ∈ ker π and ∀i, V πzi = V zi + V (πzi − zi) = V zi. Let v ∈ L(Z ∩ ker V ) be such that
P

i∈Izi = v

and define ẑi = zi − v
I . Then ∀i, ẑi ∈ Z,

P
i∈I ẑi = 0 and V ẑi = V (zi − v

I ) = V zi = V yi.
12The proof goes as follows. Part (a). (1)⇒ (2). Obvious.

(2)⇒ (3). Let y ∈ RJ , then ∃z ∈ Z′ s.t. V y = V z. Hence y − z ∈ ker V , that is y ∈ Z′ + ker V .

(3)⇒ (4). To be written.

(4)⇒ (1). Apply the result of Example 3.5.

Part (b). (5) ⇒ (6). We have

dim Z′ = dim V Z′ by (5)

= dim V RJ by (2)

= rank V by definition of the rank.

(6) ⇒ (7). Then dim Z′ + dim ker V = rank V + dim ker V = dim RJ . Combining this result about the

dimensions with (3), we get Z′ L
ker V = RJ .

(7) ⇒ (8). This a consequence of the next Example.

(8) ⇒ (5). Z′ ∩ ker V = p(RJ) ∩ ker V = {0}.
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(a) Then (V, (RJ)i) ∼ (V, (Z)i) ∼ (Ṽ , Rr).

(b) Moreover, the following conditions are equivalent.

(1) Rr × {0}J−r ∩ kerV = {0}, (2) Rr × {0}J−r ⊕
kerV = RJ ,

(3) r = rank V , (4) The vectors (V 1, · · · , V r) are linearly independent.

Proof of Part (a). Indeed,

V (RJ) = {
∑

j∈J

zjV j : zj ∈ R, j ∈ J} = {
r∑

j=1

zjV j : zj ∈ R, j ∈ [|1, r|]} = V (Z) = Ṽ (Rr).

Proof of Part (b). To be written.13

3.4.2 Symmetric nonlinear portfolio sets: for all i, Zi = Z is closed con-

vex

Example 3.8 Let Z be a closed, convex subset of RJ containing 0. If kerπ ⊂ L(Z∩kerV )

then F =
(
V, (Z)i

)
∼ Fπ :=

(
V,

(
cl(πZi)

)
i

)
. (Notice that L(Z ∩ kerV ) = L(Z) ∩ kerV ,

and that AZ ∩ kerπ ⊂ kerπ ⊂ L(Z). Therefore, by Theorem 9.1 page 73 in Rockafellar

[6], πZ is closed.)

Furthermore, under the assumption kerπ ⊂ L(Z ∩ kerV ), we have L
(
πZ ∩ kerV

)
= {0},

that is L(Fπ) = {0}, if and only if kerπ = L(Z ∩ kerV ).

Proof. We need only show that Fπ 8 F . Let yi = πzi, zi ∈ Z be such that 0 =
∑

i∈Iyi =
∑

i∈Iπzi. Then
∑

i∈Izi ∈ kerπ and ∀i, V πzi = V zi +V (πzi−zi) = V zi. Let v ∈
L(Z ∩ kerV ) be such that

∑
i∈Izi = v and define ẑi = zi− v

I . Then ∀i, ẑi ∈ Z,
∑

i∈I ẑi = 0

and V ẑi = V (zi − v
I ) = V zi = V yi.

3.4.3 Linear portfolio sets: for all i, Zi is a linear subspace

Example 3.9 Let Zi be a linear subspace for every i.

(a) If kerπ ⊂
∑

i∈I(Zi ∩ kerV ), then F =
(
V, (Zi)i

)
∼ Fπ :=

(
V,

(
cl(πZi)

)
i

)
and

π
(∑

i∈I

(Zi ∩ kerV )
)

=
∑

i∈I

(
π(Zi) ∩ kerV

)
.

Notice that since the Zi’s are linear subspaces, for each i, one has πZi is closed.
13We show (4)⇒ (1). Let z ∈ Rr × {0}J−r ∩ ker V . Then 0 = V z =

P
j∈JzjV j and zj = 0 for j > r.

Hence
Pr

j=1 zjV j = 0, and since the vectors V 1, · · · , V r are independent, we conclude that z = 0.
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(b) Under the above condition, the following assertions are equivalent.

(1)
∑

i∈I

(
π(Zi) ∩ kerV

)
= {0},

(2) kerπ =
∑

i∈I(Zi ∩ kerV ).

Proof. (a) To show the equivalence of F and Fπ, we need only show that Fπ 8 F .

Let yi = πzi, zi ∈ Zi be such that 0 =
∑

i∈Iyi =
∑

i∈Iπzi. Then
∑

i∈Izi ∈ kerπ and

∀i, V πzi = V zi + V (πzi − zi) = V zi. Write
∑

i∈Izi =
∑

i∈Ivi where ∀i, vi ∈ Zi ∩ kerV ,

and define ẑi = zi − vi. Then ∀i, ẑi ∈ Zi,
∑

i∈I ẑi = 0 and V ẑi = V zi = V yi.

Let zi ∈ Zi ∩ kerV , then π(
∑

i∈Izi) =
∑

i∈Iπzi with V πzi = V zi = 0 hence πzi ∈
πZi∩kerV therefore π

(∑
i∈I(Zi∩kerV )

)
⊂

∑
i∈I

(
πZi∩kerV

)
. Conversely, let zi ∈ Zi be

such that V πzi = 0. Then V zi = V πzi = 0 i.e. zi ∈ Zi ∩ kerV and
∑

i∈Iπzi = π(
∑

i∈Izi),

which shows that
∑

i∈I

(
πZi ∩ kerV

)
⊂ π

(∑
i∈I(Zi ∩ kerV )

)
.

(b) Obvious (by the second part of (a)).

Example 3.10 The projection used in Balasko, Cass, and Siconolfi [3].

Let N =
∑

i∈I(Zi ∩ kerV ). Then N has a supplementary space of the form RJ\A × {0}A

with A ⊂ J and |A| = dimN . Using this result we can get the existence of a linear

projector π ∈ ΠV such that kerπ = N and π(RJ) = RJ\A × {0}A.14

Let F = (V, (Zi)i), let N =
∑

i∈I(Zi ∩ kerV ), then there exist linear subspaces (Z ′i)i of

RJ such that

(1) F = (V, (Zi)i) ∼ F ′ = (V, (Z ′i)i),

(2) dimV (Z ′i) = dimZ ′i,

(3)
∑

i∈I(Z
′
i ∩ kerV ) = {0}.

14Indeed, let M be the matrix of coordinates of a basis {n1, · · · , nk} of N . Clearly rankM = k = dimN ,

and there exists a subset A of J such that |A| = dimN and the family (Mi)i∈A of rows of M is linearly

independent. We first claim that N ∩ (RJ\A × {0}A) = {0}. Indeed, without any loss of generality, we

can assume that M can be written M =

0

@α

β

1

A where α is a (J − k)× k matrix, β is a k × k matrix, and

β is invertible. Let x ∈ N ∩ RJ\A × {0}A then there exists λ ∈ RA, x = Mλ (because x ∈ N) hence

0 = xA = MAλ which implies that λ = 0 since MA is invertible, therefore x = 0. Consequently, since the

sum of dimensions of the two spaces, Nand RJ\A × {0}A, is equal to J , they are supplementary spaces.
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Choosing π as the linear projection such that kerπ = N and π(RJ) = RJ\A× {0}A allows

us to define V̂ = [V j | j ∈ J\A], Ẑi by Z ′i = π(Zi) = Ẑi × {0}A, and we have

F = (V, (Zi)i) ∼ F ′ = (V, (Z ′i)i) ∼ (V̂ , (Ẑi)i).

Example 3.11 If ∀i, Zi is a linear subspace, and ∪iZi is a linear subspace, or equivalently

there exists i0 ∈ I such that ∀i, Zi ⊂ Zi0 , then the following assertions are equivalent.

(1) (V, (Zi)i) ∼ (V, (Z ′i)i),

(2) ∀i, V Zi = V Z ′i,

(3) ∀i, Zi + kerV = Z ′i + kerV .

Proof. (1)⇒ (2). Obvious.

(2)⇒ (3). Let y ∈ Z ′i + kerV , then V y ∈ V Z ′i hence there exists z ∈ Zi such that

V y = V z. Therefore y − z ∈ kerV , that is y ∈ Zi + kerV .

(3)⇒ (1). Let (ζi)i ∈ ΠiZ ′i be such that
∑

i∈Iζi = 0. For each i, write ζi = zi + ni with

zi ∈ Zi and ni ∈ kerV . Then ∀i, V ζi = V zi. Let z̄i0 = zi0 −
∑

i∈Izi and z̄i = zi for i &= i0,

then z̄i ∈ Zi, V z̄i = V zi for each i, and
∑

i∈I z̄i = 0. Therefore, (V, (Z ′i)i) 8 (V, (Zi)i).

3.5 Appendix

3.5.1 Counter-example

Hereafter we give an explicit example of a correspondence Φ satisfying

• Φ(ζ) is closed for every ζ ∈ (RJ)I

• The inclusion Φ(ζ) ⊂ L(F) + projL(F)⊥Φ(ζ) holds at every ζ and is not an equality

at some ζ.

• The correspondence Φ from (RJ)I to RJ does not have a closed graph.

Note that the third property is a consequence of the second one.

We let I = S = 2, J = 3, V =



 1 0 0

−1 0 0



, and
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Z1 = {(z1, z2, z3) ∈ R3 : z1 ≥ −1, z2 ≥ 0, z2
3 ≤ (z1 + 1)z2},

Z2 = {(z1, z2, z3) ∈ R3 : z1 ≥ 0, z2 ≤ 0, z3 = 0}.

ζ̄ = (−1, 0, 0) and ξ̄ = (0, 0, 0).

Then we easily see

kerV = {0}× R× R,

Z1 ∩ kerV = {(z1, z2, z3) ∈ R3 : z1 = 0, z2 ≥ 0, z2
3 ≤ z2},

Z2 ∩ kerV = {0}× R− × {0},

L(F) := L(
∑

i∈I

Zi ∩ kerV ) = {0}× R× R = kerV,

(
L(F)

)⊥ = R× {0}×{ 0},

{z ∈ Z1 : V z ≥ V ζ̄} = {−1}× R+ × {0},

{z ∈ Zi : V z ≥ V ξ̄} = {0}× R− × {0},

Φ(ζ̄, ξ̄) = {−1}× R× {0},

proj(
L(F)

)⊥Φ(ζ̄, ξ̄) = {(−1, 0, 0)},

L(F) + proj(
L(F)

)⊥Φ(ζ̄, ξ̄) = {−1}× R× R.

Furthermore, for every (ζ, ξ) ∈ R3 × R3,

Φ(ζ, ξ) =

{ (ζ1 + ξ1)× R× R if ζ1 ≥ −1, ξ1 ≥ 0, ζ1 + ξ1 > −1,

{−1}× R× {0} if ζ1 ≥ −1, ξ1 ≥ 0, ζ1 + ξ1 = −1,

∅ if ζ1 < −1 or ξ1 < 0.

Define Φ̂(ζ) := {y ∈ RS : ∃(yn)n ⊂ RS ,∃(ζn)n ⊂ RJ , yn −→
n→∞

y, ζn −→
n→∞

ζ, yn ∈ Φ(ζn)}.
Then, in the example above, Φ̂(ζ̄) = {−1}× R× R. Thus, from above

• Φ(ζ, ξ) is closed for every (ζ, ξ) ∈ R3 × R3.

• L(F) + proj(
L(F)

)⊥Φ(ζ̄, ξ̄) ⊃ Φ(ζ̄, ξ̄) and the inclusion is strict.

• Φ(ζ̄, ξ̄) ⊂ Φ̂(ζ̄, ξ̄) and the inclusion is strict. Hence Φ does not have a closed graph.

3.5.2 Proof of Proposition 3.1

Notice that assertions (a)-(e) are special cases of (f). Hence, we will prove only (f).
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(f) First, we prove the result when for every i ∈ I, Ki = {0}, i.e. when Zi is polyhedral

for every i. Let

f : RSI × RJI → RSI , (v1, · · · , vI , z1, · · · , zI) 4→ (V z1 − v1, · · · , V zI − vI),

and

g : RSI × RJI → RSI × RJ , (v1, · · · , vI , z1, · · · , zI) 4→ (v1, · · · , vI ,
∑

i∈I

zi).

Then f and g are linear and the set G′(F) is

G′(F) = g
(
(RS × · · ·× RS × Z1 × · · ·× ZI) ∩ f−1(RS

+ × · · ·× RS
+)

)
.

Since RS
+ × · · · × RS

+ and RS × · · · × RS × Z1 × · · · × ZI are polyhedral, Corollary 19.2.2

and Theorem 19.3 page 174 in [6] allow to conclude.

Now, we show the result in the general case. Let (vn, yn) be a sequence in the set G′(F)

such that (vn, yn) −→
n→∞

(v, y). Write yn =
∑

i∈Iy
n
i where ∀i,∀n, yn

i ∈ Zi and V yn
i ≥ vn

i .

By assumption, ∀i,∀n, yn
i = kn

i + pn
i where kn

i ∈ Ki and pn
i ∈ Pi. Since the Ki’s are

compact, we can assume kn
i −→n→∞

ki for every i ∈ I. Denote kn =
∑

i∈Ik
n
i . Then, the

sequence
(
(vn

i − V kn
i )i, yn − kn

)
n

is in the set H, where H is the set defined in the same

manner as G′(F) with the Zi’s replaced by the Pi’s. Hence, by the first part of the proof,
(
(vi−V ki)i, y−

∑
i∈Iki

)
is in H, that is, for all i there exists pi ∈ Pi such that V pi ≥ vi−V ki

and y−
∑

i∈Iki =
∑

i∈Ipi. Therefore y =
∑

i∈I(ki + pi) and (v, y) =
(
(vi)i,

∑
i∈I(ki + pi)

)

with ki + pi ∈ Zi for each i and V (ki + pi) ≥ vi.

3.5.3 Proof of Proposition 3.2

Notice that assertions (g) to (k1) are special cases of (k2). Hence, we will prove only (k2).

We show that if the sets AZi ∩ kerV are WPSI then the set G′(F) is closed.

We have

G′(F) = {(v1, · · · , vI ,
∑

i∈I

zi) : ∀i vi ∈ RS , zi ∈ Zi, V zi ≥ vi} =
∑

i∈I

Xi

with

Xi = {(0, · · · , 0, · · · vi, 0, · · · , 0, zi) : vi ∈ RS , zi ∈ Zi, V zi ≥ vi}.

Then

AXi = {(0, · · · , 0, · · · ti, 0, · · · , 0, ζi) : ti ∈ RS , ζi ∈ AZi, V ζi ≥ ti}.

Now we show that WPSI of the AXi is a consequence of WPSI of the sets AZi ∩ kerV

(this would end the proof by Claim 3.5.2).
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If
∑

i∈Iwi =
∑

i∈I(0, · · · , 0, · · · ti, 0, · · · , 0, ζi) = 0 with ti ∈ RS , ζi ∈ AZi, V ζi ≥ ti, then

for every i, ti = 0, ζi ∈ AZi, V ζi ≥ 0, and
∑

i∈Iζi = 0. Hence for each i, ζi ∈ AZi ∩ kerV

and
∑

i∈Iζi = 0. By WPSI of the sets AZi ∩ kerV , we get ζi ∈ L(Zi) for each i. Hence

wi ∈ L(Xi) for each i ∈ I.

3.5.4 Statement and proof of Theorem 3.4

Let Xi (i ∈ I) be convex subsets of RJ containing 0 and denote Li = L(Xi) = L(clXi).

Theorem 3.4 Let Xi (i ∈ I) be convex subsets of RJ containing 0. Then

(a) The following hold:

(i)
∑

i∈I AXi ⊂ A(
∑

i∈I Xi),

(ii)
∑

i∈I L(Xi) ⊂ L(
∑

i∈I AXi) ⊂ L(
∑

i∈I Xi).

(b) If we additionally assume that the sets AXi are weakly positively semi-independent

then the above inclusions are equalities, that is

(i)
∑

i∈I AXi = A(
∑

i∈I Xi),

(ii)
∑

i∈I L(Xi) = L(
∑

i∈I AXi) = L(
∑

i∈I Xi),

and the set
∑

i∈IXi is closed.

For the proof of Theorem 3.4, we need a claim. Let B be a compact set of RJ and

K := {(x1, · · · , xI) ∈ ΠiclXi :
∑

i∈I

xi ∈ B},

Kw := {(projL⊥1 x1, · · · ,projL⊥I xI) ∈ Πi(clXi ∩Li
⊥) : (x1, · · · , xI) ∈ K}.

Note that Kw = F (K) where F : (RJ)I → (RJ)I is defined by

F (x1, · · · , xI) = (projL⊥1 x1, · · · ,projL⊥I xI).

Claim 3.5.1 The following assertions are equivalent.

(i) The sets AXi are weakly positively semi-independent.

(ii) The set Kw is bounded.

Moreover the set Kw is closed (without assuming (i)).

85



Proof. [(i) ⇒ (ii)] By contradiction, assume Kw is not bounded and let ((x⊥n
i )i)n be a

sequence in Kw (each x⊥n
i is in clXi ∩ L⊥i ) such that

∑
i∈I ||x⊥n

i || −→
n→∞

∞. Let x̂n
i ∈ Li

be such that (x⊥n
i + x̂n

i )i ∈ K. Then, without loss of generality (taking subsequences if

necessary), one can assume that for every i,
x⊥n

i∑
i∈I ||x⊥n

i ||+
∑

i∈I ||x̂n
i ||

−→
n→∞

x⊥i ∈ AXi ∩L⊥i

and ∑
i∈I x̂

n
i∑

i∈I ||x⊥n
i ||+

∑
i∈I ||x̂n

i ||
−→
n→∞

α ∈ A(
∑

i∈I

Xi) ∩
∑

i∈I

Li.

Write α =
∑

i∈Iαi where for each i, αi ∈ Li. Then
∑

i∈I(x
⊥
i + αi) = 0 since

∑
i∈I(x

⊥n
i +

x̂n
i ) ∈ B and

∑
i∈I ||x⊥n

i || −→
n→∞

∞. But x⊥i ∈ AXi and αi ∈ Li then x⊥i + αi ∈ AXi hence,

by WPSI, for every i, x⊥i + αi ∈ Li that is x⊥i = 0. So,
∑

i∈Iαi = 0. But for every n,

1 =
∑

i∈I ||x⊥n
i ||

∑
i∈I ||x⊥n

i ||+
∑

i∈I ||x̂n
i ||

+
||
∑

i∈I x̂
n
i ||∑

i∈I ||x⊥n
i ||+

∑
i∈I ||x̂n

i ||
implies 1 = ||

∑
i αi||. A contradiction.

[(ii) ⇒ (i)] Conversely, if vi ∈ AXi, and
∑

i∈Ivi = 0, then for each i, vi = v⊥i + v̂i

with v⊥i ∈ AXi ∩ L⊥i and v̂i ∈ Li. Let (xi)i ∈ K, then for every t ≥ 0,
∑

i∈I(xi + tvi) =
∑

i∈Ixi ∈ B. Therefore (projL⊥i x⊥i + tv⊥i )i ∈ Kw for every t ≥ 0. Since Kw is bounded we

must have v⊥i = 0 for every i, that is vi ∈ Li for each i.

Now we show that Kw is closed. Let ((projL⊥i xn
i )i)n be a sequence in Kw (the sequence

((xn
i )i)n is in K) such that projL⊥i xn

i −→n→∞
x⊥i ∈ L⊥i ∩ clXi for each i. For each n, let

(x̂n
i )i ∈ ΠiLi be such that (projL⊥i xn

i )i + (x̂n
i )i ∈ K. That is

∑

i∈I

projL⊥i xn
i +

∑

i∈I

x̂n
i ∈ B.

The first term,
∑

i∈IprojL⊥i xn
i , converges to

∑
i∈Ix

⊥
i , and since B is compact we can

assume that the second term,
∑

i∈I x̂
n
i , converges to some α. The limit α is in

∑
i∈ILi,

hence α =
∑

i∈Iαi where, for each i, αi ∈ Li. Since x⊥i ∈ L⊥i ∩ clXi and αi ∈ Li, and
∑

i∈I(x
⊥
i + αi) ∈ B, we get (x⊥i + αi)i ∈ K hence (x⊥i )i ∈ Kw.

Claim 3.5.2 Let Xi (i ∈ I) be closed convex subsets of RJ containing 0. If the cones

AXi are weakly positively semi-independent then the set
∑

i∈IXi is closed.

Proof. Let
∑

i∈Ix
n
i −→n→∞

α where xn
i ∈ Xi. Then

∑

i∈I

x⊥n
i +

∑

i∈I

x̂n
i −→n→∞

α.
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Notice that (by the previous Claim 3.5.1) for each i, x⊥n
i −→

n→∞
x⊥i ∈ Xi ∩ L⊥i and we can

assume that
∑

i∈I x̂
n
i −→n→∞

β =
∑

i∈Iβi where βi ∈ Li for each i. Then α =
∑

i∈I(x
⊥
i +βi) ∈

∑
i∈IXi.

Proof of Theorem 3.4

(a) We first notice that, for all i, L(Xi) ⊂ AXi ⊂ Xi. Hence
∑

i∈I

L(Xi) ⊂
∑

i∈I

AXi ⊂
∑

i∈I

Xi.

Using the fact that L(A) ⊂ L(B) if A ⊂ B we get
∑

i∈I

L(Xi) ⊂ L(
∑

i∈I

AXi) ⊂ L(
∑

i∈I

Xi).

(b) (i) Let v ∈ A(
∑

i∈IXi). Write

v =
∑

i∈I

1
n

xn
i =

∑

i∈I

1
n

x⊥n
i +

∑

i∈I

1
n

x̂n
i

where, for each i, xn
i ∈ Xi, x⊥n

i ∈ Xi ∩ L⊥i ⊂ clXi ∩ L⊥i , and x̂n
i ∈ Li. Then (by Claim

2.6.1), for each i,
1
n

x⊥n
i −→

n→∞
x⊥i ∈ AXi ∩L⊥i

and
∑

i∈I

1
n

x̂n
i −→n→∞

β ∈
∑

i∈I

Li.

Write β =
∑

i∈Iβi with βi ∈ Li for each i. Then v =
∑

i∈I(x
⊥
i + βi) ∈

∑
i∈IAXi.

(b)(ii) From (i) above, we get L(
∑

i∈IXi) ⊂ L(
∑

i∈IAXi). We show that L(
∑

i∈IAXi) ⊂
∑

i∈IL(Xi). Let ξ ∈ L(
∑

i∈IAXi). Write

ξ =
∑

i∈I

ξi = −
∑

i∈I

ξ′i

with ξi and ξ′i in AXi. Then 0 =
∑

i∈I(ξi + ξ′i) and for each i ∈ I, ξi + ξ′i ∈ AXi which

implies (by definition of WPSI) that for every i ∈ I, ξi + ξ′i ∈ L(Xi). Hence

ξi = −ξ′i + (ξi + ξ′i) ∈ −AXi + L(Xi) ⊂ −AXi.

Therefore for every i ∈ I, ξi ∈ L(Xi) that is ξ =
∑

i∈Iξi ∈
∑

i∈IL(Xi).

The last assertion of Theorem 3.4 is the result of Claim 3.5.2.
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Chapter 4

Existence of financial equilibria

with restricted participation

In this chapter we prove the existence of a financial equilibrium for an economy with

restricted participation in the financial markets, and without monotonic or ordered pref-

erences.

4.1 Introduction

There is a large body of literature on existence and optimality results for exchange

economies with incomplete financial markets, see for example Cass [6], Werner [17], and

Duffie [7] when assets are nominal and Geanakoplos and Polemarchakis [10] for the case

of numéraire assets. A natural cause of market incompleteness is the so called notion of

restricted participation to financial markets, where agents face asymmetric restrictions on

their portfolio trades. In order to capture a wide range of imperfections in the financial

markets (such as short selling constraints, collateral requirements, and more generally in-

stitutional constraints), restrictions are modeled by subsets of the space of financial assets.

Cass [6] states that

“A very significant analysis from an interpretive viewpoint . . . is the im-

position of institutional restrictions on trading activity in the bond (financial)

markets. The broadest formulation of such restricted participation is to assume

that in addition to the bugdet constraints, households face the financial con-
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straints zi ∈ Zi ⊂ RJ for i ∈ I. The implications within this particular model

of a financial equilibrium seems to me a problem well worth deeper analysis in

its own right.”

There is a growing body of literature on this subject, see for instance the seminal papers

of Balasko, Cass and Siconolfi [4] for linear restrictions with nominal assets, and Polemar-

chakis and Siconolfi [13] for the case of linear restrictions with real assets. But apart from

Siconolfi [16], very little has been said when restrictions are not necessarily linear even

when assets are nominal, see e.g. Angeloni and Cornet [1], and Hahn and Won [11]. The

goal of existence is out of reach in the general case of real assets and we will focus on

nominal and numéraire assets.

The purpose of this chapter is to provide a “general” existence result of equilibria in a

financial exchange economy with restricted participation in the financial markets. We

work in a basic two time-date (today and tomorrow) financial exchange economy with a

finite set of agents and an a priori uncertainty about the future represented by a finite

set of states of nature tomorrow. Today and at each state of nature tomorrow there is

a market for physical commodities. Financial transfers across today and tomorrow and

across the states of the world are allowed by means of a finite set J of financial assets that

the agents can trade in today and whose returns are continuous functions of commodities

prices. Agents face asymmetric “institutional” constraints on their portfolio trades.

The remainder of the chapter is organized as follows. In Section 4.2, we describe the

financial exchange economy, state our results, and discuss their assumptions. Section 4.3

is devoted to the proof of our main existence theorem. Some proofs are gathered in the

appendix.

4.2 The model and the main result

4.2.1 The model of a financial exchange economy

1Let us consider two time periods t = 0 and t = 1. In the second period, there is a

nonempty finite set S of states of the nature. In period 0 and in each state of nature of
1We shall use hereafter the following notations. If I and J are finite sets, the space RI (identified to

R#I whenever necessary) of functions x : I → R (also denoted x = (x(i))i∈I or x = (xi)) is endowed with

the scalar product x ·y :=
P

i∈I x(i)y(i), and we denote by ‖x‖ :=
√

x · x the Euclidean norm. By BL(x, r)
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the second period, there is a nonempty finite set L of divisible goods. We assume that

the commodities are perishable which means that no storage is possible. For convenience,

s = 0 denotes the state of the world (known with certainty) at period 0 and S̄ = {0} ∪ S.

The commodity space of the model is then (RL)S̄ .

On such a stochastic structure, we consider a pure exchange economy with a nonempty

finite set I of consumers. Each consumer is characterized by a consumption set Xi ⊂
(RL)S̄ , a preference correspondence Pi :

∏
i∈I Xi → Xi and an endowment vector ei ∈

(RL)S̄ . For x ∈ X, Pi(x) is interpreted as the set of consumption plans in Xi which are

strictly preferred to xi by consumer i, given the consumption plans (xi′)i′ (=i of the other

agents.

We denote by A(E) the set of attainable allocations of the economy, that is

A(E) = {(xi)i∈I ∈
∏

i∈I

Xi |
∑

i∈I

xi =
∑

i∈I

ei},

and by X̂i the projection of A(E) on Xi. Note that for every i ∈ I, ei ∈ X̂i.

There is a finite set J of nominal assets. An asset j is a contract which promises to deliver

in each state s of period t = 1 the payoff V j
s , so that asset j is described by the vector

(V j
s )s∈S . The matrix V =

(
V j

s
)

s∈S
j∈J

, which gives the financial returns, summarizes the

financial asset structure.

Let us call portfolio an asset bundle z ∈ RJ with the convention :

if zj > 0, zj represents a quantity of asset j bought at period 0,

if zj < 0, |zj | represents a quantity of asset j sold at period 0.

We assume that portfolios may be constrained, that is, each agent i has a portfolio set

Zi ⊂ RJ which describes the portfolios available for her. Then the definition of a financial

exchange economy is the following.

Definition 4.1 A financial exchange economy (E ,F) is a collection
(
(Xi, Pi, ei)i∈I , (V, (Zi)i∈I)

)
,

we denote the closed ball centered at x ∈ RL of radius r > 0, namely B(x, r) = {y ∈ RL : ‖y − x‖ ≤ r}.
In RI , the notation x ≥ y (resp. x > y, x ( y) means that, for every i, x(i) ≥ y(i) (resp. x ≥ y and x )= y,

x(i) > y(i)) and we let RI
+ = {x ∈ RI | x ≥ 0}, RI

++ = {x ∈ RI | x ( 0}. An I ×J-matrix A = (aj
i )i∈I,j∈J

(identified with a classical (#I)× (#J)-matrix if necessary) is an element of RI×J whose rows are denoted

Ai = (aj
i )j∈J ∈ RJ (i ∈ I), and columns Aj = (aj

i )i∈I ∈ RI (for j ∈ J). The span of a family of vectors

F ⊂ RJ in RJ is the linear subspace of RJ , < F >:= {
P

k αkxk, the sum is finite and for all k, αk ∈ R, xk ∈
RJ}.
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where E = (Xi, Pi, ei)i∈I and F = (V, (Zi)i∈I).

4.2.2 Financial equilibria

Given commodity and asset prices (p, q) ∈ (RL)S̄ × RJ , the budget set of consumer i is

Bi(F , p, q) =




(xi, zi) ∈ Xi × Zi

∣∣∣∣∣∣
p(0) · xi(0) + q · zi ≤ p(0) · ei(0)

p(s) · xi(s) ≤ p(s) · ei(s) + Vs · zi, ∀s ∈ S






where Vs denotes the row s of the matrix V . If we adopt the compact notations

• p xi denotes the vector
(
p(s) · xi(s)

)
s∈S̄

and

• W (q) denotes the S̄ × J matrix



−q

V



,

the budget set can be equivalently written as:

Bi(F , p, q) = {(xi, zi) ∈ Xi × Zi | p (xi − ei) ≤ W (q)zi}.

Definition 4.2 An equilibrium of the financial exchange economy (E ,F) is a list
(
p̄, q̄, x̄, z̄

)
∈

RL(1+S) × RJ × (RL(1+S))I × (RJ)I such that

(i) for each i, (x̄i, z̄i) maximizes the preference Pi under the budget constraint, that is

(x̄i, z̄i) ∈ Bi(F , p̄, q̄) and (Pi(x̄)× Zi)
⋂

Bi(F , p̄, q̄) = ∅.

(ii)
∑

i∈I x̄i =
∑

i∈I ei and
∑

i∈I z̄i = 0.

4.2.3 The main existence result

We make the following standard assumption on the consumption side.

Consumption Assumption C

(i) For every i ∈ I, Xi is a bounded below, closed, convex subset of RL(1+S).

(ii) Continuity of Preferences For every i ∈ I, the correspondence Pi : ΠiXi → Xi is

lower semicontinuous with convex open values in Xi for the relative topology of Xi.

(iii) Irreflexive Preferences For every i ∈ I, for every x = (xi)i∈I ∈ ΠiXi, xi /∈ Pi(x).

(iv) Strong Survival SS For every i ∈ I, ei ∈ intXi.
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(v) Non-Satiation NS For every i ∈ I, for every x ∈ ΠiXi, for every s ∈ S̄, there

exists x′i ∈ Pi(x) such that x′i(s
′) = xi(s′) for all s′ &= s.

Definition 4.3 The set of arbitrage-free prices of F =
(
V, (Zi)i∈I

)
is

Q =
{
q ∈ RJ : W (q)(

⋃

i

AZi) ∩ RS̄
+ = {0}

}
.

where AZi denotes the asymptotic cone of the set Zi.

Proposition 4.1 Under NS, if (p̄, q̄, x̄, z̄) is an equilibrium of the economy (E ,F), then

q̄ is a no-arbitrage price2.

We will make some of the following assumptions on the financial side. Given the financial

structure F =
(
V, (Zi)i∈I

)
, denote Z(F) =<

∑
i∈IZi > the linear space where financial

activity takes place.

Assumption F

F1 For every i ∈ I, Zi is closed, convex and 0 ∈ Zi.

F2 Closedness Assumption The following set G(F) is closed, where

G(F) := {(V z1, · · · , V zI ,
∑

i∈I

zi) ∈ (RS)I × RJ : ∀i ∈ I, zi ∈ Zi}.

F2’ Weak Positive Semi-Independence3 WPSI: The sets AZi∩{V ≥ 0} are weakly

positively semi-independent.

F3 FSSA For every q ∈
(
Q∩Z(F)

)
\{0}, for every i ∈ I there exists a portfolio ζi ∈ Zi

such that q · ζi < 0.

Assumption F1 is straightforward and both Assumptions F2 and F3 are discussed in the

next section.

We can now state the main result of this paper.
2Proof. Assume that, for some i ∈ I, there exists a portfolio vi ∈ AZi such that W (q̄)vi > 0, namely

[W (q̄)vi](s) ≥ 0, for every s ∈ S̄, with at least one strict inequality, say for s̄ ∈ S̄.

Since
P

i∈I(x̄i − ei) = 0, from Assumption (NS), there exists x ∈
Q

i∈I Xi such that, for each s )= s̄,

xi(s) = x̄i(s) and xi ∈ Pi(x̄).

For t > 0 large enough, p̄ (xi− ei) ≤ W (q̄)(z̄i + t vi). Since z̄i + t vi ∈ Zi, we get (xi, z̄i + t vi) ∈ Bi(p̄, q̄)

but since xi ∈ Pi(x̄), this contradicts the optimality of (x̄i, z̄i) in Bi(p̄, q̄).
3A collection {Ci, i ∈ I} of nonempty convex cones in Rα is weakly positively semi independent if

ci ∈ Ci, for all i ∈ I and
P

i∈Ici = 0, implies that for all i ∈ I, ci ∈ L(Ci).
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Theorem 4.1 Let (E ,F) =
(
(Xi, Pi, ei)i∈I , (V, (Zi)i∈I)

)
be a financial exchange economy

satisfying assumptions C, F1, F2’ and F3, then it admits an equilibrium (p̄, q̄, x̄, z̄).

Theorem 4.2 Let (E ,F) =
(
(Xi, Pi, ei)i∈I , (V, (Zi)i∈I)

)
be a financial exchange economy

satisfying assumptions C, F1, F2 and F3, then it admits an equilibrium (p̄, q̄, x̄, z̄).

Remark 4.1 Under NS q̄ ∈ Q (by Proposition 4.1) and p̄(s) &= 0 for every s ∈ S̄.

Remark 4.2 We can choose the equilibrium asset price q̄ to be in Q(F)∩Z(F). Indeed,

if q∗ = projZ(F)q̄ then (p̄, q∗, x̄, z̄) is an equilibrium of (E ,F) since for every i ∈ I, and for

every zi ∈ Zi, one has q∗ · zi = q̄ · zi. Moreover, q∗ ∈ Q(F) under NS by Proposition 4.1.

Remark 4.3 Under the assumptions of Theorem 4.2, the equilibrium asset price vector

may be zero, that is, we may have q̄ = 0 at equilibrium. A necessary and sufficient

condition guaranteeing that q̄ &= 0 is

∃i ∈ I,∃vi ∈ AZi, V vi > 0.

Indeed, under this assumption, 0 /∈ Q and under the non-satiation assumption NS, q̄ ∈ Q,

hence q̄ &= 0.

4.2.4 Discussion of the Assumptions of Theorem 4.2

Discussion of Assumption F3

Remark 4.4 Condition F2 can be equivalently written

−clQ ∩
(
∪iNZi(0)

)
⊂ {0},

where NZ(0) is the normal cone to the convex Z at 0, that is

NZ(0) := {α ∈ RJ : α · z ≤ 0,∀z ∈ Z}.

Remark 4.5 If for every i ∈ I, 0 ∈ intZi, then F3 is fulfilled.

Sufficient conditions for the closedness Assumption F2

As shown by the following Propositions 4.2 and 4.3, assumption F2 holds true in many

situations. Indeed, F2 is fulfilled when the restrictions on portfolio choices are given by a

finite number of linear inequalities, that is, when all portfolios sets are finite intersections

of half spaces. In particular, F2 is fulfilled when the portfolios sets are linear subspaces,
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when the portfolio sets are unconstrained, or when the portfolio sets are bounded from

below. Furthermore, assumption F2 holds true under the no mutually compatible potential

arbitrage condition (Page [12]) that is when the family {AZi ∩ kerV, i ∈ I} is positively

semi-independent4 (Siconolfi [16]), in particular F2 holds true when the portfolio sets

are bounded, or when there are no redundant assets i.e. rank(V ) = J . The proofs of

Proposition 4.2 and Proposition 4.3 are in [3].

Proposition 4.2 Assumption F2 holds true under anyone of the following conditions.

(a) For all i ∈ I, Zi = RJ (unconstrained portfolios).

(b) For all i ∈ I, Zi is a linear subspace.

(c) For all i ∈ I, Zi = zi + RJ
+, for some zi ∈ −RJ

+ (exogenous bounds on short sales).

(d) For all i ∈ I, Zi is polyhedral.

(e) For all i ∈ I, Zi = BJ(0, 1) (bounded portfolio sets).

(f) For all i ∈ I, Zi = Ki + Pi where Ki is nonempty compact and convex, and Pi is

polyhedral.

Proposition 4.3 Assumption F2 holds true under anyone of the following conditions.

(g) There are no redundant assets i.e. Rank(V ) = J , or equivalently, kerV = {0}.

(h) ∀i, AZi ∩ kerV = {0}.

(i1) L
(∑

i∈I(Zi ∩ {V ≥ 0})
)

= {0}.

(i2) L
(∑

i∈I(Zi ∩ kerV )
)

= {0}.

(i3)
∑

i∈I(AZi ∩ {V ≥ 0}) ∩ −
∑

i∈I(AZi ∩ {V ≥ 0}) = {0}.

(i4)
∑

i∈I(AZi ∩ kerV ) ∩ −
∑

i∈I(AZi ∩ kerV ) = {0}.

(j1) The family {AZi ∩ {V ≥ 0} : i ∈ I} is positively semi-independent5.
4A collection {Ci, i ∈ I} of nonempty convex sets in Rα is positively semi-independent if ci ∈ Ci, for all

i ∈ I and
P

i∈Ici = 0, implies that ci = 0 for all i ∈ I.
5A collection {Ci, i ∈ I} of nonempty convex cones in Rα is positively semi-independent, (respectively

weakly positively semi independent) if vi ∈ Ci, for all i ∈ I and
P

i∈Ivi = 0, implies that for all i ∈ I

vi = 0 (resp. vi ∈ L(Ci)).
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(j2) The family {AZi ∩ kerV : i ∈ I} is positively semi-independent.

(k1) The family {AZi ∩ {V ≥ 0}, i ∈ I} is weakly positively semi-independent.

(k2) The family {AZi ∩ kerV, i ∈ I} is weakly positively semi-independent.

4.2.5 Some consequences of the existence result

Many results in the literature are now corollaries to Theorem 4.2.

Corollary 4.1 (Radner 1972 [14]) The financial exchange economy (E ,F) admits an equi-

librium if it satisfies assumption C and

F2’ For every i ∈ I, Zi is the closed ball clB(0, ri), for some ri > 0.

Corollary 4.2 (Radner (bis) 1972 [14]) The financial exchange economy (E ,F) admits

an equilibrium if it satisfies assumption C and

F2’ For every i ∈ I, Zi = {z ∈ RJ , z ≥ −zi}, for some zi 0 0.

Corollary 4.3 The financial exchange economy (E ,F) admits an equilibrium if it satisfies

assumptions C, F1, F3, and

F2’ kerV = {0}.

Corollary 4.4 (Siconolfi 1987 [16]) The financial exchange economy (E ,F) admits an

equilibrium if it satisfies assumptions C, F1, F3 and

F2’ For every i ∈ I, AZi ∩ kerV = {0}.

Corollary 4.5 The financial exchange economy (E ,F) admits an equilibrium if it satisfies

assumptions C, F1, F3, and

F2’ The family {AZi ∩ kerV, i ∈ I} is positively semi independent.

Corollary 4.6 The financial exchange economy (E ,F) admits an equilibrium if it satisfies

assumption C together with

F2’ For every i in I, Zi is a linear subspace of RJ and,

96



F3’ −clQ ∩
(
∪iZ⊥i

)
= {0}.

Corollary 4.7 The financial exchange economy (E ,F) admits an equilibrium if it satisfies

assumption C together with

F2’ For every i ∈ I, Zi = Ki + Pi where Ki is nonempty compact and convex and Pi is

polyhedral and,

F3’ −clQ ∩
(
∪iZo

i

)
⊂ {0}.

4.3 Proof of the Theorem 4.1

The proof will consist in two major steps. First, we prove the existence of a financial

equilibrium when the economy (E ,F) satisfies some additional assumptions. We shall use

the Fixed-Point Theorem of Gale and Mas-Colell [8].

Second, we show how to transform the initial financial economy into an economy satisfying

the additional assumptions and that from every financial equilibrium of the transformed

financial economy one can “construct” a financial equilibrium of the original financial

economy (E ,F).

We make the following assumption.

Local Non Satiation LNS: For every x̄ ∈
∏

i∈I Xi, for every xi ∈ Pi(x̄), (x̄i, xi] ⊂ Pi(x̄).

Theorem 4.1 will be proved as a consequence of the following Theorem 4.3 in which the

financial economy (E ,F) satisfies the additional assumption LNS.

Theorem 4.3 Let (E ,F) =
(
(Xi, Pi, ei)i∈I , (V, (Zi)i∈I)

)
be a financial exchange economy

satisfying Assumptions C, LNS, F1, F2’, and F3, then it admits an equilibrium.

4.3.1 Preliminary Results

Lemma 4.1 The set Q is a convex cone with vertex 0.

Proof. The set Q is obviously a cone, and we now show that Q is convex. Indeed, let

q1, q2 ∈ Q and let α ∈ (0, 1). Assume αq1 + (1− α)q2 /∈ Q. Then there exists v ∈ C such
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that W (αq1 + (1− α)q2)v > 0. Hence

either





−(αq1 + (1− α)q2) · v > 0

V v ≥ 0
or





−(αq1 + (1− α)q2) · v ≥ 0

V v > 0

In the first case, we conclude that either −q1 · v > 0 or −q2 · v > 0 which, together with

V v ≥ 0, implies that W (qi)v > 0 for i = 1 or i = 2 contradicting the fact that q1 and

q2 are both in Q. Similarly, in the second case, we conclude that either −q1 · v ≥ 0 or

−q2 · v ≥ 0 which, together with V v > 0, contradicts the fact that q1 and q2 are both in

Q.

Lemma 4.2 Under Assumption WPSI, −Qo =
∑

i∈I(AZi ∩ {V ≥ 0}).

Proof. See [2].

4.3.2 Proof of Theorem 4.3

Transforming the economy

In the following we let

L =
∑

i∈I

(
L(Zi) ∩ kerV

)
,

π = projL⊥ ,

Fπ =
(
V, (clπZi)i

)
.

Remark 4.6 Notice that clQ ⊂ L⊥. Indeed, from Lemma 4.2 and the Bipolar Theorem,

−clQ =
(∑

i∈I

(AZi ∩ {V ≥ 0})
)o
⊂

(∑

i∈I

L(Zi) ∩ kerV
)o

=
(∑

i∈I

L(Zi) ∩ kerV
)⊥

= L⊥.

Note that this implies clQ ⊂ (L(Zi)∩ kerV
)⊥ for every i since L⊥ =

⋂
i

(
L(Zi)∩ kerV

)⊥.

In view of the following Theorem 4.4, Theorem 4.3 will be proven if we show that the

economy (E ,Fπ) has an equilibrium.

Theorem 4.4 Assume NS, LNS, and F1. Under WPSI, if (E ,Fπ) has an equilibrium

(p̄, q̄, x̄, z̄), then there exists z∗ ∈ ΠiZi such that (p̄, πq̄, x̄, z∗) is an equilibrium of (E ,F).

We prepare the proof of Theorem 4.4 by some claims.

Claim 4.3.1 If the sets AZi ∩ kerV satisfy WPSI, then for every i ∈ I,
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(i) AZi ∩ kerπ ⊂ L(Zi),

(ii) clπZi = πZi, and

(iii) AπZi = πAZi.

Proof. (i) Let ζ1 ∈ AZ1∩kerπ = AZ1∩
∑

i∈I

(
L(Zi)∩kerV

)
. Then the vector ζ1 belongs

to kerV and can be written ζ1 =
∑

i∈Iξi, where ξi ∈ L(Zi) ∩ kerV for each i ∈ s. Thus

0 = (ζ1 − ξ1) + (−ξ2) + · · ·+ (−ξI) with ζ1 − ξ1 ∈ AZ1 ∩ kerV and −ξi ∈ AZi ∩ kerV for

i ≥ 2, therefore by weak positive semi-independence ζ1 − ξ1 ∈ L(Z1) and the fact that ξ1

is already in L(Z1) implies that ζ1 belongs to L(Z1).

(ii) and (iii): These two properties are immediate consequences of Theorem 4.5.

Claim 4.3.2 For every (yi)i ∈ Πi∈IclπZi such that
∑

i∈I yi = 0 there exists (z∗i )i ∈ Πi∈IZi

such that

(a) V z∗i = V yi for every i ∈ I, and

(b)
∑

i∈I z∗i = 0.

Proof. Let y := (yi)i ∈ ΠiclπZi = ΠiπZi (we have the equality from Claim 4.3.1) be such

that
∑

i∈Iyi = 0. For each i, let zi ∈ Zi be such that yi = πzi. Then
∑

zi ∈ kerπ =
∑

i∈I

(
L(Zi) ∩ kerV

)
. Then

∑
i∈Izi =

∑
i∈I)i with )i ∈ L(Zi) ∩ kerV for each i. Denote

z∗i = zi − )i. Hence z∗i ∈ Zi for each i ∈ I,
∑

i∈Iz
∗
i = 0, and V z∗i = V zi = V πzi (since

L(Zi) ⊂ kerπ ⊂ kerV ), therefore V z∗i = V yi.

Claim 4.3.3 Under NS and LNS, if (x̄, z̄, p̄, q̄) is an equilibrium of the financial exchange

economy (E ,F), then for every i ∈ I, there is no zi ∈ Zi such that W (q̄)zi > W (q̄)z̄i.

Proof. By contradiction. Assume that for some i ∈ I, there exists zi ∈ Zi such that

W (q̄)zi > W (q̄)z̄i, namely [W (q̄)zi](s) ≥ [W (q̄)z̄i](s), for every s ∈ S̄, with at least one

strict inequality, say for s̄ ∈ S̄. Then, since
∑

i∈I(x̄i−ei) = 0, from Assumption NS, there

exists x ∈
∏

i∈I Xi such that, for each s &= s̄, xi(s) = x̄i(s) and xi ∈ Pi(x̄). Consider λ ∈
(0, 1) and define xλ

i := λxi + (1− λ)x̄i. Then, by Assumption LNS, xλ
i ∈ (xi, x̄i) ⊂ Pi(x̄).

Now, we claim that for λ > 0 small enough, (xλ
i , zi) ∈ Bi(F , p̄, q̄), which contradicts the

fact that [Pi(x̄) × Zi] ∩ Bi(F , p̄, q̄) = ∅ (since (x̄, z̄, p̄, q̄) is an equilibrium). Indeed, since

(x̄i, z̄i) ∈ Bi(F , p̄, q̄), and for every s &= s̄, xλ
i (s) = x̄i(s) we have

p̄(s) · [xλ
i (s)− ei(s)] = p̄(s) · [x̄i(s)− ei(s)] ≤ [W (q̄)z̄i](s) ≤ [W (q̄)zi](s).
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Now, for s = s̄, we have

p̄(s̄) · [x̄i(s̄)− ei(s̄)] ≤ [W (q̄)z̄i](s̄) < [W (q̄)zi](s̄).

But, when λ → 0, xλ
i → x̄i, hence for λ > 0 small enough we have

p̄(s̄) · [xλ
i (s̄)− ei(s̄)] < [W (q̄)zi](s̄).

Consequently, (xλ
i , zi) ∈ Bi(F , p̄, q̄).

Proof of Theorem 4.4

By Claim 4.3.2, for every i, there exists z∗i ∈ Zi such that V z∗i = V z̄i and
∑

z∗i = 0. We

show that (p̄, πq̄, x̄, z∗) is an equilibrium of (E ,F).

First, we show that for all i, πq̄ · z∗i = q̄ · z̄i (which, together with V z∗i = V z̄i, implies that

(x̄i, z∗i ) ∈ Bi(F , p̄, πq̄) since (x̄i, z̄i) ∈ Bi(Fπ, p̄, q̄)). By Claim 4.3.3, from NS, LNS, and

the fact that (p̄, q̄, x̄, z̄) is an equilibrium of (E ,Fπ), we deduce that for each i ∈ I, there

does not exist ẑi ∈ cl(πZi) such that W (q̄)ẑi > W (q̄)z̄i. This implies that there does not

exist ẑi ∈ cl(πZi) such that W (πq̄)ẑi > W (πq̄)z̄i (since πq̄ · z = q̄ · z for every z ∈ Imπ).

Hence for all i, there does not exist zi ∈ Zi such that W (πq̄)zi > W (πq̄)z̄i, otherwise

W (πq̄)zi = W (πq̄)πzi > W (πq̄)z̄i (since zi − πzi ∈ kerπ, πq̄ ∈ Imπ = (kerπ)⊥ and

kerπ =
∑

i∈I

(
L(Zi)∩kerV

)
⊂ kerV ). In particular for all i, W (πq̄)z∗i ≯ W (πq̄)z̄i. Taking

into account the fact that for all i, V z∗i = V z̄i, we deduce that for all i, −πq̄ ·z∗i ≯ −πq̄ · z̄i,

that is πq̄ · (z∗i − z̄i) ≥ 0. Recalling that
∑

i∈I(z
∗
i − z̄i) = 0, we deduce that for all i,

πq̄ · z∗i = πq̄ · z̄i.

To complete the proof, we need only show that for each i ∈ I,

Bi(F , p̄, πq̄) ∩ [Pi(x̄)× Zi] = ∅.

But (p̄, q̄, x̄, z̄) is an equilibrium of (E ,Fπ), hence

Bi(Fπ, p̄, q̄) ∩ [Pi(x̄)× clπZi] = ∅.

In view of the above, the proof will be completed if we show that if (xi, zi) ∈ Bi(F , p̄, πq̄),

then (xi, πzi) ∈ Bi(Fπ, p̄, q̄), which is true if W (πq̄)zi ≤ W (q̄)πzi. Recalling that for every

i, V zi = V πzi (since zi − πzi ∈ kerπ =
∑

i∈I

(
L(Zi) ∩ kerV

)
⊂ kerV ), we only need to

show that πq̄ · zi = q̄ · πzi. Since πq̄ ∈ Imπ = (kerπ)⊥, we have πq̄ · zi = πq̄ · πzi. Since

q̄ − πq̄ ∈ (Imπ)⊥, we have πq̄ · πzi = q̄ · πzi. Hence πq̄ · zi = q̄ · πzi.

To end the proof of Theorem 4.3, we need to show that the financial exchange economy
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(E ,Fπ) admits an equilibrium.

Truncating the economy

Let Π = {(p, q) ∈ (RL)S̄ × RJ | ∀s ∈ S̄, ‖p(s)‖ ≤ 1, q ∈ clQ ∩ Z(F) and ‖q‖ ≤ 1} be the

set of admissible prices for commodities and assets.

Lemma 4.3 For all v = (vi)i ∈ (RS)I , if the sets AZi ∩ {V ≥ 0}) satisfy WPSI, then

the set Kv defined by

Kv := {(πz1, · · · , πzI) ∈ ΠiπZi : ∀i, zi ∈ Zi, V zi ≥ vi,
∑

i∈I

zi = 0}

is bounded.

Proof. If (πζ1, · · · , πζI) ∈ AKv with ζi ∈ AZi ∩ {V ≥ 0}, and
∑

i∈Iζi = 0, then from

WPSI we get ζi ∈ L(Zi) ∩ kerV ⊂ L for every i ∈ I. That is πζi = 0,∀i. Hence

AKv = {0} and Kv is bounded (see [15]).

For i ∈ I, let vi ∈ RS be defined by

for every s ∈ S, vi(s) = inf{p · (xi(s)− ei(s))− 1, p ∈ BL(0, 1), xi ∈ X̂i}. (4.3.1)

The existence of vi follows from Assumption C(i) and from the compactness of BL(0, 1).

We denote by Ẑi the projection of Kv on the i-th component.

It follows from Assumption C(i) and from Lemma 4.3 that the sets A(E) and Kv are

compact. Hence the sets X̂i and Ẑi are bounded, for every i ∈ I. Consequently, one can

choose r > 0 large enough such that

X̂i ⊂ intBLS̄(0, r) and Ẑi ⊂ intBJ(0, r) for every i ∈ I.

We let for every i ∈ I,

Xr
i = Xi ∩BLS̄(0, r),

P r
i (x) = Pi(x) ∩ intBLS̄(0, r), and

Zr
i = clπZi ∩BJ(0, r),

and we define a new financial economy (Er,Fr
π) where the consumption sets are Xr

i , the

preference correspondences are P r
i , and the portfolio sets are Zr

i . To summarize, we let

(Er,Fr
π) :=

((
Xr

i , P r
i , ei

)
i∈I

,
(
V, (Zr

i )i∈I
))

.

Note that, for every i ∈ I, ei ∈ X̂i hence from Assumption C(iv), ei ∈ intXr
i .
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Definition of correspondences and the fixed-point argument

Given (p, q) ∈ Π, following ideas originating from Bergstrom ([5]), we define the “modified”

budget sets of consumer i as follows:

Brε
i (p, q) = {(xi, zi) ∈ Xr

i × Zr
i , p (xi − ei) ≤ W (p, q)zi + ε(p, q)},

B̆rε
i (p, q) = {(xi, zi) ∈ Xr

i × Zr
i , p (xi − ei) 9 W (p, q)zi + ε(p, q)}.

where ε(p, q) ∈ RS̄ is defined by

ε0(p, q) = 1−min{1, ‖p(0)‖+ ‖q‖}

εs(p, q) = 1− ‖p(s)‖, s ∈ S.

Denote Π′ =
{

(p, q) ∈ Π : q ∈ (Q ∩ Z(F)) ∪ {0}
}

.

Claim 4.3.4 For all (p, q) ∈ Π′, B̆rε
i (p, q) &= ∅ and Brε

i = clB̆rε
i . Moreover, for all

(p, q) ∈ Π, Brε
i (p, q) &= ∅.

Proof. Let (p, q) ∈ Π′. Since ei ∈ intXi, there exists xi ∈ Xr
i such that p (xi − ei) ≤ 0

with a strict inequality at each state s ∈ S̄ such that p(s) &= 0. Now, if p(0) &= 0 or q = 0,

(xi, 0) ∈ B̆rε
i (p, q). If p(0) = 0 and q &= 0, we claim that there exists yi ∈ πZi such that

q · yi < 0. Indeed, by Assumption F2, for every i ∈ I there exists zi ∈ Zi such that

q · zi < 0, hence the vector yi = πzi ∈ πZi and satisfies q · yi = q · zi < 0 because q ∈ L⊥ =

Imπ = (kerπ)⊥ by Remark 4.6. Now, recalling that p(s) ·
(
xi(s)− ei(s)

)
− εs(p, q) < 0 for

all s ∈ S, we can choose z ∈ Zr
i such that q ·z < 0 and Vs ·z > p(s) ·

(
xi(s)−ei(s)

)
−εs(p, q)

for all s ∈ S (take z = tyi for t > 0 small enough). Then, (xi, z) ∈ B̆rε
i (p, q).

The last assertion of the claim follows from the fact that (ei, 0) ∈ Brε
i (p, q) for every

(p, q) ∈ Π.

Claim 4.3.5 For all i ∈ I, Brε
i is lower semicontinuous on Π′ and upper semicontinuous

on Π with closed convex values.

Proof. From Claim 4.3.4, Brε
i is the closure of B̆rε

i on Π′. We then notice that B̆rε
i has

an open graph hence is lower semicontinuous. Consequently Brε
i which is the closure of a

lower semicontinuous correspondence is also lower semicontinuous. Furthermore, Brε
i has

a closed graph with convex values in the compact convex set Xr
i × Zr

i .

We now introduce an additional agent and, as in Gale and Mas-Colell ([8], [9]), we set the
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following reaction correspondences defined on Π×
∏

i∈I Xr
i × Zr

i .

ψi(p, q, x, z) =





Brε

i (p, q) if (xi, zi) /∈ Brε
i (p, q)

B̆rε
i (p, q) ∩ (P r

i (x)× Zr
i ) if (xi, zi) ∈ Brε

i (p, q)

ψ0(p, q, x, z) = {(p′, q′) ∈ Π | (p′ − p) ·
∑

i∈I

(xi − ei) + (q′ − q) ·
∑

i∈I

zi > 0}.

Claim 4.3.6 The correspondence ψ0 is lower semicontinuous with convex values on Π×
∏

i∈I Xr
i × Zr

i and for all i ∈ I, ψi is lower semicontinuous with convex values on Π′ ×
∏

i∈I Xr
i × Zr

i .

Proof. The correspondence ψ0 has an open graph thus it is lower semicontinuous and one

easily checks that it has convex values. If i &= 0, it follows from the lower semicontinuity and

the upper semicontinuity of Brε
i that ψi is lower semicontinuous at (p, q, x, z) if (xi, zi) /∈

Brε
i (p, q) since ψi = Brε

i on a neighborhood of (xi, zi) which does not intersect the graph of

Brε
i . If (xi, zi) ∈ Brε

i (p, q), note that B̆rε
i ∩(P r

i ×Zr
i ) is lower semicontinuous since B̆rε

i has

an open graph and P r
i × Zr

i is lower semicontinuous. Thus, ψi is lower semicontinuous at

(p, q, x, z) since B̆rε
i (p, q) ⊂ Brε

i (p, q) which clearly implies that ψi(p, q, x, z) ⊂ Brε
i (p, q).

The convexity of the values of ψi is a consequence of the convexity of B̆rε
i (p, q), Brε

i (p, q),

Zr
i and P r

i (x).

Now, fix qo ∈ riQ ∩ Z(F) ∩ BJ(0, 1), and for i ∈ I and n > 0, define the correspondences

Brεn
i , and B̆rεn

i on Π by

Brεn
i (p, q) = Brε

i

(
(p, (1− 1

n
)q +

1
n

qo
)
,

B̆rεn
i (p, q) = B̆rε

i

(
p, (1− 1

n
)q +

1
n

qo
)
,

and for i ∈ I ∪ {0}, define the correspondences ψn
i on Π×

∏
i∈I Xr

i × Zr
i by

ψn
i (p, q, x, z) = ψi

(
p, (1− 1

n
)q +

1
n

qo, x, z
)
,

ψn
0 = ψ0.

Note that for every q ∈ clQ∩Z(F)∩BJ(0, 1) and for every n > 0, one has (1− 1
n)q+ 1

nqo ∈
riQ ∩ Z(F) ⊂

(
Q ∩ Z(F)

)
∪ {0}. Then, by Claim 4.3.6, ψn

i is lower semicontinuous with

convex values on Π×
∏

i∈I Xr
i × Zr

i for each i ∈ I ∪ {0}.

Remark that, by construction, (p, q) /∈ ψ0(p, q, x, z), and that for every i ∈ I, whenever

(xi, zi) /∈ Brεn
i (p, q) = Brε

i

(
p, (1− 1

n)q + 1
nqo

)
then one has ψn

i (p, q, x, z) &= ∅ and (xi, zi) /∈
ψn

i (p, q, x, z).
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It follows from the Fixed-Point Theorem of Gale and Mas-Colell [8] that there exists

(p̄n, q̄n, x̄n, z̄n) ∈ Π×
∏

i∈I(X
r
i×Zr

i ) such that for all i ∈ I, either (x̄n
i , z̄n

i ) ∈ ψn
i (p̄n, q̄n, x̄n, z̄n)

or ψn
i (p̄n, q̄n, x̄n, z̄n) = ∅, and for i = 0, either (p̄n, q̄n) ∈ ψ0(p̄n, q̄n, x̄n, z̄n) or ψ0(p̄n, q̄n, x̄n, z̄n) =

∅.

From the above remark, one deduces that for all i ∈ I, (x̄n
i , z̄n

i ) ∈ Brεn
i (p̄n, q̄n) and

either B̆rεn
i (p̄n, q̄n) ∩

(
P r

i (x̄n)× Zr
i

)
= ∅ or (x̄n

i , z̄n
i ) ∈ B̆rεn

i (p̄n, q̄n) ∩ (P r
i (x̄n)× Zr

i )

and

p ·
∑

i∈I

(x̄n
i − ei) + q ·

∑

i∈I

z̄n
i ≤ p̄n ·

∑

i∈I

(x̄n
i − ei) + q̄n ·

∑

i∈I

z̄n
i , ∀(p, q) ∈ Π. (4.3.2)

From the irreflexivity of P r
i for each i, we conclude that for every i and for every n,

(x̄n
i , z̄n

i ) /∈ B̆rεn
i (p̄n, q̄n) ∩ (P r

i (x̄n)× Zr
i ), hence for every i ∈ I,

B̆rεn
i (p̄n, q̄n) ∩

(
P r

i (x̄n)× Zr
i

)
= ∅. (4.3.3)

Claim 4.3.7 The sequence
(
(p̄n, q̄n, x̄n, z̄n)

)
n

has a subsequence which converges to a point

(p̄, q̄, x̄, z̄) ∈ Π×
∏

i∈I(X
r
i × Zr

i ) satisfying:

for all i ∈ I, (x̄i, z̄i) ∈ Brε
i (p̄, q̄), B̆rε

i (p̄, q̄) ∩
(
P r

i (x̄)× Zr
i

)
= ∅, (4.3.4)

and

p ·
∑

i∈I

(x̄i − ei) + q ·
∑

i∈I

z̄i ≤ p̄ ·
∑

i∈I

(x̄i − ei) + q̄ ·
∑

i∈I

z̄i, ∀(p, q) ∈ Π. (4.3.5)

Proof. The fact that the sequence
(
(p̄n, q̄n, x̄n, z̄n)

)
n

is bounded implies that it has a

subsequence which converges to a point (p̄, q̄, x̄, z̄) ∈ Π×
∏

i∈I(X
r
i × Zr

i ).

Passing to the limit in (4.3.2) we get (4.3.5). The fact that for each i, (x̄i, z̄i) ∈ Brε
i (p̄, q̄)

follows from the upper semicontinuity of Brε
i on Π.

Now we show that B̆rε
i (p̄, q̄)∩

(
P r

i (x̄)×Zr
i

)
= ∅. By contradiction, assume that there exists

(xi, zi) ∈ B̆rε
i (p̄, q̄) ∩

(
P r

i (x̄) × Zr
i

)
&= ∅. Then for n large enough, (xi, zi) ∈ B̆rεn

i (p̄n, q̄n),

and from the lower semicontinuity of P r
i and the fact that P r

i has open and convex values,

we deduce that the sets (P r
i )−1 (xi) := {x | xi ∈ P r

i (x)} are open, therefore for n large

enough, xi ∈ P r
i (x̄n). Hence, for n large enough, (xi, zi) ∈ B̆rεn

i (p̄n, q̄n) ∩
(
P r

i (x̄n) × Zr
i

)
,

a contradiction to (4.3.3).
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Checking the market clearing conditions

Claim 4.3.8 For every i V z̄i ≥ vi,
∑

i∈I z̄i ∈ −
∑

i∈I(AZi∩{V ≥ 0}), and q̄ ·
∑

i∈I z̄i = 0.

Proof. The fact that V z̄i ≥ vi follows straightforwardly from (x̄i, z̄i) ∈ Brε
i (p̄, q̄) (which

is a consequence of (4.3.4)) and the definition of vi.

To show that
∑

i∈I z̄i ∈ −
∑

i∈I(AZi ∩ {V ≥ 0}), we show that
∑

i∈I z̄i ∈ Qo and use

Lemma 4.2 to conclude. Assume there exists q ∈ Q ∩BJ(0, 1) such that q · (
∑

i∈I z̄i) > 0.

Then, from (4.3.5), q̄ ·(
∑

i∈I z̄i) ≥ q ·(
∑

i∈I z̄i) > 0. We claim that ||q̄|| = 1. Indeed, we have

0 < q̄
||q̄|| ·

∑
i∈I z̄i ≤ q̄ ·

∑
i∈I z̄i, which implies ||q̄|| ≥ 1, and since q̄ ∈ clB(0, 1), we get ||q̄|| =

1. Hence ε0(p̄, q̄) = 0 and since (x̄i, z̄i) ∈ Brε
i (p̄, q̄), we have for every i ∈ I, p̄(0) · (x̄i(0)−

ei(0))+ q̄ · z̄i ≤ 0. Summing up over i we get p̄(0) ·
∑

i∈I(x̄i(0)−ei(0))+ q̄ ·
∑

i∈I z̄i ≤ 0. On

the other hand, we have, from (4.3.5), p̄(0)·
∑

i∈I(x̄i(0)−ei(0))+q̄ ·
∑

i∈I z̄i ≥ q̄ ·
∑

i∈I z̄i > 0.

Contradiction. Therefore
∑

i∈I z̄i ∈ Qo = −
∑

i∈I(AZi ∩ {V ≥ 0}), by Lemma 4.2.

Finally, we show that q̄ ·
∑

i∈I z̄i = 0. Since q̄ ∈ clQ we conclude that q̄ ·
∑

i∈I z̄i ≤ 0 and

since 0 ∈ clQ we have 0 = 0 ·
∑

i∈I z̄i ≤ q̄ ·
∑

i∈I z̄i (from (4.3.5)). Hence q̄ ·
∑

i∈I z̄i = 0.

Claim 4.3.9
∑

i∈I x̄i =
∑

i∈Iei.

Proof. If
∑

i∈I x̄i &=
∑

i∈Iei, we deduce from (4.3.5) that for some s ∈ S̄: ‖p̄(s)‖ = 1,

εs(p̄, q̄) = 0, p̄(s) ·
∑

i∈I

(
x̄i(s) − ei(s)

)
> 0. Since (x̄i, z̄i) ∈ Brε

i (p̄, q̄), we have p̄(s) ·
(
x̄i(s) − ei(s)

)
≤ w(q̄, s) · z̄i, i ∈ I, where w(q̄, s) denotes the row s of the matrix W (q̄).

Summing up over i we get; if s = 0, p̄(0) ·
∑

i∈I

(
x̄i(0) − ei(0)

)
≤ −q̄ ·

∑
i∈I z̄i = 0, a

contradiction, and if s &= 0, p̄(s) ·
∑

i∈I

(
x̄i(s)− ei(s)

)
≤

∑
i∈IV [s] · z̄i ≤ 0 (since, by Claim

4.3.8, −
∑

i∈I z̄i ∈ {V ≥ 0}), a contradiction.

From Claim 4.3.8,
∑

i∈I z̄i ∈ −
∑

i∈I(AZi ∩ {V ≥ 0}). Then there exist (ζ1, · · · , ζI) ∈
Πi(AZi ∩ {V ≥ 0}) such that

∑
i∈I z̄i = −

∑
i∈Iζi. We let ¯̄zi = π(z̄i + ζi) = z̄i + πζi

(because πz̄i = z̄i since z̄i ∈ πZr
i ⊂ clπZi = πZi).

Recall the definition of the set

Kv := {(πzi)i ∈ Πi(πZi ∩ {V ≥ vi}) :
∑

i∈I

zi = 0}.

Claim 4.3.10 ¯̄z ∈ Kv hence for every i, ¯̄zi ∈ Ẑi ⊂ Zr
i ⊂ intBJ(0, r), and

∑
i∈I

¯̄zi = 0.
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Proof. Clearly
∑

i∈I(z̄i + ζi) = 0 and for each i, πz̄i + πζi = z̄i + πζi ∈ πZi since z̄i ∈ πZi

and πζi ∈ πAZi = AπZi (from Claim 4.3.1), and we need only show that V (z̄i + ζi) ≥ αi.

Indeed, ζi ∈ AZi ∩ {V ≥ 0} then V ζi ≥ 0. Hence V (z̄i + ζi) ≥ V z̄i ≥ vi from Claim 4.3.8.

The equality
∑

i∈I
¯̄zi = 0 is straightforward.

The list (x̄, ¯̄z, p̄, q̄) is an equilibrium of (Er,Fr
π)

Claim 4.3.11 For each i ∈ I, (x̄i, z̄i) and (x̄i, ¯̄zi) belong to Brε
i (p̄, q̄), and Brε

i (p̄, q̄) ∩
(
P r

i (x̄)× Zr
i

)
= ∅.

Proof. For each i ∈ I, (x̄i, z̄i) belongs to Brε
i (p̄, q̄). This is a consequence of (4.3.4).

We now prove that Brε
i (p̄, q̄) ∩

(
P r

i (x̄)× Zr
i

)
= ∅. From the irreflexivity assumption, x̄i /∈

P r
i (x̄) for each i. Therefore, from (4.3.4), one deduces that B̆rε

i (p̄, q̄) ∩
(
P r

i (x̄)× Zr
i

)
= ∅.

Since P r
i has open values and since Brε

i (p̄, q̄) = clB̆rε
i (p̄, q̄) (by Claim 4.3.4), this implies

Brε
i (p̄, q̄) ∩

(
P r

i (x̄)× Zr
i

)
= ∅.

Finally, we prove that for each i ∈ I, (x̄i, ¯̄zi) belongs to Brε
i (p̄, q̄). From Claim 4.3.10, we

know that ¯̄zi ∈ Zr
i and since (x̄i, z̄i) ∈ Brε

i (p̄, q̄) it suffices to show W (q̄)¯̄zi ≥ W (q̄)z̄i for

every i, or equivalently W (q̄)ζi ≥ 0, for every i ∈ I. Note that because q̄ ∈ L⊥ = (kerπ)⊥

and kerπ = L ⊂ kerV , one has W (q̄)¯̄zi = W (q̄)(z̄i + ζi).

Recall that for each i, ζi ∈ AZi ∩ {V ≥ 0}, hence V ζi ≥ 0 for every i. It remains to

shaw that −q̄ · ζi ≥ 0 for every i ∈ I. We claim that −q̄ · ζi = 0 for every i. Indeed,

q̄ ∈ clQ = −
(∑

i∈I(AZi ∩ {V ≥ 0})
)o

(by Lemma 4.2) and for each i ∈ I, ζi ∈ AZi ∩
{V ≥ 0} ⊂

∑
k∈I(AZk ∩ {V ≥ 0}), then −q̄ · ζi ≤ 0 for every i. Now recalling that

−q̄ ·
∑

i∈Iζi = q̄ ·
∑

i∈I z̄i = 0 from Claim 4.3.8, we deduce that q̄ · ζi = 0 for every i ∈ I.

Therefore W (q̄)ζi ≥ 0 for every i ∈ I.

Claim 4.3.12 ε(p̄, q̄) = 0. Hence Brε
i (p̄, q̄) = Br

i (p̄, q̄).

Proof. From Claim 4.3.11 (x̄i, ¯̄zi) ∈ Brε
i (p̄, q̄) for each i ∈ I. Hence

p̄ (x̄i − ei) ≤ W (p̄, q̄)¯̄zi + ε(p̄, q̄).

Moreover, Assumption NS together with LNS implies that,

p̄ (x̄i − ei) = W (p̄, q̄)¯̄zi + ε(p̄, q̄), for all i ∈ I. (4.3.6)

Indeed, if it is not true then there exists s ∈ S̄ such that p̄(s)·(x̄i(s)−ei(s)) < [W (q̄)¯̄zi](s)+

εs(p̄, q̄). From NS, there exists xi ∈ P r
i (x̄) such that xi(s′) = x̄i(s′) for every s &= s′, and
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from LNS, for every t ∈ (0, 1], txi +(1− t)x̄i ∈]x̄i, xi] ⊂ P r
i (x̄). Since txi +(1− t)x̄i−→

t→0
x̄i,

it is possible to choose t small enough so that (txi + (1 − t)x̄i, ¯̄zi) ∈ Brε
i (p̄, q̄). Hence

(txi + (1− t)x̄i, ¯̄zi) belongs to Brε
i (p̄, q̄)∩

(
P r

i (x̄)×Zr
i

)
which is empty by Claim 4.3.11, a

contradiction.

Summing up over i the equalities (4.3.6) and using the two facts (i)
∑

i∈I x̄i =
∑

i∈Iei from

Claim 4.3.9 and (ii)
∑

i∈I
¯̄zi = 0 from Claim 4.3.10, we get (&I)ε(p̄, q̄) = 0, where &I is the

cardinality of I, hence ε(p̄, q̄) = 0.

Claims 4.3.9-4.3.12 show that (x̄, ¯̄z, p̄, q̄) is an equilibrium of (Er,Fr
π) and we will now

prove that it is an equilibrium of (E ,Fπ).

The list (x̄, ¯̄z, p̄, q̄) is an equilibrium of (E ,Fπ)

Proof. Market clearing conditions clearly hold from Claims 4.3.9 and 4.3.10, and we only

have to prove that

(Pi(x̄)× πZi) ∩Bi(Fπ, p̄, q̄) = ∅ for every i ∈ I.

Assume that it is not true then for some i, there exists (xi, πzi) ∈ Bi(Fπ, p̄, q̄) ∩ (Pi(x̄)×
πZi). Consequently, p̄ (xi − ei) ≤ W (q̄)πzi. Since x̄ is an attainable allocation and ¯̄z ∈
Kα, the definition of r implies that x̄i ∈ X̂i ⊂ intBLS̄(0, r) and ¯̄zi ∈ Ẑi ⊂ intBJ(0, r). Since

(x̄, ¯̄z, p̄, q̄) is an equilibrium of (Er,Fr
π), (x̄i, ¯̄zi) ∈ Br

i (p̄, q̄) = {(xi, zi) ∈ Xr
i × Zr

i , p̄ (xi −
ei) ≤ W (q̄)zi}. Thus for α small enough, (x̄i + α(xi − x̄i), ¯̄zi + α(πzi − ¯̄zi)) ∈ Br

i (p̄, q̄). On

the other hand, by Assumption LNS, for every α ∈ (0, 1], x̄i+α(xi− x̄i) ∈ (x̄i, xi] ⊂ Pi(x̄).

Therefore for α > 0 small enough, (x̄i+α(xi−x̄i), ¯̄zi+α(πzi− ¯̄zi)) ∈ Br
i (p̄, q̄)∩(P r

i (x̄)×Zr
i ),

a contradiction to the fact that agent i maximizes her preferences in her budget set in

(Er,Fr
π).

Remark 4.7 At this stage, it is important to emphasize that the equilibrium asset price

vector q̄ can be equal to 0.

4.3.3 From Theorem 4.3 to Theorem 4.1

Now we show how to prove Theorem 4.1 as a consequence of Theorem 4.3. This is done

by transforming the consumption economy E to get local non-satiation LNS.

Following Gale and Mas-Colell ([8], [9]), for x ∈
∏

i∈I Xi, we define the “augmented
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preferences” P̃i by

P̃i(x) = ∪x′i∈Pi(x)(xi, x
′
i] = {xi + α(x′i − xi) | 0 < α ≤ 1, x′i ∈ Pi(x)}

and we notice that we have Pi(x) ⊂ P̃i(x) ⊂ Xi.

We now define a new economy Ẽ which only differs from the original one E by the fact

that the original preferred sets Pi(x) are replaced by the larger ones P̃i(x) defined above.

To summarize, we let

Ẽ :=
(
Xi, P̃i, ei

)
i∈I

.

The interest of the economy Ẽ , instead of E , is twofold. First, Ẽ satisfies more properties

than E , as shown in the following Proposition. Second, every equilibrium of (Ẽ ,F) is

a financial equilibrium of (E ,F). The proof of Proposition 4.4 and Proposition 4.5 are

routine and therefore are omitted.

Proposition 4.4 Let x ∈
∏

i∈I Xi.

(a) If Pi is lower semicontinuous, then P̃i is lower semicontinuous.

(b) If Pi(x) is convex, then P̃i(x) is convex.

(c) If Pi(x) is open in Xi then P̃i(x) is open in Xi.

(d) If xi ∈ P̃i(x̄) then (x̄i, xi] ⊂ P̃i(x̄).

(e) If xi /∈ Pi(x), then xi /∈ P̃i(x).

Proposition 4.5 Every equilibrium of (Ẽ ,F) is an equilibrium of (E ,F).

4.4 Appendix

Theorem 4.5 Let C be a nonempty convex set in Rn and let f : Rn → Rm be linear. If

AC ∩ ker f ⊂ L(C), then

(a) clf(C) = f(clC).

(b) A(f(clC)) = f(A(clC)).

Claim 4.4.1 Let C be a nonempty convex set in Rn and let L be a linear subspace con-

tained in the lineality space of C i.e. L ⊂ L(C). Then clC = L + (L⊥ ∩ clC).
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Proof. Let ) ∈ L and x ∈ L⊥ ∩ clC, then ) ∈ L(C) = L(clC) and x ∈ clC which

implies ) + x ∈ clC, hence L + (L⊥ ∩ clC) ⊂ clC. Conversely, let x ∈ clC, then x =

projLx+projL⊥x, where projLx (respectively, projL⊥x) is the orthogonal projection of x

on L (respectively, L⊥). Hence projL⊥x = x+(−projLx) ∈ clC+L ⊂ clC+L(clC) ⊂ clC.

This ends the proof of the claim.

Proof of Theorem 4.5

(a) We always have f(clC) ⊂ clf(C). Let y ∈ clf(C), we will show that y = f(x) for

some x ∈ clC.

Let L := L(clC) ∩ ker f = −AC ∩ AC ∩ ker f . Notice that L ⊂ AC ∩ ker f and by

assumption AC ∩ ker f ⊂ L(C) = L(clC) hence AC ∩ ker f ⊂ L(clC) ∩ ker f = L.

Therefore L = AC ∩ ker f .

First, we claim that f(L⊥ ∩ clC) = f(clC). Indeed, L⊥ ∩ clC ⊂ clC hence f(L⊥ ∩ clC) ⊂
f(clC). Conversely, let x ∈ clC. From the previous claim, x can be written x = ) + z

with ) ∈ L and z ∈ L⊥ ∩ clC. Then f(x) = f()) + f(z) = f(z) ∈ f(L⊥ ∩ clC) since

) ∈ L ⊂ ker f . This ends the proof of the claim.

Now, since y ∈ clf(C) ⊂ clf(clC) = clf(L⊥∩ clC), for every k ∈ N∗ the following set, Ck,

is not empty

Ck = L⊥ ∩ clC ∩ {x : ||y − f(x)|| ≤ 1
k
}.

Notice that A(Ck) = L⊥ ∩A(clC) ∩ ker f = L⊥ ∩ L = {0}. Hence (Ck)k is a family of

bounded closed (hence compact) nonempty sets in Rn, satisfying the finite intersection

property (actually the sequence (Ck)k is non-increasing). Therefore ∩kCk &= ∅, and every

x ∈ ∩kCk satisfies x ∈ clC and y = f(x).

(b) Since A(f(clC)) = A(clf(C)) = A(f(C)) and f(A(clC)) = f(AC), we need to show

A(f(C)) = f(AC). Define the convex cone

K = {(λ, x) : λ > 0, x ∈ λC} ⊂ Rn+1,

and the linear mapping

g : Rn+1 → Rm+1, (λ, x) 4→ (λ, f(x)).

Then AK = A(clK) = clK = K ∪ {(0, z) : z ∈ AC}, and ker g = {0}× ker f . Hence

AK ∩ ker g = {(0, z) : z ∈ AC ∩ ker f} ⊂{ (0, z) : z ∈ L(C)} = L(K).
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Therefore, by Part (a), g(clK) = clg(K). We have

g(clK) = {(λ, f(x)) : λ > 0, x ∈ λC} ∪{ (0, f(z)) : z ∈ AC},

clg(K) = cl{(λ, y) : λ > 0, y ∈ λf(C)},

= {(λ, y) : λ > 0, y ∈ λf(C)} ∪{ (0, y) : y ∈ A(f(C))}.

Therefore Af(C) = f(AC).
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Chapter 5

Appendix

5.1 Asymptotic Cones

5.1.1 Definition and first properties in the non convex case

We need to use the notion of asymptotic cone for subsets of Rm, which may not be closed

(and in most cases will be convex). Our definition will follow Debreu [1] and departs from

Rockafellar1 [2] when the set will be convex but not closed. It coincices with the standard

definition when the set is convex AND closed.

Definition 5.1 (Debreu [1]) Let C be a nonempty subset of Rm. The asymptotic cone

of C, denoted by AC, is the set of vectors v ∈ Rm satisfying one of the two equivalent

conditions:

• ∃λn ↓ 0,∃(xn)n ⊂ C, v = limn λnxn.

• v ∈ ∩k≥0cl(∪λ≥0λCk) where Ck := {x ∈ C : ||x|| ≥ k}.

Proof. Let v ∈ {v ∈ Rm : ∃λn ↓ 0,∃(xn)n ⊂ C, v = limn λnxn}. Assume v &= 0 and fix

k ≥ 0. We need to show that v ∈ cl(∪λ≥0λCk).

Write v = limn λnxn with λn ↓ 0 and (xn)n ⊂ C. Then (xn)n is not bounded and we

can assume ||xn|| −→
n→∞

+∞ so that ∃n0 ∈ N such that (xn)n≥n0 ⊂ Ck. Then (λnxn)n≥n0 ⊂
∪λ≥0λCk and consequently v = limn λnxn ∈ cl(∪λ≥0λCk).

1Take C = R2
++ ∪ {0}, then the asymptotic cone called recession cone is C (see page 60-63 in [2])

whereas for us it is the closure of C (see below).
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Conversely, let v ∈ ∩k≥0cl(∪λ≥0λCk) and assume that v &= 0. Then ∀k ≥ 0, v ∈
cl(∪λ≥0λCk), thus ∀k ≥ 0, intB(v, 1

k )∩ (∪λ≥0λCk) &= ∅. Hence ∀k ≥ 0, ∃λk > 0,∃xk ∈ Ck

(therefore ||xk|| ≥ k) such that ||v − λkxk|| < 1
k . Therefore v = limk λkxk with xk ∈ C

and λk −→
k→∞

0 (since ||xk|| −→
k→∞

+∞).

Definition 5.2 The lineality space of a nonempty subset C of Rm is the set L(C) =

AC ∩ [−AC].

Proposition 5.1 Let C be a non-empty subset of Rk. Then

(1) A(C) = A(clC), and L(C) = L(clC),

(2) A(C) is a closed cone, and L(C) is a (closed vector subspace),

(3) If C ⊂ D, then AC ⊂ AD,

(4) Let (Ci)i∈I be a family of nonempty subsets of Rm whose intersection is nonempty.

Then A(∩iCi) ⊂ ∩iACi and the equality does not hold in general.

Proposition 5.2 If (Ci)i∈I is a family of subsets of Rm such that ∩iACi = {0}, then

∩iCi is bounded.

5.1.2 Definition and first properties in the convex case

When C is additionally assumed to be convex, we have more characterizations.

Definition 5.3 Let C be a non-empty convex subset of Rm. Let v ∈ Rm. The recession

cone of C is

O+C = {v ∈ Rm : v + C ⊂ C}.

The set O(C) is then defined as O(C) = O+C ∩ −O+C.

Note that O+C is a convex cone containing the origin but may not be closed, and asymp-

totic cone as defined here satisfies AC = O+(clC). Thus the two notions coincide when

C is closed but they may differ otherwise as shown by the following example.

Example 5.1 Let C = R2
++ ∪ {(0, 0)}. Then O+C = C and AC = R2

+.

Remark 5.1 v ∈ O+(C) if and only if

∀x ∈ C,∀λ ≥ 0, x + λv ∈ C.
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Remark 5.2 Note that O+(C) ⊂ AC and in general O+(C) ! AC.

The following proposition will show that

AC = O+(clC).

Proposition 5.3 Let C be a non-empty convex subset of Rm. Let v ∈ Rm. Then the

following assertions are equivalent.

(1) ∀x ∈ C, x + v ∈ clC.

(2) ∀x ∈ clC, x + v ∈ clC.

(3) ∀x ∈ C,∀λ ≥ 0, x + λv ∈ clC.

(4) ∃x ∈ C,∀λ ≥ 0, x + λv ∈ clC.

(5) ∀x ∈ riC, x + v ∈ riC.

(6) ∃λn ↓ 0,∃(xn)n ⊂ C, v = limn λnxn.

(7) (Debreu) v ∈ ∩k≥0cl(∪λ≥0λCk) where Ck := {x ∈ C : ||x|| ≥ k}.

Proof. (1) ⇒ (2): Let x ∈ clC, then x = limn xn for some (xn)n ⊂ C, thus xn + v ∈ clC

for every n. Hence x + v = limn(xn + v) ∈ clC.

(2) ⇒ (3): We first notice ∀x ∈ C, x + nv ∈ clC for every n ∈ N. Hence for every

t ∈ [0, n], we have

x + t v = (1− t
n)x + t

n(x + n v) ∈ clC (since clC is convex).

(3) ⇒ (4): Obvious.

(4) ⇒ (6): For every n ∈ N, x + n v ∈ clC. Then ∀n,∃xn ∈ C s.t. ||x + n v − xn|| < 1
n

and we deduce that v = limn
xn
n since

||v − xn

n
|| ≤ ||v − xn

n
+

x

n
||+ ||x

n
|| ≤ 1

n2
+
||x||
n

−→
n→∞

0.

(6) ⇒ (1): For x ∈ C, x + v = limn

(
(1− λn)x + λnxn

)
∈ clC.

The equivalence between (6) and (7) has already been shown at the beginning of this

chapter.

Proposition 5.4 Let C be a non-empty convex subset of Rm. Then
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(1) AC is a closed convex cone (with vertex 0) of Rm and L(C) is a linear subspace of

Rm.

(2) A(C) = A(clC), and L(C) = L(clC),

(3) If f : Rk → Rp is linear, then f(AC) ⊂ A(f(C)).

Proof. (1) Let v ∈ A(C). From Proposition 5.3 (3), there exists x ∈ C ⊂ D such that

∀λ ≥ 0, x + λ v ∈ clC ⊂ clD. Hence from Proposition 5.3 (3), v ∈ A(D).

(2) Since C ⊂ clC, from (1) we deduce that A(C) ⊂ A(clC). Conversely, let v ∈ A(clC).

Then, from Proposition 5.3 (1), x + v ∈ clC for every x ∈ clC, hence in particular for

every x ∈ C. This shows that v ∈ A(C).

(3) This is a consequence of (2) A(C) = A(clC) and [2].

Proposition 5.5 Let (Ci)i∈I be a family of nonempty convex subsets of Rk whose inter-

section is nonempty. Then A(∩iCi) = ∩iACi, and L(∩iCi) = ∩iLCi

Proof. For every i ∈ I, ∩iCi ⊂ Ci then A(∩iCi) ⊂ ACi for each i. Hence A(∩iCi) ⊂
∩iACi. Conversely, let v ∈ ∩iACi, and let x ∈ cl∩i Ci then for every i, x+v ∈ clCi (since

v ∈ ACi and x ∈ clCi because x ∈ cl ∩i Ci ⊂ ∩iclCi). Hence x + v ∈ ∩iclCi = cl(∩iCi)

since the Ci’s are convex with nonempty intersection (see e.g. [2]). Therefore v ∈ A(∩iCi).

Proposition 5.6 Let C and D be nonempty convex sets such that C ∩ V −1(D) = {x ∈
C : V x ∈ D} &= ∅. Then

A(C ∩ V −1(D)) = AC ∩ [V x ∈ AD] = AC ∩ V −1(AD).

5.1.3 A closedness property

Theorem 5.1 Let C be a nonempty convex set in Rn and let f : Rn → Rm be linear. If

AC ∩ ker f ⊂ L(C), then

(a) clf(C) = f(clC).

(b) A(f(clC)) = f(A(clC)).

Claim 5.1.1 Let C be a nonempty convex set in Rn and let L be a linear subspace con-

tained in the lineality space of C i.e. L ⊂ L(C). Then clC = L + (L⊥ ∩ clC).

115



Proof. Let ) ∈ L and x ∈ L⊥ ∩ clC, then ) ∈ L(C) = L(clC) and x ∈ clC which

implies ) + x ∈ clC, hence L + (L⊥ ∩ clC) ⊂ clC. Conversely, let x ∈ clC, then x =

projLx+projL⊥x, where projLx (respectively, projL⊥x) is the orthogonal projection of x

on L (respectively, L⊥). Hence projL⊥x = x+(−projLx) ∈ clC+L ⊂ clC+L(clC) ⊂ clC.

This ends the proof of the claim.

Proof of Theorem 5.1 (a) We always have f(clC) ⊂ clf(C). Let y ∈ clf(C), we will show

that y = f(x) for some x ∈ clC.

Let L := L(clC) ∩ ker f = −AC ∩ AC ∩ ker f . Notice that L ⊂ AC ∩ ker f and

by assumption AC ∩ ker f ⊂ L(C) = L(clC) hence AC ∩ ker f ⊂ L(clC) ∩ ker f = L.

Therefore L = AC ∩ ker f .

First, we claim that f(L⊥∩clC) = f(clC). Indeed, L⊥∩clC ⊂ clC hence f(L⊥∩clC) ⊂
f(clC). Conversely, let x ∈ clC. From the previous claim, x can be written x = ) + z

with ) ∈ L and z ∈ L⊥ ∩ clC. Then f(x) = f()) + f(z) = f(z) ∈ f(L⊥ ∩ clC) since

) ∈ L ⊂ ker f . This ends the proof of the claim.

Now, since y ∈ clf(C) ⊂ clf(clC) = clf(L⊥ ∩ clC), for every k ∈ N∗ the following set,

Ck, is not empty

Ck = L⊥ ∩ clC ∩ {x : ||y − f(x)|| ≤ 1
k
}.

Notice that A(Ck) = L⊥ ∩A(clC) ∩ ker f = L⊥ ∩ L = {0}. Hence (Ck)k is a family of

bounded closed (hence compact) nonempty sets in Rn, satisfying the finite intersection

property (actually the sequence (Ck)k is non-increasing). Therefore ∩kCk &= ∅, and every

x ∈ ∩kCk satisfies x ∈ clC and y = f(x).

(b) Since A(f(clC)) = A(clf(C)) = A(f(C)) and f(A(clC)) = f(AC), we need to

show A(f(C)) = f(AC).

Define the convex cone

K = {(λ, x) : λ > 0, x ∈ λC} ⊂ Rn+1,

and the linear mapping

g : Rn+1 → Rm+1, (λ, x) 4→ (λ, f(x)).

Then AK = A(clK) = clK = K ∪ {(0, z) : z ∈ AC}, and ker g = {0}× ker f . Hence

AK ∩ ker g = {(0, z) : z ∈ AC ∩ ker f} ⊂ {(0, z) : z ∈ L(C)} = L(K).

Therefore, by Part (a), g(clK) = clg(K). We have

g(clK) = {(λ, f(x)) : λ > 0, x ∈ λC} ∪{ (0, f(z)) : z ∈ AC}
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clg(K) = cl{(λ, y) : λ > 0, y ∈ λf(C)}

= {(λ, y) : λ > 0, y ∈ λf(C)} ∪{ (0, y) : y ∈ A(f(C))}.

Therefore Af(C) = f(AC).

Another proof for part (b) of the previous Theorem if C contains 0

We always have f(AC) ⊂ A(f(C)). Indeed, let v ∈ AC. For every c ∈ C, f(c)+f(v) =

f(c + v) ∈ f(C) since c + v ∈ C. Hence f(v) ∈ A(f(C)).

We show that if AC ∩ ker f ⊂ L(C) then A(f(C)) ⊂ f(AC).

Let L = L(C) ∩ kerV (from above L = AC ∩ kerV ).

Let K := {x ∈ clC : f(x) ∈ clB(v, 1)} and Kw := {projL⊥x ∈ L⊥ : x ∈ K}. Then

AK = AC ∩ ker f and AKw = L⊥ ∩AC ∩ ker f = {0} hence Kw is bounded.

Let v ∈ A(f(C)). Then v = limn λnf(cn) = limn f(λncn) where λn ↓ 0 and cn ∈ C for

every n. Then for n large enough, λncn ∈ K (since C contains 0 and convex, λncn ∈ C

for n large enough) and

λncn = λnc⊥n + λnĉn

with c⊥n ∈ L⊥ ∩ C, ĉn ∈ L ⊂ ker f , and λnc⊥n ∈ Kw therefore the sequence (λnc⊥n)n is

bounded and we can assume that it converges to a vector t ∈ L⊥ ∩AC. Hence v = f(t) ∈
f(L⊥ ∩AC) = f(AC) (because AC = L + (L⊥ ∩AC) and L ⊂ ker f).

5.1.4 Polyhedral convex sets

Theorem 5.2 Let f : Rn → Rm be linear.

If C is a polyhedral convex set in Rn then f(AC) = A(f(C)).

Proof. (a) Let C be a polyhedral convex set in Rn. From Theorem 19.1 page 171 in

Rockafellar [2], C is finitely generated, that is there exist vectors a1, · · · , ak, ak+1, · · · , ar

such that

C = {
r∑

i=1

λiai | λ1 + · · ·+ λk = 1, λi ≥ 0 for i = 1, · · · , r}.
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Therefore C = K + P where K is polyhedral and compact and P is a finitely generated

convex cone. Indeed

K = {
k∑

i=1

λiai | λ1 + · · ·+ λk = 1, λi ≥ 0 for i = 1, · · · , k},

P = {
r∑

i=k+1

λiai | λi ≥ 0 for i = k + 1, · · · , r}.

We claim that AC = P . Indeed, on the one hand C + P ⊂ K + P + P ⊂ K + P = C,

hence P ⊂ AC. On the other hand, if v ∈ AC then v = lim& α&c& where c& ∈ C and α& ↓ 0.

Since C = K + P , we have c& = k& + p& with k& ∈ K and p& ∈ P . From the boundedness

of K we get v = lim& α&p&, and since α& ↓ 0 and p& ∈ P we conclude that v ∈ AP . Recall

that P is a convex cone, hence AP = P . Therefore v ∈ P and AC ⊂ P . This ends the

proof of the claim.

Let bi = f(ai). Then

f(C) = {
r∑

i=1

λibi | λ1 + · · ·+ λk = 1, λi ≥ 0 for i = 1, · · · , r}.

Thus f(C) is finitely generated hence polyhedral and f(C) = K̃+P̃ where K̃ is the compact

f(K) (this set is compact as the image of a compact set by a continuous function) and P̃

is the finitely generated convex cone f(P ). From the claim above we get

Af(C) = P̃ = f(P ) = f(AC),

which is the desired result.

Corollary 5.1 If the sets Ci (i ∈ I) are polyhedral convex sets in Rn then A(
∑

i∈ICi) =
∑

i∈IACi.

Proof. Consider the map f : (Rn)I → Rn, (x1, · · · , xI) 4→
∑

i∈Ixi, and let C = ×iCi.

Then it is easy to check that f is linear, C is polyhedral, and AC = ΠiACi. Applying the

result of Theorem 5.2 to f and C yields

Af(ΠiCi) = Af(C) = f(AC) = f(ΠiACi).

Since f(ΠiCi) =
∑

i∈ICi and f(ΠiACi) =
∑

i∈IACi, we get A(
∑

i∈ICi) =
∑

i∈IACi.

5.1.5 The cylindric decomposition of a convex set

Proposition 5.7 Let X be a nonempty convex subset of RJ , L a subspace of RJ . The

following two assertions are equivalent.
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(a) L + X ⊂ X, that is L ⊂ O+(X) ∩ −O+(X).

(b) X = L + (X ∩ L⊥).

Claim 5.1.2 Let X be a nonempty convex subset of RJ , L a subspace of RJ , and denote

π = projL⊥. If L + X ⊂ X then πX = X ∩ L⊥.

Proof. Let x ∈ X, then πx = (πx−x)+x ∈ kerπ+X = L+X ⊂ X, and πx ∈ Imπ = L⊥.

Hence πx ∈ X ∩L⊥. Conversely, if x ∈ X ∩L⊥ then x = πx (since x ∈ L⊥ = Imπ), hence

x ∈ πX.

Proof of Proposition 5.7 Denote π = projL⊥ .

(a) ⇒ (b): First we show X ⊂ L + (X ∩ L⊥). Let x ∈ X, write x = (x − πx) + πx ∈
L + πX = L + (X ∩ L⊥) (by Claim 5.1.2).

Second we show L + (X ∩L⊥) ⊂ X. Let ) ∈ L and x ∈ X ∩L⊥. Then ) + x ∈ L + X ⊂ X

(by (a)).

(b) ⇒ (a): Let ) ∈ L and x ∈ X. Use the inclusion X ⊂ L + (X ∩ L⊥) in assertion (b)

to decompose x as x = x1 +x2 with x1 ∈ L and x2 ∈ X ∩L⊥. Then )+x = ()+x1)+x2 ∈
L + L + (X ∩ L⊥) ⊂ L + (X ∩ L⊥) ⊂ X by assertion (b).

Corollary 5.2 Let X be a nonempty convex subset of RJ , L a subspace of RJ , and denote

π = projL⊥. (a’) is equivalent to (b’) and they both imlpy (c’).

(a’) L + clX ⊂ clX, that is L ⊂ O+(clX) ∩ −O+(clX) = L(X).

(b’) clX = L + clX ∩ L⊥.

(c’) πclX = clX ∩ L⊥.

Moreover, if one of the above holds, then

X ⊂ L + πX ⊂ L + πclX ⊂ L + clπX ⊂ clX.

Proposition 5.8 Let X be convex (not assumed to be closed) and L a vector space such

that L ⊂ L(X). Let π be a linear projection such that kerπ = L. Then

X ⊂ L + πX ⊂ L + πclX ⊂ L + clπX ⊂ cl(L + πX) ⊂ clX.

Moreover clπX = (clX) ∩ Imπ = πclX, hence πclX is closed.
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Proof. • First inclusion: Let x ∈ X, write x = πx + (x − πx) with x − πx ∈ kerπ = L

hence x ∈ L + πX.

• Second inclusion: Obvious since X ⊂ clX.

• Third inclusion: π is continuous hence πclX ⊂ clπX.

• Fourth inclusion: Comes from the fact that
∑

i∈IclAi ⊂ cl(
∑

i∈IAi).

• Fifth inclusion: We show L + πX ⊂ clX. Let x ∈ X, ) ∈ L. Then ) + πx =

() + πx− x) + x ∈ L + X ⊂ clX since L ⊂ L(X).

To show clπX ⊂ (clX)∩ Imπ, it suffices to show that πX ⊂ (clX)∩ Imπ (which is closed).

Let x ∈ X, πx = x− (x− πx) ∈ X − kerπ ⊂ X −L(X) ⊂ clX, hence πx ∈ (clX)∩ Imπ.

For the reverse inclusion, that is (clX)∩Imπ ⊂ clπX, it suffices to show X∩Imπ ⊂ πX.

Let x ∈ X ∩ Imπ, then x − πx ∈ kerπ and x − πx ∈ Imπ (since x ∈ Imπ), hence

x− πx ∈ kerπ ∩ Imπ = {0}, therefore x = πx and x ∈ πX.

In fact we have shown that

X ∩ Imπ ⊂ πX ⊂ clX ∩ Imπ.

Applying this result to clX we get

clX ∩ Imπ ⊂ πclX ⊂ clX ∩ Imπ,

thus πclX = (clX) ∩ Imπ (= clπX from above).

Corollary 5.3 Let Xi be convex i ∈ I (finite), and let π be a linear projection such that

kerπ = L ⊂ L(
∑

i∈IXi). Then
∑

i∈I

Xi ⊂ L + π(
∑

i∈I

Xi) = L +
∑

i∈I

πXi ⊂ L +
∑

i∈I

clπXi ⊂ cl(L +
∑

i∈I

πXi) ⊂ cl(
∑

i∈I

Xi).

Proof. Take X =
∑

i∈IXi and apply the above proposition to get
∑

i∈I

Xi ⊂ L + π
∑

i∈I

Xi ⊂ L +
∑

i∈I

πclXi ⊂ L +
∑

i∈I

clπXi,

and notice that
∑

i∈IclAi ⊂ cl(
∑

i∈IAi), hence L +
∑

i∈IclπXi ⊂ cl(L + π
∑

i∈IXi) ⊂
cl

∑
i∈IXi.

Example 5.2 In R2, let X1 = R2
+ and X2 = R− × R+ Then X1 + X2 = R × R+,

L = L(X1 + X2) = R× {0}, and if π = projL⊥ then πX1 = πX2 = {0}× R+.
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5.2 Positive semi-independence and consequences

5.2.1 Different definitions of positive semi-independence

Definition 5.4 The family (Ci)i∈I of closed convex cones of Rm is said to be

(i) weakly positively semi-independent (WPSI) if

∀i, vi ∈ Ci,
∑

i∈I

vi = 0 ⇒ vi ∈ Ci ∩ −Ci,∀i.

(ii) positively semi-independent (PSI) if

∀i, vi ∈ Ci,
∑

i∈I

vi = 0 ⇒ vi = 0, ∀i.

(iii) strongly positively semi-independent (SPSI) if
∑

i∈I

Ci ∩ −
∑

i∈I

Ci = {0}.

Remark 5.3 If the Ci’s are vector subspaces of Rm then

• Condition (i) is always satisfied.

• Condition (ii) means that the Ci’s are linearly independent vector subspaces.

• Condition (iii) holds if and only if, for every i, Ci = {0}.

• If, for every i, Ci ∩ −Ci = {0} then the three notions of positive semi-independence

coincide, that is, the Ci’s are SPSI if and only if they are WPSI.

Proposition 5.9 Let Ci (i ∈ I) be finitely many closed convex cones of RJ .

(a) Then
∑

i∈I

[Ci ∩ −Ci] ⊂
∑

i∈I

Ci ∩ −
∑

i∈I

Ci.

(b) If we additionally assume that the Ci are weakly positively semi-independent then
∑

i∈I

[Ci ∩ −Ci] =
∑

i∈I

Ci ∩ −
∑

i∈I

Ci.

Proof. Part (a) Straightforward.

Part (b) Let c ∈
∑

i∈I Ci ∩ −
∑

i∈I Ci then c =
∑

i∈I ci = −
∑

i∈I c′i for some ci, c′i in Ci.

Consequently,
∑

i∈I ci + c′i = 0, with ci + c′i ∈ Ci (because Ci is convex). Since the Ci are

weakly positively semi-independent, we deduce that for all i, ci + c′i ∈ Ci ∩ −Ci, hence

ci ∈ Ci ∩ −Ci. This shows that c =
∑

i∈I ci ∈
∑

i∈I [Ci ∩ −Ci].
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The following propositions will show the relationship between these three definitions. In

particular it shows that a SPSI family is PSI, and that a PSI family is WPSI.

Proposition 5.10 Let (Ci)i∈I be a family of closed convex cones of Rm. Then the fol-

lowing assertions are equivalent.

(i) The sets Ci are PSI.

(ii) The sets Ci are WPSI and the vector spaces Ci ∩ −Ci are linearly independent.

Proof. [(i) ⇒ (ii)]. Assume Ci are PSI. Let vi ∈ Ci be such that
∑

i∈Ivi = 0. Then,

by PSI, for each i, vi = 0 ∈ Ci ∩ −Ci. Hence WPSI. Let vi ∈ Ci ∩ −Ci be such that
∑

i∈Ivi = 0. Then for every i, vi ∈ Ci and hence vi = 0 (by PSI), which shows that the

sets Ci ∩ −Ci are independent.

[(ii) ⇒ (i)]. Conversely, if 0 =
∑

i∈Ivi where each vi ∈ Ci. Then, from WPSI, vi ∈
Ci ∩ −Ci, but by assumption the vector spaces Ci ∩ −Ci are linearly independent, hence

vi = 0 for each i, that is the Ci’s are PSI.

Proposition 5.11 Let Ci (i ∈ I) be finitely many closed convex cones of RJ . The follow-

ing three properties are equivalent:

(i)
∑

i∈I Ci ∩ −
∑

i∈I Ci = {0}, (that is L[
∑

i∈I Ci] = {0}),

(ii) for all i Ci ∩ −Ci = {0} (that is LCi = {0}) and the Ci are positively semi-

independent,

(iii) for all i Ci ∩ −Ci = {0} (that is LCi = {0}) and the Ci are weakly positively

semi-independent.

Proof. (ii) ⇔ (iii) Straightforward.

(i) ⇒ (ii). From Proposition 5.18 and from (i), we have
∑

i∈I

[Ci ∩ −Ci] ⊂
∑

i∈I

Ci ∩ −
∑

i∈I

Ci = {0}.

We now prove that the Ci are positively semi-independent. Indeed, let ci ∈ Ci such that
∑

i ci = 0, then

c1 = −
∑

i(=1

ci ∈ C1 ∩ −
∑

i(=1

Ci ⊂
∑

i∈I

Ci ∩ −
∑

i∈I

Ci = {0}.

Consequently, c1 = 0 and similarly ci = 0 for all i.
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(ii) ⇒ (i). This is a consequence of Part (b) of Proposition 5.18. A direct proof goes

as follows. Let c ∈
∑

i∈I Ci ∩ −
∑

i∈I Ci then c =
∑

i∈I ci = −
∑

i∈I c′i for some ci, c′i in

Ci. Consequently,
∑

i∈I ci + c′i = 0, with ci + c′i ∈ Ci. Since the Ci are positively semi-

independent, we deduce that for all i, ci + c′i = 0, hence ci ∈ Ci ∩ −Ci = {0}. This shows

that c =
∑

i∈I ci = 0.

Remark 5.4 If we remove in (ii) and (iii) the condition that the Ci are positively semi-

independent the results may not hold, that is, the equality in (i) may not hold.

Consider C1 = −R+ and C2 = R+. Then the cones C1 and C2 are pointed but not

weakly positively semi-independent and

{0} = (C1 ∩ −C1) + (C2 ∩ −C2) ⊂ (C1 + C2) ∩ −(C1 + C2) = R &= {0}.

Remark 5.5 The above condition (i) is strictly stronger that the fact that the Ci are

positively semi-independent. In other words the equivalence between (i) and (ii) does not

hold in general if we remove in (ii) the condition that for all i, Ci ∩ −Ci = {0}.

Consider C1 = {(x, y) ∈ R2 : y ≥ 0} and C2 = {(x, y) ∈ R2 : x = 0 and y ≥ 0}. Then

the cones C1 and C2 are positively semi-independent but

(C1 + C2) ∩ −(C1 + C2) = {(x, y) ∈ R2 : y = 0} &= {0}.

5.2.2 Further properties of positive semi-independence

Proposition 5.12 Let Ci (i ∈ I) be finitely many closed convex cones of RJ . The follow-

ing assertions are equivalent.

(i) The sets Ci are WPSI that is ∀vi ∈ Ci,
∑

i∈Ivi = 0 ⇒ ∀i, vi ∈ L(Ci).

(ii) For all vi ∈ Ci,
∑

i∈Ivi ∈
∑

i∈IL(Ci) ⇒ ∀i, vi ∈ L(Ci).

(ii’) For all vi ∈ Ci ∩L(Ci)⊥,
∑

i∈Ivi ∈
∑

i∈IL(Ci) ⇒ ∀i, vi = 0.

(iii) For all vi ∈ Ci,
∑

i∈Ivi ∈ L(
∑

i∈ICi) ⇒ ∀i, vi ∈ L(Ci).

(iv) For all i ∈ I, Ci ∩L(
∑

j∈I Cj) ⊂ L(Ci).

Proof. The implications (iii) ⇒ (ii) ⇒ (i) are obvious. We show (i) ⇒ (iii). Under

WPSI, by Proposition 5.18, we have L(
∑

i∈ICi) =
∑

i∈IL(Ci). Let vi ∈ Ci with
∑

i∈Ivi ∈
L(

∑
i∈ICi). Then

∑
i∈Ivi ∈

∑
i∈IL(Ci), hence

∑
i∈Ivi =

∑
i∈I)i with )i ∈ L(Ci) =
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Ci ∩ −Ci. Thus
∑

i∈I(vi − )i) = 0 and vi − )i ∈ Ci for each i. Therefore, by WPSI,

vi − )i ∈ L(Ci) for each i. Consequently, for every i, vi ∈ )i + L(Ci) ⊂ L(Ci).

(iii) ⇒ (iv): Let v1 ∈ C1 ∩ L(
∑

i∈ICi). Let v2 = · · · = vI = 0. Then
∑

i∈Ivi = v1 ∈
L(

∑
i∈ICi) and ∀i, vi ∈ Ci. Therefore, by (iii), ∀i, vi ∈ L(Ci) in particular v1 ∈ L(C1).

(iv) ⇒ (i): Let vi ∈ Ci,
∑

i∈Ivi = 0. Then v1 = −
∑

i(=1 vi ∈
∑

i∈ICi ∩−
∑

i∈ICi. Hence

v1 ∈ L(
∑

i∈ICi) and by (iv) one has v1 ∈ L(C1).

(ii) ⇒ (ii′): Let vi ∈ Ci ∩ L(Ci)⊥,
∑

i∈Ivi ∈
∑

i∈IL(Ci). Then form (ii), for every i,

vi ∈ L(Ci). But vi ∈ L(Ci)⊥. Therefore vi = 0 for every i.

(ii′) ⇒ (ii): Let vi ∈ Ci,
∑

i∈Ivi ∈
∑

i∈IL(Ci). Write vi = )i + pi, with )i ∈ L(Ci), pi ∈
Ci ∩L(Ci)⊥. Then from

∑
i∈Ivi ∈

∑
i∈IL(Ci) we get

∑
i∈Ipi ∈

∑
i∈IL(Ci) and form (ii′)

we obtain pi = 0 for every i. hence vi = )i ∈ L(Ci) for every i.

Remark 5.6 Condition (ii′) in Proposition 5.12 says that the sets Ci ∩ L(Ci)⊥ (i ∈ I)

and
∑

i∈IL(Ci) are positively semi-independent (PSI). In particular the sets Ci ∩L(Ci)⊥

(i ∈ I) are PSI and the sets Ci ∩L(
∑

i∈ICi)⊥ (i ∈ I) are PSI.

Proposition 5.13 If the family {Ci : i ∈ I} is WPSI then

(i) The family {Ci ∩L⊥i : i ∈ I} is PSI, where Li = L(Ci).

(ii) The family {projL⊥Ci : i ∈ I} is PSI, where L = L(
∑

i∈ICi).

(iii) The family {Ci ∩L⊥ : i ∈ I} is PSI, where L = L(
∑

i∈ICi).

Proof. Notice that (i) implies (iii) and (ii) implies (iii). We show that if the Ci’s are

WPSI then (i) and (ii) hold.

For (i), let vi ∈ Ci ∩L⊥i such that
∑

i∈Ivi = 0. Then for each i, vi ∈ Ci and
∑

i∈Ivi = 0

thus by weak positive semi-independence, vi ∈ Li, for every i. Therefore vi ∈ Li∩L⊥i = {0}
i.e. vi = 0 for each i.

To show (ii), let ui ∈ projL⊥Ci be such that
∑

i∈Iui = 0. Write ui = projL⊥vi for some

vi ∈ Ci. Then each vi can be written vi = ui + )i with )i ∈ L. Hence vi ∈ Ci for each i

and
∑

i∈Ivi =
∑

i∈I)i ∈ L, therefore by weak positive semi-independence, vi ∈ Li ⊂ L for

each i, thus ui = vi − )i ∈ L ∩L⊥ = {0}.
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Remark 5.7 None of the properties (i), (ii), and (iii) is sufficient for WPSI to hold.

In R2, let C1 = R(1, 0), C2 = R(0, 1), and C3 = R+(−1,−1). Then (i) is satisfied but

the Ci’s are not WPSI.

The above counter-example also shows that L(
∑

i∈ICi) =
∑

i∈IL(Ci) does not imply

that the Ci’s are WPSI.

In R2, let C1 = R×R+, and C2 = R×R−. Then (ii) and (iii) are satisfied but the Ci’s

are not WPSI.

Proposition 5.14 Let Ci (i ∈ I) be finitely many closed convex cones of RJ . The follow-

ing assertions are equivalent.

(i) The sets Ci are SPSI that is
∑

i∈ICi ∩ −
∑

i∈ICi = {0}.

(ii)
∑

i∈ICi ∩ − ∪i Ci = {0}.

(iii) ∀i, vi ∈ Ci,
∑

i∈Ivi ∈ − ∪i Ci ⇒ ∀i, vi = 0.

Proof. [(i) ⇒ (ii).] This implication is obvious since ∪iCi ⊂
∑

i∈ICi.

[(ii) ⇒ (iii).] Let vi ∈ Ci be such that
∑

i∈Ivi ∈ − ∪i Ci. From (ii) we get
∑

i∈Ivi = 0.

Hence −v1 =
∑

i(=1 vi ∈ −C1 ∩
∑

i∈ICi ⊂ − ∪i Ci ∩
∑

i∈ICi = {0}. Therefore v1 = 0, and

similarly vi = 0 for each i.

[(iii) ⇒ (i).] Let vi ∈ Ci be such that
∑

i∈Ivi ∈ −
∑

i∈ICi. Then
∑

i∈Ivi = −
∑

i∈Ici with

ci ∈ Ci for each i. Hence
∑

i∈I(vi+ci) = 0 and from (iii) we get for each i, vi+ci = 0 (since

vi + ci ∈ Ci by convexity of Ci). Thus vi ∈ Ci ⊂
∑

i∈ICi and vi = −ci ∈ −Ci ⊂ − ∪i Ci.

Hence, by (iii), vi = 0.

5.2.3 Characterizing semi-independence by compactness

Let Xi (i ∈ I) be convex subsets of RJ containing 0 and denote Li = L(Xi) = L(clXi).

Let B be a compact set of RJ and

K := {(x1, · · · , xI) ∈ ΠiclXi :
∑

i∈I

xi ∈ B},

Kw := {(projL⊥1 x1, · · · ,projL⊥I xI) ∈ ΠiLi
⊥ : (x1, · · · , xI) ∈ K},

K ′
w := {(y1, · · · , yI) ∈ Πi(Xi ∩L⊥i ) :

∑

i∈I

yi ∈ B +
∑

i∈I

Li}.
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Note that Kw = F (K) where F : (RJ)I → (RJ)I is defined by

F (x1, · · · , xI) = (projL⊥1 x1, · · · ,projL⊥I xI).

Proposition 5.15 The following assertions are equivalent.

(i) The sets AXi are weakly positively semi-independent.

(ii) The set Kw is bounded.

(iii) The set K ′
w is bounded (in fact K ′

w = Kw).

Moreover the set Kw is closed (without assuming (i)).

Here are two proofs. The first one uses Theorem 9.1 in [2]. The second one is a direct

proof.

First Proof

[(i) ⇒ (ii)] If (projL⊥1 v1, · · · ,projL⊥I vI) ∈ AKw with vi ∈ AXi, and
∑

i∈Ivi = 0, then

from WPSI we get vi ∈ Li for every i. That is projL⊥i vi = 0,∀i. Hence AKw = {0} and

Kw is bounded.

[(ii) ⇒ (i)] Conversely, if Kw is compact then AKw = {0}. Thus if vi ∈ AXi and
∑

i∈Ivi = 0, we must have projL⊥i vi = 0 for every i. That is vi ∈ Li,∀i. Hence WPSI.

Proof that the set Kw is closed. We have kerF = ΠiLi and

AK = {(v1, · · · , vI) ∈ ΠiAXi :
∑

i∈I

vi = 0},

L(K) = {(v1, · · · , vI) ∈ ΠiLi :
∑

i∈I

vi = 0}.

Then kerF ∩AK ⊂ L(K). Hence, by Theorem 9.1 page 73 in [2], A(F (K)) = F (AK)

and F (K) is closed (since K is obviously closed). That is,

AKw = {(projL⊥1 v1, · · · ,projL⊥I vI) ∈ ΠiLi
⊥ : vi ∈ AXi,

∑

i∈I

vi = 0},

and Kw is closed.

Second Proof

[(i) ⇒ (ii)] By contradiction, assume Kw is not bounded and let ((x⊥n
i )i)n be a sequence

in Kw (each x⊥n
i is in clXi ∩L⊥i ) such that

∑
i∈I ||x⊥n

i || −→
n→∞

∞. Let x̂n
i ∈ Li be such that
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(x⊥n
i + x̂n

i )i ∈ K. Then, without loss of generality (taking subsequences if necessary), one

can assume that for every i,
x⊥n

i∑
i∈I ||x⊥n

i ||+
∑

i∈I ||x̂n
i ||

−→
n→∞

x⊥i ∈ AXi ∩L⊥i

and ∑
i∈I x̂

n
i∑

i∈I ||x⊥n
i ||+

∑
i∈I ||x̂n

i ||
−→
n→∞

α ∈ A(
∑

i∈I

Xi) ∩
∑

i∈I

Li.

Write α =
∑

i∈Iαi where for each i, αi ∈ Li. Then
∑

i∈I(x
⊥
i + αi) = 0 since

∑
i∈I(x

⊥n
i +

x̂n
i ) ∈ B and

∑
i∈I ||x⊥n

i || −→
n→∞

∞. But x⊥i ∈ AXi and αi ∈ Li then x⊥i + αi ∈ AXi hence,

by WPSI, for every i, x⊥i + αi ∈ Li that is x⊥i = 0. So,
∑

i∈Iαi = 0. But for every n,

1 =
∑

i∈I ||x⊥n
i ||

∑
i∈I ||x⊥n

i ||+
∑

i∈I ||x̂n
i ||

+
||
∑

i∈I x̂
n
i ||∑

i∈I ||x⊥n
i ||+

∑
i∈I ||x̂n

i ||
implies 1 = ||

∑
i αi||. A contradiction.

[(ii) ⇒ (i)] Conversely, if vi ∈ AXi, and
∑

i∈Ivi = 0, then for each i, vi = v⊥i + v̂i

with v⊥i ∈ AXi ∩ L⊥i and v̂i ∈ Li. Let (xi)i ∈ K, then for every t ≥ 0,
∑

i∈I(xi + tvi) =
∑

i∈Ixi ∈ B. Therefore (projL⊥i x⊥i + tv⊥i )i ∈ Kw for every t ≥ 0. Since Kw is bounded we

must have v⊥i = 0 for every i, that is vi ∈ Li for each i.

Now we show that Kw is closed. Let ((projL⊥i xn
i )i)n be a sequence in Kw (the sequence

((xn
i )i)n is in K) such that projL⊥i xn

i −→n→∞
x⊥i ∈ L⊥i ∩ clXi for each i. For each n, let

(x̂n
i )i ∈ ΠiLi be such that (projL⊥i xn

i )i + (x̂n
i )i ∈ K. That is

∑

i∈I

projL⊥i xn
i +

∑

i∈I

x̂n
i ∈ B.

The first term,
∑

i∈IprojL⊥i xn
i , converges to

∑
i∈Ix

⊥
i , and since B is compact we can

assume that the second term,
∑

i∈I x̂
n
i , converges to some α. The limit α is in

∑
i∈ILi,

hence α =
∑

i∈Iαi where, for each i, αi ∈ Li. Since x⊥i ∈ L⊥i ∩ clXi and αi ∈ Li, and
∑

i∈I(x
⊥
i + αi) ∈ B, we get (x⊥i + αi)i ∈ K hence (x⊥i )i ∈ Kw.

Proposition 5.16 The following assertions are equivalent.

(i) The sets AXi are positively semi-independent.

(ii) The set K := {(x1, · · · , xI) ∈ ΠiclXi :
∑

i∈Ixi ∈ B} is bounded.

Moreover the set K is closed (without assuming (i)).

Proof. The set K is obviously closed, convex and its asymptotic cone is

AK = {(v1, · · · , vI) ∈ ΠiAXi :
∑

i∈I

vi = 0}.
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It is easy to check that the sets AXi are positively semi-independent if and only if AK =

{0} which in turn is equivalent to K being bounded.

Proposition 5.17 Let B be a convex compact. The following assertions are equivalent.

(i) The sets AXi are strongly positively semi-independent.

(ii) The set Ks = {(xi)i ∈ ΠiclXi : −
∑

i∈Ixi ∈
∑

i∈IclXi + B} is bounded.

Moreover the set Ks is closed (without assuming (i)).

Proof. The set Ks is obviously closed (by Proposition 5.18) and convex, and its asymptotic

cone is (note that A(
∑

i∈IXi) ⊂ A(
∑

i∈IclXi) ⊂ A(cl
∑

i∈IXi) = A(
∑

i∈IXi))

AKs = {(vi)i ∈ ΠiAXi,−
∑

i∈I

vi ∈ A(
∑

i∈I

Xi)}.

We show that the sets AXi are strongly positively semi-independent if and only if AKs =

{0}. Assume SPSI of the sets AXi and let (v1, · · · , vI) ∈ AKs. From vi ∈ AXi for each

i, and −
∑

i∈Ivi ∈ A(
∑

i∈IXi), we get
∑

i∈Ivi ∈
∑

i∈IAXi ∩ −A(
∑

i∈IXi). Hence, by

strong semi-independence,
∑

i∈Ivi = 0. Recalling that for every i, vi ∈ AXi and that, by

Proposition 5.11, the sets AXi are positively-semi-independent, we conclude vi = 0 for

every i. The converse is immediate.

5.2.4 Closedness properties

Proposition 5.18 Let Xi (i ∈ I) be convex subsets of RJ containing 0.

(a) Then
∑

i∈I AXi ⊂ A(
∑

i∈I Xi).
∑

i∈I L(Xi) ⊂ L(
∑

i∈I AXi) ⊂ L(
∑

i∈I Xi).

(b) If we additionally assume that the sets AXi are weakly positively semi-independent

then

(i) the set
∑

i∈IclXi is closed,

and the above inclusions are equalities, that is

(ii)
∑

i∈I AXi = A(
∑

i∈I Xi),

(iii)
∑

i∈I L(Xi) = L(
∑

i∈I AXi) = L(
∑

i∈I Xi).
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Proof. (a) We first notice that, for all i, L(Xi) ⊂ AXi ⊂ Xi. Hence
∑

i∈I

L(Xi) ⊂
∑

i∈I

AXi ⊂
∑

i∈I

Xi.

Using the fact that L(A) ⊂ L(B) if A ⊂ B we get
∑

i∈I

L(Xi) ⊂ L(
∑

i∈I

AXi) ⊂ L(
∑

i∈I

Xi).

Part (b) (i) Let
∑

i∈Ix
n
i −→n→∞

α where xn
i ∈ clXi. Then

∑

i∈I

x⊥n
i +

∑

i∈I

x̂n
i −→n→∞

α.

Notice that (by Proposition 5.15) for each i, x⊥n
i −→

n→∞
x⊥i ∈ clXi ∩L⊥i and we can assume

that
∑

i∈I x̂
n
i −→n→∞

β =
∑

i∈Iβi where βi ∈ Li for each i. Then α =
∑

i∈I(x
⊥
i + βi) ∈

∑
i∈IclXi.

Part (b) (ii) Let v ∈ A(
∑

i∈IXi). Write

v =
∑

i∈I

1
n

xn
i =

∑

i∈I

1
n

x⊥n
i +

∑

i∈I

1
n

x̂n
i

where, for each i, xn
i ∈ Xi, x⊥n

i ∈ Xi∩L⊥i ⊂ clXi∩L⊥i , and x̂n
i ∈ Li. Then (by Proposition

5.15), for each i,
1
n

x⊥n
i −→

n→∞
x⊥i ∈ AXi ∩L⊥i

and
∑

i∈I

1
n

x̂n
i −→n→∞

β ∈
∑

i∈I

Li.

Write β =
∑

i∈Iβi with βi ∈ Li for each i. Then v =
∑

i∈I(x
⊥
i + βi) ∈

∑
i∈IAXi.

Part (b) (iii) From (ii) above, we get L(
∑

i∈IXi) ⊂ L(
∑

i∈IAXi). We show that

L(
∑

i∈IAXi) ⊂
∑

i∈IL(Xi). Let v ∈ L(
∑

i∈IAXi). Write

v =
∑

i∈I

vi = −
∑

i∈I

v′i

with vi, v′i ∈ AXi. Then 0 =
∑

i∈I(vi + v′i) and for each i, vi + v′i ∈ AXi which implies

(under WPSI) that for every i, vi + v′i ∈ L(Xi). Hence

vi = −v′i + (vi + v′i) ∈ −AXi + L(Xi) ⊂ −AXi.

Therefore for every i, vi ∈ L(Xi) that is v =
∑

i∈Ivi ∈
∑

i∈IL(Xi).

Remark 5.8 L(
∑

i∈I Xi) ⊂ L(
∑

i∈I AXi). Let v ∈ L(
∑

i∈I Xi) ⊂ A(
∑

i∈I Xi), then

for every integer n, there exists xn
i ∈ Xi such that nv =

∑
i∈I xn

i or equivalently v =
∑

i∈I xn
i /n and we notice that xn

i /n ∈ Xi (since Xi is convex and contains 0). Consider
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now the set

K := {(x1, . . . , xI) ∈ Πi∈IclXi :
∑

i∈I

xi = v}.

Then K is compact since the fact that the sets AXi’s are positively semi-independent

implies that

AK := {(v1, . . . , vI) ∈ Πi∈IAXi :
∑

i∈I

vi = 0} = {0}.

From the compactness of K one deduces that, without any loss of generality each sequence

(xn
i /n) converges to some vi ∈ AXi. Hence v =

∑
i∈I vi ∈

∑
i∈I AXi. Similarly we prove

that −v ∈
∑

i∈I AXi.

Proof of L(
∑

i∈I AXi) ⊂
∑

i∈I L(Xi). This is a consequence of Proposition 5.18 taking

Ci := AXi.

Proposition 5.19 Let Xi (i ∈ I) be convex subsets of RJ containing 0. The following

four assertions are equivalent

(i) L(
∑

i∈I Xi) = {0},

(ii) L(
∑

i∈I AXi) = {0},

(iii) L(Xi) = {0} for all i, and the sets AXi are positively semi-independent.

(iv) L(Xi) = {0} for all i, and the sets AXi are weakly positively semi-independent.

Proof. From the above inclusions in (a) of Proposition 5.18, it is clear that (i) ⇒ (ii) ⇒
(iii) ⇒ (iv). We now show that (iv) ⇒ (i). Indeed, from Part (b) of Proposition 5.18, one

has
∑

i∈I

L(Xi) = L(
∑

i∈I

Xi).

Using the fact that L(Xi) = {0}, by (iv) we deduce that L(
∑

i∈I Xi) = {0}.

5.2.5 SPSI when the sets are not cones: once more

We need to reformulate the previous result to treat the case where Xi := Zi ∩ kerV ,

when Zi (i ∈ I) are closed convex subsets of RJ containing 0. The following result is a

consequence of the previous proposition noticing that for all i

A(Zi ∩ kerV ) = AZi ∩ kerV , and L(Zi ∩ kerV ) = L(Zi) ∩ kerV .
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Proposition 5.20 Let Zi (i ∈ I) be closed convex subsets of RJ containing 0.

(a) Then for all i A(Zi ∩ kerV ) = AZi ∩ kerV , L(Zi ∩ kerV ) = L(Zi) ∩ kerV and
∑

i∈I

L(Zi) ∩ kerV ⊂ L(
∑

i∈I

AZi ∩ kerV ) ⊂ L(
∑

i∈I

Zi ∩ kerV ),

∑

i∈I

L(Zi) ∩ {V ≥ 0} ⊂ L(
∑

i∈I

AZi ∩ {V ≥ 0}) ⊂ L(
∑

i∈I

Zi ∩ {V ≥ 0}),

L(
∑

i∈I

AZi ∩ kerV ) = L(
∑

i∈I

AZi ∩ {V ≥ 0}).

The sets AZi ∩ kerV are positively semi-independent if and only if AZi ∩ {V ≥ 0} are

positively semi-independent.

(b) If we additionally assume that the sets AZi ∩ kerV are positively semi-independent

then the above inclusions are equalities, that is
∑

i∈I

L(Zi) ∩ kerV = L(
∑

i∈I

AZi ∩ kerV ) = L(
∑

i∈I

Zi ∩ kerV )

∑

i∈I

L(Zi) ∩ {V ≥ 0} = L(
∑

i∈I

AZi ∩ {V ≥ 0}) = L(
∑

i∈I

Zi ∩ {V ≥ 0}),

∑

i∈I

L(Zi) ∩ kerV =
∑

i∈I

L(Zi) ∩ {V ≥ 0}.

(c) The following assertions are equivalent

(i) L(
∑

i∈I Zi ∩ kerV ) = {0}, that is A(
∑

i∈I Zi ∩ kerV )∩−A(
∑

i∈I Zi ∩ kerV ) = {0},

(ii) L(
∑

i∈I AZi∩kerV ) = {0}, that is (
∑

i∈I AZi∩kerV )∩−(
∑

i∈I AZi∩kerV ) = {0},

(iii)
∑

i∈I L(Zi)∩kerV = {0}, and the sets AZi∩kerV are positively semi-independent,

(iv) L(Zi) ∩ kerV = {0} for all i, and the sets AZi ∩ kerV are positively semi-

independent.

(v) L(
∑

i∈I Zi ∩ {V ≥ 0}) = {0}, that is A(
∑

i∈I Zi ∩ [V ≥ 0]) ∩ −A(
∑

i∈I Zi ∩ {V ≥
0}) = {0},

(vi) L(
∑

i∈I AZi∩{V ≥ 0}) = {0}, that is (
∑

i∈I AZi∩{V ≥ 0})∩−(
∑

i∈I AZi∩{V ≥
0}) = {0},

(vii)
∑

i∈I(L(Zi) ∩ {V ≥ 0}) = {0}, and the sets AZi ∩ kerV are positively semi-

independent,
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(viii) L(Zi) ∩ {V ≥ 0} = {0} for all i, and the sets AZi ∩ kerV are positively semi-

independent.

Proof. This is a consequence of the previous proposition, noticing that

A(Zi ∩ kerV ) = AZi ∩ kerV , L(Zi ∩ kerV ) = L(Zi) ∩ kerV.

A direct proof is also given hereafter.

(a) We first notice that, for all i, L(Zi) ⊂ AZi ⊂ Zi. Hence

∑

i∈I

L(Zi) ∩ kerV ⊂
∑

i∈I

AZi ∩ kerV ⊂
∑

i∈I

Zi ∩ kerV.

Using the fact that L(A) ⊂ L(B) if A ⊂ B we get

∑

i∈I

L(Zi) ∩ kerV ⊂ L(
∑

i∈I

AZi ∩ kerV ) ⊂ L(
∑

i∈I

Zi ∩ kerV ).

Similarly the analogous inclusions hold when we replace kerV by {V ≥ 0}.

To show the last equality we first notice that L(
∑

i∈I AZi ∩ kerV ) ⊂ L(
∑

i∈I AZi ∩
[V ≥ 0]). Conversely let v ∈ L(

∑
i∈I AZi ∩ {V ≥ 0}). Then v =

∑
i∈Ivi = −

∑
i∈Iwi

with vi, wi in AZi ∩ {V ≥ 0}. One easily checks that V vi = V wi = 0 and therefore

v ∈ L(
∑

i∈I AZi ∩ kerV ).

Part (b) L(
∑

i∈I Zi ∩ kerV ) ⊂ L(
∑

i∈I AZi ∩ kerV ). Let v ∈ L(
∑

i∈I Zi ∩ kerV ), then

for every integer n, there exists zn
i ∈ Zi ∩ kerV such that nv =

∑
i∈I zn

i or equivalently

v =
∑

i∈I zn
i /n and we notice that zn

i /n ∈ Zi ∩ kerV (since Zi is convex and contains 0).

Consider now the set

K := {(z1, . . . , zI ∈ Πi∈IZi :
∑

i∈I

zi = v, V zi = 0}.

Then K is compact since the fact that the sets AZi∩kerV are positively semi-independent

implies that

AK := {(v1, . . . , vI ∈ Πi∈IAZi :
∑

i∈I

vi = 0, V vi = 0} = {0}.

From the compactness of K one deduces that, without any loss of generality each sequence

(zn
i /n) converges to some vi ∈ AZi ∩ kerV . Hence v =

∑
i∈I vi ∈

∑
i∈I AZi ∩ kerV .

Similarly we prove that −v ∈
∑

i∈I AZi ∩ kerV .

Proof of L(
∑

i∈I AZi∩kerV ) ⊂
∑

i∈I L(Zi)∩kerV . This is a consequence of the above
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proposition taking Ci := AZi ∩ kerV .

Part (c) From the above inclusions in (a), it is clear that (i) ⇒ (ii) ⇒ (iii) and clearly

(iii) ⇔ (iv). The implication (iii) ⇒ (ii) is a consequence of Part (b). We now prove

that (ii) ⇒ (i). Indeed, if L(
∑

i∈I AZi ∩ kerV ) = {0}, from the above proposition

taking Ci := AZi ∩ kerV we deduce that the family Ci := AZi ∩ kerV is positively

semi-independent. Consequently from Part (b)

L(
∑

i∈I

AZi ∩ kerV ) = L(
∑

i∈I

Zi ∩ kerV ) = {0}.

The implication (v) ⇒ (ii) is immediate. For (ii) ⇒ (v), let v ∈ L(
∑

i∈I AZi∩{V ≥ 0}).
Then v =

∑
i∈Ivi = −

∑
i∈Iwi where, for every i, vi, wi ∈ AZi ∩ {V ≥ 0}. Hence 0 =

∑
i∈I(V vi + V wi) which implies V vi = V wi = 0 for every i. Therefore v ∈ L(

∑
i∈I AZi ∩

kerV ) = {0}, that is v = 0.

Remark The implication (iii) ⇒ (ii) may not be true if the sets AZi ∩ kerV are not

assumed to be positively semi-independent. Consider in R2 a null matrix V (so that

kerV = {0} and Z1 := R2
+ and Z2 := {(x, y) : y ≥ x2}. Then LZ1 = LZ2 = LZ1+LZ2) =

{0} and AZ1 = R2
+ , AZ2 = {(x, y) : x = 0, y ≤ 0}, AZ1 + AZ2 = { (x, y) : x ≥ 0}, and

L(AZ1 + AZ2) = { (x, y) : x = 0}.
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