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Abstract

The study focuses primarily on Vandermonde-like matrix systems. The idea is to ex-

press Vandermonde and Vandermonde-like matrix systems as the problems related to

Krylov Matrices. The connection provides a different angle to view the Vandermonde-

like systems. Krylov subspace methods are strongly related to polynomial spaces,

hence a nice connection can be established using LU factorization as proposed by

Bjorck and Pereyra [2] and QR factorization by Reichel [11]. Further an algorithm

to generate a preconditioner is incorporated in GR algorithm given by Reichel [11].

This generates a preconditioner for Vandermonde-like matrices consisting of polyno-

mials which obey a three term recurrence relation. This general preconditioner works

effectively for Vandermonde matrices as well. The preconditioner is then tested on

various distinct nodes. Based on results obtained, it is established that the condition

number of Vandermonde -like matrices can be lowered significantly by application of

the preconditioner, for some cases.
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Chapter 0

Some Useful Definitions and Notations.

0.1 Notations

R :- Real number field

Rn:- n-dimensional real vector space

Rn×n:- Space of n×n real matrices

P:- Space of polynomials

Pn:- Space of polynomials with degree less than or equal to n

C:- Complex number field

Cn:- n-dimensional complex vector space

Cn×n:- Space of n×n complex matrices

C[a,b]:- Space of continuous functions on the interval [a,b]

‖ · ‖:- A matrix norm is a function ‖ · ‖ : Rm×n → R satisfying the three vector norm

properties. The Frobenius norm for a matrix A ∈ Rm×n is given by

‖A‖F =

√
m

∑
i=1

n

∑
j=1
|ai j|2 =

√
(tr(AT A)).
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The Euclidean norm or the two norm of a matrix A ∈ Rm×n is given by

‖A‖2 =
√

(ρ(AT A)), where ρ(AT A) is the spectral radius of AT A.

0.2 Definitions

0.2.1 Vandermonde Matrix.

A classical (n+1)× (n+1) Vandermonde matrix is defined as follows

V̆ =



1 x1 . . . xn
1

1 x2 . . . xn
2

...
...

...
...

1 xn+1 . . . xn
n+1


.

Vandermonde matrices generally arise when matrix methods are used in problems of

polynomial interpolation, in solution of differential equations, and in analysis of recur-

sively defined sequences.

0.2.2 Vandermonde-like Matrix.

A Vandermonde like matrix is defined by

V
[
p j−1(xi)

]
1≤ j≤m+1,1≤i≤n+1 =



p0(x1) p1(x1) . . . pm(x1)

p0(x2) p1(x2) . . . pm(x2)
...

... . . .
...

p0(xn+1) p1(xn+1) . . . pm(xn+1)


=
[
vk j
]

1≤k≤n+1,1≤ j≤m+1
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where p j is a polynomial of degree j.

0.2.3 Krylov Matrices.

For a given matrix A ∈ Rn×n, and a given vector x ∈ Rn, a Krylov matrix is defined as

K(A,x) = Kn(A,x) =
[
x,Ax,A2x,A3x, . . . ,An−1x

]
∈ Rn×n.

Krylov subspace methods form an important class of iterative methods while solving

for large scale system of linear equations and eigenvalue problems. For details refer

[16].

0.2.4 Condition Number of a Matrix.

Condition number of a matrix A ∈ Rn×n is defined as

κ(A) = ‖A‖‖A−1‖

where ‖ · ‖ is a norm defined on the matrix space Rn×n. A problem with a small con-

dition number is said to be well-conditioned, while a problem with a large condition

number is said to be ill-conditioned. If matrix A is singular, i.e , det(A) = 0, then

κ(A) = ∞.

0.2.5 Orthogonal Polynomials Satisfying a Recurrence Relation.

Define the inner product 〈p,q〉w =
∫ b

a w(x)p(x)q(x)dx, ∀p(x),q(x)∈P, where w(x) >

0 for a≤ x ≤ b is a weight function. A sequence of polynomials {p0(x), . . . pk(x), . . .}

are orthogonal if 〈pi(x), p j(x)〉w = 0, for i 6= j. It is orthonormal if it further satisfies
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〈pi(x), pi(x)〉w = 1, for i = 0,1, . . . .

For any weight function w(x) and interval [a,b], so that 〈·, ·〉w is well defined, a sequence

of orthogonal polynomials can be constructed by applying the Gram-Schmidt orthog-

onalization to 1,x,x2, . . . ,xk, . . .. Such a sequence of polynomials {p0(x), . . . pk(x), . . .}

always satisfies a three term recurrence relation and degpk(x) = k for k = 0,1, . . ..

For instance when w(x) = (1− x2)−1/2 with limits of orthogonality being [−1,1],

we get the well known sequence of polynomials known as Chebyshev polynomials,

Tk(x) = cos(k arccos(x)). For w(x) = 1, a sequence of polynomials known as Legendre

polynomials, is given by Rodrigues formula

Pn(x) =
1

2nn!
dn

dxn

[
(x2−1)n] , x ∈ [−1,1] .

Let x1,x2, . . . ,xn+1 be distinct real numbers and let w = [w1,w2, . . . ,wn+1] with

w1,w2, . . . ,wn+1 > 0, a discrete-type inner product can be defined for the polynomial

space Pn as,

〈p,q〉w =
n+1

∑
i=1

p(xi)q(xi)w2
i ∀ p(x),q(x) ∈ Pn.

0.2.6 Preconditioner.

For a given system of linear equations Ax = b, one intends to find a non-singular matrix

P to transform the system to PAx = Pb so that the condition number of PA is (hopefully)

much smaller than condition number of A, and the cost of computation of such a P is

not very expensive. Matrix P is called a preconditioner of A. The ideal choice of P is

A−1, but this is impractical as computation of A−1 is much more expensive than solving

Ax = b. In practice, it is required that P is in a certain simple form. In this study we

will restrict P to be diagonal.
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0.2.7 Hessenberg Matrix.

A matrix H ∈ Rn×n is said to be upper Hessenberg if hi j = 0 whenever i > j +1. This

means that the matrix has a nearly triangular form



∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗


.

H is said to be lower Hessenberg if hi j = 0 whenever i < j−1.

0.2.8 Orthogonal Matrix.

A matrix Q ∈ Rn×n is said to be orthogonal if QQT = I. This implies that Q has an

inverse and, Q−1 = QT . By the property that a matrix commutes with its inverse, we

have QT Q = I. Further det(Q) =±1, and also ∀x ∈ Rn, ‖Qx‖2 = ‖x‖2.
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0.2.9 Givens Rotation.

Givens rotations are effective tools for introducing zeros on a grand scale selectively.

A Givens rotation is given in matrix form as follows.

G(i,k,θ)=



i k

1 . . . 0 . . . 0 . . . 0
... . . . ...

...
...

i 0 . . . c . . . s . . . 0
...

... . . . ...
...

k 0 . . . −s . . . c . . . 0
...

...
... . . . ...

0 . . . 0 . . . 0 . . . 1



, c = cos(θ), s = sin(θ), c2+s2 = 1,

for some rotation angle θ . A Givens rotation G(i,k,θ), when applied to a matrix A from

left, affects the i and k rows only of A.

0.2.10 Newton’s Divided Difference

Let f (x) be a function, defined on (n +1) distinct points on its domain. Let p(x) ∈ Pn

be the interpolating polynomial of at most degree n, approximating f (x) at these points.

The general form of the interpolating polynomial based on Newton’s divided difference

for (n+1) data points, (x1, f (x1), . . . ,(xn+1, f (xn+1)) is given by

p(x) = b0 +b1(x− x1)+b1(x− x1)(x− x2)+ · · ·+bn(x− x1) . . .(x− xn),

where

b0 = f [x1] = f (x1),

10



b1 = f [x1,x2] =
f (x1)− f (x2)

x1− x2
,

and proceeding in this way, the kth term is given by

bk = f [x1, . . . ,xk+1] =
f [x1,x2, . . . ,xk]− f [x2,x3, . . . ,xk+1]

x1− xk+1
.

The terms bi are known as Newton’s divided difference of ith order.
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Chapter 1

Introduction

1.1 Overview

There is more to Vandermonde matrix than meets the eye. A Vandermonde matrix is

defined as follows

V̆ =



1 x1 . . . xn
1

1 x2 . . . xn
2

...
...

...
...

1 xn+1 . . . xn
n+1


.

The determinant of V̆ is given by the compact formula det(V̆ ) = ∏
1≤i< j≤n+1

(x j− xi).

Before going into detail, let us talk a little about polynomial interpolation. Suppose we

have n + 1 distinct points (x1,y1),(x2,y2), . . . ,(xn+1,yn+1). The process of fitting an n

degree polynomial to these points is usually referred to as polynomial interpolation. If

the polynomial is p(x) = a0+a1x+ . . .+anxn, then the coefficients ai can be determined

by solving the equations p(xi) = yi for i = 1, . . . ,n+1.

12



The matrix form of such a system is given by



1 x1 . . . xn
1

1 x2 . . . xn
2

...
...

...
...

1 xn+1 . . . xn
n+1





a0

a1

...

an


=



y1

y2

...

yn+1


.

Observe that the coefficient matrix is a Vandermonde matrix. The determinant is

nonzero if all xi are distinct.

The Vandermonde matrix is generated by the monomials 1,x, . . . ,xn at the given nodes.

For this study we chose real nodes. Since we will be discussing QR factorization by

tridiagonal reduction, we avoid complex nodes. If we replace the monomials in the

Vandermonde matrix by polynomials p0(x), p1(x), . . . , pn(x), the resulting matrix is a

Vandermonde-like matrix.

Vandermonde matrices are an important tool due to their connection to FFT. They can

also be used to solve minmax problem [10]. Vandermonde matrices also find use in the

solution of multivariate interpolation problem [4]. In the study, the main focus would

be on Vandermonde-like matrices, especially when p j(x) satisfy a recurrence relation.

The reason of such interest in Vandermonde-like matrices is based on the fact that for

certain polynomials they tend to be better conditioned than classical Vandermonde ma-

trices.

1.2 Goal

One of the goals of the study is to reveal some basic relations of Vandermonde and

Vandermonde-like matrices and Krylov Matrices. We make an effort to look at the

13



interpolation problem in context of Krylov matrix. We will discuss the relation with

LU factorization given by Bjorck and Pereyra [2] and the QR factorization by Reichel

in [11]. The focus is also on finding a preconditioner, in this case a diagonal matrix. The

condition number in Frobenius norm, is computed by taking all weights unity and then

the optimal weights from the preconditioner. A comparison of condition numbers is

made to detect any improvement upon the condition number. The study also discusses

the inverse of Vandermonde matrices.

1.3 Outline

The study is broken into four areas. Chapter 2 reviews few theorems which are used

in the study. Chapter 3 focuses on the fast LU factorization of Vandermonde matrices.

Using the tools, which were used in this process, a connection is established between

Vandermonde matrices and Krylov matrices. Further the same tools are used in chapter

5 to find the inverse.

Chapter 4 focuses on fast QR factorization. For doing so Vandermonde-like matrices

are considered, which are constructed using orthogonal polynomials with three term

recurrence relation. The GR algorithm is used to compute the upper triangular matrix R

for a given Vandermonde-like matrix. The study is not restricted to only Vandermonde-

like matrices. It is also shown that the same can be extended to classical Vandermonde

and Vandermonde-like matrix with polynomials not following three term recurrence.

Chapter 5 discusses work of select authors on finding inverse of Vandermonde matrix.

This chapter also shows how the method given by Traub [12] can be connected to

Krylov matrix in finding the inverse of Vandermonde matrix.

Chapter 6 focuses in deriving the preconditioner for the Vandermonde-like matrices,

which is restricted to be diagonal. The diagonal preconditioner is incorporated with

14



the GR algorithm to see if an improvement on condition number of the Vandermonde-

like matrices is obtained. A comparison is made between condition numbers obtained

by using programming in MATLAB. Finally some conclusions are drawn in the last

chapter.

15



Chapter 2

Theory of HR Factorizations.

2.1 Overview: HR Factorizations.

This section will go over some basic theory. A few theorems from [6] are cited in this

section.

Theorem 1. [6][QR Decomposition] Given A ∈ Rn×n, there exists a real orthogonal

matrix Q ∈ Rn×n i.e. QT Q = In, and an upper triangular matrix R such that A = QR.

Moreover if A is non-singular and there exists another QR decomposition A = Q̃R̃ then

Q̃ = QD, R̃ = DR, where D = diag [d1,d2, . . . ,dn] , di =±1, i = 1,2, . . . ,n, i.e, D is

a signature matrix.

Theorem 2. [6][LU factorization] Suppose A∈Rn×n, and detAk 6= 0, ∀ Ak, the lead-

ing principal k× k submatrix of A, k = 1,2, . . . ,n−1. Then there exists a lower trian-

gular L and a unit upper triangular matrix U such that

A = LU.

Moreover the factorization is unique.

16



Note that usually for an LU factorization, L is unit lower triangular and U is upper

triangular. The factorization described in the above theorem is slightly different, but

they are essentially the same by connecting both to the LDU factorization with L, U

being unit lower and unit upper triangular respectively and D diagonal .

Theorem 3. Suppose A ∈ Rn×n, 0 6= b ∈ Rn, and

K = K(A,b) =
[
b,Ab,A2b, . . . ,An−1b

]
∈ Rn×n.

Suppose X ∈ Rn×n is non-singular. If

X−1AX = H, X−1b = σe1, (2.1)

where H is upper Hessenberg and σ ∈ R, and e1 is the first column of I, the identity

matrix, then

K = XR (2.2)

where R = σ
[
e1,He1, . . . ,Hn−1e1

]
is upper triangular.

Conversely, if R is non-singular(so is K), then (2.2) implies (2.1).

Moreover, if X is either lower triangular or real orthogonal, and R is non-singular,

then (2.1) and (2.2) are essentially unique, meaning if there is another X̃ satisfying

both (2.1) and (2.2). Then X̃ = XD, where D is a non-singular diagonal matrix.

Proof. (2.1) =⇒ (2.2)

The equation X−1b = σe1 gives b = σXe1. Notice if X−1AX = H, then X−1AXX−1AX =

H2 or X−1A2X = H2. Which further implies that for any k ∈ Z, X−1Ak−1X = Hk−1.

Now

K =
[
b,Ab,A2b, . . . ,An−1b

]

17



=
[
b,XHX−1b, . . . ,XHn−1X−1b

]
=
[
σXe1,XHσe1, . . . ,XHn−1

σe1
]

= σX
[
e1,He1, . . . ,Hn−1e1

]
.

So we have

K = XR,

where R = σ
[
e1,He1, . . . ,Hn−1e1

]
is upper triangular.

(2.2) =⇒ (2.1)

Since X−1K = R we have

X−1K = X−1 [b,Ab,A2b, . . . ,An−1b
]
= R,

=⇒
[
X−1b,X−1Ab,X−1A2b, . . . ,X−1An−1b

]
= R.

Comparing both sides column by column, we establish X−1b = R1e1 = r11e1.

Further (X−1AX)(X−1b) = Re2⇒ (X−1AX)r11e1 =



r12

r22

0
...

0


.

If R is non-singular then rii 6= 0, hence

18



(X−1AX)e1 =



r12

r11
r22

r11

0
...

0


=: h11e1 +h21e2, (2.3)

where h21 =
r22

r11
6= 0.

Next, from

(X−1AX)2X−1b = Re3,

we have

(X−1AX)2r11e1 = Re3.

Multiplying both sides of (2.3), by (X−1AX), we get

(X−1AX)2e1 = (X−1AX)h11e1 +(X−1AX)h21e2 =
1

r11
Re3.

Or equivalently

(X−1AX)h21e2 =
1

r11
Re3− (X−1AX)h11e1.

Using (2.3) and the fact, that Re3 is a linear combination of e1, e2, e3, we have

(X−1AX)e2 = h12e1 +h22e2 +h23e3,

where h23 =
r33

r11h21
6= 0.

Proceeding in the same manner and using induction, arranging the results column by

column and noticing that (X−1AX)e1,(X−1AX)e2 . . .(X−1AX)en form the columns of
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X−1AX , we finally have

X−1AX =



h11 h12 . . . h1n

h21 h22 . . . h2n

. . . . . . ...

0 0 hn−1,n−1 hnn


= H.

The essential uniqueness follows from the fact that of (2.2) shown in Theorem 1 and 2

or [6].
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Chapter 3

LU Factorization.

3.1 Bjorck and Pereyra Algorithm for Solutions of Van-

dermonde Systems.

This section discusses the fast algorithm to compute LU factorization of Vandermonde

matrix as given by Bjorck and Pereyra in [2]. Consider the Vandermonde system of

equations

V̆ a = f , (3.1)

where

V̆ =



1 x1 . . . xn
1

1 x2 . . . xn
2

...
... . . . ...

1 xn+1 . . . xn
n+1


∈ R(n+1)×(n+1), f =



f1

f1

...

fn+1


,

x1,x2, . . . ,xn+1 are distinct points, and a =
[

a0,a1, . . . ,an

]T

∈ R(n+1) is an unknown

vector. Such a system of equations arises in a variety of applications. One of them is

classical interpolation problem.

Given a function f (x) and a set of distinct points {x1,x2, . . . ,xn+1}, determine a poly-
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nomial P(z) = a0 +a1z+ . . .+anzn with degree at most n, such that P(xi) = f (xi) =: fi,

for i = 1....n+1. The coefficients of P(x) can be determined by solving Vandermonde

matrix system given by (3.1)

Another way to compute the coefficient vector a of P(z) is to use Newton’s divided

difference method and the Horner’s like formula as given in [8].

Introduce the polynomials

q0(z) = 1, qk(z) =
k

∏
i=1

(z− xi), k = 1, . . .n.

P(z) can be expressed as

P(z) = [q0(z),q1(z), . . . ,qn(z)]c, c = [c0,c1, . . . ,cn]
T ,

where c0 = f (x1), and

ck = f [x1,x1, . . . ,xk+1] =
f [x1,x2, . . . ,xk]− f [x2,x3, . . . ,xk+1]

x1− xk+1
, k = 1,2, . . . ,n,

with f
[
x j
]
= f (x j), j = 1,2, . . . ,n+1. The coefficient vector c can be calculated by

the following recurrence, based on Newton’s divided difference scheme which is given

in Algorithm (1),

with c = c(n).

The coefficient vector a can be determined based on the following relations. P(z) =

P0(z), where P0(z) is derived by the following recurrence

Pn(z) = cn, Pk(z) = (z− xk+1)Pk+1 + ck, k = n−1, . . . ,1,0 (3.2)
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Algorithm 1

Set c(0) = [ f (x1), f (x2), . . . , f (xn+1)]
T =:

[
c(0)

0 ,c(0)
1 , . . . ,c(0)

n

]
For k = 0,1, . . . ,n−1
Compute c(k+1) =

[
c(k+1)

0 ,c(k+1)
1 , . . . ,c(k+1)

n

]
with the formula

c(k+1)
j =

{
c(k)

j −c(k)
j−1

x j+1−x j−k
j > k

c(k)
j j ≤ k

End

Denote

Pk(z) = a(k)
k +a(k)

k+1z+ · · ·+a(k)
n zn−k,

and a(k) =
[
c0, . . . ,ck−1,a

(k)
k , . . . ,a(k)

n

]T
, k = 0,1, . . . ,n, where a(n)

n = cn. Then a(n) =

c, a(0) = a.

From (3.2), we have the iteration given below in Algorithm 2.

The detailed description of this method can be found in [2]. An error analysis is given

Algorithm 2

Set an = c :=
[
a(n)

0 ,a(n)
1 , . . . ,a(n)

n

]
For k = n−1, . . . ,1,0

Compute a(k) =
[
a(k)

0 ,a(k)
1 , . . . ,a(k)

n

]T
with the formula

a(k)
j =

{
a(k+1)

j j ≤ k−1& j = n

a(k+1)
j − xka(k+1)

j+1 k ≤ j ≤ n−1

End

in [8].
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The recurrence for ck and ak can be formulated in matrix vector forms. The above

algorithm also gives a procedure to obtain LU factorization of V̆ .

Define the lower bidiagonal matrix Φk(α) ∈ R(n+1)×(n+1) by

Φk(α) =



Ik 0

0

1 0 . . . 0

−α 1 . . . 0
... . . . . . . ...

0 . . . −α 1


Further define Mk = Φk(1), Dk = diag(1, . . . ,1,xk+2−x1, . . . ,xn+1−xn−k), Nk =

Φk(xk+1)T . The vectors a = a(0), c = c(n) can be computed recursively by

c(k+1) = D−1
k Mkc(k), k = 0,1, . . . ,n−1,

and

a(k) = Nka(k+1)
k , k = n−1, . . . ,1,0.

Since c(0) = f , one has c = cn := L−1 f where L−1 is lower triangular matrix defined by

L−1 = D−1
n−1Mn−1 . . .D−1

0 M0 = D−1
n−1Φn−1(1) . . .D−1

0 Φ0(1).

Similarly, since a(n) = c, one has a = U−1c, where U−1 is unit upper triangular matrix

defined by

U−1 = N0N1 . . .Nn−1 = Φ0(x1)T . . .Φn−1(xn)T

Thus a = U−1L−1 f . Since U−1 and L−1 are independent of f , comparing a = V̆−1 f

with
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a = U−1L−1 f we have V̆−1 = U−1L−1 or equivalently V̆ = LU.

Therefore, the above Newton’s divided difference approach actually computes, implic-

itly an LU factorization of V̆ . Note that commonly we call V̆ = LU an LU factorization

if L is unit lower triangular and U is upper triangular. Here is L is lower triangular and

U is unit upper triangular.

3.2 Illustration of Fast LU Factorization.

The LU factorization procedure is similar to the Gaussian elimination method. It can

also be described with matrix operations. Let us illustrate the above process with a

3×3 Vandermonde matrix.

Let

V̆ =


1 x1 x1

2

1 x2 x2
2

1 x3 x3
2

 .

Using

D0
−1 =


1 0 0

0 1
x2−x1

0

0 0 1
x3−x2

 , M0 =


1 0 0

−1 1 0

0 −1 1

 , N0 =


1 −x1 0

0 1 −x1

0 0 1

 ,

we have

M0V̆ =


1 0 0

−1 1 0

0 −1 1




1 x1 x1
2

1 x2 x2
2

1 x3 x3
2

 ,
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=


1 x1 x1

2

0 x2− x1 (x2− x1)(x2 + x1)

0 x3− x2 (x3− x2)(x3 + x2)

 ,

D−1
0 (M0V̆ ) =


1 0 0

0 1
x2−x1

0

0 0 1
x3−x2




1 x1 x1
2

0 x2− x1 (x2− x1)(x2 + x1)

0 x3− x2 (x3− x2)(x3 + x2)



=


1 x1 x1

2

0 1 x2 + x1

0 1 x3 + x2

 ,

(D−1
0 M0V̆ )N0 =


1 x1 x1

2

0 1 x2 + x1

0 1 x3 + x2




1 −x1 0

0 1 −x1

0 0 1

 =


1 0 0

0 1 x2

0 1 x3 + x2− x1

 .

In the next step

D−1
1 =


1 0 0

0 1 0

0 0 1
x3−x1

 , M1 =


1 0 0

0 1 0

0 −1 1

 , N1 =


1 0 0

0 1 −x2

0 0 1

 .

The computations are as follows

M1(D0
−1M0V̆ N0) =


1 0 0

0 1 0

0 −1 1




1 0 0

0 1 x2

0 1 x3 + x2− x1

 =


1 0 0

0 1 x2

0 0 x3− x1

 ,
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D−1
1 (M1D0

−1M0V̆ N0) =


1 0 0

0 1 0

0 0 1
x3−x1




1 0 0

0 1 x2

0 0 x3− x1

=


1 0 0

0 1 x2

0 0 1

 ,

(D−1
1 M1D0

−1M0V̆ N0N1) =


1 0 0

0 1 x2

0 0 1




1 0 0

0 1 −x2

0 0 1

= I3.

In this example n = 2. So n−1 = 1. Hence for L = M−1
0 D0M−1

1 D1, U = N−1
1 N−1

0 ,

V̆ = LU.

The procedure is the same for a general (n + 1)× (n + 1) Vandermonde matrix V̆ .

Proceeding in the same manner as above, post-multiplying by N0N1 . . .Nn−1 and pre-

multiplying by D−1
n−1Mn−1 . . .D−1

0 M0 we get

D−1
n−1Mn−1 . . .D−1

0 M0V̆ N0N1 . . .Nn−1 = I.

Set L−1 = D−1
n−1Mn−1 . . .D−1

0 M0 and U−1 = N0N1 . . .Nn−1, or equivalently

L = M−1
0 D0 . . .M−1

n−1Dn−1 = Φ0(−1)D0 . . .Φn−1(−1)Dn−1, (3.3)

U = N−1
n−1 . . .N−1

1 N−1
0 = Φn−1(−xn)T . . .Φ1(−x2)T

Φ0(−x1)T . (3.4)
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Then

L−1V̆U−1 = I, ⇒ V̆ = LU,

where L is lower triangular and U is unit upper triangular.

If we compute such an LU factorization with L and U in product form, then only the

diagonal elements of Dk need to be computed, which needs n(n+1)
2 flops. If L and U

need to be explicitly formed then the cost will be O(n3) flops.

3.3 A Connection with Krylov Matrices

In this section we interpret the LU factorization of Vandermonde matrix by using basic

properties of Krylov matrices. Let

Λ =



x1 0 . . . 0

0 x2 . . . 0
...

... . . . ...

0 0 . . . xn+1


, e =



1

1
...

1


,

where {xi}n+1
i=1 is a set of distinct nodes. Then for L defined in (3.3), it is easily verified,

that

L−1
ΛL =



x1 0 . . . . . . 0

1 x2 . . . . . . 0

0 1 x3 . . . 0
...

...
...

...
...

0 . . . 0 1 xn+1


=: H, L−1e =



1

0
...

0


= e1.

Notice that H is a special type of upper Hessenberg matrix, although it is more appro-

priate to call it lower bidiagonal.
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The Vandermonde matrix V̆ can be written as a Krylov matrix

V̆ =
[
e,Λe,Λ2e, . . . ,Λne

]
.

Using Λ = LHL−1 and e = Le1,

V̆ =
[
e,LHL−1e,LH2L−1e, . . . ,LHnL−1e

]
= L [e1,He1, . . . ,Hne1]

=: LU.

Clearly L is lower triangular and it is easily verified that U is unit upper triangular. By

theorem 2, the LU factorization is just the same as that derived in the previous section.

The derivation examines the result of Theorem 3 with Vandermonde matrices. That is,

the LU factorization of V̆ is equivalent to the upper Hessenberg reduction.
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Chapter 4

QR Factorization of Vandermonde Matrices and Least

Squares Polynomial Approximation.

4.1 Overview.

This section summarises the technique used by Reichel [11] to compute fast QR fac-

torization of Vandermonde like matrices in order to determine polynomials with least

squares approximation. Let {xk}n+1
k=1 be a set of distinct nodes on the real axis. For Pn,

the inner product is defined as follows 〈 f ,g〉w := ∑ f (xk)g(xk)w2
k , ∀ f ,g ∈ Pn, where

{wk}n+1
k=1 is a set of positive real weights. The least squares problem is proposed as

follows. Given a function f and a polynomial basis p0(x), . . . , pm(x) for Pm,(m ≤ n).

Determine

p(x) = c0 p0(x)+ c1 p1(x)+ · · ·+ cm pm(x) ∈ Pm,

such that p(x) minimizes 〈 f − q, f − q〉w over q ∈ Pm. This is equivalent to the least

squares problem:

Determine c = [c0,c1, . . . ,cm]T to minimize

‖V c− f‖w = ‖W (V c− f )‖2, ∀c ∈ Rm+1, (4.1)
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where

V =
[
p j−1(xi)

]
=



p0(x1) p1(x1) . . . pm(x1)

p0(x2) p1(x2)
. . . pm(x2)

...
... . . . ...

p0(xn+1) p1(xn+1) . . . pm(xn+1)


∈ R(n+1)×(m+1),

f =


f (x1)

...

f (xn+1)

 , W =



w1 0 . . . 0
... w2

...
...

...
... . . . ...

0 0 . . . wn+1


.

If WV = Q̃R, d = Q̃TW f , where Q̃∈R(n+1)×(m+1) is orthonormal, R∈R(m+1)×(m+1)

is upper triangular, then c = R−1d. So the main task is to compute the reduced QR

factorization WV = Q̃R.

Reichel proposed the following way to compute the QR factorization. First of all an

orthogonal matrix Q is computed, such that

Q =
[
Q̃, Q̂

]
∈ R(n+1)×(n+1)

in the following way. Let {π j}n
j=0 be an orthonormal basis for Pn with respect to the

inner product defined above, with degπ j = j and positive leading coefficient. The poly-

nomials π j satisfy a three term recurrence relation given below

β0π0(x) = 1,

β1π1(x) = (x−α1)π0(x),
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β jπ j(x) = (x−α j)π j−1(x)−β j−1π j−2(x), j = 2, . . . ,n. (4.2)

The coefficients α j and β j > 0 satisfy the following conditions.

β0 = 〈1,1〉
1
2
w, β1 = (〈xπ0,xπ0〉w−α

2
1 )

1
2 ,

α j = 〈xπ j−1,π j−1〉w, j = 1,2, . . . ,n+1,

β j = (〈xπ j−1,xπ j−1〉w−α
2
j −β

2
j−1)

1/2, j = 2,3, . . . ,n.

Instead of using the formulas directly, Reichel’s method is to compute scalars α j,β j

therefore also π0,π1 . . . ,πn, and the orthogonal matrix Q, based on tridiagonal reduc-

tion. Let

Λ =



x1

x2

. . .

xn+1


. (4.3)

A series of careful Givens rotations is applied to Λ to determine T , a unique, symmetric

tridiagonal matrix with diagonal and subdiagonal elements consisting of coefficients

α j and β j. The Givens rotations form Q, although Q is not an explicit output of the

proposed method. The compute matrix Q and T satisfy

QT
ΛQ = T =



α1 β1

β1 α2
. . .

. . . . . . βn

βn αn+1


, (4.4)

Qe1 =
1
‖w‖2

w, (4.5)
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where w =
[

w1,w2, . . . ,wn+1

]T

. We illustrate the process with n = 2.

Let

Λ =


x1

x2

x3

 , w =


w1

w2

w3

 .

We have defined the Givens rotation in chapter 0. For an arbitrary α0 ∈ R we set

T ′2 = T ′′2 =

 α0 w1

w1 x1

 .

We then add the next node x2 and weight w2 to form

T ′3 =


α0 w1 w2

w1 x1 0

w2 0 x2

 .

Now we perform a similarity transformation on T ′3 with a Givens rotation acting on last

two rows and columns to annihilate w2 to get

T ′′3 =


α0 β̂0 0

β̂0 α̂1 β̂1

0 β̂1 α̂2

 .
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Next, we add x3 and w3 to T ′′3 to form

T ′4 =



α0 β̂0 0 w3

β̂0 α̂1 β̂1 0

0 β̂1 α̂2 0

w3 0 0 x3


.

We perform another similarity transformation with a Givens rotation on the 2nd and 4th

rows and columns to annihilate w3 and to get

T ′′4 =



α0 β0 0 0

β0 α̃1 β̃1 γ1

0 β̃1 α̃2 β̃2

0 γ1 β̃2 α̃3


.

We then perform one more similarity transformation with a Givens rotation on the last

two rows and columns to annihilate γ1 and get

T ′′′4 =



α0 β0 0 0

β0 α1 β1 0

0 β1 α2 β2

0 0 β2 α3


.

Hence the required tridiagonal matrix is given by

T =


α1 β1 0

β1 α2 β2

0 β2 α3

 .
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The orthogonal matrix Q is the product of the Givens rotations by deleting the first row

and column. The procedure may continue for n > 2, by adding xi and wi each time

and reducing the extended matrix to tridiagonal until i = n + 1. The matrices T and Q

are obtained in the same way as described above. On the other hand, the three-term

recurrence in (4.2) shows that the polynomials π j satisfy

x [π0(x),π1(x), . . . ,πn(x)] = [π0(x),π1(x), . . . ,πn(x)]T +πn+1(x)eT
n+1, (4.6)

where πn+1(x) = (x−αn+1)πn(x)−βnπn−1(x).

By setting x = x1,x2, . . . ,xn+1, respectively in (4.6) we have

ΛΠ = ΠT +Pn+1eT
n+1,

where

Π =



π0(x1) π1(x1) . . . πn(x1)

π0(x2) π1(x2) . . . πn(x2)
...

... . . .
...

π0(xn+1) π1(xn+1) . . . πn(xn+1)


, Pn+1 =


πn+1(x1)

...

πn+1(xn+1)

 .

Premultiplying by

W =



w1 0 . . . 0
... w2

...
...

...
... . . . ...

0 0 . . . wn+1


,
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and using WΛ = ΛW we get

ΛWΠ = WΠT +WPn+1eT
n+1. (4.7)

Note that 〈πi(x),π j(x)〉w = δi j, i, j = 0,1, . . . ,n, and since we have 〈πn+1(x),π j(x)〉w =

0, j = 0,1, . . . ,n, in matrix form these imply

(WΠ)T (WΠ) = In+1, (WΠ)T Pn+1 = 0.

By premultiplying (WΠ)T to (4.7)

(WΠ)T
Λ(WΠ) = T,

and

(WΠ)e1 =
1
‖w‖2

w =
1
β0

w, w =


w1

...

wn+1

 .

Since WΠ is orthogonal, and β j > 0 by Theorem 3, we have

Q = WΠ =



w1 0 . . . 0
... w2

...
...

...
... . . . ...

0 0 . . . wn+1





π0(x1) π1(x1) . . . πn(x1)

π0(x2) π1(x2) . . . πn(x2)
...

... . . .
...

π0(xn+1) π1(xn+1) . . . πn(xn+1)


. (4.8)
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Next, a formula is derived for computing R, the R factor of V . Because deg pk(x) = k

for k = 0, . . . ,m and deg πk(x) = k for k = 0, . . . ,n, we have the expression

pk(x) =
k

∑
j=0

r j+1,k+1π j(x), k = 0,1,2, . . . ,m, (4.9)

or

p0(x) = r11π0(x),

p1(x) = r12π0(x)+ r22π1(x),

...

pm(x) = r1,m+1π0(x)+ r2,m+1π1(x)+ . . .+ rm+1,m+1πm(x),

or

[p0(x), p1(x), . . . , pm(x)] = [π0(x),π1(x), . . .πn(x)]

 R

0

 ,

where

R =



r11 r12 r13 . . . r1,m+1

0 r22 r23 . . . r2,m+1

... . . . . . . ...
...

0 0 0 rmm rm,m+1

0 0 0 0 rm+1,m+1


.
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Substituting x = x1,x2, . . . ,xn+1, respectively,

V =



p0(x1) p1(x1) . . . pm(x1)

p0(x2) p1(x2) . . . pm(x2)
...

... . . .
...

p0(xn+1) p1(xn+1) . . . pm(xn+1)


=



π0(x1) . . . πn(x1)

π0(x2) . . . πn(x2)
... . . .

...

π0(xn+1) . . . πn(xn+1)


 R

0



= Π

 R

0

 .

Premultiply by W ,

W



p0(x1) p1(x1) . . . pn(x1)

p0(x2) p1(x2) . . . pn(x2)
...

... . . .
...

p0(xn+1) p1(xn+1) . . . pn(xn+1)


= WΠ

 R

0

= Q

 R

0

= Q̃R.

So

WV = Q̃R, (4.10)

which is the required reduced QR factorization of WV.

If we use (4.9) to compute R, we need to generate the polynomials π j(x) explicitly. The

following approach avoids this problem.

Since deg p j = j therefore deg(xp j) = j +1, j = 0, . . . ,m.

We have the expression

xp j−1(x) = h1 j p0(x)+h2 j p1(x)+ . . .+h j+1, j p j(x), j = 1.....m+1,
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where

hm+2,m+1 pm+1(x) = xpm(x)− (h1 j p0(x)+h2 j p1(x)+ . . .+hm+1,m+1 pm(x)).

Define

H =



h11 h12 . . . h1,m+1

h21 h22
. . . ...

... . . . . . . ...

0 . . . hm+1,m hm+1,m+1


.

Then

x [p0(x), p1(x), . . . , pn(x)] = [p0(x), p1(x), . . . , pm(x)]H +hm+2,m+1 pm+1(x)eT
m+1.

(4.11)

Taking x = x1,x2, . . . ,xn+1, we get

ΛV = V H + t̀eT
m+1,

where t̀ = hm+2,m+1



pm+1(x1)

pm+1(x2)
...

pm+1(xm+1)


.

Premultiplying by W , we get

ΛWV = WV H + t̃eT
m+1, t̃ = Wt̀. (4.12)
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Using Λ = QT QT , and QTWV =

 R

0

, we have

QT QTWV = WV H + t̃eT
m+1

⇒ T QTWV = QTWV H +QT t̃eT
m+1,

i.e.

T

 R

0

=

 R

0

H + teT
m+1, t = QT t̃. (4.13)

Let t =

 t1

t2

 , t1 ∈ Rm+1 and Tm =



α1 β1

β1 α2
. . .

. . . . . . βm

βm αm+1


. Then by comparing

the

top (m+1)× (m+1) matrices in (4.13) on both sides, we have

TmR = RH + t1eT
m+1. (4.14)

Let

R = [r1,r2, . . . ,rm+1].

By comparing the columns on both sides in the above equation, ri can be computed by

the following recurrence

r1 =
p0(x)
π0(x)

e1, r j+1 =
1

h j+1, j
(Tmr j−h1 jr1− . . .−h j jr j), j = 1, . . . ,m.
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Note that p0(x) and π0(x) are constants. Further note that t1 has no influence on the

computation of R.

Further, R−1 satisfies

HR−1 = R−1Tm−
1

rm+1,m+1
R−1t1eT

m+1.

Similarly, let

R−1 =
[
r′1, . . . ,r

′
n+1
]

Then

r′1 =
π0(x)
p0(x)

e1, r′j+1 =
1
β j

(Hr′j−α jr′j−β j−1r′j−1), j = 1, . . . ,m.

In order to solve the least squares problem, one needs to compute d = Q̃T f . This can

be done during the tridiagonal reduction by premultiplying the sequence of Givens

rotations to f . Once d is determined, we have c = R−1d, where R−1 can be computed

by above recurrence. The cost of computations of reduced QR factorization or solving

least squares problem is O(n3).

4.2 QR Factorization for Three-term Recurrence Poly-

nomials

In [11], Reichel only considers the case when the polynomials p0(x), . . . , pn(x) satisfy

the following three-term recurrence relation.

b0 p0(x) = 1,
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b1 p1(x) = (x−a1)p0(x), (4.15)

b j p j(x) = (x−a j)p j−1(x)−b j−1 p j−2(x),

j = 2,3.....,m, where a j and b j > 0 ∈ R.

From (4.15) we have

xp0(x) = b1 p1 +a1 p0(x),

xp j−1(x) = b j−1 p j−2(x)+a j p j−1(x)+b j p j(x) j = 2, . . . ,m,

or in matrix form

x [p0(x), p1(x), . . . , pm(x)] = [p0(x), p1(x), . . . , pm(x)]



a1 b1

b1 a2
. . .

. . . . . . bm

bm am+1


(4.16)

+bm+1 pm+1(x)eT
m+1,

where pm+1 and bm+1 satisfy

bm+1 pm+1(x) = xpm(x)−am+1 pm−1(x)−bm pm−1(x).

This is the special case of (4.11). So we have (4.14) with

H =



a1 b1

b1 a2
. . .

. . . . . . bn

bn an+1


=: T̂ ,

 t1

t2

= bm+1QTW



pm+1(x1)

pm+1(x2)
...

pm+1(xn+1)


. (4.17)
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Partition R = [r1, . . . ,rm+1]. Using TmR = RT̂ +t1eT
m+1, the columns r j can be computed

by simpler recurrence

r1 =
p0(x)
π0(x)

e1, r j+1 = (Tmr j−b j−1r j−1−a jr j)/b j, j = 1, . . . ,m.

Similarly, R−1 can be computed from the relation:

T̂ R−1 = R−1Tm−R−1t1eT
m+1/rm+1,m+1.

Partition R−1 in columns

R−1 = [r̃1, . . . , r̃n+1] .

The columns r̃ j can be computed by

r̃1 =
π0(x)
p0(x)

e1, r̃ j+1 = (T̂ r̃ j−β j−1r̃ j−1−α j r̃ j)/β j, j = 1, . . . ,m.

Reichel’s GR algorithm for solving least squares approximation problem (4.1) is sum-

marized in the following algorithm. For polynomials satisfying a three term recurrence,

the GR algorithm is given as follows :

1. Compute Q such that QT ΛQ = T, Qe1 = 1
‖w‖2

w.

2. Compute d = QTW f =

 d1

d2

 , d1 ∈ Rm+1.

3. Compute R−1, based on the relation

T̂ R−1 = R−1Tm−R−1t1eT
m+1/rm+1,m+1.

4. Compute c = R−1d1.
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The tridiagonal structure of T̂ , attributed to use of three term recurrence polynomials,

reduces the cost to O(n2) flops. That is the advantage of using three-term recurrence.

A MATLAB code of this algorithm is provided in Appendix A.

4.3 Classical Vandermonde Case.

As pointed out in [11], the fast QR factorization approach also works when the poly-

nomials are p j(x) = x j, j = 0,1, . . . ,m. In this case, the polynomials satisfy simple

recurrence p j+1(x) = xp j(x), j = 0,1, . . . ,m−1, or equivalently

x
[

1 x . . . xm

]
=
[

1 x . . . xm

]
H̃ + xm+1eT

m+1,

where

H̃ =



0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0
. . . . . . 0 0

0 1 0


.

So

ΛWV̆ = WV̆ H̃ + t̆eT
m+1,

V̆ =



1 x1 . . . xm
1

1 x2 . . . xm
2

...
...

...
...

1 xn+1 . . . xm
n+1


, where t̆ = W



xm+1
1

xm+1
2
...

xn+1
m+1


.
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Proceeding in the same manner as in previous sections we have

TmR̆ = R̆H̃ + t1eT
m+1, (4.18)

which is parallel to what was obtained in (4.14) in the previous section. Hence R̆ =

[r̆1, . . . , r̆m+1] can be computed column by column by

r̆1 =
1

π0(x)
e1, r̆ j+1 = Tmr̆ j, j = 1, . . . ,m.

Similarly,

R̆−1 = [r̃1, . . . , r̃m+1]

satisfies

H̃R̆−1 = R̆−1Tm− R̆−1t1eT
m+1/r̆m+1,m+1.

The columns r̃ j can be computed by

r̃1 = π0(x)e1, r̃ j+1 = (H̃r̃ j−β j−1r̃ j−1−α j r̃ j)/β j, j = 1, . . . ,m.

Note (4.18) also gives an interesting relation between Tm and its companion matrix.

Premultiplying R̆−1 to (4.18) we get

R̆−1TmR̆ = H̃ + R̆−1t1eT
m+1 =



0 0 . . . −cm+1

1 0 . . .
...

. . . . . . ...

1 −c1


=: C,
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where 
cm+1

...

c1

=−R̆−1t1. (4.19)

The matrix C is the companion matrix of Tm, since C and Tm are similar. The character-

istic polynomial of Tm is

det(λ I−Tm) = det(λ I−C) = λ
m+1 + c1λ

m + c2λ
m−1 + . . .+ cmλ + cm+1.

When n = m, we have the relation for T ,

R̆−1T R̆ = H̃ + R̆−1teT
n+1 =: C, (4.20)

with 
cn+1

...

c1

=−R̆−1t =−V̆−1


xn+1

1
...

xn+1
n+1

 .

4.4 Krylov Matrix Connection

As in previous chapters, define

Λ =



x1

x2

. . .

xn+1


, w =



w1

w2

...

wn+1


, e =



1

1
...

1


.
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W =



w1 0 . . . 0
... w2

...
...

...
... . . . ...

0 0 . . . wn+1


.

Then V̆ can be written as

V̆ =
[
e,Λe,Λ2e, . . . ,Λne

]
.

Using (4.4) and (4.5), i.e., QT ΛQ = T and Qe1 = 1
‖w‖2

w, and by Theorem 3,

WV̆ = QR̆, R̆ = ‖w‖2
[
e1,Te1,T 2e1, . . . ,T ne1

]
.

Clearly, this R̆ is identical to the one computed in previous section. By (4.8), Q = WΠ.

So WV̆ = WΠR̆, which implies Π = V̆ R̆−1.

Let

R̆−1 =


r̆11 . . . . . . r̆1,n+1

. . . ...

r̆n+1,n+1

 .

Then

π j(x) = r̆1, j+1 + r̆2, j+1x+ · · ·+ r̆ j+1, j+1x j, j = 0,1, . . . ,n

Therefore, the elements of upper triangular matrix R̆−1 give the coefficients of π j(x).

Now for a polynomial sequence p0(x), p1(x), . . . , pm(x) with degp j = j, j = 0,1, . . . ,m,

we have (4.12),

ΛWV = WV H + t̃eT
m+1,

47



where V and H are same as defined in Section 4.1.

For each j, p j(x) is a linear combination of 1,x1, . . . ,x j. So

V = V̆

 R̂

0

 ,

where R̂ ∈ R(m+1)×(m+1) is upper triangular and non-singular. So

WV = WV̆

 R̂

0

= QR̆

 R̂

0

= Q

 R̆mR̂

0

 ,

where R̆m is the leading principal (m+1)× (m+1) submatrix of R̆. Comparing it with

(4.10), R = R̆R̂.
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Chapter 5

Inverse of Vandermonde Matrices

5.1 Overview

This chapter takes a peek into various methods developed by a few selected authors to

compute the inverse of a Vandermonde matrix, and a comparison of these methods is

made for speed and accuracy. Further, a Krylov matrix connection is made with the

inverse of a Vandermonde matrix.

5.2 The Traub Algorithm

The Traub algorithm as given in [12] gives a fast method to compute the inverse of

a Vandermonde matrix in O(n2) flops. At the same time this algorithm is said to be

numerically unstable.

The general idea of Traub algorithm is discussed as follows. Let P(x) be a master

polynomial whose zeros are the nodes of the Vandermonde matrix V̆ . Define P(x) as

P(x) = ∏
n+1
k=1(x− xk) = xn+1 +

n

∑
k=0

akxk. (5.1)
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for distinct {x1, . . . ,xn+1}. Consider the divided difference

P[t,x] =
P(t)−P(x)

t− x
. (5.2)

Clearly, P [t,x] is a polynomial in both t and x, with degree n. Define the polynomials

{qk(x)}0≤k≤n (5.3)

that satisfy

P[t,x] = qn(x)+ tqn−1(x)+ . . .+ tn−1q1(x)+ tnq0(x). (5.4)

The polynomials given by (5.3) are also known as associated polynomials or Horner’s

polynomials. Substituting (5.1) into (5.2)

P[t,x] =
n+1

∑
i=1

ai
t i− xi

t− x
=

n+1

∑
i=1

ai(t i−1 + t i−2x+ . . .+ txi−2 + xi−1), (5.5)

which implies that associated polynomials given by (5.3) can also be written as

qk(x) = xk +anxk−1 + . . .+an−k+2x+an−k+1. (5.6)

The polynomials above also satisfy the following recurrence relations

q0(x) = 1, qk(x) = xqk−1(x)+an−k+1, k = 1,2, . . . ,n, (5.7)

and qn+1(x) = P(x). From (5.1)

P(x j) = 0, j = 1, . . . ,n+1.
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So, by (5.2),

P[x j,xk] =

{
0 j 6= k

P′(xk) j = k.

Using (5.4) we have the so called orthogonality relation:

P[x j,xk]
P′(xk)

=
n

∑
i=0

xi
j
qn−i(xk)
P′(xk)

= δ jk =

{
0 j 6= k

1 j = k.
(5.8)

The orthogonality relation can be used to express the inverse of Vandermonde matrix V̆

as follows

δ jk =
P[x j,xk]
P′(xk)

=
qn(xk)
P′(xk)

+ x j
qn−1(xk)

P′(xk)
+ . . .+ xn

j
q0(xk)
P′(xk)

=
[

1 x j x2
j . . . xn

j

]


qn(xk)
P′(xk)

qn−2(xk)
P′(xk)

...
q0(xk)
P′(xk)


,

for j,k = 1 . . .n+1. In matrix form

I = V̆



qn(x1)
P′(x1)

qn(x2)
P′(x2)

. . . qn(xn+1)
P′(xn+1)

qn−1(x1)
P′(x1)

qn−1(x2)
P′(x2)

. . . qn−1(xn+1)
P′(xn+1)

...
...

...
...

q0(x1)
P′(x1)

q0(x2)
P′(x2)

. . . q0(xn+1)
P′(xn+1)


,
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or

I = V̆



qn(x1) qn(x2) . . . qn(xn+1)

qn−1(x1) qn−1(x2) . . . qn−1(xn+1)
...

...
...

...

q0(x1) q0(x2) . . . q0(xn+1)





1
P′(x1)

1
P′(x2)

. . .

1
P′(xn+1)


.

Hence

V̆−1 =



qn(x1) . . . qn(xn+1)

qn−1(x1) . . . qn−1(xn+1)
...

...
...

q0(x1) . . . q0(xn+1)





1
P′(x1)

1
P′(x2)

. . .

1
P′(xn+1)


. (5.9)

Traub used (5.9) to derive a fast algorithm for the inverse of Vandermonde matrices.

The Traub algorithm is given as follows:

1. Compute the coefficients of P(x) in (5.1) using the nested polynomial multipli-

cation:

 a(1)
0

a(1)
1

=

 −x1

1

 ,



a(k)
0

a(k)
1
...

a(k)
k


=



0

a(k−1)
0

a(k−1)
1

...

a(k−1)
k−1


− xk



a(k−1)
0

a(k−1)
1

...

a(k−1)
k−1

0



with a j = a(n)
j .

2. For j = 1,2, . . . ,n+1 do:

52



(a) Compute qk(x j) by (5.7) for k = 0,1, . . . ,n.

(b) Compute P′(x j) = q′k(x j) using

q′1(x j) = an, q′k(x j) = qk−1(x j)+ x jq′k−1(x j), k = 2,3, . . . ,n+1.

(c) Compute the jth column of V̆−1, using (5.9).

Remark 1:- The Traub algorithm can compute (n + 1)2 entries of V−1 in 6(n + 1)2

flops, but it propagates round-off error, thus leading to inaccurate solutions. The next

algorithm has better numerical behavior.

5.3 The Parker Algorithm

Parker described an inversion formula based on Lagrange polynomials [9]. Let L j(x) =
∏k 6= j(x− xk)
∏k 6= j(x j− xk)

. be the jth Lagrange polynomial of degree n. Then

L j(xk) =

{
1 k = j

0 k 6= j
.

Express

L j(x) = ln, jxn + ln−1, jxn−1 + . . .+ l1, jx+ l0, j. (5.10)
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For any function f (x), the polynomial p(x) satisfies p(x j) = f (x j), j = 1, . . . ,n + 1,

is

p(x) =
n+1

∑
j=1

f (x j)L j(x) = [1,x, . . . ,xn]



l0,1 l0,2 . . . l0,n+1

l1,1 l1,2 . . . l1,n+1

...
...

...
...

ln,1 ln,2 . . . ln,n+1




f (x1)

...

f (xn+1)

 .

On the other hand the coefficients of p are given by V̆−1


f (x1)

...

f (xn+1)

. Since both are

true for any function f , we have

V̆−1 =



l0,1 l0,2 . . . l0,n+1

l1,1 l1,2 . . . l1,n+1

...
...

...
...

ln,1 ln,2 . . . ln,n+1


(5.11)

The formula (5.11) can be easily derived from (5.1). Using P(x j) = 0, we have

L j(x) =
P(x)

(x− x j)P′(x j)
=

P(x)−P(x j)
(x− x j)P′(x j)

=
P[x,x j]
P′(x j)

.

From (5.4) and (5.10) we can say that

qn−k(x j) = P′(x j)lk, j.

Basically the two formulas are two faces of the same coin. However the derivatives in
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this section shows the explicit relations between the Lagrange’s polynomials L j(x) and

polynomials q j(x), j = 0, . . . ,n. The algorithm is given as follows

1. Compute the coefficients a0, . . . ,an of P(x) given by (5.1) as computed in step 1

of the algorithm in section 2.

2. For j = 1,2, . . . ,n+1 do

(a) Compute qk(x j) by (5.7) for k = 0,1, . . . ,n.

(b) Compute P′(x j) from

P′(x j) = (x j− x1) . . .(x j− x j−1)(x j− x j+1) . . .(x j− xn)

(c) Compute the jth column of V̆−1(x) using (5.9).

Remark 2:- Comparing the Traub algorithm with the Parker algorithm, one notices that

they differ only in step 2(b), thus they are just different versions of the same algorithm.

The computational complexity of the algorithm is 6n2 flops. By a proper implemen-

tation of step 2(b), it can be further reduced slightly. For details see [5]. There is a

numerically stable method available for computing Lagrange’s polynomials in [3].

5.4 The Bjorck-Pereyra Algorithm

This algorithm has been discussed in Chapter 3. Based on the LU factorization of V̆ ,

we have

V̆−1 = N0 . . .Nn−1D−1
n−1Mn−1 . . .D−1

0 M0.
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Remark 3:-This method requires O(n3) flops because of explicit matrix multiplications,

but it may provide more accurate results if the nodes xk are specially ordered, like for

example monotone ordering, leja ordering [7].

5.5 Krylov Connection To The Inverse of Vandermonde

Matrix

It is straightforward to show

ΛV̆ = V̆C,

where C is the companion matrix of Λ. Taking transpose of both sides,

V̆ T
Λ = CTV̆ T .

Multiply both sides by V̆−T to get

V̆−TV̆ T
ΛV̆−T = V̆−TCTV̆ TV̆−T ,

or

ΛV̆−T = V̆−TCT .

Define P = [en+1,en, . . . ,e1] ∈R(n+1)×(n+1). Note P is also known as the shuffle matrix

and P = P−1 = PT .

Then

ΛV̆−T P−1 = V̆−T P−1PCT P−1.
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Denote C̃ = PCT P−1, we have

ΛV̆−T P−1 = V̆−T P−1C̃.

Because CT and C are similar, so are C̃ and C. In fact

C =



0 −an

1 . . . ...

1 . . . ...

0 1 −a0


, C̃ =



−a0 . . . . . . −an

1 . . . ...

1 . . . ...

0 1 0


.

where a0, . . . ,an are coefficients of P(x) defined in (5.1).

For

R =



1 an an−1 . . . . . . a0

0 1 an an−1 . . .
...

. . . ...
... . . . . . . an−1

0 . . . an

0 0 . . . . . . 1


,

it can be easily verified that C̃ = R−1CR .

Hence

ΛV̆−T P−1 = V̆−T P−1C̃⇒ ΛV̆−T P−1R−1 = V̆−T P−1R−1C.

Set A = V̆−T P−1R−1. Then

ΛA = AC.
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Let d = Ae1 = [d1,d2, . . . ,dn+1]
T . By comparing the column on both sides, A can be

written as a Krylov matrix given by

A =
[
d,Λd,Λ2d, . . . ,Λnd

]
,

which implies A can be written as the product of following matrices

A = DV̆ ,

where D =


d1

. . .

dn+1

 . So

V̆−T P−1R−1 = DV̆ ,

and we have

V̆−1 = PRTV̆ T D. (5.12)

Still we need to derive the formula for D, i.e. we need to derive d1,d2, . . . ,dn+1. From

the above equation,

(V̆ PRTV̆ T )D = I, (5.13)

which clearly implies that V̆ PRTV̆ T is diagonal . Writing it out, it has the following

form



a1 +2a2x1 + . . .+(n+1)xn
1 0 . . . 0

0 a1 +2a2x2 + . . .+(n+1)xn
2 . . . 0

...
...

...
...

0 . . . . . . a1 +2a2xn + . . .+(n+1)xn
n


.
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From (5.1) it is easily verified that for j = 1 . . .n+1,

P′(x j) = a1 +a2x j +a3x2
j + . . .+(n+1)xn

j .

So

V̆ PRTV̆ T =



P′(x1)

P′(x2)
. . .

P′(xn+1)


,

and

D =



1
P′(x1)

1
P′(x2)

. . .

1
P′(xn+1)


.

By (5.12),

V̆−1 =



0 0 . . . 1

0 . . . 1 0

. . .

1 0





1 0 . . . 0

an
. . . . . .

...
...

. . . 0
... . . . . . . 0

a0 . . . an 1





1 . . . 1

x1 xn+1

...
...

xn
1 . . . xn

n+1





1
P′(x1)

1
P′(x2)

. . .

1
P′(xn+1)



=



qn(x1) qn(x2) . . . qn(xn+1)

qn−1(x1) qn−1(x2) . . . qn−1(xn+1)
...

...
...

...

q0(x1) q0(x2) . . . q0(xn+1)





1
P′(x1)

1
P′(x2)

. . .

1
P′(xn+1)


,

which is in congruence with results obtained in previous sections.
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Chapter 6

Preconditioner

6.1 Deriving Preconditioner

In Chapter 4, we considered the least squares problem min‖WV c−W f‖2 for c ∈ Rm+1, where

{wi} > 0 and {x j} are distinct nodes, W and V are the same as defined in Chapter 4, f (x) is a

function and f =


f (x1)

...

f (xn+1)

 . The solution c can be computed in the following way.

1. Compute the reduced QR factorization and d.

WV = Q̃R, d = Q̃TW f .

2. Solve Rc = d for c.

Obviously different weights {wi}n+1
i=1 give different inner products 〈 f ,g〉w, in Pn. So the

corresponding least squares solution c depends on {wi}n+1
i=1 . From matrix factorization

point of view, the reduced QR factorization of WV depends on W . When m = n, the least

squares problem becomes the system of equations

WV c = W f , (6.1)
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or equivalently

V c = f . (6.2)

Comparing (6.1) and (6.2), we take the diagonal matrix W as a preconditioner [6]. In this case

the solution to (6.2) is unique and c is independent of W . From numerical point of view, however

one may determine a preconditioner W such that κ(WV ) is much smaller than κ(V ), or simply

we look for W that solves minκ(WV ), over all diagonal W . For detailed reference, see [6] and

[8].

It has been established in previous chapters that WV has a unique QR factorization WV = QR,

where orthogonal Q satisfies QT ΛQ = T , Qe1 = 1
‖w‖ 2

w, and

w = [w1,w2, . . . ,wn+1]
T , and R = ‖w‖2 [e1,Te1, . . . ,T ne1] .

So the choice of W is equivalent to the choice of the first column of Q. This gives rise to another

related question. How the diagonal matrix W will affect Q and T ? Here we basically consider

the minimization problem minκ(WV ). We use the Frobenius norm for condition number. In

principle other norms can be used, but then the computation of {wi}n+1
i=1 becomes difficult.

Denote

V−1 =



b1,1 b1,2 . . . b1,n+1

b2,1 b2,2 . . . b2,n+1

...
...

...
...

bn+1,1 bn+1,2 . . . bn+1,n+1


.

Then from the definitions of W and V we have

WV =



w1 p0(x1) w1 p1(x1) . . . w1 pn(x1)

w2 p0(x2) w2 p1(x2) . . . w2 pn(x2)
...

... . . .
...

wn+1 p0(xn+1) wn+1 p1(xn+1) . . . wn+1 pn(xn+1)


, (6.3)
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and

V−1W−1 =



b1,1w−1
1 b1,2w−1

2 . . . b1,n+1w−1
n+1

b2,1w−1
1 b2,2w−1

2 . . . b2,n+1w−1
n+1

...
...

...
...

bn+1,1w−1
1 bn+1,2w−1

2 . . . bn+1,n+1w−1
n+1


. (6.4)

Set Ai =

√
n

∑
j=0

p2
j(xi) = ‖eT

i V‖2 and Bi =

√√√√n+1

∑
j=1

b2
ji = ‖V−1ei‖2. The square of the Frobenius

norms of both the matrices are given as:

‖WV‖2
F = w2

1

n

∑
j=0

p2
j(x1)+w2

2

n

∑
j=0

p2
j(x2)+ . . .+w2

n+1

n

∑
j=0

p2
j(xn+1) (6.5)

= (w2
1A2

1 +w2
2A2

2 + . . .+w2
n+1A2

n+1), (6.6)

‖V−1W−1‖2
F =

1
w2

1

n+1

∑
j=1

b2
1 j +

1
w2

2

n+1

∑
j=1

b2
2 j + . . .+

1
w2

n+1

n+1

∑
j=1

b2
n+1, j (6.7)

=
( 1

w2
1

B2
1 +

1
w2

2
B2

2 + . . .+
1

w2
n+1

B2
n+1

)
. (6.8)

From (6.6) and (6.7),

κ
2
F(WV ) = (w2

1A2
1 +w2

2A2
2 + . . .+w2

n+1A2
n+1)

( 1
w2

1
B2

1 +
1

w2
2

B2
2 + . . .+

1
w2

n+1
B2

n+1

)
.

Let

x =



w1A1

w2A2

...

wn+1An+1


, y =



B1

w1
B2

w2
...

Bn+1

wn+1


.

By the Cauchy-Schwarz inequality, ‖x‖2
2‖y‖2

2 ≥ |xT y|2. Hence

‖x‖2
2‖y‖2

2 = κ
2
F(WV )≥

(
w1A1

B1

w1
+w2A2

B2

w2
+ . . .+wn+1An+1

Bn+1

wn+1

)2
.
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= (A1B1 +A2B2 + . . .+An+1Bn+1)2. (6.9)

The equality is attained when x = ty, for some constant t. Setting x = y,(t = 1), we have

wiAi =
Bi

wi
, i = 1, . . . ,n+1,

=⇒ wi =
√

Bi

Ai
. (6.10)

So when w1, . . . ,wn+1 are taken as in (6.10), κF(WV ) has the minimum value, which is

κ = minκF(WV ) = (A1B1 +A2B2 + . . .+An+1Bn+1). (6.11)

Therefore for t > 0, the minimizer is

W = t



√
B1

A1 √
B2

A2
. . . √

Bn+1

An+1


. (6.12)

Once the optimal preconditioner is determined, we take

w = t



√
B1

A1
...√

Bn+1

An+1

 , (6.13)

and use the GR algorithm to solve (6.1) with first column of the orthogonal factor Q parallel

to w. The parameter t won’t change κmin as defined in (6.11), but it can be used to scale the
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weights wi. For instance we may take t = 1. We could also set t =
√

B1
A1

so that w1 = 1, or set

t =
1√

B1
A1

+ . . .+ Bn+1
An+1

,

such that ‖w‖2 = 1. Although (6.11) provides a formula for minκF(WV ), it is not clear how

small it is in comparison with κF(V ). The next section provides some observations obtained

from running numerical tests.

6.2 Numerical Tests

In this section we report some numerical results for several groups Vandermonde-like matrices

V and the associated system of linear equations V c = f .

Experimental Objectives

The main purpose for the numerical experiments includes the following objectives

1. Comparison of the optimal condition number of κmin with κF(V )

2. Observation of the change of both κmin and κF(V ) with respect to nodes {xi}n+1
i=1

3. Comparison of the errors and the residual of numerical solutions based on V c = f and

WV c = W f , respectively, where W is the optimal preconditioner defined in (6.12) with

t = 1.

Equipment

Computer:- Processor: Intel(R) Pentium(R) 4CPU 2.80 GHz

Memory: 1001.78 MB

Operating System: Kernel Linux 2.6.24-23-generic

Machine Precision: 1.1102×10−16

Software:- MATLAB and Simulink Version 7.8.0.347(R2009a) by The MathWorks.

Research System: Stewie, Math Department KU.
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Setup and parameters

To ensure higher accuracy residuals and errors are computed using Variable Precision Arith-

metic(vpa) to 32 digits. The parameters, which we chose are

1. Dimension of the matrix, n+1

2. Nodes {xi}

3. Polynomials p j(x)

4. Function f (x) for right hand side vector f of the system. Sometimes f maybe just a

vector.

Quantities displayed

1. Condition numbers: κmin and κF(V )

2. Optimal relative error

Eopt =
‖copt − cexact‖2
‖cexact‖2

and error

E =
‖c− cexact‖2
‖cexact‖2

3. Residues:

Resopt = ‖V copt − f‖2

Res = ‖V c− f‖2

copt is the numerical solution to WV c = W f with optimal W, and c is the numerical

solution to V c = f , and cexact is the solution to V c = f , with data generated by MATLAB

vpa(H,32) code.

κmin is computed with the formula (6.11), where B1, . . . ,Bn+1 are computed using the elements

of V−1, which are computed using MATLAB command ”inv(V)”. copt is computed by em-
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ploying GR algorithm with W defined in (6.12) with t = 1. c and cexact are computed by GR

algorithm with w = [1,1, . . . ,1]T . Again the latter one is computed using vpa. In order to com-

pute κ(V ), κ(R) is computed, where R is the upper triangular factor of V in QR factorization,

computed by GR algorithm. All the MATLAB codes are provided in appendix A.
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6.2.1 Computations Using Legendre Polynomials to Construct

Vandermonde-like Matrices

Each of the following tables show the behavior of preconditioner when tested on various nodes

and for different dimensions of V. Here the Vandermonde-like matrix is constructed using poly-

nomials which obey Legendre three term recurrence relation. From (4.15) we have

b0 p0(x) = 1,

b1 p1(x) = (x−a1)p0(x),

b j p j(x) = (x−a j)p j−1(x)−b j−1 p j−2(x),

j = 2,3.....,m, where a j and b j > 0 ∈ R.

Example 1

Choose b1 = 2,b j =
2 j√

4 j2−1
, for j ≥ 2, and a j = 0 for j ≥ 1 then p j(x) are Legendre poly-

nomials for the interval [-2,2].

Nodes:-

xk = 2cos
(
π

2k−1
2n+2

)
, 1≤ k ≤ n+1,

are the zeros of Chebyshev polynomials on [-2,2] and

xk =−2+4
(k−1

n

)2 1≤ k ≤ n+1,

are equidistant on [-2,2].

Dimension n+1 = 4,6,8.

The results are reported in Table 6.1.

Example 2
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Table 6.1: Comparison of κ(V ) and κmin for p j(x)=Legendre Polynomials
Mat Dim=n+1 κF Nodes

Zeros of Chebyshev Polynomial for [-2,2] Equidistant on [-2,2]

4
κmin 4.08 4.37
κF(R) 4.65 5.93

6
κmin 6.10 6.93
κF(R) 7.47 10.64

8
κmin 8.12 11.02
κF(R) 10.40 18.90

p j(x) are Legendre polynomials on [-2,2], with the same coefficients as in Example 1.

Nodes:-

xk =−2+4
(k−1

n

)2 1≤ k ≤ n+1

are clustered on [-2,2]. The second choice of nodes {xk}n+1
i=1 are generated randomly using

MATLAB command ”randn(n,1)”.

Dimension n+1 = 4,6,8.

Results are shown in Table 6.2. The results in Table 6.1, show no significant improvement

Table 6.2: Comparison of κF(R) and κmin for p j(x)=Legendre Polynomials
Mat Dim κF Nodes

Clustered in [-2,2] Randomly generated

4
κmin 7.20 15.03
κF(R) 9.86 36.04

6
κmin 43.21 26.47
κF(R) 61.14 1.18e+02

8
κmin 4.20e+02 2.12e+03
κF(R) 6.22e+02 2.70e+04

of the condition number with optimal preconditioner, nor does clustered nodes on [-2,2] shown

in Table 6.2. However a significant improvement is noticed for randomly generated nodes,

especially when the dimension increases. In Figure 6.1, the graph plots the ratios κmin
κF (R) of

Vandermonde-like matrices of dimension n + 1 = 8, with Legendre polynomials and random

nodes. This ratio is computed by running the algorithm 50 times. Each time, a new set of 50
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Figure 6.1: Comparison of condition number for Vandermonde-like matrix of dimen-
sion 8

nodes, {xk}50
k=1 is generated and the corresponding ratio is computed. The choice of random

nodes actually help us to get insight into the behaviour of the preconditioner, that for some

random choice of nodes κmin
κF (R) ≤ 1.

The optimal residual, Resopt and the optimal error, Eopt , was found to be of the order of 10−15 for

most choice of nodes. However as the matrix dimension increased, Resopt , Eopt were found to be

of the same order, as the residual and error computed without the application of preconditioner,

that being 10−14.
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6.2.2 Computations Using Chebyshev Polynomials to

Construct Vandermonde-like Matrices

This section uses usual Chebyshev polynomials p j(x)= Tj(x/2) for j≥ 1 to generate Vandermonde-

like matrices, where

Tj(x) = cos( j arccosx).

Here we provide only one table to show that for the Vandermonde-like matrices, generated by

Chebyshev polynomials, even the choice of randomly generated nodes do not show significant

improvement, as was the case in previous section. It seems that the optimal preconditioner

won’t change the condition number very much.

Example 3

For choice b1 = b2 =
√

2, b j = 1 for j ≥ 3 and a j = 0 for j ≥ 1, p j(x) are Chebyshev polyno-

mials for the interval [-2,2].

Nodes:-

xk =−2+4
(k−1

n

)2 1≤ k ≤ n+1

are clustered on [-2,2]. The second choice of nodes {xk}n+1
i=1 are generated randomly using

MATLAB command ”randn(n,1)”.

Dimension n+1 = 4,6,8.

The numerical results are shown in Table 6.3

Table 6.3: Comparison of κF(V ) and κmin for p j(x)=Chebyshev Polynomials
Mat Dim κF() Nodes

Clustered in [-2,2] Randomly generated

4
κmin 5.79 11.63
κF(R) 6.57 78.72

6
κmin 32.12 1.80e+03
κF(R) 41.25 5.56e+04

8
κmin 3.04e+02 1.66e+06
κF(R) 4.34e+02 2.19e+06
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6.2.3 Preconditioning of Classical Vandermonde Matrices

In this section the focus is on classical Vandermonde matrices and the behavior of optimal pre-

conditioner with different nodes.

Example 4

Polynomials p j(x) = x j−1

Nodes:- Random, generated by MATLAB command ”randn(1,n)”.

Dimension n+1 = 5,10,15,20,25.

The numerical results are shown in Table 6.4

From Table 6.4 it can be seen that κmin is one order smaller than κF(V̆ ), thus implying that the

Table 6.4: Comparison of κF(V̆ ) and κmin for p j(x) = x j at random nodes.
Matrix Dimensions κF(V̆ ) κmin

5 508.68 167.39
10 4.07e+04 6.93e+03
15 1.5851e+10 3.66e+09
20 2.50e+15 2.41e+14
25 1.86e+19 1.84e+17

preconditioner works well for Vandermonde matrices also. Another test run is conducted, and

Table 6.5: Comparison of κF(V̆ ) and κmin for p j(x) = x j for given nodes.
Nodes xk κF(V̆ ) κmin

Zeros of Chebyshev polynomial on [-2,2] 125.6782 48.5591
Equidistant on [-2,2] 175.0491 64.9210
Clustered on [-2,2] 706.7711 289.2667
Extremely placed

[
−104,−103,−100,100,103,104] 1.0103e+20 2.0799e+04

All positive [.09, .9,9,99,999,9999] 2.2822e+20 4.6703e+10
Around zero

[
−10−3,−10−2,−10−1,10−1,10−2,10−3] 1.7617e+09 2.0799e+04

the results are presented in Table 6.5.

Table 6.5 considers a Vandermonde matrix of fixed dimension, n = 6 and compares the Frobe-

nius norm condition numbers. Here the choice of nodes is diverse, the idea is to study the
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behavior when nodes are not restricted to some interval but are placed extremely. Some of such

choices were made and tested. In this example, the ratio
κmin

κ(V̆ )
can be as small as of order 10−10.
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Chapter 7

Conclusions and Future Work

The study reviewed LU and QR factorizations of Vandermonde and Vandermonde-like matri-

ces. The Factorizations were viewed in context with Krylov matrix with the related Hessenberg

reduction.

The study maybe considered as the first step to interpret the behavior of Krylov matrices with

polynomial theory, which potentially provides better understanding of Krylov subspace meth-

ods for linear systems and eigenvalue problems of large sparse matrices.

In the latter part of study, the behavior of diagonal preconditioner was investigated. The GR

algorithm did not show a major improvement when applied to Vandermonde-like Matrices with

Legendre and Chebyshev polynomials. It means that the algorithm works with optimal weights

but may require some additional tweaking. Also when preconditioner algorithm was applied to

classical Vandermonde Matrices, the results were in congruence with expected, i.e. a significant

lowering of condition number was observed.

Future work in analyzing the GR algorithm, involves finding the reasons behind failure of pre-

conditioner when applied to Vandermonde-like matrices with Legendre and Chebyshev poly-

nomials. One may start with the knowledge that for generating preconditioner, in our test, the

inverse of Vandermonde-like matrices was computed by the conventional way. That definitely

decreases efficiency and possibly also accuracy. It would be interesting to look into methods,

for instance, the Parker algorithm, which computes the inverse of these matrices in a faster and
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more efficient way. A faster matrix inverse method, if included in preconditioner algorithm,

may possibly give better results on the application of GR algorithm.

Choice of nodes is another point which should be mentioned here. The results showed that

the improvement in condition number was different for different nodes, with the exception of

Vandermonde-like matrices with Chebyshev polynomials. It can be hereby said the choice of

nodes might also play a vital role in the behavior of preconditioner.
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Appendix A

Programming Codes in MATLAB

A.1 Main code

% This M file uses various functions to compute and compare

% the condition number of R ,the upper triangular matrix

% generated by Lothar Reichel algorithm also known as

% GR algorithm.The purpose of this code is to

% generate a preconditioner in order to obtain

% improvement over the condition number of Vandermonde

% like matrix .

function [x,Res,R_without_scaling,Err,Err_without_scaling,P]

=preconditioner(choice_of_nodes,n,m)

format long

x = nodes(choice_of_nodes,n),

xv = vpa(x);\\

choice_of_poly=

input(’Enter 1 for Legendre coefficients,\\2 for Chebyshev coefficients-:’);

[a,b,P] = orthopolyn(choice_of_poly,x,n);

av = vpa(a);

bv = vpa(b);

w = diagmatr(x,P,n,m);
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% The GR algorithm uses reichel’s method to compute constants

% alpha,beta and least square solution c.

[alpha,beta,c] = GR_algorithm(x,w,n,m);

[alpha1,beta1,c1] = GR_algorithm(x,ones(1,n),n,m);

[alphav,betav,cv] = GR_algorithm(xv,ones(1,n),n,m);

%The constants alpha ,beta so obtained are further used in getting a QR

%decomposition of Vanderminde like matrices.The following function just

%computes R explicitly and then its condition number.Q which is stored in

%form of Givens rotations is not derived explicitly by the algorithm.

% R is a upper triangular matrix obtained by using optimal weights ’w’

%in GR algorithm by Reichel

R = cnd_no_of_R(alpha,beta,a,b,n);

%R_without_scaling is the upper triangular matrix obtained with using all

%weights =1 in GR algorithm

R_without_scaling = cnd_no_of_R(alpha1,beta1,a,b,n);

% CNR and CNR_without_scaling are the condition numbers or R and

% unscaled R.The condition number of R is smaller than unscaled R.Its

% equivalent to the procedure of multiplying unscaled R by a

% preconditioner D such that, D is diagonal matrix consisiting of weights.

CNR = cond(R,’fro’)

CNR_without_scaling = cond(R_without_scaling,’fro’)

% By switching alpha and beta with a and b,the inverse of R can be

% calculated.

RINV = cnd_no_of_R(a,b,alpha,beta,n);

R_without_scalingINV = cnd_no_of_R(a,b,alpha1,beta1,n);

Rv = cnd_no_of_R(av,bv,alphav,betav,n);

%Let us assume x_exact to be exact solution .The residual is compared by

%finding RINV*h-x_exact for scaled R and R_without_scalingINV*h-x_exact.h

%here is the smooth function exp(x) as used in GR algorithm.

h = exp(x);

h = h’;
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Sol = RINV*c’;

Sol_without_scaling = R_without_scalingINV*c1’;

Res = P*Sol-h;

R_without_scaling = P*Sol_without_scaling-h;

Solv = Rv*cv’;

Err = double(Sol-Solv);

Err_without_scaling = double(Sol_without_scaling-Solv);

A.2 Code for GR algorithm

function [alpha,beta,c]=GR_algorithm(x,w,n,m)

format long

%We define h(x) to be a continuous function

%h(x)=exp(x);

alpha(1) = x(1);

beta(1) = w(1);

c(1) = w(1)*exp(x(1));

tau = beta(1);

beta(1) = sqrt(beta(1)ˆ2+w(2)ˆ2);

gamma = tau/beta(1);

sigma = -w(2)/beta(1);

tau = gamma*sigma*(alpha(1)-x(2));

beta(2) = abs(tau);

c(2) = sign(double(tau))*(sigma * c(1)+gamma*w(2)*exp(x(2)));

c(1) = gamma*c(1)-sigma*w(2)*exp(x(2));

alpha(2) = sigmaˆ2*alpha(1)+gammaˆ2*x(2);

alpha(1) = gammaˆ2*alpha(1)+sigmaˆ2*x(2);

for j = 2:m-1

tau = beta(1);

beta(1) = sqrt(beta(1)ˆ2+w(j+1)ˆ2);

gamma = tau/beta(1);
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sigma = -w(j+1)/beta(1);

c(j+1) = sigma*c(1)+gamma*w(j+1)*exp(x(j+1));

c(1) = gamma*c(1)-sigma*w(j+1)*exp(x(j+1));

v1 = gamma*sigma*(alpha(1)-x(j+1));

v2 = sigma*beta(2);

v3 = gammaˆ2*x(j+1)+sigmaˆ2*alpha(1);

alpha(1) = gammaˆ2*alpha(1)+sigmaˆ2*x(j+1);

beta(2) = gamma*beta(2);

M = min(j-2,n-1);

for k = 1:M

tau = beta(k+1);

beta(k+1) = sqrt(beta(k+1)ˆ2+v1ˆ2);

gamma = tau/beta(k+1);

sigma = -v1/beta(k+1);

tau = sigma*c(k+1)+gamma*c(j+1);

c(k+1) = gamma*c(k+1)-sigma*c(j+1);

c(j+1) = tau;

tau = alpha(k+1);

alpha(k+1) = gammaˆ2*tau+sigmaˆ2*v3-2*gamma*sigma*v2;

v1 = (gamma-sigma)*(gamma+sigma)*v2+gamma*sigma*(tau-v3);

v3 = gammaˆ2*v3+2*gamma*sigma*v2+sigmaˆ2*tau;

v2 = sigma*beta(k+2);

beta(k+2) = gamma*beta(k+2);

end

if j-1<n

tau = beta(j);

beta(j) = sqrt(beta(j)ˆ2+v1ˆ2);

gamma = tau/beta(j);

sigma = -v1/beta(j);

tau = (gamma-sigma)*(gamma+sigma)*v2+gamma*sigma*(alpha(j)-v3);

beta(j+1) = abs(tau);
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tau = sign(double(tau))*(sigma*c(j)+gamma*c(j+1));

c(j) = gamma*c(j)-sigma*c(j+1);

c(j+1) = tau;

alpha(j+1) = sigmaˆ2*alpha(j)+2*sigma*gamma*v2+gammaˆ2*v3;

alpha(j) = gammaˆ2*alpha(j)-2*gamma*sigma*v2+sigmaˆ2*v3;

end

end

A.3 Code For Generating Vandermonde-like Matrices

From Polynomial Following Three Term Recurrence

Relation.

function [a,b,P]=orthopolyn(choice_of_poly,x,n)

format long

%The following function gives vandermonde like matrix P as an output

% for choice of polynomials 1 implying Legendre and if choice of polynomial

% is 2 then we have Chebyshev Vandermonde-like matrix

if choice_of_poly==1

a = (zeros(1,n));

b(1) = 2;

b(2:n) = 2*(1:n-1)./sqrt(4*(1:n-1).ˆ2-1);

P = zeros(n);

P(:,1) = ones(n,1)/b(1);

P(:,2) = (x-a(1))/(b(1)*b(2));

for k=3:n

P(:,k)=((x’-a(k-1)).*P(:,k-1)-b(k-1)*P(:,k-2))/b(k);
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end

else

a = (zeros(1,n));

b(1) = sqrt(2);

b(2) = sqrt(2);

b(3:n) = 1;

P(1:n,1) = ones(n,1)/sqrt(2);

P(1:n,2) = (x-a(1))*1/(b(1)*b(2));

for k=3:n

P(:,k) = ((x’-a(k-1)).*P(:,k-1)-b(k-1)*P(:,k-2))/b(k);

end

end

A.4 Code for Getting Factor R

function [r]=cnd_no_of_R(alpha,beta,a,b,n)

%This code exclusively genrates the upper triangular factor R of Rechel’s

%Method.

r=[];

r(1,1)=beta(1)/b(1);

r(2,2)=r(1,1)*beta(2)/b(2);

r(1,2)=r(1,1)*(alpha(1)-a(1))/b(2);

for j=2:n-1

r(j+1,j+1)=r(j,j)*beta(j+1)/b(j+1);

r(j,j+1)=(r(j-1,j)*beta(j)+r(j,j)*(alpha(j)-a(j)))/b(j+1);

for k=2:j-1

r(k,j+1)=(r(k-1,j)*beta(k)+r(k,j)*(alpha(k)-a(j))

+r(k+1,j)*beta(k+1)-r(k,j-1)*b(j))/b(j+1);

end

r(1,j+1)=(r(1,j)*(alpha(1)-a(j))+r(2,j)*beta(2)-r(1,j-1)*b(j))/b(j+1);
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end

r;

A.5 Codes For Computing Nodes and Finding Diagonal

Preconditioner

function [x]=nodes(choice_of_nodes,n)

format long

switch (choice_of_nodes)

case 1

x = input(’Enter a vector which has a dimension equal to the value of n ’);

case 2

x = 2*cos(pi*(2*(1:n)-1)/(2*n));

case 3

x = -2+4*(((1:n)-1)/(n-1)).ˆ2;

case 4

x = 2-4*[0:n-1]/(n-1);

case 5

x = randn(1,n);

end

% The following codes generates the diagonal precondioner with outputs w.

function w=diagmatr(x,P,n,m)

A=inv(P);

for i=1:n

d(i)=sqrt(norm(A(:,i))/norm(P(i,:)));

end

w=d;
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A.6 Code for Plotting the Ratio
κ(R)
κmin

%This m file plots the Condition number of R and ratio of condition number

% of DR and R.The Vandermonde-like matrix P in this code is generated by

% Legendre polynomials.

function plotting_preconditioner(n,m)

format long

a=(zeros(1,n));

b(1)=2;

for j=2:n

b(j)=(2*j/((4*jˆ2-1)ˆ.5));

end

% The nodes x on which the polynomials are evaluated are generated

% randomly.The loop runs for 50 iterations and each time new nodes are

% generated and henceforth a new P.

for i=1:50

x=i*randn(n,1)

P(:,1) = ones(n,1)/b(1);

P(:,2) = (x’-a(1))/(b(1)*b(2));

for k=3:n

P(:,k)=((x-a(k-1)).*P(:,k-1)-b(k-1)*P(:,k-2))/b(k);

end

%Using new nodes and new P everytime a new preconditioner D is generated

%consisting of weights w.

w=diagmatr(x,P,n,m);

[alpha,beta]=GR_algorithm(x,w,n,m);

[alpha1,beta1]=GR_algorithm(x,ones(1,n),n,m);

R=cnd_no_of_R(alpha,beta,a,b,n);

%R_without_scaling is the upper triangular matrix obtained with using all
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%weights =1 in GR algorithm

R_without_scaling=cnd_no_of_R(alpha1,beta1,a,b,n);

% CNR and CNR_without_scaling are the condition numbers or R and

% unscaled R.The condition number of R is smaller than unscaled R.Its

% equivalent to the procedure of multiplying unscaled R by a preconditioner

% D such that D is diagonal matrix consisiting of weights.

% By switching alpha and beta with a and b,the inverse of R can be

% calculated.CNR and CNRUS store the condition number of R and unscaled R.

CNRS(i)=cond(R,’fro’);

CNRUS(i)=cond(R_without_scaling,’fro’);

end

subplot(2,1,1),plot(CNRUS)

title(’Condition number of R without Preconditioning ’)

xlabel(’Number of times condition number is computed’)

subplot(2,1,2),plot(CNRS./CNRUS)

title(’Ratio of Condition numbers ’)

xlabel(’Ratio cond(DR)/cond(R)’)

%ylabel(’’)

CNRUS

CNRS;

CNRS./CNRUS;

A.7 Code for Comparing κ(V ) and κmin

function d=vcondition(v)

n=length(v);

for k=0:n-1

V(k+1,:) =v.ˆk;

end
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VIN=inv(V);

d=[];

for i=1:n

d(i)=sqrt(norm(VIN(:,i))/norm(V(i,:)));

end

d=d/d(1)

D=diag(d);

L=cond(V,’fro’)

N=cond(D*V,’fro’)

N/L;
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