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ABSTRACT 
 

 The Cherokee Group (Desmoinesian, Middle Pennsylvanian) of Ness County, 

Kansas was deposited on the western flank of the Central Kansas uplift.  Eleven 

lithofacies were defined in the Cherokee Group to better understand the stratigraphy 

and depositional processes.  Sandstone facies represent the primary oil-bearing 

reservoirs in the Cherokee Group.   

An extensive network of groundwater-sapped paleovalleys is present on the 

Mississippian karst surface and two primary drainage patterns were identified.  

Groundwater-sapped valleys and dolines exhibit a strong structural control and 

develop along gravity and magnetic lineaments.   

Three sequences were identified and mapped, two complete and one 

incomplete sequence.  Potential reservoir sandstone bodies are confined to lowstand 

and transgressive systems tracts.  Sand development is strongly influenced by 

Mississippian paleotopography.  Thick sandstone successions were deposited in 

groundwater-sapped Mississippian valleys and along the paleoshoreline.  Two 

depositional models were created to explain the lateral and vertical distribution of 

facies in the Cherokee Group.     
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CHAPTER 1: INTRODUCTION 

Introduction 

In Ness County of west-central Kansas, the Cherokee Group (Desmoinesian 

Stage, Middle Pennsylvanian Series), is a mixed siliciclastic and carbonate sequence 

that unconformably overlies various Mississippian and pre-Mississippian carbonate 

units.  The Cherokee Group was deposited in shallow-water marine, marginal-marine, 

and non-marine setting on the western flank of the Central Kansas uplift during a 

major marine transgression in the Pennsylvanian (Merriam, 1963; Zeller, 1968).  

Lithologically the Cherokee Group of western Kansas is significantly different than in 

southeastern Kansas, where the numerous coal seams (70% of the deep coal resources 

in Kansas) were deposited in deltaic environments (Brady, 1997).   

Flooding associated with transgression onto the Mississippian unconformity 

surface deposited several marine and non marine facies, including oil-bearing 

reservoir sandstone facies.  Facies distribution in the Cherokee Group is believed to 

be influenced by the paleotopography of the underlying Mississippi unconformity 

surface (Howard, 1990; Cuzella et al., 1991).   

The goals of this project are: 

1) Determine the depositional environments of lithofacies in core. 

2) Understand the Mississippian karst topography and evaluate 

the role of basement structure in the development of the 

Mississippian erosional surface. 
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3) Generate a depositional model based on a stratigraphic 

framework for the Cherokee Group developed from core and 

log data.  

4) Evaluate the, influence of the Mississippian karst surface 

paleotopography on the distribution of Cherokee Group facies 

and reservoirs.  

Hydrocarbon significance 

 Sandstone facies in the Cherokee Group are of particular economic interest 

because they often form oil reservoirs.  Reservoir sandstone is usually only 5-20 feet 

thick, highly variable, and laterally discontinuous. Early production during the 1950’s 

from the Cherokee Group in western Kansas was often serendipitous in wells drilled 

for deeper formations (Geobel, 1957).  Sandstone reservoirs of the Cherokee Group 

increased in importance as an exploration target during the 1970’s because of high 

average production from wells (70,000 to 80,000 barrels on 40 acre spacing) and 

shallow drilling depths, causing a peak in production.  Approximately one third of all 

oil fields in Ness County produce oil from the Cherokee Group (~113 out of 332).    

Traps in the Cherokee Group are subtle and include structural, stratigraphic, and 

paleogeomorphological types (Beiber, 1984).   However, due to the lenticular nature 

of Cherokee sandstone reservoirs, correlation, distribution and architecture have 

always proved hard to predict (Mueller, 1967; Beiber, 1984).   
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Area of Investigation 

 The study area is confined to Ness County in western Kansas and 

encompasses over 1,000 square miles (2,700 square kilometers) (Figure 1.1).  It is 

located on the northeastern shelf of the Hugoton embayment and is flanked by the 

Central Kansas uplift to the east.  Cherokee Group rocks are only present in the 

subsurface at depths between 4,000 to 4,650 feet and rest unconformably on 

Ordovician through Mississippian strata.      

Previous Investigation 

Although much has been published on the Cherokee Group in eastern Kansas, 

few studies have been conducted on the Cherokee Group in central and western 

Kansas.  Most of the studies in western Kansas were small-scale oil field studies and 

focused on sandstone facies within the Cherokee Group. Roth (1930) published a 

regional subsurface correlation for the Cherokee and Marmaton groups throughout 

the midcontinent region. Abernathy (1936) and Howe (1956) subdivide the Cherokee 

Group outcrops in eastern Kansas into cyclothems and formations, which became the 

basis of the current accepted stratigraphic classification (Zeller, 1968).  Geobel and 

Merriam (1957) commented on the oil and gas production trends developing in the 

Cherokee Group on the western flank of the Central Kansas uplift.  Walters (1979) 

interpreted Cherokee Group sandstone units east of Dickman oil field in north-central 

Ness County as channel deposits.  Stoneburner (1982) completed detailed subsurface 

mapping and interpretation of the Cherokee in the extreme northeastern corner of 

Ness County and into Trego and Ellis counties.  Bieber (1984) investigated reservoir 
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characteristics and trap types in the Start oil field, Ness County.  Nodine-Zeller 

(1981) examined a core in southeastern Ness County, and interpreted the 

Pennsylvanian Basal Conglomerate as the fill of a fault-controlled karst valley or 

deposition adjacent to prominent sea cliffs in a quasi-marine environment.  Nodine-

Zeller (1981) identified transgressive-regressive marine limestone and shale of 

middle to late Cherokee age.    Howard (1990) applied cyclic depositional principles 

to the Cherokee Group of northeastern Ness County and identified two marine 

transgressive-regressive cycles.  Cuzella (1991) performed a study in the same region 

as Howard and defined six distinct depositional environments.  Most of these detailed 

studies are small scale and restricted to the eastern portion of Ness County. 

Geological Setting 

Ness County is located on the western flank of the Central Kansas uplift and 

the northeastern shelf of the Hugoton embayment of the Anadarko basin (Figure 1.2).  

The Central Kansas uplift is a northwest-southeast trending structural high that 

separates the Hugoton embayment on the west from the Salina and Sedgwick basins 

on the east (Merriam, 1963).  It is the largest positive feature in Kansas, occupying an 

area of about 5700 square miles, and is outlined by the extent of the Mississippian 

beds.  Many workers have noted the onset of deformation in the midcontinent during 

the early Paleozoic, with initiating movements that created uplifts, including the 

Central Kansas uplift and Cambridge arch, with associated basins (Kluth, 1986).  

These uplifts are major components of the Transcontinetal arch, and are linked to 

Cambro-Orodovician deformation as well as late Mississippian deformation 
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(Merriam, 1963).  Much of the deformation is associated with the collision of North 

America and South America-Africa portion of Gondwanaland, which initiated the 

Ouachita-Marathon orogeny (Kluth and Coney, 1981).  Yarger (1983) noted that 

Precambrian faults associated with the Central North American Rift system were 

likely reactivated during the late Mississippian.  Gentle widespread uplift occurred 

contemporaneously with a major sea-level lowstand, creating a period of significant 

emergence and erosion (Ham and Wilson, 1967; Rascoe and Adler, 1983).  Almost 

the entire midcontinent was affected by the epeirogeny, which was centered on the 

Cambridge arch-Central Kansas uplift.  Since the end of the Pennsylvanian, the west-

central region of Kansas has been characterized by a fairly quiet tectonic history, with 

a lack of large-scale structural movements (Merriam, 1963).  Regional tilting and 

subsidence to west-southwest, along with localized uplift linked to Laramide 

deformation, have been the dominant tectonic influence of post-Pennsylvanian time 

(Merriam, 1964). 

At the core of the Central Kansas uplift, Pennsylvanian beds unconformably 

overlie Precambrian basement rock, while toward the flanks Pennsylvanian beds on 

lap uplifted and truncated Precambrian through late Mississippian beds (Merriam, 

1963).  This creates an angular unconformity with Morrowan through Desmoinesian 

rocks successively onlapping truncated Precambrian through Mississippian rocks 

(Merriam, 1963; Rascoe and Alder, 1983).  During the Early Pennsylvanian, the 

major sedimentation influences were marine transgression onto the erosional surface 

and sediment shed westward from the Central Kansas uplift.  On the northeastern 
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shelf of the Hugoton Embayment, Desmoinesian Stage sediments, composed 

primarily of limestone with thin interbedded shale beds, rest on Mississippian 

dolomite and limestone.  On the tectonically stable shelf, water depths probably did 

not exceed 100ft (30m) (McCrone, 1964).   Closer to the uplift, limestone-dominated 

units give way to fine-grained to coarse-grained siliciclastics that parallel the paleo-

coastline along the uplift.   

Stratigraphy 

The main stratigraphic interval of interest throughout the study area is the 

Cherokee Group, which rests unconformably on the Mississippian unconformity 

surface in Ness County (Figure 1.3).  Uplift and erosion at the end of the 

Mississippian removed a significant amount of strata over the Central Kansas uplift 

and exposed the Precambrian basement along the crest (Figure 1.4).  In Ness County, 

the Cherokee Group overlies Meramecian, Osagean, and Kinderhookian carbonate 

units (Figure 1.5). 

Mississippian Series:  Kinderhookian, Osagean, and Meramecian 

The primary Kinderhookian deposit exposed at the top of the Mississippian 

subcrop in the study area is the Gilmore City Limestone.  The Gilmore City 

Limestone consists of soft, chalky, bioclastic limestone, but in western Kansas is 

often characterized by oolitic limestone with localized trace amounts of chert (Zeller, 

1968).   

Formations in the Osagean Stage consist mainly of dolomite, limestone, chert, 

cherty dolomite and dolomitic limestone beds.  Throughout much of Kansas Osagean 
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Stage rocks  are of characterized by chert-rich reservoirs.   Basal Osagean rocks are 

separated from the underlying Kinderhookian Stage rocks by an angular 

unconformity (Zeller, 1968).   

Meramecian Stage rocks lie disconformably on Osagean Stage rocks.  The 

only Meramecian Stage formations present in Ness County are the Warsaw 

Limestone and Salem Limestone (Zeller, 1968).  The Warsaw is characterized by 

limestone with interlaminated saccharoidal dolomite that contains large amounts of 

distinctive gray, mottled, opaque, microfossiliferous chert (Zeller, 1968).  The Salem 

Limestone conformably overlies the Warsaw and consists mainly of coarsely 

crystalline oolitic limestone and saccharoidal dolomite, dolomitic limestone, and 

chert.  The chert facies often resembles the microfossiliferous chert of the Warsaw 

Limestone.     

Lower Pennsylvanian Series 

The Pennsylvanian Basal Conglomerate (PBC) is a breccia that overlies much 

of the karstic Mississippian surface in central Kansas.  The breccia is a mixture of 

highly weathered in situ Osagean, Meramecian, and Chesterian cobbles and boulders 

as well as fluvial deposited pebbles and cobbles.  The clasts are derived from the karst 

terrain of the Mississippian surface.  A thin paleosol is often present at the top of the 

PBC.  Nodine-Zeller (1981) described the PBC from a core in southwestern Ness 

County and concluded that it is earliest Pennsylvanian or possibly early 

Desmoinesian in age.  Morrowan and Atokan age strata are not recognized across the 
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study area in Ness County.  The PBC is readily identified in core, but is often difficult 

to distinguish in logs.   

Middle Pennsylvanian Series 

Cherokee Group 

The Cherokee Group strata are the lower division of the Desmoinesian Stage.  

Significant stratigraphic research has been conducted in southeastern Kansas where 

the Cherokee Group crops out.  A detailed stratigraphy has been developed for the 

Cherokee Group in southeastern Kansas, which includes the Krebs and Cabaniss 

Formations with a total of twelve formally recognized coal beds (Zeller, 1968; Figure 

1.6).   Both formations contain cyclic deposits consisting primarily of gray shale, 

siltstone, fine-grained sandstone, paleosol and underclay, thin coal seams, black 

shale, and thin limestone beds.   

Numerous publications have interpreted the rocks of the Pennsylvanian 

succession in Kansas as a series of repeating cyclothems (Wanless and Weller, 1932; 

Abernathy, 1936; Merriam, 1963; Heckel, 1977), and.  The model for a “typical” 

Pennsylvanian cyclothems in Kansas consists of four recognizable and laterally 

extensive members: 1) outside shale, 2) lower limestone, 3) core shale, and 4) upper 

limestone (Figure 1.7) (Heckel, 1977).   The outside shale is relatively thick, grey to 

brown, sandy to shaley, with discontinuous and thin coal seams.   It may also contain 

continental trace fossils and evidence of pedogenesis.  The lower limestone is a thin, 

grey to black, dense limestone with diverse marine biota.  The lower limestone is 

referred to as the transgressive limestone, interpreted water depths and depositional 
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environments at the base are shallower and more nearshore than those at the top of 

the unit (Heckel, 1977).  The core shale is a thin (1.0 m or less) finely laminated dark-

grey to black fissile shale.  The core shale may contain phosphatic nodules that are 

interpreted as indicating deep, sediment-starved depositional environments and 

anoxic conditions (Heckel, 1977). The upper limestone, referred to as the regressive 

limestone, typically has a wackestone to grainstone fabric and commonly contains 

oolitic grainstone near the top.  Usually the regressive limestone is much thicker than 

the transgressive limestone, and records a reduction in water depth.  Typically, the 

upper limestone is overlain by the next cyclothem, however local and regional 

incision may erode parts previously deposited cyclothem (Heckel, 1977).   

The Cherokee Group in central and western Kansas is significantly different, 

and the detailed stratigraphy developed from outcrop data is rarely used.  For the 

purpose of this study, the Cherokee Group is defined as containing all strata between 

the top of the Mississippian to the base limestone units in the Fort Scott Limestone 

(top of the Excello Shale equivalent).  In Ness County, the Cherokee Group lacks the 

coals found in eastern Kansas and is primarily composed of limestone and shale with 

sparse sandstone.  The depositional environment in central and western Kansas was 

different and the Cherokee Group has not been divided into formal formations or 

members.   

Marmaton Group 

The upper Desmoinesian beds in Kansas are assigned to the Marmaton Group.  

The Marmaton is dominated by thicker limestone, thinner grey shale, and more 
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fissile, phosphatic black shale than observed in the underlying Cherokee Group, and 

exhibits characteristics that are more commonly associated with the “typical” Kansas 

cyclothem model (Zeller, 1968).  The Fort Scott Limestone is the lowest formation in 

the Marmaton Group and is composed of two limestone members separated by a 

shale member that is not readily distinguishable in the subsurface.  The Labette Shale 

consists of gray and yellow clay-rich shale, sandy shale and sandstone, coal and 

limestone beds (Zeller, 1968).  It conformably overlies the Fort Scott Limestone, 

which is not reliably identifiable or not present in the subsurface.  Overlying the 

Labette Shale is the Pawnee Limestone.  The basal Anna Shale Member, a black, 

platy, locally fissile shale, has a distinctive, high gamma-ray log signature, making it 

ideal as a stratigraphic datum.  The Pawnee Limestone is a dark-grey to light-grey 

Chaetetes-bearing limestone, and typically exhibits a highly recognizable smooth 

cleaning-upward gamma-ray log signature (Zeller, 1968). 

Methods 

Two main methods of investigations were used in this study:  1) core 

description, 2) and correlation of well data and logs for subsurface mapping using 

computer applications.  Well data used in this project was obtained from the Kansas 

Geological Survey (KGS).  Cores were described at the KGS Core Laboratory.  

Wireline logs were obtained from the KGS and used for the subsurface mapping.   

Lithologic Analysis 

Since no outcrops of the Cherokee group are present in Ness County, 

lithologic samples were obtained from cores.  Six cores were described to identify 
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lithofacies (Figure 1.8; Appendix 1).  Cores were selected based on their geographic 

location, length of penetration into the Cherokee Group, and the suite of logs 

available for each well.  The cores were chosen to help show the heterogeneity of the 

Cherokee Group in western Kansas.  Core descriptions illustrate changes in lithology, 

sedimentary structures, fossil assemblages, grain size and composition, and bedding 

types that provided the basis of the depositional environment interpretations.  

Selected intervals of the cores were slabbed to aide in the identification and 

description of sedimentary structures and key surfaces.   

Geophysical Well Log Analysis 

Geophysical well logs account for the bulk of the subsurface data used in this 

investigation.  Over 550 well logs across Ness County were used for correlation 

purposes (Figure 1.8).  Logs were selected based on interval of log, logging tools 

used, the spacing and location of the logs, the quality of the logs, and availability.  

Logs were selected to give adequate spatial distribution throughout the entire county 

and minimize the data needed to perform correlations.  Gamma-ray–neutron or 

radiation guard (RAG) wireline logs were the most abundant in the study area, but 

when available, more modern neutron-density logs, resistivity, and bulk density logs 

were used to provide additional data.  Neutron-density wireline logs proved 

particularly useful in differentiating between limestone and sandstone intervals.  

Resistivity logs were also helpful in identifying highly resistive limestone units.  The 

majority of the available logs were raster images available from the Kansas 

Geological Survey (scanned copies of paper logs saved as .TIF files).  A few digital 
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logs (.LAS files) were available for the southeastern portion of Ness County.  All 

selected logs were loaded into subsurface geographic information system (GIS) 

software.  

Computer Applications and Digital Mapping 

 Paper logs were available for many wells throughout the study area but very 

in a digital format were available.   A scanner built exclusively for paper well-log 

scanning (Neuralog) was employed to create the raster images of the logs.  Raster 

images were calibrated in the subsurface GIS program to insure the digital logs files 

were matched to the correct well locations.  

 Subsurface mapping for this study was conducted in a subsurface GIS 

program (PetraTM).  Information from 5,840 wells including:  API number, well 

name, well type, operator, location, Kelly-bushing or ground-level elevation, spud 

date, and total depth was downloaded from the Kansas Geological Survey’s relational 

database (Figure 1.8).  Logs, formation tops, and cored well locations were also 

obtained from the Kansas Geological Survey’s Oracle database and other resources.  

Select formation tops were quality controlled and verified based on wireline logs.  

The digital mapping capabilities of Petra were used to create structure, isopach, and 

net sand maps.  A Vshale ratio of 20 percent was applied to estimate net sand thickness.  

In addition, structural and stratigraphic cross sections were created to identify and 

illustrate subsurface geometries.  
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Gravity and Magnetic Data 

Gravity data used in this project were taken from the potential-field database 

at the Kansa Geological Survey.  Gravity data were taken by dividing the state into a 

number of rectangular blocks approximately 25 miles (40 km) in the east-west 

direction and 16 miles (26km) in the north-south direction.  A base station was 

chosen at the center of each block at which base readings to correct for meter drift 

and differences in elevation at other sample stations in the block.  Measurements in 

western Kansas were taken every mile (1.6 km) along east-west roads and every 2 

miles (3.2km) in the north-south direction.  Surveyors recorded elevation (with an 

accuracy of 1 ft. or .3 m), and gravity in mGals at each station.  Tidal and drift 

corrections were applied to the data, and used to generate a corrected Bouguer gravity 

reading.  The Bouguer gravity data were loaded into Petra, and gridded and contoured 

for further interpretation. 

Magnetic data used in this project are from the potential-field database at the 

Kansas Geological Survey.  Aeromagnetic data were taken in east-west oriented flight 

lines spaced 2 miles (3.2 km) apart.  Data was recorded every 300-400 feet (90-125 

m) providing sufficient resolution to discern Precambrian basement structure (Xia et 

al., 2000).  Diurnal, normal-field, and topographic corrections were applied to the raw 

data to correct for drift, spatial variation in geomagnetic field, and elevation 

respectively.  Corrected total field and residual magnetic data (in nanoTesla) were 

mapped using a 2000 X 2000 foot grid (610 X 610 meters) to generate a contour map. 
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Figure 1.1.  Major structural features of Kansas with the Ness County (the study 
area) highlighted.  Modified from Merriam (1963); and Lange (2003). 



15 
 

 
Figure 1.2.  Regional Midcontinent structural features and interpreted Pennsylvanian 
paleolatitude.  Modified from Merriam (1963); Rascoe and Alder (1983); Scotese 
(1999); Blakey (2005).  
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Figure 1.3.  Generalized stratigraphic column for study area in western Kansas 
depicts the Cherokee Group resting unconformably on Mississippian through 
Ordovician age strata.   
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Figure 1.4.  Map of the Mississippian subcrop beneath the Pennsylvanian 
unconformity with Ness County highlighted. Mississippian units beneath the 
unconformity become progressively older toward the Central Kansas uplift.  Modified 
from Merriam (1963) and Gerlach (1998). 
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Figure 1.5.   Enlarged view of the Mississippian subcrop in Ness County overlain by 
oil field outlines.  The Cherokee group overlies the Salem Limestone (blue), Spergen-
Warsaw Limestone (yellow), Osagean and Kinderhookian Limestone (grey).  Taken 
from http://www.kgs.ku.edu/DPA/County/ness7.html (referenced 8/25/2008). 
 

 

http://www.kgs.ku.edu/DPA/County/ness7.html
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A

  
Figure 1.6.  Stratigraphy of the Cherokee Group in eastern Kansas.  Ness County 
stratigraphy examined in this study is equivalent to interval indicated with “A”.  
Modified from Zeller (1968) and Lange (2003). 



20 
 

 
Figure 1.7.  The major components of a typical “Kansas” cyclothems and their 
relation to geologic properties such as depositional environment, fossil distribution, 
and phase of deposition.  Modified from Heckel (1977).  
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Figure 1.8.  Six cores from Ness County were examined and described to identify 
lithofacies and determine depositional environments.  Over 400 well logs were used 
for mapping and quality control on formation top data.  Oil production dominates 
Ness County with only minor gas production.  All oil fields in Ness County are 
highlighted in green. 
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CHAPTER 2: CHEROKEE GROUP FACIES  
 
Introduction to Facies 

In this study, core description tied to electric log response was the primary 

method of investigation in determining facies.  From the core examination, eleven 

lithofacies were defined in the Cherokee Group of Ness County Kansas.  The facies 

defined in this study are based on available cores from the Kansas Geological Survey 

from Ness County, Kansas, that included part or all of the Cherokee Group.  Due to 

the high degree of lateral and vertical variability in lithology of the Cherokee Group, 

some of the lithofacies described in this study more closely resemble facies groups, 

which allow for variations in lithology.  Facies groups tied to electric log response 

aided in understanding the deposition of the Cherokee Group over the county, and 

represent a different approach than used in most previous, small-scale studies of the 

region (Walters and James, 1979; Stoneburner, 1982; Beiber, 1984; Howard, 1990; 

Cuzella et al. 1991).  Facies descriptions include lithology, color, grain size, grain 

sorting, sedimentary structures, body and trace fossils, pedogenic features, 

cementation, thickness, nature of contacts, relationships with other facies, and log 

response.   

Black Shale Facies 

Description 

Black shale facies of the Cherokee Group is dark-grey to black and very finely 

laminated (<1.0 millimeter) (Figure 2.1).  Light- to medium-grey phosphate nodules 

and laminae up to 2.0 millimeter thick were observed toward the base of the facies.  
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The facies is noncalcareous.  Body fossils, burrowing, and trace fossils were not 

observed.  Other features include small (< 3.0 millimeters) brassy pyrite nodules and 

preserved plant fragments.  Facies thickness of 0.3 meters was observed in core, but 

facies thickness observed in logs ranged to 1.0 meter.  The facies has a sharp contact 

with the underlying variegated silty mudstone and a gradational contact with the 

overlying sandy siltstone.  Gamma-ray log readings of 180-250 API units are 

characteristic of the black shale facies.  Beds of black shale are laterally continuous 

and can be traced over much of the study area. 

Interpretation 

Fine-grained sediment and thin parallel laminations indicated low energy 

sediment fall and a lack of burrowing organisms within a depositional environment.  

The dark-grey to black appearance and preserved plant material suggest a relatively 

high organic content.  Black shale facies have traditionally been interpreted as 

deposited in either shallow marginal marine or deep marine environments.  In the 

Pennsylvanian of the midcontinent, regionally extensive high-gamma ray black shale 

has been interpreted as condensed section and recognized as containing the maximum 

flooding surface, recording deposition in deep anoxic conditions (Wanless and 

Weller, 1932; Moore, 1936; Heckel, 1977).  Interpreting any black shale as “deep” 

water deposits requires aerially constrained black shale to be within extreme 

paleotopographic lows, or at least localized areas of anoxic conditions (Brown, 2005).  

Regionally extensive black shale was observed in core and is present in electric logs 

across much of the study area.   
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Overall, finely-laminated localized black shale is not indicative of water 

depth, but of anoxic to dysoxic conditions and sediment starvation.  Isolated black 

shale is best interpreted as a product of deposition in stratified waters or areas that are 

not active sites of deposition.  The black shale facies is interpreted as deposited in an 

offshore, dysoxic to anoxic environment.    

Grey Shale Facies 

Description 

The grey shale facies is composed of medium-grey to dark-grey shale with 

fine parallel laminations (1.0 to 3.0 millimeters) (Figure 2.2).  The facies is slightly 

calcareous to calcareous.  Thin silt laminations were observed (2.0 to 3.0 

millimeters).  Biota present includes articulated brachiopods and fish scales.  Burrows 

were found along bedding planes.  Sparse brassy-yellow pyrite occurs as very-fine, 

individual, cubic crystals (< 1.0 mm) and in very thin lenses between laminae.  The 

grey shale facies is 0.6 to 1.2 meters thick in core.  Sharp contacts were observed with 

underlying limestone and variegated silty mudstone and gradational contacts are 

present with overlying limestone.  The grey shale facies is distinguished by gamma 

ray readings from 120 to 170 API units.  Typical gamma-ray profiles have a sharp 

base, and API units gradually decrease upward into overlying limestone facies. Beds 

of grey shale are laterally continuous and can be traced down-dip into the laterally 

equivalent black shale.  
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Interpretation 

Parallel laminated shale indicates fine grained sediment fallout in a low 

energy environment with a lack of abundant burrowing organisms.  Grey coloration 

and minor bioturbation indicates conditions were still aerobic, and flooding did not 

reach sufficient depths to cause completely anoxic conditions or strong stratification 

did not occur.  Dark-grey coloration in the lower portion of the facies is probably the 

result of slightly dysoxic conditions.  Similar gray shale deposits have been noted 

throughout midcontinent Pennsylvanian cyclothems (Malinky and Heckel, 1998).  

The grey shale facies is interpreted as deposited in an offshore environment similar to 

the laterally equivalent black shale facies but water depth did not reach sufficient 

depth to establish anoxic conditions or, as evidence by the presence of bioturbation. 

Grey Sandy Siltstone Facies 

Description 

The grey sandy siltstone facies is light-grey in appearance.  The siltstone is 

composed of silt-size particles with minor amounts of very fine-grained quartz sand 

and abundant clay (up to 30%).  Observed sedimentary structures include faint wavy 

laminations.  Bioturbation is common and vertical burrows were observed (Figure 

2.3).  Rare, small macerated plant debris and disseminated coal fragments were noted.  

Facies thickness observed in core is 1.0 meters.  The facies has a gradational contact 

with underlying black shale and a relatively sharp contact with overlying limestone 

beds.  The facies does not have a diagnostic well signature because it is masked by 

log signatures of high gamma-ray signature of black shale below and clean carbonate 
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wackestone to packstone above, but overall gamma ray response cleans upward in the 

facies.     

Interpretation 

  The sedimentary structures observed in the grey sand siltstone facies typify an 

environment with low- to moderate-energy sedimentation.  The bioturbation and 

burrows also suggest a marine environment.  Bioturbated marine siltstone is common 

in upper offshore to lower shoreface environments (Bann et al., 2004).  Offshore 

transition zones typically experience episodic deposition of fine sand, and continued 

sedimentation of fine clay and silt-size sediment.  The presence of a gradational 

contact with the black shale below and limestone above above also suggests this is a 

transitional facies between sediments deposited in deep, anoxic waters and shallow 

shelf carbonate sediments.  The presence of bioturbation, silt-size sediment, and, most 

importantly, stratigraphic location supports an offshore transitional zone depositional 

environment for the grey sandy siltstone facies.   

Carbonate Wackestone to Packstone Facies 

Description 

The carbonate wackestone to packstone facies is light to medium grey.  It is 

characterized by a fossiliferous micritic carbonate matrix and the facies alternates 

between matrix support and grain support (Figure 2.4).  Identified fossils include 

whole and disarticulated brachiopods, bryozoans, sponges, gastropods, fish scales, 

foraminifera, and crinoids. Coated grains were occasionally observed in the upper 

portion of the facies along with isolated quartz grains.  Slickensides occur along shale 
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breaks and a few incipient stylolites are present in the limestone.  Significant 

reddening was observed and decreased downward from the overlying contact.  A 

nodular fitted texture is prevalent throughout much of the upper portion of the facies 

and decreases downward with reddening.  Facies ranges in thickness from 0.5 to 4.0 

meters in core.  Sharp and gradational contacts were observed with underlying strata 

(grey shale, variegated silty mudstone, conglomeratic sandstone and cross-laminated 

sandstone).  A gradational contact was observed with the overlying variegated silty 

mudstone due to pedogenic processes from above.  The facies exhibits relatively 

clean gamma ray readings less than 40 API units, bulk density readings between 2.6 

to 2.7 g/cc, and is easily recognized by its high resistivity response (200-600 ohm-

meters).  Limestone beds in the Cherokee Group are laterally continuous across 

almost the entire study area and are easily differentiated from clastic facies in electric 

logs. 

Interpretation 

Brachiopods, bryozoans, foraminifera, and crinoids form a normal marine 

fossil assemblage and indicate an open normal marine environment.  The abundance 

of lime mud indicates deposition within the photic zone.  The abundance of whole 

and disarticulated skeletal fragments and presence of matrix and grained-supported 

texture are evidence for varying mechanical energy during deposition.  Slickensides, 

red coloration, and nodular fitted texture are the result of post depositional pedogenic 

processes that occurred during exposure before deposition of overlying beds.  Lack of 

core data restricts the placement of the facies into a precise depositional environment 
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interpretation, but based on the lateral continuity of the facies and fossil assemblage 

present the carbonate wackestone to packstone is interpreted to have been deposited 

across a broad shallow shelf with normal marine salinity conditions. 

Skeletal Packstone to Grainstone Facies 
 
Description 

Typically, the skeletal packstone to grainstone facies is light grey to grey.  

The facies is grain supported and highly fossiliferous.  Abundant disarticulated, 

broken, and abraded skeletal fragments include brachiopods, sponges, gastropopds, 

solitary corals, and fish scales.  Micritic intraclasts were also observed.  Many of the 

skeletal remains are aligned or imbricated (Figure 2.5 and Figure 2.6).  Typically, 

pores between grains are filled with pale green mud or sparry calcite cement.  The 

facies is present as a thin bed within or at the top of carbonate wackestone to 

packstone beds and is overlain by the variegated silty mudstone beds.  Typically, a 

sharp contact is present at the base of the facies and a gradational contact is present at 

the top of the facies.   Skeletal packstone to grainstone beds are thin (< 0.5 meters) 

and not distinguishable in electric logs from the carbonate wackestone to packstone 

facies, but as previously stated limestone beds are easily differentiated from clastic 

facies by a clean gamma ray response (<30 API units) and high resistivity readings 

(200-600 ohm-meters).  

Interpretation 

The skeletal packstone to grainstone was only observed in two cores and is a 

thin unit in the overall succession.  In the Cherokee Group this facies is interpreted as 
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the result of deposition in a marine shelf environment under normal conditions during 

times of elevated energy caused storm activity, or from higher energy currents than 

those responsible for deposition of the carbonate wackestone to packstone facies.   

Lingulid Shale Facies 

Description 

The lingulid shale facies is characterized by dark-grey to dark-green, fissile, 

thinly laminated shale.  Bioturbation was rarely observed.  The facies contains 

abundant lingulid inarticulate brachiopods 3.0 to 5.0 millimeters in size and 

amorphous organic material (Figure 2.7).  Facies thickness was observed in only one 

core, and is approximately 0.7 meters.  Contacts with overlying limestone beds and 

underlying conglomeratic sandstone beds are sharp but not erosional.  The facies 

exhibits a high gamma-ray reading (~225 API units) but beds are not laterally 

extensive and can only be traced a short distance from core control.  

Interpretation 

The parallel thin laminations suggest a lack of burrowing organisms and the 

abundance of clay-size sediment suggests deposition from sediment fallout in a low 

energy environment.  Lingulid brachiopods are noted as euryhaline organisms 

common in restricted marine environments (Black, 1989; Bridges, 1976; Wehrmann 

et al., 2005).  Ancient lingulid brachiopod fauna have been interpreted as brackish 

water indicators found in lagoons and restricted bays with freshwater input (Bjerstedt, 

1987).  Modern day lingulids are usually found in water depths less than 40 meters 

and inhabit intertidal mudflats, lagoons, and estuaries (Black, 1989).  The dark 
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coloration is due to a high organic content.  The dominance of euryhaline lingulid 

brachiopods, lack of biodiversity, and minor bioturbation are strong evidence of non-

normal marine salinity conditions.  Often, lingulid brachiopod-dominated, low-

diversity communities are interpreted as indicative of reduced salinity environments 

in lagoons and estuaries (Swain, 2008).  Also, lack of lateral continuity supports a 

localized environment.  The lingulid shale facies is interpreted as deposited in a 

lagoon or bay environment with brackish salinity. 

Cross-Laminated Sandstone Facies 

Description 

The cross-laminated sandstone facies is dark grey-green, tan, and brown.  The 

facies is composed of very-fine to medium-grained, subangular to subrounded quartz 

sand.  Clay content ranges from 10% to 15%.  Observed sedimentary structures 

include: low-angle cross-laminations, scour surfaces, and overall fining-upward 

successions (Figure 2.8).  Subangular chert clasts up to 1.8 centimeters long and 

occasional shale clasts up to 0.6 centimeters long were observed on scour surfaces.  

Other observed features include white to tan limestone nodules up to 2.0 centimeters 

in size and black coal fragments less than 0.3 centimeters in size.  Sedimentary 

structures are disrupted or completely destroyed by bioturbation and burrowing in 

places.  Quartz cement is common, but patches of calcareous cement up to 3.5 

centimeters in size create a spotty white appearance on the surface of the core.  Facies 

thickness ranges from 2.0 to 3.3 meters.  The cross-laminated sandstone facies has a 

sharp contact with underlying rocks (conglomeratic sandstone and variegated silty 
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mudstone beds) and a gradational contact with overlying rocks (limestone beds).  

Gamma-ray readings between 30 to 65 API units with fining-upward bell-shaped 

profiles can be used to help identify the facies.  Unfortunately, density and porosity 

readings are variable and typical neutron-density porosity overlay patterns are not 

diagnostic of the facies due to clay content.    

Interpretation 

The presence of shale rip-up clasts and small coal fragments suggests the 

cross-laminated sandstone facies was deposited in a continental or marginal-marine 

nearshore setting.  This facies does not display the coarsening-upward succession 

commonly interpreted as shoreface or deltaic or deltaic (Reading, 1996). The 

sedimentary features observed in the cross-laminated sandstone facies are not 

diagnostic of any single depositional environment.  Similar Cherokee Group 

sandstone units in eastern Kansas have been interpreted as incised-valley-fill systems 

(Lange, 2003).  They contain similar basal pebble lags and mud rip-up clasts (Lange, 

2003). Unlike the sandstone units described by Lange, in the study area the cross-

laminated sandstone facies lacks the lateral extent associated with large incised-valley 

fills.  Cuzella (1991) interpreted this facies as tidal channels, based on the presence of 

mud clasts derived from erosion of surrounding tidal flats.  The facies cannot be 

reliably differentiated with electric log responses from the conglomeratic sandstone 

facies and exact facies geometry can not be determined.  Bioturbation in the facies 

and the presence of carbonate nodules suggest a non-freshwater environment with 

saline conditions found in brackish or marine water (Zaitlin et al., 1994).  The 
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presence of a gradational contact with overlying limestone beds suggests the facies 

was deposited during transgression.  The features listed above do not necessary 

indicate any particular depositional environment but based on the distribution of sand 

and relationship with other facies, the cross-laminated sandstone facies is interpreted 

as deposited by nearshore processes including tidal channels and coastal marine 

reworking in the shoreface. 

Glauconitic Cross-Laminated Sandstone Facies 

Description 

The glauconitic cross-laminated sandstone facies ranges from brown to 

brown-green in color.  It is composed of fine to coarse-grained, subangular to 

subrounded quartz sand.  Glauconite content ranges from an estimated 10% to 15%.  

Facies contains an estimated clay content of 10% to 15%.  Observed sedimentary 

structures include low to high-angle cross-laminations, normally-graded beds 3.0 to 

12.0 centimeters thick, flaser bedding, isolated green mud clasts, and overall upward 

fining (Figure 2.9). Thin green shale laminae (<3.0 millimeters), thought to be 

glauconitic, occur locally (Figure 2.10).  No trace or body fossils were observed.  

Patchy calcareous cement associated with dark-grey spherical centers and red-orange 

calcite concretions are common.  Pyrite is present in some intervals.  Thickness of the 

facies varies from 1.5 to 15 meters.  Typically, glauconitic sandstone is underlain and 

overlain by the variegated silty mudstone beds.  The facies has a sharp underlying 

contact but a gradational contact is present at the top.  Gamma-ray response varies 

from 30 to 60 API units and the typically fining upward sequences are not 
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distinguishable in resistivity logs.  The facies is not laterally continuous, appearing to 

fill paleotopographic lows, and stratigraphic position was typically used to correlate 

the facies in wells surrounding cores. 

Interpretation 

Numerous studies have demonstrated that modern glauconitic mineral 

formation occurs in water depths of the mid-shelf to upper slope at the boundary of 

oxidizing seawater and reducing interstitial waters (Odin and Matter, 1981).  This has 

caused many to use the presence of glauconite as an environmental indicator of 

marine shelf deposits (Suder, 2006).  However, significant evidence for shallow-

water, high energy glauconitic deposits have been found in the geologic record 

(Chaftez, 2000; Suder 2006).  Due to reworking and sediment redistribution, 

glauconite can exist in almost all shallow-marine environments or even fluvial 

environments as allochthonous sediment (Suder, 2006).  The presence of glauconite is 

an unreliable guide to environmental interpretation and must be used with caution 

(Suder, 2006).  The close vertical relationship between glauconite sandstone beds and 

the variegated silty mudstone beds suggests that the facies was deposited in shallow 

water and not on a marine shelf.  The majority of the glauconitic sandstone facies was 

deposited into paleographic lows during the initial transgression onto the karst 

surface.  The presence of channelized glauconitic sandstone deposits argues against a 

marine shelf depositional environment. The low-to high-angle cross-stratification 

indicates high energy environments with normal to high rates of sedimentation.  The 

glauconitic sandstone facies is interpreted as deposited by fluvial processes in an 
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upper estuarine environment.  The suite of sedimentary structures observed, lack of 

marine biota, and distribution on the karst surface suggests deposition in a non-saline 

environment.  Similar sandstone beds deposits are recognized in the Glauconitic 

Member of the Mannville Formation in Alberta, Canada (Wood and Hopkins, 1989), 

and have been interpreted as deposited in upper estuarine, fluvially-dominated 

environments.  

Conglomeratic Sandstone Facies 

Description 

The conglomeratic sandstone facies is characterized by tan to cream-colored, 

occasionally clay-rich, matrix-supported conglomeratic sandstone.  The facies 

consists of medium to coarse-grained quartz sand matrix, and contains chert clasts up 

to 2.7 centimeters as well as limestone and shale clasts up to 0.5 centimeters (Figure 

2.11 and Figure 2.12).  Grains are subrounded to subangular.  The facies is 

characterized by repetitive 4.0 to 8.0 centimeters, normally graded beds and faint 

low- to high-angle cross-lamination.  Overall, clast content and size decrease upward 

in the facies.  Other features include sparse disseminated pyrite, disseminated black 

coal material, patchy calcareous cement, and oil staining.  Thickness of facies in core 

ranges from 1.2 to 1.9 meters.  The conglomeratic sandstone facies has sharp contacts 

with the underlying variegated silty mudstone beds and both gradational and sharp 

contacts with overlying strata (typically cross-laminated sandstone, limestone, and 

lingulid shale facies).  The facies is characterized by low gamma-ray readings of 20 

to 30 API units with a blocky profile and density readings of 2.4 to 2.5 g/cc.  Similar 
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to other sandstone facies, the conglomeratic sandstone can be distinguished from 

carbonate facies by the lack of a high resistivity response.    

Interpretation 

The conglomeratic sandstone facies exhibits evidence of a high-energy 

depositional environment.  Coarse chert clasts are probably derived from the nearby 

eroding Central Kansas uplift and transported westward by fluvial processes.  

Normally graded beds suggest fluctuating, episodic current energy.  As mentioned 

previously, the conglomeratic sandstone facies cannot be reliably distinguished on 

electric logs from the other sandstone-rich facies, specifically the cross-laminated 

sandstone facies, thus facies geometry cannot be reliably mapped away from core 

control.  Graded gravel beds are fairly common in fluvial systems and probably form 

during waning flood stage and strong unidirectional current (Kleinspehn et al., 1984).  

However, it is noted that wave-reworked sand conglomerates are common in shallow 

marine environments (Bourgeois and Leithold, 1984).  Typically, wave-worked 

conglomerates have better segregation of gravels into discrete beds and more 

continuous bedding than fluvial conglomerates (Bourgeois and Leithold, 1984).  The 

most diagnostic evidence is the presence marine fauna, which unfortunately are only 

occasionally present in such systems (Bourgeois and Leithold, 1984).   The 

stratigraphic location of the conglomeratic sandstone, paleosol facies below and 

marine and marginal-marine facies above, suggest the facies was deposited during a 

rise in base level.  The fining upward successions, lack of marine fauna, and 

stratigraphic location all provide evidence for a non marine depositional environment.  



36 
 

The conglomeratic sandstone facies is interpreted to have been deposited by 

unidirectional currents in fluvial environment, based on the evidence listed above.  

The linear net sand trend along the interpreted paleoshoreline suggests the 

conglomeratic sandstone facies may have been reworked in upper shoreface or 

foreshore along with the cross-laminated sandstone facies during continued 

transgression.  The inability to differentiate these two sandstone facies in logs limits 

interpretation of both facies.   

Variegated Silty Mudstone Facies 

Description 

The variegated silty mudstone facies is red to reddish brown with pale green, 

mauve, yellow, and tan mottling (Figure 2.13 and Figure 2.14). The facies is rich in 

terrigenous material primarily clay- and silt-size particles.  However, in rare instances 

beds containing significant quantities (up to 60%) of fine to medium-grained quartz 

sand were observed.  Water-reactive clays are common and swelling is easily 

observed when the core is wetted.  Observed structures include slickensides, 

rhizohalos, and plant fragments.  Blocky and poorly consolidated textures are 

common with many intervals reduced to rubble and bagged in core boxes.  White to 

light grey carbonate nodules that range from 0.4 to 5.0 centimeters were noted 

(Figure 2.15).  Sedimentary structures are rarely preserved, although occasional faint 

low-angle cross laminations, ripple laminations, and parallel laminations were 

observed (Figure 2.16).  Body fossils were not identified, but bioturbation and 

burrows are common.  Thickness of the facies in core ranges from 0.3 to 3.2 meters.  
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The facies has a gradational contact with underlying beds (typically the limestone, 

cherty conglomeratic breccia, and glauconitic sandstone) and a sharp contact with 

overlying beds (limestone, grey shale, black shale, and conglomeratic sandstone).  

The silty mudstone facies exhibits few unique log characteristics.  Because of the 

inherent mineralogical variability within the facies, gamma-ray, neutron, density, and 

resistivity curves are not diagnostic.  In general, gamma-ray response increases 

upward (60 to 130 API units) and exhibits a bell-shaped profile at contacts with 

underlying facies.  

Interpretation 

 The textures and coloration observed in facies indicate subaerial exposure and 

continental processes.  Gradational lower contacts with the parent rock, water reactive 

clays, rhizohalos, and slickensides indicate soil processes and the development of a 

soil profile.  Carbonate nodules, termed calcrete in modern soils and paleosols, are the 

result of downward percolation and reprecipitation of carbonate minerals (Retallack, 

1988).  Slickensides are the result of cyclic wetting and drying of water-reactive 

expanding clays including smectite, illite, and kaolinite (Retallack, 2001).  Block or 

rubble textures may represent preserved ped structures, which are vertically oriented 

pedogenic features that occur in a variety of configurations (Retallack, 2001).  The 

distinctive reddish coloration is from the precipitation of iron oxyhydroxides and is 

commonly used as an indication of soil formation, but identical coloration can result 

from later oxidizing events.  However coloration can be used in conjunction with 

other evidence for interpreting paleosols (Goldstein et al., 1991).  Preserved 
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sedimentary structures (Figure 2.6) help determine the parent material of paleosols.  

Paleosol development corresponds to the balance between sediment accumulation and 

the rate of pedogenesis (Kraus, 1999).  It must be noted that compound and/or 

composite paleosols can develop in environments of episodic deposition of thin 

sediment layers alternating with subaerial exposure.    This alternation is common in 

fluvial overbank and tidal-flat environments where pedogenic processes dominate 

during periods of exposure (Kraus, 1999).  Lateral and vertical variations in grain size 

and chemical composition are expected since paleosol formation is the result of post-

depositional processes that alter previously deposited sediment or substrate.   

Cherty Conglomeratic Breccia Facies 

Description 

The conglomeratic breccia lithofacies consists of poorly-sorted, sub-rounded 

to angular chert, limestone, and dolomitic limestone clasts ranging in size from 0.2 to 

8.0 centimeters, and a siliciclastic matrix of shale to medium-grained quartz sand 

(Figure 2.17 and Figure 2.18).  Matrix coloration is highly variable including maroon, 

red-brown, pale green, and tan.  Both matrix-support and clast-support were 

observed, and generally clast content decreases upward through an individual bed of 

the facies.  The thickness of the conglomeratic breccia facies is highly variable (0 to 

7.0 meters) over short distances due to deposition on the underlying high-relief karst 

Mississippian surface (Rogers, 2007).  Thickest accumulations of the facies occur in 

paleotopographic lows and the thinnest deposits were observed on localized highs of 

the Mississippian surface.   On logs and in core, the contact with the underlying 
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Mississippian strata is sharp and the facies has a gradational contact with the 

overlying beds.  Log characteristics for the conglomeratic breccia facies can be 

variable, depending on the relative abundance of matrix and clast lithotypes.  

Gamma-ray values range from 30 to 80 API units, and a serrated log appearance 

related to rapid variations in facies composition is commonly observed.  The 

variability in log response is a distinguishing feature and was used to differentiate the 

facies from the typically clean, low gamma-ray response of the underlying 

Mississippian strata. 

Interpretation 

The cherty conglomeratic breccia facies represents the first evidence of 

Pennsylvanian sediment deposition on the karst Mississippian surface and is often 

called the Pennsylvanian basal conglomerate (PBC) (Merriam, 1963; Nodine-Zeller, 

1981).  The karst surface that represents the Pennsylvanian-Mississippian 

unconformity is the result of a hiatus of between 30 and 40 million years (Zeller, 

1968: Brown, 2005).  This hiatus occurred between Kaskaskia and Absaroka cratonic 

sequences (Sloss, 1963).  The cherty conglomeratic breccia facies is result of 

exposure and associated weathering during the hiatus.  The angularity of chert clasts 

and poor sorting suggest they have undergone very little transport.  James (2007) 

interpreted the PBC as alluvial fan deposits that were reworked during Desmoinesian 

transgression.   The cherty conglomeratic breccia facies is presumed to have formed 

from several depositional processes including insitu brecciation and pedogenesis, 

fluvial and colluvial deposition, and marine reworking.  No specific evidence was 
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observed to recognize deposits create by each individual process, but all of these 

processes were likely occurring on the Mississippian surface during exposure or 

during the early-middle Pennsylvanian transgression over the karst surface.  Which 

process or processes dominated deposition is likely to have varied throughout the 

study area depending on topography and sea level.   

The high relief karst Mississippian surface caused significant variation in the 

thickness and appearance of the facies.   Shale-free sand and chert rich deposits can 

contain significant intergranular porosity and represent significant reservoir potential 

(Rogers, 2007). 
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Figure 2.1.  Black Shale Facies – Core sample from 4357.1-4358.0 feet in the Moore 
#1 (S34-T19S-R21W, Ness County, Kansas). 
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Figure 2.2.  Grey Shale Facies – Core sample from 4233.3 to 4233.8 in the Wegele 
A1 (S21-T18S-R22W, Ness County, Kansas).  All samples from core were preserved 
as loose rubble in core boxes. 
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Figure  2.3.  Grey Sandy Siltstone Facies – Core sample from 4353.9-4354.5 feet in 
the Moore #1 (S34-T19S-R21W, Ness County, Kansas).  A) Lamination disrupted by 
single vertical burrow.  B) Bioturbation has disrupted or destroyed original 
lamination. 
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Figure 2.4.  Carbonate Wackestone to Packstone Facies – Core sample from 4253.7-
4254.1 in the Wegele A1 (S21-T18S-R22W, Ness County, Kansas). 
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Figure 2.5. Skeletal Packstone to Grainstone Facies – Core sample from 4141.6-
4141.75 feet in the Thompson A2  (S3-T17S-R21W, Ness County, Kansas).   Note 
presence of aligned brachiopods and gastropod fragments.  Large intraclasts located 
at top of sample. 
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Figure 2.6. Skeletal Packstone to Grainstone Facies – Core sample from 4141.75-
4142.3 feet in the Thompson A2 (S3-T17S-R21W, Ness County, Kansas).  Abundant 
intraclasts with spar pore filling cement.  Reddening of grains is interpreted as the 
result of post-depositional weathering. 
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Figure 2.7.   Lingulid Shale Facies – Core sample from 4230.7-4132.3 feet in the 
Pfaff #3 (S20-T16S-R21W, Ness County, Kansas).  Photo illustrates thin laminated 
nature of facies.  Inset photo is close-up of lingulid brachiopods that are abundant in 
the facies. 
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Figure 2.8. Cross-Laminated Sandstone Facies – Core sample from 4111.5-4112 feet 
in the Thompson A2 (S3-T17S-R21W, Ness County, Kansas). 
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Figure 2.9. Glauconitic Cross-Laminated Sandstone Facies – Core sample from 
4424.7-4428.4 feet in the Neyer B1 (S15-T17S-R24W, Ness County, Kansas).  A) 
Rusty red-orange iron and calcite concretions.  B) Thin pale green shale flaser 
laminae. 



50 
 

 
Figure 2.10.  Glauconitic Cross-Laminated Sandstone Facies – Core sample from 
4426.9-4427.6 feet in the Neyer B1 (S15-T17S-R24W, Ness County, Kansas).  A) 
Pale green shale laminations and green shale rip-up clasts.  B) Patchy calcareous 
cement concentrated around unidentified nuclei. 
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Figure 2.11. Conglomeratic Sandstone Facies – Core sample from 4219.5-4220 feet 
in the Pfaff #3 (S20-T16S-R21W, Ness County, Kansas).  Clast composition includes 
shale, chert, limestone and quartz pebbles as observed in photo.  Orientation of 
pebbles along bedding low-angle bedding surfaces is common in the facies. 
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Figure 2.12.  Conglomeratic Sandstone Facies – Core sample from 4135-4135.5 feet 
in the Thompson A2 (S3-T17S-R21W, Ness County, Kansas).  Clast lithology is 
highly variable, similar to sample from Pfaff 3 core.   
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Figure 2.13. Variegated Silty Mudstone Facies – Core samples from 4150.9 feet 
(sample A) and 4140.6 feet (sample B) in the Thompson A2 (S3-T17S-R21W, Ness 
County, Kansas).  A) Vibrant coloration associated with mottling and pedogenesis.  
B) Example of slickensides common in the paleosol facies.  The metallic sheen is 
uncharacteristic of paleosols and is interpreted as the result of post-pedogenic 
compaction around calcrete. 
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Figure 2.14. Variegated Silty Mudstone Facies – Core sample from 4245.1-4246 feet 
in the Pfaff #3 (S20-T16S-R21W, Ness County, Kansas).  A) Isolated chert clasts are 
remanents of the parent material. B)  Muave and yellow brown clay mottling.   
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Figure 2.15.  Variegated Silty Mudstone Facies – Core sample from 4139.5-4140 feet 
in the Thompson A2 (S3-T17S-R21W, Ness County, Kansas).  Example of calcrete 
or caliche in a soil that formed in a carbonate rich rock.  The sample formed in the top 
of a wackestone-packstone bed.   
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Figure 2.16.  Variegated Silty Mudstone Facies – Core sample from 4430.9-4431.6 
feet in the Neyer B1 (S15-T17S-R24W, Ness County, Kansas).  A) Laminations 
disrupted by burrows.  B) Red and pale green thinly-laminated water reactive shale.  
C) Laminated silt and shale are preserved from parent material and help indentify 
depositional environment.  This sample experienced less pedogenesis than other 
samples.  The parent material is interpreted as deposited in an overbank environment. 
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Figure 2.17.  Cherty Conglomeratic Breccia Facies – Core sample taken from 
4219.5-4120.2 in the Pfaff #3 (S20-T16S-R21W, Ness County, Kansas).  A) Chert 
clasts caused by brecciation. B) Mottled brown, maroon, and tan silty clay matrix 
infilling fractures. 
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Figure 2.18. Cherty Conglomeratic Breccia Facies – Core sample taken from 4229.7-
4230.1 in the Tilley #2 (20-T17S-R24W, Ness County, Kansas).  A) Mississippian 
chert clast with blackened grains.  B) Sand-rich Pennsylvanian matrix.  
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CHAPTER 3: STRUCTURE, PALEOTOPOGRAPHY, AND TECTONIC 
CONTROLS 

 
Toward the end of the Mississippian and the beginning of the Pennsylvanian, 

forces to the south associated with tectonic activity of the convergent Quachita 

orogeny led to significant structural changes and the development of a regional 

unconformity across the Kansas region (Merriam, 1963).  Significant downwarping of 

the Hugoton embayment occurred during the Mississippian, and deformation 

continued into the Pennsylvanian (Merriam, 1963).  As active uplift and a general 

lowering of sea level occurred, many of the older Paleozoic rocks (Ordovician and 

Mississippian) were stripped from the Central Kansas uplift.  Further structural 

movement along the Central Kansas uplift occurred until the end of the Missourian, 

as evidenced by the thinning of Desmoinesian and Missourian strata (Merriam, 1963).  

The Cherokee Group pinches out against the uplift just to the east of the Ness County 

study area (Merriam, 1963).  

Several episodes of tectonism created a complex system of faults in the 

midcontinent.  Deformation during the Mississippian and Pennsylvanian was 

concentrated along preexisting basement faults.  The oldest faults in the central part 

of the North American craton may have initiated as early as 2.6 Ga, but the complex 

fault system observed today primarily formed during late Proterozoic-Cambrian 

rifting (Baars, 1995; Marshak et al., 2003).  Faults with dominant west-northwest and 

north-northeast trends define rectilinear blocks in the Precambrian basement (Baars, 

1995; Marshak et al., 2003).  Continued Phanerozoic tectonic activity, most notably 

the Paleozoic Ancestral Rockies and the Laramide orogeny, lead to reactivation along 
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many of the high-angle Precambrian basement faults (Yarger, 1983; Marshak et al., 

2003).  These nearly vertical faults are often difficult, if not impossible, to recognize 

in well logs; however gravity and magnetic data over the state of Kansas can be used 

to better understand the fault systems that cut across the basement.   

Delineation of Basement Structure 
 

Gravity and magnetic data from western Kansas were compiled and used to 

generate a series of maps in order to identify to the size and shape of anomalous 

masses and magnetic bodies. A relatively thin mantle of Phanerozoic sedimentary 

rocks, 150 to 3000 meters (500 to 10,000 ft) thick, covers virtually the entire 

Precambrian basement in Kansas, except for a large inclusion of Precambrian granite 

in the Rose dome of Woodson County (Yarger, 1983; Xia et al., 2000).  The 

sediments were generally deposited on a near-horizontal surface resulting in 

sedimentary units across the state with little lateral density change and low magnetic 

susceptibility.  There is a clear density and magnetic susceptibility difference between 

the overlying sediments and Precambrian basement (Xia et al., 2000).  As a result, 

anomalies found in the magnetic and gravity data can be related to changes in 

basement composition and structural movement of basement blocks.  Many of the 

anomalies occur as linear features that can be traced some distance, while others are 

localized features.  The traceable anomalies are referred to as lineaments and help 

outline changes in the Precambrian basement.  Most data interpretation and regional 

lineament placement was based on previous investigations by Yarger (1983) and Lam 

(1987), but additional localized lineaments were interpreted (Figure 3.1).
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Magnetic Data Lineation 

 Several northeast- and northwest-trending magnetic lineaments are present in 

the study area.  Both laterally extensive regional lineaments that can be traced across 

neighboring counties and localized lineaments are easily recognized in the total field 

and residual magnetic data set (Figures 3.1-3).  Typically, localized lineaments 

terminate against regional features, but examples of localized lineaments cross-

cutting regional lineaments are present in northwestern Ness County.  Lineaments do 

not directly represent basement structure but are interpreted to represent faults and 

offsets in the Precambrian basement.  Magnetic lineaments may correspond with 

edges of Precambrian basement blocks that appear to have been reactivated during the 

late Mississippian to early Pennsylvanian.  Reactivation caused significant regional 

upwarping and localized rotation of basement blocks (Merriam, 1963).  It is possible 

that significantly more of the Mississippian section was eroded from the top of 

uplifted blocks.  The amount of erosion is difficult to determine because only a few 

wells within the study area penetrate below Mississippian strata, and none were 

drilled to Precambrian basement.  Basement block movement during the late 

Mississippian to early Pennsylvanian would likely produce a network of lineament-

paralleling fractures and faults in the subaerially exposed Mississippian surface. 

Gravity Data Lineation 

 Examination of gravity data shows similar anomalies to the magnetic data 

with similar northwest- and northeast-trending lineaments (Figure 3.1 and 3.4).  There 

are several coincidences between the regional magnetic lineaments and gravity 
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lineaments, but lineaments are often slightly offset.  This may be the result of data 

resolution and variations in the distance between data points.  It should be noted that 

weaker Bouguer anomalies occur in the western Ness County and generally increase 

in strength to the east.  This trend is probably the result of upwarping along the 

Central Kansas uplift where erosion has removed all pre-Pennsylvanian strata in some 

areas.  Overall, gravity anomalies are significantly less distinct than delineated 

anomalous magnetic bodies. 

Removing Post-Depositional Deformation 

An important step in understanding the Cherokee Group is removing post-

depositional deformation in order to illustrate the topography of the depositional 

surface at the time of deposition.  The karst Mississippian paleotopography was 

irregular and affected the Cherokee deposition as rising sea level flooded the surface.  

Using the Anna Shale Member as a datum for the type cross-section does not reflect 

Mississippian structure at the end of the Mississippian because of compaction in the 

shale-rich Cherokee Group.  Previous investigations in other portions of the state 

have successfully used the Stone Corral Anhydrite (Permian) as a datum for restoring 

the Mississippian-Ordovician unconformity (Cansler, 2000; Rocke, 2006).  The Stone 

Corral is sufficiently separated stratigraphically from the Cherokee Group to avoid 

major issues with compaction and was deposited before Laramide deformation, 

making it an ideal datum.  However, in the study area thinning in the Hutchinson Salt 

prevents the use of the Stone Corral Anhydrite as a datum.  To remove post-

Desmoinesian deformation and avoid the majority of the effect of compaction, the top 
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of the Heebner Shale Member (Shawnee Group, Virgilian Stage, Pennsylvanian) was 

picked on logs and used as a datum. The Heebner Shale is a thin, laterally extensive, 

highly radioactive black shale that was deposited across most of the midcontinent.  

The Heebner Shale Member has an easily recognizable log signature characterized by 

intense gamma ray readings, making it an easily identifiable datum.   Merriam (1963) 

reported only minor or localized post-Cherokee Pennsylvanian structural deformation 

in this area, with later southwest tilting of the Central Kansas uplift region due to 

Laramide deformation (Tikoff and Maxson, 2001).  Using the Heebner Shale as a 

datum effectively removes post-Cherokee tectonic influence.   

Heebner Shale tops from the KGS database were checked for quality and 

gridded in Petra. Using a grid-to-grid calculation, the current structural trend of the 

Heebner Shale was subtracted from the Mississippian structure map to remove the 

majority of post-Desmoinesian deformation (Figure 3.5).  The resulting surface is a 

reasonable representation of the Cherokee Group depositional surface, but the 

resulting restored topography of the surface could be slightly attenuated due to 

compaction. 

Timing of Aldrich Anticline Deformation 

 The Aldrich anticline is a prominent positive structural feature located in 

west-central Ness County.  Aldrich field was discovered in 1929 and as of October 

2008 has produced 8,942,645 barrels of oil primarily from Mississippian strata, as 

well as Fort Scott Limestone and the Lansing/Kansas City Group (Kansas Geological 

Survey, 2009).  The structural closure created by the anticline and a partial water 
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drive in the Mississippian dolomite create a highly prolific reservoir.  The timing of 

the formation of the Aldrich anticline has been disputed for quite some time (Alfred 

James, pers. comm.).  The most obvious difference between the restored 

Mississippian surface and modern day structure is the removal of positive structure 

along the Aldrich anticline (figure 3.5).  This dates the deformation of the anticline as 

post-deposition of the Heebner Shale.  By using a stratigraphic datum outside the 

Pennsylvanian, such as the Stone Corral Anhydrite, timing of deformation can be 

further refined.  If uplift along the Aldrich Anticline occurred during the 

Pennsylvanian or Early Permian, strata deposited between the Mississippian and 

Stone Corral Anhydrite would show evidence of thinning over the crest of the 

anticline.  This phenomenon was not observed in the data (Figure 3.6).  This suggests 

uplift of the Aldrich anticline occurred after deposition of the Stone Corral Anhydrite.   

  The Aldrich anticline parallels several northeast-southwest trending magnetic 

and gravity data lineaments that may outline basement blocks (Figure 3.7).  The 

northwest edge of the anticline is coincident with a lineament defined by magnetic 

data.  As previously noted, high-angle basement faults originally associated with 

rifting represent zones of weakness and were subsequently reactivated as strike-slip 

faults or high-angle reverse faults by later tectonic compression (Van der Pluijim and 

Marshak, 1997).  Vertical displacement of fault blocks can result in the creation of 

monoclinial and anticline features (Van der Pluijin and Marshak, 1997; Merriam, 

2005).  Deformation along the Aldrich anticline is interpreted to be the result of uplift 
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and adjustment caused by stresses along pre-existing zones of weakness associated 

with the Laramide Orogeny (Late Cretaceous to Eocene). 

Description of the Mississippian Depositional Surface 

The exposed Mississippian surface experienced significant weathering and 

erosion during the late Mississippian and early Pennsylvanian at the end of the 

Kaskaskia Sequence.  Dissolution and other karst processes sculpted the surface, 

creating the highly irregular configuration observed today, and were the primary 

agents for creating the surface on which the Cherokee Group was deposited.  

Evidence of karst processes have long been recognized along the Mississippian-

Pennsylvanian unconformity surface. Several authors have noted and delineated karst 

features east of the study area on the Central Kansas uplift where Late Mississippian 

erosion has removed all strata down to the Arbuckle Group (Walters, 1991; Cansler, 

2000; Rocke, 2006).  Similar karst structures are present throughout much of the 

study area, developing on Mississippian rather than Ordovician strata (Figures 3.8 

and 3.9).  Some regions of the study area have close well spacing (40-80 acre), and 

provide a relatively high degree of resolution to permit identification of karst features 

on the Mississippian surface. 

Dolines 

 A doline is a closed hollow or depression of small to moderate dimension, that 

can be cone or bowl-shaped with circular to elliptical plan (Sweeting, 1973; Jennings, 

1985).  Dolines have three primary components: 1) the bowl-like depression 

dissolved into the underlying bedrock, 2) a mantle of soil or other insoluble material 
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draped over the bedrock, and 3) a drain connecting the depression to the conduit 

drainage system in the subsurface (White, 1990).  Typically, dolines are considered 

the most common karst feature and a primary agent in forming karst surfaces 

(Sweeting, 1973).  Several processes are involved in the formation of dolines 

including solution, piping, subsidence, and cave collapse.  Jennings (1985) outlined a 

classification system of five doline types based on the dominant mechanism of 

formation:  solution dolines, collapse dolines, subsidence dolines, subjacent-karst-

collapse dolines, and alluvial stream-sink dolines (Figure 3.10).   

In the study area, individual dolines are circular or elliptical in plan view.  

Dolines on the Mississippian surface can be as deep as 160 feet (50 meters) and 

encompass an area as wide as a one mile (1.6 kilometers).  However, more typical 

dimensions of dolines are 10 to 50 feet deep (3-15 meters) and diameters ranging 

from 1000-2500 feet (300-750 meters).  Smaller dolines may be present on the 

Mississippian surface, but well spacing is insufficient to delineate small-scale karst 

features.  The center third (east-west) of the county appears to have the higher density 

of dolines, but this is probably the result of well distribution.  Well spacing is 

adequate in this region to delineate dolines, while in other areas the low well density 

makes dolines difficult to reliably delineate, and may result in an apparent subdued 

paleotopography.     

Dolines rarely occur as isolated features and are typically observed in clusters.  

Kemmerly (1982) noted that secondary dolines often form around an initial primary 

doline.  As focused runoff from the wide radius around the primary doline flows 
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inward, it encounters joints, fractures, and other surface anomalies, causing the 

formation of secondary dolines (Figure 3.11).  This relationship between primary and 

secondary dolines is observed on the Mississippian surface (Figure 3.12).  

In humid tropical and temperate zones dolines sometimes totally pock mark 

the land surface and occupy all available space.  The resultant karst topography 

consists of closed depressions segmented by high-relief drainage divides forming a 

cellular mesh pattern termed polygonal karst (Ford and Williams, 2007).  Polygonal 

karst was observed only in limited areas on the Mississippian surface.  This may be 

because of insufficient resolution provided by the well data, or development of 

polygonal karst may be limited.   

Mississippian Paleovalley Network 

 A valley network is recognized on the Mississippian karst surface over the 

entire study area.  Mississippian paleovalley systems were delineated by examining 

the restored Mississippian surface and Cherokee isopach maps.  Any valley present 

during the deposition of the Cherokee Group would be filled as sea level transgressed 

the unconformity surface.  Coincidences of topographic lows on the Mississippian 

surface and thick Cherokee Group deposits were used to identify paleovalley 

configurations. 

 Large-scale valley networks were interpreted by examining the Cherokee 

isopach and restored Mississippian surface map for the entire study area (Figure 

3.13).  Paleovalleys of differing size and magnitude can be identified in well-log data, 

but overall most valleys trend north to south.  Drainage on the Mississippian surface 
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appears to be broken into two distinct drainage patterns: an eastern and western 

drainage pattern.  The two regions each appear to drain different portions of the study 

area.  The drainage pattern in the east, present on very edge of the county, is primarily 

northeast-east to southwest-west.  The northeast-southwest orientated valleys join into 

larger north-south oriented valleys toward the west.  The primary orientation of 

valleys in the western portion of the area is north to south toward the Hugoton 

embayment.    

 East to west drainage on the eastern edge of the study area is typified by 

relatively narrow valleys 0.5 to 1.5 miles wide (0.8 to 2.4 km).  Typical valley depths 

range from 10-40 feet deep (3-12 meters).  These valleys exhibit smaller overall 

dimensions and are significantly shallower that valleys in the rest of the county.  The 

paleovalleys appear to drain directly to the west off the Central Kansas uplift.  To the 

west, and in the majority of the rest of the study area, approximately north-south 

oriented valleys are 0.5-2.5 miles wide and up to 90 feet deep (28 meters).  Smaller, 

tributary valleys are quite common, joining large valleys at moderate to high junction 

angles (Figure 3.14).  Overall, valley dimensions are quite variable. While valleys can 

be traced over 10 miles, several valleys are relatively short (<1.5 miles) with a 

constant width and originate at dolines that exhibit abrupt, steep valley-head 

terminations.   

Groundwater Sapping Processes and Paleovalley Development 

 Groundwater sapping is the process in which groundwater flows down-

gradient through gently dipping permeable strata, dissolves constituents, and entrains 
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soils and rock from the medium through which it flowed.  Subsurface flow discharges 

from the ground surface where the water table intersects topography.  Groundwater 

emerging from the seepage zone slowly removes material that provides basal support 

for overlying slopes.  Dissolution undermines neighboring slopes and leads to 

eventual slope collapse (Lou, et al., 1997; Laity and Malin, 1985).  Slope failure 

occurs in a headward direction as the zone of seepage is progressively eroded.  This 

creates theatre-headed valleys with steep sides (Lou, et al., 1997; Laity and Malin, 

1985).   

 Heterogeneity of the rock as well as irregularities, such as joints, fractures, or 

faults concentrate groundwater flow, and accelerate dissolution and erosion as 

progressively more and more groundwater is diverted (Dunne, 1980).  Once the 

process is initiated it is self enhancing, because more and more groundwater flow 

lines converge on the spring which increases flow (Baker, et al., 1990).  This 

concentrates erosion at the head of a valley and results in headward migration of 

valley development.  Intersecting irregularities that intersect the valley are susceptible 

to sapping and may result in a network of tributaries.  Theatre-headed valleys 

typically show the strong influence of structural controls because of the importance of 

joints and fractures in their development (Laity and Malin, 1985).   

Groundwater sapping processes produce different channel and valley 

morphologies than fluvial processes (Table 3.1).  Sharp, headward valley 

terminations are characteristic features of groundwater-sapping (Lou et al., 1997).  

Groundwater-sapped valleys are typically relatively short and exhibit a steep walled 
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and flat floored U-shaped cross-section.  It must be noted that surface runoff 

processes are present in valleys of groundwater sapped origin, especially during 

flooding and times of high water level.  Surface processes help remove eroded valley 

wall material.  

It appears that valleys on the Mississippian surface are primarily the product 

of groundwater sapping and karst processes.  Interpreted paleovalleys exhibit several 

morphological characteristics of groundwater sapped valleys.  In Figure 3.13, several 

of the interpreted large-scale paleovalleys originate and terminate in dolines.  In 

Figure 3.14, several dolines are present along the axis of paleovalley floors and 

interpreted as alluvial stream-sink dolines that captured surface flow.  Mississippian 

paleovalleys in Ness County have steep walls, relatively flat floors and are uniform in 

width; typical of groundwater sapped valleys.  High tributary-junction angles provide 

further support for a groundwater sapping origin.  Almost all paleovalleys observed 

on the Mississippian surface originate at steep-walled dolines resulting in theatre-

headed valley configurations.  The steep valley walls were caused by gradual slope 

erosion by sapping and eventual failure.  It is likely that groundwater sapping 

processes in addition to surface dissolution from other karst processes result in the 

formation of the extensive paleovalley network on the Mississippian surface.    

Influence of Basement Features on Mississippian Erosion 

 Dissolution is the primary agent of doline formation and is concentrated along 

irregularities in the surface, such as joints, faults, or fractures (Jennings, 1985).  

Continued dissolution along these features eventually produces dolines.  Polygonal 
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karst forms on surfaces fissured by a series of intersecting conjugate joints (Williams, 

1972).  As previously noted, movement of basement blocks would produce networks 

of fractures and faults that parallel magnetic and gravity lineaments, providing 

conditions advantageous to doline development.  Doline and paleovalley development 

would be expected to parallel or align with basement block boundaries delineated by 

gravity and magnetic lineaments.  Doline development on the Mississippian surface 

appears to align with the lineaments throughout much of the study area (Figures 3.15-

3.17).  The correlation between paleovalley and doline development parallel to 

magnetic and gravity lineaments suggests that Precambrian basement faulting 

affected the Mississippian surface and influenced erosion on the surface.  Preferential 

dissolution along fractures and faults associated with basement block movement 

resulted in the irregular karst surface on which the Cherokee Group was deposited.  

 A correlation between Precambrian basement structure and Mississippian 

structure on a localized scale has been noted on 3-D seismic data across Dickman 

field, northwestern Ness County (Figure 3.18) (Nissen et al., 2006).  By using 3-D 

seismic data they were able to image the Precambrian basement surface and 

compared it with a high resolution image of the Mississippian unconformity surface 

(Figure 3.19 and Figure 3.20).  The Mississippian surface mimics the basement 

structure and Cherokee Group paleovalleys were aligned over lows in basement 

structure.  Lows on the basement structure probably represent small, downdropped 

basement blocks and nearby highs are the result of upward movement on neighboring 

blocks.  Cherokee Group thickness increases into the interpreted paleovalley 
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supporting the conclusion that pre-Desmoinesian movement along basement faults 

affected the paleotopographic configuration of the Mississippian unconformity 

surface. 
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Figure 3.1.  State-wide magnetic (top) and Bouguer anomaly (bottom) maps overlain 
by interpreted regional lineaments.  Continuous northwest and northeast trending 
lineaments have been identified in both data sets by previous studies (Yarger, 1983; 
Lam, 1987).  Modified from Kruger (1996), taken from 
http://www.kgs.ku.edu/PRS/PotenFld/potential.html (accessed 8/13/2009). 
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Figure 3.2. Map showing the contoured total magnetic field data in nanoteslas (nT) 
for Ness County, Kansas.  Solid lines represent regional west-northwest and north-
northeast oriented lineaments.  Dashed lines represent localized lineaments.  
Lineament interpretation is based on previous investigation by Yarger (1983).  These 
lineaments outline anomalies caused by significant changes in susceptibility.  
Magnetic anomalies could be the result of differences in basement rock composition 
or the displacement of basement blocks along vertical or high-angle reverse faults. 
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Figure 3.3. Map showing the contoured residual magnetic field data (in nT) for Ness 
County, Kansas.  Solid lines represent regional west-northwest and north-northeast 
oriented lineaments.  Dashed lines represent localized lineaments.  Lineament 
interpretation is based on previous investigation by Yarger (1983).  These lineaments 
outline anomalies caused by significant changes in susceptibility.  Magnetic 
anomalies could be the result of differences in basement rock composition or the 
displacement of basement blocks along vertical or high-angle reverse faults. 
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Figure 3.4. Map showing the contoured Bouguer gravity data for Ness County, 
Kansas.  Solid lines represent regional west-northwest and north-northeast oriented 
lineaments.  Dashed lines represent localized lineaments.  Lineament interpretation is 
based on previous investigation by Lam (1987).  Lineaments outline anomalies 
caused by significant changes in density.  Density contrasts could be the result of 
differences in basement rock composition or the displacement of basement blocks 
along vertical or high-angle reverse faults. 
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Figure 3.5.  Available in supplemental files 
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Figure 3.6.  Cross-section across the crest of the Aldrich Anticline.  Missourian and 
Desmoinesian units show no evidence of stratigraphic thinning over the crest of the 
anticline.  Datum on top of Stone Corral 
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Figure 3.7.  Mississippian structure on the Aldrich anticline overlain by gravity 
lineaments in pink and magnetic lineaments in white.  Northeast-southwest 
orientation of the anticline crest parallels magnetic and gravity lineaments.  
Lineament along northwest edge of anticline may represent basement block edge 
where uplift occurred during the Laramide Orogeny.  Depth in feet subsea. 
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Figure 3.8.  Map showing contoured Mississippian structure overlain by magnetic 
anomaly lineaments.  Regional and local magnetic lineaments are interpreted to 
represent basement block boundaries and are interpreted as influencing Mississippian 
structure.  The Mississippian surface is marked by series of high and low structural 
feature interpreted as dolines and other karst features.  Prominent positive structural 
feature in west-central Ness County is Aldrich anticline.  Color contour interval is 10 
feet and outlined contour interval is 20 feet.  Depth in feet subsea. 
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Figure 3.9.  Map showing contoured Mississippian structure map overlain by 
Bouguer gravity anomaly lineaments.  Regional lineaments are interpreted to 
represent basement block boundaries. The Mississippian surface is marked by series 
of high and low structural feature interpreted as dolines and other karst features.  
Color contour interval is 10 feet and outlined contour interval is 20 feet.  Depth in 
feet subsea. 
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Figure 3.10.  Five types of dolines:  A) collapse doline, B) solution doline, C) 
subsidence doline, D) subjacent karst collapse doline, E) alluvial stream sink doline.  
Modified from Jennings, 1985. 
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Figure 3.11.  Generalized model of doline development and how runoff triggers the 
development of secondary dolines.  Runoff entering the primary cone of depression 
encounters joints, fractures and other surface features that inhibit flow and form a 
series of secondary depressions.  Modified from Kemmerly (1982) and Rocke (2006) 
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Figure 3.12.  Example of primary doline with associated secondary doline 
development.  Depth in feet subsea. 
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Figure 3.13.  Cherokee Group isopach overlain by restored Mississippian 
depositional topography.  Red arrows indicated paleovalley systems and arrow 
thickness is indicative of valley order.  There appear to be two large-scale drainage 
systems in the study area.  Large drainage system in the eastern half of the county 
contains thick Cherokee Group successions as does the slightly smaller drainage 
system in the west-southwest portion of the county.  The patterns are separated by 
dashed black line.  Depth in feet subsea and thickness in feet. 
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Figure 3.14.  Contoured restored Mississippian surface with paleovalleys delineated.  
Dense well control combined with smaller contour interval help identify the complex 
drainage systems on the Mississippian surface.  Several short paleovalley tributaries 
feed into a primary valley.  Dolines line the axis of valley floors and are interpreted as 
alluvial stream-sink dolines.  Contour interval is 5 feet.  Depth in feet subsea. 
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Geomorphic Characteristics of Sapping vs. Fluvial Channels 

Parameter Runoff-dominated Sapping-dominated

Basin Shape Very elongate Light bulb shaped 

Head Termination Tapered, gradual Theatre, abrupt 

Channel Trend Uniform Variable 

Pattern Parallel Dendritic 

Junction angle Low (40-50 degrees) Higher (55-65 degrees) 

Downstream Tributaries Frequent Rare 

Relief Low  High 

Drainage Density High Low 

Drainage Summary Symmetrical Asymmetrical 

Cross-section Shape V-shaped U-shaped, steep wall, flat floor 

Valley Width Widening downstream Relatively constant 

Tributary Length Relatively long Short stubby tributary 

Structural Control Less strong  Strong 

Basin Area/Canyon Area Very high Low 
 
Table 3.1.  Summary of geomorphic characteristics of sapping and runoff-dominated 
fluvial valleys in the Colorado Plateau and Hawaii (modified from Luo et al., 1997) 
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Figure 3.15.  Map showing contoured Mississippian structure overlain by gravity 
lineaments in white and magnetic lineaments in pink.  Doline and paleovalleys 
generally parallel gravity and magnetic lineaments suggesting that they may be 
developing along fracture and faults associated with reactivated basement blocks.  
Contour interval is 5 feet.  Depth in feet subsea. 
 
 



89 
 

 

 
Figure 3.16.  Map showing contoured Mississippian structure overlain by magnetic 
lineaments in pink and gravity lineaments in white. A series of closed depressions 
interpreted as dolines and sapped valleys are present along the junction magnetic 
lineaments.   Contour interval is 5 feet.  Depth in feet subsea. 
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Figure 3.17.  Map showing contoured Mississippian structure overlain by gravity 
lineaments in white and magnetic lineaments in pink.  Note interpreted paleovalley 
paralleling a regional gravity anomaly.  A series of closed depressions interpreted as 
dolines are present throughout the paleovalley.  Contour interval is 10 feet.  Depth in 
feet subsea. 
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Figure 3.18.  Map showing contour Mississippian surface (from well data) in the 3-D 
seismic area of Dickman field in northwestern Ness County, Kansas.  Depth in feet 
subsea. 
 
 
 
 



92 
 

 
Figure 3.19.  Map showing contoured basement structure from 3-D seismic data 
covering Dickman Field.  High and low areas on the surface are interpreted to outline 
localized basement blocks that have experienced significant movement.  50 feet of 
relief is present between uplifted and downdropped basement blocks. Depth in feet 
subsea and contour interval is 5 feet. (Modified from Nissen et al., 2006) 
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Figure 3.20.  Map showing the contoured Mississippian surface from 3-D seismic 
data covering Dickman field.  High and low areas on the surface coincide with 
structure of basement surface.  Low area in on Mississippian surface is interpreted as 
a Cherokee paleovalley and overlies a low area in the basement structure.  60 feet of 
relief along the paleovalley is comparable to the 50 feet of relief along the basement 
structural low.  Depth in feet subsea and contour interval is 5 feet. (Modified from 
Nissen et al., 2006) 
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CHAPTER 4:  SEQUENCE STRATIGRAPHY OF THE CHEROKEE GROUP 
AND SANDSTONE FACIES DISTRIBUTION 

 
Introduction to Sequence Stratigraphic Nomenclature 

 Sequence stratigraphic concepts provide a framework to better explain and 

predict the spatial distribution, relative thickness, and vertical succession of facies in 

the Cherokee Group in Ness County.  Also, sequence stratigraphy provides a method 

of predicting and understanding the deposition of oil-bearing reservoir sandstones.  A 

complete review of sequence stratigraphic concepts, methodology and terminology is 

beyond the scale of this study, but a brief synopsis of essential concepts and 

terminology is provided. 

 Sequence stratigraphy is the study of genetically related facies within a 

framework of chronostratigraphically significant surfaces, where the depositional 

sequence is the fundamental stratigraphic unit for sequence-stratigraphic analysis 

(Van Wagoner et al., 1990).  The depositional sequence is defined as a genetically 

related succession of strata bounded by unconformities and their correlative 

conformities (Mitchum et al., 1977).  Sequence stratigraphy incorporates several 

geologic variables to understand depositional patterns (e.g., subsidence, tectonic 

uplift, eustacy, sediment accumulation, and sediment influx).  Different methodology 

has been applied to defining the depositional sequence (Mitchum et al., 1977; 

Galloway, 1989), but this study of the Cherokee Group employs the Mitchum et al. 

(1977) and Van Wagoner et al., (1990) technique to define a depositional sequence.   

 In Ness County, the Cherokee Group is a mixed system of carbonate and 

siliciclastic lithologies, and requires a combination of siliciclastic and carbonate 
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sequence stratigraphic terminology and concepts.  Sequence stratigraphy was first 

developed and applied to siliciclastic successions so the majority of the terms have 

been adapted to carbonate rocks.  Perhaps the main difference between carbonate and 

siliciclastic sediment is carbonate grains are typically created in the basin in which 

they originate.  As a result carbonate deposition is more susceptible to a variety of 

factors that influence the basin, such as water circulation and chemistry, climate, 

basin geometry, and water depth.  Siliciclastic grains often originate outside the basin 

and are transported into the basin by physical processes.  These variables combined 

with subsidence, eustacy, and sediment accumulation are the basic parameters for 

sequence stratigraphy. 

Identification of Parasequences and Parasequence Boundaries 

 Parasequences are the stratal building blocks of sequences (Van Wagoner et 

al., 1990).  The parasequence is defined as a relatively conformable succession of 

genetically related beds or bedsets bounded by marine-flooding surfaces or their 

correlative surfaces.  As such, a parasequence boundary is a marine flooding surface 

or its correlative surface that shows evidence of deeper-water deposits sharply 

overlying shallower-water deposits (Van Wagoner et al., 1990).  In this study, well 

logs through sections of the Cherokee Group aided in determining and tracing major 

flooding surfaces laterally (Figure 4.1).  Well log control is abundant throughout the 

study area, however core control is sparse and was not sufficient to correlate 

individual beds and associated flooding surfaces so individual parasequences are not 

correlated.  However, maximum flooding surfaces are recognizable, and were 
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correlated across most of the study area.  Maximum flooding surfaces in the Cherokee 

Group of Ness County are characterized by a sharp base and fossil lag deposits, a 

sharp base with in basinward facies shift (continental to marine), or a sharp base with 

an apparent increase in clay content.  Typically, maximum flooding surfaces in the 

Cherokee Group are associated with significant and rapid increase in gamma-ray 

values, allowing one to recognize the surfaces in the subsurface. 

Parasequence Sets and Systems Tracts 

 A parasequence set is a succession of genetically related parasequences 

forming a distinctive stacking pattern and commonly bounded by sequence 

boundaries or major marine-flooding surfaces and their correlative conformities (Van 

Wagoner et al., 1990).  Stacking patterns of parasequences within a parasequence set 

are used to designate the type of parasequence set; either progradational, 

retrogradational or aggradational.  Stacking patterns are often used to identify systems 

tracts, but in this study only sequence boundaries and maximum flooding surfaces 

were correlated due to lack of core data and lateral variability in the strata.  Systems 

tracts are used to define three sectors within each sequence: lowstand, trangressive, 

and highstand systems tracts.  The transgressive systems tract begins at the first major 

flooding surface and continues to the maximum flooding surface (Van Wagoner et al., 

1988).  The highstand systems tract begins at the maximum flooding surface and 

continues to the overlying sequence boundary (Van Wagoner et al., 1988).  Lowstand 

systems tracts start right above the sequence boundary and continue to the first major 

flooding surface (Van Wagoner et al., 1988).  It must be noted that maximum flooding 
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surfaces correlated in this study were mapped at the base of the petrophysically 

defined facies, but it is implied that the deepest flooding event could actually be 

recorded within the facies. 

Identification of Sequences and Sequence Boundaries 

 The depositional sequence is the fundamental stratal unit for sequence-

stratigraphic analysis, and is defined as a succession of relatively conformable, 

genetically related strata bounded at the top and base by unconformable surfaces or 

their correlative conformities (Mitchum et al., 1977; Van Wagoner et al., 1990).  

Sequence boundaries are defined as an unconformity and its correlative conformity 

that is a continuous and correlatable surface (Van Wagoner et al., 1990).  Sequence 

boundaries are laterally continuous basin-scale features that could be synchronous 

with sequence boundaries in basins worldwide (Vail et al., 1977).  Sequence 

boundaries may be recognized by one or more of the following basin-scale criteria: 

(1) subaerial erosional truncation and laterally equivalent exposure surface; (2) 

basinward shift in marine facies; (3) coastal onlap; and (4) downward shift in coastal 

onlap (Van Wagoner et al., 1990).  Similarly, sequence boundaries in carbonate units 

are characterized by exposure of the platform and concurrent submarine erosion 

(Sarg, 1988).   

In this study of the Cherokee Group, four cross-sections were created to 

correlate the sequence-stratigraphic surfaces across the study area (Figure 4.1).  Core 

analysis tied to well-log response provided criteria to recognize stratigraphic surfaces, 

but the lack of continuous core covering the complete Cherokee Group interval made 
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it a challenge to reliably trace surfaces across the study area.  Only three cores located 

in the eastern half of the study area covered the entire Cherokee Group limiting 

characterization of the Cherokee Group.  The widespread features of erosion and 

subaerial exposure, recognized and mapped from core and log data in the Cherokee 

Group, are interpreted as sequence boundaries (Figure 4.2).  All sequence boundaries 

in the Cherokee Group as interpreted as sequence boundaries and concurrent flooding 

surfaces.  

Galloway (1989) applied a different methodology to sequence stratigraphy, 

defining genetic stratigraphic sequences bounded by stratigraphic surfaces and 

correlative condensed marker bed deposited during transgression and the ensuing 

period of maximum marine flooding.  The depositional sequence and genetic 

stratigraphic sequence are both defined by a single, widespread surface that separates 

younger rocks above from older rocks below the boundary.  Because sequence 

boundaries are based on subaerial exposure, maximum flooding surfaces in the 

Cherokee Group are easier to identify than sequence boundaries (at least in the 

subsurface with well logs).  The duration of exposure, and chemical and physical 

processes that occur during exposure, influence the rock record.  Evidence of 

exposure such as erosion and pedogenesis is easily identified in core, but is a 

challenge to consistently identify with the available limited well-log suites.  As a 

result, sequence boundaries are inferred based on stratigraphic correlation tied to 

limited core data across the study area.  Further study using genetic stratigraphic 
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sequences based on maximum flooding surface could provide additional insight into 

understanding the deposition of the Cherokee Group. 

Sequence CG1 

 Sequence Cherokee Group 1 (CG1) is distributed over the entire study area, 

and directly overlies the Mississippian erosional unconformity surface (Figures 4.3-

4.6).  Sequence Boundary 1 (SB1) is a regionally extensive surface of subaerial 

exposure on top of Mississippian strata marking the base of Sequence CG1.  The 

Mississippian strata below Sequence CG1 exhibit extensive paleokarst features 

creating the varied topography for deposition of Sequence CG1.  In core, the basal 

sequence boundary is overlain by three facies:  cherty conglomeratic breccia, 

glauconitic sandstone, and variegated silty mudstone facies (Figures 4.3-4.6).  All of 

these facies were deposited during regression on the Mississippian unconformity 

(SB1) and are grouped into the lowstand systems tract.  The conglomeratic breccia 

facies may not be entirely the result of deposition during lowstand, as significant 

sediment may have been reworked during transgression.  In situ brecciation, fluvial 

transport, and mass wasting processes were the main mechanisms of deposition 

during exposure.  However, since in situ and fluvial conglomeratic breccias deposits 

cannot be differentiated from transgressive reworked deposits, the facies is grouped 

into the lowstand systems tract.   

 Glauconitic sandstone geometries (interpreted as fluvial-estuarine deposits) 

appear as channel-fill sand bodies capped by variegated silty mudstone (interpreted as 

paleosols) (Figure 4.4).  Up-dip in northeastern Ness County, conglomeratic 



 100

sandstone facies is overlain by lingulid shale facies (interpreted to represent shallow 

restricted lagoon environment) (Figure 4.5).  The lowstand systems tract filled most 

of the Mississippian paleotopography resulting in a relatively smooth surface dipping 

gently south-southwest (Figure 4.4).   

 A regionally extensive carbonate wackestone-packstone unit overlies the 

sandstone, shale, and conglomerate of the lowstand systems tract, marking the 

maximum flooding surface (MFS 1) and transition into the highstand systems tract 

(Figures 4.3-4.6).  The carbonate body thins up-dip to the northeast and eventually 

pinches out against the Central Kansas uplift at the edge of the study area (Figure 

4.4).  The open shallow marine shelf deposits are interpreted as the deepest water 

facies of Sequence CG1.  Marine flooding did not reach sufficient depths to induce 

anoxic bottoms conditions and a regionally extensive high gamma-ray black shale is 

not present. 

Spatial Distribution of Sandstone Facies in Sequence CG1 

 Sequence CG1 herokee Group sand accumulations in Ness County are present 

below the maximum flooding surface and regional wackestone-packstone bed.  

Sandstone facies are distributed in elongated, sinuous bodies (Figure 4.7).  Mapped 

net sandstone accumulations range in size from 0.5 to 5.0 miles (0.8 to 8.0 

kilometers) wide, and 1.0 to 22 miles (1.6 to 35.2 kilometers) long.  The thickest and 

most persistent sandstone successions in Sequence CG1 are orientated north-south in 

central Ness County and reach a maximum thickness of 58 feet (17.5 meters).  Net 

sandstone distribution shows extensive branching and convergence of sand bodies.  
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Thick north-south trending sand accumulations are also present to the east (T16S-

R22W and T17S-R22W).  On the northeastern edge of the study area, sand is less 

well developed and thin accumulations trend east-west.  In Sequence CG1, thickest 

sandstone development is generally associated with paleotopographic lows (Figure 

4.5).  By overlaying Sequence CG1 net sand distribution with interpreted paleovalley 

lineaments, a strong correlation is observed between sand development and 

interpreted paleovalley orientation (Figure 4.8).  Sand in Sequence CG1 is interpreted 

as paleovalley fill successions.  Fluvial process carried sand across the unconformity 

surface from the nearby Central Kansas uplift.  Accommodation, created during 

continued regression across the shelf because the steep-walled karst valleys had 

higher gradient than the shelf or during initial transgression, was filled with potential 

reservoir sand bodies.  Eventually, karst valleys were completely filled with sediment 

and only a smoothed over residual topography remained. 

 Sequence CG2 

 Sequence Cherokee Group 2 (CG2) is present over the entire study area 

between Sequence CG1 and CG3.  Sequence Boundary 2 (SB2), is marked by 

paleosol development on top of the carbonate wackestone-packstone facies of 

Sequence CG1.  Commonly the surface exhibits brecciation, destruction of bedding, 

caliche development, reddening from oxidation, and clay infiltration from above.  The 

sequence boundary is regionally extensive and can be traced downdip across most of 

the study area (Figures 4.3-4.6).  A marine flooding surface is associated with SB2.  

Overlying SB2, a thin carbonate wackestone-packstone (interpreted as an open 
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marine environment) is present throughout the western half of the county (observed in 

core from Wegele A1) (Figures 4.3-4.6).  The thin limestone is overlain by grey shale 

(interpreted as an offshore environment).  Westward the facies shows increasing 

gamma-ray response and is interpreted to transition into a black shale facies (> 200 

API units), but no core data is available for verification.  The maximum flooding 

surface (MFS2) is interpreted below the grey shale facies and marks the transition 

into the highstand systems tract.  Up-dip to the northeast, SB2 is overlain by 

conglomeratic sandstone (interpreted as high-energy stream deposits) and cross-

laminated sandstone (interpreted as shoreface environment) deposited as 

accommodation was created during flooding onto the exposure surface.  A thin 

limestone is present above the sandstone facies (observed in core from the Pfaff #3 

and Thompson A2 wells) (Figure 4.6).  MFS2 is present below the limestone facies in 

the northeastern portion of the study and represents the deepest water deposits on the 

edge of the Central Kansas uplift.  Water depths did not reach sufficient depths to 

deposit offshore shale in the northeastern region of the study area.  MFS2 is 

correlated down-dip, and a transition from carbonate deposition to grey shale and 

eventually to black shale can be observed in well logs (Figure 4.3).  The carbonate 

facies in Sequence CG2 pinch out on the eastern edge of the county, and Sequence 

CG1, CG2, and CG3 can no longer be differentiated with the current correlation 

system. 
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Spatial Distribution of Sandstone Facies in Sequence CG2 

 Sand accumulation in Sequence CG2 is limited to the northeastern four 

townships of the study area (Figure 4.9).  Primary sand development occurs as a 

linear trend orientated north-northwest to south-southeast with up to 12 feet (4.0 

meters) of sand accumulation.  A few thin, isolated sand deposits are present up to 8.0 

miles (12.8 kilometers) west of the primary sand accumulation.  The conglomeratic 

sandstone facies (interpreted as high-energy coastal stream deposits) and cross-

laminated sandstone facies (interpreted as nearshore deposits) are present in Sequence 

CG2.  Sand accumulation is generally associated with the linear band that trends 

parallel to the interpreted paleoshoreline based on the restored Mississippian surface.  

It is common for sand facies in mixed siliciclastic and carbonate systems to trend 

parallel to shoreline (Miall, 2000).  Most isolated sand deposits in Sequence CG2 

occur on or near interpreted paleotopographic highs on the restored Mississippian 

surface (Figure 4.10).  Deposition of Sequence CG1 probably smoothed most of the 

Mississippian surface topography, but a subdued residual topography is interpreted to 

remain during deposition of Sequence CG2.  Minor elevation changes on the shelf are 

sufficient to increase energy and spark shoal development.  Isolated sand bodies lying 

to the west are interpreted as sand shoal deposits that formed over subdued 

paleotopographic highs on the shelf.  Unfortunately, no core has been taken from any 

of these isolated sand bodies and sedimentological evidence to prove their origin is 

unavailable.  Overall, sand development in Sequence CG2 is concentrated along the 

interpreted paleoshoreline in northeastern Ness County.   
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Sequence CG3 

 Sequence Cherokee Group 3 (CG3) is correlated over the entire study area and 

contains the uppermost Cherokee Group rocks.  Sequence Boundary 3 (SB3), 

developed on top of the carbonate units in Sequence CG2, is the base of Sequence 

CG3, and can be correlated as a regionally extensive surface.  However, correlation of 

the surface down stratigraphic dip is difficult, because of the lack of core data and the 

decreasing response in well logs.  In the eastern half of the county, SB3 is 

characterized by paleosol development in the underlying carbonate units during 

exposure, but westward paleosol development disappears and is interpreted to 

represent the possible downdip limit of exposure (Figures 4.3, 4.4).  In the northeast 

portion of the study area, the basal deposits of sequence CG3 are cross-laminated 

sandstone (interpreted as nearshore environment) and variegated silty mudstone 

(interpreted as paleosol).  These facies record deposition during transgression on the 

SB3 exposure surface.  Grey shale and high gamma-ray black shale overlies the 

Sequence CG3 shoreface deposits in eastern Ness County and directly overlies SB3 in 

the rest of the study area, marking the maximum flooding surface (MFS 3) and 

transition into the highstand systems tract.  The highstand systems tract of Sequence 

CG3 starts at the regionally continuous black shale at the top of the Cherokee Group 

(the Excello Shale of eastern Kansas) and includes the carbonate rocks of the Fort 

Scott Limestone.   

 This sequence is not a complete sequence, because the bounding upper 

sequence boundary is above the top of the Cherokee Group in the Fort Scott 
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Limestone (Marmaton Group).  An inferred sequence boundary (SB4) has been 

correlated, but is based strictly on well log data and is not tied to core data.  No 

available core included the complete stratigraphic succession of the Fort Scott 

Limestone and Cherokee Group. 

Spatial Distribution of Sandstone Facies in Sequence CG3 

 Sand accumulation in Sequence CG3 is only present in the eastern third of the 

study area.  Primary sand development occurs in a linear trend orientated north-

northwest to south-southeast in the same location as sand development in Sequence 

CG2 (Figure 4.11).  Accumulations up to 15 feet (4.5 meters) thick are present.  

Isolated sand accumulations 1.0 to 11 feet (0.3 to 3.3 meters) thick are present up to 

10 miles (16 kilometers) west of the primary sand accumulation.  Typically, isolated 

sand bodies are circular to ellipsoid but a few are elongated.  A broad, lobate, east-

west orientated sand accumulation is present in Sequence CG3 in the southeastern 

region of the study area (T19S-R21W).  The sand accumulation is up to 5.0 miles 

wide, 7.0 miles long, and 12 feet thick (8.0 kilometers wide, 11.2 kilometers long, 

and 4.0 meters thick).  Several thin (<4.0 feet or 1.2 meters) isolated sand bodies are 

present along the fringe of the main accumulation.  Sequence CG3 net sand in 

northeastern Ness County exhibits a similar trend to sand development Sequence 

CG2.  Sand accumulations parallel the interpreted paleoshoreline and are the result of 

nearshore deposits.  Similar to in Sequence CG2, most isolated sand deposits in 

Sequence CG3 occur on or near interpreted paleotopographic highs on the restored 

Mississippian surface.  Sequence CG3 isolated sand bodies are interpreted as sand 
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shoal deposits that formed over minor paleotopographic highs on the shelf (Figures 

4.12, 4.13).  The east-west orientation and lobate configuration of Sequence CG3 

sand deposits (T19S-R21W) may indicate fluvial or stream deposition on the coastal 

plain (Figure 4.11).  Better well control would further refine sandstone facies 

distribution and allow for a thorough interpretation of this accumulation.   

Spatial distribution of Sandstone Facies in Undifferentiated Cherokee Group  

 In northeastern Ness County sequences could not be differentiated and sand 

was mapped together.  Combined net sand for the Cherokee Group is up to 35 feet 

(10.5 meters) thick in this region.  Sand associated with each individual sequence is 

unknown but overall, significant Cherokee Group sand accumulation is present 

(Figures 4.14, 4.15).  Marine limestone facies in Sequences CG1 and CG2 pinch out 

toward the Central Kansas uplift on the edge of the study area.  Marine limestone 

facies in Sequence CG1 terminates on the eastern edge of two townships (T16S-

R21W and T17S-R21W), while Sequence CG2 limestone facies are absent in only a 

small region of T17S-R21W.  A larger amplitude transgression during Sequence 

CG2, than during Sequence CG1, deposited marine limestone facies further eastward 

onto the Central Kansas uplift.  Sequence boundaries, typically defined by interpreted 

subaerial exposure surface above the limestone facies, could not be distinguished in 

this area due to the absence of a recognizable marine facies log signature (Figure 4.6).   

Cherokee Sandstone Facies Discussion and Hydrocarbon Potential 

In the study area, all potential reservoir sandstone facies occur in lowstand 

and transgressive systems tracts of the Cherokee Group.  The thickest deposits of 
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Cherokee Group sandstone facies occur in Sequence CG1 and are located in 

interpreted paleovalleys.  These sandstone successions were deposited before or 

during regression on the Mississippian surface.  Paleovalley sandstone deposits 

represent a primary oil reservoir in Ness County.  Paleovalley sandstone successions 

onlap interpreted Mississippian valley walls and are overlain by low permeability 

shale facies, providing favorable conditions for hydrocarbon entrapment.  Exploration 

should be focused along the thick, north-south trending sand development in the 

center of the study area (Figure 4.7).   

On the eastern edge of the Ness County, potential reservoir sandstone deposits 

are present in all three sequences.  Sand thickness in each sequence is significantly 

thinner than Sequence CG1 paleovalley successions in the center of the study area, 

but the development of multiple reservoir sands provide an excellent exploration 

target.  Sand development in eastern Ness County is concentrated along the 

interpreted north-northwest to south-southeast trending paleoshoreline.  Potential 

reservoir sandstone facies in this region have significant porosity (6.5-22%) and 

permeability ranges from 10 to 520 millidarcies (Howard, 1990). Overlying low 

permeability shale or marine limestone facies provide stratigraphic seals for 

sandstone bodies in each sequence.  Exploration efforts for Cherokee reservoirs in 

eastern Ness County should focus along the interpreted north-northwest to south-

southeast trending paleoshoreline and extend outside the county along the flank of the 

Central Kansas Uplift. 
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Source of Cherokee Group Sand 

 The source of Cherokee Group sand may have been the Reagan Sandstone 

that was exposed along the axis of the Central Kansas uplift and the Cambridge arch 

to the north in Nebraska.  The Reagan Sandstone (the Lamotte Sandstone at outcrop 

in Missouri) is a basal Paleozoic sandstone.  Compositionally, the Reagan Sandstone 

is very diverse, including quartzose sandstone, dolomitic sandstone, quartz-glauconite 

sandstone, arkose, and quartz-feldspathic sandstone (Zeller, 1968).  Arkose, often 

referred to as granite wash, occurs in the lower portion of the formation adjacent to 

the Precambrian granitic rocks (often referred to as granite wash).  Successions up to 

175 feet (55 meters) thick are documented in western Kansas but the average 

thickness in the subsurface is approximately 40 feet (12 meters) (Zeller, 1968).   

 Significant portions of the Reagan Sandstone were eroded during exposure at 

the end of the Mississippian, and Precambrian basement is directly overlain by 

Pennsylvanian rocks at several locations along the Central Kansas uplift (Zeller, 

1968; Merriam, 1963).  Sandstone from the Reagan was eroded, sediment transported 

westward to the flank of the Central Kansas Uplift, and distributed along the eastern 

shelf of the Hugoton embayment. The majority of Cherokee Group sand is found in 

Sequence CG1 and the glauconite of the Reagan may be the source of the glauconite 

in the glauconitic sandstone facies.   

 In addition to the Reagan Sandstone, weathered fragments from the exposed 

Mississippian (or possibly Arbuckle strata) are also prevalent in sandstone facies of 

the Cherokee Group. Subangular to angular chert and limestone clasts were 
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transported off the uplift.  Their angularity and size indicate limited transport distance 

and deposition close to their source.  The Arbuckle is also known to contain sand rich 

intervals and represents another possible sand source for sandstone bodies in the 

Cherokee Group (Zeller, 1968). 

Depositional Model 

 Depositional models are intended as teaching tools, mental concepts, and 

temporary fixed points in nature (Miall, 1999).  The purpose and function of a model 

is to aid in the distillation of observations for ease of comparison, and serves to 

further our understanding of natural system in a simple and basic manner (Walker, 

2006).  Models are intended to create order out of apparent chaos and attempt to 

understand genesis (Miall, 1999).  In the subsurface, models provide a vehicle for 

reconstructing facies orientations and patterns when data is limited.   

 In Ness County, the deposition of the Cherokee Group occurred on the 

erosional karst-topography of the Mississippian unconformity.  Two depositional 

models were constructed to display the lateral and vertical arrangement of the facies 

in the Cherokee Group (Figures 4.16, 4.17).  The models show the inferred 

arrangement of facies in the Cherokee Group during deposition.  Two depositional 

models were needed due to the dramatic influence of the Mississippian karst surface 

on Sequence CG1 deposition.  Deposition of Sequences CG2 and CG3 is very 

similar, and a single model provides an adequate visual aid to interpret facies 

arrangement.   
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On the edge of the Central Kansas uplift, Sequence CG1 was deposited on the 

Mississippian karst surface (Figure 4.16).  Large karst valleys are present throughout 

the study area and dolines (sinkholes) are commonly filled with the residual cherty 

breccias conglomerate facies.  The glauconitic sandstone facies and conglomeratic 

sandstone facies were deposited in paleovalleys by fluvial processes.  Variegated silty 

mudstone facies was deposited across much of the continental realm in Ness County.  

Most of the topography was filled by sediment prior to a marine transgression 

resulting in deposition of limestone facies of Sequence CG1 highstand systems tract.   

 Sequence CG2 and CG3 were deposited after the majority of the karst 

topography had been filled by Sequence CG1 (Figure 4.17).  The remaining subdued 

topography mimics the underlying Mississippian surface.  Sequence CG2 and CG3 

were deposited on sequence boundaries developed on the underlying marine 

limestone facies.  Dark-grey shale facies and black shale facies were deposited on the 

distal shelf environment around the time of the maximum transgression.  Carbonate 

wackestone-packstone facies and carbonate packstone-grainstone facies were 

deposited on an open marine shelf.  Cross-laminated sandstone facies were deposited 

in a shoreface environment.  Isolated sand shoal deposits occurred on residual 

paleotopograhic highs on the shelf. Variegated silty mudstone facies was deposited 

across the continental environment.  Channelized conglomeratic sandstone facies 

were deposited by coastal high-energy streams. 
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Mechanism for Sequence Development 

 Sequence development is a product of the relative fluctuation between the 

level of land and the sea.  The most common mechanisms invoked for creating 

relative sea-level changes are tectonics, glaciations, and climate change.  From the 

Early to Middle Pennsylvanian the Hugoton embayment was structurally active with 

relatively moderate tectonic subsidence and upward movement on the Central Kansas 

uplift, as evidenced by the thinning of Pennsylvanian strata across the crest (Merriam, 

1963).  Previous studies have established that the Pennsylvanian was a time of large-

scale continental glaciation on Gondwana, resulting in glacio-eustacy (Heckel, 1986; 

Heckel, 1994). Estimates of glacial eustatic sea-level changes on the North American 

midcontinent are typically on the order of 80 to 100 meters but estimates as high of 

160 meters have been proposed (Heckel, 1977; Klein, 1994). 

 The Cherokee Group sequences are interpreted as result of frequent changes 

in relative sea level caused by glacio-eustatic changes.  Mild subsidence due to 

continued downward movement in the Anadarko basin and Hugoton embayment 

probably played a role in creating accommodation. 
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Figure 4.1.  Base map of Ness County showing restored Mississippian 
paleotopography and highlighting location of cross-sections.  Depths in feet subsea.
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Figure 4.2.  Core photograph of interpreted sequence boundary (SB2), indicated by 
the red arrow.  Note caliche development in variegated silty mudstone facies 
(interpreted as a paleosol) sharply overlain by conglomeratic sandstone facies.  
Example is from 4128.6 feet to 4155.0 feet in Thompson A2 (S3-T17S-R21W, Ness 
County, Kansas). 
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Figure 4.3.  Available in supplemental files 
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Figure 4.4.  Available in supplemental files 
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Figure 4.5.  Available in supplemental files 
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Figure 4.6.  Available in supplemental files 
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Figure 4.7.   Net sand distribution in Sequence CG1 with data point locations 
displayed by blue circles.  Sand thickness varies from 0-58 feet (0-17.6 meters) and is 
distributed in branching elongated bodies.  Thickest sand accumulations are present in 
the west-central portion of the county.  Sand thickness in feet. 
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Figure 4.8.   Net sand distribution in Sequence CG1 with data point locations 
displayed by blue circles overlain by interpreted paleovalley orientations based on 
Mississippian paleotopography (see Figure 3.12).  Sand thickness varies from 0-58 
feet (0-17.6 meters) and is distributed in branching elongated bodies.  Sand thickness 
in feet. 
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Figure 4.9.   Net sand distribution in Sequence CG2 with data point locations 
displayed by blue circles.  Sand is only present in the northeast four townships of 
Ness County.  Sand thickness varies from 0-12 feet (0-4 meters) and the thickest sand 
bodies are oriented north-northwest to south-southeast.  Isolated pods of sand occur 
further west of the main sand body.  Unconformity line marks the landward edge of 
marine facies in CG1 and represents where Sequence CG1 and Sequence CG2 can no 
longer be reliably distinguished from each other.  Sand thickness in feet. 
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Figure 4.10.  Net sand distribution in Sequence CG2 and restored Mississippian 
structure.  Most isolated sand bodies are associated with highs in the Mississippian 
surface paleotopography, or are located on saddles between paleotopographic highs.  
Sand thickness in feet.  Mississippian surface in feet subsea. 
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Figure 4.11.   Net sand distribution in Sequence CG3 with data point locations 
displayed by blue circles.  Sand is only present along the eastern edge of Ness 
County.  Sand thickness varies from 0-15 feet (0-4.6 meters) and the thickest sand 
bodies are oriented north-northwest to south-southeast.  Isolated pods of sand occur 
further west of the main sand body.  Unconformity line marks the landward edge of 
marine facies in Sequence CG2 and represents where Sequences CG1, CG2, and CG3 
can no longer be reliably distinguished from each other.  Sand thickness in feet. 
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Figure 4.12.  Net sand distribution in Sequence CG3 and restored Mississippian 
structure (northeastern portion of Ness County).  Most isolated sand bodies are 
associated with highs in the Mississippian surface paleotopography, or are located on 
saddles between paleotopographic highs.  Sand thickness in feet.  Mississippian 
surface in feet subsea. 
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Figure 4.13.  Net sand distribution in Sequence CG3 and restored Mississippian 
structure (southeastern portion of Ness County).  Most isolated sand bodies are 
associated with highs in the Mississippian surface paleotopography, or are located on 
saddles between paleotopographic highs.  Sand thickness in feet.  Mississippian 
surface in feet subsea. 
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Figure 4.14.   Net sand distribution as mapped in undifferentiated Sequences CG1 
and CG2 with data point locations displayed by blue circles.  Sand thickness varies 
from 0-25 feet (0-7.5 meters).  Unconformity lines marks the landward edge of 
marine facies in CG1 and CG2.  Sand thickness in feet. 
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Figure 4.15.   Net sand distribution as mapped in undifferentiated Sequences CG1, 
CG2, and CG3 with data point locations displayed by blue circles.  Sand thickness 
varies from 10-34 feet (3.0-10.3 meters).  Unconformity lines marks the landward 
edge of marine facies in Sequences CG1 and CG2.  Sand thickness in feet. 
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Figure 4.16.  Depositional model of the Sequence CG1 on the high-relief 
Mississippian karst surface.  Sand development in Sequence CG1 occurs in 
paleovalleys on the Mississippian surface.  Eventually sediments deposited in 
Sequence CG1 filled most of the karst topography. Mississippian unconformity is 
shown as red line.   
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Figure 4.17.  Depositional model for Sequence CG2 and CG3 showing depositional 
environments across a broad shallow shelf on the edge of the Hugoton embayment.  
Deposition occurred on sequence boundaries developed on underlying marine 
carbonate facies (shown by red line).  Sand development occurred along the 
paleoshoreline and on isolated shoals that formed on residual paleotopographic highs. 
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CHAPTER 5: CONCLUSIONS 

Oil-bearing sandstone reservoirs in the Cherokee Group of Ness County have 

been hydrocarbon exploration targets since the 1950’s.  The integration of core, well 

log, and potential-fields data offers insight on the deposition of the Cherokee Group 

on the Mississippian unconformity, and the influence of karst topography on 

deposition during the initial transgression. The following conclusions can be made 

regarding structural and stratigraphic controls on deposition, sequence stratigraphy, 

depositional models, and distribution of potential reservoir facies in the Cherokee 

Group of Ness County 

1. The Desmoinesian Cherokee Group in Ness County Kansas consists of 

carbonate and siliciclastic sediments deposited on the Mississippian 

unconformity karst surface on the western flank of the Central Kansas uplift.   

2. The Cherokee Group can be divided into eleven lithofacies.  The black shale 

facies and the grey shale facies were deposited in low-energy, offshore, open 

marine environments.  The black shale facies was deposited by sediment 

fallout under anoxic to dysoxic conditions, whereas the grey shale facies was 

deposited under non-anoxic conditions.  The grey sandy siltstone facies was 

deposited under open marine conditions in the offshore transition zone.  The 

carbonate wackestone to packstone facies and carbonate packstone to 

grainstone facies were deposited in an open marine environment of a shallow 

shelf.  The carbonate wackestone to packstone facies formed in low energy 

subtidal environments, whereas the carbonate packstone to grainstone formed 
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in higher energy channels or as open marine storm deposits.  The lingulid 

dark-grey shale facies was deposited in a restricted lagoon environment.  The 

glauconitic cross-laminated sandstone facies was deposited in fluvial 

environment.  The conglomeratic sandstone facies formed in an environment 

of high-energy unidirectional currents in streams along a coastal plain.  The 

cross-laminated sandstone facies was deposited in a shoreface environment.  

The variegated silty mudstone facies formed from pedogenic alteration of 

existing deposits or from episodic deposition and pedogenesis.  The cherty 

conglomeratic breccia facies is the product of several processes including in 

situ brecciation, fluvial and colluvial deposition, marine reworking, and 

pedogenesis. 

3. Two major orientations of gravity and magnetic lineaments are present in 

Ness County.  North-northeast and west-northwest orientated features are 

observed in both gravity and magnetic data sets, due to variations in potential 

fields caused by changes in basement rock susceptibility or density.  

Anomalies are interpreted to represent basement block displacement along 

high angle faults or variation in basement composition.  The movement along 

basement faults is reflected in overlying strata, as faulting, fracturing, and 

jointing in similar orientations on the Mississippian surface. 

4. Karst features resolved on the Mississippian surface include groups of closed 

depressions interpreted as dolines, isolated highs interpreted as karst cones, 
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steep-sided flat-floored valleys interpreted as groundwater-sapped karst valley 

networks. 

5. A large paleovalley network exists on the Mississippian unconformity surface 

and two primary drainage patterns were identified.  In eastern Ness County, 

drainage was from east-northeast to west-southwest, off the Central Kansas 

uplift. Throughout the rest of the study area Mississippian drainage orientation 

is north to south toward the Hugoton embayment.   

6. Groundwater-sapping processes are interpreted to be the primary mechanism 

of valley formation on the Mississippian karst surface.  Valleys exhibit classic 

U-shaped theatre-headed configuration documented in groundwater-sapped 

terrains.   Favorable conditions for the development of groundwater-sapped 

features are present.  In portions of the study area valley orientations exhibit a 

strong structural control and parallel magnetic and gravity lineaments.  

Basement faults extending through Paleozoic rocks are expressed as faults and 

conjugate joints on the Mississippian surface.  These heterogeneities are 

interpreted to have concentrated groundwater flow and surface runoff causing 

groundwater sapping processes and surface dissolution to accelerate.        

7. Deformation associated with the Aldrich anticline occurred after deposition of 

the Stone Corral Anhydrite (Permian). Reactivation along northeast-

southwest–trending basement faults during the Laramide Orogeny (Late 

Cretaceous to Eocene) resulted in uplift and anticline formation.   
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8. Within the Cherokee Group three depositional sequences were interpreted 

from the six cores.  Two complete sequences contain the lower and middle 

deposits in the Cherokee Group, and an incomplete sequence contains the 

upper deposits of the Cherokee Group but continues into the Fort Scott 

Limestone (Marmaton Group), and the upper sequence boundary was not 

identified in core. 

9. Sequences onlap the Central Kansas uplift to the east of the study area.  

Individual sequence boundaries cannot be interpreted on the very eastern edge 

of the study area due to the lack of marine facies and amalgamation of non-

marine facies.  Each sequence flooded progressively further onto the uplift.   

10. In Ness County, reservoir sandstone facies for the Cherokee Group occur only 

in lowstand and transgressive systems tracts. 

11. Preexisting topography played an important role in sand development.  The 

thickest sand accumulations in the Cherokee Group were deposited in 

paleotopographic lows interpreted as paleovalleys during regression across the 

Mississippian surface (Sequence CG1).  These sand successions occur as 

channelized sandstone deposits.  Sand development in Sequence CG2 and 

CG3 occurred in northeastern Ness County along the north-northwest to 

south-southeast trending paleoshoreline.  Isolated sand bodies are present 

basinward of the interpreted paleoshoreline and are related to apparent 

paleotopographic highs on the Mississippian surface.  Although most of the 

paleotopography was filled during deposition of Sequence CG1, a subdued 
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subtle topography remained, causing shoal developed on isolated topographic 

highs across the shallow shelf. 

12. Two depositional models of the Cherokee Group were created to summarize 

the spatial distribution of depositional environments interpreted from core.  

One model illustrates the effect of the Mississippian karst surface on facies 

distribution in Sequence CG1.  The second model shows how sand was 

deposited along the paleoshoreline after initial sedimentation smoothed the 

karst paleotopography.   
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Core Locations: 
 
1) Pfaff #3 
 National Coop Refinery 
 NE NW SE, Sec. 20-T16S-R21W 
 15-135-23135 
 
2) Thompson A#2 
 National Coop Refinery 

S2 NE SW SE, Sec. 3-T17S-R21W 
15-135-23062 

 
3) Neyer B#1 
 Beardmore Oil 
 C NW NE, Sec. 3-T17S R24W 
 15-135-20706 
 
4) Tilley #2 
 Walters Drilling Company 
 SW SE SW, Sec. 8-T17S R24W 

15-135-19026 
 

5) Wegele A#1 
Anadarko Production Company 
C SE, Sec. 21-T18S-R22W 
15-135-21843 

 
6) Moore #1 
 Kern-Landes Exploration 
 C NW NW, Sec. 34-T19S-R21W 
 15-135-00656 
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APPENDIX II: POROSITY AND PERMEABILITY DATA
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Pfaff #2 Permeability vs. Porosity 
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Porosity and Permeability data from sandstone intervals in core Pfaff #2 (T16S-
R21W-Sec. 21, SW-NW-SW).  Modified from Howard, 1990.   
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